Mostly working, optimize curves completely within nodes.
[ipdf/code.git] / src / bezier.h
index 0e9217f..9dd38c0 100644 (file)
@@ -1,6 +1,9 @@
 #ifndef _BEZIER_H
 #define _BEZIER_H
 
+#include <vector>
+#include <algorithm>
+
 #include "real.h"
 #include "rect.h"
 namespace IPDF
@@ -8,6 +11,67 @@ namespace IPDF
        extern int Factorial(int n);
        extern int BinomialCoeff(int n, int k);
        extern Real Bernstein(int k, int n, const Real & u);
+       extern std::pair<Real,Real> BezierTurningPoints(const Real & p0, const Real & p1, const Real & p2, const Real & p3);
+       
+       inline std::pair<Real,Real> SolveQuadratic(const Real & a, const Real & b, const Real & c)
+       {
+               Real x0((-b + Sqrt(b*b - Real(4)*a*c))/(Real(2)*a));
+               Real x1((-b - Sqrt(b*b - Real(4)*a*c))/(Real(2)*a));
+               return std::pair<Real,Real>(x0,x1);
+       }
+
+       inline std::vector<Real> SolveCubic(const Real & a, const Real & b, const Real & c, const Real & d)
+       {
+               // This is going to be a big one...
+               // See http://en.wikipedia.org/wiki/Cubic_function#General_formula_for_roots
+
+               std::vector<Real> roots;
+               // delta = 18abcd - 4 b^3 d + b^2 c^2 - 4ac^3 - 27 a^2 d^2
+               
+#if 0
+               Real discriminant = Real(18) * a * b * c * d - Real(4) * (b * b * b) * d 
+                               + (b * b) * (c * c) - Real(4) * a * (c * c * c)
+                               - Real(27) * (a * a) * (d * d);
+               
+               Debug("Trying to solve %fx^3 + %fx^2 + %fx + %f (Discriminant: %f)", a,b,c,d, discriminant);
+               // discriminant > 0 => 3 distinct, real roots.
+               // discriminant = 0 => a multiple root (1 or 2 real roots)
+               // discriminant < 0 => 1 real root, 2 complex conjugate roots
+
+               Real delta0 = (b*b) - Real(3) * a * c;
+               Real delta1 = Real(2) * (b * b * b) - Real(9) * a * b * c + Real(27) * (a * a) * d;
+
+
+               Real C = pow((delta1 + Sqrt((delta1 * delta1) - 4 * (delta0 * delta0 * delta0)) ) / Real(2), 1/3);
+
+               if (false && discriminant < 0)
+               {
+                       Real real_root = (Real(-1) / (Real(3) * a)) * (b + C + delta0 / C);
+
+                       roots.push_back(real_root);
+
+                       return roots;
+
+               }
+#endif
+               ////HACK: We know any roots we care about will be between 0 and 1, so...
+               Real maxi(100);
+               Real prevRes(d);
+               for(int i = 0; i <= 100; ++i)
+               {
+                       Real x(i);
+                       x /= maxi;
+                       Real y = a*(x*x*x) + b*(x*x) + c*x + d;
+                       if (((y < Real(0)) && (prevRes > Real(0))) || ((y > Real(0)) && (prevRes < Real(0))))
+                       {
+                               Debug("Found root of %fx^3 + %fx^2 + %fx + %f at %f (%f)", a, b, c, d, x, y);
+                               roots.push_back(x);
+                       }
+                       prevRes = y;
+               }
+               return roots;
+                       
+       }
 
        /** A _cubic_ bezier. **/
        struct Bezier
@@ -16,10 +80,16 @@ namespace IPDF
                Real x1; Real y1;
                Real x2; Real y2;
                Real x3; Real y3;
-               Bezier() = default; // Needed so we can fread/fwrite this struct... for now.
-               Bezier(Real _x0, Real _y0, Real _x1, Real _y1, Real _x2, Real _y2, Real _x3, Real _y3) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x3), y3(_y3) {}
                
-               Bezier(Real _x0, Real _y0, Real _x1, Real _y1, Real _x2, Real _y2) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x2), y3(_y2) {}
+               typedef enum {LINE, QUADRATIC, CUSP, LOOP, SERPENTINE} Type;
+               Type type;
+               
+               Bezier() = default; // Needed so we can fread/fwrite this struct... for now.
+               Bezier(Real _x0, Real _y0, Real _x1, Real _y1, Real _x2, Real _y2, Real _x3, Real _y3) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x3), y3(_y3) 
+               {
+                       //TODO: classify the curve
+                       type = SERPENTINE;
+               }
                
