
Infinite Precision Document Formats

Author: Samuel Moore[1]

Partners: David Gow[2]

Supervisor: Prof Tim French

May 1, 2014

1

Abstract

At the fundamental level, a document is a means to convey information. The limitations on

a digital document format therefore restrict the types and quality of information that can

be communicated. Whilst modern document formats are now able to include increasingly

complex dynamic content, they still suffer from early views of a document as a static page;

to be viewed at a fixed scale and position. In this report, we focus on the limitations of

modern document formats (including PDF, PostScript, SVG) with regards to the level

of detail, or precision at which primatives can be drawn. We propose a research project

to investigate whether it is possible to obtain an “infinite precision” document format,

capable of including primitives created at an arbitrary level of zoom.

Move to introduction? But it discusses the Introduction :S

In Chapter 1 we give an overview of the current state of the research in document formats,

and the motivation for implementing “infinite precision” in a document format. We will

outline our approach to research in collaboration with David Gow[]. In Chapter 2 we pro-

vide more detailed background examining the literature related to rendering, interpreting,

and creating document formats, as well as possible techniques for increased and possibly

infinite precision. In Chapter ?? gives the current state of our research and the progress

towards the goals outlined in Chapter 1. In Chapter 4 we will conclude with a summary

of our findings and goals.

Keywords: document formats, precision, floating point, graphics, OpenGL, VHDL,

PostScript, PDF, bootstraps

TODO: Make document smaller; currently 16 pages with almost no content; limit is

20 with actual content

Contents

1 Introduction 1

1.1 Aim . 2

1.2 Methods . 2

1.3 Software and Hardware Requirements . 4

1.4 Timeline . 5

2 Literature Review 6

2.1 Vector Graphics vs Raster Graphics . 6

2.2 Primitives in Vector Graphics Formats (and how they are Rendered) 9

2.2.1 Bezier Curves . 9

2.2.2 Text . 9

2.2.3 Shapes . 9

2.2.4 Other Things . 9

2.3 Document Representations . 9

2.3.1 Interpreted Model . 9

2.3.2 Crippled Interpreted Model . 10

2.3.3 Document Object Model . 10

2.3.4 Blurring the Line — Javascript . 10

2.4 Precision Limitations of Modern Documents . 11

2.4.1 Limitations Imposed By Standards . 11

2.4.2 Limitations Imposed By Graphics APIs and/or GPUs 11

2.4.3 Limitations Imposed By CPU . 12

2.5 Representation of Numbers . 12

2.5.1 The IEEE Standard . 12

2.5.2 Floating Point Number Representations . 12

2.5.3 Examples of Precision Related Errors in Floating Point Arithmetic 13

2.5.4 Relate This to the Sorts of Maths Done By Document Formats 13

2.5.5 Techniques for Arbitrary Precision Arithmetic 13

i

ii

2.5.6 Alternate Number Representations . 13

3 Progress Report 14

3.1 Development of Testbed Software . 14

3.2 Design and Implementation of “Tests” . 14

3.3 Document Format . 14

3.4 Floating Point Number Representations . 15

3.5 Virtual FPU . 15

3.6 Version Control . 15

4 Conclusion 16

4.1 Acheived Milestones . 16

4.2 Areas of further work . 16

4.3 Witty Conclusion Goes Here . 16

References 18

Chapter 1

Introduction

Most of this chapter is copy pasted from the project proposal

〈http://szmoore.net/ipdf/documents/ProjectProposalSam.pdf〉

Early electronic document formats such as PostScript were motivated by a need to

print documents onto a paper medium. In the PostScript standard, this lead to a model

of the document as a program; a series of instructions to be executed by an interpreter

which would result in “ink” being placed on “pages” of a fixed size[3]. The ubiquitous

Portable Document Format (PDF) standard provides many enhancements to PostScript

taking into account desktop publishing requirements[4], but it is still fundamentally based

on the same imaging model[5]. This idea of a document as a static “page” has lead to

limited precision in these and other traditional document formats.

The emergence of the internet, web browsers, XML/HTML, JavaScript and related

technologies has seen a revolution in the ways in which information can be presented

digitally, and the PDF standard itself has begun to move beyond static text and figures[6,

7]. However, the popular document formats are still designed with the intention of showing

information at either a single, fixed level of detail, or a small range of levels.

