Shading still doesn't work
[ipdf/code.git] / src / bezier.h
1 #ifndef _BEZIER_H
2 #define _BEZIER_H
3
4 #include <vector>
5 #include <algorithm>
6
7 #include "real.h"
8 #include "rect.h"
9 namespace IPDF
10 {
11         extern int Factorial(int n);
12         extern int BinomialCoeff(int n, int k);
13         extern Real Bernstein(int k, int n, const Real & u);
14         
15         inline std::pair<Real,Real> SolveQuadratic(const Real & a, const Real & b, const Real & c)
16         {
17                 Real x0((-b + Sqrt(b*b - Real(4)*a*c))/(Real(2)*a));
18                 Real x1((-b - Sqrt(b*b - Real(4)*a*c))/(Real(2)*a));
19                 return std::pair<Real,Real>(x0,x1);
20         }
21
22         inline std::vector<Real> SolveCubic(const Real & a, const Real & b, const Real & c, const Real & d)
23         {
24                 // This is going to be a big one...
25                 // See http://en.wikipedia.org/wiki/Cubic_function#General_formula_for_roots
26
27                 // delta = 18abcd - 4 b^3 d + b^2 c^2 - 4ac^3 - 27 a^2 d^2
28                 /*
29                 Real discriminant = Real(18) * a * b * c * d - Real(4) * (b * b * b) * d 
30                                 + (b * b) * (c * c) - Real(4) * a * (c * c * c)
31                                 - Real(27) * (a * a) * (d * d);
32                 */
33                 // discriminant > 0 => 3 distinct, real roots.
34                 // discriminant = 0 => a multiple root (1 or 2 real roots)
35                 // discriminant < 0 => 1 real root, 2 complex conjugate roots
36
37                 ////HACK: We know any roots we care about will be between 0 and 1, so...
38                 Debug("Trying to solve %fx^3 + %fx^2 + %fx + %f", a,b,c,d);
39                 Real maxi(100);
40                 Real prevRes(d);
41                 std::vector<Real> roots;
42                 for(int i = -1; i <= 100; ++i)
43                 {
44                         Real x(i);
45                         x /= maxi;
46                         Real y = a*(x*x*x) + b*(x*x) + c*x + d;
47                         if ( ((y < Real(0)) && (prevRes > Real(0))) || ((y > Real(0)) && (prevRes < Real(0))))
48                         {
49                                 Debug("Found root of %fx^3 + %fx^2 + %fx + %f at %f (%f)", a, b, c, d, x, y);
50                                 roots.push_back(x);
51                         }
52                         prevRes = y;
53                 }
54                 return roots;
55                         
56         }
57
58         /** A _cubic_ bezier. **/
59         struct Bezier
60         {
61                 Real x0; Real y0;
62                 Real x1; Real y1;
63                 Real x2; Real y2;
64                 Real x3; Real y3;
65                 
66                 typedef enum {LINE, QUADRATIC, CUSP, LOOP, SERPENTINE} Type;
67                 Type type;
68                 
69                 Bezier() = default; // Needed so we can fread/fwrite this struct... for now.
70                 Bezier(Real _x0, Real _y0, Real _x1, Real _y1, Real _x2, Real _y2, Real _x3, Real _y3) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x3), y3(_y3) 
71                 {
72                         //TODO: classify the curve
73                         type = SERPENTINE;
74                 }
75                 
76                 std::string Str() const
77                 {
78                         std::stringstream s;
79                         s << "Bezier{" << Float(x0) << "," << Float(y0) << " -> " << Float(x1) << "," << Float(y1) << " -> " << Float(x2) << "," << Float(y2) << " -> " << Float(x3) << "," << Float(y3) << "}";
80                         return s.str();
81                 }
82                 
83                 /**
84                  * Construct absolute control points using relative control points to a bounding rectangle
85                  * ie: If cpy is relative to bounds rectangle, this will be absolute
86                  */
87                 Bezier(const Bezier & cpy, const Rect & t = Rect(0,0,1,1)) : x0(cpy.x0), y0(cpy.y0), x1(cpy.x1), y1(cpy.y1), x2(cpy.x2),y2(cpy.y2), x3(cpy.x3), y3(cpy.y3), type(cpy.type)
88                 {
89                         x0 *= t.w;
90                         y0 *= t.h;
91                         x1 *= t.w;
92                         y1 *= t.h;
93                         x2 *= t.w;
94                         y2 *= t.h;
95                         x3 *= t.w;
96                         y3 *= t.h;
97                         x0 += t.x;
98                         y0 += t.y;
99                         x1 += t.x;
100                         y1 += t.y;
101                         x2 += t.x;
102                         y2 += t.y;
103                         x3 += t.x;
104                         y3 += t.y;
105                 }
106
107                 Rect SolveBounds() const;
108                 
109                 Bezier ToAbsolute(const Rect & bounds) const
110                 {
111                         return Bezier(*this, bounds);
112                 }
113                 
114                 /** Convert absolute control points to control points relative to bounds
115                  * (This basically does the opposite of the Copy constructor)
116                  * ie: If this is absolute, the returned Bezier will be relative to the bounds rectangle
117                  */
