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1 Introduction

Since mankind first climbed down from the trees, it is our ability to communicate
that has made us unique. Once ideas could be passed from person to person, it
made sense to have a permanent record of them; one which could be passed on
from person to person without them ever meeting.

And thus the document was born.
Traditionally, documents have been static: just marks on paper, but with

the advent of computers many more possibilities open up.

2 Document Formats

Most existing document formats — such as the venerable PostScript and PDF
— are, however, designed to imitate existing paper documents, largely to allow
for easy printing. In order to truly take advantage of the possibilities operating
in the digital domain opens up to us, we must look to new formats.

Formats such as HTML allow for a greater scope of interactivity and for a
more data-driven model, allowing the content of the document to be explored
in ways that perhaps the author had not anticipated.[1] However, these data-
driven formats typically do not support fixed layouts, and the display differs
from renderer to renderer.

2.1 A Taxonomy of Document formats

The process of creating and displaying a document is a rather universal one (2.1),
though different document formats approach it slightly differently. A document
often begins as raw content: text and images (be they raster or vector) and it
must end up as a set of photons flying towards the reader’s eyes.
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Figure 1: The lifecycle of a document
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There are two fundamental stages by which all documents — digital or
otherwise — are produced and displayed: layout and rendering. The layout
stage is where the positions and sizes of text and other graphics are determined.
The text will be flowed around graphics, the positions of individual glyphs will
be placed, ensuring that there is no undesired overlap and that everything will
fit on the page or screen.

The display stage actually produces the final output, whether as ink on
paper or pixels on a computer monitor. Each graphical element is rasterized
and composited into a single image of the target resolution.

Different document formats cover documents in different stages of this project.
Bitmapped images, for example, would represent the output of the final stage
of the process, whereas markup languages typically specify a document which
has not yet been processed, ready for the layout stage.

Furthermore, some document formats treat the document as a program,
written in a (usually turing complete) document language with instructions
which emit shapes to be displayed. These shapes are either displayed immedi-
ately, as in PostScript, or stored in another file, such as with TEXor LATEX, which
emit a DVI file. Most other forms of document use a Document Object Model,
being a list or tree of objects to be rendered. DVI, PDF, HTML1 and SVG[2].
Of these, only HTML and TEXtypically store documents in pre-layout stages,
whereas even turing complete document formats such as PostScript typically
encode documents which already have their elements placed.

TEX and LATEX Donald Knuth’s typesetting language TEX is one of the older
computer typesetting systems, originally conceived in 1977[3]. It imple-
ments a turing-complete language and is human-readable and writable,
and is still popular due to its excellent support for typesetting mathe-
matics. TEXonly implements the “layout” stage of document display, and
produces a typeset file, traditionally in DVI format, though modern im-
plementations will often target PDF instead.

This document was prepared in LATEX 2ε.

DVI TEX traditionally outputs to the DVI (“DeVice Independent”) format: a
binary format which consists of a simple stack machine with instructions
for drawing glyphs and curves[4].

A DVI file is a representation of a document which has been typeset, and
DVI viewers will rasterize this for display or printing, or convert it to
another similar format like PostScript to be rasterized.

HTML The Hypertext Markup Language (HTML)[5] is the widely used docu-
ment format which underpins the world wide web. In order for web pages
to adapt appropriately to different devices, the HTML format simply de-
fined semantic parts of a document, such as headings, phrases requiring
emphasis, references to images or links to other pages, leaving the layout
up to the browser, which would also rasterize the final document.

The HTML format has changed significantly since its introduction, and
most of the layout and styling is now controlled by a set of style sheets in
the CSS[6] format.

1Some of these formats — most notably HTML — implement a scripting lanugage such as
JavaScript, which permit the DOM to be modified while the document is being viewed.
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PostScript Much like DVI, PostScript[7] is a stack-based format for drawing
vector graphics, though unlike DVI (but like TEX), PostScript is text-
based and turing complete. PostScript was traditionally run on a control
board in laser printers, rasterizing pages at high resolution to be printed,
though PostScript interpreters for desktop systems also exist, and are often
used with printers which do not support PostScript natively.[8]

PostScript programs typically embody documents which have been type-
set, though as a turing-complete language, some layout can be performed
by the document.

PDF Adobe’s Portable Document Format (PDF)[9] takes the PostScript ren-
dering model, but does not implement a turing-complete language. Later
versions of PDF also extend the PostScript rendering model to support
translucent regions via Porter-Duff compositing[10].

