
Infinite Precision Document Formats

Author: Samuel Moore[1]

Partners: David Gow[2]

Supervisor: Prof Tim French

April 29, 2014

1

Abstract

At the fundamental level, a document is a means to convey information. The limitations on

a digital document format therefore restrict the types and quality of information that can

be communicated. Whilst modern document formats are now able to include increasingly

complex dynamic content, they still suffer from early views of a document as a static page;

to be viewed at a fixed scale and position. In this report, we focus on the limitations of

modern document formats (including PDF, PostScript, SVG) with regards to the level

of detail, or precision at which primatives can be drawn. We propose a research project

to investigate whether it is possible to obtain an “infinite precision” document format,

capable of including primitives created at an arbitrary level of zoom.

Move to introduction? But it discusses the Introduction :S

In Chapter 1 we give an overview of the current state of the research in document formats,

and the motivation for implementing “infinite precision” in a document format. We will

outline our approach to research in collaboration with David Gow[]. In Chapter 2 we pro-

vide more detailed background examining the literature related to rendering, interpreting,

and creating document formats, as well as possible techniques for increased and possibly

infinite precision. In Chapter ?? gives the current state of our research and the progress

towards the goals outlined in Chapter 1. In Chapter 4 we will conclude with a summary

of our findings and goals.

Keywords: document formats, precision, floating point, graphics, OpenGL, VHDL,

PostScript, PDF, bootstraps

TODO: Make document smaller; currently 16 pages with almost no content; limit is

20 with actual content

Contents

1 Introduction 1

1.1 Aim . 2

1.2 Methods . 2

1.3 Software and Hardware Requirements . 4

1.4 Timeline . 5

2 Literature Review 6

2.1 Document Formats . 6

2.1.1 Vector Graphics vs Raster Graphics . 6

2.1.2 Document Format Categories . 7

2.1.3 Modern Graphics Formats . 8

2.1.4 Precision Limitations . 8

2.2 Representation of Numbers . 8

2.2.1 Floating Point Number Representations . 8

2.2.2 Alternate Number Representations . 9

3 Progress Report 10

3.1 Development of Testbed Software . 10

3.2 Design and Implementation of “Tests” . 10

3.3 Floating Point Number Representations . 10

3.4 Virtual FPU . 11

3.5 Version Control . 11

4 Conclusion 12

4.1 Acheived Milestones . 12

4.2 Areas of further Research . 12

4.3 Witty Conclusion Goes Here . 12

References 13

i

Chapter 1

Introduction

Most of this chapter is copy pasted from the project proposal

〈http://szmoore.net/ipdf/documents/ProjectProposalSam.pdf〉

Early electronic document formats such as PostScript were motivated by a need to

print documents onto a paper medium. In the PostScript standard, this lead to a model

of the document as a program; a series of instructions to be executed by an interpreter

which would result in “ink” being placed on “pages” of a fixed size[3]. The ubiquitous

Portable Document Format (PDF) standard provides many enhancements to PostScript

taking into account desktop publishing requirements[4], but it is still fundamentally based

on the same imaging model[5]. This idea of a document as a static “page” has lead to

limited precision in these and other traditional document formats.

The emergence of the internet, web browsers, XML/HTML, JavaScript and related

technologies has seen a revolution in the ways in which information can be presented

digitally, and the PDF standard itself has begun to move beyond static text and figures[6,

7]. However, the popular document formats are still designed with the intention of showing

information at either a single, fixed level of detail, or a small range of levels.

As most digital display devices are smaller than physical paper medium, all useful

viewers are able to “zoom” to a subset of the document. Vector graphics formats including

PostScript and PDF support rasterisation at different zoom levels[3, 5], but the use of fixed

precision floating point numbers causes problems due to imprecision either far from the

origin, or at a high level of detail[?, 8].

We are now seeing a widespread use of mobile computing devices with touch screens,

where the display size is typically much smaller than paper pages and traditional computer

monitors; it seems that there is much to be gained by breaking free of the restricted

precision of traditional document formats.

1

http://szmoore.net/ipdf/documents/ProjectProposalSam.pdf

1 Introduction 2

1.1 Aim

In this project, we will explore the state of the art of current document formats including

PDF, PostScript, SVG, HTML, and the limitations of each in terms of precision. We

will consider designs for a document format allowing graphics primitives at an arbitrary

level of zoom with no loss of detail. We will refer to such a document format as “infinite

precision”. A viewer and editor will be implemented as a proof of concept; we adopt a low

level, ground up approach to designing this viewer so as to not become restricted by any

single existing document format.

