About to break everything with a merge
[ipdf/code.git] / src / bezier.h
index 6dac0d5..7b46d14 100644 (file)
 #ifndef _BEZIER_H
 #define _BEZIER_H
 
-#include "real.h"
+#include <vector>
+#include <algorithm>
 #include "rect.h"
+#include "real.h"
+
+
+
 namespace IPDF
 {
+       typedef Real BReal;
+       typedef TRect<BReal> BRect;
+       
        extern int Factorial(int n);
        extern int BinomialCoeff(int n, int k);
-       extern Real Bernstein(int k, int n, const Real & u);
+       extern BReal Bernstein(int k, int n, const BReal & u);
+       extern std::pair<BReal,BReal> BezierTurningPoints(const BReal & p0, const BReal & p1, const BReal & p2, const BReal & p3);
        
-       inline std::pair<Real,Real> SolveQuadratic(const Real & a, const Real & b, const Real & c)
-       {
-               Real x0((-b + Sqrt(b*b - Real(4)*a*c))/(Real(2)*a));
-               Real x1((-b - Sqrt(b*b - Real(4)*a*c))/(Real(2)*a));
-               return std::pair<Real,Real>(x0,x1);
-       }
+       extern std::vector<BReal> SolveQuadratic(const BReal & a, const BReal & b, const BReal & c, const BReal & min = 0, const BReal & max = 1);
 
-       inline std::vector<Real> SolveCubic(const Real & a, const Real & b, const Real & c, const Real & d)
-       {
-               // This is going to be a big one...
-               // See http://en.wikipedia.org/wiki/Cubic_function#General_formula_for_roots
-
-               // delta = 18abcd - 4 b^3 d + b^2 c^2 - 4ac^3 - 27 a^2 d^2
-               /*
-               Real discriminant = Real(18) * a * b * c * d - Real(4) * (b * b * b) * d 
-                               + (b * b) * (c * c) - Real(4) * a * (c * c * c)
-                               - Real(27) * (a * a) * (d * d);
-               */
-               // discriminant > 0 => 3 distinct, real roots.
-               // discriminant = 0 => a multiple root (1 or 2 real roots)
-               // discriminant < 0 => 1 real root, 2 complex conjugate roots
-
-               ////HACK: We know any roots we care about will be between 0 and 1, so...
-               Real maxi(100);
-               Real prevRes(d);
-               std::vector<Real> roots;
-               for(int i = 0; i <= 100; ++i)
-               {
-                       Real x(i);
-                       x /= maxi;
-                       Real y = a*(x*x*x) + b*(x*x) + c*x + d;
-                       if (y == Real(0) || (y < Real(0) && prevRes > Real(0)) || (y > Real(0) && prevRes < Real(0)))
-                       {
-                               roots.push_back(x);
-                       }
-               }
-               return roots;
-                       
-       }
+       extern std::vector<BReal> SolveCubic(const BReal & a, const BReal & b, const BReal & c, const BReal & d, const BReal & min = 0, const BReal & max = 1, const BReal & delta = 1e-9);
 
        /** A _cubic_ bezier. **/
        struct Bezier
        {
-               Real x0; Real y0;
-               Real x1; Real y1;
-               Real x2; Real y2;
-               Real x3; Real y3;
-               Bezier() = default; // Needed so we can fread/fwrite this struct... for now.
-               Bezier(Real _x0, Real _y0, Real _x1, Real _y1, Real _x2, Real _y2, Real _x3, Real _y3) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x3), y3(_y3) 
+               BReal x0; BReal y0;
+               BReal x1; BReal y1;
+               BReal x2; BReal y2;
+               BReal x3; BReal y3;
+               
+               typedef enum {UNKNOWN, LINE, QUADRATIC, CUSP, LOOP, SERPENTINE} Type;
+               Type type;
+               
+               //Bezier() = default; // Needed so we can fread/fwrite this struct... for now.
+               Bezier(BReal _x0=0, BReal _y0=0, BReal _x1=0, BReal _y1=0, BReal _x2=0, BReal _y2=0, BReal _x3=0, BReal _y3=0) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x3), y3(_y3), type(UNKNOWN)
+               {
+
+               }
+               
+               Type GetType()
                {
+                       if (type != Bezier::UNKNOWN)
+                               return type;
+                       // From Loop-Blinn 2005, with w0 == w1 == w2 == w3 = 1
+                       // Transformed control points: (a0 = x0, b0 = y0)
+                       BReal a1 = (x1-x0)*BReal(3);
+                       BReal a2 = (x0- x1*BReal(2) +x2)*BReal(3);
+                       BReal a3 = (x3 - x0 + (x1 - x2)*BReal(3));
+                       
+                       BReal b1 = (y1-y0)*BReal(3);
+                       BReal b2 = (y0- y1*BReal(2) +y2)*BReal(3);
+                       BReal b3 = (y3 - y0 + (y1 - y2)*BReal(3));
                        
