9273ceecbddb78368deb10ba0898280ec3a638fb
[ipdf/code.git] / src / bezier.h
1 #ifndef _BEZIER_H
2 #define _BEZIER_H
3
4 #include <vector>
5 #include <algorithm>
6
7 #include "real.h"
8 #include "rect.h"
9 namespace IPDF
10 {
11         extern int Factorial(int n);
12         extern int BinomialCoeff(int n, int k);
13         extern Real Bernstein(int k, int n, const Real & u);
14         
15         inline std::pair<Real,Real> SolveQuadratic(const Real & a, const Real & b, const Real & c)
16         {
17                 Real x0((-b + Sqrt(b*b - Real(4)*a*c))/(Real(2)*a));
18                 Real x1((-b - Sqrt(b*b - Real(4)*a*c))/(Real(2)*a));
19                 return std::pair<Real,Real>(x0,x1);
20         }
21
22         inline std::vector<Real> SolveCubic(const Real & a, const Real & b, const Real & c, const Real & d)
23         {
24                 // This is going to be a big one...
25                 // See http://en.wikipedia.org/wiki/Cubic_function#General_formula_for_roots
26
27                 // delta = 18abcd - 4 b^3 d + b^2 c^2 - 4ac^3 - 27 a^2 d^2
28                 /*
29                 Real discriminant = Real(18) * a * b * c * d - Real(4) * (b * b * b) * d 
30                                 + (b * b) * (c * c) - Real(4) * a * (c * c * c)
31                                 - Real(27) * (a * a) * (d * d);
32                 */
33                 // discriminant > 0 => 3 distinct, real roots.
34                 // discriminant = 0 => a multiple root (1 or 2 real roots)
35                 // discriminant < 0 => 1 real root, 2 complex conjugate roots
36
37                 ////HACK: We know any roots we care about will be between 0 and 1, so...
38                 Debug("Trying to solve %fx^3 + %fx^2 + %fx + %f", a,b,c,d);
39                 Real maxi(100);
40                 Real prevRes(d);
41                 std::vector<Real> roots;
42                 for(int i = -1; i <= 100; ++i)
43                 {
44                         Real x(i);
45                         x /= maxi;
46                         Real y = a*(x*x*x) + b*(x*x) + c*x + d;
47                         if ( ((y < Real(0)) && (prevRes > Real(0))) || ((y > Real(0)) && (prevRes < Real(0))))
48                         {
49                                 Debug("Found root of %fx^3 + %fx^2 + %fx + %f at %f (%f)", a, b, c, d, x, y);
50                                 roots.push_back(x);
51                         }
52                         prevRes = y;
53                 }
54                 return roots;
55                         
56         }
57
58         /** A _cubic_ bezier. **/
59         struct Bezier
60         {
61                 Real x0; Real y0;
62                 Real x1; Real y1;
63                 Real x2; Real y2;
64                 Real x3; Real y3;
65                 Bezier() = default; // Needed so we can fread/fwrite this struct... for now.
66                 Bezier(Real _x0, Real _y0, Real _x1, Real _y1, Real _x2, Real _y2, Real _x3, Real _y3) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x3), y3(_y3) 
67                 {
68                         
69                 }
70                 
71                 Bezier(Real _x0, Real _y0, Real _x1, Real _y1, Real _x2, Real _y2) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x2), y3(_y2) {}
72                 
73                 std::string Str() const
74                 {
75                         std::stringstream s;
76                         s << "Bezier{" << Float(x0) << "," << Float(y0) << " -> " << Float(x1) << "," << Float(y1) << " -> " << Float(x2) << "," << Float(y2) << " -> " << Float(x3) << "," << Float(y3) << "}";
77                         return s.str();
78                 }
79                 
80                 /**
81                  * Construct absolute control points using relative control points to a bounding rectangle
82                  * ie: If cpy is relative to bounds rectangle, this will be absolute
83                  */
84                 Bezier(const Bezier & cpy, const Rect & t = Rect(0,0,1,1)) : x0(cpy.x0), y0(cpy.y0), x1(cpy.x1), y1(cpy.y1), x2(cpy.x2),y2(cpy.y2), x3(cpy.x3), y3(cpy.y3)
85                 {
86                         x0 *= t.w;
87                         y0 *= t.h;
88                         x1 *= t.w;
89                         y1 *= t.h;
90                         x2 *= t.w;
91                         y2 *= t.h;
92                         x3 *= t.w;
93                         y3 *= t.h;
94                         x0 += t.x;
95                         y0 += t.y;
96                         x1 += t.x;
97                         y1 += t.y;
98                         x2 += t.x;
99                         y2 += t.y;
100                         x3 += t.x;
101                         y3 += t.y;
102                 }
103
104                 Rect SolveBounds() const;
105                 
106                 Bezier ToAbsolute(const Rect & bounds) const
107                 {
108                         return Bezier(*this, bounds);
109                 }
110                 
111                 /** Convert absolute control points to control points relative to bounds
112                  * (This basically does the opposite of the Copy constructor)
113                  * ie: If this is absolute, the returned Bezier will be relative to the bounds rectangle
114                  */