New bit

It is necessary to clarify what we mean by “infinite” precision. We do not propose to be

able to contain an infinite amount of information within a document. The goal is to be

able to render a primitive at the same level of detail it is specified by a document format.

For example, the precision of coordinates of primitives drawn in a graphical editor will

always be limited by the resolution of the display on which they are drawn, but not by

the viewer.

There are many possible applications for documents in which precision is unlimited.

Several areas of use include: visualisation of extremely large or infinite data sets; visuali-

sation of high precision numerical computations; digital artwork; computer aided design;

and maps.

1.2 Methods

Initial research and software development is being conducted in collaboration with David

Gow[2]. Once a simple testbed application has been developed, we will individually explore

approaches for introducing arbitrary levels of precision; these approaches will be imple-

mented as alternate versions of the same software. The focus will be on drawing simple

primitives (lines, polygons, circles). However, if time permits we will explore adding more

complicated primitives (font glyphs, bezier curves, embedded bitmaps).

At this stage we have identified two possible areas for individual research:

1. Arbitrary Precision real valued numbers — Sam Moore

We plan to investigate the representation of real values to a high or arbitary degree

of precision. Such representations would allow for a document to be implemented

using a single global coordinate system. However, we would expect a decrease in

performance with increased complexity of the data structure used to represent a

real value. Both software and hardware techniques will be explored. We will also

consider the limitations imposed by performing calculations on the GPU or CPU.

1 Introduction 3

Starting points for research in this area are Priest’s 1991 paper, “Algorithms for

Arbitrary Precision Floating Point Arithmetic”[9], and Goldberg’s 1992 paper “The

design of floating point data types”[8]. A more recent and comprehensive text

book, “Handbook of Floating Point Arithmetic”[?], published in 2010, has also been

identified as highly relevant.

2. Local coordinate systems — David Gow [2]

An alternative approach involves segmenting the document into different regions

using fixed precision floats to define primitives within each region. A quadtree

or similar data structure could be employed to identify and render those regions

currently visible in the document viewer. Say more here?

1 Introduction 4

We aim to compare these and any additional implementations considered using the fol-

lowing metrics:

1. Performance vs Number of Primitives

As it is clearly desirable to include more objects in a document, this is a natural

metric for the usefulness of an implementation. We will compare the performance

of rendering different implementations, using several “standard” test documents.

2. Performance vs Visible Primitives

There will inevitably be an overhead to all primitives in the document, whether

drawn or not. As the structure of the document format and rendering algorithms

may be designed independently, we will repeat the above tests considering only the

number of visible primitives.

3. Performance vs Zoom Level

We will also consider the performance of rendering at zoom levels that include prim-

itives on both small and large scales, since these are the cases under which floating

point precision causes problems in the PostScript and PDF standards.

4. Performance whilst translation and scaling

Whilst changing the view, it is ideal that the document be re-rendered as efficiently

as possible, to avoid disorienting and confusing the user. We will therefore compare

the speed of rendering as the standard documents are translated or scaled at a

constant rate.

5. Artifacts and Limitations on Precision

As we are unlikely to achieve truly “infinite” precision, qualitative comparisons of

the accuracy of rendering under different implementations should be made.

1.3 Software and Hardware Requirements

Due to the relative immaturity and inconsistency of graphics drivers on mobile devices,

our proof of concept will be developed for a conventional GNU/Linux desktop or laptop

computer using OpenGL. However, the techniques explored could easily be extended to

other platforms and libraries.

1 Introduction 5

1.4 Timeline

Deadlines enforced by the faculty of Engineering Computing and Mathematics are itali-

cised.1.

Date Milestone

17th April Draft Literature Review completed. This

sort of didn’t happen...

1st May Testbed Software (basic document format

and viewer) completed and approaches for ex-

tending to allow infinite precision identified.

26th May Progress Report and Revised Literature Re-

view due.

9th June Demonstrations of limitations of floating

point precision in the Testbed software.

1st July At least one implementation of infinite pre-

cision for basic primitives (lines, polygons,

curves) completed. Other implementations,

advanced features, and areas for more de-

tailed research identified.

1st August Experiments and comparison of various infi-

nite precision implementations completed.

1st September Advanced features implemented and tested,

work underway on Final Report.

TBA Conference Abstract and Presentation due.

10th October Draft of Final Report due.

27th October Final Report due.

