cedf8d4456cf1e3f3c3bd980cb3027ec4cbffb31
[ipdf/code.git] / src / bezier.h
1 #ifndef _BEZIER_H
2 #define _BEZIER_H
3
4 #include <vector>
5 #include <algorithm>
6
7 #include "real.h"
8 #include "rect.h"
9
10
11 namespace IPDF
12 {
13         extern int Factorial(int n);
14         extern int BinomialCoeff(int n, int k);
15         extern Real Bernstein(int k, int n, const Real & u);
16         extern std::pair<Real,Real> BezierTurningPoints(const Real & p0, const Real & p1, const Real & p2, const Real & p3);
17         
18         extern std::vector<Real> SolveQuadratic(const Real & a, const Real & b, const Real & c, const Real & min = 0, const Real & max = 1);
19
20         extern std::vector<Real> SolveCubic(const Real & a, const Real & b, const Real & c, const Real & d, const Real & min = 0, const Real & max = 1, const Real & delta = 1e-9);
21
22         /** A _cubic_ bezier. **/
23         struct Bezier
24         {
25                 Real x0; Real y0;
26                 Real x1; Real y1;
27                 Real x2; Real y2;
28                 Real x3; Real y3;
29                 
30                 typedef enum {UNKNOWN, LINE, QUADRATIC, CUSP, LOOP, SERPENTINE} Type;
31                 Type type;
32                 
33                 //Bezier() = default; // Needed so we can fread/fwrite this struct... for now.
34                 Bezier(Real _x0=0, Real _y0=0, Real _x1=0, Real _y1=0, Real _x2=0, Real _y2=0, Real _x3=0, Real _y3=0) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x3), y3(_y3), type(UNKNOWN)
35                 {
36
37                 }
38                 
39                 Type GetType()
40                 {
41                         if (type != Bezier::UNKNOWN)
42                                 return type;
43                         // From Loop-Blinn 2005, with w0 == w1 == w2 == w3 = 1
44                         // Transformed control points: (a0 = x0, b0 = y0)
45                         Real a1 = (x1-x0)*Real(3);
46                         Real a2 = (x0- x1*Real(2) +x2)*Real(3);
47                         Real a3 = (x3 - x0 + (x1 - x2)*Real(3));
48                         
49                         Real b1 = (y1-y0)*Real(3);
50                         Real b2 = (y0- y1*Real(2) +y2)*Real(3);
51                         Real b3 = (y3 - y0 + (y1 - y2)*Real(3));
52                         
53                         // d vector (d0 = 0 since all w = 1)
54                         Real d1 = a2*b3 - a3*b2;
55                         Real d2 = a3*b1 - a1*b3;
56                         Real d3 = a1*b2 - a2*b1;
57                         
58                         if (Abs(d1+d2+d3) < Real(1e-6))
59                         {
60                                 type = LINE;
61                                 //Debug("LINE %s", Str().c_str());
62                                 return type;
63                         }
64                         
65                         Real delta1 = -(d1*d1);
66                         Real delta2 = d1*d2;
67                         Real delta3 = d1*d3 -(d2*d2);
68                         if (Abs(delta1+delta2+delta3) < Real(1e-6))
69                         {
70                                 type = QUADRATIC;
71                                 
72                                 //Debug("QUADRATIC %s", Str().c_str());
73                                 return type;
74                         }
75                         
76                         Real discriminant = d1*d3*Real(4) -d2*d2;
77                         if (Abs(discriminant) < Real(1e-6))
78                         {
79                                 type = CUSP;
80                                 //Debug("CUSP %s", Str().c_str());
81                         }
82                         else if (discriminant > Real(0))
83                         {
84                                 type = SERPENTINE;
85                                 //Debug("SERPENTINE %s", Str().c_str());
86                         }
87                         else
88                         {
89                                 type = LOOP;
90                                 //Debug("LOOP %s", Str().c_str());
91                         }
92                         //Debug("disc %.30f", discriminant);
93                         return type;
94                 }
95                 
96                 