115                 Bezier ToRelative(const Rect & bounds) const
116                 {
117                         // x' <- (x - x0)/w etc
118                         // special cases when w or h = 0
119                         // (So can't just use the Copy constructor on the inverse of bounds)
120                         // Rect inverse = {-bounds.x/bounds.w, -bounds.y/bounds.h, Real(1)/bounds.w, Real(1)/bounds.h};
121                         Bezier result;
122                         if (bounds.w == 0)
123                         {
124                                 result.x0 = 0;
125                                 result.x1 = 0;
126                                 result.x2 = 0;
127                                 result.x3 = 0;
128                         }
129                         else
130                         {
131                                 result.x0 = (x0 - bounds.x)/bounds.w;   
132                                 result.x1 = (x1 - bounds.x)/bounds.w;
133                                 result.x2 = (x2 - bounds.x)/bounds.w;
134                                 result.x3 = (x3 - bounds.x)/bounds.w;
135                         }
136
137                         if (bounds.h == 0)
138                         {
139                                 result.y0 = 0;
140                                 result.y1 = 0;
141                                 result.y2 = 0;
142                                 result.y3 = 0;
143                         }
144                         else
145                         {
146                                 result.y0 = (y0 - bounds.y)/bounds.h;   
147                                 result.y1 = (y1 - bounds.y)/bounds.h;
148                                 result.y2 = (y2 - bounds.y)/bounds.h;
149                                 result.y3 = (y3 - bounds.y)/bounds.h;
150                         }
151                         return result;
152                 }
153
154                 // Performs one round of De Casteljau subdivision and returns the [t,1] part.
155                 Bezier DeCasteljauSubdivideRight(const Real& t)
156                 {
157                         Real one_minus_t = Real(1) - t;
158
159                         // X Coordinates
160                         Real x01 = x0*t + x1*one_minus_t;
161                         Real x12 = x1*t + x2*one_minus_t;
162                         Real x23 = x2*t + x3*one_minus_t;
163
164                         Real x012 = x01*t + x12*one_minus_t;
165                         Real x123 = x12*t + x23*one_minus_t;
166
167                         Real x0123 = x012*t + x123*one_minus_t;
168
169                         // Y Coordinates
170                         Real y01 = y0*t + y1*one_minus_t;
171                         Real y12 = y1*t + y2*one_minus_t;
172                         Real y23 = y2*t + y3*one_minus_t;
173
174                         Real y012 = y01*t + y12*one_minus_t;
175                         Real y123 = y12*t + y23*one_minus_t;
176
177                         Real y0123 = y012*t + y123*one_minus_t;
178
179                         return Bezier(x0, y0, x01, y01, x012, y012, x0123, y0123);
180                 }
181                 // Performs one round of De Casteljau subdivision and returns the [0,t] part.
182                 Bezier DeCasteljauSubdivideLeft(const Real& t)
183                 {
184                         Real one_minus_t = Real(1) - t;
185
186                         // X Coordinates
187                         Real x01 = x0*t + x1*one_minus_t;
188                         Real x12 = x1*t + x2*one_minus_t;
189                         Real x23 = x2*t + x3*one_minus_t;
190
191                         Real x012 = x01*t + x12*one_minus_t;
192                         Real x123 = x12*t + x23*one_minus_t;
193
194                         Real x0123 = x012*t + x123*one_minus_t;
195
196                         // Y Coordinates
197                         Real y01 = y0*t + y1*one_minus_t;
198                         Real y12 = y1*t + y2*one_minus_t;
199                         Real y23 = y2*t + y3*one_minus_t;
200
201                         Real y012 = y01*t + y12*one_minus_t;
202                         Real y123 = y12*t + y23*one_minus_t;
203
204                         Real y0123 = y012*t + y123*one_minus_t;
205
206                         return Bezier(x0123, y0123, x123, y123, x23, y23, x3, y3);
207                 }
208
209                 Bezier ReParametrise(const Real& t0, const Real& t1)
210                 {
211                         Debug("Reparametrise: %f -> %f",t0,t1);
212                         Bezier new_bezier;
213                         // Subdivide to get from [0,t1]
214                         new_bezier = DeCasteljauSubdivideLeft(t1);
215                         // Convert t0 from [0,1] range to [0, t1]
216                         Real new_t0 = t0 / t1;
217                         Debug("New t0 = %f", new_t0);
218                         new_bezier = new_bezier.DeCasteljauSubdivideRight(new_t0);
219
220                         Debug("%s becomes %s", this->Str().c_str(), new_bezier.Str().c_str());
221                         return new_bezier;
222                 }
223                 
224                 std::vector<Bezier> ClipToRectangle(const Rect& r)
225                 {
226                         // Find points of intersection with the rectangle.
