// there is no elegance here. only sleep deprivation and regret.
[ipdf/code.git] / src / bezier.h
index 0e9217f..52a5264 100644 (file)
@@ -1,6 +1,9 @@
 #ifndef _BEZIER_H
 #define _BEZIER_H
 
+#include <vector>
+#include <algorithm>
+
 #include "real.h"
 #include "rect.h"
 namespace IPDF
@@ -8,6 +11,11 @@ namespace IPDF
        extern int Factorial(int n);
        extern int BinomialCoeff(int n, int k);
        extern Real Bernstein(int k, int n, const Real & u);
+       extern std::pair<Real,Real> BezierTurningPoints(const Real & p0, const Real & p1, const Real & p2, const Real & p3);
+       
+       extern std::vector<Real> SolveQuadratic(const Real & a, const Real & b, const Real & c, const Real & min = 0, const Real & max = 1);
+
+       extern std::vector<Real> SolveCubic(const Real & a, const Real & b, const Real & c, const Real & d, const Real & min = 0, const Real & max = 1, const Real & delta = 1e-9);
 
        /** A _cubic_ bezier. **/
        struct Bezier
@@ -16,10 +24,73 @@ namespace IPDF
                Real x1; Real y1;
                Real x2; Real y2;
                Real x3; Real y3;
+               
+               typedef enum {UNKNOWN, LINE, QUADRATIC, CUSP, LOOP, SERPENTINE} Type;
+               Type type;
+               
                Bezier() = default; // Needed so we can fread/fwrite this struct... for now.
-               Bezier(Real _x0, Real _y0, Real _x1, Real _y1, Real _x2, Real _y2, Real _x3, Real _y3) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x3), y3(_y3) {}
+               Bezier(Real _x0, Real _y0, Real _x1, Real _y1, Real _x2, Real _y2, Real _x3, Real _y3) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x3), y3(_y3), type(UNKNOWN)
+               {
+
+               }
+               
+               Type GetType()
+               {
+                       if (type != Bezier::UNKNOWN)
+                               return type;
+                       // From Loop-Blinn 2005, with w0 == w1 == w2 == w3 = 1
+                       // Transformed control points: (a0 = x0, b0 = y0)
+                       Real a1 = (x1-x0)*3;
+                       Real a2 = (x0- x1*2 +x2)*3;
+                       Real a3 = (x3 - x0 + (x1 - x2)*3);
+                       
+                       Real b1 = (y1-y0)*3;
+                       Real b2 = (y0- y1*2 +y2)*3;
+                       Real b3 = (y3 - y0 + (y1 - y2)*3);
+                       
+                       // d vector (d0 = 0 since all w = 1)
+                       Real d1 = a2*b3 - a3*b2;
+                       Real d2 = a3*b1 - a1*b3;
+                       Real d3 = a1*b2 - a2*b1;
+                       
+                       if (fabs(d1+d2+d3) < 1e-6)
+                       {
+                               type = LINE;
+                               //Debug("LINE %s", Str().c_str());
+                               return type;
+                       }
+                       
+                       Real delta1 = -(d1*d1);
+                       Real delta2 = d1*d2;
+                       Real delta3 = d1*d3 -(d2*d2);
+                       if (fabs(delta1+delta2+delta3) < 1e-6)
+                       {
+                               type = QUADRATIC;
+                               
+                               //Debug("QUADRATIC %s", Str().c_str());
+                               return type;
+                       }
+                       
+                       Real discriminant = d1*d3*4 -d2*d2;
+                       if (fabs(discriminant) < 1e-6)
+                       {
+                               type = CUSP;
+                               //Debug("CUSP %s", Str().c_str());
+                       }
+                       else if (discriminant > 0)
+                       {
+                               type = SERPENTINE;
+                               //Debug("SERPENTINE %s", Str().c_str());
+                       }
+                       else
+                       {
+                               type = LOOP;
+                               //Debug("LOOP %s", Str().c_str());
+                       }
+                       //Debug("disc %.30f", discriminant);
+                       return type;
+               }
                
-               Bezier(Real _x0, Real _y0, Real _x1, Real _y1, Real _x2, Real _y2) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x2), y3(_y2) {}
                
                std::string Str() const
                {
@@ -27,7 +98,12 @@ namespace IPDF
                        s << "Bezier{" << Float(x0) << "," << Float(y0) << " -> " << Float(x1) << "," << Float(y1) << " -> " << Float(x2) << "," << Float(y2) << " -> " << Float(x3) << "," << Float(y3) << "}";
                        return s.str();
                }
-               Bezier(const Bezier & cpy, const Rect & t = Rect(0,0,1,1)) : x0(cpy.x0), y0(cpy.y0), x1(cpy.x1), y1(cpy.y1), x2(cpy.x2),y2(cpy.y2), x3(cpy.x3), y3(cpy.y3)
+               
+               /**
+                * Construct absolute control points using relative control points to a bounding rectangle
+                * ie: If cpy is relative to bounds rectangle, this will be absolute
+                */
+               Bezier(const Bezier & cpy, const Rect & t = Rect(0,0,1,1)) : x0(cpy.x0), y0(cpy.y0), x1(cpy.x1), y1(cpy.y1), x2(cpy.x2),y2(cpy.y2), x3(cpy.x3), y3(cpy.y3), type(cpy.type)
                {
                        x0 *= t.w;
                        y0 *= t.h;
@@ -47,10 +123,194 @@ namespace IPDF
                        y3 += t.y;
                }
 
