
WWW.MOTOROLA.COM/SEMICONDUCTORS

M68HC11
Microcontrollers

M68HC11RM/D
Rev. 6, 4/2002

M68HC11

Reference Manual

M68HC11
Reference Manual

To provide the most up-to-date information, the revision of our
documents on the World Wide Web will be the most current. Your printed
copy may be an earlier revision. To verify you have the latest information
available, refer to:

http://www.motorola.com/semiconductors/

The following revision history table summarizes changes contained in
this document. For your convenience, the page number designators
have been linked to the appropriate location.

Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc.
DigitalDNA is a trademark of Motorola, Inc. © Motorola, Inc., 2002
M68HC11 — Rev. 6 Reference Manual

MOTOROLA 3

http://www.motorola.com/semiconductors/

Revision History
Revision History

Date
Revision

Level
Description

Page
Number(s)

June,
2001

4
Reformatted to meet current publications standards

Index — Updated 631

February,
2002

5
Figure 9-4. Baud Rate Control Register (BAUD) — Address
designation corrected to $102B

327

April,
2002

6

ADD Instruction —Corrected table head from ADCA to ADDA 496

AND Instruction — Corrected table head from ADCA to ANDA 498

ASL Instruction —Corrected table heads ASLA (IMM) to ASLA
(INH) and ASLB (DIR) to ASLB (INH)

499

ASR Instruction — Corrected table heads ASRA (IMM) to ASRA
(INH) and ASRB (DIR) to ASRB (INH)

501

BIT Instruction — Corrected second table entry for Data under
BITA (IND,Y) from AS to A5 and under BITB (IND,Y) from ES to
E5

510

CLR Instruction — Corrected table head from CLRA (IMM) to
CLRA (INH) and CLRB (DIR) to CLRB (INH)

529

STY Instruction — Corrected second table entry for Data under
STY (IND,X) EE to EF

584

WAI Instruction — Changed I bit designation from 1 to — 598
Reference Manual M68HC11 — Rev. 6

4 MOTOROLA

Reference Manual — M68HC11

List of Sections
Section 1. General Description .27

Section 2. Pins and Connections 35

Section 3. Configuration and Modes of Operation 85

Section 4. On-Chip Memory .121

Section 5. Resets and Interrupts 159

Section 6. Central Processor Unit (CPU) 197

Section 7. Parallel Input/Output. 229

Section 8. Synchronous Serial
Peripheral Interface 291

Section 9. Asynchronous Serial
Communications Interface. 317

Section 10. Main Timer and Real-Time Interrupt 367

Section 11. Pulse Accumulator443

Section 12. Analog-to-Digital Converter System459

Appendix A. Instruction Set Details 487

Appendix B. Bootloader Listings 603

Index. 631
M68HC11 — Rev. 6 Reference Manual

MOTOROLA List of Sections 5

List of Sections
Reference Manual M68HC11 — Rev. 6

6 List of Sections MOTOROLA

Reference Manual — M68HC11

Table of Contents
Section 1. General Description

1.1 Contents .27

1.2 Introduction .27

1.3 General Description of the MC68HC11A828

1.4 Programmer’s Model .29

1.5 Product Derivatives. .32

Section 2. Pins and Connections

2.1 Contents .35

2.2 Introduction .36

2.3 Packages and Pin Names .37
2.3.1 MC68HC11A8 .38
2.3.2 MC68HC11D3/MC68HC711D3 .39
2.3.3 MC68HC11E9/MC68HC711E9 .40
2.3.4 MC68HC811E2 .41
2.3.5 MC68HC11F1 .43
2.3.6 MC68HC24 Port Replacement Unit44

2.4 Pin Descriptions .44
2.4.1 Power-Supply Pins (VDD and VSS).45
2.4.2 Mode Select Pins (MODB/VSTBY and MODA/LIR).46
2.4.3 Crystal Oscillator and Clock Pins (EXTAL, XTAL, and E) . .50
2.4.4 Crystal Oscillator Application Information.55
2.4.4.1 Crystals for Parallel Resonance.55
2.4.4.2 Using Crystal Oscillator Outputs 56
2.4.4.3 Using External Oscillator .56
2.4.4.4 AT-Strip versus AT-Cut Crystals 56
2.4.5 Reset Pin (RESET) .56
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Table of Contents 7

Table of Contents
2.4.6 Interrupt Pins (XIRQ and IRQ) .58
2.4.7 A/D Reference and Port E Pins

(VREFL, VREFH, and PE7–PE0) .59
2.4.8 Timer Port A Pins .61
2.4.9 Serial Port D Pins .61
2.4.10 Ports B and C and STRA and STRB Pins62

2.5 Termination of Unused Pins .64

2.6 Avoidance of Pin Damage .66
2.6.1 Zap and Latchup .67
2.6.2 Protective Interface Circuits .68
2.6.3 Internal Circuitry — Digital Input-Only Pin68
2.6.4 Internal Circuitry — Analog Input-Only Pin.70
2.6.5 Internal Circuitry — Digital I/O Pin .72
2.6.6 Internal Circuitry — Input/Open-Drain-Output Pin73
2.6.7 Internal Circuitry — Digital Output-Only Pin74
2.6.8 Internal Circuitry — MODB/VSTBY Pin74
2.6.9 Internal Circuitry — IRQ/VPPBULK Pin 76

2.7 Typical Expanded Mode System Connections77

2.8 Typical Single-Chip Mode System Connections.81

2.9 System Development and Debug Features82
2.9.1 Load Instruction Register (LIR) .82
2.9.2 Internal Read Visibility (IRV) .82
2.9.3 MC68HC24 Port Replacement Unit (PRU) 83

Section 3. Configuration and Modes of Operation

3.1 Contents .85

3.2 Introduction .86

3.3 Hardware Mode Selection .86
3.3.1 Hardware Mode Select Pins. .87
3.3.2 Mode Control Bits in the HPRIO Register 88

3.4 EEPROM-Based Configuration (CONFIG) Register.89
3.4.1 Operation of CONFIG Mechanism .90
3.4.2 CONFIG Register .91
Reference Manual M68HC11 — Rev. 6

8 Table of Contents MOTOROLA

Table of Contents
3.5 Protected Control Register Bits .94
3.5.1 RAM and I/O Mapping Register (INIT)95
3.5.2 Protected Control Bits in the TMSK2 Register98
3.5.3 Protected Control Bits in the OPTION Register99

3.6 Normal MCU Operating Modes .101
3.6.1 Normal Single-Chip Mode .101
3.6.2 Normal Expanded Mode. .101

3.7 Special MCU Operating Modes .102
3.7.1 Testing Functions Control Register (TEST1)104
3.7.2 Test-Related Control Bits in the BAUD Register 107
3.7.3 Special Test Mode .108
3.7.4 Special Bootstrap Mode .109
3.7.4.1 Loading Programs in Bootstrap Mode110
3.7.4.2 Executing User Programs in Bootstrap Mode111
3.7.4.3 Using Interrupts in Bootstrap Mode112
3.7.4.4 Bootloader Firmware Options .113

3.8 Test and Bootstrap Mode Applications114

3.9 Example 3-1: Programming CONFIG
(Uses Special Test Mode) .115

Section 4. On-Chip Memory

4.1 Contents .121

4.2 Introduction .122

4.3 Read-Only Memory (ROM). .122

4.4 Random-Access Memory (RAM) .124
4.4.1 Remapping Using the INIT Register.124
4.4.2 RAM Standby .125

4.5 Electrically Erasable Programmable ROM (EEPROM) 127
4.5.1 Logical and Physical Organization127
4.5.2 Basic Operation of the EEPROM .129
4.5.3 Systems Operating Below 2-MHz Bus

Speed (E Clock) .134
4.5.4 EEPROM Programming Register (PPROG) 134
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Table of Contents 9

Table of Contents
4.5.5 Programming/Erasing Procedures137
4.5.5.1 Programming .138
4.5.5.2 Bulk Erase .138
4.5.5.3 Row Erase .139
4.5.5.4 Byte Erase .139
4.5.5.5 CONFIG Register. .139
4.5.6 Optional EEPROM Security Mode140

4.6 EEPROM Application Information. .143
4.6.1 Conditions and Practices to Avoid144
4.6.2 Using EEPROM to Select Product Options146
4.6.3 Using EEPROM for Setpoint

and Calibration Information .146
4.6.4 Using EEPROM during Product Development148
4.6.5 Logging Data .148
4.6.6 Self-Adjusting Systems Using EEPROM149
4.6.7 Software Methods to Extend Life Expectancy150

Section 5. Resets and Interrupts

5.1 Contents .159

5.2 Introduction .160

5.3 Initial Conditions Established During Reset161
5.3.1 System Initial Conditions .162
5.3.1.1 Central Processor Unit (CPU) .162
5.3.1.2 Memory Map .162
5.3.1.3 Parallel Input/Output (I/O) .162
5.3.1.4 Timer .163
5.3.1.5 Real-Time Interrupt .163
5.3.1.6 Pulse Accumulator .163
5.3.1.7 Computer Operating Properly (COP) Watchdog164
5.3.1.8 Serial Communications Interface (SCI)164
5.3.1.9 Serial Peripheral Interface (SPI) 164
5.3.1.10 Analog-to-Digital (A/D) Converter 164
5.3.1.11 Other System Controls. .165
5.3.2 CONFIG Register Allows Flexible Configuration165
5.3.3 Mode of Operation Established .166
5.3.4 Program Counter Loaded with Reset Vector167
Reference Manual M68HC11 — Rev. 6

