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1 Introduction

Since mankind first climbed down from the trees, it is our ability to communicate
that has made us unique. Once ideas could be passed from person to person, it
made sense to have a permanent record of them; one which could be passed on
from person to person without them ever meeting.

And thus the document was born.
Traditionally, documents have been static: just marks on paper, but with the

advent of computers many more possibilities open up. Most existing document
formats — such as the venerable PostScript and PDF — are, however, designed
to imitate existing paper documents, largely to allow for easy printing. In order
to truly take advantage of the possibilities operating in the digital domain opens
up to us, we must look to new formats.

Formats such as HTML allow for a greater scope of interactivity and for a
more data-driven model, allowing the content of the document to be explored
in ways that perhaps the author had not anticipated.[1] However, these data-
driven formats typically do not support fixed layouts, and the display differs
from renderer to renderer.

Existing document formats, due to being designed to model paper, have
limited precision (8 decimal digits for PostScript[2], 5 decimal digits for PDF[3]).
This matches the limited resolution of printers and ink, but is limited when
compared to what aught to be possible with “zoom” functionality, which is
prevent from working beyond a limited scale factor, lest artefacts appear due to
issues with numeric precision.

2 Rendering

Computer graphics comes in two forms: bit-mapped (or raster) graphics, which
is defined by an array of pixel colours, and vector graphics, defined by math-
ematical descriptions of objects. Bit-mapped graphics are well suited to pho-
tographs and are match how cameras, printers and monitors work. However,
bitmap devices do not handle zooming beyond their “native” resolution — the
resolution where one document pixel maps to one display pixel —, exhibiting an
artefact called pixelation where the pixel structure becomes evident. Attempts
to use interpolation to hide this effect are never entirely successful, and sharp
edges, such as those found in text and diagrams, are particularly effected.

Vector graphics lack many of these problems: the representation is indepen-
dent of the output resolution, and rather an abstract description of what it is
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being rendered, typically as a combination of simple geometric shapes like lines,
arcs and “Bézier curves”. As existing displays (and printers) are bit-mapped
devices, vector documents must be rasterized into a bitmap at a given resolu-
tion. This bitmap is then displayed or printed. The resulting bitmap is then an
approximation of the vector image at that resolution.

This project will be based around vector graphics, as these properties make
it more suited to experimenting with zoom quality.

The rasterization process typically operates on an individual “object” or
“shape” at a time: there are special algorithms for rendering lines[4], triangles[5],
polygons[6] and Bézier Curves[7]. Typically, these are rasterized independently
and composited in the bitmap domain using Porter-Duff compositing[8] into a
single image. This allows complex images to be formed from many simple pieces,
as well as allowing for layered translucent objects, which would otherwise require
the solution of some very complex constructive geometry problems.

While traditionally, rasterization was done entirely in software, modern com-
puters and mobile devices have hardware support for rasterizing some basic
primitives — typically lines and triangles —, designed for use rendering 3D
scenes. This hardware is usually programmed with an API like OpenGL[9].

More complex shapes like Bézier curves can be rendered by combining the
use of bitmapped textures (possibly using signed-distance fields[10][11][12]) with
polygons approximating the curve’s shape[13][14].

GPU Rendering [13], OpenVG implementation on GLES: [15], [16]
Existing implementations of document format rendering

2.1 Xr: Cross-device Rendering for Vector Graphics[17]

Xr (now known as Cairo) is an implementation of the PDF v1.4 rendering
model, independent of the PDF or PostScript file formats, and is now widely
used as a rendering API. In this paper, Worth and Packard describe the PDF
v1.4 rendering model, and their PostScript-derived API for it.

The PDF v1.4 rendering model is based on the original PostScript model,
based around a set of paths (and other objects, such as raster images) each
made up of lines and Bézier curves, which are transformed by the “Current
Transformation Matrix.” Paths can be filled in a number of ways, allowing for
different handling of self-intersecting paths, or can have their outlines stroked.
Furthermore, paths can be painted with RGB colours and/or patterns derived
from either previously rendered objects or external raster images. PDF v1.4
extends this to provide, amongst other features, support for layering paths and
objects using Porter-Duff compositing[8], giving each painted path the option of
having an α value and a choice of any of the Porter-Duff compositing methods.

The Cairo library approximates the rendering of some objects (particularly
curved objects such as splines) with a set of polygons. An XrSetTolerance

function allows the user of the library to set an upper bound on the approxima-
tion error in fractions of device pixels, providing a trade-off between rendering
quality and performance. The library developers found that setting the toler-
ance to greater than 0.1 device pixels resulted in errors visible to the user.
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2.2 Glitz: Hardware Accelerated Image Compositing us-
ing OpenGL[18]

This paper describes the implementation of an OpenGL based rendering backend
for the Cairo library.

The paper describes how OpenGL’s Porter-Duff compositing is easily suited
to the Cairo/PDF v1.4 rendering model. Similarly, traditional OpenGL (pre-
version 3.0 core) support a matrix stack of the same form as Cairo.

The “Glitz” backend will emulate support for tiled, non-power-of-two pat-
terns/textures if the hardware does not support it.

Glitz can render both triangles and trapezoids (which are formed from pairs
of triangles). However, it cannot guarantee that the rasterization is pixel-precise,
as OpenGL does not proveide this consistently.

Glitz also supports multi-sample anti-aliasing, convolution filters for raster
image reads (implemented with shaders).

Performance was much improved over the software rasterization and over
XRender accellerated rendering on all except nVidia hardware. However, nVidia’s
XRender implementation did slow down significantly when some transforma-
tions were applied.

Also look at NV path rendering [19]

3 Floating-Point Precision

How floating-point works and what its behaviour is w/r/t range and precision
[20] [21]

Arb. precision exists
Higher precision numeric types can be implemented or used on the GPU,

but are slow. [22]

4 Quadtrees

The quadtree is a data structure which [23]
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