+                       // d vector (d0 = 0 since all w = 1)
+                       BReal d1 = a2*b3 - a3*b2;
+                       BReal d2 = a3*b1 - a1*b3;
+                       BReal d3 = a1*b2 - a2*b1;
+                       
+                       if (Abs(d1+d2+d3) < BReal(1e-6))
+                       {
+                               type = LINE;
+                               //Debug("LINE %s", Str().c_str());
+                               return type;
+                       }
+                       
+                       BReal delta1 = -(d1*d1);
+                       BReal delta2 = d1*d2;
+                       BReal delta3 = d1*d3 -(d2*d2);
+                       if (Abs(delta1+delta2+delta3) < BReal(1e-6))
+                       {
+                               type = QUADRATIC;
+                               
+                               //Debug("QUADRATIC %s", Str().c_str());
+                               return type;
+                       }
+                       
+                       BReal discriminant = d1*d3*BReal(4) -d2*d2;
+                       if (Abs(discriminant) < BReal(1e-6))
+                       {
+                               type = CUSP;
+                               //Debug("CUSP %s", Str().c_str());
+                       }
+                       else if (discriminant > BReal(0))
+                       {
+                               type = SERPENTINE;
+                               //Debug("SERPENTINE %s", Str().c_str());
+                       }
+                       else
+                       {
+                               type = LOOP;
+                               //Debug("LOOP %s", Str().c_str());
+                       }
+                       //Debug("disc %.30f", discriminant);
+                       return type;
                }
                
-               Bezier(Real _x0, Real _y0, Real _x1, Real _y1, Real _x2, Real _y2) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x2), y3(_y2) {}
                
                std::string Str() const
                {
@@ -75,7 +108,7 @@ namespace IPDF
                 * Construct absolute control points using relative control points to a bounding rectangle
                 * ie: If cpy is relative to bounds rectangle, this will be absolute
                 */
-               Bezier(const Bezier & cpy, const Rect & t = Rect(0,0,1,1)) : x0(cpy.x0), y0(cpy.y0), x1(cpy.x1), y1(cpy.y1), x2(cpy.x2),y2(cpy.y2), x3(cpy.x3), y3(cpy.y3)
+               Bezier(const Bezier & cpy, const BRect & t = BRect(0,0,1,1)) : x0(cpy.x0), y0(cpy.y0), x1(cpy.x1), y1(cpy.y1), x2(cpy.x2),y2(cpy.y2), x3(cpy.x3), y3(cpy.y3), type(cpy.type)
                {
                        x0 *= t.w;
                        y0 *= t.h;
@@ -95,9 +128,14 @@ namespace IPDF
                        y3 += t.y;
                }
 
-               Rect SolveBounds() const;
+               BRect SolveBounds() const;
                
-               Bezier ToAbsolute(const Rect & bounds) const
+               std::pair<BReal,BReal> GetTop() const;
+               std::pair<BReal,BReal> GetBottom() const;
+               std::pair<BReal,BReal> GetLeft() const;
+               std::pair<BReal,BReal> GetRight() const;
+               
+               Bezier ToAbsolute(const BRect & bounds) const
                {
                        return Bezier(*this, bounds);
                }
@@ -106,14 +144,14 @@ namespace IPDF
                 * (This basically does the opposite of the Copy constructor)
                 * ie: If this is absolute, the returned Bezier will be relative to the bounds rectangle
                 */
-               Bezier ToRelative(const Rect & bounds) const
+               Bezier ToRelative(const BRect & bounds) const
                {
                        // x' <- (x - x0)/w etc
                        // special cases when w or h = 0
                        // (So can't just use the Copy constructor on the inverse of bounds)
-                       // Rect inverse = {-bounds.x/bounds.w, -bounds.y/bounds.h, Real(1)/bounds.w, Real(1)/bounds.h};
+                       // BRect inverse = {-bounds.x/bounds.w, -bounds.y/bounds.h, BReal(1)/bounds.w, BReal(1)/bounds.h};
                        Bezier result;
-                       if (bounds.w == 0)
+                       if (bounds.w == BReal(0))
                        {
                                result.x0 = 0;
                                result.x1 = 0;
@@ -128,7 +166,7 @@ namespace IPDF
                                result.x3 = (x3 - bounds.x)/bounds.w;
                        }
 
