Infinite Precision Document Formats

Author: Samuel Moore[]]
Partners: David Gow|[2]
Supervisor: Prof Tim French

THE UNIVERSITY OF
WESTERN AUSTRALIA

May 2, 2014

Abstract

At the fundamental level, a document is a means to convey information. The limitations on
a digital document format therefore restrict the types and quality of information that can
be communicated. Whilst modern document formats are now able to include increasingly
complex dynamic content, they still suffer from early views of a document as a static page;
to be viewed at a fixed scale and position. In this report, we focus on the limitations of
modern document formats (including PDF, PostScript, SVG) with regards to the level
of detail, or precision at which primatives can be drawn. We propose a research project
to investigate whether it is possible to obtain an “infinite precision” document format,

capable of including primitives created at an arbitrary level of zoom.

Move to introduction? But it discusses the Introduction :S
In Chapter [T we give an overview of the current state of the research in document formats,
and the motivation for implementing “infinite precision” in a document format. We will
outline our approach to research in collaboration with David Gow][]. In Chapter 2| we pro-
vide more detailed background examining the literature related to rendering, interpreting,
and creating document formats, as well as possible techniques for increased and possibly
infinite precision. In Chapter 7?7 gives the current state of our research and the progress
towards the goals outlined in Chapter [l In Chapter 4| we will conclude with a summary

of our findings and goals.

Keywords: document formats, precision, floating point, graphics, OpenGL, VHDL,
PostScript, PDF, bootstraps

TODO: Make document smaller; currently 16 pages with almost no content; limit is

20 with actual content

Contents

1 1

CIAI . .o 2
.1.1 Clarification of Terms| 00 2

1.2 Methodsl o 2
[1.3 Software and Hardware Requirements| 4
L2 Timelind o oo 5
2 Literature Review] 6
2.1 Raster and Vector Graphics| oo o 7
2.2 Rendering Vector Images| o Lo 8
221 Bezier Curves L 8
2.2.2 Shapes|. 9
P23 Text . . .o 10

J dingl 10

2.2.5 Other Things| e 10
2.2.6 Rendering Vector Graphics on the GPU| 10

2.3 Document Representations| o .. 10
2.3.1 Interpreted Model|o 11
2.3.2 Crippled Interpreted Model| o0 L. 11
2.3.3 Document Object Model|. o0, 12
[2.3.4 Blurring the Line — Javascript| 12
2.3.5 Why do we still use static PDFs|o 000000, 13

2.4 Precision in Modern Document Formatsl 13
2.5 Representation of Numbers| oo 14
R5I TheIEEE Standardl L 14
2.5.2 Floating Point Number Representations| 14
[2.5.3 Limitations Imposed By CPU|.o . 15
[2.5.4 Limitations Imposed By Graphics APIs and/or GPUs| 15
[2.5.5 Alternate Number Representations| 15

ii

|3 Progress Report)|

[References|

17
17
17
17
18
18
18

19
19
19
19

21

Chapter 1

Introduction

Most of this chapter is copy pasted from the project proposal

(http://szmoore.net /ipdf/documents/ProjectProposalSam.pdf)

Early electronic document formats such as PostScript were motivated by a need to
print documents onto a paper medium. In the PostScript standard, this lead to a model
of the document as a program; a series of instructions to be executed by an interpreter
which would result in “ink” being placed on “pages” of a fixed size[3]. The ubiquitous
Portable Document Format (PDF) standard provides many enhancements to PostScript
taking into account desktop publishing requirements[4], but it is still fundamentally based
on the same imaging model[5]. This idea of a document as a static “page” has lead to

limited precision in these and other traditional document formats.

The emergence of the internet, web browsers, XML/HTML, JavaScript and related
technologies has seen a revolution in the ways in which information can be presented
digitally, and the PDF standard itself has begun to move beyond static text and figures|6,
7]. However, the popular document formats are still designed with the intention of showing

information at either a single, fixed level of detail, or a small range of levels.