10 Table of Contents MOTOROLA

Table of Contents
5.4 Causes of Reset .167
5.4.1 Power-On Reset (POR) .169
5.4.2 COP Watchdog Timer Reset .170
5.4.3 Clock Monitor Reset .172
5.4.4 External Reset .174

5.5 Interrupt Process .175
5.5.1 Interrupt Recognition and Stacking Registers 177
5.5.2 Selecting Interrupt Vectors .178
5.5.3 Return from Interrupt .181

5.6 Non-Maskable Interrupts .181
5.6.1 Non-Maskable Interrupt Request (XIRQ)186
5.6.2 Illegal Opcode Fetch .188
5.6.3 Software Interrupt. .189

5.7 Maskable Interrupts .190
5.7.1 I Bit in the Condition Code Register190
5.7.2 Special Considerations for I-Bit-Related Instructions192

5.8 Interrupt Request .192
5.8.1 Selecting Edge Triggering or Level Triggering193
5.8.2 Sharing Vector with Handshake I/O Interrupts194

5.9 Interrupts from Internal Peripheral Subsystems195
5.9.1 Inhibiting Individual Sources. .195
5.9.2 Clearing Interrupt Status Flag Bits195
5.9.3 Automatic Clearing Mechanisms on Some Flags.196

Section 6. Central Processor Unit (CPU)

6.1 Contents .197

6.2 Introduction .198

6.3 Programmer’s Model .199
6.3.1 Accumulators (A, B, and D) .200
6.3.2 Index Registers (X and Y) .200
6.3.3 Stack Pointer (SP) .201
6.3.4 Program Counter (PC) .203
6.3.5 Condition Code Register (CCR) .203
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Table of Contents 11

Table of Contents
6.4 Addressing Modes .206
6.4.1 Immediate (IMM) .206
6.4.2 Extended (EXT) .208
6.4.3 Direct (DIR) .208
6.4.4 Indexed (INDX and INDY) .210
6.4.5 Inherent (INH). .211
6.4.6 Relative (REL) .212

6.5 M68HC11 Instruction Set .213
6.5.1 Accumulator and Memory Instructions214
6.5.1.1 Loads, Stores, and Transfers. .215
6.5.1.2 Arithmetic Operations .216
6.5.1.3 Multiply and Divide .217
6.5.1.4 Logical Operations .218
6.5.1.5 Data Testing and Bit Manipulation219
6.5.1.6 Shifts and Rotates .220
6.5.2 Stack and Index Register Instructions221
6.5.3 Condition Code Register Instructions.223
6.5.4 Program Control Instructions .224
6.5.4.1 Branches .225
6.5.4.2 Jumps .226
6.5.4.3 Subroutine Calls and Returns

(BSR, JSR, and RTS) .226
6.5.4.4 Interrupt Handling (RTI, SWI, and WAI).227
6.5.4.5 Miscellaneous (NOP, STOP, and TEST)227

Section 7. Parallel Input/Output

7.1 Contents .229

7.2 Introduction .230

7.3 Parallel I/O Overview .231

7.4 Parallel I/O Register and Control Bit Explanations234
7.4.1 Port Registers. .236
7.4.2 Data Direction Registers .236
Reference Manual M68HC11 — Rev. 6

12 Table of Contents MOTOROLA

Table of Contents
7.5 Detailed I/O Pin Descriptions .238
7.5.1 Port A .238
7.5.1.1 PA2–PA0 (IC3–IC1) Pin Logic .238
7.5.1.2 PA6–PA3 (OC5–OC2) Pin Logic240
7.5.1.3 PA7 (OC1 and PAI) Pin Logic .242
7.5.1.4 Port A Idealized Timing .244
7.5.2 Port B .245
7.5.2.1 Port B Pin Logic .245
7.5.2.2 Port B Idealized Timing .246
7.5.2.3 Special Considerations for Port B

on MC68HC24 PRU .248
7.5.3 R/W (STRB) Pin .248
7.5.3.1 R/W (STRB) Pin Logic .248
7.5.3.2 Special Considerations for STRB

on MC68HC24 PRU .250
7.5.4 Port C .251
7.5.4.1 Port C Pin Logic for Expanded Modes.251
7.5.4.2 Summary of Port C Idealized

Expanded Mode Timing .252
7.5.4.3 Port C Single-Chip Mode Pin Logic253
7.5.4.4 Port C Idealized Single-Chip Mode Timing 257
7.5.4.5 Special Considerations for Port C

on MC68HC24 PRU .259
7.5.5 AS (STRA) Pin .259
7.5.5.1 AS (STRA) Pin Logic .259
7.5.5.2 Special Considerations for STRA

on MC68HC24 PRU .261
7.5.6 Port D .261
7.5.6.1 PD0 (RxD) Pin Logic .262
7.5.6.2 PD1 (TxD) Pin Logic .264
7.5.6.3 PD2 (MISO) Pin Logic .266
7.5.6.4 PD3 (MOSI) Pin Logic .269
7.5.6.5 PD4 (SCK) Pin Logic .272
7.5.6.6 PD5 (SS) Pin Logic .274
7.5.6.7 Idealized Port D Timing .277
7.5.7 Port E .278
7.5.7.1 Port E Pin Logic .278
7.5.7.2 Idealized Port E Timing .280
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Table of Contents 13

Table of Contents
7.6 Handshake I/O Subsystem. .281
7.6.1 Simple Strobe Mode. .282
7.6.1.1 Port B Strobe Output .283
7.6.1.2 Port C Simple Latching Input .283
7.6.2 Full-Input Handshake Mode .283
7.6.3 Full-Output Handshake Mode .285
7.6.3.1 Normal Output Handshake .286
7.6.3.2 Three-State Variation of Output Handshake 286
7.6.4 Parallel I/O Control Register (PIOC) 286
7.6.5 Non-Handshake Uses of STRA and STRB Pins 290

Section 8. Synchronous Serial Peripheral Interface

8.1 Contents .291

8.2 Introduction .292

8.3 SPI Transfer Formats .293
8.3.1 SPI Clock Phase and Polarity Controls 293
8.3.2 CPHA Equals Zero Transfer Format 293
8.3.3 CPHA Equals One Transfer Format.294

8.4 SPI Block Diagram .295

8.5 SPI Pin Signals .295

8.6 SPI Registers .298
8.6.1 Port D Data Direction Control Register (DDRD).298
8.6.2 SPI Control Register (SPCR) .300
8.6.3 SPI Status Register (SPSR). .302

8.7 SPI System Errors .303
8.7.1 SPI Mode-Fault Error .303
8.7.2 SPI Write-Collision Errors. .304

8.8 Beginning and Ending SPI Transfers305
8.8.1 Transfer Beginning Period (Initiation Delay).305
8.8.2 Transfer Ending Period .306

8.9 Transfers to Peripherals with Odd Word Lengths.309
8.9.1 Example 8-1: On-Chip SPI Driving an MC144110 D/A . . .311
8.9.2 Example 8-2: Software SPI Driving an MC144110 D/A . . .311
Reference Manual M68HC11 — Rev. 6

14 Table of Contents MOTOROLA

Table of Contents
Section 9. Asynchronous Serial
Communications Interface

9.1 Contents .317

9.2 Introduction .318

9.3 General Description .318
9.3.1 Transmitter Block Diagram. .319
9.3.2 Receiver Block Diagram. .321

9.4 SCI Registers and Control Bits .323
9.4.1 Port D Related Registers and Control Bits

(PORTD, DDRD, and SPCR) .325
9.4.2 Baud-Rate Control Register (BAUD)327
9.4.3 SCI Control Register 1 (SCCR1) .329
9.4.4 SCI Control Register 2 (SCCR2) .331
9.4.5 SCI Status Register (SCSR) .333
9.4.6 SCI Data Register (SCDR). .337

9.5 SCI Transmitter. .338
9.5.1 8- and 9-Bit Data Modes .339
9.5.2 Interrupts and Status Flags .340
9.5.3 Send Break. .341
9.5.4 Queued Idle Character .341
9.5.5 Disabling the SCI Transmitter .343
9.5.6 TxD Pin Buffer Logic .344

9.6 SCI Receiver. .346
9.6.1 Data Sampling Technique .346
9.6.2 Worst-Case Baud-Rate Mismatch353
9.6.3 Double-Buffered Operation .355
9.6.4 Receive Status Flags and Interrupts 355
9.6.5 Receiver Wakeup Operation .356
9.6.5.1 Idle-Line Wakeup .356
9.6.5.2 Address-Mark Wakeup .357

9.7 Baud-Rate Generator .357
9.7.1 Timing Chain Block Diagram .358
9.7.2 Baud Rates versus Crystal Frequency.358
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Table of Contents 15

Table of Contents
9.8 SCI Timing Details .359
9.8.1 Operation as Transmitter Is Enabled361
9.8.2 TDRE and Transfers from SCDR

to Transmit Shift Register .361
9.8.3 TC versus Character Completion .363
9.8.4 RDRF Flag Setting versus End

of a Received Character .363

Section 10. Main Timer and Real-Time Interrupt

10.1 Contents .367

10.2 Introduction .368

10.3 General Description .368
10.3.1 Overall Timer Block Diagram .369
10.3.2 Input-Capture Concept .371
10.3.3 Output-Compare Concept .372

