THE FINAL COUNTDOWN
[ipdf/sam.git] / chapters / Results.tex
index 47b46fa..f13a33b 100644 (file)
@@ -17,7 +17,7 @@ In this case, the precision loss occurs when the test SVG is added to the docume
        X = V_{w} \times \text{SVG}_x + V_{x}
 \end{align*}
 
        X = V_{w} \times \text{SVG}_x + V_{x}
 \end{align*}
 
-Where $V$ represents the view, $X$ is the coordinate in the document, and $\text{SVG}_x$ is the coordinate in the test SVG at original scale. In Figure \ref{qualitative-rendering-fox}, the multiplication $V_{w} \times \text{SVG}_x$ has a smaller exponent than $V_{x}$. The error of the addition operation is comparable to one ulp, ie: $\frac{V_{x}}{2}$. In this case, the rounding error is dominating the calculation. The division by $V_{w} = 10^{6}$ in \eqref{view-transformation} is merely increasing this rounding error.
+Where $V$ represents the view, $X$ is the coordinate in the document, and $\text{SVG}_x$ is the coordinate in the test SVG at original scale. In Figure \ref{qualitative-rendering-fox}, the multiplication $V_{w} \times \text{SVG}_x$ has a smaller exponent than $V_{x}$. The error of the addition operation is comparable to one ulp, ie: $\frac{V_{x}}{2}$. In this case, the rounding error is dominating the calculation. The division by $V_{w} = 10^{6}$ in \eqref{view-transformation} is merely increasing this rounding error as the coordinates are converted to display space.
 
 \begin{figure}[H]
        \centering
 
 \begin{figure}[H]
        \centering
@@ -28,7 +28,7 @@ Where $V$ represents the view, $X$ is the coordinate in the document, and $\text
 
 \subsection{Applying cumulative transformations to all B\'{e}ziers}\label{cumulative_transform}
 
 
 \subsection{Applying cumulative transformations to all B\'{e}ziers}\label{cumulative_transform}
 
-Rather than applying \eqref{view-transformation} to object coordinates specified relative to the document, we can store the bounds of objects relative to the view and modify these bounds according to the transformations discussed in Section \ref{Coordinate Systems and Transformations} as the view is changed. This is convenient for an interactive document, as detail is typically added by inserting objects into the document within the view rectangle. As a result this approach makes the rendering of detail added to the document independent of the view coordinates --- until the view is moved.
+Rather than applying \eqref{view-transformation} to object coordinates specified relative to the document, we can store the bounds of objects in display space (relative to the view) and modify these bounds according to the transformations discussed in Section \ref{Coordinate Systems and Transformations} as the view is changed. This is convenient for an interactive document, as detail is typically added by inserting objects into the document within the view rectangle. As a result this approach makes the rendering of detail added to the document independent of the view coordinates --- until the view is moved.
 
 Repeated transformations on the view will cause an accumulated error on the coordinates of object bounds. This is most noticable when zooming \emph{out} and then back into the document; the object coordinates will gradually underflow and eventually round to zero. An example of this effect is shown in Figure \ref{qualitative-rendering-fox-cumulative} b)
 %label start
 
 Repeated transformations on the view will cause an accumulated error on the coordinates of object bounds. This is most noticable when zooming \emph{out} and then back into the document; the object coordinates will gradually underflow and eventually round to zero. An example of this effect is shown in Figure \ref{qualitative-rendering-fox-cumulative} b)
 %label start
@@ -48,7 +48,7 @@ Repeated transformations on the view will cause an accumulated error on the coor
 
 \subsection{Applying cumulative transformations to Paths}\label{path_transform}
 
 
 \subsection{Applying cumulative transformations to Paths}\label{path_transform}
 
-In Figure \ref{qualitative-rendering-fox}, transformations are applied to the bounds of each B\'{e}zier. Figure \ref{qualitative-rendering-fox-cumulative-relative} a) shows the effect of introducing an intermediate coordinate system expressing B\'{e}zier coordinates relative to the path which contains them. In this case, the rendering of a single path is accurate, but the overall positions of the paths drift as the view is moved. 
+In Figure \ref{qualitative-rendering-fox}, transformations are applied to the bounds of each B\'{e}zier. Figure \ref{qualitative-rendering-fox-cumulative-relative} a) shows the effect of introducing an intermediate coordinate system expressing B\'{e}zier bounding box coordinates relative to the path which contains them. In this case, the rendering of a single path is accurate, but the overall positions of the paths drift as the view is moved. 
 
