Totally FITH everything
[ipdf/code.git] / src / bezier.h
1 #ifndef _BEZIER_H
2 #define _BEZIER_H
3
4 #include <vector>
5 #include <algorithm>
6 #include "rect.h"
7 #include "real.h"
8
9
10
11 namespace IPDF
12 {
13         typedef Real BReal;
14         typedef TRect<BReal> BRect;
15         
16         extern int Factorial(int n);
17         extern int BinomialCoeff(int n, int k);
18         extern BReal Bernstein(int k, int n, const BReal & u);
19         extern std::pair<BReal,BReal> BezierTurningPoints(const BReal & p0, const BReal & p1, const BReal & p2, const BReal & p3);
20         
21         extern std::vector<BReal> SolveQuadratic(const BReal & a, const BReal & b, const BReal & c, const BReal & min = 0, const BReal & max = 1);
22
23         extern std::vector<BReal> SolveCubic(const BReal & a, const BReal & b, const BReal & c, const BReal & d, const BReal & min = 0, const BReal & max = 1, const BReal & delta = 1e-9);
24
25         /** A _cubic_ bezier. **/
26         struct Bezier
27         {
28                 BReal x0; BReal y0;
29                 BReal x1; BReal y1;
30                 BReal x2; BReal y2;
31                 BReal x3; BReal y3;
32                 
33                 typedef enum {UNKNOWN, LINE, QUADRATIC, CUSP, LOOP, SERPENTINE} Type;
34                 Type type;
35                 
36                 //Bezier() = default; // Needed so we can fread/fwrite this struct... for now.
37                 Bezier(BReal _x0=0, BReal _y0=0, BReal _x1=0, BReal _y1=0, BReal _x2=0, BReal _y2=0, BReal _x3=0, BReal _y3=0) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x3), y3(_y3), type(UNKNOWN)
38                 {
39
40                 }
41                 
42                 Type GetType()
43                 {
44                         if (type != Bezier::UNKNOWN)
45                                 return type;
46                         // From Loop-Blinn 2005, with w0 == w1 == w2 == w3 = 1
47                         // Transformed control points: (a0 = x0, b0 = y0)
48                         BReal a1 = (x1-x0)*BReal(3);
49                         BReal a2 = (x0- x1*BReal(2) +x2)*BReal(3);
50                         BReal a3 = (x3 - x0 + (x1 - x2)*BReal(3));
51                         
52                         BReal b1 = (y1-y0)*BReal(3);
53                         BReal b2 = (y0- y1*BReal(2) +y2)*BReal(3);
54                         BReal b3 = (y3 - y0 + (y1 - y2)*BReal(3));
55                         
56                         // d vector (d0 = 0 since all w = 1)
57                         BReal d1 = a2*b3 - a3*b2;
58                         BReal d2 = a3*b1 - a1*b3;
59                         BReal d3 = a1*b2 - a2*b1;
60                         
61                         if (Abs(d1+d2+d3) < BReal(1e-6))
62                         {
63                                 type = LINE;
64                                 //Debug("LINE %s", Str().c_str());
65                                 return type;
66                         }
67                         
68                         BReal delta1 = -(d1*d1);
69                         BReal delta2 = d1*d2;
70                         BReal delta3 = d1*d3 -(d2*d2);
71                         if (Abs(delta1+delta2+delta3) < BReal(1e-6))
72                         {
73                                 type = QUADRATIC;
74                                 
75                                 //Debug("QUADRATIC %s", Str().c_str());
76                                 return type;
77                         }
78                         
79                         BReal discriminant = d1*d3*BReal(4) -d2*d2;
80                         if (Abs(discriminant) < BReal(1e-6))
81                         {
82                                 type = CUSP;
83                                 //Debug("CUSP %s", Str().c_str());
84                         }
85                         else if (discriminant > BReal(0))
86                         {
87                                 type = SERPENTINE;
88                                 //Debug("SERPENTINE %s", Str().c_str());
89                         }
90                         else
91                         {
92                                 type = LOOP;
93                                 //Debug("LOOP %s", Str().c_str());
94                         }
95                         //Debug("disc %.30f", discriminant);
96                         return type;
97                 }
