Server/Client Communication
The key requirement for this project was to be able to remotely control the system, which inherently introduced a separation between the controlling software and the client interface. Therefore, to maintain reliable control over the system, a suitable communication method had to be devised between the two. 

[image: image1.emf]Client (PC)Remote System

System controls and 

information


Figure 1. Block diagram of client-server communications
[image: image2.png]
Figure 2. High level flow chart of a client request to server response (implemented)
To satisfy this requirement, the server software has been designed to interact with the client over the internet, completely through a standard web browser (Figure 2). No extra software should be required from the client. Reasons for this choice are outlined below.
Web communication technologies
Choosing a suitable communication method between the client and server was not trivial. It had to allow for anyone to remotely control the experiment, while imposing as little requirements from the user as possible. In this respect, the requirements for the communication method can be summarised as such:

1. A widely available, highly accessible service should be used, to reach as many users as possible

2. Communication between client and server should be fairly reliable, to maintain responsiveness of the remote interface

3. Communication should be secured against access from unauthorised persons, to maintain the integrity of the system

To satisfy the first criteria, remote control via some form of internet access was the natural choice. Internet access is widely established and highly accessible, both globally and locally, where it can be (and is) used for a multitude of remote applications. One only needs to look as far as the UWA Telelabs project for such an example, having been successfully run since 1994. [REF]
Internet communications itself is complex, and there is more than one way to approach this issue of remote control. A number of internet protocols exist, where the protocol chosen is based on the needs of the application. Arguably most prevalent is the Hypertext Transfer Protocol (HTTP) used in conjunction with the Transmission Control Protocol (TCP) - to distribute web pages and related content across the internet. Other protocols exist, but are less widely used. Even custom protocols can be used, but that comes at the cost of having to build, test and maintain an extra component of software that likely has no benefit over pre-existing systems.
As a result, being able to control the system via a web page and standard web browser seemed the most logical choice, which was why it was used in the final design. Firstly, by designing the system to be controlled from a web page, the system becomes highly accessible, given that where internet access is present, the presence of a web browser is almost guaranteed. Nothing else from the client is required. 
Secondly, setup and maintenance for the server is less involved, given that there is a wide range of pre-existing software made just for this purpose. Many features of the web browser can also be leveraged to the advantage of the system – for example, communications between the client and server can be quite easily secured using Transport Layer Security (TLS, previously known as Secure Sockets Layer or SSL).
Thirdly, reliability of the communications is better guaranteed by using such existing technology, which has been well tested and proven to work of its own accord. While internet access itself may not always be fully reliable, the use of such protocols and correct software design allows for a fair margin of robustness towards this issue. For example, TCP communications have error checking methods built-in to the protocol, to ensure the correct delivery of content. Similarly, HTTP has been designed with intermittent communications to the client in mind. [REF]
Server interface
Internet communication technologies are well established, so there were a number of methods available to implement the server interface. After exploring the available options, the final system was implemented using FastCGI.
The server software had to be designed on the assumption that remote control would be intermittent. Thus, the server interface had to allow for sensor logging and actuator control, independent of the requests from clients. This meant that some portion of software had to continuously run to maintain this control, while another portion had to respond to web requests, and react appropriately.
Many web servers exist, which common examples being the Apache HTTP Server, Lighttpd, Microsoft Internet Information Services (IIS), and more recently, nginx. All allow static files (e.g. HTML files) to be served easily, but serving dynamic content, such as access to the controls and sensors is much less easy.

[image: image3.emf]Client Web 

Browser

Web request

Web server

CGI 

Application

Request information

CGI responseWeb response

Invoke CGI

Application ceases

invocation

System control

System response


Figure 3. Block diagram of a request to a CGI application 

Initially, a system known as ‘Common Gateway Interface’, or CGI was explored. CGI allows the web server to generate dynamic content by calling an external program. The external program is suitably designed to perform tasks based on the request. Upon completion of such tasks, it generates a response for the web server to forward to the client, and ceases execution. 
CGI based software is only executed when a request is received, which makes continuous control and logging over the sensors and actuators unfeasible. This was why this approach was discarded and other options explored instead.

