Merge branch 'master' of git.ucc.asn.au:ipdf/code
[ipdf/code.git] / src / bezier.h
1 #ifndef _BEZIER_H
2 #define _BEZIER_H
3
4 #include <vector>
5 #include <algorithm>
6
7 #include "real.h"
8 #include "rect.h"
9
10
11
12 namespace IPDF
13 {
14         extern int Factorial(int n);
15         extern int BinomialCoeff(int n, int k);
16         extern Real Bernstein(int k, int n, const Real & u);
17         extern std::pair<Real,Real> BezierTurningPoints(const Real & p0, const Real & p1, const Real & p2, const Real & p3);
18         
19         extern std::vector<Real> SolveQuadratic(const Real & a, const Real & b, const Real & c, const Real & min = 0, const Real & max = 1);
20
21         extern std::vector<Real> SolveCubic(const Real & a, const Real & b, const Real & c, const Real & d, const Real & min = 0, const Real & max = 1, const Real & delta = 1e-9);
22
23         /** A _cubic_ bezier. **/
24         struct Bezier
25         {
26                 Real x0; Real y0;
27                 Real x1; Real y1;
28                 Real x2; Real y2;
29                 Real x3; Real y3;
30                 
31                 typedef enum {UNKNOWN, LINE, QUADRATIC, CUSP, LOOP, SERPENTINE} Type;
32                 Type type;
33                 
34                 //Bezier() = default; // Needed so we can fread/fwrite this struct... for now.
35                 Bezier(Real _x0=0, Real _y0=0, Real _x1=0, Real _y1=0, Real _x2=0, Real _y2=0, Real _x3=0, Real _y3=0) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x3), y3(_y3), type(UNKNOWN)
36                 {
37
38                 }
39                 
40                 Type GetType()
41                 {
42                         if (type != Bezier::UNKNOWN)
43                                 return type;
44                         // From Loop-Blinn 2005, with w0 == w1 == w2 == w3 = 1
45                         // Transformed control points: (a0 = x0, b0 = y0)
46                         Real a1 = (x1-x0)*Real(3);
47                         Real a2 = (x0- x1*Real(2) +x2)*Real(3);
48                         Real a3 = (x3 - x0 + (x1 - x2)*Real(3));
49                         
50                         Real b1 = (y1-y0)*Real(3);
51                         Real b2 = (y0- y1*Real(2) +y2)*Real(3);
52                         Real b3 = (y3 - y0 + (y1 - y2)*Real(3));
53                         
54                         // d vector (d0 = 0 since all w = 1)
55                         Real d1 = a2*b3 - a3*b2;
56                         Real d2 = a3*b1 - a1*b3;
57                         Real d3 = a1*b2 - a2*b1;
58                         
59                         if (Abs(d1+d2+d3) < Real(1e-6))
60                         {
61                                 type = LINE;
62                                 //Debug("LINE %s", Str().c_str());
63                                 return type;
64                         }
65                         
66                         Real delta1 = -(d1*d1);
67                         Real delta2 = d1*d2;
68                         Real delta3 = d1*d3 -(d2*d2);
69                         if (Abs(delta1+delta2+delta3) < Real(1e-6))
70                         {
71                                 type = QUADRATIC;
72                                 
73                                 //Debug("QUADRATIC %s", Str().c_str());
74                                 return type;
75                         }
76                         
77                         Real discriminant = d1*d3*Real(4) -d2*d2;
78                         if (Abs(discriminant) < Real(1e-6))
79                         {
80                                 type = CUSP;
81                                 //Debug("CUSP %s", Str().c_str());
82                         }
83                         else if (discriminant > Real(0))
84                         {
85                                 type = SERPENTINE;
86                                 //Debug("SERPENTINE %s", Str().c_str());
87                         }
88                         else
89                         {
90                                 type = LOOP;
91                                 //Debug("LOOP %s", Str().c_str());
92                         }
93                         //Debug("disc %.30f", discriminant);
94                         return type;
95                 }
96                 
97                 
