Totally FITH everything
[ipdf/code.git] / src / bezier.h
index 01da922..3f47555 100644 (file)
@@ -3,33 +3,38 @@
 
 #include <vector>
 #include <algorithm>
-
-#include "real.h"
 #include "rect.h"
+#include "real.h"
+
+
+
 namespace IPDF
 {
+       typedef Real BReal;
+       typedef TRect<BReal> BRect;
+       
        extern int Factorial(int n);
        extern int BinomialCoeff(int n, int k);
-       extern Real Bernstein(int k, int n, const Real & u);
-       extern std::pair<Real,Real> BezierTurningPoints(const Real & p0, const Real & p1, const Real & p2, const Real & p3);
+       extern BReal Bernstein(int k, int n, const BReal & u);
+       extern std::pair<BReal,BReal> BezierTurningPoints(const BReal & p0, const BReal & p1, const BReal & p2, const BReal & p3);
        
-       extern std::vector<Real> SolveQuadratic(const Real & a, const Real & b, const Real & c, const Real & min = 0, const Real & max = 1);
+       extern std::vector<BReal> SolveQuadratic(const BReal & a, const BReal & b, const BReal & c, const BReal & min = 0, const BReal & max = 1);
 
-       extern std::vector<Real> SolveCubic(const Real & a, const Real & b, const Real & c, const Real & d, const Real & min = 0, const Real & max = 1, const Real & delta = 1e-9);
+       extern std::vector<BReal> SolveCubic(const BReal & a, const BReal & b, const BReal & c, const BReal & d, const BReal & min = 0, const BReal & max = 1, const BReal & delta = 1e-9);
 
        /** A _cubic_ bezier. **/
        struct Bezier
        {
-               Real x0; Real y0;
-               Real x1; Real y1;
-               Real x2; Real y2;
-               Real x3; Real y3;
+               BReal x0; BReal y0;
+               BReal x1; BReal y1;
+               BReal x2; BReal y2;
+               BReal x3; BReal y3;
                
                typedef enum {UNKNOWN, LINE, QUADRATIC, CUSP, LOOP, SERPENTINE} Type;
                Type type;
                
                //Bezier() = default; // Needed so we can fread/fwrite this struct... for now.
-               Bezier(Real _x0=0, Real _y0=0, Real _x1=0, Real _y1=0, Real _x2=0, Real _y2=0, Real _x3=0, Real _y3=0) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x3), y3(_y3), type(UNKNOWN)
+               Bezier(BReal _x0=0, BReal _y0=0, BReal _x1=0, BReal _y1=0, BReal _x2=0, BReal _y2=0, BReal _x3=0, BReal _y3=0) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x3), y3(_y3), type(UNKNOWN)
                {
 
                }
@@ -40,30 +45,30 @@ namespace IPDF
                                return type;
                        // From Loop-Blinn 2005, with w0 == w1 == w2 == w3 = 1
                        // Transformed control points: (a0 = x0, b0 = y0)
-                       Real a1 = (x1-x0)*Real(3);
-                       Real a2 = (x0- x1*Real(2) +x2)*Real(3);
-                       Real a3 = (x3 - x0 + (x1 - x2)*Real(3));
+                       BReal a1 = (x1-x0)*BReal(3);
+                       BReal a2 = (x0- x1*BReal(2) +x2)*BReal(3);
+                       BReal a3 = (x3 - x0 + (x1 - x2)*BReal(3));
                        
-                       Real b1 = (y1-y0)*Real(3);
-                       Real b2 = (y0- y1*Real(2) +y2)*Real(3);
-                       Real b3 = (y3 - y0 + (y1 - y2)*Real(3));
+                       BReal b1 = (y1-y0)*BReal(3);
+                       BReal b2 = (y0- y1*BReal(2) +y2)*BReal(3);
+                       BReal b3 = (y3 - y0 + (y1 - y2)*BReal(3));
                        