As most digital display devices are smaller than physical paper medium, all useful

viewers are able to “zoom” to a subset of the document. Vector graphics formats including

PostScript and PDF support rasterisation at different zoom levels[3, 5], but the use of fixed

precision floating point numbers causes problems due to imprecision either far from the

origin, or at a high level of detail[?, 8].

We are now seeing a widespread use of mobile computing devices with touch screens,

where the display size is typically much smaller than paper pages and traditional computer

monitors; it seems that there is much to be gained by breaking free of the restricted

precision of traditional document formats.

1

http://szmoore.net/ipdf/documents/ProjectProposalSam.pdf

1 Introduction 2

1.1 Aim

In this project, we will explore the state of the art of current document formats including

PDF, PostScript, SVG, HTML, and the limitations of each in terms of precision. We

will consider designs for a document format allowing graphics primitives at an arbitrary

level of zoom with no loss of detail. We will refer to such a document format as “infinite

precision”. A viewer and editor will be implemented as a proof of concept; we adopt a low

level, ground up approach to designing this viewer so as to not become restricted by any

single existing document format.

New bit

It is necessary to clarify what we mean by “infinite” precision. We do not propose to be

able to contain an infinite amount of information within a document. The goal is to be

able to render a primitive at the same level of detail it is specified by a document format.

For example, the precision of coordinates of primitives drawn in a graphical editor will

always be limited by the resolution of the display on which they are drawn, but not by

the viewer.

There are many possible applications for documents in which precision is unlimited.

Several areas of use include: visualisation of extremely large or infinite data sets; visuali-

sation of high precision numerical computations; digital artwork; computer aided design;

and maps.

1.2 Methods

Initial research and software development is being conducted in collaboration with David

Gow[2]. Once a simple testbed application has been developed, we will individually explore

approaches for introducing arbitrary levels of precision; these approaches will be imple-

mented as alternate versions of the same software. The focus will be on drawing simple

primitives (lines, polygons, circles). However, if time permits we will explore adding more

complicated primitives (font glyphs, bezier curves, embedded bitmaps).

At this stage we have identified two possible areas for individual research:

1. Arbitrary Precision real valued numbers — Sam Moore

We plan to investigate the representation of real values to a high or arbitary degree

of precision. Such representations would allow for a document to be implemented

using a single global coordinate system. However, we would expect a decrease in

performance with increased complexity of the data structure used to represent a

real value. Both software and hardware techniques will be explored. We will also

consider the limitations imposed by performing calculations on the GPU or CPU.

1 Introduction 3

Starting points for research in this area are Priest’s 1991 paper, “Algorithms for

Arbitrary Precision Floating Point Arithmetic”[9], and Goldberg’s 1992 paper “The

design of floating point data types”[8]. A more recent and comprehensive text

book, “Handbook of Floating Point Arithmetic”[?], published in 2010, has also been

identified as highly relevant.

2. Local coordinate systems — David Gow [2]

An alternative approach involves segmenting the document into different regions

using fixed precision floats to define primitives within each region. A quadtree

or similar data structure could be employed to identify and render those regions

currently visible in the document viewer. Say more here?

1 Introduction 4

We aim to compare these and any additional implementations considered using the fol-

lowing metrics:

1. Performance vs Number of Primitives

As it is clearly desirable to include more objects in a document, this is a natural

metric for the usefulness of an implementation. We will compare the performance

of rendering different implementations, using several “standard” test documents.

2. Performance vs Visible Primitives

There will inevitably be an overhead to all primitives in the document, whether

drawn or not. As the structure of the document format and rendering algorithms

may be designed independently, we will repeat the above tests considering only the

number of visible primitives.

3. Performance vs Zoom Level

We will also consider the performance of rendering at zoom levels that include prim-

itives on both small and large scales, since these are the cases under which floating

point precision causes problems in the PostScript and PDF standards.

4. Performance whilst translation and scaling

Whilst changing the view, it is ideal that the document be re-rendered as efficiently

as possible, to avoid disorienting and confusing the user. We will therefore compare

the speed of rendering as the standard documents are translated or scaled at a

constant rate.

5. Artifacts and Limitations on Precision

As we are unlikely to achieve truly “infinite” precision, qualitative comparisons of

the accuracy of rendering under different implementations should be made.