10.4 Free-Running Counter and Prescaler.373
10.4.1 Overall Clock Divider Structure .375
10.4.1.1 Prescaler .378
10.4.1.2 Overflow. .380
10.4.1.3 Counter Bypass (Test Mode) .382
10.4.2 Real-Time Interrupt (RTI) Function 382
10.4.3 Computer Operating Properly (COP)

Watchdog Function .386
10.4.4 Tips for Clearing Timer Flags .387

10.5 Input-Capture Functions .389
10.5.1 Programmable Options .392
10.5.2 Using Input Capture to Measure Period

and Frequency .393
10.5.3 Using Input Capture to Measure Pulse Width 396
10.5.4 Measuring Very Short Time Periods 401
10.5.5 Measuring Long Time Periods

with Input Capture and Overflow401
10.5.6 Establishing a Relationship between Software

and an Event .405
10.5.7 Other Uses for Input-Capture Pins406
Reference Manual M68HC11 — Rev. 6

16 Table of Contents MOTOROLA

Table of Contents
10.6 Output-Compare Functions .406
10.6.1 Normal Input/Output Pin Control Using OC5–OC2 412
10.6.2 Advanced Input/Output Pin Control Using OC1415
10.6.2.1 One Output Compare Controlling up to Five Pins416
10.6.2.2 Two Output Compares Controlling One Pin.417
10.6.3 Forced Output Compares. .420

10.7 Timing Details for the Main Timer System421

10.8 Listing of Timer Examples .425

Section 11. Pulse Accumulator

11.1 Contents .443

11.2 Introduction .443

11.3 General Description .444
11.3.1 Pulse Accumulator Block Diagram445
11.3.2 Pulse Accumulator Control and Status Registers 447

11.4 Event Counting Mode .450
11.4.1 Interrupting after N Events .451
11.4.2 Counting More Than 256 Events .451

11.5 Gated Time Accumulation Mode .453
11.5.1 Measuring Times Longer Than the Range

of the 8-Bit Counter .454
11.5.2 Configuring for Interrupt after a Specified Time455

11.6 Other Uses for the PAI Pin .455

11.7 Timing Details for the Pulse Accumulator.455

Section 12. Analog-to-Digital Converter System

12.1 Contents .459

12.2 Introduction .459

12.3 Charge-Redistribution A/D .460
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Table of Contents 17

Table of Contents
12.4 A/D Converter Implementation on MC68HC11A8 471
12.4.1 MC68HC11A8 Successive-Approximation

A/D Converter .471
12.4.2 A/D Charge Pump and Resistor-Capacitor (RC)

Oscillator .472
12.4.3 MC68HC11A8 A/D System Control Logic 474
12.4.4 A/D Control/Status Register (ADCTL) 476
12.4.5 A/D Result Registers (ADR4–AD1) 478

12.5 A/D Pin Connection Considerations .478

Appendix A. Instruction Set Details

A.1 Contents .487

A.2 Introduction .487

A.3 Nomenclature .488

A.4 M68HC11 Instruction Set .491

Appendix B. Bootloader Listings

Bootloader Listings .603

Index

Index . 631
Reference Manual M68HC11 — Rev. 6

18 Table of Contents MOTOROLA

Reference Manual — M68HC11

List of Figures
Figure Title Page

1-1 Block Diagram .30
1-2 M68HC11 Programmer’s Model .31
1-3 Part Numbering. .34

2-1 MC68HC11A8 Pin Assignments. .38
2-2 MC68HC11D3/711D3 Pin Assignments39
2-3 MC68HC11E9/711E9 Pin Assignments (52-Pin PLCC)41
2-4 MC68HC811E2 Pin Assignments (48-Pin DIP) 42
2-5 MC68HC11F1 Pin Assignments (68-Pin PLCC).43
2-6 MC68HC24 Pin Assignments .44
2-7 Reduced IDD MODA/LIR Connections48
2-8 RAM Standby MODB/VSTBY Connections49
2-9 High-Frequency Crystal Connections .51
2-10 Low-Frequency Crystal Connections .52
2-11 Crystal Layout Example .53
2-12 Reset Circuit Example .57
2-13 Low-Pass Filter for A/D Reference Pins60
2-14 CMOS Inverter .64
2-15 Internal Circuitry — Digital Input-Only Pin 69
2-16 Internal Circuitry — Analog Input-Only Pin71
2-17 Internal Circuitry — Digital I/O Pin .72
2-18 Internal Circuitry — Input/Open-Drain-Output Pin 74
2-19 Internal Circuitry — Output-Only Pin .74
2-20 Internal Circuitry — MODB/VSTBY Pin 75
2-21 Internal Circuitry — IRQ/VPPBULK Pin.76
2-22 Basic Expanded Mode Connections. .78
2-23 Basic Single-Chip Mode Connections 80
M68HC11 — Rev. 6 Reference Manual

MOTOROLA List of Figures 19

List of Figures
Figure Title Page

3-1 Highest Priority I-Bit Interrupt
and Miscellaneous Register (HPRIO)88

3-2 System Configuration Register (CONFIG)91
3-3 RAM and I/O Mapping Register (INIT)95
3-4 Timer Mask Register 2 (TMSK2) .98
3-5 System Configuration Option Register (OPTION) 99
3-6 Testing Functions Control Register (TEST1)104
3-7 Testing Functions Control Register (BAUD)107
3-8 Schematic for Figure 3-9 .117
3-9 Program to Check/Change CONFIG 119

4-1 Topological Arrangement of EEPROM Bytes
(MC68HC11A8) .128

4-2 Topological Arrangement of Bits in an EEPROM Byte128
4-3 Condensed Schematic of EEPROM Array129
4-4 EEPROM Cell Terminology .130
4-5 Erasing an EEPROM Byte .131
4-6 Programming an EEPROM Byte .132
4-7 Reading an EEPROM Byte. .133
4-8 EEPROM Programming Register (PPROG).136
4-9 Erase-Before-Write Programming Method154
4-10 Program-More-Zeros Programming Method.155
4-11 Selective-Write Programming Method 155
4-12 Composite Programming Method .156

5-1 Typical External Reset Circuit. .175
5-2 Highest Priority I-Bit Interrupt

and Miscellaneous Register (HPRIO)179
5-3 Processing Flow Out of Resets .182
5-4 Interrupt Priority Resolution .184
5-5 Interrupt Source Resolution within SCI.186

6-1 M68HC11 Programmer’s Model .199

7-1 Parallel I/O Registers and Control Bits234
7-2 Pin Logic Registers and Control Bits 235
Reference Manual M68HC11 — Rev. 6

20 List of Figures MOTOROLA

List of Figures
Figure Title Page

7-3 Special Symbols Used in Pin Logic Diagrams239
7-4 PA2–PA0 (IC3–IC1) Pin Logic .239
7-5 PA6–PA3 (OC5–OC2) Pin Logic .241
7-6 PA7 (OC1 and PAI) Pin Logic. .243
7-7 Idealized Port A Timing. .244
7-8 Port B Pin Logic .246
7-9 Idealized Port B Timing. .247
7-10 R/W (STRB) Pin Logic .249
7-11 Port C Expanded Mode Pin Logic. .252
7-12 Summary of Idealized Port C Expanded Mode Timing.254
7-13 Port C Single-Chip Mode Pin Logic .255
7-14 Idealized Port C Single-Chip Mode Timing.258
7-15 AS (STRA) Pin Logic .260
7-16 PD0 (RxD) Pin Logic. .262
7-17 PD1 (TxD) Pin Logic .264
7-18 PD2 (MISO) Pin Logic .267
7-19 PD3 (MOSI) Pin Logic .270
7-20 PD4 (SCK) Pin Logic .272
7-21 PD5 (SS) Pin Logic. .275
7-22 Idealized Port D Timing .277
7-23 Port E Pin Logic .279
7-24 Idealized Port E Timing. .280
7-25 Idealized Timing for Simple Strobe Operations 282
7-26 Idealized Timing for Full-Input Handshake284
7-27 Idealized Timing for Full-Output Handshake 285
7-28 Parallel I/O Control Register (PIOC).287

8-1 CPHA Equals Zero SPI Transfer Format294
8-2 CPHA Equals One SPI Transfer Format 294
8-3 SPI System Block Diagram. .296
8-4 Port D Data Direction Register (DDRD)299
8-5 SPI Control Register (SPCR) .300
8-6 SPI Status Register (SPSR) .302
8-7 Delay from Write SPDR to Transfer Start (Master).307
8-8 Transfer Ending for an SPI Master .308
8-9 Transfer Ending for an SPI Slave .308
M68HC11 — Rev. 6 Reference Manual

MOTOROLA List of Figures 21

List of Figures
Figure Title Page

8-10 Hardware Hookup for Examples 8-1 and 8-2310
8-11 Register Definitions and RAM Variables

for Examples 8-1 and 8-2 .310
8-12 Example 8-1 Software Listing) .312
8-13 Timing Analysis for Example 8-1 .314
8-14 Example 8-2 Software Listing .315
8-15 Timing Analysis for Example 8-2 .316