As most digital display devices are smaller than physical paper medium, all useful
viewers are able to “zoom” to a subset of the document. Vector graphics formats including
PostScript and PDF support rasterisation at different zoom levels[3, 5], but the use of fixed
precision floating point numbers causes problems due to imprecision either far from the

origin, or at a high level of detail[g, [9].

We are now seeing a widespread use of mobile computing devices with touch screens,
where the display size is typically much smaller than paper pages and traditional computer
monitors; it seems that there is much to be gained by breaking free of the restricted

precision of traditional document formats.

http://szmoore.net/ipdf/documents/ProjectProposalSam.pdf

1 Introduction 2

1.1 Aim

In this project, we will explore the state of the art of current document formats including
PDF, PostScript, SVG, HTML, and the limitations of each in terms of precision. We
will consider designs for a document format allowing graphics primitives at an arbitrary
level of zoom with no loss of detail. We will refer to such a document format as “infinite
precision”. A viewer and editor will be implemented as a proof of concept; we adopt a low
level, ground up approach to designing this viewer so as to not become restricted by any

single existing document format.

There are many possible applications for documents in which precision is unlimited.
Several areas of use include: visualisation of extremely large or infinite data sets; visuali-
sation of high precision numerical computations; digital artwork; computer aided design;

and maps.

1.1.1 Clarification of Terms

It may be necessary to clarify what we mean by the terms “infinite precision” and “docu-
ment formats”. Regarding the latter, we consider a document format to be any represen-
tation of visual information which is capable of being stored indefinitely. Regarding the
former, we do not propose to be able to contain an infinite amount of information within
such a document. The goal is to be able to render a primitive at the same level of detail it
is specified by a document format, regardless of how precise this level is. For example, the
precision of coordinates of primitives drawn in a graphical document editor will always be

limited by the resolution of the display on which they are drawn, but not by the viewer.

1.2 Methods

Initial research and software development is being conducted in collaboration with David
Gow[2]. Once a simple testbed application has been developed, we will individually explore
approaches for introducing arbitrary levels of precision; these approaches will be imple-
mented as alternate versions of the same software. The focus will be on drawing simple
primitives (lines, polygons, circles). However, if time permits we will explore adding more

complicated primitives (font glyphs, bezier curves, embedded bitmaps).

The process of rendering a document will be considered as a common area of research,
whilst individual research will be conducted on means for allowing infinite precision. At

this stage we have identified two possible areas for individual research:

1. Arbitrary Precision real valued numbers — Sam Moore

We plan to investigate the representation of real values to a high or arbitary degree

1 Introduction 3

of precision. Such representations would allow for a document to be implemented
using a single global coordinate system. However, we would expect a decrease in
performance with increased complexity of the data structure used to represent a
real value. Both software and hardware techniques will be explored. We will also

consider the limitations imposed by performing calculations on the GPU or CPU.

Starting points for research in this area are Priest’s 1991 paper, “Algorithms for
Arbitrary Precision Floating Point Arithmetic” [10], and Goldberg’s 1992 paper “The
design of floating point data types”’[9]. A more recent and comprehensive text
book, “Handbook of Floating Point Arithmetic” [IT], published in 2010, has also
been identified as highly relevant.

2. Local coordinate systems — David Gow [2]

An alternative approach involves segmenting the document into different regions
using fixed precision floats to define primitives within each region. A quadtree
or similar data structure could be employed to identify and render those regions

currently visible in the document viewer. Say more here?

1 Introduction 4

We aim to compare these and any additional implementations considered using the fol-

lowing metrics:

1. Performance vs Number of Primitives

As it is clearly desirable to include more objects in a document, this is a natural
metric for the usefulness of an implementation. We will compare the performance

of rendering different implementations, using several “standard” test documents.

2. Performance vs Visible Primitives

There will inevitably be an overhead to all primitives in the document, whether
drawn or not. As the structure of the document format and rendering algorithms
may be designed independently, we will repeat the above tests considering only the

number of visible primitives.