1.3 Software and Hardware Requirements

Due to the relative immaturity and inconsistency of graphics drivers on mobile devices,

our proof of concept will be developed for a conventional GNU/Linux desktop or laptop

computer using OpenGL. However, the techniques explored could easily be extended to

other platforms and libraries.

1 Introduction 5

1.4 Timeline

Deadlines enforced by the faculty of Engineering Computing and Mathematics are itali-

cised.1.

Date Milestone

17th April Draft Literature Review completed. This

sort of didn’t happen...

1st May Testbed Software (basic document format

and viewer) completed and approaches for ex-

tending to allow infinite precision identified.

26th May Progress Report and Revised Literature Re-

view due.

9th June Demonstrations of limitations of floating

point precision in the Testbed software.

1st July At least one implementation of infinite pre-

cision for basic primitives (lines, polygons,

curves) completed. Other implementations,

advanced features, and areas for more de-

tailed research identified.

1st August Experiments and comparison of various infi-

nite precision implementations completed.

1st September Advanced features implemented and tested,

work underway on Final Report.

TBA Conference Abstract and Presentation due.

10th October Draft of Final Report due.

27th October Final Report due.

1David Gow is being assessed under the 2014 rules for a BEng (Software) Final Year Project, whilst
the author is being assessed under the 2014 rules for a BEng (Mechatronics) Final Year Project; deadlines
and requirements as shown in Gow’s proposal[2] may differ

Chapter 2

Literature Review

This chapter will review the literature. It will also include some figures created by us

from our test programs to aid with conceptual understanding of the literature. A paper

by paper summary of the literature is also available at:

〈http://szmoore.net/ipdf/documents/LiteratureNotes.pdf〉.

TODO: If I want to link to the Paper by Paper summary it will need a bit of rewriting.

TODO: Actually (re)write this entire chapter.

TODO: Un dot point ify

TODO: Citations

TODO: Make less terrible

TODO: Reconsider sections (do I really want to make this go down to \subsubsection?)

TODO: :-(

2.1 Vector Graphics vs Raster Graphics

TODO: Distinguish between Raster Formats and the Rasterisation of an image (which

may or may not be in a raster format)

Raster Graphics

• Bitmap — array of colour information for pixels

• Exact pixels in a similar format to how they would appear on a (modern) display

device.

6

http://szmoore.net/ipdf/documents/LiteratureNotes.pdf

2 Literature Review 7

– Also similar to how they would be stored by a camera or scanner

– Is it misleading to say 2D array? Pixels are actually stored in a 1D array, but

conceptually it’s nicer to say 2D

– For that matter, should it described as 3D (3rd dimension = colour)?

• Lowest level representation of a document

• Issues with scaling; values of extra pixels must be calculated

• Not convenient to edit; ill suited to text

Vector Graphics

• Stores relative position of primitives - scales better

• In particular, edges of lines can be zoomed without becomming jagged; sometimes

(somewhat misleadingly) described as “infinitely sharp”

• Vector Graphics must be rasterised before being drawn on most display devices.

• Still can’t scale forever due to use of fixed size floats

Resolution and Raster Graphics

• DPI = dots (pixels) per inch differs per display device - a rastered image looks

different on different display devices

• PostScript/PDF use 72 points per inch; this means a rasterised image will look the

same in all pdf viewers regardless of the display.

• Tex uses 72.27 points per inch (?)

• The vector image was rastered at 96 points per inch

• Hence, have to scale by 72.27/96 = 0.7528125 to get the vector and rastered version

to look exactly the same in the pdf

2 Literature Review 8

VECTOR GRAPHICS

VECTOR GRAPHICS

Figure 2.1: Scaling of vector and Raster Graphics

Figure 2.1 shows a vector image (left) which has been rasterised (right). At the original

scale the two foxes should appear to be mirror images1. When the scale is increased, the

edges of the vector image remain sharp, whilst the raster image begins to appear jagged.

PDF viewers will typically use antialiasing to smooth the edges of a scaled bitmap, causing

the image to appear blurred.2.

Various ways to end this section:

1. It should be obvious that documents containing text must use the vector graphics

format, and so the remainder of this chapter will concentrate on the latter.