98                 std::string Str() const
99                 {
100                         std::stringstream s;
101                         s << "Bezier{" << Float(x0) << "," << Float(y0) << " -> " << Float(x1) << "," << Float(y1) << " -> " << Float(x2) << "," << Float(y2) << " -> " << Float(x3) << "," << Float(y3) << "}";
102                         return s.str();
103                 }
104                 
105                 /**
106                  * Construct absolute control points using relative control points to a bounding rectangle
107                  * ie: If cpy is relative to bounds rectangle, this will be absolute
108                  */
109                 Bezier(const Bezier & cpy, const Rect & t = Rect(0,0,1,1)) : x0(cpy.x0), y0(cpy.y0), x1(cpy.x1), y1(cpy.y1), x2(cpy.x2),y2(cpy.y2), x3(cpy.x3), y3(cpy.y3), type(cpy.type)
110                 {
111                         x0 *= t.w;
112                         y0 *= t.h;
113                         x1 *= t.w;
114                         y1 *= t.h;
115                         x2 *= t.w;
116                         y2 *= t.h;
117                         x3 *= t.w;
118                         y3 *= t.h;
119                         x0 += t.x;
120                         y0 += t.y;
121                         x1 += t.x;
122                         y1 += t.y;
123                         x2 += t.x;
124                         y2 += t.y;
125                         x3 += t.x;
126                         y3 += t.y;
127                 }
128
129                 Rect SolveBounds() const;
130                 
131                 std::pair<Real,Real> GetTop() const;
132                 std::pair<Real,Real> GetBottom() const;
133                 std::pair<Real,Real> GetLeft() const;
134                 std::pair<Real,Real> GetRight() const;
135                 
136                 Bezier ToAbsolute(const Rect & bounds) const
137                 {
138                         return Bezier(*this, bounds);
139                 }
140                 
141                 /** Convert absolute control points to control points relative to bounds
142                  * (This basically does the opposite of the Copy constructor)
143                  * ie: If this is absolute, the returned Bezier will be relative to the bounds rectangle
144                  */
145                 Bezier ToRelative(const Rect & bounds) const
146                 {
147                         // x' <- (x - x0)/w etc
148                         // special cases when w or h = 0
149                         // (So can't just use the Copy constructor on the inverse of bounds)
150                         // Rect inverse = {-bounds.x/bounds.w, -bounds.y/bounds.h, Real(1)/bounds.w, Real(1)/bounds.h};
151                         Bezier result;
152                         if (bounds.w == Real(0))
153                         {
154                                 result.x0 = 0;
155                                 result.x1 = 0;
156                                 result.x2 = 0;
157                                 result.x3 = 0;
158                         }
159                         else
160                         {
161                                 result.x0 = (x0 - bounds.x)/bounds.w;   
162                                 result.x1 = (x1 - bounds.x)/bounds.w;
163                                 result.x2 = (x2 - bounds.x)/bounds.w;
164                                 result.x3 = (x3 - bounds.x)/bounds.w;
165                         }
166
167                         if (bounds.h == Real(0))
168                         {
169                                 result.y0 = 0;
170                                 result.y1 = 0;
171                                 result.y2 = 0;
172                                 result.y3 = 0;
173                         }
174                         else
175                         {
176                                 result.y0 = (y0 - bounds.y)/bounds.h;   
177                                 result.y1 = (y1 - bounds.y)/bounds.h;
178                                 result.y2 = (y2 - bounds.y)/bounds.h;
179                                 result.y3 = (y3 - bounds.y)/bounds.h;
180                         }
181                         return result;
182                 }
183
184                 // Performs one round of De Casteljau subdivision and returns the [t,1] part.