                        // d vector (d0 = 0 since all w = 1)
-                       Real d1 = a2*b3 - a3*b2;
-                       Real d2 = a3*b1 - a1*b3;
-                       Real d3 = a1*b2 - a2*b1;
+                       BReal d1 = a2*b3 - a3*b2;
+                       BReal d2 = a3*b1 - a1*b3;
+                       BReal d3 = a1*b2 - a2*b1;
                        
-                       if (Abs(d1+d2+d3) < Real(1e-6))
+                       if (Abs(d1+d2+d3) < BReal(1e-6))
                        {
                                type = LINE;
                                //Debug("LINE %s", Str().c_str());
                                return type;
                        }
                        
-                       Real delta1 = -(d1*d1);
-                       Real delta2 = d1*d2;
-                       Real delta3 = d1*d3 -(d2*d2);
-                       if (Abs(delta1+delta2+delta3) < Real(1e-6))
+                       BReal delta1 = -(d1*d1);
+                       BReal delta2 = d1*d2;
+                       BReal delta3 = d1*d3 -(d2*d2);
+                       if (Abs(delta1+delta2+delta3) < BReal(1e-6))
                        {
                                type = QUADRATIC;
                                
@@ -71,13 +76,13 @@ namespace IPDF
                                return type;
                        }
                        
-                       Real discriminant = d1*d3*Real(4) -d2*d2;
-                       if (Abs(discriminant) < Real(1e-6))
+                       BReal discriminant = d1*d3*BReal(4) -d2*d2;
+                       if (Abs(discriminant) < BReal(1e-6))
                        {
                                type = CUSP;
                                //Debug("CUSP %s", Str().c_str());
                        }
-                       else if (discriminant > Real(0))
+                       else if (discriminant > BReal(0))
                        {
                                type = SERPENTINE;
                                //Debug("SERPENTINE %s", Str().c_str());
@@ -103,7 +108,7 @@ namespace IPDF
                 * Construct absolute control points using relative control points to a bounding rectangle
                 * ie: If cpy is relative to bounds rectangle, this will be absolute
                 */
-               Bezier(const Bezier & cpy, const Rect & t = Rect(0,0,1,1)) : x0(cpy.x0), y0(cpy.y0), x1(cpy.x1), y1(cpy.y1), x2(cpy.x2),y2(cpy.y2), x3(cpy.x3), y3(cpy.y3), type(cpy.type)
+               Bezier(const Bezier & cpy, const BRect & t = BRect(0,0,1,1)) : x0(cpy.x0), y0(cpy.y0), x1(cpy.x1), y1(cpy.y1), x2(cpy.x2),y2(cpy.y2), x3(cpy.x3), y3(cpy.y3), type(cpy.type)
                {
                        x0 *= t.w;
                        y0 *= t.h;
@@ -123,14 +128,14 @@ namespace IPDF
                        y3 += t.y;
                }
 
-               Rect SolveBounds() const;
+               BRect SolveBounds() const;
                
-               std::pair<Real,Real> GetTop() const;
-               std::pair<Real,Real> GetBottom() const;
-               std::pair<Real,Real> GetLeft() const;
-               std::pair<Real,Real> GetRight() const;
+               std::pair<BReal,BReal> GetTop() const;
+               std::pair<BReal,BReal> GetBottom() const;
+               std::pair<BReal,BReal> GetLeft() const;
+               std::pair<BReal,BReal> GetRight() const;
                
-               Bezier ToAbsolute(const Rect & bounds) const
+               Bezier ToAbsolute(const BRect & bounds) const
                {
                        return Bezier(*this, bounds);
                }
@@ -139,14 +144,14 @@ namespace IPDF
                 * (This basically does the opposite of the Copy constructor)
                 * ie: If this is absolute, the returned Bezier will be relative to the bounds rectangle
                 */
-               Bezier ToRelative(const Rect & bounds) const
+               Bezier ToRelative(const BRect & bounds) const
                {
                        // x' <- (x - x0)/w etc
                        // special cases when w or h = 0
                        // (So can't just use the Copy constructor on the inverse of bounds)
-                       // Rect inverse = {-bounds.x/bounds.w, -bounds.y/bounds.h, Real(1)/bounds.w, Real(1)/bounds.h};
+                       // BRect inverse = {-bounds.x/bounds.w, -bounds.y/bounds.h, BReal(1)/bounds.w, BReal(1)/bounds.h};
                        Bezier result;
-                       if (bounds.w == Real(0))
+                       if (bounds.w == 0)
                        {
                                result.x0 = 0;
                                result.x1 = 0;
@@ -161,7 +166,7 @@ namespace IPDF
                                result.x3 = (x3 - bounds.x)/bounds.w;
                        }
 