2. As can be seen in Figure ??, if we were to decide to pursue “infinite precision” in

raster graphics we would be shooting ourselves in both feet and then the face before

we even started. The rest of this chapter will concentrate on vector graphics.

3. You can’t have infinite precision in raster graphics by definition, therefore we no

longer care about them in this report.

4. This report being in a vector format is a clue that we only care about vector formats.

1If I’ve worked out the scaling to account for dpi differences between inkscape and latex/pdf correctly
2In the Atril Document Viewer 1.6.0 this image will only be antialiased at zoom levels ≤ 125%

2 Literature Review 9

2.2 Primitives in Vector Graphics Formats (and how they

are Rendered)

2.2.1 Bezier Curves

I did an ipython notebook on this in February, but I forgot all of it

2.2.2 Text

Text is just Bezier Curves

2.2.3 Shapes

Shapes are just bezier curves joined together.

2.2.4 Other Things

We don’t really care about other things (ie: Colour gradients etc) in this report.

2.3 Document Representations

The file format can be either human readable3 or binary4. Can also be compressed or

not. Here we are interested in how the document is interpreted or traversed in order to

produce graphics output.

2.3.1 Interpreted Model

Did I just invent that terminology or did I read it in a paper? Is there actually existing

terminology for this that sounds similar enough to “Document Object Model” for me to

compare them side by side?

• This model treats a document as the source code program which produces graphics

• Arose from the desire to produce printed documents using computers (which were

still limited to text only displays).

• Typed by hand or (later) generated by a GUI program

3For some definition of human and some definition of readable
4So, our viewer is basically a DOM style but stored in a binary format

2 Literature Review 10

• PostScript — largely supersceded by PDF on the desktop but still used by printers5

• TEX— Predates PostScript! LATEX is being used to create this very document and

until now I didn’t even have it here!

– I don’t really want to go down the path of investigating the billion steps involved

in getting LATEXinto an actually viewable format

– There are interpreters (usually WYSIWYG editors) for LATEXthough

– Maybe if LATEXwere more popular there would be desktop viewers that con-

verted LATEXdirectly into graphics

• Potential for dynamic content, interactivity; dynamic PostScript, enhanced Postscript

• Scientific Computing — Mathematica, Matlab, IPython Notebook — The document

and the code that produces it are stored together

• Problems with security — Turing complete, can be exploited easily

2.3.2 Crippled Interpreted Model

I’m pretty sure I made that one up

• PDF is PostScript but without the Turing Completeness

• Solves security issues, more efficient

2.3.3 Document Object Model

• DOM = Tree of nodes; node may have attributes, children, data

• XML (SGML) is the standard language used to represent documents in the DOM

• XML is plain text

• SVG is a standard for a vector graphics language conforming to XML (ie: a DOM

format)

2.3.4 Blurring the Line — Javascript

• The document is expressed in DOM format using XML/HTML/SVG

• A Javascript program is run which can modify the DOM

5Desktop pdf viewers can still cope with PS, but I wonder if a smartphone pdf viewer would implement
it?

2 Literature Review 11

• At a high level this may be simply changing attributes of elements dynamically

• For low level control there is canvas2D and even WebGL which gives direct access

to OpenGL functions

• Javascript can be used to make a HTML/SVG interactive

– Overlooking the fact that the SVG standard already allows for interactive ele-

ments...

• Javascript is now becoming used even in desktop environments and programs (Win-

dows 8, GNOME 3, Cinnamon, Game Maker Studio) (shudder)

• There are also a range of papers about including Javascript in PDF “Pixels or Perish”

being the only one we have actually read[6]

– I have no idea how this works; PDF is based on PostScript... it seems very

circular to be using a programming language to modify a document that is

modelled on being a (non turing complete) program

– This is yet more proof that people will converge towards solutions that “work”

rather than those that are optimal or elegant

– I guess it’s too much effort to make HTML look like PDF (or vice versa) so we

could phase one out

2.4 Precision Limitations of Modern Documents

All this is very interesting and provides important context, but it is not actually directly

related to the problem of infinite precision which we are going to try and solve.

2.4.1 Limitations Imposed By Standards

• Implementations of PostScript and PDF must by definition restrict themselves to

IEEE binary32 “single precision” floating point number representations in order to

conform to the standards[3, 5].