[image: image4.emf]Client Web 

Browser

Web request

Custom web 

server

Web response

System control

System response


Figure 4. Block diagram of a custom web server

Up until a variation of CGI was found (FastCGI), the plan was to build a custom web server that used threading. In this manner, both the sensor/actuator control and the web interface would reside in the same process. By having both in the same process, continuous control is possible whilst waiting for web requests to be received.
This would have worked, and in fact operates similarly to the final solution, but it was not without drawbacks. By building a custom web server, more effort would have to be spent just to maintain low-level web functionalities, such as responding appropriately to a client request. Perhaps more importantly, features taken for granted from a standard web server would become increasingly difficult to support with a custom web server. For example, services like TLS encryption and PHP support would be near-impossible, or at least very difficult to add. In other words, it was deemed that this solution would be inflexible and not particularly maintainable into the future.

[image: image5.emf]Client Web 

Browser

Web request

Web server

FastCGI 

Application

Request information

ResponseWeb response

System control

System response

Start application


Figure 5. Block diagram of a FastCGI application
The final technology considered was that of FastCGI. As mentioned previously, it is a variant of CGI, in that it allows some software to respond to web requests. The key difference is that with FastCGI, the program is continuously run independent of any web requests. This overcomes the issues faced with either using CGI or a custom web server; continuous control can be achieved while also not having to worry about the low-level implementation details a web server. 
Web server
For this project, the nginx web server was used. Either Apache, Lighttpd or any other well-established web server would have been fine for this project, as long as it supported the FastCGI protocol. nginx was chosen because it had built-in support for FastCGI, and also because it was lightweight and performance-oriented [REF]. 
Referring to Figure 1, nginx is responsible for negotiating and maintaining the encryption layer with the client. It is also responsible for serving static content to the client, such as the GUI HTML/CSS/JavaScript files and the system logs. As previously mentioned, nginx maintains the FastCGI layer to call external software, with the server program being one of them (FastCGI is also used to handle PHP requests; for more information, refer to PHP-FPM[REF]).
nginx must be configured correctly to work with the server program. Configuration files for nginx are held in /etc/nginx/, with the primary configuration file being /etc/nginx/sites-enabled/mctxconfig. From the git repository, all server configs are located in the server-configs directory. An install script has been created (install.sh) that automatically installs the required configuration files. 
For this project, nginx has been configured to:

1. Forward all HTTP requests to HTTPS requests (force TLS encryption)

2. Display the full sever program logs if given ‘/api/log’ as the address
3. Display the warning and error logs if given ‘/api/errorlog’ as the address

4. Forward all other requests that start with ‘/api’ to the server program

5. Process PHP files (via PHP-FPM)

6. Try to display all other files like normal
Server API – Request parsing
The server interface is accessed through an Application Programming Interface (API). The API forms a contract between the client and server; by requesting a URL of a predetermined format, the response will also be of a predetermined format that the client can use.
In the case of the server API designed, requests are formatted as such:
https://host/api/module?key1=value1&key2=value2...&keyn=valuen
As exemplified, the API consists of modules that can accept a certain number of arguments (specified as key-value pairs), depending on what that module does. For example, to query the API about basic information (running state, whether the user is logged in etc), the following query would be used:
https://host/api/identify
The server will then respond with this information. In this case, the identify module does not require any arguments. However, it can accept two optional arguments, ‘sensors’ and ‘actuators’, which makes it give extra information on the available sensors and actuators present. This makes the following queries possible:

https://host/api/identify?sensors=1
https://host/api/identify?actuators=1
https://host/api/identify?sensors=1&actuators=1
This gives information on the sensors, actuators, or both, respectively. In a similar manner, there are modules to query and control the sensors and actuators, as well as modules that handle user logins and experiment control. 
This form of an API was chosen because it is simple to use, and extremely easy to debug, given that these requests can just be entered into any web browser to see the result. The request remains fairly human readable, which was another benefit when debugging the server code. 
Keeping the API format simple also made it easier to write the code that parsed these requests. All the API parsing and response logic lies in fastcgi.c. On the server side, modules are handled by different ‘module handlers’. The framework in fastcgi.c parses a client request and delegates it to the relevant module handler. Once the module handler has sufficiently processed the request, it creates a response, using functions provided by fastcgi.c to do so. 