3. Performance vs Zoom Level

We will also consider the performance of rendering at zoom levels that include prim-
itives on both small and large scales, since these are the cases under which floating

point precision causes problems in the PostScript and PDF standards.

4. Performance whilst translation and scaling

Whilst changing the view, it is ideal that the document be re-rendered as efficiently
as possible, to avoid disorienting and confusing the user. We will therefore compare
the speed of rendering as the standard documents are translated or scaled at a

constant rate.

5. Artifacts and Limitations on Precision

As we are unlikely to achieve truly “infinite” precision, qualitative comparisons of

the accuracy of rendering under different implementations should be made.

1.3 Software and Hardware Requirements

Due to the relative immaturity and inconsistency of graphics drivers on mobile devices,
our proof of concept will be developed for a conventional GNU /Linux desktop or laptop
computer using OpenGL. However, the techniques explored could easily be extended to

other platforms and libraries.

1 Introduction

1.4 Timeline

Deadlines enforced by the faculty of Engineering Computing and Mathematics are itali-

cised[l

Date

Milestone

17t April

Draft Literature Review completed. This

sort of didn’t happen...

1% May

Testbed Software (basic document format
and viewer) completed and approaches for ex-

tending to allow infinite precision identified.

26" May

Progress Report and Revised Literature Re-

view due.

9th June

15¢ July

Demonstrations of limitations of floating
point precision in the Testbed software.

At least one implementation of infinite pre-
cision for basic primitives (lines, polygons,
curves) completed. Other implementations,
advanced features, and areas for more de-

tailed research identified.

15t August

Experiments and comparison of various infi-

nite precision implementations completed.

1% September

Advanced features implemented and tested,

work underway on Final Report.

TBA

Conference Abstract and Presentation due.

10t October

Draft of Final Report due.

270 October

Final Report due.

'David Gow is being assessed under the 2014 rules for a BEng (Software) Final Year Project, whilst
the author is being assessed under the 2014 rules for a BEng (Mechatronics) Final Year Project; deadlines
and requirements as shown in Gow’s proposal[2] may differ

Chapter 2

Literature Review

0. Here is a brilliant summary of the sections below

This chapter provides an overview of relevant literature. The areas of interest can be
broadly grouped into two largely seperate categories; Documents and Number Represen-

tations.

The first half of this chapter will be devoted to documents themselves, including: the
representation and rendering of low level graphics primitives, how collections of these
primitives are represented in document formats, and the various standards for documents

in use today.

We will find that although there has been a great deal of research into the rendering,
storing, editing, manipulation, and extension of document formats, all popular document
standards are content to specify at best a single precision IEEE-754 floating point number

representations.

The research on arbitrary precision arithmetic applied to documents is very sparse;
however arbitrary precision arithmetic itself is a very active field of research. Therefore,
the second half of this chapter will be devoted to considering the IEEE-754 standard, its
advantages and limitations, and possible alternative number representations to allow for

arbitrary precision arithmetic.

In Chapter 7?7, we will discuss our findings so far with regards to arbitrary precision

arithmetic applied to document formats.

2 Literature Review 7

2.1 Raster and Vector Graphics

1. Here are the fundamentals of graphics (raster and vector, rendering)

At a fundamental level everything that is seen on a display device is represented as
either a vector or raster image. These images can be stored as stand alone documents or
embedded in a much more complex document format capable of containing many other

types of information.

A raster image’s structure closely matches it’s representation as shown on modern
display hardware; the image is represented as a grid of filled square “pixels”. Each pixel is
the same size and contains information describing its colour. This representation is simple

and also well suited to storing images as produced by cameras and scanners[?].

The drawback of raster images is that by their very nature there can only be one level
of detail. Figures [2.1] and attempt to illustrate this by comparing raster images to

vector images in a similar way to Worth and Packard[12].