9-1 SCI Transmitter Block Diagram .320
9-2 SCI Receiver Block Diagram .322
9-3 Port D Related Registers .325
9-4 Baud Rate Control Register (BAUD) 327
9-5 SCI Control Register 1 (SCCR1) .329
9-6 SCI Control Register 2 (SCCR2) .331
9-7 SCI Status Register (SCSR). .334
9-8 SCI Data Register (SCDR) .337
9-9 TxD Pin Logic Block Diagram. .345
9-10 Start Bit — Ideal Case .348
9-11 Start Bit — Noise Case One. .349
9-12 Start Bit — Noise Case Two. .349
9-13 Start Bit — Noise Case Three .350
9-14 Start Bit — Noise Case Four .350
9-15 Start Bit — Noise Case Five .351
9-16 Start Bit — Noise Case Six. .351
9-17 Baud-Rate Frequency Tolerance .353
9-18 Baud-Rate Generator Block Diagram.359
9-19 Transmitter Enable Timing Details .361
9-20 Write SCDR to Serial Data Start. .362
9-21 Ending Details of Transmission .364
9-22 RDRF Flag-Setting Details .365

10-1 Main Timer System Block Diagram .370
10-2 Timer Counter (TCNT) .374
10-3 Timing Summary for Oscillator Divider Signals 376
10-4 Major Clock Divider Chains in the MC68HC11A8 377
10-5 Prescaler Select Bits (PR1 and PR0)379
Reference Manual M68HC11 — Rev. 6

22 List of Figures MOTOROLA

List of Figures
Figure Title Page

10-6 Timer Overflow Interrupt Enable Bit (TOI) 381
10-7 Timer Overflow Flag Bit (TOF) .381
10-8 Real-Time Interrupt Enable Bit (RTII)384
10-9 Real-Time Interrupt Flag (RTIF) .384
10-10 Real-Time Interrupt Rate Select Bits (RTR1 and RTR0) 385
10-11 COP Timer Rate Select Bits (CR1 and CR0)386
10-12 Input-Capture Registers .390
10-13 Input Capture Interrupt Enable Bits (ICxI).391
10-14 Input Capture Flags (ICxF) .391
10-15 Timer Control Register (TCTL2) .392
10-16 Measuring a Period with Input Capture 394
10-17 Timing Analysis for Example 10-1 .394
10-18 Measuring a Pulse Width with Input Capture398
10-19 Timing Analysis for Example 10-2 .399
10-20 Measuring Long Periods with Input Capture and TOF404
10-21 Output-Capture Registers. .408
10-22 Output Capture Interrupt Enable Bits (OCxI) 410
10-23 Output Capture Flags (OCxF). .410
10-24 Simple Output-Compare Example .412
10-25 Timer Control Register 1 (TCTL1) .412
10-26 Generating a Square Wave with Output Compare413
10-27 Timing Analysis for Example 10-5 .414
10-28 Output Compare 1 Mask Register (OC1M) 416
10-29 Output Compare 1 Data Register (OC1D)416
10-30 Producing Two PWM Outputs with OC1, OC2, and OC3. . . .419
10-31 Output Compare Force Register (CFORC) 421
10-32 Timer Counter as MCU Leaves Reset422
10-33 Timer Counter Read — Cycle-by-Cycle Analysis422
10-34 Input-Capture Timing Details .423
10-35 Output-Compare Timing Details .424

11-1 Pulse Accumulator Operating Modes444
11-2 Block Diagram of Pulse Accumulator Subsystem.446
11-3 Timer Interrupt Mask 2 Register (TMSK2)447
11-4 Timer Interrupt Flag 2 Register (TFLG2) 447
11-5 Pulse Accumulator Control Register (PACTL)447
M68HC11 — Rev. 6 Reference Manual

MOTOROLA List of Figures 23

List of Figures
Figure Title Page

11-6 Pulse Accumulator Count Register (PACNT)447
11-7 Pulse Accumulator-Related Bits in PACTL.448
11-8 Pulse Accumulator Interrupt Enable Bits 449
11-9 Pulse Accumulator Interrupt Flags .449
11-10 PAI Pin Edge-Detection Timing .456
11-11 Pin Enable versus Counting (Gated Accumulation Mode) . . .457
11-12 Timing Details for Pulse Accumulator Counter Overflow457
11-13 PACNT Read and Write .458

12-1 Basic Charge-Redistribution A/D .461
12-2 Charge-Redistribution A/D

with ±1/2 LSB Quantization Error 468
12-3 MC68HC11A8 A/D in Sample Mode.471
12-4 System Configuration Options Register (OPTION) 473
12-5 Timing Diagram for a Sequence of Four A/D Conversions. . .475
12-6 A/D Control/Status Register (ADCTL) 476
12-7 Electrical Model of an A/D Input Pin (Sample Mode)479
12-8 Graphic Estimation of Analog Sample Level (Case 2)482
Reference Manual M68HC11 — Rev. 6

24 List of Figures MOTOROLA

Reference Manual — M68HC11

List of Tables
Table Title Page

1-1 M68HC11 Family Members .32

2-1 Hardware Mode Select Summary. .47
2-2 Ports B and C and STRA and STRB Pins 62

3-1 Hardware Mode Select Summary. .87
3-2 Watchdog Rates versus Crystal Frequency100
3-3 Bootstrap Mode Pseudo-Vectors .113

5-1 Hardware Mode Select Summary. .167
5-2 Reset Vector versus Cause and MCU Mode168
5-3 Watchdog Rates versus Crystal Frequency171
5-4 Highest Priority I Interrupt versus PSEL3–PSEL0 180

6-1 Load, Store, and Transfer Instructions215
6-2 Arithmetic Operation Instructions .216
6-3 Multiply and Divide Instructions .217
6-4 Logical Operation Instructions .218
6-5 Data Testing and Bit Manipulation Instructions 219
6-6 Shift and Rotate Instructions. .220
6-7 Stack and Index Register Instructions 221
6-8 Condition Code Register Instructions223
6-9 Branch Instructions .225
6-10 Jump Instruction .226
6-11 Subroutine Call and Return Instructions226
6-12 Interrupt Handling Instructions .227
6-13 Miscellaneous Instructions .227
M68HC11 — Rev. 6 Reference Manual

MOTOROLA List of Tables 25

List of Tables
Table Title Page

9-1 Baud Rate Prescale Selects .328
9-2 Baud Rate Selects .329
9-3 Baud Rates by Crystal Frequency, SCP1, SCP0,

and SCR2–SCR0. .360

10-1 Crystal Frequency versus PR1 and PR0 Values 380
10-2 RTI Rates versus RTR1 and RTR0

for Various Crystal Frequencies .385
10-3 COP Timeout versus CR1 and CR0 Values387
10-4 Instruction Sequences to Clear TOF 388
10-5 EDGxB and EDGxA Encoding .393
10-6 OMx and OLx Encoding .413

11-1 Pulse Accumulator Timing Periods
versus Crystal Rate .444

12-1 A/D Channel Assignments .477
Reference Manual M68HC11 — Rev. 6

26 List of Tables MOTOROLA

Reference Manual — M68HC11

Section 1. General Description
1.1 Contents

1.2 Introduction .27

1.3 General Description of the MC68HC11A828

1.4 Programmer’s Model .29

1.5 Product Derivatives. .32

1.2 Introduction

This reference manual is a valuable aid in the development of M68HC11
applications. Detailed descriptions of all internal subsystems and
functions have been developed and carefully checked against internal
Motorola design documentation, making this manual the most
comprehensive reference available for the M68HC11 Family of
microcontroller units (MCU).

Practical applications are included to demonstrate the operation of each
subsystem. These applications are treated as complete systems,
including hardware/software interactions and tradeoffs. Interfacing
techniques to prevent component damage are discussed to aid the
hardware designer. For software programmers, Section 6. Central
Processor Unit (CPU) and Appendix A. Instruction Set Details
contain examples demonstrating efficient use of the instruction set.

This manual is intended to complement Motorola’s official data sheet,
not replace it. The information in the data sheet is current and is
guaranteed by production testing. Although the information in this
manual was checked against parts and design documentation, the
accuracy is not guaranteed like the data sheet is guaranteed. This
manual assumes the reader has some basic knowledge of MCUs and
M68HC11 — Rev. 6 Reference Manual

MOTOROLA General Description 27

General Description
assembly-language programming; it may not be appropriate as an
instruction manual for a first-time MCU user.

The information in this manual is much more detailed than would usually
be required for normal use of the MCU, but a user who is familiar with
the detailed operation of the part is more likely to find a solution to an
unexpected system problem. In many cases, a trick based on software
or on-chip resources can be used rather than building expensive
external circuitry. Data sheets are geared toward customary,
straightforward use of the on-chip peripherals; whereas, an experienced
MCU user often uses these on-chip systems in very unexpected ways.
The level of detail in this manual will help the normal user to better
understand the on-chip systems and will allow the more advanced user
to make maximum use of the subtleties of these systems.

In addition to this manual, the data sheet(s) or technical data is needed
for the specific version(s) of the M68HC11 being used. A pocket
reference guide is another beneficial source.

1.3 General Description of the MC68HC11A8

The high-density complementary metal-oxide semiconductor (HCMOS)
MC68HC11A8 is an advanced 8-bit MCU with highly sophisticated,
on-chip peripheral capabilities. New design techniques were used to
achieve a nominal bus speed of 2 MHz. In addition, the fully static design
allows operation at frequencies down to dc, further reducing power
consumption.