98                 
99                 
100                 std::string Str() const
101                 {
102                         std::stringstream s;
103                         s << "Bezier{" << Float(x0) << "," << Float(y0) << " -> " << Float(x1) << "," << Float(y1) << " -> " << Float(x2) << "," << Float(y2) << " -> " << Float(x3) << "," << Float(y3) << "}";
104                         return s.str();
105                 }
106                 
107                 /**
108                  * Construct absolute control points using relative control points to a bounding rectangle
109                  * ie: If cpy is relative to bounds rectangle, this will be absolute
110                  */
111                 Bezier(const Bezier & cpy, const BRect & t = BRect(0,0,1,1)) : x0(cpy.x0), y0(cpy.y0), x1(cpy.x1), y1(cpy.y1), x2(cpy.x2),y2(cpy.y2), x3(cpy.x3), y3(cpy.y3), type(cpy.type)
112                 {
113                         x0 *= t.w;
114                         y0 *= t.h;
115                         x1 *= t.w;
116                         y1 *= t.h;
117                         x2 *= t.w;
118                         y2 *= t.h;
119                         x3 *= t.w;
120                         y3 *= t.h;
121                         x0 += t.x;
122                         y0 += t.y;
123                         x1 += t.x;
124                         y1 += t.y;
125                         x2 += t.x;
126                         y2 += t.y;
127                         x3 += t.x;
128                         y3 += t.y;
129                 }
130
131                 BRect SolveBounds() const;
132                 
133                 std::pair<BReal,BReal> GetTop() const;
134                 std::pair<BReal,BReal> GetBottom() const;
135                 std::pair<BReal,BReal> GetLeft() const;
136                 std::pair<BReal,BReal> GetRight() const;
137                 
138                 Bezier ToAbsolute(const BRect & bounds) const
139                 {
140                         return Bezier(*this, bounds);
141                 }
142                 
143                 /** Convert absolute control points to control points relative to bounds
144                  * (This basically does the opposite of the Copy constructor)
145                  * ie: If this is absolute, the returned Bezier will be relative to the bounds rectangle
146                  */
147                 Bezier ToRelative(const BRect & bounds) const
148                 {
149                         // x' <- (x - x0)/w etc
150                         // special cases when w or h = 0
151                         // (So can't just use the Copy constructor on the inverse of bounds)
152                         // BRect inverse = {-bounds.x/bounds.w, -bounds.y/bounds.h, BReal(1)/bounds.w, BReal(1)/bounds.h};
153                         Bezier result;
154                         if (bounds.w == 0)
155                         {
156                                 result.x0 = 0;
157                                 result.x1 = 0;
158                                 result.x2 = 0;
159                                 result.x3 = 0;
160                         }
161                         else
162                         {
163                                 result.x0 = (x0 - bounds.x)/bounds.w;   
164                                 result.x1 = (x1 - bounds.x)/bounds.w;
165                                 result.x2 = (x2 - bounds.x)/bounds.w;
166                                 result.x3 = (x3 - bounds.x)/bounds.w;
167                         }
168
169                         if (bounds.h == 0)
170                         {
171                                 result.y0 = 0;
172                                 result.y1 = 0;
173                                 result.y2 = 0;
174                                 result.y3 = 0;
175                         }
176                         else
177                         {
178                                 result.y0 = (y0 - bounds.y)/bounds.h;   
179                                 result.y1 = (y1 - bounds.y)/bounds.h;
180                                 result.y2 = (y2 - bounds.y)/bounds.h;
181                                 result.y3 = (y3 - bounds.y)/bounds.h;
182                         }
183                         return result;
184                 }
185
186                 // Performs one round of De Casteljau subdivision and returns the [t,1] part.