Consider the right side of Figure [2.1] This is a raster image which should be recog-
nisable as an animal defined by fairly sharp edges. Figure shows that zooming on
the animal’s face causes these edges to appear jagged. There is no information in the
original image as to what should be displayed at a larger size, so each square shaped pixel
is simply increased in size. A blurring effect will probably be visible in most PDF viewers;
the software has attempted to make the “edge” appear more realistic using a technique
called “antialiasing” which averages neighbouring pixels in the original image in order to

generate extra pixels in the scaled image[?][]]

In contrast, the left sides of Figures and are a vector image. A vector image
contains information about a number of geometric shapes. To display this image on
modern display hardware, the coordinates are transformed according to the view and then
the image is converted into a raster like representation. Whilst the raster image merely
appears to contain edges, the vector image actually contains information about these
edges, meaning they can be displayed “infinitely sharply” at any level of detail[?] — or
they could be if the coordinates are stored with enough precision (see Section ??7). Thus,

vector images are well suited to high quality digital artﬂ and text[?].

Woah, an entire page with only one citation ham fisted in after I had written the rest...

and the “actually writing it” phase of the Lit Review is off to a great start.

!The exact appearance of the images at different zoom levels will depend greatly on the PDF viewer or
printer used to display this report. On the author’s display using the Atril (1.6.0) viewer, the top images
appear to be pixel perfect mirror images at a 100% scale. In the bottom raster image, antialiasing is not
applied at zoom levels above 125% and the effect of scaling is quite noticable.

2Figure is not to be taken as an example of this.

2 Literature Review 8

VECTOR GRAPHICS RASTER GRAPHICS

Figure 2.1: Original Vector and Raster Images

Figure 2.2: Scaled Vector and Raster Images

2.2 Rendering Vector Images

Throughout Section [2.1| we were careful to refer to “modern” display devices, which are
raster based. It is of some historical significance that vector display devices were popular
during the 70s and 80s, and so algorithms for drawing a vector image directly without
rasterisation exist. An example is the shading of polygons which is somewhat more com-

plicated on a vector display than a raster display[13} [14].

All modern displays of practical interest are raster based. In this section we explore

the structure of vector graphics in more detail, and how different primitives are rendered.

After the wall of citationless text in Section [2.1] we should probably redeem ourselves
a bit here

2.2.1 Bezier Curves

The bezier curve is of vital importance in vector graphics.

2 Literature Review 9

Things this section lacks

e Who came up with them (presumably it was a guy named Bezier)

Flesh out how they evolved or came into use?

Naive algorithm

De Casteljau Algorithm

Recently, Goldman presented an argument that Bezier’s could be considered as fractal
in nature, a fractal being the fixed point of an iterated function system[I5]. Goldman’s
proof depends upon a modification to the De Casteljau Subdivision algorithm. Whilst
we will not go the details of the proof, or attempt comment on its theoretical value, it is
interesting to note that Goldman’s algorithm is not only worse than the De Casteljau al-
gorithm upon which it was based, but it also performs worse than a naive Bezier rendering

algorithm. Figure shows our results using implementations of the various algorithms

in python.
014 Time to produce n-dimensional Bezier Curve
H casteljau
01211 - BezierCurve l
Goldman
010 - 1
0.08 1
3
~ 006 |
004 1
002 1
0004 100 200 300 400 500 B00

Figure 2.3: Performance of Bezier Subdivision Algorithms

Does the Goldman bit need to be here? Probably NOT. Do I need to check very very
carefully that I haven’t made a mistake before saying this? YES. Will I have made a

mistake? Probably.

2.2.2 Shapes

Shapes are just bezier curves joined together.

2 Literature Review 10

Approximating a Circle Using Cubic Beziers

An example of a shape is a circle. We used some algorithm on wikipedia that I'm sure is
in Literature somewhere [?] and made a circle. It’s in my magical ipython notebook with
the De Casteljau stuff.

2.2.3 Text

Text is just Bezier Curves, I think we proved out point with the circle, but maybe find

some papers to cite[?]

2.2.4 Shading

Shading is actually extremely complicated! [13],[14] Sure, but do we care enough to talk

about it? We will run out of space at this rate

2.2.5 Other Things

We don’t really care about other things in this report.