The HCMOS technology used on the MC68HC11A8 combines smaller
size and higher speeds with the low-power and high-noise immunity of
CMOS. On-chip memory systems include:

• 8 Kbytes of read-only memory (ROM)

• 512 bytes of electrically erasable programmable ROM (EEPROM)

• 256 bytes of random-access memory (RAM)

Major peripheral functions are provided on-chip. An 8-channel
analog-to-digital (A/D) converter is included with eight bits of resolution.
An asynchronous serial communications interface (SCI) and a separate
Reference Manual M68HC11 — Rev. 6

28 General Description MOTOROLA

General Description
Programmer’s Model
synchronous serial peripheral interface (SPI) are included. The main
16-bit, free-running timer system has three input-capture lines, five
output-compare lines, and a real-time interrupt function. An 8-bit pulse
accumulator subsystem can count external events or measure external
periods.

Self-monitoring circuitry is included on-chip to protect against system
errors. A computer operating properly (COP) watchdog system protects
against software failures. A clock monitor system generates a system
reset in case the clock is lost or runs too slow. An illegal opcode
detection circuit provides a non-maskable interrupt if an illegal opcode is
detected.

Two software-controlled power-saving modes, wait and stop, are
available to conserve additional power. These modes make the
M68HC11 Family especially attractive for automotive and battery-driven
applications.

Figure 1-1 is a block diagram of the MC68HC11A8 MCU. This diagram
shows the major subsystems and how they relate to the pins of the MCU.
In the lower right-hand corner of this diagram, the parallel input/output
(I/O) subsystem is shown inside a dashed box. The functions of this
subsystem are lost when the MCU is operated in expanded modes, but
the MC68HC24 port replacement unit can be used to regain the
functions that were lost. The functions are restored in such a way that
the software programmer is unable to tell any difference between a
single-chip system or an expanded system containing the MC68HC24.
By using an expanded system containing an MC68HC24 and an
external EPROM, the user can develop software intended for a
single-chip application.

1.4 Programmer’s Model

In addition to executing all M6800 and M6801 instructions, the
M68HC11 instruction set includes 91 new opcodes. The nomenclature
M68xx is used in conjunction with a specific CPU architecture and
instruction set as opposed to the MC68HC11xx nomenclature, which is
a reference to a specific member of the M68HC11 Family of MCUs.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA General Description 29

General Description
Figure 1-1. Block Diagram

POWER
MODA

OSCILLATOR

MODE
SELECT

INTERRUPTS

A/D
CONVERTER

SCI

M68HC11 CPU

SPI
EEPROM — 512 BYTES

RAM — 256 BYTES

ROM — 8K BYTES

PULSE ACCUMULATOR

TIMER

PERIODIC INTERRUPT

COP WATCHDOG

ADDRESS/DATA BUS

HANDSHAKE I/O

DATA DIRECTION C

PORT CPORT B

D
AT

A
D

IR
EC

TI
O

N
 D

PO
R

T
A

PO
R

T
D

PO
R

T
E

MODB

E

EXTAL

XTAL

IRQ

XIRQ

REFL

REFH

RESET

PE0

PE1

PE2

PE3

PE4

PE5

PE6

PE7

(V)PPBULK

(LIR)

(V) STBY

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

PD0

PD1

PD2

PD3

PD4

PD5

IC3

IC2

IC1

OC5

OC4

OC3

OC2

PAI

RxD

TxD

MISO

MOSI

SCK

SS

O
C

1

D
D SS

V V

PB
7

PB
6

PB
5

PB
4

PB
3

PB
2

PB
1

PB
0

PC
7

PC
6

PC
5

PC
4

PC
3

PC
2

PC
1

PC
0

ST
R

B

ST
R

A

A1
5

A1
4

A1
3

A1
2

A1
1

A1
0 A9 A8

AD
7

AD
6

AD
5

AD
4

AD
3

AD
2

AD
1

AD
0

R
/W AS

SINGLE
CHIP

EXPANDED

PA
R

AL
LE

L
I/O

EQ
U

IV
AL

EN
T

TO
 M

C
68

H
C

24

V

V

Reference Manual M68HC11 — Rev. 6

30 General Description MOTOROLA

General Description
Programmer’s Model
Figure 1-2 shows the seven CPU registers available to the programmer.
The two 8-bit accumulators (A and B) can be used by some instructions
as a single 16-bit accumulator called the D register, which allows a set
of 16-bit operations even though the CPU is technically an 8-bit
processor.

The largest group of instructions added involve the Y index register.
Twelve bit manipulation instructions that can operate on any memory or
register location were added. The exchange D with X and exchange D
with Y instructions can be used to quickly get index values into the
double accumulator (D) where 16-bit arithmetic can be used. Two 16-bit
by 16-bit divide instructions are also included.

Figure 1-2. M68HC11 Programmer’s Model

CARRY

OVERFLOW

ZERO

NEGATIVE

I INTERRUPT MASK

HALF-CARRY (FROM BIT 3)

X INTERRUPT MASK

STOP DISABLE

CCR

PC

SP

IY

IX

D

A:B

S

PROGRAM COUNTER

STACK POINTER

INDEX REGISTER Y

INDEX REGISTER X

DOUBLE ACCUMULATOR D

ACCUMULATOR B

CONDITION CODE REGISTER X H I N Z V C

7 0

ACCUMULATOR A 7 07 0

015

015

015

015

015
M68HC11 — Rev. 6 Reference Manual

MOTOROLA General Description 31

General Description
1.5 Product Derivatives

The M68HC11 Family of MCUs is composed of the product members
listed in Table 1-1. Figure 1-3 explains how the product part numbers
are constructed.

Table 1-1. M68HC11 Family Members

Product
ROM

(KBytes)
RAM

(Bytes)
EPROM/OTP

(KBytes)
EEPROM
(Bytes) Timer(1) Serial A/D PWM

Operating
Voltage

(V)

Bus
Frequency

(Max)
(MHz)

MC68HC11D0 — 192 — —
3/4 IC
4/5 OC

SCI
SPI

— — 3.0, 5.0 3

MC68HC11D3 4 192 — —
3/4 IC
4/5 OC

SCI
SPI

— — 3.0, 5.0 3

MC68HC11E0 — 512 — —
3/4 IC
4/5 OC

SCI
SPI

8-CH
8-bit

— 3.0, 5.0 3

MC68HC11E1 — 512 — 512
3/4 IC
4/5 OC

SCI
SPI

8-CH
8-bit

— 3.0, 5.0 3

MC68HC11E2 — 256 — 2048
3/4 IC
4/5 OC

SCI
SPI

8-CH
8-bit

— 5.0 2

MC68HC11E9 12 512 — 512
3/4 IC
4/5 OC

SCI
SPI

8-CH
8-bit

— 3.0, 5.0 3

MC68HC11E20 20 768 — 512
3/4 IC
4/5 OC

SCI
SPI

8-CH
8-bit

— 5.0 3

MC68HC11F1 — 1 — 512
3/4 IC
4/5 OC

SCI
SPI

8-CH
8-bit

— 3.0, 5.0 5

MC68HC11K0 — 768 — —
3/4 IC
4/5 OC

SCI
SPI

8-CH
8-bit

4-CH
8-bit
or

2-CH
16-bit

3.0, 5.0 4

MC68HC11K1 — 768 — 640
3/4 IC
4/5 OC

SCI+
SPI

8-CH
8-bit

4-CH
8-bit
or

2-CH
16-bit

3.0, 5.0 4

MC68HC11K4 24 768 — 640
3/4 IC
4/5 OC

SCI+
SPI

8-CH
8-bit

4-CH
8-bit
or

2-CH
16-bit

3.0, 5.0 4
Reference Manual M68HC11 — Rev. 6

32 General Description MOTOROLA

General Description
Product Derivatives
MC68HC11KS2 — 1 32 640
3/4 IC
4/5 OC

SCI+
SPI

8-CH
8-bit

— 5.0 4

MC68HC11KW1 — 768 — 640
3/4 IC
4/5 OC

SCI+
SPI

10-CH
10-bit

4-CH
8-bit
or

2-CH
16-bit

5.0 4

MC68HC11P1 — 1 — 640
3/4 IC
4/5 OC

Triple
SCI
SPI

8-CH
8-bit

4-CH
8-bit
or

2-CH
16-bit

5.0 4

MC68HC11P2 32 1 — 640
3/4 IC
4/5 OC

Triple
SCI
SPI

8-CH
8-bit

4-CH
8-bit
or

2-CH
16-bit

5.0 4

MC68HC711D3 — 192 4 —
3/4 IC
4/5 OC

SCI
SPI

— — 5.0 3

MC68HC711E9 — 512 12 512
3/4 IC
4/5 OC

SCI
SPI

8-CH
8-bit

— 3.0, 5.0 4

MC68HC711E20 — 768 20 512
3/4 IC
4/5 OC

SCI
SPI

8-CH
8-bit

— 5.0 4

MC68HC711KS2 — 1 32 640
3/4 IC
4/5 OC

SCI+
SPI

8-CH
8-bit

— 5.0 4

1. All M68HC11s include an 8-channel 16-bit timer with real-time interrupt and pulse accumulator. All timers have three input
captures, four output compares, and an eighth channel that can be configured as a fourth input capture or a fifth output
compare.

