X-Git-Url: https://git.ucc.asn.au/?p=ipdf%2Fcode.git;a=blobdiff_plain;f=src%2Fbezier.h;h=9ea730f78c0907a73ecfd5e4b727da5429636417;hp=4e1c404b523a60f5df727844ecd03988075d9a2a;hb=5456793e2aad4235c3db2ca75532c868aaa7c518;hpb=f59f24dff392428d7219ba2d6be5e1e81c344ee0 diff --git a/src/bezier.h b/src/bezier.h index 4e1c404..9ea730f 100644 --- a/src/bezier.h +++ b/src/bezier.h @@ -8,39 +8,153 @@ namespace IPDF extern int Factorial(int n); extern int BinomialCoeff(int n, int k); extern Real Bernstein(int k, int n, const Real & u); + + inline std::pair SolveQuadratic(const Real & a, const Real & b, const Real & c) + { + Real x0((-b + Sqrt(b*b - Real(4)*a*c))/(Real(2)*a)); + Real x1((-b - Sqrt(b*b - Real(4)*a*c))/(Real(2)*a)); + return std::pair(x0,x1); + } + + inline std::vector SolveCubic(const Real & a, const Real & b, const Real & c, const Real & d) + { + // This is going to be a big one... + // See http://en.wikipedia.org/wiki/Cubic_function#General_formula_for_roots + + // delta = 18abcd - 4 b^3 d + b^2 c^2 - 4ac^3 - 27 a^2 d^2 + /* + Real discriminant = Real(18) * a * b * c * d - Real(4) * (b * b * b) * d + + (b * b) * (c * c) - Real(4) * a * (c * c * c) + - Real(27) * (a * a) * (d * d); + */ + // discriminant > 0 => 3 distinct, real roots. + // discriminant = 0 => a multiple root (1 or 2 real roots) + // discriminant < 0 => 1 real root, 2 complex conjugate roots + + ////HACK: We know any roots we care about will be between 0 and 1, so... + Real maxi(100); + Real prevRes(d); + std::vector roots; + for(int i = 0; i <= 100; ++i) + { + Real x(i); + x /= maxi; + Real y = a*(x*x*x) + b*(x*x) + c*x + d; + if (y == Real(0) || (y < Real(0) && prevRes > Real(0)) || (y > Real(0) && prevRes < Real(0))) + { + roots.push_back(x); + } + } + return roots; + + } + - /** A _cubic_ bezier. I really want to make them an arbitrary size but that might upset David. **/ + /** A _cubic_ bezier. **/ struct Bezier { Real x0; Real y0; Real x1; Real y1; Real x2; Real y2; + Real x3; Real y3; Bezier() = default; // Needed so we can fread/fwrite this struct... for now. - Bezier(Real _x0, Real _y0, Real _x1, Real _y1, Real _x2, Real _y2) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2) {} + Bezier(Real _x0, Real _y0, Real _x1, Real _y1, Real _x2, Real _y2, Real _x3, Real _y3) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x3), y3(_y3) + { + + } + + Bezier(Real _x0, Real _y0, Real _x1, Real _y1, Real _x2, Real _y2) : x0(_x0), y0(_y0), x1(_x1), y1(_y1), x2(_x2), y2(_y2), x3(_x2), y3(_y2) {} + std::string Str() const { std::stringstream s; - s << "Bezier{" << Float(x0) << "," << Float(y0) << " -> " << Float(x1) << "," << Float(y1) << " -> " << Float(x2) << "," << Float(y2) << "}"; + s << "Bezier{" << Float(x0) << "," << Float(y0) << " -> " << Float(x1) << "," << Float(y1) << " -> " << Float(x2) << "," << Float(y2) << " -> " << Float(x3) << "," << Float(y3) << "}"; return s.str(); } - Bezier(const Bezier & cpy, const Rect & t = Rect(0,0,1,1)) : x0(cpy.x0+t.x), y0(cpy.y0+t.y), x1(cpy.x1+t.x), y1(cpy.y1+t.y), x2(cpy.x2+t.x),y2(cpy.y2+t.y) + + /** + * Construct absolute control points using relative control points to a bounding rectangle + * ie: If cpy is relative to bounds rectangle, this will be absolute + */ + Bezier(const Bezier & cpy, const Rect & t = Rect(0,0,1,1)) : x0(cpy.x0), y0(cpy.y0), x1(cpy.x1), y1(cpy.y1), x2(cpy.x2),y2(cpy.y2), x3(cpy.x3), y3(cpy.y3) { - x1 = x0 + (x1-x0)*t.w; - y1 = y0 + (y1-y0)*t.h; - x2 = x0 + (x2-x0)*t.w; - y2 = y0 + (y2-y0)*t.h; + x0 *= t.w; + y0 *= t.h; + x1 *= t.w; + y1 *= t.h; + x2 *= t.w; + y2 *= t.h; + x3 *= t.w; + y3 *= t.h; + x0 += t.x; + y0 += t.y; + x1 += t.x; + y1 += t.y; + x2 += t.x; + y2 += t.y; + x3 += t.x; + y3 += t.y; } - Rect ToRect() {return Rect(x0,y0,x2-x0,y2-y0);} + Rect SolveBounds() const; + + Bezier ToAbsolute(const Rect & bounds) const + { + return Bezier(*this, bounds); + } + + /** Convert absolute control points to control points relative to bounds + * (This basically does the opposite of the Copy constructor) + * ie: If this is absolute, the returned Bezier will be relative to the bounds rectangle + */ + Bezier ToRelative(const Rect & bounds) const + { + // x' <- (x - x0)/w etc + // special cases when w or h = 0 + // (So can't just use the Copy constructor on the inverse of bounds) + // Rect inverse = {-bounds.x/bounds.w, -bounds.y/bounds.h, Real(1)/bounds.w, Real(1)/bounds.h}; + Bezier result; + if (bounds.w == 0) + { + result.x0 = 0; + result.x1 = 0; + result.x2 = 0; + result.x3 = 0; + } + else + { + result.x0 = (x0 - bounds.x)/bounds.w; + result.x1 = (x1 - bounds.x)/bounds.w; + result.x2 = (x2 - bounds.x)/bounds.w; + result.x3 = (x3 - bounds.x)/bounds.w; + } + + if (bounds.h == 0) + { + result.y0 = 0; + result.y1 = 0; + result.y2 = 0; + result.y3 = 0; + } + else + { + result.y0 = (y0 - bounds.y)/bounds.h; + result.y1 = (y1 - bounds.y)/bounds.h; + result.y2 = (y2 - bounds.y)/bounds.h; + result.y3 = (y3 - bounds.y)/bounds.h; + } + return result; + } + /** Evaluate the Bezier at parametric parameter u, puts resultant point in (x,y) **/ - void Evaluate(Real & x, Real & y, const Real & u) + void Evaluate(Real & x, Real & y, const Real & u) const { - Real coeff[3]; - for (unsigned i = 0; i < 3; ++i) - coeff[i] = Bernstein(i,2,u); - x = x0*coeff[0] + x1*coeff[1] + x2*coeff[2]; - y = y0*coeff[0] + y1*coeff[1] + y2*coeff[2]; + Real coeff[4]; + for (unsigned i = 0; i < 4; ++i) + coeff[i] = Bernstein(i,3,u); + x = x0*coeff[0] + x1*coeff[1] + x2*coeff[2] + x3*coeff[3]; + y = y0*coeff[0] + y1*coeff[1] + y2*coeff[2] + y3*coeff[3]; } };