185                 Bezier DeCasteljauSubdivideLeft(const Real& t)
186                 {
187                         Real one_minus_t = Real(1) - t;
188
189                         // X Coordinates
190                         Real x01 = x1*t + x0*one_minus_t;
191                         Real x12 = x2*t + x1*one_minus_t;
192                         Real x23 = x3*t + x2*one_minus_t;
193
194                         Real x012 = x12*t + x01*one_minus_t;
195                         Real x123 = x23*t + x12*one_minus_t;
196
197                         Real x0123 = x123*t + x012*one_minus_t;
198
199                         // Y Coordinates
200                         Real y01 = y1*t + y0*one_minus_t;
201                         Real y12 = y2*t + y1*one_minus_t;
202                         Real y23 = y3*t + y2*one_minus_t;
203
204                         Real y012 = y12*t + y01*one_minus_t;
205                         Real y123 = y23*t + y12*one_minus_t;
206
207                         Real y0123 = y123*t + y012*one_minus_t;
208
209                         return Bezier(x0, y0, x01, y01, x012, y012, x0123, y0123);
210                 }
211                 // Performs one round of De Casteljau subdivision and returns the [t,1] part.
212                 Bezier DeCasteljauSubdivideRight(const Real& t)
213                 {
214                         Real one_minus_t = Real(1) - t;
215
216                         // X Coordinates
217                         Real x01 = x1*t + x0*one_minus_t;
218                         Real x12 = x2*t + x1*one_minus_t;
219                         Real x23 = x3*t + x2*one_minus_t;
220
221                         Real x012 = x12*t + x01*one_minus_t;
222                         Real x123 = x23*t + x12*one_minus_t;
223
224                         Real x0123 = x123*t + x012*one_minus_t;
225
226                         // Y Coordinates
227                         Real y01 = y1*t + y0*one_minus_t;
228                         Real y12 = y2*t + y1*one_minus_t;
229                         Real y23 = y3*t + y2*one_minus_t;
230
231                         Real y012 = y12*t + y01*one_minus_t;
232                         Real y123 = y23*t + y12*one_minus_t;
233
234                         Real y0123 = y123*t + y012*one_minus_t;
235
236                         return Bezier(x0123, y0123, x123, y123, x23, y23, x3, y3);
237                 }
238
239                 Bezier ReParametrise(const Real& t0, const Real& t1)
240                 {
241                         //Debug("Reparametrise: %f -> %f",Double(t0),Double(t1));
242                         Bezier new_bezier;
243                         // Subdivide to get from [0,t1]
244                         new_bezier = DeCasteljauSubdivideLeft(t1);
245                         // Convert t0 from [0,1] range to [0, t1]
246                         Real new_t0 = t0 / t1;
247                         //Debug("New t0 = %f", Double(new_t0));
248                         new_bezier = new_bezier.DeCasteljauSubdivideRight(new_t0);
249
250                         //Debug("%s becomes %s", this->Str().c_str(), new_bezier.Str().c_str());
251                         return new_bezier;
252                 }
253                 
254                 std::vector<Bezier> ClipToRectangle(const Rect& r)
255                 {
256                         // Find points of intersection with the rectangle.
257                         Debug("Clipping Bezier to Rect %s", r.Str().c_str());
258
259
260                         // Find its roots.
261                         std::vector<Real> x_intersection = SolveXParam(r.x);
262                         //Debug("Found %d intersections on left edge", x_intersection.size());
263
264                         // And for the other side.
265
266                         std::vector<Real> x_intersection_pt2 = SolveXParam(r.x + r.w);
267                         x_intersection.insert(x_intersection.end(), x_intersection_pt2.begin(), x_intersection_pt2.end());
268                         //Debug("Found %d intersections on right edge (total x: %d)", x_intersection_pt2.size(), x_intersection.size());
269
270                         // Find its roots.