Table 1-1. M68HC11 Family Members (Continued)

Product
ROM

(KBytes)
RAM

(Bytes)
EPROM/OTP

(KBytes)
EEPROM
(Bytes) Timer(1) Serial A/D PWM

Operating
Voltage

(V)

Bus
Frequency

(Max)
(MHz)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA General Description 33

General Description
Figure 1-3. Part Numbering

QUALIFICATION LEVEL
MC — FULLY SPECIFIED AND QUALIFIED
XC — PILOT PRODUCTION DEVICE
PC — ENGINEERING SAMPLE

NUMERIC DESIGNATOR (OPTIONAL)

OPERATING TEMPERATURE RANGE
HC — HCMOS (VDD = 5.0 VDC ± 10%)

L — HCMOS (VDD = 3.0 VDC TO 5.5 VDC)

COP OPTION (ONLY ON A-SERIES DEVICES)
NONE — COP DISABLED
P — COP ENABLED

MEMORY TYPE
BLANK — MASKED ROM OR NO ROM
7 — EPROM/OTPROM
8 — EEPROM

BASE PART NUMBER
11A8, 11D3, 11E9, 11K4, ETC.

MONITOR MASK
NONE — BLANK
B — BUFFALO

TEMPERATURE RANGE
NONE — 0°C TO 70°C
C — –40°C TO 85°C
V — –40°C TO 105°C
M — –40°C TO 125°C

PACKAGE TYPE
FN — 44/52/68/84-PIN PLCC
FS — 44/52/68/84-PIN CLCC
FU — 64/80-PIN CFP
FB — 44-PIN CFP
PV — 122-PIN TCFP
PU — 80/100-PIN TCFP
PB — 52-PIN TCFP
P — 40/48-PIN DIP
S — 48-PIN SDIP

MAXIMUM SPECIFIED CLOCK SPEED
2 — 2.0 MHz
3 — 3.0 MHz
4 — 4.0 MHz

TAPE AND REEL OPTION
NONE — STANDARD PACKAGING
R2 — TAPE AND REEL PACKAGING

MC 68 HC P 7 11XX B C FN 3 R2
Reference Manual M68HC11 — Rev. 6

34 General Description MOTOROLA

Reference Manual — M68HC11

Section 2. Pins and Connections
2.1 Contents

2.2 Introduction .36

2.3 Packages and Pin Names .37
2.3.1 MC68HC11A8 .38
2.3.2 MC68HC11D3/MC68HC711D3 .39
2.3.3 MC68HC11E9/MC68HC711E9 .40
2.3.4 MC68HC811E2 .41
2.3.5 MC68HC11F1 .43
2.3.6 MC68HC24 Port Replacement Unit44

2.4 Pin Descriptions .44
2.4.1 Power-Supply Pins (VDD and VSS).45
2.4.2 Mode Select Pins (MODB/VSTBY and MODA/LIR).46
2.4.3 Crystal Oscillator and Clock Pins

(EXTAL, XTAL, and E) .50
2.4.4 Crystal Oscillator Application Information.55
2.4.4.1 Crystals for Parallel Resonance.55
2.4.4.2 Using Crystal Oscillator Outputs 56
2.4.4.3 Using External Oscillator .56
2.4.4.4 AT-Strip versus AT-Cut Crystals 56
2.4.5 Reset Pin (RESET) .56
2.4.6 Interrupt Pins (XIRQ and IRQ) .58
2.4.7 A/D Reference and Port E Pins

(VREFL, VREFH, and PE7–PE0) .59
2.4.8 Timer Port A Pins .61
2.4.9 Serial Port D Pins .61
2.4.10 Ports B and C and STRA and STRB Pins62

2.5 Termination of Unused Pins .64
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 35

Pins and Connections
2.6 Avoidance of Pin Damage .66
2.6.1 Zap and Latchup .67
2.6.2 Protective Interface Circuits .68
2.6.3 Internal Circuitry — Digital Input-Only Pin68
2.6.4 Internal Circuitry — Analog Input-Only Pin.70
2.6.5 Internal Circuitry — Digital I/O Pin .72
2.6.6 Internal Circuitry — Input/Open-Drain-Output Pin73
2.6.7 Internal Circuitry — Digital Output-Only Pin74
2.6.8 Internal Circuitry — MODB/VSTBY Pin74
2.6.9 Internal Circuitry — IRQ/VPPBULK Pin 76

2.7 Typical Expanded Mode System Connections77

2.8 Typical Single-Chip Mode System Connections.81

2.9 System Development and Debug Features82
2.9.1 Load Instruction Register (LIR) .82
2.9.2 Internal Read Visibility (IRV) .82
2.9.3 MC68HC24 Port Replacement Unit (PRU) 83

2.2 Introduction

This section discusses the functions of each pin on the MC68HC11A8,
a typical example of an M68HC11 Family part. Most pins on this
microcontroller unit (MCU) serve two or more functions. Information
about the practical use of each pin is presented in these pin descriptions.
This section also includes information concerning pins that are exposed
to illegal levels or conditions. The most common source of illegal levels
or conditions is transient noise; however, a designer may want to take
precautions against potential misapplication of a product or failures of
other system components such as power supplies. Consideration of
these factors can influence end-product reliability.

The basic connections for single-chip mode and expanded mode
applications are presented in 2.8 Typical Single-Chip Mode System
Connections and 2.7 Typical Expanded Mode System Connections.
These basic systems can be used as the starting point for any user
application and can minimize the time required to achieve a working
prototype system. The explanation of these basic systems includes
Reference Manual M68HC11 — Rev. 6

36 Pins and Connections MOTOROLA

Pins and Connections
Packages and Pin Names
information concerning additions, such as additional memory on the
expanded system.

System noise generation and susceptibility primarily depend on each
system and its environment. The MC68HC11A8 is designed for higher
bus speeds than earlier MCUs. Since it is high-density complementary
metal-oxide semiconductor (HCMOS), signals drive from rail to rail,
unlike earlier N-channel metal-oxide semiconductor (NMOS)
processors. Since these factors can significantly affect noise issues, the
system designer should consider these changes.

2.3 Packages and Pin Names

Figure 2-1 through Figure 2-6 show pin assignments for several
members of the M68HC11 Family. The pin assignments for the
MC68HC24 port replacement unit (PRU) are also presented for
reference although the PRU is not discussed in detail in this manual.

Detailed mechanical data for packages are located in the data sheets or
technical summaries for individual parts. Ordering information, which
relates part number suffixes to package types and operating
temperature range, are also found in the data sheets or technical
summaries.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 37

Pins and Connections
2.3.1 MC68HC11A8

The MC68HC11A8 is available in either a 52-pin plastic leaded chip
carrier (PLCC) package or a 48-pin dual-in-line package (DIP). The
silicon die is identical for both packages, but four of the analog-to-digital
(A/D) converter inputs are not bonded out to pins in the 48-pin DIP. The
MC68HC11A1 and MC68HC11A0 devices also use the same die as the
MC68HC11A8, except that the contents of the nonvolatile configuration
(CONFIG) register determine whether internal read-only memory (ROM)
and/or electrically erasable programmable ROM (EEPROM) are
disabled. These downgraded device versions have identical pin
assignments as the MC68HC11A8.

Figure 2-1 shows the pin assignments for the MC68HC11A8 in the
52-pin PLCC package and the 48-pin DIP package.