• Implementations of SVG are by definition required to use IEEE binary32 as a min-

imum. “High Quality” SVG viewers are required to use at least IEEE binary64.[10]

2.4.2 Limitations Imposed By Graphics APIs and/or GPUs

It’s not really the standard’s fault (although they could specify double); they specify IEEE

because underlying hardware must use IEEE.

2 Literature Review 12

• Internal representations are GPU dependent[?]

• OpenGL standards specify: binary16, binary32, binary64

• OpenVG aims to become a standard API for SVG viewers but it uses binary32 and

may be worse internally[11]

2.4.3 Limitations Imposed By CPU

Even if we don’t use the GPU, CPU’s are restricted in their representation of floating

point numbers by the IEEE standard.

AND THUS WE FINALLY GET TO THE POINT

2.5 Representation of Numbers

Although this project has been motivated by a desire for more flexible document formats,

the fundamental source of limited precision in vector document formats is the restriction

to IEEE floating point numbers for representation of coordinates.

Whilst David Gow will be focusing on structures and the use of multiple coordinate

systems to represent a document so as to avoid or reduce these limitations[2], the focus of

our own research will be increased precision in the representation of real numbers so as

to get away with using a single global coordinate system.

2.5.1 The IEEE Standard

2.5.2 Floating Point Number Representations

x = (−1)s ×m×Be

B = 2, although IEEE also defines decimal representations for B = 10 — these are

useful in financial software[12].

Aside: Are decimal representations for a document format eg: CAD also useful because

you can then use metric coordinate systems?

Precision

The floats map an infinite set of real numbers onto a discrete set of representations.

2 Literature Review 13

Figure: 8 bit “minifloats” (all 255 of them) clearly showing the “precision vs range”

issue

The most a result can be rounded in conversion to a floating point number is the units

in last place; mN ×Be.

Even though that paper that claims double is the best you will ever need because the

error can be as much as the size of a bacterium relative to the distance to the moon[]

there are many cases where increased number of bits will not save you.[13]

2.5.3 Examples of Precision Related Errors in Floating Point Arithmetic

2.5.4 Relate This to the Sorts of Maths Done By Document Formats

2.5.5 Techniques for Arbitrary Precision Arithmetic

• Fast2SUM for summation (and multiplication).

• Guard digits.

• Other techniques

• Hardware techniques that improve speed (which may be beneficial because you can

get away with higher precision in hardware)

• Anything you can do in hardware you can do in software but it will be slower and

have more segmentation faults

2.5.6 Alternate Number Representations

They exist[13].

Chapter 3

Progress Report

This chapter outlines the current state of our research in relation to the aims outlined in

Chapter 1. It will serve as an explanation for where the Figures in Chapter 2 came from.

It will just be a short summary of the implementation details.

3.1 Development of Testbed Software

We wrote a very simple OpenGL 1.1 program to experiment with, and then David Gow

converted it to OpenGL 3.1 and I have no idea how it works anymore.

3.2 Design and Implementation of “Tests”

• Compile by swapping out main() for a tester

• There are tests for doing some of the things in Chapter 1 but most still aren’t written

yet.

3.3 Document Format

Currently we effectively have a DOM format but with the following non-features:

• Binary file format (non standard; not XML)

• Only rectangles.

14

3 Progress Report 15

3.4 Floating Point Number Representations

I have1 some figures that I would prefer to include in Chapter 2 when I am talking about

the papers that inspired them. This section will probably briefly talk about how they

were created and just refer back to them.

• calculatepi.test

• typedef of Real

3.5 Virtual FPU

Techniques for dealing with FP numbers can be implemented in software (CPU) or on

dedicated hardware (FPU). We are able to run FP arithmetic on arbitrary simulations of

FPUs created using VHDL. Hopefully explore this a bit in Chapter 2.

3.6 Version Control

Git is a distributed version control system widely used in the development of open source

software[]. All rescources created for or used by this project have been placed in git reposi-

tories on several servers. The repositories are publically accessable at 〈http://git.ucc.asn.au〉

1Ok... “will have”

http://git.ucc.asn.au

Chapter 4

Conclusion

This report has provided motivation for considering approaches to achieving an infinite

level of zoom in a document.

4.1 Acheived Milestones

4.2 Areas of further work

• Continue looking for relevant literature

• Implement all those tests mentioned in Chapter 1

• Actually identify the techniques I will use THIS ONE SHOULD BE DONE

BEFORE I HAND IN THE LITERATURE REVIEW!