271                         std::vector<Real> y_intersection = SolveYParam(r.y);
272                         //Debug("Found %d intersections on top edge", y_intersection.size());
273
274                         std::vector<Real> y_intersection_pt2 = SolveYParam(r.y+r.h);
275                         y_intersection.insert(y_intersection.end(), y_intersection_pt2.begin(), y_intersection_pt2.end());
276                         //Debug("Found %d intersections on bottom edge (total y: %d)", y_intersection_pt2.size(), y_intersection.size());
277
278                         // Merge and sort.
279                         x_intersection.insert(x_intersection.end(), y_intersection.begin(), y_intersection.end());
280                         x_intersection.push_back(Real(0));
281                         x_intersection.push_back(Real(1));
282                         std::sort(x_intersection.begin(), x_intersection.end());
283
284                         //Debug("Found %d intersections.\n", x_intersection.size());
285                         /*for(auto t : x_intersection)
286                         {
287                                 Real ptx, pty;
288                                 Evaluate(ptx, pty, t);
289                                 Debug("Root: t = %f, (%f,%f)", Double(t), Double(ptx), Double(pty));
290                         }*/
291                         
292                         std::vector<Bezier> all_beziers;
293                         if (x_intersection.size() <= 2)
294                         {
295                                 all_beziers.push_back(*this);
296                                 return all_beziers;
297                         }
298                         Real t0 = *(x_intersection.begin());
299                         for (auto it = x_intersection.begin()+1; it != x_intersection.end(); ++it)
300                         {
301                                 Real t1 = *it;
302                                 if (t1 == t0) continue;
303                                 //Debug(" -- t0: %f to t1: %f: %f", Double(t0), Double(t1), Double((t1 + t0)/Real(2)));
304                                 Real ptx, pty;
305                                 Evaluate(ptx, pty, ((t1 + t0) / Real(2)));
306                                 if (r.PointIn(ptx, pty))
307                                 {
308                                         //Debug("Adding segment: (point at %f, %f)", Double(ptx), Double(pty));
309                                         all_beziers.push_back(this->ReParametrise(t0, t1));
310                                 }
311                                 else
312                                 {
313                                         //Debug("Segment removed (point at %f, %f)", Double(ptx), Double(pty));
314                                 }
315                                 t0 = t1;
316                         }
317                         return all_beziers;
318                 }
319
320                 /** Evaluate the Bezier at parametric parameter u, puts resultant point in (x,y) **/
321                 void Evaluate(Real & x, Real & y, const Real & u) const
322                 {
323                         Real coeff[4];
324                         for (unsigned i = 0; i < 4; ++i)
325                                 coeff[i] = Bernstein(i,3,u);
326                         x = x0*coeff[0] + x1*coeff[1] + x2*coeff[2] + x3*coeff[3];
327                         y = y0*coeff[0] + y1*coeff[1] + y2*coeff[2] + y3*coeff[3];
328                 }
329                 std::vector<Vec2> Evaluate(const std::vector<Real> & u) const;
330                 
331                 std::vector<Real> SolveXParam(const Real & x) const;
332                 std::vector<Real> SolveYParam(const Real & x) const;
333                 
334                 // Get points with same X
335                 inline std::vector<Vec2> SolveX(const Real & x) const
336                 {
337                         return Evaluate(SolveXParam(x));
338                 }
339                 // Get points with same Y
340                 inline std::vector<Vec2> SolveY(const Real & y) const
341                 {
342                         return Evaluate(SolveYParam(y));
343                 }
344                 
345                 bool operator==(const Bezier & equ) const
346                 {
347                         return (x0 == equ.x0 && y0 == equ.y0
348                                 &&  x1 == equ.x1 && y1 == equ.y1
349                                 &&      x2 == equ.x2 && y2 == equ.y2
350                                 &&      x3 == equ.x3 && y3 == equ.y3);
351                 }
352                 bool operator!=(const Bezier & equ) const {return !this->operator==(equ);}
353
354         };
355
356
357
358 }
359
360 #undef Real
361
362 #endif //_BEZIER_H

UCC git Repository :: git.ucc.asn.au