                std::string Str() const
                {
@@ -27,7 +97,12 @@ namespace IPDF
                        s << "Bezier{" << Float(x0) << "," << Float(y0) << " -> " << Float(x1) << "," << Float(y1) << " -> " << Float(x2) << "," << Float(y2) << " -> " << Float(x3) << "," << Float(y3) << "}";
                        return s.str();
                }
-               Bezier(const Bezier & cpy, const Rect & t = Rect(0,0,1,1)) : x0(cpy.x0), y0(cpy.y0), x1(cpy.x1), y1(cpy.y1), x2(cpy.x2),y2(cpy.y2), x3(cpy.x3), y3(cpy.y3)
+               
+               /**
+                * Construct absolute control points using relative control points to a bounding rectangle
+                * ie: If cpy is relative to bounds rectangle, this will be absolute
+                */
+               Bezier(const Bezier & cpy, const Rect & t = Rect(0,0,1,1)) : x0(cpy.x0), y0(cpy.y0), x1(cpy.x1), y1(cpy.y1), x2(cpy.x2),y2(cpy.y2), x3(cpy.x3), y3(cpy.y3), type(cpy.type)
                {
                        x0 *= t.w;
                        y0 *= t.h;
@@ -47,10 +122,204 @@ namespace IPDF
                        y3 += t.y;
                }
 
-               Rect ToRect() {return Rect(x0,y0,x3-x0,y3-y0);}
+               Rect SolveBounds() const;
+               
+               std::pair<Real,Real> GetTop() const;
+               std::pair<Real,Real> GetBottom() const;
+               std::pair<Real,Real> GetLeft() const;
+               std::pair<Real,Real> GetRight() const;
+               
+               Bezier ToAbsolute(const Rect & bounds) const
+               {
+                       return Bezier(*this, bounds);
+               }
+               
+               /** Convert absolute control points to control points relative to bounds
+                * (This basically does the opposite of the Copy constructor)
+                * ie: If this is absolute, the returned Bezier will be relative to the bounds rectangle
+                */
+               Bezier ToRelative(const Rect & bounds) const
+               {
+                       // x' <- (x - x0)/w etc
+                       // special cases when w or h = 0
+                       // (So can't just use the Copy constructor on the inverse of bounds)
+                       // Rect inverse = {-bounds.x/bounds.w, -bounds.y/bounds.h, Real(1)/bounds.w, Real(1)/bounds.h};
+                       Bezier result;
+                       if (bounds.w == 0)
+                       {
+                               result.x0 = 0;
+                               result.x1 = 0;
+                               result.x2 = 0;
+                               result.x3 = 0;
+                       }
+                       else
+                       {
+                               result.x0 = (x0 - bounds.x)/bounds.w;   
+                               result.x1 = (x1 - bounds.x)/bounds.w;
+                               result.x2 = (x2 - bounds.x)/bounds.w;
+                               result.x3 = (x3 - bounds.x)/bounds.w;
+                       }
+
+                       if (bounds.h == 0)
+                       {
+                               result.y0 = 0;
+                               result.y1 = 0;
+                               result.y2 = 0;
+                               result.y3 = 0;
+                       }
+                       else
+                       {
+                               result.y0 = (y0 - bounds.y)/bounds.h;   
+                               result.y1 = (y1 - bounds.y)/bounds.h;
+                               result.y2 = (y2 - bounds.y)/bounds.h;
+                               result.y3 = (y3 - bounds.y)/bounds.h;
+                       }
+                       return result;
+               }
+
+               // Performs one round of De Casteljau subdivision and returns the [t,1] part.
+               Bezier DeCasteljauSubdivideRight(const Real& t)
+               {
+                       Real one_minus_t = Real(1) - t;
+
+                       // X Coordinates
+                       Real x01 = x0*t + x1*one_minus_t;
+                       Real x12 = x1*t + x2*one_minus_t;
+                       Real x23 = x2*t + x3*one_minus_t;
+
+                       Real x012 = x01*t + x12*one_minus_t;
+                       Real x123 = x12*t + x23*one_minus_t;
+
+                       Real x0123 = x012*t + x123*one_minus_t;
+
+                       // Y Coordinates
+                       Real y01 = y0*t + y1*one_minus_t;
+                       Real y12 = y1*t + y2*one_minus_t;
+                       Real y23 = y2*t + y3*one_minus_t;
+
+                       Real y012 = y01*t + y12*one_minus_t;
+                       Real y123 = y12*t + y23*one_minus_t;
+
+                       Real y0123 = y012*t + y123*one_minus_t;
+
+                       return Bezier(x0, y0, x01, y01, x012, y012, x0123, y0123);
+               }
+               // Performs one round of De Casteljau subdivision and returns the [0,t] part.
+               Bezier DeCasteljauSubdivideLeft(const Real& t)
+               {
+                       Real one_minus_t = Real(1) - t;
+
+                       // X Coordinates
+                       Real x01 = x0*t + x1*one_minus_t;
+                       Real x12 = x1*t + x2*one_minus_t;
+                       Real x23 = x2*t + x3*one_minus_t;
+
+                       Real x012 = x01*t + x12*one_minus_t;
+                       Real x123 = x12*t + x23*one_minus_t;
+
+                       Real x0123 = x012*t + x123*one_minus_t;
+
+                       // Y Coordinates
+                       Real y01 = y0*t + y1*one_minus_t;
+                       Real y12 = y1*t + y2*one_minus_t;
