9a54d0cd76aec5b9ba2d8de07863dcb4936aa930
[ipdf/code.git] / src / bezier.h
1 #ifndef _BEZIER_H
2 #define _BEZIER_H
3
4 #include <vector>
5 #include <algorithm>
6
7 #include "real.h"
8 #include "rect.h"
9 namespace IPDF
10 {
11         extern int Factorial(int n);
12         extern int BinomialCoeff(int n, int k);
13         extern Real Bernstein(int k, int n, const Real & u);
14         
15         inline std::pair<Real,Real> SolveQuadratic(const Real & a, const Real & b, const Real & c)
16         {
17                 Real x0((-b + Sqrt(b*b - Real(4)*a*c))/(Real(2)*a));
18                 Real x1((-b - Sqrt(b*b - Real(4)*a*c))/(Real(2)*a));
19                 return std::pair<Real,Real>(x0,x1);
20         }
21
22         inline std::vector<Real> SolveCubic(const Real & a, const Real & b, const Real & c, const Real & d)
23         {
24                 // This is going to be a big one...
25                 // See http://en.wikipedia.org/wiki/Cubic_function#General_formula_for_roots
26
27                 // delta = 18abcd - 4 b^3 d + b^2 c^2 - 4ac^3 - 27 a^2 d^2
28                 /*
29                 Real discriminant = Real(18) * a * b * c * d - Real(4) * (b * b * b) * d 
30                                 + (b * b) * (c * c) - Real(4) * a * (c * c * c)
31                                 - Real(27) * (a * a) * (d * d);
32                 */
33                 // discriminant > 0 => 3 distinct, real roots.
34                 // discriminant = 0 => a multiple root (1 or 2 real roots)
35                 // discriminant < 0 => 1 real root, 2 complex conjugate roots
36
37                 ////HACK: We know any roots we care about will be between 0 and 1, so...
38                 Debug("Trying to solve %fx^3 + %fx^2 + %fx + %f", a,b,c,d);
39                 Real maxi(100);
40                 Real prevRes(d);
41                 std::vector<Real> roots;
42                 for(int i = -1; i <= 100; ++i)
43                 {
44                         Real x(i);
45                         x /= maxi;
46                         Real y = a*(x*x*x) + b*(x*x) + c*x + d;
47                         if ( ((y < Real(0)) && (prevRes > Real(0))) || ((y > Real(0)) && (prevRes < Real(0))))
48                         {
49                                 Debug("Found root of %fx^3 + %fx^2 + %fx + %f at %f (%f)", a, b, c, d, x, y);
50                                 roots.push_back(x);
51                         }
52                         prevRes = y;
53                 }
54                 return roots;
55                         
56         }
57
58         /** A _cubic_ bezier. **/
59         struct Bezier
60         {
61                 Real x0; Real y0;
62                 Real x1; Real y1;
63                 Real x2; Real y2;
64                 Real x3; Real y3;
65                 Bezier() = default; // Needed so we can fread/fwrite this struct... for now.
66                 Bezier(Real _x0, Real _y0, Real _x1, Real _y1, Real _x2, Real _y2, Real _x3, Real _y3) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x3), y3(_y3) 
67                 {
68                         
69                 }
70                 
71                 Bezier(Real _x0, Real _y0, Real _x1, Real _y1, Real _x2, Real _y2) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x2), y3(_y2) {}
72                 
73                 std::string Str() const
74                 {
75                         std::stringstream s;
76                         s << "Bezier{" << Float(x0) << "," << Float(y0) << " -> " << Float(x1) << "," << Float(y1) << " -> " << Float(x2) << "," << Float(y2) << " -> " << Float(x3) << "," << Float(y3) << "}";
77                         return s.str();
78                 }
79                 
80                 /**
81                  * Construct absolute control points using relative control points to a bounding rectangle
82                  * ie: If cpy is relative to bounds rectangle, this will be absolute
83                  */
84                 Bezier(const Bezier & cpy, const Rect & t = Rect(0,0,1,1)) : x0(cpy.x0), y0(cpy.y0), x1(cpy.x1), y1(cpy.y1), x2(cpy.x2),y2(cpy.y2), x3(cpy.x3), y3(cpy.y3)
85                 {
86                         x0 *= t.w;
87                         y0 *= t.h;
88                         x1 *= t.w;
89                         y1 *= t.h;
90                         x2 *= t.w;
91                         y2 *= t.h;
92                         x3 *= t.w;
93                         y3 *= t.h;
94                         x0 += t.x;
95                         y0 += t.y;
96                         x1 += t.x;
97                         y1 += t.y;
98                         x2 += t.x;
99                         y2 += t.y;
100                         x3 += t.x;
101                         y3 += t.y;
102                 }
103
104                 Rect SolveBounds() const;