97                 std::string Str() const
98                 {
99                         std::stringstream s;
100                         s << "Bezier{" << Float(x0) << "," << Float(y0) << " -> " << Float(x1) << "," << Float(y1) << " -> " << Float(x2) << "," << Float(y2) << " -> " << Float(x3) << "," << Float(y3) << "}";
101                         return s.str();
102                 }
103                 
104                 /**
105                  * Construct absolute control points using relative control points to a bounding rectangle
106                  * ie: If cpy is relative to bounds rectangle, this will be absolute
107                  */
108                 Bezier(const Bezier & cpy, const Rect & t = Rect(0,0,1,1)) : x0(cpy.x0), y0(cpy.y0), x1(cpy.x1), y1(cpy.y1), x2(cpy.x2),y2(cpy.y2), x3(cpy.x3), y3(cpy.y3), type(cpy.type)
109                 {
110                         x0 *= t.w;
111                         y0 *= t.h;
112                         x1 *= t.w;
113                         y1 *= t.h;
114                         x2 *= t.w;
115                         y2 *= t.h;
116                         x3 *= t.w;
117                         y3 *= t.h;
118                         x0 += t.x;
119                         y0 += t.y;
120                         x1 += t.x;
121                         y1 += t.y;
122                         x2 += t.x;
123                         y2 += t.y;
124                         x3 += t.x;
125                         y3 += t.y;
126                 }
127
128                 Rect SolveBounds() const;
129                 
130                 std::pair<Real,Real> GetTop() const;
131                 std::pair<Real,Real> GetBottom() const;
132                 std::pair<Real,Real> GetLeft() const;
133                 std::pair<Real,Real> GetRight() const;
134                 
135                 Bezier ToAbsolute(const Rect & bounds) const
136                 {
137                         return Bezier(*this, bounds);
138                 }
139                 
140                 /** Convert absolute control points to control points relative to bounds
141                  * (This basically does the opposite of the Copy constructor)
142                  * ie: If this is absolute, the returned Bezier will be relative to the bounds rectangle
143                  */
144                 Bezier ToRelative(const Rect & bounds) const
145                 {
146                         // x' <- (x - x0)/w etc
147                         // special cases when w or h = 0
148                         // (So can't just use the Copy constructor on the inverse of bounds)
149                         // Rect inverse = {-bounds.x/bounds.w, -bounds.y/bounds.h, Real(1)/bounds.w, Real(1)/bounds.h};
150                         Bezier result;
151                         if (bounds.w == Real(0))
152                         {
153                                 result.x0 = 0;
154                                 result.x1 = 0;
155                                 result.x2 = 0;
156                                 result.x3 = 0;
157                         }
158                         else
159                         {
160                                 result.x0 = (x0 - bounds.x)/bounds.w;   
161                                 result.x1 = (x1 - bounds.x)/bounds.w;
162                                 result.x2 = (x2 - bounds.x)/bounds.w;
163                                 result.x3 = (x3 - bounds.x)/bounds.w;
164                         }
165
166                         if (bounds.h == Real(0))
167                         {
168                                 result.y0 = 0;
169                                 result.y1 = 0;
170                                 result.y2 = 0;
171                                 result.y3 = 0;
172                         }
173                         else
174                         {
175                                 result.y0 = (y0 - bounds.y)/bounds.h;   
176                                 result.y1 = (y1 - bounds.y)/bounds.h;
177                                 result.y2 = (y2 - bounds.y)/bounds.h;
178                                 result.y3 = (y3 - bounds.y)/bounds.h;
179                         }
180                         return result;
181                 }
182
183                 // Performs one round of De Casteljau subdivision and returns the [t,1] part.