-                       if (bounds.h == Real(0))
+                       if (bounds.h == 0)
                        {
                                result.y0 = 0;
                                result.y1 = 0;
@@ -179,112 +184,112 @@ namespace IPDF
                }
 
                // Performs one round of De Casteljau subdivision and returns the [t,1] part.
-               Bezier DeCasteljauSubdivideLeft(const Real& t)
+               Bezier DeCasteljauSubdivideLeft(const BReal& t)
                {
-                       Real one_minus_t = Real(1) - t;
+                       BReal one_minus_t = BReal(1) - t;
 
                        // X Coordinates
-                       Real x01 = x1*t + x0*one_minus_t;
-                       Real x12 = x2*t + x1*one_minus_t;
-                       Real x23 = x3*t + x2*one_minus_t;
+                       BReal x01 = x1*t + x0*one_minus_t;
+                       BReal x12 = x2*t + x1*one_minus_t;
+                       BReal x23 = x3*t + x2*one_minus_t;
 
-                       Real x012 = x12*t + x01*one_minus_t;
-                       Real x123 = x23*t + x12*one_minus_t;
+                       BReal x012 = x12*t + x01*one_minus_t;
+                       BReal x123 = x23*t + x12*one_minus_t;
 
-                       Real x0123 = x123*t + x012*one_minus_t;
+                       BReal x0123 = x123*t + x012*one_minus_t;
 
                        // Y Coordinates
-                       Real y01 = y1*t + y0*one_minus_t;
-                       Real y12 = y2*t + y1*one_minus_t;
-                       Real y23 = y3*t + y2*one_minus_t;
+                       BReal y01 = y1*t + y0*one_minus_t;
+                       BReal y12 = y2*t + y1*one_minus_t;
+                       BReal y23 = y3*t + y2*one_minus_t;
 
-                       Real y012 = y12*t + y01*one_minus_t;
-                       Real y123 = y23*t + y12*one_minus_t;
+                       BReal y012 = y12*t + y01*one_minus_t;
+                       BReal y123 = y23*t + y12*one_minus_t;
 
-                       Real y0123 = y123*t + y012*one_minus_t;
+                       BReal y0123 = y123*t + y012*one_minus_t;
 
                        return Bezier(x0, y0, x01, y01, x012, y012, x0123, y0123);
                }
                // Performs one round of De Casteljau subdivision and returns the [t,1] part.
-               Bezier DeCasteljauSubdivideRight(const Real& t)
+               Bezier DeCasteljauSubdivideRight(const BReal& t)
                {
-                       Real one_minus_t = Real(1) - t;
+                       BReal one_minus_t = BReal(1) - t;
 
                        // X Coordinates
-                       Real x01 = x1*t + x0*one_minus_t;
-                       Real x12 = x2*t + x1*one_minus_t;
-                       Real x23 = x3*t + x2*one_minus_t;
+                       BReal x01 = x1*t + x0*one_minus_t;
+                       BReal x12 = x2*t + x1*one_minus_t;
+                       BReal x23 = x3*t + x2*one_minus_t;
 
-                       Real x012 = x12*t + x01*one_minus_t;
-                       Real x123 = x23*t + x12*one_minus_t;
+                       BReal x012 = x12*t + x01*one_minus_t;
+                       BReal x123 = x23*t + x12*one_minus_t;
 
-                       Real x0123 = x123*t + x012*one_minus_t;
+                       BReal x0123 = x123*t + x012*one_minus_t;
 