-               Rect ToRect() {return Rect(x0,y0,x3-x0,y3-y0);}
+               Rect SolveBounds() const;
+               
+               std::pair<Real,Real> GetTop() const;
+               std::pair<Real,Real> GetBottom() const;
+               std::pair<Real,Real> GetLeft() const;
+               std::pair<Real,Real> GetRight() const;
+               
+               Bezier ToAbsolute(const Rect & bounds) const
+               {
+                       return Bezier(*this, bounds);
+               }
+               
+               /** Convert absolute control points to control points relative to bounds
+                * (This basically does the opposite of the Copy constructor)
+                * ie: If this is absolute, the returned Bezier will be relative to the bounds rectangle
+                */
+               Bezier ToRelative(const Rect & bounds) const
+               {
+                       // x' <- (x - x0)/w etc
+                       // special cases when w or h = 0
+                       // (So can't just use the Copy constructor on the inverse of bounds)
+                       // Rect inverse = {-bounds.x/bounds.w, -bounds.y/bounds.h, Real(1)/bounds.w, Real(1)/bounds.h};
+                       Bezier result;
+                       if (bounds.w == 0)
+                       {
+                               result.x0 = 0;
+                               result.x1 = 0;
+                               result.x2 = 0;
+                               result.x3 = 0;
+                       }
+                       else
+                       {
+                               result.x0 = (x0 - bounds.x)/bounds.w;   
+                               result.x1 = (x1 - bounds.x)/bounds.w;
+                               result.x2 = (x2 - bounds.x)/bounds.w;
+                               result.x3 = (x3 - bounds.x)/bounds.w;
+                       }
+
+                       if (bounds.h == 0)
+                       {
+                               result.y0 = 0;
+                               result.y1 = 0;
+                               result.y2 = 0;
+                               result.y3 = 0;
+                       }
+                       else
+                       {
+                               result.y0 = (y0 - bounds.y)/bounds.h;   
+                               result.y1 = (y1 - bounds.y)/bounds.h;
+                               result.y2 = (y2 - bounds.y)/bounds.h;
+                               result.y3 = (y3 - bounds.y)/bounds.h;
+                       }
+                       return result;
+               }
+
+               // Performs one round of De Casteljau subdivision and returns the [t,1] part.
+               Bezier DeCasteljauSubdivideLeft(const Real& t)
+               {
+                       Real one_minus_t = Real(1) - t;
+
+                       // X Coordinates
+                       Real x01 = x1*t + x0*one_minus_t;
+                       Real x12 = x2*t + x1*one_minus_t;
+                       Real x23 = x3*t + x2*one_minus_t;
+
+                       Real x012 = x12*t + x01*one_minus_t;
+                       Real x123 = x23*t + x12*one_minus_t;
+
+                       Real x0123 = x123*t + x012*one_minus_t;
+
+                       // Y Coordinates
+                       Real y01 = y1*t + y0*one_minus_t;
+                       Real y12 = y2*t + y1*one_minus_t;
+                       Real y23 = y3*t + y2*one_minus_t;
+
+                       Real y012 = y12*t + y01*one_minus_t;
+                       Real y123 = y23*t + y12*one_minus_t;
+
+                       Real y0123 = y123*t + y012*one_minus_t;
+
+                       return Bezier(x0, y0, x01, y01, x012, y012, x0123, y0123);
+               }
+               // Performs one round of De Casteljau subdivision and returns the [t,1] part.
+               Bezier DeCasteljauSubdivideRight(const Real& t)
+               {
+                       Real one_minus_t = Real(1) - t;
+
+                       // X Coordinates
+                       Real x01 = x1*t + x0*one_minus_t;
+                       Real x12 = x2*t + x1*one_minus_t;
+                       Real x23 = x3*t + x2*one_minus_t;
+
+                       Real x012 = x12*t + x01*one_minus_t;
+                       Real x123 = x23*t + x12*one_minus_t;
+
+                       Real x0123 = x123*t + x012*one_minus_t;
+
+                       // Y Coordinates
+                       Real y01 = y1*t + y0*one_minus_t;
+                       Real y12 = y2*t + y1*one_minus_t;
+                       Real y23 = y3*t + y2*one_minus_t;
+
+                       Real y012 = y12*t + y01*one_minus_t;
+                       Real y123 = y23*t + y12*one_minus_t;
+
+                       Real y0123 = y123*t + y012*one_minus_t;
+
+                       return Bezier(x0123, y0123, x123, y123, x23, y23, x3, y3);
+               }
+
+               Bezier ReParametrise(const Real& t0, const Real& t1)
+               {
+                       Debug("Reparametrise: %f -> %f",t0,t1);
+                       Bezier new_bezier;
+                       // Subdivide to get from [0,t1]
+                       new_bezier = DeCasteljauSubdivideLeft(t1);
+                       // Convert t0 from [0,1] range to [0, t1]
+                       Real new_t0 = t0 / t1;
+                       Debug("New t0 = %f", new_t0);
+                       new_bezier = new_bezier.DeCasteljauSubdivideRight(new_t0);
+
+                       Debug("%s becomes %s", this->Str().c_str(), new_bezier.Str().c_str());
+                       return new_bezier;
+               }
+               
+               std::vector<Bezier> ClipToRectangle(const Rect& r)
+               {
+                       // Find points of intersection with the rectangle.
+                       Debug("Clipping Bezier to Rect %s", r.Str().c_str());
+
+
+                       // Find its roots.
+                       std::vector<Real> x_intersection = SolveXParam(r.x);
+
+                       // And for the other side.
+
+                       std::vector<Real> x_intersection_pt2 = SolveXParam(r.x + r.w);
+                       x_intersection.insert(x_intersection.end(), x_intersection_pt2.begin(), x_intersection_pt2.end());
+
+                       // Find its roots.
+                       std::vector<Real> y_intersection = SolveYParam(r.y);
+
+                       std::vector<Real> y_intersection_pt2 = SolveYParam(r.y+r.h);
+                       y_intersection.insert(y_intersection.end(), y_intersection_pt2.begin(), y_intersection_pt2.end());
+
+                       // Merge and sort.
+                       x_intersection.insert(x_intersection.end(), y_intersection.begin(), y_intersection.end());
+                       x_intersection.push_back(Real(0));
+                       x_intersection.push_back(Real(1));
+                       std::sort(x_intersection.begin(), x_intersection.end());
+
+                       Debug("Found %d intersections.\n", x_intersection.size());
+                       for(auto t : x_intersection)
+                       {
+                               Real ptx, pty;
+                               Evaluate(ptx, pty, t);
+                               Debug("Root: t = %f, (%f,%f)", t, ptx, pty);
+                       }
+                       
+                       std::vector<Bezier> all_beziers;
+                       if (x_intersection.size() <= 2)
+                       {
+                               all_beziers.push_back(*this);
+                               return all_beziers;
+                       }
+                       Real t0 = *(x_intersection.begin());
+                       for (auto it = x_intersection.begin()+1; it != x_intersection.end(); ++it)
+                       {
+                               Real t1 = *it;
+                               if (t1 == t0) continue;
+                               Debug(" -- t0: %f to t1: %f", t0, t1);
+                               Real ptx, pty;
+                               Evaluate(ptx, pty, ((t1 + t0) / Real(2)));
+                               if (r.PointIn(ptx, pty))
+                               {
+                                       all_beziers.push_back(this->ReParametrise(t0, t1));
+                               }
+                               else
+                               {
+                                       Debug("Segment removed (point at %f, %f)", ptx, pty);
+                               }
+                               t0 = t1;
+                       }
+                       return all_beziers;
+               }
 