 We can correct this drift whilst maintaining performance by using an arbitrary or high precision number representation to express the coordinates of the paths - but maintaining the floating point coordinates for B\'{e}zier curves relative to their path. This is shown in Figure \ref{qualitative-rendering-fox-cumulative-relative} b).
 
 
 We can correct this drift whilst maintaining performance by using an arbitrary or high precision number representation to express the coordinates of the paths - but maintaining the floating point coordinates for B\'{e}zier curves relative to their path. This is shown in Figure \ref{qualitative-rendering-fox-cumulative-relative} b).
 
@@ -88,7 +88,7 @@ We should note that with the view top left corner close to $(0,0)$ as in Figure
 By counting the number of distinctly representable lines within a particular view, we can show the degradation of precision quantitatively. The test grid is added to each view rectangle with increasingly smaller width and height.
 
 
 By counting the number of distinctly representable lines within a particular view, we can show the degradation of precision quantitatively. The test grid is added to each view rectangle with increasingly smaller width and height.
 
 
-Figure \ref{loss_of_precision_grid_0.5.pdf} shows how precision degrades with $(V_x, V_y) = (0.5,0.5)$ for different precision settings using MPFR floating point values to represent the view coordinates. A constant line at $1401$ grid locations indicates no loss of precision. From this figure it should be clear how merely setting the precision of the floating point representation to a higher (but fixed) value will not allow insertion of detail at an arbitrary point; using 1024 bits of precision will still leave no lines representable above magnifications of $10^{300}$.
+Figure \ref{loss_of_precision_grid_0.5.pdf} shows how precision degrades with $(V_x, V_y) = (0.5,0.5)$ for different precision settings using MPFR floating point values to represent the view coordinates. A constant line at $1401$ grid locations indicates no loss of precision. From this figure it should be clear how merely setting the precision of the floating point representation to a higher (but fixed) value will not allow insertion of detail at an arbitrary point; using 1024 bits of precision will still leave no lines representable above magnifications of $M \approx10^{310}$.
 
 
 \begin{figure}[H]
 
 
 \begin{figure}[H]
@@ -102,10 +102,11 @@ Figure \ref{loss_of_precision_grid_0.5.pdf} shows how precision degrades with $(
 
 Using the cumulative transformation approach discussed in Section \ref{cumulative_transform} means that detail inserted into a fixed view will always render correctly. A fairer test of this approach is to test the rendering accuracy after applying repeated scaling to the document.
 
 
 Using the cumulative transformation approach discussed in Section \ref{cumulative_transform} means that detail inserted into a fixed view will always render correctly. A fairer test of this approach is to test the rendering accuracy after applying repeated scaling to the document.
 
-Figure \ref{cumulative_error_grid.pdf} shows the total error in the coordinates of each line in the grid after the view is scaled (zooming \emph{out}) by repeated transformations. A constant line at $0$ would indicate no accumulated error.
+Figure \ref{cumulative_error_grid.pdf} shows the total error in the coordinates of each line in the grid after the view is scaled by repeated transformations (zooming \emph{out} and then back in by the same amount). A constant line at $0$ would indicate no accumulated error.
 
 In this case, using an arbitrary precision representation such as GMP Rationals (\texttt{path-rat}) does not totally eliminate error. This is simply because the final coordinate transformation requires the conversion of rationals to IEEE-754 floats before rendering. Since the total final error for $1042$ lines is less than $10^{-2}$, and the width of the display is $1$, this would represent a negligable difference in the rendering of the grid.
 