PDF documents represent a particular layout, and must be rasterized
before display.

2.2 Precision in Document Formats

Existing document formats — typically due to having been designed for docu-
ments printed on paper, which of course has limited size and resolution — use
numeric types which can only represent a fixed range and precision. While this
works fine with printed pages, users reading documents on computer screens
using programs with “zoom” functionality are prevented from working beyond
a limited scale factor, lest artefacts appear due to issues with numeric precision.

TEXuses a 14.16 bit fixed point type (implemented as a 32-bit integer type,
with one sign bit and one bit used to detect overflow)[11]. This can represent
values in the range [−(214), 214−1] with 16 binary digits of fractional precision.

The DVI files TEX produces may use “up to” 32-bit signed integers[4] to
specify the document, but there is no requirement that implementations support
the full 32-bit type. It would be permissible, for example, to have a DVI viewer
support only 24-bit signed integers, though many files which require greater
range may fail to render correctly.

PostScript[7] supports two different numeric types: integers and reals, both
of which are specified as strings. The interpreter’s representation of numbers is
not exposed, though the representation of integers can be divined by a program
by the use of bitwise operations. The PostScript specification lists some “typical
limits” of numeric types, though the exact limits may differ from implementation
to implementation. Integers typically must fall in the range [−231, 231− 1], and
reals are listed to have largest and smallest values of ±1038, values closest to
0 of ±10−38 and approximately 8 decimal digits of precision, derived from the
IEEE 754 single-precision floating-point specification.

Similarly, the PDF specification[9] stores integers and reals as strings, though
in a more restricted format than PostScript. The PDF specification gives limits
for the internal representation of values. Integer limits have not changed from
the PostScript specification, but numbers representable with the real type have
been specified differently: the largest representable values are ±3.403×1038, the
smallest non-zero representable values are 2 ±1.175×10−38 with approximately

2The PDF specification mistakenly leaves out the negative in the exponent here.
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5 decimal digits of precision in the fractional part. Adobe’s implementation of
PDF uses both IEEE 754 single precision floating-point numbers and (for some
calculations, and in previous versions) 16.16 bit fixed-point values.

3 Rendering

Computer graphics comes in two forms: bit-mapped (or raster) graphics, which
is defined by an array of pixel colours; and vector graphics, defined by math-
ematical descriptions of objects. Bit-mapped graphics are well suited to pho-
tographs and are match how cameras, printers and monitors work. However,
bitmap devices do not handle zooming beyond their “native” resolution — the
resolution where one document pixel maps to one display pixel —, exhibiting an
artefact called pixelation where the pixel structure becomes evident. Attempts
to use interpolation to hide this effect are never entirely successful, and sharp
edges, such as those found in text and diagrams, are particularly affected.

Vector Image Raster Image

Figure 2: A circle as a vector image and a 32× 32 pixel raster image

Vector graphics lack many of these problems: the representation is indepen-
dent of the output resolution, and rather an abstract description of what it is
being rendered, typically as a combination of simple geometric shapes like lines,
arcs and “Bézier curves”[12]. As existing displays (and printers) are bit-mapped
devices, vector documents must be rasterized into a bitmap at a given resolu-
tion. This bitmap is then displayed or printed. The resulting bitmap is then an
approximation of the vector image at that resolution.

This project will be based around vector graphics, as these properties make
it more suited to experimenting with zoom quality.

The rasterization process typically operates on an individual “object” or
“shape” at a time: there are special algorithms for rendering lines[13], triangles[14],
polygons[15] and Bézier Curves[16]. Typically, these are rasterized indepen-
dently and composited in the bitmap domain using Porter-Duff compositing[10]
into a single image. This allows complex images to be formed from many simple
pieces, as well as allowing for layered translucent objects, which would otherwise
require the solution of some very complex constructive geometry problems.

While traditionally, rasterization was done entirely in software, modern com-
puters and mobile devices have hardware support for rasterizing some basic
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primitives — typically lines and triangles —, designed for use rendering 3D
scenes. This hardware is usually programmed with an API like OpenGL[17].

More complex shapes like Bézier curves can be rendered by combining the
use of bitmapped textures (possibly using signed-distance fields[18][19][20]) with
polygons approximating the curve’s shape[21][22].

Indeed, there are several implementations of entire vector graphics sys-
tems using OpenGL: OpenVG[23] on top of OpenGL ES[24]; the Cairo[25]
library, based around the PostScript/PDF rendering model, has the “Glitz”
OpenGL backend[26] and the SVG/PostScript GPU renderer by nVidia[27] as
an OpenGL extension[28].