184                 Bezier DeCasteljauSubdivideLeft(const Real& t)
185                 {
186                         Real one_minus_t = Real(1) - t;
187
188                         // X Coordinates
189                         Real x01 = x1*t + x0*one_minus_t;
190                         Real x12 = x2*t + x1*one_minus_t;
191                         Real x23 = x3*t + x2*one_minus_t;
192
193                         Real x012 = x12*t + x01*one_minus_t;
194                         Real x123 = x23*t + x12*one_minus_t;
195
196                         Real x0123 = x123*t + x012*one_minus_t;
197
198                         // Y Coordinates
199                         Real y01 = y1*t + y0*one_minus_t;
200                         Real y12 = y2*t + y1*one_minus_t;
201                         Real y23 = y3*t + y2*one_minus_t;
202
203                         Real y012 = y12*t + y01*one_minus_t;
204                         Real y123 = y23*t + y12*one_minus_t;
205
206                         Real y0123 = y123*t + y012*one_minus_t;
207
208                         return Bezier(x0, y0, x01, y01, x012, y012, x0123, y0123);
209                 }
210                 // Performs one round of De Casteljau subdivision and returns the [t,1] part.
211                 Bezier DeCasteljauSubdivideRight(const Real& t)
212                 {
213                         Real one_minus_t = Real(1) - t;
214
215                         // X Coordinates
216                         Real x01 = x1*t + x0*one_minus_t;
217                         Real x12 = x2*t + x1*one_minus_t;
218                         Real x23 = x3*t + x2*one_minus_t;
219
220                         Real x012 = x12*t + x01*one_minus_t;
221                         Real x123 = x23*t + x12*one_minus_t;
222
223                         Real x0123 = x123*t + x012*one_minus_t;
224
225                         // Y Coordinates
226                         Real y01 = y1*t + y0*one_minus_t;
227                         Real y12 = y2*t + y1*one_minus_t;
228                         Real y23 = y3*t + y2*one_minus_t;
229
230                         Real y012 = y12*t + y01*one_minus_t;
231                         Real y123 = y23*t + y12*one_minus_t;
232
233                         Real y0123 = y123*t + y012*one_minus_t;
234
235                         return Bezier(x0123, y0123, x123, y123, x23, y23, x3, y3);
236                 }
237
238                 Bezier ReParametrise(const Real& t0, const Real& t1)
239                 {
240                         Debug("Reparametrise: %f -> %f",Double(t0),Double(t1));
241                         Bezier new_bezier;
242                         // Subdivide to get from [0,t1]
243                         new_bezier = DeCasteljauSubdivideLeft(t1);
244                         // Convert t0 from [0,1] range to [0, t1]
245                         Real new_t0 = t0 / t1;
246                         Debug("New t0 = %f", Double(new_t0));
247                         new_bezier = new_bezier.DeCasteljauSubdivideRight(new_t0);
248
249                         Debug("%s becomes %s", this->Str().c_str(), new_bezier.Str().c_str());
250                         return new_bezier;
251                 }
252                 
253                 std::vector<Bezier> ClipToRectangle(const Rect& r)
254                 {
255                         // Find points of intersection with the rectangle.
256                         Debug("Clipping Bezier to Rect %s", r.Str().c_str());
257
258
259                         // Find its roots.
260                         std::vector<Real> x_intersection = SolveXParam(r.x);
261                         Debug("Found %d intersections on left edge", x_intersection.size());
262
263                         // And for the other side.
264
265                         std::vector<Real> x_intersection_pt2 = SolveXParam(r.x + r.w);
266                         x_intersection.insert(x_intersection.end(), x_intersection_pt2.begin(), x_intersection_pt2.end());
267                         Debug("Found %d intersections on right edge (total x: %d)", x_intersection_pt2.size(), x_intersection.size());
268
269                         // Find its roots.