                /** Evaluate the Bezier at parametric parameter u, puts resultant point in (x,y) **/
-               void Evaluate(Real & x, Real & y, const Real & u)
+               void Evaluate(Real & x, Real & y, const Real & u) const
                {
                        Real coeff[4];
                        for (unsigned i = 0; i < 4; ++i)
@@ -58,6 +318,30 @@ namespace IPDF
                        x = x0*coeff[0] + x1*coeff[1] + x2*coeff[2] + x3*coeff[3];
                        y = y0*coeff[0] + y1*coeff[1] + y2*coeff[2] + y3*coeff[3];
                }
+               std::vector<Vec2> Evaluate(const std::vector<Real> & u) const;
+               
+               std::vector<Real> SolveXParam(const Real & x) const;
+               std::vector<Real> SolveYParam(const Real & x) const;
+               
+               // Get points with same X
+               inline std::vector<Vec2> SolveX(const Real & x) const
+               {
+                       return Evaluate(SolveXParam(x));
+               }
+               // Get points with same Y
+               inline std::vector<Vec2> SolveY(const Real & y) const
+               {
+                       return Evaluate(SolveYParam(y));
+               }
+               
+               bool operator==(const Bezier & equ) const
+               {
+                       return (x0 == equ.x0 && y0 == equ.y0
+                               &&  x1 == equ.x1 && y1 == equ.y1
+                               &&      x2 == equ.x2 && y2 == equ.y2
+                               &&      x3 == equ.x3 && y3 == equ.y3);
+               }
+               bool operator!=(const Bezier & equ) const {return !this->operator==(equ);}
 
        };
 

UCC git Repository :: git.ucc.asn.au