105                 
106                 Bezier ToAbsolute(const Rect & bounds) const
107                 {
108                         return Bezier(*this, bounds);
109                 }
110                 
111                 /** Convert absolute control points to control points relative to bounds
112                  * (This basically does the opposite of the Copy constructor)
113                  * ie: If this is absolute, the returned Bezier will be relative to the bounds rectangle
114                  */
115                 Bezier ToRelative(const Rect & bounds) const
116                 {
117                         // x' <- (x - x0)/w etc
118                         // special cases when w or h = 0
119                         // (So can't just use the Copy constructor on the inverse of bounds)
120                         // Rect inverse = {-bounds.x/bounds.w, -bounds.y/bounds.h, Real(1)/bounds.w, Real(1)/bounds.h};
121                         Bezier result;
122                         if (bounds.w == 0)
123                         {
124                                 result.x0 = 0;
125                                 result.x1 = 0;
126                                 result.x2 = 0;
127                                 result.x3 = 0;
128                         }
129                         else
130                         {
131                                 result.x0 = (x0 - bounds.x)/bounds.w;   
132                                 result.x1 = (x1 - bounds.x)/bounds.w;
133                                 result.x2 = (x2 - bounds.x)/bounds.w;
134                                 result.x3 = (x3 - bounds.x)/bounds.w;
135                         }
136
137                         if (bounds.h == 0)
138                         {
139                                 result.y0 = 0;
140                                 result.y1 = 0;
141                                 result.y2 = 0;
142                                 result.y3 = 0;
143                         }
144                         else
145                         {
146                                 result.y0 = (y0 - bounds.y)/bounds.h;   
147                                 result.y1 = (y1 - bounds.y)/bounds.h;
148                                 result.y2 = (y2 - bounds.y)/bounds.h;
149                                 result.y3 = (y3 - bounds.y)/bounds.h;
150                         }
151                         return result;
152                 }
153
154                 Bezier ReParametrise(const Real& t0, const Real& t1)
155                 {
156                         // This function is very, very ugly, but with luck my derivation is correct (even if it isn't optimal, performance wise)
157                         // (Very) rough working for the derivation is at: http://davidgow.net/stuff/cubic_bezier_reparam.pdf
158                         Debug("Reparametrise: %f -> %f",t0,t1);
159                         Bezier new_bezier;
160                         Real tdiff = t1 - t0;
161                         Real tdiff_squared = tdiff*tdiff;
162                         Real tdiff_cubed = tdiff*tdiff_squared;
163
164                         Real t0_squared = t0*t0;
165                         Real t0_cubed = t0*t0_squared;
166                         
167                         // X coordinates
168                         Real Dx0 = x0 / tdiff_cubed;
169                         Real Dx1 = x1 / (tdiff_squared - tdiff_cubed);
170                         Real Dx2 = x2 / (tdiff - Real(2)*tdiff_squared + tdiff_cubed);
171                         Real Dx3 = x3 / (Real(1) - Real(3)*tdiff + Real(3)*tdiff_squared - tdiff_cubed);
172
173                         new_bezier.x3 = Dx3*t0_cubed + Real(3)*Dx3*t0_squared + Real(3)*Dx3*t0 + Dx3 - Dx2*t0_cubed - Real(2)*Dx2*t0_squared - Dx2*t0 + Dx1*t0_cubed + Dx1*t0_squared - Dx0*t0_cubed;
174                         new_bezier.x2 = Real(3)*Dx0*t0_squared - Real(2)*Dx1*t0 - Real(3)*Dx1*t0_squared + Dx2 + Real(4)*Dx2*t0 + Real(3)*Dx2*t0_squared - Real(3)*Dx3 - Real(6)*Dx3*t0 - Real(3)*Dx3*t0_squared + Real(3)*new_bezier.x3;
175                         new_bezier.x1 = Real(-3)*Dx0*t0 + Real(3)*Dx1*t0 + Dx1 - Real(2)*Dx2 - Real(3)*Dx2*t0 + Real(3)*Dx3 + Real(3)*Dx3*t0 + Real(2)*new_bezier.x2 - Real(3)*new_bezier.x3;
176                         new_bezier.x0 = Dx0 - Dx1 + Dx2 - Dx3 + new_bezier.x1 - new_bezier.x2 + new_bezier.x3;
177
178                         // Y coordinates
179                         Real Dy0 = y0 / tdiff_cubed;
180                         Real Dy1 = y1 / (tdiff_squared - tdiff_cubed);
181                         Real Dy2 = y2 / (tdiff - Real(2)*tdiff_squared + tdiff_cubed);
182                         Real Dy3 = y3 / (Real(1) - Real(3)*tdiff + Real(3)*tdiff_squared - tdiff_cubed);
183