4 Numeric formats

On modern computer architectures, there are two basic number formats sup-
ported: fixed-width integers and floating-point numbers. Typically, computers
natively support integers of up to 64 bits, capable of representing all integers
between 0 and 264 − 1, inclusive3.

By introducing a fractional component (analogous to a decimal point), we
can convert integers to fixed-point numbers, which have a more limited range,
but a fixed, greater precision. For example, a number in 4.4 fixed-point for-
mat would have four bits representing the integer component, and four bits
representing the fractional component:

0101︸︷︷︸
integer component

. 1100︸︷︷︸
fractional component

= 5.75 (1)

Floating-point numbers[29] are the binary equivalent of scientific notation:
each number consisting of an exponent (e) and a mantissa (m) such that a
number is given by

n = 2e ×m (2)

The IEEE 754 standard[30] defines several floating-point data types which
are used4 by most computer systems. The standard defines 32-bit (8-bit expo-
nent, 23-bit mantissa, 1 sign bit) and 64-bit (11-bit exponent, 53-bit mantissa,
1 sign bit) formats5, which can store approximately 7 and 15 decimal digits of
precision respectively.

Floating-point numbers behave quite differently to integers or fixed-point
numbers, as the representable numbers are not evenly distributed. Large num-
bers are stored to a lesser precision than numbers close to zero. This can present
problems in documents when zooming in on objects far from the origin.

IEEE floating-point has some interesting features as well, including values for
negative zero, positive and negative infinity, the “Not a Number” (NaN) value
and denormal values, which trade precision for range when dealing with very
small numbers. Indeed, with these values, IEEE 754 floating-point equality does

3Most machines also support signed integers, which have the same cardinality as their
unsigned counterparts, but which represent integers in the range [−(263), 263 − 1]

4Many systems’ implement the IEEE 754 standard’s storage formats, but do not implement
arithmetic operations in accordance with this standard.

5The 2008 revision to this standard[31] adds some additional formats, but is less widely
supported in hardware.
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not form an equivalence relation, which can cause issues when not considered
carefully.[32]

There also exist formats for storing numbers with arbitrary precising and/or
range. Some programming languages support “big integer”[33] types which can
represent any integer that can fit in the system’s memory. Similarly, there
are arbitrary-precision floating-point data types[34][35] which can represent any
number of the form

n

2d
n, d ∈ Z (3)

These types are typically built from several native data types such as integers
and floats, paired with custom routines implementing arithmetic primitives.[36]
These, therefore, are likely slower than the native types they are built on.

While traditionally, GPUs have supported some approximation of IEEE
754’s 32-bit floats, modern graphics processors also support 16-bit[37] and 64-
bit[38] IEEE floats. Note, however, that some parts of the GPU are only able
to use some formats, so precision will likely be truncated at some point before
display. Higher precision numeric types can be implemented or used on the
GPU, but are slow.[39]

Pairs of integers (a ∈ Z, b ∈ Z \ 0) can be used to represent rationals. This
allows values such as 1

3 to be represented exactly, whereas in fixed or floating-
point formats, this would have a recurring representation:

0︸︷︷︸
integer part

. 01︸︷︷︸
recurring part

01 01 01 . . . (4)

Whereas with a rational type, this is simply 1
3 . Rationals do not have a unique

representation for each value, typically the reduced fraction is used as a char-
acteristic element.

5 Quadtrees

When viewing or processing a small part of a large document, it may be helpful
to only processs — or cull — parts of the document which are not on-screen.

Figure 3: A simple quadtree.

The quadtree[40]is a data structure — one of a family of spatial data struc-
tures — which recursively breaks down space into smaller subregions which can
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be processed independently. Points (or other objects) are added to a single
node, which if certain criteria are met — typically the number of points in a
node exceeding a maximum, though in our case likely the level of precision re-
quired exceeding that supported by the data type in use — is split into four
equal-sized subregions, and points attached to the region which contains them.

In this project, we will be experimenting with a form of quadtree in which
each node has its own independent coordinate system, allowing us to store some
spatial information6 within the quadtree structure, eliminating redundancy in
the coordinates of nearby objects.

Other spatial data structures exist, such as the KD-tree[41], which partitions
the space on any axis-aligned line; or the BSP tree[42], which splits along an
arbitrary line which need not be axis aligned. We believe, however, that the
simpler conversion from binary coordinates to the quadtree’s binary split make
it a better avenue for initial research to explore.
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