1David Gow is being assessed under the 2014 rules for a BEng (Software) Final Year Project, whilst
the author is being assessed under the 2014 rules for a BEng (Mechatronics) Final Year Project; deadlines
and requirements as shown in Gow’s proposal[2] may differ

Chapter 2

Literature Review

This chapter will review the literature. It will also include some figures created by us

from our test programs to aid with conceptual understanding of the literature.

TODO: Decide exactly what figures to make, then go make them; so far I have some

ideas for a few about Floating Point operations, but none about the other stuff.

TODO: Actually (re)write this entire chapter. ????: Do I really want to make this

go down to \subsubsection

A paper by paper summary of the literature is also available at:

〈http://szmoore.net/ipdf/documents/LiteratureNotes.pdf〉.

TODO: Actually make that readable or just remove the link.

2.1 Document Formats

Since mankind climbed down from the trees... plagiarism alert!

2.1.1 Vector Graphics vs Raster Graphics

Raster Graphics: Stores the exact pixels as they would appear on a device. Causes obvious

issues with scaling. Lowest level representation of a document.

Vector Graphics: Stores relative position of primitives - scales better. BUT still can’t

scale forever. Vector Graphics must be rasterised before being drawn on most display

devices.

Vector Graphics formats may contain more information than is shown on the display

device; Raster Graphics always contain as much or less pixel information than is shown.

6

http://szmoore.net/ipdf/documents/LiteratureNotes.pdf

2 Literature Review 7

Captain Obvious strikes again!

Figure 2.1 shows an example of scaling. The top image is a vector graphics drawing which

has been scaled. The bottom image was a raster image of the original drawing which has

then been scaled by the same amount. Scaling in = interpolation/antialiasing/just scale

the pixels depending on the viewer and scale; scaling out = blurring of pixels by averaging

of neighbours. If you are viewing this document in a PDF viewer you can try it yourself!

Otherwise, welcome to the 21st century.

Figure 2.1: Scaling of Vector and Raster Graphics

I am torn as to whether to use a Fox or Rabbit or Rox here.

2.1.2 Document Format Categories

Main reference: Pixels or Perish[6]

1. DOM - eg: HTML/XMLish - defined in terms of elements that can contain other

elements

2. Programming Language - eg: PostScript - programmer (or program) produces a

program that is interpreted

3. Combination - eg: Javascript with HTML/XML - Program is interpreted that mod-

ifies the DOM.

• The lines are becomming increasingly blurred between 1. and 2.

• In the case of Javascript/HTML, a special DOM element <canvas> allows even

lower level manipulation of graphics.

2 Literature Review 8

Can be either human readable1 or binary2

2.1.3 Modern Graphics Formats

PostScript: Not actually widely used now, but PDF is basically the same thing. PDF: A

way for adobe to make money SVG: Based on the DOM model, vector format BMP,PNG,GIF:

Are these even worth mentioning?

HTML: With the evolution of JavaScript and CSS, this has actually become a com-

petitive document format; it can display much more complex dynamic content than eg:

PDF.

Web based documents still suffer from precision issues (JavaScript is notorious for its

representation of everything, even integers, as floats, so you get rounding errors even with

integer maths), and it also has other limitations (requires reasonably skilled programmer

to create Javascript and/or a disgusting GUI tool that auto generates 10000 lines to display

a button (I have seen one of these)). Hate on javascript a bit less maybe.

2.1.4 Precision Limitations

2.2 Representation of Numbers

Although this project has been motivated by a desire for more flexible document formats,

the fundamental source of limited precision in vector document formats such as PDF and

PostScript is the use of floating point numbers to represent the coordinates of vertex po-

sitions. In particular, implementations of PostScript and PDF must by definition restrict

themselves to IEEE binary32 “single precision” floating point number representations in

order to conform to the standards[3, 5].

Whilst David Gow will be focusing on how to structure a document format so as to

avoid or reduce these limitations[2], the focus of our own research will be NUMBERS.

2.2.1 Floating Point Number Representations

x = (−1)s ×m×Be

B = 2, although IEEE also defines decimal representations for B = 10 — these are

useful in financial software[10].

1For some definition of human and some definition of readable
2So, our viewer is basically a DOM style but stored in a binary format

2 Literature Review 9

Aside: Are decimal representations for a document format eg: CAD also useful because

you can then use metric coordinate systems?

Precision

The floats map an infinite set of real numbers onto a discrete set of representations.

Figure: 8 bit “minifloats” (all 255 of them) clearly showing the “precision vs range”

issue

The most a result can be rounded in conversion to a floating point number is the units

in last place; mN ×Be.