Figure 2-1. MC68HC11A8 Pin Assignments

XTAL

PC0/A0/D0

PC1/A1/D1

PC2/A2/D2

PC3/A3/D3

PC4/A4/D4

PC5/A5/D5

PC6/A6/D6

PC7/A7/D7
RESET

XIRQ

IRQ
PD0/RxD

PE4/AN4

PE0/AN0

PB0/A8

PB1/A9

PB2/A10

PB3/A11

PB4/A12

PB5/A13

PB6/A14

PB7/A15

PA0/IC3

EX
TA

L

ST
R

B/
R

/W

E ST
R

A/
AS

M
O

D
A/

LI
R

M
O

D
B/

V S
TB

Y

V S
S

V R
H

V R
L

PE
7/

AN
7

PE
3/

AN
3

PD
1/

Tx
D

PD
2/

M
IS

O

PD
3/

M
O

SI

PD
4/

SC
K

PD
5/

SS V D
D

PA
7/

PA
I/O

C
1

PA
6/

O
C2

/O
C

1

PA
5/

O
C3

/O
C

1

PA
4/

O
C4

/O
C

1

PA
3/

O
C5

/O
C

1

8

9

10

11

12

13

14

15

16

17

44

43

42

41

40

39

38

37

36

35

34

21 22 23 24 25 26 27 28 29 30 31

7 6 5 4 3

1

2 52 51 50 49

18

19

PA
2/

IC
1

32

PA
1/

IC
2

33

PE
6/

AN
6

48

PE
2/

AN
2

47

PE1/AN145
PE5/AN546

20

MC68HC11A8
PB7/A15

PB6/A14

PB5/A13

PB4/A12

PB3/A11

PB2/A10

PB1/A9

PB0/A8

PE0/AN0

PE1/AN1

9

10

11

12

13

14

15

16

17

18

PE2/AN2 19

PE3/AN3 20

21

VRH 22

VSS 23

MODB 24

PA0/IC3 8

PA1/IC2 7

PA2/IC1 6

PA3/OC5/OC1 5

PA4/OC4/OC1 4

PA5/OC3/OC1 3

PA6/OC2/OC1 2

PA7/PAI/OC1 1

PC7/A7/D7

PC6/A6/D6

PC5/A5/D5

PC4/A4/D4

PC3/A3/D3

PC2/A2/D2

PC1/A1/D1

PC0/A0/D0

XTAL

EXTAL

STRB/R/W

38

37

36

35

34

33

32

31

30

29

28

RESET39

XIRQ40

E27

STRA/AS26

MODA/LIR25

IRQ41

PD0/RxD42

PD1/TxD43

PD2/MISO44

PD3/MOSI45

PD4/SCK46

PD5/SS47

VDD48

VRL

MC68HC11A8
Reference Manual M68HC11 — Rev. 6

38 Pins and Connections MOTOROLA

Pins and Connections
Packages and Pin Names
2.3.2 MC68HC11D3/MC68HC711D3

The MC68HC11D3 is available in either a 44-pin PLCC package or a
40-pin DIP package. The silicon die is identical for both packages, but
the PLCC version has two additional output compare pins bonded out
and an extra VSS pin named EVSS. The MC68HC711D3 is functionally
equivalent to the MC68HC11D3 but has four Kbytes of erasable
programmable ROM (EPROM) instead of mask programmed ROM. The
MC68HC711D3 is available as a one-time-programmable (OTP) MCU in
an opaque plastic package or in a ceramic windowed package for
development applications.

Figure 2-2 shows the pin assignments for the MC68HC11D3/
MC68HC711D3 in the 44-pin PLCC package and the 40-pin DIP
package.

Figure 2-2. MC68HC11D3/711D3 Pin Assignments

PC4/A4/D4

PC5/A5/D5

PC6/A6/D6

PC7/A7/D7

XIRQ/VPP

PD7/R/W

PD6/AS

RESET

IRQ

PD0/RxD

PD1/TxD

PB2/A10

PB3/A11

PB4/A12

PB5/A13

PB6/A14

PB7/A15

NC

PA0/IC3

PA1/IC2

PC
3/

A3
/D

3

PC
2/

A2
/D

2

PC
1/

A1
/D

1

PC
0/

A0
/D

0

V S
S

EV
SS

XT
AL

EX
TA

L

E M
O

D
A/

LI
R

M
O

D
B/

V S
TB

Y

PD
2/

M
IS

O

PD
3/

M
O

SI

PD
4/

SC
K

PD
5/

SS V D
D

PA
7/

PA
I/O

C
1

PA
6/

O
C

3/
O

C
1

PA
5/

O
C

3/
O

C
1

PA
4/

O
C

4/
O

C
1

PA
3/

IC
4/

O
C

5/
O

C
1

PA
2/

IC
1

7

8

9

10

11

12

13

14

15

16

37

36

35

34

33

32

31

30

29

18 19 20 21 22 23 24 25 26 27 28

6 5 4 3 2

1

44 43 42 41 40

17

PB1/A938

PB0/A839

MC68HC(7)11D3

PC7/A7/D7

XIRQ/VPP

PD7/R/W

PD6/AS

RESET

IRQ

PD0/RxD

PD1/TxD

PD2/MISO

PD3/MOSI

9

10

11

12

13

14

15

16

17

18

PD4/SCK 19

PD5/SS 20

PC6/A6/D6 8

PC5/A5/D5 7

PC4/A4/D4 6

PC3/A3/D3 5

PC2/A2/D2 4

PC1/A1/D1 3

PC0/A0/D0 2

VSS 1

PB5/A13

PB6/A14

PB7/A15

PA0/IC3

PA1/IC2

PA2/IC1

PA3/IC4/OC5/OC1

PA5/OC3/OC1

PA7/PAI/OC1

VDD

30

29

28

27

26

25

24

23

22

21

PB4/A1231

PB3/A1132

PB2/A1033

PB1/A934

PB0/A835

MODB/VSTBY36

MODA/LIR37

E38

EXTAL39

XTAL40

MC68HC(7)11D3
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 39

Pins and Connections
2.3.3 MC68HC11E9/MC68HC711E9

The MC68HC11E9 is available in a 52-pin PLCC package only. The
MC68HC11E1 and MC68HC11E0 devices also use the same die as the
MC68HC11E9, except that the contents of the nonvolatile CONFIG
register determine whether internal ROM and/or EEPROM are disabled.
These downgraded device versions have identical pin assignments as
the MC68HC11E9.

The MC68HC11E9 is an upgrade of the MC68HC11A8. The
MC68HC11E9 has 12 Kbytes of mask ROM, 512 bytes of EEPROM,
and 512 bytes of RAM. The timer system allows one output-compare
channel to be reconfigured as a fourth input-capture channel.

The MC68HC711E9 is functionally equivalent to the MC68HC11E9 but
has 12 Kbytes of EPROM instead of mask programmed ROM. The
MC68HC711E9 is available as a one-time-programmable (OTP) MCU in
an opaque plastic package or in a ceramic windowed package for
development applications.

Figure 2-3 shows the pin assignments for the MC68HC11E9 in the
52-pin PLCC package. These pin assignments are the same as the
MC68HC11A8, except for the pin name for the PA3/IC4/OC5/OC1 pin.
Reference Manual M68HC11 — Rev. 6

40 Pins and Connections MOTOROLA

Pins and Connections
Packages and Pin Names
Figure 2-3. MC68HC11E9/711E9 Pin Assignments (52-Pin PLCC)

2.3.4 MC68HC811E2

The MC68HC811E2 is very similar to the MC68HC11E9 version, except
in the on-chip memory. The MC68HC811E2 includes two Kbytes of
EEPROM, which can be remapped to the upper half of any 4-Kbyte page
in the 64 Kbyte map. There is no masked ROM memory in the
MC68HC811E2. The MC68HC811E2 is available in either a 52-pin
PLCC package or a 48-pin DIP. The silicon die used is the same for both
packages, but four of the analog-to-digital (A/D) converter inputs are not
bonded out to pins in the 48-pin package.

The MC68HC811E2 version replaces an earlier version called the
MC68HC811A2. The only significant difference between the
MC68HC811E2 and MC68HC811A2 is that the MC68HC811E2 has a
slightly more flexible timer system, which allows one output-compare
channel to be reconfigured as a fourth input-capture channel.

XTAL

PC0/A0/D0

PC1/A1/D1

PC2/A2/D2

PC3/A3/D3

PC4/A4/D4

PC5/A5/D5

PC6/A6/D6

PC7/A7/D7

RESET

XIRQ

IRQ
PD0/RxD

PE4/AN4

PE0/AN0

PB0/A8

PB1/A9

PB2/A10

PB3/A11

PB4/A12

PB5/A13

PB6/A14

PB7/A15

PA0/IC3
EX

TA
L

ST
R

B/
R

/W
E ST

R
A/

AS

M
O

D
A/

LI
R

M
O

D
B/

V S
TB

Y

V S
S

V R
H

V R
L

PE
7/

AN
7

PE
3/

AN
3

PD
1/

Tx
D

PD
2/

M
IS

O

PD
3/

M
O

SI

PD
4/

SC
K

PD
5/

SS V D
D

PA
7/

PA
I/O

C1

PA
6/

O
C

2/
O

C1

PA
5/

O
C

3/
O

C1
PA

4/
O

C
4/

O
C1

PA
3/

IC
4/

O
C

5/
O

C1

8

9

10

11

12

13

14

15

16

17

44

43

42

41

40

39

38

37

36

35

34
21 22 23 24 25 26 27 28 29 30 31

7 6 5 4 3

1

2 52 51 50 49

18

19

PA
2/

IC
1

32

PA
1/

IC
2

33

PE
6/

AN
6

48

PE
2/

AN
2

47

PE1/AN145

PE5/AN546

20

MC68HC11E9
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 41

Pins and Connections
The 52-pin PLCC package version of the MC68HC811E2 has identical
pin assignments to the MC68HC11E9 pin assignments shown in
Figure 2-3. Figure 2-4 illustrates the pin assignments for the
MC68HC811E2 in the 48-pin DIP.

Figure 2-4. MC68HC811E2 Pin Assignments (48-Pin DIP)

PB7/A15

PB6/A14

PB5/A13

PB4/A12

PB3/A11

PB2/A10

PB1/A9

PB0/A8

PE0/AN0

PE1/AN1

9

10

11

12

13

14

15

16

17

18

PE2/AN2 19

PE3/AN3 20

21

VRH 22

VSS 23

MODB 24

PA0/IC3 8

PA1/IC2 7

PA2/IC1 6

PA3/IC4/OC5/OC1 5

PA4/OC4/OC1 4

PA5/OC3/OC1 3

PA6/OC2/OC1 2

PA7/PAI/OC1 1

PC7/A7/D7

PC6/A6/D6

PC5/A5/D5

PC4/A4/D4

PC3/A3/D3

PC2/A2/D2

PC1/A1/D1

PC0/A0/D0

XTAL

EXTAL

STRB/R/W

38

37

36

35

34

33

32

31

30

29

28

RESET39

XIRQ40

E27

STRA/AS26

MODA/LIR25

IRQ41

PD0/RxD42

PD1/TxD43

PD2/MISO44

PD3/MOSI45

PD4/SCK46

PD5/SS47

VDD48

VRL

MC68HC811E2
Reference Manual M68HC11 — Rev. 6

42 Pins and Connections MOTOROLA

Pins and Connections
Packages and Pin Names
2.3.5 MC68HC11F1

The MC68HC11F1 is available only in a 68-pin PLCC package. The
MC68HC11F1 was the first non-multiplexed address/data bus version in
the M68HC11 Family. In addition to the non-multiplexed bus, this MCU
includes one Kbyte of on-chip RAM and intelligent chip selects for simple
connection to external program memory without the need for any
external logic chips. Other on-chip peripherals are similar to the
MC68HC11E9. Figure 2-5 shows the pin assignments for the
MC68HC11F1 in the 68-pin PLCC package.