[image: image6.emf]FastCGI Loop

Client request

Is valid module?

Is login attempt?

Reject request

Is identification?

Decode request 

parameters

Is logged in?

Identify handler

Module response

Login 

handler

Relevant 

module 

handler

Yes

No

Yes

Yes

Yes

No

No

No

fastcgi.c

fastcgi.h

“fastcgi.c” and 

“fastcgi.h” contain 

the implementations 

for the FastCGI loop 

and associated 

request parsing/

response functions


Figure 6. Flow chart of a client request being processed
This request handling code went through a number of iterations before the final solution was reached. Changes were made primarily as the number of modules grew, and as the code was used more. 
One of the greatest changes to request handling was with regards to how parameters were parsed. A module handler has the following type definition:
typedef void (*ModuleHandler) (FCGIContext *context, char *params);
Given a request of:

http://host/api/actuators?name=pregulator&start_time=0&end_time=2
The params field of the module handler would be:

name=pregulator&start_time=0&end_time=2
A common task for request parsing was to break this string up into the separate key/value pairs, which resulted in the function FCGI_KeyPair being made. This would suitably break up the string into the key value pairs, and initially, this was sufficient for most module handlers. 
However, as more module handlers were created, and as the number of parameters required increased, using FCGI_KeyPair became increasingly cumbersome to use. To solve this issue, a new function FCGI_ParseRequest was created. Internally, it still uses FCGI_KeyPair, and abstracts the process of extracting required parameters. Using FCGI_ParseRequest, the key/value pairs expected are specified. The expected type of the value and whether or not a pair is required is also specified. On a successful call, the relevant fields are populated automatically. Conversely, if the parsing fails, a response rejecting the request is automatically generated. The IndentifyHandler module handler in fastcgi.c is a very good example of how this works. 
[blah blah blah too long… choppity chop]
Server API – Response format
The server API has been configured to give responses in the JSON format for most actions. The JSON format is a particular format that can be parsed easily in JavaScript, although it is easily parsed in other languages too. In this respect, the format of the API response was heavily influenced by what the GUI would be programmed in. Given that the idea was to design the GUI using standard web pages, it would be inevitable that JavaScript (a programming language that is interpreted by web browsers) would be used. 
A standard JSON response looks like such:


[image: image7]
Figure 7. A standard response to querying the ‘identify’ module
In JavaScript, a JSON response is the direct representation of a JavaScript object, which is what makes this format so useful. In other words, from JavaScript, if the JSON response was parsed and stored in the object ‘data’, the elements would be accessible by ‘data.module’ or ‘data.status’, for example. 
To actually generate the JSON response from the server program, fastcgi.c contains a framework of helper functions. Most of the functions help to ensure that the generated output is in a valid JSON format, although only a subset of the JSON syntax is supported. Supporting the full syntax would overcomplicate writing the framework while being of little benefit. Modules can still respond with whatever format they like, using FCGI_JSONValue (aka. FCGI_PrintRaw), but lose the guarantee that the output will be in a valid JSON format. 
Additionally, not all responses are in the JSON format. In specific cases, some module handlers will respond in a more suitable format. For example, the image handler will return an image (using FCGI_WriteBinary); it would make no sense to return anything else. On the other hand, the sensor and actuator modules will return data as tab-separated values, if the user specifically asks for it.
Server API – Authentication and encryption
It was indicated that the system should be access protected, where only authenticated persons should be able to control the system. This requirement meant that credentials in the form of usernames and passwords would have to be passed through the API. As is the case when dealing with any form of credentials, care should be taken to ensure the integrity of handling such credentials. 
Given that the API is web based, credentials would be passed over the internet. If sent unencrypted, the process is highly vulnerable to ‘man in the middle’ attacks, where unauthorised persons may be able to view such credentials as it is being transmitted between the client and server.
To overcome this issue, industry standard TLS encryption was used, which is more commonly referred to as SSL or HTTPS encryption. As mentioned before, nginx forces all communication to use TLS encryption. To have TLS encryption, the server must possess a valid TLS certificate. A custom self-signed certificate has been used because it is free. It offers the same level of protection as any other certificate, although the client will receive a security warning because it is self-signed. This should not be a problem if users are told what to expect, although if this project is to be run into the future, it is highly recommended that a certificate signed by a recognised certificate authority is used. Indeed, it is highly likely that the University has access to such certificates for free, or at least at some discounted rate. 
Server API – Cookies
By design, the system can be controlled by only one person at any time. The primary factor that determines who is currently logged in is the use of a ‘control key’. If the user possesses the current control key, they are deemed to be logged in and in control of the system. As it stands, the control key is given to a user when they provide valid login credentials, and no one else is logged in (or they are an administrator). 
The control key used is the SHA-1 hash of some randomly generated data, in hexadecimal format. The user must present this key every time a request is made to the API for all actions other than identification and login attempts. 
Initially, the user had to pass this information as another key-value pair of the module parameters. However, this was difficult to handle, both for the client and the server. The final solution makes use of browser cookies to achieve the same effect. When a user successfully logs-in, they receive a cookie from the server that has the control key. 
The web browser automatically stores the cookie, and on subsequent requests, the cookie is automatically sent back. This greatly simplified coding of the GUI and how the control key was handled on the server side.
GUI – JavaScript and AJAX requests
JavaScript forms the backbone of the web interface that the clients use. JavaScript drives the interactivity behind the GUI and enables the web interface to be updated in real-time. Without JavaScript, interactivity would be severely limited, which would be a large hindrance to the ‘learning aspect’ of the system. 
To maintain interactivity and to keep information up-to-date with the server, the API needs to be polled at a regular interval. Polling is necessary due to the design of HTTP; a server cannot ‘push’ data to a client, the client must request it first. To be able to achieve this, code was written in JavaScript to periodically perform what is termed AJAX requests. 
AJAX requests are essentially web requests made in JavaScript that occur ‘behind the scenes’ of a web page. By making such requests in JavaScript, the web page can be updated without having the user refresh the web page, thus allowing for interactivity and a pleasant user experience. …
More diagrams, less text…

/AJAX

/server API

/FastCGI

/http/s, cookies

{

	"module" : "identify",

	"status" : 1,

	"start_time" : 614263.377670876,

	"current_time" : 620591.515903585,

	"running_time" : 6328.138232709,

	"control_state" : "Running",

	"description" : "MCTX3420 Server API (2013)",

	"build_date" : "Oct 24 2013 19:41:04",

	"clock_getres" : 0.000000001,

	"api_version" : 0,

	"logged_in" : true,

	"user_name" : "_anonymous_noauth"

}







_1444126820.vsd
Application ceases
 invocation


Client Web Browser


Web request


Web server


CGI Application


Request information


CGI response


Web response


Invoke CGI


System control


System response



_1444128462.vsd
Client Web Browser


Web request


Web server


FastCGI Application


Request information


Response


Web response


System control


System response


Start application



_1444155664.vsd
�

�

�

�

�

FastCGI Loop


Client request


Is valid module?


Decode request parameters


Is login attempt?


Reject request


Is identification?


Relevant module handler


Identify handler


Is logged in?


Module response


Yes


Login handler


No


Yes


Yes


Yes


No


No


No


fastcgi.c
fastcgi.h


“fastcgi.c” and “fastcgi.h” contain the implementations for the FastCGI loop and associated request parsing/response functions



_1444126840.vsd
Client Web Browser


Web request


Custom web server


Web response


System control


System response



_1444125603.vsd
Client (PC)


Remote System


System controls and information