+                       Real y23 = y2*t + y3*one_minus_t;
+
+                       Real y012 = y01*t + y12*one_minus_t;
+                       Real y123 = y12*t + y23*one_minus_t;
+
+                       Real y0123 = y012*t + y123*one_minus_t;
+
+                       return Bezier(x0123, y0123, x123, y123, x23, y23, x3, y3);
+               }
+
+               Bezier ReParametrise(const Real& t0, const Real& t1)
+               {
+                       Debug("Reparametrise: %f -> %f",t0,t1);
+                       Bezier new_bezier;
+                       // Subdivide to get from [0,t1]
+                       new_bezier = DeCasteljauSubdivideLeft(t1);
+                       // Convert t0 from [0,1] range to [0, t1]
+                       Real new_t0 = t0 / t1;
+                       Debug("New t0 = %f", new_t0);
+                       new_bezier = new_bezier.DeCasteljauSubdivideRight(new_t0);
+
+                       Debug("%s becomes %s", this->Str().c_str(), new_bezier.Str().c_str());
+                       return new_bezier;
+               }
+               
+               std::vector<Bezier> ClipToRectangle(const Rect& r)
+               {
+                       // Find points of intersection with the rectangle.
+                       Debug("Clipping Bezier to Rect %s", r.Str().c_str());
+
+                       // Convert bezier coefficients -> cubic coefficients
+                       Real xd = x0 - r.x;
+                       Real xc = Real(3)*(x1 - x0);
+                       Real xb = Real(3)*(x2 - x1) - xc;
+                       Real xa = x3 - x0 - xc - xb;
+
+                       // Find its roots.
+                       std::vector<Real> x_intersection = SolveCubic(xa, xb, xc, xd);
+
+                       // And for the other side.
+                       xd = x0 - r.x - r.w;
+
+                       std::vector<Real> x_intersection_pt2 = SolveCubic(xa, xb, xc, xd);
+                       x_intersection.insert(x_intersection.end(), x_intersection_pt2.begin(), x_intersection_pt2.end());
+
+                       // Similarly for y-coordinates.
+                       // Convert bezier coefficients -> cubic coefficients
+                       Real yd = y0 - r.y;
+                       Real yc = Real(3)*(y1 - y0);
+                       Real yb = Real(3)*(y2 - y1) - yc;
+                       Real ya = y3 - y0 - yc - yb;
+
+                       // Find its roots.
+                       std::vector<Real> y_intersection = SolveCubic(ya, yb, yc, yd);
+
+                       // And for the other side.
+                       yd = y0 - r.y - r.h;
+
+                       std::vector<Real> y_intersection_pt2 = SolveCubic(ya, yb, yc, yd);
+                       y_intersection.insert(y_intersection.end(), y_intersection_pt2.begin(), y_intersection_pt2.end());
+
+                       // Merge and sort.
+                       x_intersection.insert(x_intersection.end(), y_intersection.begin(), y_intersection.end());
+                       x_intersection.push_back(Real(0));
+                       x_intersection.push_back(Real(1));
+                       std::sort(x_intersection.begin(), x_intersection.end());
+
+                       Debug("Found %d intersections.\n", x_intersection.size());
+                       
+                       std::vector<Bezier> all_beziers;
+                       if (x_intersection.size() <= 2)
+                       {
+                               all_beziers.push_back(*this);
+                               return all_beziers;
+                       }
+                       Real t0 = *(x_intersection.begin());
+                       for (auto it = x_intersection.begin()+1; it != x_intersection.end(); ++it)
+                       {
+                               Real t1 = *it;
+                               if (t1 == t0) continue;
+                               Debug(" -- t0: %f to t1: %f", t0, t1);
+                               Real ptx, pty;
+                               Evaluate(ptx, pty, ((t1 + t0) / Real(2)));
+                               if (true || r.PointIn(ptx, pty))
+                               {
+                                       all_beziers.push_back(this->ReParametrise(t0, t1));
+                               }
+                               else
+                               {
+                                       Debug("Segment removed (point at %f, %f)", ptx, pty);
+                               }
+                               t0 = t1;
+                       }
+                       return all_beziers;
+               }
 
                /** Evaluate the Bezier at parametric parameter u, puts resultant point in (x,y) **/
-               void Evaluate(Real & x, Real & y, const Real & u)
+               void Evaluate(Real & x, Real & y, const Real & u) const
                {
                        Real coeff[4];
                        for (unsigned i = 0; i < 4; ++i)
@@ -58,6 +327,15 @@ namespace IPDF
                        x = x0*coeff[0] + x1*coeff[1] + x2*coeff[2] + x3*coeff[3];
                        y = y0*coeff[0] + y1*coeff[1] + y2*coeff[2] + y3*coeff[3];
                }
+               
+               bool operator==(const Bezier & equ) const
+               {
+                       return (x0 == equ.x0 && y0 == equ.y0
+                               &&  x1 == equ.x1 && y1 == equ.y1
+                               &&      x2 == equ.x2 && y2 == equ.y2
+                               &&      x3 == equ.x3 && y3 == equ.y3);
+               }
+               bool operator!=(const Bezier & equ) const {return !this->operator==(equ);}
 
        };
 

UCC git Repository :: git.ucc.asn.au