6. Sort of starts here... or at least background does

2.2.6 Rendering Vector Graphics on the GPU

Traditionally, vector graphics have been rasterized by the CPU before being sent to the
GPU for drawing[16]. Lots of people would like to change this [12, 17, 18| 16, 19] ... All
of these are things David found except kilgard which I thought I found and then realised
David already had it :S

2. Here are the ways documents are structured ... we got here eventually
2.3 Document Representations
The file format can be either human readableﬁ or binaryﬁ Can also be compressed or

not. Here we are interested in how the document is interpreted or traversed in order to

produce graphics output.

3For some definition of human and some definition of readable
4S0, our viewer is basically a DOM style but stored in a binary format

2 Literature Review 11

2.3.1 Interpreted Model

Did I just invent that terminology or did I read it in a paper? Is there actually existing
terminology for this that sounds similar enough to “Document Object Model” for me to

compare them side by side?

e This model treats a document as the source code program which produces graphics

e Arose from the desire to produce printed documents using computers (which were

still limited to text only displays).
e Typed by hand or (later) generated by a GUI program
e PostScript — largely supersceded by PDF on the desktop but still used by printerﬂ

o TEX— Predates PostScript! IXTEX is being used to create this very document and

until now I didn’t even have it here!

— Idon’t really want to go down the path of investigating the billion steps involved

in getting I TEXinto an actually viewable format
— There are interpreters (usually WYSIWYG editors) for ITEXthough

— Maybe if IATEXwere more popular there would be desktop viewers that con-
verted IATEXdirectly into graphics

e Potential for dynamic content, interactivity; dynamic PostScript, enhanced Postscript

e Scientific Computing — Mathematica, Matlab, IPython Notebook — The document

and the code that produces it are stored together

e Problems with security — Turing complete, can be exploited easily

2.3.2 Crippled Interpreted Model

I’'m pretty sure I made that one up

e PDF is PostScript but without the Turing Completeness

e Solves security issues, more efficient

®Desktop pdf viewers can still cope with PS, but I wonder if a smartphone pdf viewer would implement
it?

2 Literature Review 12

2.3.3 Document Object Model

DOM = Tree of nodes; node may have attributes, children, data
XML (SGML) is the standard language used to represent documents in the DOM
XML is plain text

SVG is a standard for a vector graphics language conforming to XML (ie: a DOM

format)

CSS style sheets represent more complicated styling on objects in the DOM

2.3.4 Blurring the Line — Javascript

The document is expressed in DOM format using XML/HTML/SVG
A Javascript program is run which can modify the DOM
At a high level this may be simply changing attributes of elements dynamically

For low level control there is canvas2D and even WebGL which gives direct access

to OpenGL functions
Javascript can be used to make a HTML/SVG interactive

— Overlooking the fact that the SVG standard already allows for interactive ele-

ments...

Javascript is now becoming used even in desktop environments and programs (Win-
dows 8, GNOME 3, Cinnamon, Game Maker Studio) (shudder)

There are also a range of papers about including Javascript in PDF “Pixels or Perish”

being the only one we have actually read[6]

— I have no idea how this works; PDF is based on PostScript... it seems very
circular to be using a programming language to modify a document that is

modelled on being a (non turing complete) program

— This is yet more proof that people will converge towards solutions that “work”

rather than those that are optimal or elegant

— I guess it’s too much effort to make HTML look like PDF (or vice versa) so we

could phase one out

2 Literature Review 13

2.3.5 Why do we still use static PDF's

Despite their limitations, we still use static, boring old PDFs. Particularly in scientific

communication.

e They are portable; you can write an amazing document in Mathematica/Matlab but
it

e Scientific journals would need to adapt to other formats and this is not worth the
effort

e No network connection is required to view a PDF (although DRM might change
this?)

e All rescources are stored in a single file; a website is stored accross many seperate

files (call this a “distributed” document format?)

e You can create PDFs easily using desktop processing WYSIWYG editors; WYSI-
WYG editors for web based documents are worthless due to the more complex

content

e Until Javascript becomes part of the PDF standard, including Javascript in PDF

documents will not become widespread

e Once you complicate a PDF by adding Javascript, it becomes more complicated to
create; it is simply easier to use a series of static figures than to embed a shader in

your document. Even for people that know WebGL.