-                       if (bounds.h == 0)
+                       if (bounds.h == BReal(0))
                        {
                                result.y0 = 0;
                                result.y1 = 0;
@@ -145,109 +183,175 @@ namespace IPDF
                        return result;
                }
 
-               Bezier ReParametrise(const Real& t0, const Real& t1)
+               // Performs one round of De Casteljau subdivision and returns the [t,1] part.
+               Bezier DeCasteljauSubdivideLeft(const BReal& t)
                {
-                       // This function is very, very ugly, but with luck my derivation is correct (even if it isn't optimal, performance wise)
-                       // (Very) rough working for the derivation is at: http://davidgow.net/stuff/cubic_bezier_reparam.pdf
-                       Bezier new_bezier;
-                       Real tdiff = t1 - t0;
-                       Real tdiff_squared = tdiff*tdiff;
-                       Real tdiff_cubed = tdiff*tdiff_squared;
+                       BReal one_minus_t = BReal(1) - t;
 
-                       Real t0_squared = t0*t0;
-                       Real t0_cubed = t0*t0_squared;
-                       
-                       // X coordinates
-                       Real Dx0 = x0 / tdiff_cubed;
-                       Real Dx1 = x1 / (tdiff_squared - tdiff_cubed);
-                       Real Dx2 = x2 / (tdiff - Real(2)*tdiff_squared + tdiff_cubed);
-                       Real Dx3 = x3 / (Real(1) - Real(3)*tdiff + Real(3)*tdiff_squared - tdiff_cubed);
+                       // X Coordinates
+                       BReal x01 = x1*t + x0*one_minus_t;
+                       BReal x12 = x2*t + x1*one_minus_t;
+                       BReal x23 = x3*t + x2*one_minus_t;
+
+                       BReal x012 = x12*t + x01*one_minus_t;
+                       BReal x123 = x23*t + x12*one_minus_t;
+
+                       BReal x0123 = x123*t + x012*one_minus_t;
 
-                       new_bezier.x3 = Dx3*t0_cubed + Real(3)*Dx3*t0_squared + Real(3)*Dx3*t0 + Dx3 - Dx2*t0_cubed - Real(2)*Dx2*t0_squared - Dx2*t0 + Dx1*t0_cubed + Dx1*t0_squared - Dx0*t0_cubed;
-                       new_bezier.x2 = Real(3)*Dx0*t0_squared - Real(2)*Dx1*t0 - Real(3)*Dx1*t0_squared + Dx2 + Real(4)*Dx2*t0 + Real(3)*Dx2*t0_squared - Real(3)*Dx3 - Real(6)*Dx3*t0 - Real(3)*Dx3*t0_squared + Real(3)*new_bezier.x3;
-                       new_bezier.x1 = Real(-3)*Dx0*t0 + Real(3)*Dx1*t0 + Dx1 - Real(2)*Dx2 - Real(3)*Dx2*t0 + Real(3)*Dx3 + Real(3)*Dx3*t0 + Real(2)*new_bezier.x2 - Real(3)*new_bezier.x3;
-                       new_bezier.x0 = Dx0 - Dx1 + Dx2 - Dx3 + new_bezier.x1 - new_bezier.x2 + new_bezier.x3;
+                       // Y Coordinates
+                       BReal y01 = y1*t + y0*one_minus_t;
+                       BReal y12 = y2*t + y1*one_minus_t;
+                       BReal y23 = y3*t + y2*one_minus_t;
 
-                       // Y coordinates
-                       Real Dy0 = y0 / tdiff_cubed;
-                       Real Dy1 = y1 / (tdiff_squared - tdiff_cubed);
-                       Real Dy2 = y2 / (tdiff - Real(2)*tdiff_squared + tdiff_cubed);
-                       Real Dy3 = y3 / (Real(1) - Real(3)*tdiff + Real(3)*tdiff_squared - tdiff_cubed);
+                       BReal y012 = y12*t + y01*one_minus_t;
+                       BReal y123 = y23*t + y12*one_minus_t;
+
+                       BReal y0123 = y123*t + y012*one_minus_t;
+
+                       return Bezier(x0, y0, x01, y01, x012, y012, x0123, y0123);
+               }
+               // Performs one round of De Casteljau subdivision and returns the [t,1] part.
+               Bezier DeCasteljauSubdivideRight(const BReal& t)
+               {
+                       BReal one_minus_t = BReal(1) - t;
 