187                 Bezier DeCasteljauSubdivideLeft(const BReal& t)
188                 {
189                         BReal one_minus_t = BReal(1) - t;
190
191                         // X Coordinates
192                         BReal x01 = x1*t + x0*one_minus_t;
193                         BReal x12 = x2*t + x1*one_minus_t;
194                         BReal x23 = x3*t + x2*one_minus_t;
195
196                         BReal x012 = x12*t + x01*one_minus_t;
197                         BReal x123 = x23*t + x12*one_minus_t;
198
199                         BReal x0123 = x123*t + x012*one_minus_t;
200
201                         // Y Coordinates
202                         BReal y01 = y1*t + y0*one_minus_t;
203                         BReal y12 = y2*t + y1*one_minus_t;
204                         BReal y23 = y3*t + y2*one_minus_t;
205
206                         BReal y012 = y12*t + y01*one_minus_t;
207                         BReal y123 = y23*t + y12*one_minus_t;
208
209                         BReal y0123 = y123*t + y012*one_minus_t;
210
211                         return Bezier(x0, y0, x01, y01, x012, y012, x0123, y0123);
212                 }
213                 // Performs one round of De Casteljau subdivision and returns the [t,1] part.
214                 Bezier DeCasteljauSubdivideRight(const BReal& t)
215                 {
216                         BReal one_minus_t = BReal(1) - t;
217
218                         // X Coordinates
219                         BReal x01 = x1*t + x0*one_minus_t;
220                         BReal x12 = x2*t + x1*one_minus_t;
221                         BReal x23 = x3*t + x2*one_minus_t;
222
223                         BReal x012 = x12*t + x01*one_minus_t;
224                         BReal x123 = x23*t + x12*one_minus_t;
225
226                         BReal x0123 = x123*t + x012*one_minus_t;
227
228                         // Y Coordinates
229                         BReal y01 = y1*t + y0*one_minus_t;
230                         BReal y12 = y2*t + y1*one_minus_t;
231                         BReal y23 = y3*t + y2*one_minus_t;
232
233                         BReal y012 = y12*t + y01*one_minus_t;
234                         BReal y123 = y23*t + y12*one_minus_t;
235
236                         BReal y0123 = y123*t + y012*one_minus_t;
237
238                         return Bezier(x0123, y0123, x123, y123, x23, y23, x3, y3);
239                 }
240
241                 Bezier ReParametrise(const BReal& t0, const BReal& t1)
242                 {
243                         //Debug("Reparametrise: %f -> %f",Double(t0),Double(t1));
244                         Bezier new_bezier;
245                         // Subdivide to get from [0,t1]
246                         new_bezier = DeCasteljauSubdivideLeft(t1);
247                         // Convert t0 from [0,1] range to [0, t1]
248                         BReal new_t0 = t0 / t1;
249                         //Debug("New t0 = %f", Double(new_t0));
250                         new_bezier = new_bezier.DeCasteljauSubdivideRight(new_t0);
251
252                         //Debug("%s becomes %s", this->Str().c_str(), new_bezier.Str().c_str());
253                         return new_bezier;
254                 }
255                 
256                 std::vector<Bezier> ClipToRectangle(const BRect & r)
257                 {
258                         // Find points of intersection with the rectangle.
259                         Debug("Clipping Bezier to BRect %s", r.Str().c_str());
260
261
262                         // Find its roots.
263                         std::vector<BReal> x_intersection = SolveXParam(r.x);
264                         //Debug("Found %d intersections on left edge", x_intersection.size());
265
266                         // And for the other side.
267
268                         std::vector<BReal> x_intersection_pt2 = SolveXParam(r.x + r.w);
269                         x_intersection.insert(x_intersection.end(), x_intersection_pt2.begin(), x_intersection_pt2.end());
270                         //Debug("Found %d intersections on right edge (total x: %d)", x_intersection_pt2.size(), x_intersection.size());
271
272                         // Find its roots.