118                 Bezier ToRelative(const Rect & bounds) const
119                 {
120                         // x' <- (x - x0)/w etc
121                         // special cases when w or h = 0
122                         // (So can't just use the Copy constructor on the inverse of bounds)
123                         // Rect inverse = {-bounds.x/bounds.w, -bounds.y/bounds.h, Real(1)/bounds.w, Real(1)/bounds.h};
124                         Bezier result;
125                         if (bounds.w == 0)
126                         {
127                                 result.x0 = 0;
128                                 result.x1 = 0;
129                                 result.x2 = 0;
130                                 result.x3 = 0;
131                         }
132                         else
133                         {
134                                 result.x0 = (x0 - bounds.x)/bounds.w;   
135                                 result.x1 = (x1 - bounds.x)/bounds.w;
136                                 result.x2 = (x2 - bounds.x)/bounds.w;
137                                 result.x3 = (x3 - bounds.x)/bounds.w;
138                         }
139
140                         if (bounds.h == 0)
141                         {
142                                 result.y0 = 0;
143                                 result.y1 = 0;
144                                 result.y2 = 0;
145                                 result.y3 = 0;
146                         }
147                         else
148                         {
149                                 result.y0 = (y0 - bounds.y)/bounds.h;   
150                                 result.y1 = (y1 - bounds.y)/bounds.h;
151                                 result.y2 = (y2 - bounds.y)/bounds.h;
152                                 result.y3 = (y3 - bounds.y)/bounds.h;
153                         }
154                         return result;
155                 }
156
157                 // Performs one round of De Casteljau subdivision and returns the [t,1] part.
158                 Bezier DeCasteljauSubdivideRight(const Real& t)
159                 {
160                         Real one_minus_t = Real(1) - t;
161
162                         // X Coordinates
163                         Real x01 = x0*t + x1*one_minus_t;
164                         Real x12 = x1*t + x2*one_minus_t;
165                         Real x23 = x2*t + x3*one_minus_t;
166
167                         Real x012 = x01*t + x12*one_minus_t;
168                         Real x123 = x12*t + x23*one_minus_t;
169
170                         Real x0123 = x012*t + x123*one_minus_t;
171
172                         // Y Coordinates
173                         Real y01 = y0*t + y1*one_minus_t;
174                         Real y12 = y1*t + y2*one_minus_t;
175                         Real y23 = y2*t + y3*one_minus_t;
176
177                         Real y012 = y01*t + y12*one_minus_t;
178                         Real y123 = y12*t + y23*one_minus_t;
179
180                         Real y0123 = y012*t + y123*one_minus_t;
181
182                         return Bezier(x0, y0, x01, y01, x012, y012, x0123, y0123);
183                 }
184                 // Performs one round of De Casteljau subdivision and returns the [0,t] part.
185                 Bezier DeCasteljauSubdivideLeft(const Real& t)
186                 {
187                         Real one_minus_t = Real(1) - t;
188
189                         // X Coordinates
190                         Real x01 = x0*t + x1*one_minus_t;
191                         Real x12 = x1*t + x2*one_minus_t;
192                         Real x23 = x2*t + x3*one_minus_t;
193
194                         Real x012 = x01*t + x12*one_minus_t;
195                         Real x123 = x12*t + x23*one_minus_t;
196
197                         Real x0123 = x012*t + x123*one_minus_t;
198
199                         // Y Coordinates
200                         Real y01 = y0*t + y1*one_minus_t;
201                         Real y12 = y1*t + y2*one_minus_t;
202                         Real y23 = y2*t + y3*one_minus_t;
203
204                         Real y012 = y01*t + y12*one_minus_t;
205                         Real y123 = y12*t + y23*one_minus_t;
206
207                         Real y0123 = y012*t + y123*one_minus_t;
208
209                         return Bezier(x0123, y0123, x123, y123, x23, y23, x3, y3);
210                 }
211
212                 Bezier ReParametrise(const Real& t0, const Real& t1)
213                 {
214                         Debug("Reparametrise: %f -> %f",t0,t1);
215                         Bezier new_bezier;
216                         // Subdivide to get from [0,t1]
217                         new_bezier = DeCasteljauSubdivideLeft(t1);
218                         // Convert t0 from [0,1] range to [0, t1]
219                         Real new_t0 = t0 / t1;
220                         Debug("New t0 = %f", new_t0);
221                         new_bezier = new_bezier.DeCasteljauSubdivideRight(new_t0);
222
223                         Debug("%s becomes %s", this->Str().c_str(), new_bezier.Str().c_str());
224                         return new_bezier;
225                 }
226                 
227                 std::vector<Bezier> ClipToRectangle(const Rect& r)
228                 {
229                         // Find points of intersection with the rectangle.