227                         Debug("Clipping Bezier to Rect %s", r.Str().c_str());
228
229                         // Convert bezier coefficients -> cubic coefficients
230                         Real xa = x0-x1+x2-x3;
231                         Real xb = x1 - Real(2)*x2 + Real(3)*x3;
232                         Real xc = x2 - Real(3)*x3;
233                         Real xd = x3 - r.x;
234
235                         // Find its roots.
236                         std::vector<Real> x_intersection = SolveCubic(xa, xb, xc, xd);
237
238                         // And for the other side.
239                         xd = x3 - r.x - r.w;
240
241                         std::vector<Real> x_intersection_pt2 = SolveCubic(xa, xb, xc, xd);
242                         x_intersection.insert(x_intersection.end(), x_intersection_pt2.begin(), x_intersection_pt2.end());
243
244                         // Similarly for y-coordinates.
245                         // Convert bezier coefficients -> cubic coefficients
246                         Real ya = y0-y1+y2-y3;
247                         Real yb = y1 - Real(2)*y2 + Real(3)*y3;
248                         Real yc = y2 - Real(3)*y3;
249                         Real yd = y3 - r.y;
250
251                         // Find its roots.
252                         std::vector<Real> y_intersection = SolveCubic(ya, yb, yc, yd);
253
254                         // And for the other side.
255                         yd = y3 - r.y - r.h;
256
257                         std::vector<Real> y_intersection_pt2 = SolveCubic(ya, yb, yc, yd);
258                         y_intersection.insert(y_intersection.end(), y_intersection_pt2.begin(), y_intersection_pt2.end());
259
260                         // Merge and sort.
261                         x_intersection.insert(x_intersection.end(), y_intersection.begin(), y_intersection.end());
262                         x_intersection.push_back(Real(0));
263                         x_intersection.push_back(Real(1));
264                         std::sort(x_intersection.begin(), x_intersection.end());
265
266                         Debug("Found %d intersections.\n", x_intersection.size());
267                         
268                         std::vector<Bezier> all_beziers;
269                         if (x_intersection.empty())
270                         {
271                                 all_beziers.push_back(*this);
272                                 return all_beziers;
273                         }
274                         Real t0 = *(x_intersection.begin());
275                         for (auto it = x_intersection.begin()+1; it != x_intersection.end(); ++it)
276                         {
277                                 Real t1 = *it;
278                                 if (t1 == t0) continue;
279                                 Debug(" -- t0: %f to t1: %f", t0, t1);
280                                 Real ptx, pty;
281                                 Evaluate(ptx, pty, ((t1 + t0) / Real(2)));
282                                 if (r.PointIn(ptx, pty))
283                                 {
284                                         all_beziers.push_back(this->ReParametrise(t0, t1));
285                                 }
286                                 t0 = t1;
287                         }
288                         return all_beziers;
289                 }
290
291                 /** Evaluate the Bezier at parametric parameter u, puts resultant point in (x,y) **/
292                 void Evaluate(Real & x, Real & y, const Real & u) const
293                 {
294                         Real coeff[4];
295                         for (unsigned i = 0; i < 4; ++i)
296                                 coeff[i] = Bernstein(i,3,u);
297                         x = x0*coeff[0] + x1*coeff[1] + x2*coeff[2] + x3*coeff[3];
298                         y = y0*coeff[0] + y1*coeff[1] + y2*coeff[2] + y3*coeff[3];
299                 }
300
301         };
302
303
304
305 }
306
307 #endif //_BEZIER_H

UCC git Repository :: git.ucc.asn.au