184                         new_bezier.y3 = Dy3*t0_cubed + Real(3)*Dy3*t0_squared + Real(3)*Dy3*t0 + Dy3 - Dy2*t0_cubed - Real(2)*Dy2*t0_squared - Dy2*t0 + Dy1*t0_cubed + Dy1*t0_squared - Dy0*t0_cubed;
185                         new_bezier.y2 = Real(3)*Dy0*t0_squared - Real(2)*Dy1*t0 - Real(3)*Dy1*t0_squared + Dy2 + Real(4)*Dy2*t0 + Real(3)*Dy2*t0_squared - Real(3)*Dy3 - Real(6)*Dy3*t0 - Real(3)*Dy3*t0_squared + Real(3)*new_bezier.y3;
186                         new_bezier.y1 = Real(-3)*Dy0*t0 + Real(3)*Dy1*t0 + Dy1 - Real(2)*Dy2 - Real(3)*Dy2*t0 + Real(3)*Dy3 + Real(3)*Dy3*t0 + Real(2)*new_bezier.y2 - Real(3)*new_bezier.y3;
187                         new_bezier.y0 = Dy0 - Dy1 + Dy2 - Dy3 + new_bezier.y1 - new_bezier.y2 + new_bezier.y3;
188
189
190                         Debug("(%f,%f),(%f,%f),(%f,%f),(%f,%f) -> (%f,%f),(%f,%f),(%f,%f),(%f,%f)", x0, y0, x1, y1, x2, y2, x3, y3, new_bezier.x0, new_bezier.y0, new_bezier.x1, new_bezier.y1, new_bezier.x2, new_bezier.y2, new_bezier.x3, new_bezier.y3);
191                         return new_bezier;
192                 }
193                 
194                 std::vector<Bezier> ClipToRectangle(const Rect& r)
195                 {
196                         // Find points of intersection with the rectangle.
197                         Debug("Clipping Bezier to Rect %s", r.Str().c_str());
198
199                         // Convert bezier coefficients -> cubic coefficients
200                         Real xa = x0-x1+x2-x3;
201                         Real xb = x1 - Real(2)*x2 + Real(3)*x3;
202                         Real xc = x2 - Real(3)*x3;
203                         Real xd = x3 - r.x;
204
205                         // Find its roots.
206                         std::vector<Real> x_intersection = SolveCubic(xa, xb, xc, xd);
207
208                         // And for the other side.
209                         xd = x3 - r.x - r.w;
210
211                         std::vector<Real> x_intersection_pt2 = SolveCubic(xa, xb, xc, xd);
212                         x_intersection.insert(x_intersection.end(), x_intersection_pt2.begin(), x_intersection_pt2.end());
213
214                         // Similarly for y-coordinates.
215                         // Convert bezier coefficients -> cubic coefficients
216                         Real ya = y0-y1+y2-y3;
217                         Real yb = y1 - Real(2)*y2 + Real(3)*y3;
218                         Real yc = y2 - Real(3)*y3;
219                         Real yd = y3 - r.y;
220
221                         // Find its roots.
222                         std::vector<Real> y_intersection = SolveCubic(ya, yb, yc, yd);
223
224                         // And for the other side.
225                         yd = y3 - r.y - r.h;
226
227                         std::vector<Real> y_intersection_pt2 = SolveCubic(ya, yb, yc, yd);
228                         y_intersection.insert(y_intersection.end(), y_intersection_pt2.begin(), y_intersection_pt2.end());
229
230                         // Merge and sort.
231                         x_intersection.insert(x_intersection.end(), y_intersection.begin(), y_intersection.end());
232                         std::sort(x_intersection.begin(), x_intersection.end());
233
234                         Debug("Found %d intersections.\n", x_intersection.size());
235                         
236                         std::vector<Bezier> all_beziers;
237                         if (x_intersection.empty())
238                         {
239                                 all_beziers.push_back(*this);
240                                 return all_beziers;
241                         }
242                         Real t0 = *(x_intersection.begin());
243                         for (auto it = x_intersection.begin()+1; it != x_intersection.end(); ++it)
244                         {
245                                 Real t1 = *it;
246                                 Debug(" -- t0: %f to t1: %f", t0, t1);
247                                 all_beziers.push_back(this->ReParametrise(t0, t1));
248                                 t0 = t1;
249                         }
250                         return all_beziers;
251                 }
252
253                 /** Evaluate the Bezier at parametric parameter u, puts resultant point in (x,y) **/
254                 void Evaluate(Real & x, Real & y, const Real & u) const
255                 {
256                         Real coeff[4];
257                         for (unsigned i = 0; i < 4; ++i)
258                                 coeff[i] = Bernstein(i,3,u);
259                         x = x0*coeff[0] + x1*coeff[1] + x2*coeff[2] + x3*coeff[3];
260                         y = y0*coeff[0] + y1*coeff[1] + y2*coeff[2] + y3*coeff[3];
261                 }
262
263         };
264
265
266
267 }
268
269 #endif //_BEZIER_H

UCC git Repository :: git.ucc.asn.au