• Possible Ultimate Goal: Implement (a subset) of SVG and then show an SVG doc-

ument that we can render but a browser can’t

– This means extending our viewer to be able to read (a subset) SVG

– Can already read XML, so this shouldn’t actually be too bad

∗ Emphasis on subset

∗ (I’ve seen the SVG standard; I’m talking about implementing the 18 pages

under “Basic Shapes”. The other 818 pages can complain to someone who

cares.)

– Suggestion to David that he probably won’t like (or read): Make his octree

structure specifiable as an SVG extension

4.3 Witty Conclusion Goes Here

16

References

[1] Sam Moore. Infinite precision document formats (project proposal).

〈http://szmoore.net/ipdf/documents/ProjectProposalSam.pdf〉, 2014.

[2] David Gow. Infinite-precision document formats (project proposal).

〈http://davidgow.net/stuff/ProjectProposal.pdf〉, 2014.

[3] Adobe Systems Incorporated. PostScript Language Reference. Addison-Wesley Pub-

lishing Company, 3rd edition, 1985 - 1999.

[4] Michael A. Wan-Lee Cheng. Portable document format (pdf) – finally, a universal

document exchange technology. Journal of Technology Studies, 28(1):59 – 63, 2002.

[5] Adobe Systems Incorporated. PDF Reference. Adobe Systems Incorporated, 6th

edition, 2006.

[6] Brian Hayes. Pixels or perish. American Scientist, 100(2):106 – 111, 2012.

[7] David G. Barnes, Michail Vidiassov, Bernhard Ruthensteiner, Christopher J. Fluke,

Michelle R. Quayle, and Colin R. McHenry. Embedding and publishing interactive,

3-dimensional, scientific figures in portable document format (pdf) files. PLoS ONE,

8(9):1 – 15, 2013.

[8] David Goldberg. The design of floating-point data types. ACM Lett. Program. Lang.

Syst., 1(2):138–151, June 1992.

[9] D.M. Priest. Algorithms for arbitrary precision floating point arithmetic. In Computer

Arithmetic, 1991. Proceedings., 10th IEEE Symposium on, pages 132–143, Jun 1991.

[10] Erik Dahlstóm, Patric Dengler, Anthony Grasso, Chris Lilley, Cameron McCormack,

Doug Schepers, Jonathon Watt, Jon Ferraiolo, Fujisawa Jun, and Dean Jackson.

Scalable vector graphics (svg) 1.1 (second edition). WC3 Recommendation, August

2011.

[11] Daniel Rice and RJ Simpson. Openvg specification, version 1.1. Khronos Group,

2008.

17

http://szmoore.net/ipdf/documents/ProjectProposalSam.pdf
http://davidgow.net/stuff/ProjectProposal.pdf

REFERENCES 18

[12] Ieee standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–70, Aug

2008.

[13] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jean-

nerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé, and

Serge Torres. Handbook of Floating-Point Arithmetic. Birkhäuser Boston Inc., Cam-

bridge, MA, USA, 2010.

	Introduction
	Aim
	Methods
	Software and Hardware Requirements
	Timeline

	Literature Review
	Vector Graphics vs Raster Graphics
	Primitives in Vector Graphics Formats (and how they are Rendered)
	Bezier Curves
	Text
	Shapes
	Other Things

	Document Representations
	Interpreted Model
	Crippled Interpreted Model
	Document Object Model
	Blurring the Line — Javascript

	Precision Limitations of Modern Documents
	Limitations Imposed By Standards
	Limitations Imposed By Graphics APIs and/or GPUs
	Limitations Imposed By CPU

	Representation of Numbers
	The IEEE Standard
	Floating Point Number Representations
	Examples of Precision Related Errors in Floating Point Arithmetic
	Relate This to the Sorts of Maths Done By Document Formats
	Techniques for Arbitrary Precision Arithmetic
	Alternate Number Representations

	Progress Report
	Development of Testbed Software
	Design and Implementation of ``Tests''
	Document Format
	Floating Point Number Representations
	Virtual FPU
	Version Control

	Conclusion
	Acheived Milestones
	Areas of further work
	Witty Conclusion Goes Here

	References