 
 In this case, using an arbitrary precision representation such as GMP Rationals (\texttt{path-rat}) does not totally eliminate error. This is simply because the final coordinate transformation requires the conversion of rationals to IEEE-754 floats before rendering. Since the total final error for $1042$ lines is less than $10^{-2}$, and the width of the display is $1$, this would represent a negligable difference in the rendering of the grid.
 
+The legend of Figure \ref{cumulative_error_grid.pdf} should be interpreted as follows: A prefix of \texttt{path} indicates use of intermediate Path coordinate systems (Section \ref{path_transform}), \texttt{cumul} indicates cumulative transforms applied to B\'{e}ziers (Section \ref{cumulative_transform}) and no prefix indicates the direct approach (Section \ref{direct_transform}). The type of number representation used is also indicated.  In the case of the Path transformations, only the bounds of the Path are expressed with the indicated representation; all other operations are done using IEEE-754 single precision floats. These results agree with those discussed qualitatively above.
 
 
 \begin{figure}[H]
 
 
 \begin{figure}[H]
@@ -120,7 +121,7 @@ In this case, using an arbitrary precision representation such as GMP Rationals
 \subsection{Performance of Static Detail at Different View Locations}
 As discussed above, we succeeded in preserving rendering accuracy as defined above for extremely large ranges of coordinates in the document. 
 
 \subsection{Performance of Static Detail at Different View Locations}
 As discussed above, we succeeded in preserving rendering accuracy as defined above for extremely large ranges of coordinates in the document. 
 
-However this comes at a performance cost, as the size of the Rational number representation must grow accordingly. Figures \ref{memory.pdf} a) and b) were obtained by repeatedly resetting the document, scaling, and adding a fixed number of B\'{e}zier curves. It appears that the GMP representation increases memory usage linearly, with the speed decreasing faster than linear. The \texttt{mpfr-1024} number representation performs much better in terms of a static memory usage and speed; however as discussed in Section \ref{Precision for Fixed View}, due to the fixed precision it cannot represent detail seperated by a truly arbitrary distance. 
+However this comes at a performance cost, as the size of the Rational number representation must grow accordingly. Figures \ref{memory.pdf} a) and b) were obtained by repeatedly resetting the document, scaling, and adding a fixed number of B\'{e}zier curves. It appears that the GMP representation increases memory usage linearly, with the speed decreasing faster than linear. The \texttt{mpfr-1024} number representation performs much better in terms of a fixed memory usage and a slower increase in time taken; however as discussed in Section \ref{Precision for Fixed View}, due to the fixed precision it cannot represent detail seperated by a truly arbitrary distance. 
 
 
 \begin{figure}[H]
 
 
 \begin{figure}[H]
@@ -134,7 +135,7 @@ However this comes at a performance cost, as the size of the Rational number rep
 
 For a static document containing only a few imported test SVGs, the use of GMP rationals for path coordinates was not a noticable performance detriment compared to the implementations using floating point coordinates. Figure \ref{adding_things} measures the time taken for a script to scale the document to a point at which it will insert an additional copy of a test SVG (Figure \ref{turtle.pdf}).
 
 
 For a static document containing only a few imported test SVGs, the use of GMP rationals for path coordinates was not a noticable performance detriment compared to the implementations using floating point coordinates. Figure \ref{adding_things} measures the time taken for a script to scale the document to a point at which it will insert an additional copy of a test SVG (Figure \ref{turtle.pdf}).
 
-We have included the Na\"{i}ve approach discussed in Section \ref{Naive Approach} with GMP rationals (\texttt{Gmprat}) and MPFR using 1024 bits of precision (\texttt{mpfr-1024}) to illustrate its impracticality. The \texttt{Gmprat} is removed from Figure \ref{adding_things} b).
+We have included the Na\"{i}ve approach discussed in Section \ref{Naive Approach} with GMP rationals (\texttt{Gmprat}) and MPFR using 1024 bits of precision (\texttt{mpfr-1024}) to illustrate its impracticality. The \texttt{Gmprat} data is removed from Figure \ref{adding_things} b).
 
 \begin{figure}[H]
        \centering
 
 \begin{figure}[H]
        \centering

UCC git Repository :: git.ucc.asn.au