3. Here are the ways document standards specify precision (or don’t)

2.4 Precision in Modern Document Formats

All the above is very interesting and provides important context, but it is not actually
directly related to the problem of infinite precision which we are going to try and solve.

Sorry to make you read it all.

e Implementations of PostScript and PDF must by definition restrict themselves to
IEEE binary32 “single precision”lﬂ floating point number representations in order to

conform to the standards[3], [5].

e Implementations of SVG are by definition required to use IEEE binary32 as a min-

imum. “High Quality” SVG viewers are required to use at least IEEE binary64.[20]

5The original IEEE-754 defined single, double and extended precisions; in the revision these were
renamed to binary32, binary64 and binary128 to explicitly state the base and number of bits

2 Literature Review 14

e Numerical computation packages such as Mathematica and Maple use arbitrary pre-

cision floats

— Mathematica is not open source which is an issue when publishing scientific
research (because people who do not fork out money for Mathematica cannot

verify results)
— What about Maple? [II] and [2I] both mention it being buggy.

— Octave and Matlab use fixed precision doubles

The use of IEEE binary32 floats in the PostScript and PDF standards is not surprising
if we consider that these documents are oriented towards representing static pages. They

don’t actually need higher precision to do this; 32 bits is more than sufficient for A4 paper.

4. Here is IEEE-754 which is what these standards use

2.5 Representation of Numbers

Although this project has been motivated by a desire for more flexible document formats,
the fundamental source of limited precision in vector document formats is the restriction

to IEEE floating point numbers for representation of coordinates.

Whilst David Gow will be focusing on structures and the use of multiple coordinate
systems to represent a document so as to avoid or reduce these limitations[2], the focus of
our own research will be increased precision in the representation of real numbers so as

to get away with using a single global coordinate system.
2.5.1 The IEEE Standard

2.5.2 Floating Point Number Representations

z=(—1)°xm x B®

B = 2, although IEEE also defines decimal representations for B = 10 — these are

useful in financial software[22].

Aside: Are decimal representations for a document format eg: CAD also useful because

you can then use metric coordinate systems?

Precision

The floats map an infinite set of real numbers onto a discrete set of representations.

2 Literature Review 15

Figure: 8 bit “minifloats” (all 255 of them) clearly showing the “precision vs range”

issue

The most a result can be rounded in conversion to a floating point number is the units

in last place; my x B€.

Even though that paper that claims double is the best you will ever need because the
error can be as much as the size of a bacterium relative to the distance to the moon]]

there are many cases where increased number of bits will not save you.[I]

5. Here are limitations of IEEE-754 floating point numbers on compatible hardware

2.5.3 Limitations Imposed By CPU

CPU’s are restricted in their representation of floating point numbers by the IEEE stan-
dard.

2.5.4 Limitations Imposed By Graphics APIs and/or GPUs

Traditionally algorithms for drawing vector graphics are performed on the CPU; the image
is rasterised and then sent to the GPU for rendering[]. Recently there has been a great
deal of literature relating to implementation of algorithms such as bezier curve rendering]]
or shading[| on the GPU. As it seems the trend is to move towards GPU

6. Here are ways GPU might not be IEEE-754 — This goes *somewhere* in here but

not sure yet

e Internal representations are GPU dependent and may not match IEEE[23]
e OpenGL standards specify: binary16, binary32, binary64

e OpenVG aims to become a standard API for SVG viewers but the API only uses

binary32 and hardware implementations may use less than this internally[18§]

e It seems that IEEE has not been entirely successful; although all modern CPUs and
GPUs are able to read and write IEEE floating point types, many do not conform
to the IEEE standard in how they represent floating point numbers internally.

7. Sod all that, let’s just use an arbitrary precision library (AND THUS WE FINALLY
GET TO THE POINT)

2.5.5 Alternate Number Representations

They exist[L1].