270                         std::vector<Real> y_intersection = SolveYParam(r.y);
271                         Debug("Found %d intersections on top edge", y_intersection.size());
272
273                         std::vector<Real> y_intersection_pt2 = SolveYParam(r.y+r.h);
274                         y_intersection.insert(y_intersection.end(), y_intersection_pt2.begin(), y_intersection_pt2.end());
275                         Debug("Found %d intersections on bottom edge (total y: %d)", y_intersection_pt2.size(), y_intersection.size());
276
277                         // Merge and sort.
278                         x_intersection.insert(x_intersection.end(), y_intersection.begin(), y_intersection.end());
279                         x_intersection.push_back(Real(0));
280                         x_intersection.push_back(Real(1));
281                         std::sort(x_intersection.begin(), x_intersection.end());
282
283                         Debug("Found %d intersections.\n", x_intersection.size());
284                         for(auto t : x_intersection)
285                         {
286                                 Real ptx, pty;
287                                 Evaluate(ptx, pty, t);
288                                 Debug("Root: t = %f, (%f,%f)", Double(t), Double(ptx), Double(pty));
289                         }
290                         
291                         std::vector<Bezier> all_beziers;
292                         if (x_intersection.size() <= 2)
293                         {
294                                 all_beziers.push_back(*this);
295                                 return all_beziers;
296                         }
297                         Real t0 = *(x_intersection.begin());
298                         for (auto it = x_intersection.begin()+1; it != x_intersection.end(); ++it)
299                         {
300                                 Real t1 = *it;
301                                 if (t1 == t0) continue;
302                                 Debug(" -- t0: %f to t1: %f: %f", Double(t0), Double(t1), Double((t1 + t0)/Real(2)));
303                                 Real ptx, pty;
304                                 Evaluate(ptx, pty, ((t1 + t0) / Real(2)));
305                                 if (r.PointIn(ptx, pty))
306                                 {
307                                         Debug("Adding segment: (point at %f, %f)", Double(ptx), Double(pty));
308                                         all_beziers.push_back(this->ReParametrise(t0, t1));
309                                 }
310                                 else
311                                 {
312                                         Debug("Segment removed (point at %f, %f)", Double(ptx), Double(pty));
313                                 }
314                                 t0 = t1;
315                         }
316                         return all_beziers;
317                 }
318
319                 /** Evaluate the Bezier at parametric parameter u, puts resultant point in (x,y) **/
320                 void Evaluate(Real & x, Real & y, const Real & u) const
321                 {
322                         Real coeff[4];
323                         for (unsigned i = 0; i < 4; ++i)
324                                 coeff[i] = Bernstein(i,3,u);
325                         x = x0*coeff[0] + x1*coeff[1] + x2*coeff[2] + x3*coeff[3];
326                         y = y0*coeff[0] + y1*coeff[1] + y2*coeff[2] + y3*coeff[3];
327                 }
328                 std::vector<Vec2> Evaluate(const std::vector<Real> & u) const;
329                 
330                 std::vector<Real> SolveXParam(const Real & x) const;
331                 std::vector<Real> SolveYParam(const Real & x) const;
332                 
333                 // Get points with same X
334                 inline std::vector<Vec2> SolveX(const Real & x) const
335                 {
336                         return Evaluate(SolveXParam(x));
337                 }
338                 // Get points with same Y
339                 inline std::vector<Vec2> SolveY(const Real & y) const
340                 {
341                         return Evaluate(SolveYParam(y));
342                 }
343                 
344                 bool operator==(const Bezier & equ) const
345                 {
346                         return (x0 == equ.x0 && y0 == equ.y0
347                                 &&  x1 == equ.x1 && y1 == equ.y1
348                                 &&      x2 == equ.x2 && y2 == equ.y2
349                                 &&      x3 == equ.x3 && y3 == equ.y3);
350                 }
351                 bool operator!=(const Bezier & equ) const {return !this->operator==(equ);}
352
353         };
354
355
356
357 }
358
359 #endif //_BEZIER_H

UCC git Repository :: git.ucc.asn.au