273                         std::vector<BReal> y_intersection = SolveYParam(r.y);
274                         //Debug("Found %d intersections on top edge", y_intersection.size());
275
276                         std::vector<BReal> y_intersection_pt2 = SolveYParam(r.y+r.h);
277                         y_intersection.insert(y_intersection.end(), y_intersection_pt2.begin(), y_intersection_pt2.end());
278                         //Debug("Found %d intersections on bottom edge (total y: %d)", y_intersection_pt2.size(), y_intersection.size());
279
280                         // Merge and sort.
281                         x_intersection.insert(x_intersection.end(), y_intersection.begin(), y_intersection.end());
282                         x_intersection.push_back(BReal(0));
283                         x_intersection.push_back(BReal(1));
284                         std::sort(x_intersection.begin(), x_intersection.end());
285
286                         //Debug("Found %d intersections.\n", x_intersection.size());
287                         /*for(auto t : x_intersection)
288                         {
289                                 BReal ptx, pty;
290                                 Evaluate(ptx, pty, t);
291                                 Debug("Root: t = %f, (%f,%f)", Double(t), Double(ptx), Double(pty));
292                         }*/
293                         
294                         std::vector<Bezier> all_beziers;
295                         if (x_intersection.size() <= 2)
296                         {
297                                 all_beziers.push_back(*this);
298                                 return all_beziers;
299                         }
300                         BReal t0 = *(x_intersection.begin());
301                         for (auto it = x_intersection.begin()+1; it != x_intersection.end(); ++it)
302                         {
303                                 BReal t1 = *it;
304                                 if (t1 == t0) continue;
305                                 //Debug(" -- t0: %f to t1: %f: %f", Double(t0), Double(t1), Double((t1 + t0)/BReal(2)));
306                                 BReal ptx, pty;
307                                 Evaluate(ptx, pty, ((t1 + t0) / BReal(2)));
308                                 if (r.PointIn(ptx, pty))
309                                 {
310                                         //Debug("Adding segment: (point at %f, %f)", Double(ptx), Double(pty));
311                                         all_beziers.push_back(this->ReParametrise(t0, t1));
312                                 }
313                                 else
314                                 {
315                                         //Debug("Segment removed (point at %f, %f)", Double(ptx), Double(pty));
316                                 }
317                                 t0 = t1;
318                         }
319                         return all_beziers;
320                 }
321
322                 /** Evaluate the Bezier at parametric parameter u, puts resultant point in (x,y) **/
323                 void Evaluate(BReal & x, BReal & y, const BReal & u) const
324                 {
325                         BReal coeff[4];
326                         for (unsigned i = 0; i < 4; ++i)
327                                 coeff[i] = Bernstein(i,3,u);
328                         x = x0*coeff[0] + x1*coeff[1] + x2*coeff[2] + x3*coeff[3];
329                         y = y0*coeff[0] + y1*coeff[1] + y2*coeff[2] + y3*coeff[3];
330                 }
331                 std::vector<Vec2> Evaluate(const std::vector<BReal> & u) const;
332                 
333                 std::vector<BReal> SolveXParam(const BReal & x) const;
334                 std::vector<BReal> SolveYParam(const BReal & x) const;
335                 
336                 // Get points with same X
337                 inline std::vector<Vec2> SolveX(const BReal & x) const
338                 {
339                         return Evaluate(SolveXParam(x));
340                 }
341                 // Get points with same Y
342                 inline std::vector<Vec2> SolveY(const BReal & y) const
343                 {
344                         return Evaluate(SolveYParam(y));
345                 }
346                 
347                 bool operator==(const Bezier & equ) const
348                 {
349                         return (x0 == equ.x0 && y0 == equ.y0
350                                 &&  x1 == equ.x1 && y1 == equ.y1
351                                 &&      x2 == equ.x2 && y2 == equ.y2
352                                 &&      x3 == equ.x3 && y3 == equ.y3);
353                 }
354                 bool operator!=(const Bezier & equ) const {return !this->operator==(equ);}
355
356         };
357
358
359
360 }
361
362 #endif //_BEZIER_H

UCC git Repository :: git.ucc.asn.au