2 Literature Review 16

Do it all using MFPR]], she’ll be right.
8. Here is a brilliant summary of sections 7- above

Dear reader, thankyou for your persistance in reading this mangled excuse for a Liter-
ature Review. Hopefully we have brought together the radically different areas of interest
together in some sort of coherant fashion. In the next chapter we will talk about how we

have succeeded in rendering a rectangle. It will be fun. I am looking forward to it.

Chapter 3

Progress Report

This chapter outlines the current state of our research in relation to the aims outlined in
Chapter It will serve as an explanation for where the Figures in Chapter 2| came from.

It will just be a short summary of the implementation details.

3.1 Development of Testbed Software

We wrote a very simple OpenGL 1.1 program to experiment with, and then David Gow

converted it to OpenGL 3.1 and I have no idea how it works anymore.

3.2 Design and Implementation of “Tests”

e Compile by swapping out main() for a tester

e There are tests for doing some of the things in Chapter[I|but most still aren’t written
yet.

3.3 Document Format

Currently we effectively have a DOM format but with the following non-features:

e Binary file format (non standard; not XML)

e Only rectangles.

17

3 Progress Report 18

3.4 Floating Point Number Representations

1 haveﬂ some figures that I would prefer to include in Chapter |2 when I am talking about
the papers that inspired them. This section will probably briefly talk about how they

were created and just refer back to them.

e calculatepi.test

e typedef of Real

3.5 Virtual FPU

Techniques for dealing with FP numbers can be implemented in software (CPU) or on
dedicated hardware (FPU). We are able to run FP arithmetic on arbitrary simulations of
FPUs created using VHDL. Hopefully explore this a bit in Chapter

3.6 Version Control

Git is a distributed version control system widely used in the development of open source
software(]. All rescources created for or used by this project have been placed in git reposi-

tories on several servers. The repositories are publically accessable at (http://git.ucc.asn.au)

1Ok... “will have”

http://git.ucc.asn.au

Chapter 4

Conclusion

This report has provided motivation for considering approaches to achieving an infinite

level of zoom in a document.

4.1 Acheived Milestones

4.2 Areas of further work

e Continue looking for relevant literature
e Implement all those tests mentioned in Chapter

e Actually identify the techniques I will use THIS ONE SHOULD BE DONE
BEFORE I HAND IN THE LITERATURE REVIEW!

e Possible Ultimate Goal: Implement (a subset) of SVG and then show an SVG doc-

ument that we can render but a browser can’t

— This means extending our viewer to be able to read (a subset) SVG
— Can already read XML, so this shouldn’t actually be too bad
+x Emphasis on subset

% (I've seen the SVG standard; I'm talking about implementing the 18 pages
under “Basic Shapes”. The other 818 pages can complain to someone who

cares.)

— Suggestion to David that he probably won’t like (or read): Make his octree

structure specifiable as an SVG extension

4.3 Witty Conclusion Goes Here

19

References

1]

2]

[3]

[10]

[11]

Sam Moore. Infinite precision document formats (project proposal).
(http://szmoore.net/ipdf/documents/ProjectProposalSam.pdf), 2014.

David Gow. Infinite-precision document formats (project proposal).
(http://davidgow.net /stuff/ProjectProposal.pdf), 2014.

Adobe Systems Incorporated. PostScript Language Reference. Addison-Wesley Pub-
lishing Company, 3rd edition, 1985 - 1999.

Michael A. Wan-Lee Cheng. Portable document format (pdf) — finally, a universal
document exchange technology. Journal of Technology Studies, 28(1):59 — 63, 2002.

Adobe Systems Incorporated. PDF Reference. Adobe Systems Incorporated, 6th
edition, 2006.

Brian Hayes. Pixels or perish. American Scientist, 100(2):106 — 111, 2012.