-                       new_bezier.y3 = Dy3*t0_cubed + Real(3)*Dy3*t0_squared + Real(3)*Dy3*t0 + Dy3 - Dy2*t0_cubed - Real(2)*Dy2*t0_squared - Dy2*t0 + Dy1*t0_cubed + Dy1*t0_squared - Dy0*t0_cubed;
-                       new_bezier.y2 = Real(3)*Dy0*t0_squared - Real(2)*Dy1*t0 - Real(3)*Dy1*t0_squared + Dy2 + Real(4)*Dy2*t0 + Real(3)*Dy2*t0_squared - Real(3)*Dy3 - Real(6)*Dy3*t0 - Real(3)*Dy3*t0_squared + Real(3)*new_bezier.y3;
-                       new_bezier.y1 = Real(-3)*Dy0*t0 + Real(3)*Dy1*t0 + Dy1 - Real(2)*Dy2 - Real(3)*Dy2*t0 + Real(3)*Dy3 + Real(3)*Dy3*t0 + Real(2)*new_bezier.y2 - Real(3)*new_bezier.y3;
-                       new_bezier.y0 = Dy0 - Dy1 + Dy2 - Dy3 + new_bezier.y1 - new_bezier.y2 + new_bezier.y3;
+                       // X Coordinates
+                       BReal x01 = x1*t + x0*one_minus_t;
+                       BReal x12 = x2*t + x1*one_minus_t;
+                       BReal x23 = x3*t + x2*one_minus_t;
 
+                       BReal x012 = x12*t + x01*one_minus_t;
+                       BReal x123 = x23*t + x12*one_minus_t;
+
+                       BReal x0123 = x123*t + x012*one_minus_t;
+
+                       // Y Coordinates
+                       BReal y01 = y1*t + y0*one_minus_t;
+                       BReal y12 = y2*t + y1*one_minus_t;
+                       BReal y23 = y3*t + y2*one_minus_t;
+
+                       BReal y012 = y12*t + y01*one_minus_t;
+                       BReal y123 = y23*t + y12*one_minus_t;
+
+                       BReal y0123 = y123*t + y012*one_minus_t;
+
+                       return Bezier(x0123, y0123, x123, y123, x23, y23, x3, y3);
+               }
+
+               Bezier ReParametrise(const BReal& t0, const BReal& t1)
+               {
+                       //Debug("Reparametrise: %f -> %f",Double(t0),Double(t1));
+                       Bezier new_bezier;
+                       // Subdivide to get from [0,t1]
+                       new_bezier = DeCasteljauSubdivideLeft(t1);
+                       // Convert t0 from [0,1] range to [0, t1]
+                       BReal new_t0 = t0 / t1;
+                       //Debug("New t0 = %f", Double(new_t0));
+                       new_bezier = new_bezier.DeCasteljauSubdivideRight(new_t0);
 
+                       //Debug("%s becomes %s", this->Str().c_str(), new_bezier.Str().c_str());
                        return new_bezier;
                }
                
-               std::vector<Bezier> ClipToRectangle(const Rect& r)
+               std::vector<Bezier> ClipToRectangle(const BRect & r)
                {
                        // Find points of intersection with the rectangle.
+                       Debug("Clipping Bezier to BRect %s", r.Str().c_str());
 
-                       // Convert bezier coefficients -> cubic coefficients
-                       Real xa = x0-x1+x2-x3;
-                       Real xb = x1 - Real(2)*x2 + Real(3)*x3;
-                       Real xc = x2 - Real(3)*x3;
-                       Real xd = x3 + r.x;
+                       bool isVerticalLine = (x0 == x1 && x1 == x2 && x2 == x3);
+                       bool isHorizontalLine = (y0 == y1 && y1 == y2 && y2 == y3);
 
                        // Find its roots.
-                       std::vector<Real> x_intersection = SolveCubic(xa, xb, xc, xd);
+                       
+                       std::vector<BReal> intersection;
 
-                       // And for the other side.
-                       xd = x3 + r.x + r.w;
+                       if (!isVerticalLine)
+                       {
+                               std::vector<BReal> x_intersection = SolveXParam(r.x);
+                               intersection.insert(intersection.end(), x_intersection.begin(), x_intersection.end());
 
-                       std::vector<Real> x_intersection_pt2 = SolveCubic(xa, xb, xc, xd);
-                       x_intersection.insert(x_intersection.end(), x_intersection_pt2.begin(), x_intersection_pt2.end());
+                               // And for the other side.
 