230                         Debug("Clipping Bezier to Rect %s", r.Str().c_str());
231
232                         // Convert bezier coefficients -> cubic coefficients
233                         Real xa = x0-x1+x2-x3;
234                         Real xb = x1 - Real(2)*x2 + Real(3)*x3;
235                         Real xc = x2 - Real(3)*x3;
236                         Real xd = x3 - r.x;
237
238                         // Find its roots.
239                         std::vector<Real> x_intersection = SolveCubic(xa, xb, xc, xd);
240
241                         // And for the other side.
242                         xd = x3 - r.x - r.w;
243
244                         std::vector<Real> x_intersection_pt2 = SolveCubic(xa, xb, xc, xd);
245                         x_intersection.insert(x_intersection.end(), x_intersection_pt2.begin(), x_intersection_pt2.end());
246
247                         // Similarly for y-coordinates.
248                         // Convert bezier coefficients -> cubic coefficients
249                         Real ya = y0-y1+y2-y3;
250                         Real yb = y1 - Real(2)*y2 + Real(3)*y3;
251                         Real yc = y2 - Real(3)*y3;
252                         Real yd = y3 - r.y;
253
254                         // Find its roots.
255                         std::vector<Real> y_intersection = SolveCubic(ya, yb, yc, yd);
256
257                         // And for the other side.
258                         yd = y3 - r.y - r.h;
259
260                         std::vector<Real> y_intersection_pt2 = SolveCubic(ya, yb, yc, yd);
261                         y_intersection.insert(y_intersection.end(), y_intersection_pt2.begin(), y_intersection_pt2.end());
262
263                         // Merge and sort.
264                         x_intersection.insert(x_intersection.end(), y_intersection.begin(), y_intersection.end());
265                         x_intersection.push_back(Real(0));
266                         x_intersection.push_back(Real(1));
267                         std::sort(x_intersection.begin(), x_intersection.end());
268
269                         Debug("Found %d intersections.\n", x_intersection.size());
270                         
271                         std::vector<Bezier> all_beziers;
272                         if (x_intersection.empty())
273                         {
274                                 all_beziers.push_back(*this);
275                                 return all_beziers;
276                         }
277                         Real t0 = *(x_intersection.begin());
278                         for (auto it = x_intersection.begin()+1; it != x_intersection.end(); ++it)
279                         {
280                                 Real t1 = *it;
281                                 if (t1 == t0) continue;
282                                 Debug(" -- t0: %f to t1: %f", t0, t1);
283                                 Real ptx, pty;
284                                 Evaluate(ptx, pty, ((t1 + t0) / Real(2)));
285                                 if (r.PointIn(ptx, pty))
286                                 {
287                                         all_beziers.push_back(this->ReParametrise(t0, t1));
288                                 }
289                                 t0 = t1;
290                         }
291                         return all_beziers;
292                 }
293
294                 /** Evaluate the Bezier at parametric parameter u, puts resultant point in (x,y) **/
295                 void Evaluate(Real & x, Real & y, const Real & u) const
296                 {
297                         Real coeff[4];
298                         for (unsigned i = 0; i < 4; ++i)
299                                 coeff[i] = Bernstein(i,3,u);
300                         x = x0*coeff[0] + x1*coeff[1] + x2*coeff[2] + x3*coeff[3];
301                         y = y0*coeff[0] + y1*coeff[1] + y2*coeff[2] + y3*coeff[3];
302                 }
303
304         };
305
306
307
308 }
309
310 #endif //_BEZIER_H

UCC git Repository :: git.ucc.asn.au