Even though that paper that claims double is the best you will ever need because the

error can be as much as the size of a bacterium relative to the distance to the moon[]

there are many cases where increased number of bits will not save you.[11]

2.2.2 Alternate Number Representations

They exist[11].

Chapter 3

Progress Report

This chapter outlines the current state of our research in relation to the aims outlined in

Chapter 1. It will serve as an explanation for where the Figures in Chapter 2 came from.

It will just be a short summary of the implementation details.

3.1 Development of Testbed Software

We wrote a very simple OpenGL 1.1 program to experiment with, and then David Gow

converted it to OpenGL 3.1 and I have no idea how it works anymore.

3.2 Design and Implementation of “Tests”

• Compile by swapping out main() for a tester

• There are tests for doing some of the things in Chapter 1 but most still aren’t written

yet.

3.3 Floating Point Number Representations

I have1 some figures that I would prefer to include in Chapter 2 when I am talking about

the papers that inspired them. This section will probably briefly talk about how they

were created and just refer back to them.

• calculatepi.test

• typedef of Real

1Ok... “will have”

10

3 Progress Report 11

3.4 Virtual FPU

Techniques for dealing with FP numbers can be implemented in software (CPU) or on

dedicated hardware (FPU). We are able to run FP arithmetic on arbitrary simulations of

FPUs created using VHDL. Hopefully explore this a bit in Chapter 2.

3.5 Version Control

Git is a distributed version control system widely used in the development of open source

software[]. All rescources created for or used by this project have been placed in git reposi-

tories on several servers. The repositories are publically accessable at 〈http://git.ucc.asn.au〉

http://git.ucc.asn.au

Chapter 4

Conclusion

This report has provided motivation for considering approaches to achieving an infinite

level of zoom in a document.

4.1 Acheived Milestones

4.2 Areas of further Research

4.3 Witty Conclusion Goes Here

12

References

[1] Sam Moore. Infinite precision document formats (project proposal).

〈http://szmoore.net/ipdf/documents/ProjectProposalSam.pdf〉, 2014.

[2] David Gow. Infinite-precision document formats (project proposal).

〈http://davidgow.net/stuff/ProjectProposal.pdf〉, 2014.

[3] Adobe Systems Incorporated. PostScript Language Reference. Addison-Wesley Pub-

lishing Company, 3rd edition, 1985 - 1999.

[4] Michael A. Wan-Lee Cheng. Portable document format (pdf) – finally, a universal

document exchange technology. Journal of Technology Studies, 28(1):59 – 63, 2002.

[5] Adobe Systems Incorporated. PDF Reference. Adobe Systems Incorporated, 6th

edition, 2006.

[6] Brian Hayes. Pixels or perish. American Scientist, 100(2):106 – 111, 2012.

[7] David G. Barnes, Michail Vidiassov, Bernhard Ruthensteiner, Christopher J. Fluke,

Michelle R. Quayle, and Colin R. McHenry. Embedding and publishing interactive,

3-dimensional, scientific figures in portable document format (pdf) files. PLoS ONE,

8(9):1 – 15, 2013.

[8] David Goldberg. The design of floating-point data types. ACM Lett. Program. Lang.

Syst., 1(2):138–151, June 1992.

[9] D.M. Priest. Algorithms for arbitrary precision floating point arithmetic. In Computer

Arithmetic, 1991. Proceedings., 10th IEEE Symposium on, pages 132–143, Jun 1991.

[10] Ieee standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–70, Aug

2008.

[11] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jean-

nerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé, and

Serge Torres. Handbook of Floating-Point Arithmetic. Birkhäuser Boston Inc., Cam-

bridge, MA, USA, 2010.

13

http://szmoore.net/ipdf/documents/ProjectProposalSam.pdf
http://davidgow.net/stuff/ProjectProposal.pdf

	Introduction
	Aim
	Methods
	Software and Hardware Requirements
	Timeline

	Literature Review
	Document Formats
	Vector Graphics vs Raster Graphics
	Document Format Categories
	Modern Graphics Formats
	Precision Limitations

	Representation of Numbers
	Floating Point Number Representations
	Alternate Number Representations

	Progress Report
	Development of Testbed Software
	Design and Implementation of ``Tests''
	Floating Point Number Representations
	Virtual FPU
	Version Control

	Conclusion
	Acheived Milestones
	Areas of further Research
	Witty Conclusion Goes Here

	References