-                       // Similarly for y-coordinates.
-                       // Convert bezier coefficients -> cubic coefficients
-                       Real ya = y0-y1+y2-y3;
-                       Real yb = y1 - Real(2)*y2 + Real(3)*y3;
-                       Real yc = y2 - Real(3)*y3;
-                       Real yd = y3 + r.y;
+                               std::vector<BReal> x_intersection_pt2 = SolveXParam(r.x + r.w);
+                               intersection.insert(intersection.end(), x_intersection_pt2.begin(), x_intersection_pt2.end());
+                       }
 
                        // Find its roots.
-                       std::vector<Real> y_intersection = SolveCubic(ya, yb, yc, yd);
-
-                       // And for the other side.
-                       yd = y3 + r.y + r.h;
+                       if (!isHorizontalLine)
+                       {
+                               std::vector<BReal> y_intersection = SolveYParam(r.y);
+                               intersection.insert(intersection.end(), y_intersection.begin(), y_intersection.end());
 
-                       std::vector<Real> y_intersection_pt2 = SolveCubic(ya, yb, yc, yd);
-                       y_intersection.insert(y_intersection.end(), y_intersection_pt2.begin(), y_intersection_pt2.end());
+                               std::vector<BReal> y_intersection_pt2 = SolveYParam(r.y+r.h);
+                               intersection.insert(intersection.end(), y_intersection_pt2.begin(), y_intersection_pt2.end());
+                       }
 
                        // Merge and sort.
-                       x_intersection.insert(x_intersection.end(), y_intersection.begin(), y_intersection.end());
-
-                       Debug("Found %d intersections.\n", x_intersection.size());
+                       intersection.push_back(BReal(0));
+                       intersection.push_back(BReal(1));
+                       std::sort(intersection.begin(), intersection.end());
                        
                        std::vector<Bezier> all_beziers;
-                       if (x_intersection.empty())
+                       if (intersection.size() <= 2)
                        {
                                all_beziers.push_back(*this);
                                return all_beziers;
                        }
-                       Real t0 = *(x_intersection.begin());
-                       for (auto it = x_intersection.begin()+1; it != x_intersection.end(); ++it)
+                       BReal t0 = *(intersection.begin());
+                       for (auto it = intersection.begin()+1; it != intersection.end(); ++it)
                        {
-                               Real t1 = *it;
-                               all_beziers.push_back(this->ReParametrise(t0, t1));
+                               BReal t1 = *it;
+                               if (t1 == t0) continue;
+                               //Debug(" -- t0: %f to t1: %f: %f", Double(t0), Double(t1), Double((t1 + t0)/BReal(2)));
+                               BReal ptx, pty;
+                               Evaluate(ptx, pty, ((t1 + t0) / BReal(2)));
+                               if (r.PointIn(ptx, pty))
+                               {
+                                       //Debug("Adding segment: (point at %f, %f)", Double(ptx), Double(pty));
+                                       all_beziers.push_back(this->ReParametrise(t0, t1));
+                               }
+                               else
+                               {
+                                       //Debug("Segment removed (point at %f, %f)", Double(ptx), Double(pty));
+                               }
                                t0 = t1;
                        }
                        return all_beziers;
                }
 
                /** Evaluate the Bezier at parametric parameter u, puts resultant point in (x,y) **/
-               void Evaluate(Real & x, Real & y, const Real & u) const
+               void Evaluate(BReal & x, BReal & y, const BReal & u) const
                {
-                       Real coeff[4];
+                       BReal coeff[4];
                        for (unsigned i = 0; i < 4; ++i)
                                coeff[i] = Bernstein(i,3,u);
                        x = x0*coeff[0] + x1*coeff[1] + x2*coeff[2] + x3*coeff[3];
                        y = y0*coeff[0] + y1*coeff[1] + y2*coeff[2] + y3*coeff[3];
                }
+               std::vector<Vec2> Evaluate(const std::vector<BReal> & u) const;
+               
+               std::vector<BReal> SolveXParam(const BReal & x) const;
+               std::vector<BReal> SolveYParam(const BReal & x) const;
+               
+               // Get points with same X
+               inline std::vector<Vec2> SolveX(const BReal & x) const
+               {
+                       return Evaluate(SolveXParam(x));
+               }
+               // Get points with same Y
+               inline std::vector<Vec2> SolveY(const BReal & y) const
+               {
+                       return Evaluate(SolveYParam(y));
+               }
+               
+               bool operator==(const Bezier & equ) const
+               {
+                       return (x0 == equ.x0 && y0 == equ.y0
+                               &&  x1 == equ.x1 && y1 == equ.y1
+                               &&      x2 == equ.x2 && y2 == equ.y2
+                               &&      x3 == equ.x3 && y3 == equ.y3);
+               }
+               bool operator!=(const Bezier & equ) const {return !this->operator==(equ);}
 
        };
 

UCC git Repository :: git.ucc.asn.au