David G. Barnes, Michail Vidiassov, Bernhard Ruthensteiner, Christopher J. Fluke,
Michelle R. Quayle, and Colin R. McHenry. Embedding and publishing interactive,

3-dimensional, scientific figures in portable document format (pdf) files. PLoS ONE,
8(9):1 — 15, 2013.

David Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv., 23(1):5-48, March 1991.

David Goldberg. The design of floating-point data types. ACM Lett. Program. Lang.
Syst., 1(2):138-151, June 1992.

D.M. Priest. Algorithms for arbitrary precision floating point arithmetic. In Computer
Arithmetic, 1991. Proceedings., 10th IEEE Symposium on, pages 132-143, Jun 1991.

Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jean-
nerod, Vincent Lefevre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé, and
Serge Torres. Handbook of Floating-Point Arithmetic. Birkhauser Boston Inc., Cam-
bridge, MA, USA, 2010.

20

http://szmoore.net/ipdf/documents/ProjectProposalSam.pdf
http://davidgow.net/stuff/ProjectProposal.pdf

REFERENCES 21

[12]

[13]

[14]

[21]

Carl Worth and Keith Packard. Xr: Cross-device rendering for vector graphics. In
Linux Symposium, page 480, 2003.

Kurt E. Brassel and Robin Fegeas. An algorithm for shading of regions on vector
display devices. SIGGRAPH Comput. Graph., 13(2):126-133, August 1979.

J. M. Lane and R. and M. Rarick. An algorithm for filling regions on graphics display
devices. ACM Trans. Graph., 2(3):192-196, July 1983.

Ron Goldman. The fractal nature of bezier curves. The de Casteljau subdivision
algorithm is used to show that Bezier curves are also attractors (ie: fractals). A new

rendering algorithm is derived for Bezier curves.

Mark J Kilgard and Jeff Bolz. Gpu-accelerated path rendering. ACM Transactions
on Graphics (TOG), 31(6):172, 2012.

Charles Loop and Jim Blinn. Rendering vector art on the gpu. GPU gems, 3:543-562,
2007.

Daniel Rice and RJ Simpson. Openvg specification, version 1.1. Khronos Group,
2008.

Chris Green. Improved alpha-tested magnification for vector textures and special
effects. In ACM SIGGRAPH 2007 courses, pages 9-18. ACM, 2007.

Erik Dahlstéom, Patric Dengler, Anthony Grasso, Chris Lilley, Cameron McCormack,
Doug Schepers, Jonathon Watt, Jon Ferraiolo, Fujisawa Jun, and Dean Jackson.
Scalable vector graphics (svg) 1.1 (second edition). WC3 Recommendation, August
2011.

Laurent Fousse, Guillaume Hanrot, Vincent Lefevre, Patrick Pélissier, and Paul Zim-
mermann. Mpfr: A multiple-precision binary floating-point library with correct
rounding. ACM Trans. Math. Softw., 33(2), June 2007.

Ieee standard for floating-point arithmetic. IEEE Std 754-2008, pages 1-70, Aug
2008.

Karl E Hillesland and Anselmo Lastra. Gpu floating-point paranoia. Proceedings of
GP 2004, 2004.

	Introduction
	Aim
	Clarification of Terms

	Methods
	Software and Hardware Requirements
	Timeline

	Literature Review
	Raster and Vector Graphics
	Rendering Vector Images
	Bezier Curves
	Shapes
	Text
	Shading
	Other Things
	Rendering Vector Graphics on the GPU

	Document Representations
	Interpreted Model
	Crippled Interpreted Model
	Document Object Model
	Blurring the Line — Javascript
	Why do we still use static PDFs

	Precision in Modern Document Formats
	Representation of Numbers
	The IEEE Standard
	Floating Point Number Representations
	Limitations Imposed By CPU
	Limitations Imposed By Graphics APIs and/or GPUs
	Alternate Number Representations

	Progress Report
	Development of Testbed Software
	Design and Implementation of ``Tests''
	Document Format
	Floating Point Number Representations
	Virtual FPU
	Version Control

	Conclusion
	Acheived Milestones
	Areas of further work
	Witty Conclusion Goes Here

	References