                        // Y Coordinates
-                       Real y01 = y1*t + y0*one_minus_t;
-                       Real y12 = y2*t + y1*one_minus_t;
-                       Real y23 = y3*t + y2*one_minus_t;
+                       BReal y01 = y1*t + y0*one_minus_t;
+                       BReal y12 = y2*t + y1*one_minus_t;
+                       BReal y23 = y3*t + y2*one_minus_t;
 
-                       Real y012 = y12*t + y01*one_minus_t;
-                       Real y123 = y23*t + y12*one_minus_t;
+                       BReal y012 = y12*t + y01*one_minus_t;
+                       BReal y123 = y23*t + y12*one_minus_t;
 
-                       Real y0123 = y123*t + y012*one_minus_t;
+                       BReal y0123 = y123*t + y012*one_minus_t;
 
                        return Bezier(x0123, y0123, x123, y123, x23, y23, x3, y3);
                }
 
-               Bezier ReParametrise(const Real& t0, const Real& t1)
+               Bezier ReParametrise(const BReal& t0, const BReal& t1)
                {
-                       Debug("Reparametrise: %f -> %f",Double(t0),Double(t1));
+                       //Debug("Reparametrise: %f -> %f",Double(t0),Double(t1));
                        Bezier new_bezier;
                        // Subdivide to get from [0,t1]
                        new_bezier = DeCasteljauSubdivideLeft(t1);
                        // Convert t0 from [0,1] range to [0, t1]
-                       Real new_t0 = t0 / t1;
-                       Debug("New t0 = %f", Double(new_t0));
+                       BReal new_t0 = t0 / t1;
+                       //Debug("New t0 = %f", Double(new_t0));
                        new_bezier = new_bezier.DeCasteljauSubdivideRight(new_t0);
 
-                       Debug("%s becomes %s", this->Str().c_str(), new_bezier.Str().c_str());
+                       //Debug("%s becomes %s", this->Str().c_str(), new_bezier.Str().c_str());
                        return new_bezier;
                }
                
-               std::vector<Bezier> ClipToRectangle(const Rect& r)
+               std::vector<Bezier> ClipToRectangle(const BRect & r)
                {
                        // Find points of intersection with the rectangle.
-                       Debug("Clipping Bezier to Rect %s", r.Str().c_str());
+                       Debug("Clipping Bezier to BRect %s", r.Str().c_str());
 
 
                        // Find its roots.
-                       std::vector<Real> x_intersection = SolveXParam(r.x);
-                       Debug("Found %d intersections on left edge", x_intersection.size());
+                       std::vector<BReal> x_intersection = SolveXParam(r.x);
+                       //Debug("Found %d intersections on left edge", x_intersection.size());
 
                        // And for the other side.
 
-                       std::vector<Real> x_intersection_pt2 = SolveXParam(r.x + r.w);
+                       std::vector<BReal> x_intersection_pt2 = SolveXParam(r.x + r.w);
                        x_intersection.insert(x_intersection.end(), x_intersection_pt2.begin(), x_intersection_pt2.end());
-                       Debug("Found %d intersections on right edge (total x: %d)", x_intersection_pt2.size(), x_intersection.size());
+                       //Debug("Found %d intersections on right edge (total x: %d)", x_intersection_pt2.size(), x_intersection.size());
 
                        // Find its roots.
-                       std::vector<Real> y_intersection = SolveYParam(r.y);
-                       Debug("Found %d intersections on top edge", y_intersection.size());
+                       std::vector<BReal> y_intersection = SolveYParam(r.y);
+                       //Debug("Found %d intersections on top edge", y_intersection.size());
 
-                       std::vector<Real> y_intersection_pt2 = SolveYParam(r.y+r.h);
+                       std::vector<BReal> y_intersection_pt2 = SolveYParam(r.y+r.h);
                        y_intersection.insert(y_intersection.end(), y_intersection_pt2.begin(), y_intersection_pt2.end());
-                       Debug("Found %d intersections on bottom edge (total y: %d)", y_intersection_pt2.size(), y_intersection.size());
+                       //Debug("Found %d intersections on bottom edge (total y: %d)", y_intersection_pt2.size(), y_intersection.size());
 
