9ea730f78c0907a73ecfd5e4b727da5429636417
[ipdf/code.git] / src / bezier.h
1 #ifndef _BEZIER_H
2 #define _BEZIER_H
3
4 #include "real.h"
5 #include "rect.h"
6 namespace IPDF
7 {
8         extern int Factorial(int n);
9         extern int BinomialCoeff(int n, int k);
10         extern Real Bernstein(int k, int n, const Real & u);
11         
12         inline std::pair<Real,Real> SolveQuadratic(const Real & a, const Real & b, const Real & c)
13         {
14                 Real x0((-b + Sqrt(b*b - Real(4)*a*c))/(Real(2)*a));
15                 Real x1((-b - Sqrt(b*b - Real(4)*a*c))/(Real(2)*a));
16                 return std::pair<Real,Real>(x0,x1);
17         }
18
19         inline std::vector<Real> SolveCubic(const Real & a, const Real & b, const Real & c, const Real & d)
20         {
21                 // This is going to be a big one...
22                 // See http://en.wikipedia.org/wiki/Cubic_function#General_formula_for_roots
23
24                 // delta = 18abcd - 4 b^3 d + b^2 c^2 - 4ac^3 - 27 a^2 d^2
25                 /*
26                 Real discriminant = Real(18) * a * b * c * d - Real(4) * (b * b * b) * d 
27                                 + (b * b) * (c * c) - Real(4) * a * (c * c * c)
28                                 - Real(27) * (a * a) * (d * d);
29                 */
30                 // discriminant > 0 => 3 distinct, real roots.
31                 // discriminant = 0 => a multiple root (1 or 2 real roots)
32                 // discriminant < 0 => 1 real root, 2 complex conjugate roots
33
34                 ////HACK: We know any roots we care about will be between 0 and 1, so...
35                 Real maxi(100);
36                 Real prevRes(d);
37                 std::vector<Real> roots;
38                 for(int i = 0; i <= 100; ++i)
39                 {
40                         Real x(i);
41                         x /= maxi;
42                         Real y = a*(x*x*x) + b*(x*x) + c*x + d;
43                         if (y == Real(0) || (y < Real(0) && prevRes > Real(0)) || (y > Real(0) && prevRes < Real(0)))
44                         {
45                                 roots.push_back(x);
46                         }
47                 }
48                 return roots;
49                         
50         }
51                 
52
53         /** A _cubic_ bezier. **/
54         struct Bezier
55         {
56                 Real x0; Real y0;
57                 Real x1; Real y1;
58                 Real x2; Real y2;
59                 Real x3; Real y3;
60                 Bezier() = default; // Needed so we can fread/fwrite this struct... for now.
61                 Bezier(Real _x0, Real _y0, Real _x1, Real _y1, Real _x2, Real _y2, Real _x3, Real _y3) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x3), y3(_y3) 
62                 {
63                         
64                 }
65                 
66                 Bezier(Real _x0, Real _y0, Real _x1, Real _y1, Real _x2, Real _y2) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x2), y3(_y2) {}
67                 
68                 std::string Str() const
69                 {
70                         std::stringstream s;
71                         s << "Bezier{" << Float(x0) << "," << Float(y0) << " -> " << Float(x1) << "," << Float(y1) << " -> " << Float(x2) << "," << Float(y2) << " -> " << Float(x3) << "," << Float(y3) << "}";
72                         return s.str();
73                 }
74                 
75                 /**
76                  * Construct absolute control points using relative control points to a bounding rectangle
77                  * ie: If cpy is relative to bounds rectangle, this will be absolute
78                  */
79                 Bezier(const Bezier & cpy, const Rect & t = Rect(0,0,1,1)) : x0(cpy.x0), y0(cpy.y0), x1(cpy.x1), y1(cpy.y1), x2(cpy.x2),y2(cpy.y2), x3(cpy.x3), y3(cpy.y3)
80                 {
81                         x0 *= t.w;
82                         y0 *= t.h;
83                         x1 *= t.w;
84                         y1 *= t.h;
85                         x2 *= t.w;
86                         y2 *= t.h;
87                         x3 *= t.w;
88                         y3 *= t.h;
89                         x0 += t.x;
90                         y0 += t.y;
91                         x1 += t.x;
92                         y1 += t.y;
93                         x2 += t.x;
94                         y2 += t.y;
95                         x3 += t.x;
96                         y3 += t.y;
97                 }
98
99                 Rect SolveBounds() const;
100                 
101                 Bezier ToAbsolute(const Rect & bounds) const
102                 {
103                         return Bezier(*this, bounds);
104                 }
105                 
106                 /** Convert absolute control points to control points relative to bounds
107                  * (This basically does the opposite of the Copy constructor)
108                  * ie: If this is absolute, the returned Bezier will be relative to the bounds rectangle
109                  */
110                 Bezier ToRelative(const Rect & bounds) const
111                 {
112                         // x' <- (x - x0)/w etc
113                         // special cases when w or h = 0
114                         // (So can't just use the Copy constructor on the inverse of bounds)
115                         // Rect inverse = {-bounds.x/bounds.w, -bounds.y/bounds.h, Real(1)/bounds.w, Real(1)/bounds.h};
116                         Bezier result;
117                         if (bounds.w == 0)
118                         {
119                                 result.x0 = 0;
120                                 result.x1 = 0;
121                                 result.x2 = 0;
122                                 result.x3 = 0;
123                         }
124                         else
125                         {
126                                 result.x0 = (x0 - bounds.x)/bounds.w;   
127                                 result.x1 = (x1 - bounds.x)/bounds.w;
128                                 result.x2 = (x2 - bounds.x)/bounds.w;
129                                 result.x3 = (x3 - bounds.x)/bounds.w;
130                         }
131
132                         if (bounds.h == 0)
133                         {
134                                 result.y0 = 0;
135                                 result.y1 = 0;
136                                 result.y2 = 0;
137                                 result.y3 = 0;
138                         }
139                         else
140                         {
141                                 result.y0 = (y0 - bounds.y)/bounds.h;   
142                                 result.y1 = (y1 - bounds.y)/bounds.h;
143                                 result.y2 = (y2 - bounds.y)/bounds.h;
144                                 result.y3 = (y3 - bounds.y)/bounds.h;
145                         }
146                         return result;
147                 }
148                 
149
150                 /** Evaluate the Bezier at parametric parameter u, puts resultant point in (x,y) **/
151                 void Evaluate(Real & x, Real & y, const Real & u) const
152                 {
153                         Real coeff[4];
154                         for (unsigned i = 0; i < 4; ++i)
155                                 coeff[i] = Bernstein(i,3,u);
156                         x = x0*coeff[0] + x1*coeff[1] + x2*coeff[2] + x3*coeff[3];
157                         y = y0*coeff[0] + y1*coeff[1] + y2*coeff[2] + y3*coeff[3];
158                 }
159
160         };
161
162
163
164 }
165
166 #endif //_BEZIER_H

UCC git Repository :: git.ucc.asn.au