                        // Merge and sort.
                        x_intersection.insert(x_intersection.end(), y_intersection.begin(), y_intersection.end());
-                       x_intersection.push_back(Real(0));
-                       x_intersection.push_back(Real(1));
+                       x_intersection.push_back(BReal(0));
+                       x_intersection.push_back(BReal(1));
                        std::sort(x_intersection.begin(), x_intersection.end());
 
-                       Debug("Found %d intersections.\n", x_intersection.size());
-                       for(auto t : x_intersection)
+                       //Debug("Found %d intersections.\n", x_intersection.size());
+                       /*for(auto t : x_intersection)
                        {
-                               Real ptx, pty;
+                               BReal ptx, pty;
                                Evaluate(ptx, pty, t);
                                Debug("Root: t = %f, (%f,%f)", Double(t), Double(ptx), Double(pty));
-                       }
+                       }*/
                        
                        std::vector<Bezier> all_beziers;
                        if (x_intersection.size() <= 2)
@@ -292,22 +297,22 @@ namespace IPDF
                                all_beziers.push_back(*this);
                                return all_beziers;
                        }
-                       Real t0 = *(x_intersection.begin());
+                       BReal t0 = *(x_intersection.begin());
                        for (auto it = x_intersection.begin()+1; it != x_intersection.end(); ++it)
                        {
-                               Real t1 = *it;
+                               BReal t1 = *it;
                                if (t1 == t0) continue;
-                               Debug(" -- t0: %f to t1: %f: %f", Double(t0), Double(t1), Double((t1 + t0)/Real(2)));
-                               Real ptx, pty;
-                               Evaluate(ptx, pty, ((t1 + t0) / Real(2)));
+                               //Debug(" -- t0: %f to t1: %f: %f", Double(t0), Double(t1), Double((t1 + t0)/BReal(2)));
+                               BReal ptx, pty;
+                               Evaluate(ptx, pty, ((t1 + t0) / BReal(2)));
                                if (r.PointIn(ptx, pty))
                                {
-                                       Debug("Adding segment: (point at %f, %f)", Double(ptx), Double(pty));
+                                       //Debug("Adding segment: (point at %f, %f)", Double(ptx), Double(pty));
                                        all_beziers.push_back(this->ReParametrise(t0, t1));
                                }
                                else
                                {
-                                       Debug("Segment removed (point at %f, %f)", Double(ptx), Double(pty));
+                                       //Debug("Segment removed (point at %f, %f)", Double(ptx), Double(pty));
                                }
                                t0 = t1;
                        }
@@ -315,26 +320,26 @@ namespace IPDF
                }
 
                /** Evaluate the Bezier at parametric parameter u, puts resultant point in (x,y) **/
-               void Evaluate(Real & x, Real & y, const Real & u) const
+               void Evaluate(BReal & x, BReal & y, const BReal & u) const
                {
-                       Real coeff[4];
+                       BReal coeff[4];
                        for (unsigned i = 0; i < 4; ++i)
                                coeff[i] = Bernstein(i,3,u);
                        x = x0*coeff[0] + x1*coeff[1] + x2*coeff[2] + x3*coeff[3];
                        y = y0*coeff[0] + y1*coeff[1] + y2*coeff[2] + y3*coeff[3];
                }
-               std::vector<Vec2> Evaluate(const std::vector<Real> & u) const;
+               std::vector<Vec2> Evaluate(const std::vector<BReal> & u) const;
                
-               std::vector<Real> SolveXParam(const Real & x) const;
-               std::vector<Real> SolveYParam(const Real & x) const;
+               std::vector<BReal> SolveXParam(const BReal & x) const;
+               std::vector<BReal> SolveYParam(const BReal & x) const;
                
                // Get points with same X
-               inline std::vector<Vec2> SolveX(const Real & x) const
+               inline std::vector<Vec2> SolveX(const BReal & x) const
                {
                        return Evaluate(SolveXParam(x));
                }
                // Get points with same Y
-               inline std::vector<Vec2> SolveY(const Real & y) const
+               inline std::vector<Vec2> SolveY(const BReal & y) const
                {
                        return Evaluate(SolveYParam(y));
                }

UCC git Repository :: git.ucc.asn.au