Figure 2-5. MC68HC11F1 Pin Assignments (68-Pin PLCC)

PC1/D1

PC2/D2

PC3/D3

PC4/D4

PC5/D5

PC6/D6

PC7/D7

RESET

XIRQ

IRQ

PG7/CSPROG

PG6/CSGEN

PG5/CSIO1

PF0/A0

PF1/A1

PF2/A2

PF3/A3

PF4/A4

PF5/A5

PF6/A6

PF7/A7

PB0/A8

PB1/A9

PB2/A10

PC
0/

D0

4X
O

UT

XT
AL

EX
TA

L

R
/W

E V S
S

V R
H

V R
L

M
O

D
A/

LI
R

PG
0

PD
0/

R
xD

PD
1/

Tx
D

PD
2/

M
IS

O

PD
3/

M
O

SI

PD
4/

SC
K

PD
5/

SS V D
D

PA
7/

PA
I/O

C
1

PA
6/

O
C

2/
O

C
1

PA
5/

O
C

3/
O

C
1

10

11

12

13

14

15

16

17

18

19

58

57

56

55

54

53

52

51

50

49

48

27 28 29 30 31 32 33 34 35 36 37

9 8 7 6 5

1

4 2 68 67

20

21

PA
4/

O
C

4/
O

C
1

38

PA
3/

O
C

5/
O

C
1

39

PE
7/

AN
7

66 65

PE0/AN059

PE4/AN460

22

PE
3/

AN
3

PE
6/

AN
6

PE
2/

AN
2

64 63

PE
5/

AN
5

62

PE
1/

AN
1

61

PA
2/

IC
1

PA
1/

IC
2

40 41

PA
0/

IC
3

42

PB
7/

A1
5

43

3

PG4/CSIO2

PG3

PG2

PG1

PB3/A11

PB4/A12

PB5/A13

PB6/A14

23 47

46

45

44

24

25

26

M
O

D
B/

V S
TB

Y

MC68HC11F1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 43

Pins and Connections
2.3.6 MC68HC24 Port Replacement Unit

Though no longer in production, the MC68HC24 PRU was used to
replace I/O functions of data and address pins in emulators. It was
available in either a 44-pin PLCC package or a 40-pin DIP. Figure 2-6
shows the pin assignments for the MC68HC24 in the 44-pin PLCC
package and the 40-pin DIP package.

Figure 2-6. MC68HC24 Pin Assignments

2.4 Pin Descriptions

This section provides a pin-by-pin description of the MCU. In general, a
designer should consider all possible functions of each pin when
designing the MCU into an application system.

• Section 7. Parallel Input/Output contains transistor-level
schematics of the logic associated with each of the I/O pins.

• Section 3. Configuration and Modes of Operation discusses
the pins that operate as a multiplexed address/data bus in

STRA

PC0

PC1

PC2

PC3

NC

PC4

PC5

PC6

PC7

VDD

AD1

AD2

AD3

NC

AD4

AD5

AD6

AD7

VSS

A1
2

A1
3

A1
4

A1
5

I/O
 T

ES
T

N
C

C
S

M
O

D
E

AS E R
/W

ST
R

B

PB
7

PB
6

PB
5

PB
4

NC PB
3

PB
2

PB
1

PB
0

IR
Q

7

8

9

10

11

12

13

14

15

16

37

36

35

34

33

32

31

30

29

18 19 20 21 22 23 24 25 26 27 28

6 5 4 3 2

1

44 43 42 41 40

17

AD038

RESET39

MC68HC24 PC2

PC3

PC4

PC5

PC6

PC7

VDD

STRB

PB7

PB6

9

10

11

12

13

14

15

16

17

18

PB5 19

PB4 20

PC1 8

PC0 7

STRA 6

A12 5

A13 4

A14 3

A15 2

I/O TEST 1

AD4

AD5

AD6

AD7

VSS

IRQ

PB0

PB1

PB2

PB3

30

29

28

27

26

25

24

23

22

21

AD331

AD232

AD133

AD034

RESET35

R/W36

E37

AS38

MODE39

CS40

MC68HC24
Reference Manual M68HC11 — Rev. 6

44 Pins and Connections MOTOROLA

Pins and Connections
Pin Descriptions
expanded modes of operation as well as the functions of other
pins related to mode selection and bus control.

• The reset and interrupt pins are presented again in Section 5.
Resets and Interrupts.

• These sections discuss pins related to the on-chip peripherals
presented in those sections:

– Section 8. Synchronous Serial Peripheral Interface

– Section 9. Asynchronous Serial Communications
Interface

– Section 10. Main Timer and Real-Time Interrupt

– Section 11. Pulse Accumulator

– Section 12. Analog-to-Digital Converter System

Figure 1-1. Block Diagram is a pin-function-oriented block diagram of
the MC68HC11A8, which is a good reference for development and
verification of application designs.

2.4.1 Power-Supply Pins (VDD and VSS)

Power is supplied to the MCU by using these pins. VDD is the positive
power input, and VSS is ground. The MC68HC11A8 MCU uses a single
power supply, but in some applications, there may also be optional
power supplies for A/D reference and/or for battery backup of on-chip
random-access memory (RAM). These additional power sources are
optional, and the MCU, including RAM and A/D, can operate from a
single 5-V (nominal) power supply.

Although the MC68HC11A8 is a complementary metal-oxide
semiconductor (CMOS) device, very fast signal transitions are present
on many of the pins. Even when the MCU is operating at slow clock
rates, short rise and fall times are present. Depending on the loading on
these fast signals, significant short-duration current demands can be
placed on the MCU power supply. Special care must be taken to provide
good power-supply bypassing at the MCU.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 45

Pins and Connections
The faster edge times in the MC68HC11A8 generally place greater
demands on bypassing than earlier NMOS (N-channel MOS) MCU
designs. A typical expanded-mode system should include a 1-µF
capacitor and a separate 0.01-µF capacitor. Both these capacitors
should be as close (physically and electrically) as possible to the
MC68HC11A8 and should have good high-frequency characteristics (for
instance, not old-technology dipped ceramic disc). The 1-µF capacitor
primarily supplies charge for bus switching through a very
low-impedance path (minimum-length runners). Without this bypass,
there could be very large voltage drops in the circuit board runners to the
MCU due to the very high (although very short duration) current spike
caused by several MCU pins simultaneously switching from one level to
the other. The separate 0.01-µF capacitor is included because the larger
1-µF capacitor is typically not as good at snubbing very high-frequency
(low energy) noise. These are only general recommendations. Some
lightly loaded single-chip systems may work quite well with a single
0.1-µF bypass capacitor; whereas, more heavily loaded
expanded-mode systems may require more elaborate bypassing
measures.

It is easier and less expensive to approach power-supply layout and
bypassing as a preventive measure from the beginning of a design than
to locate and correct a noise problem in a marginal design. Problems
related to inadequate power-supply layout and bypassing are very
difficult to locate and correct, but, if reasonable care is taken from the
start of a design, noise should not become a problem.

2.4.2 Mode Select Pins (MODB/VSTBY and MODA/LIR)

The mode B/standby RAM supply (MODB/VSTBY) pin functions as both
a mode select input pin and a standby power-supply pin. The mode
A/load instruction register (MODA/LIR) pin is used to select the MCU
operating mode while the MCU is in reset, and it operates as a diagnostic
output signal while the MCU is executing instructions.

The hardware mode select mechanism starts with the logic levels on the
MODA and MODB pins while the MCU is in the reset state. The logic
levels on the MODA and MODB pins are fed into the MCU via a clocked
Reference Manual M68HC11 — Rev. 6

46 Pins and Connections MOTOROLA

Pins and Connections
Pin Descriptions
pipeline path. The levels captured are those that were present part of a
clock cycle before the RESET pin rose, which ensures there will be a
zero hold-time requirement on the mode select pins relative to the rising
edge at the RESET pin. The captured levels determine the logic state of
the special mode (SMOD) and mode A select (MDA) control bits in the
highest priority interrupt (HPRIO) register. These two control bits actually
control the logic circuits involved in hardware mode selection. Mode A
selects between single-chip modes and expanded modes; mode B
selects between the normal variation and the special variation of the
chosen operating mode. Bootstrap mode is the special variation of
single-chip mode, and special test is the special variation of expanded
mode. Table 2-1 summarizes the operation of the mode pins and mode
control bits.

After RESET is released, the mode select pins no longer influence the
MCU operating mode. The MODA pin serves the alternate function of
load instruction register (LIR) when the MCU is not in reset. The
open-drain active-low LIR output pin drives low during the first E cycle of
each instruction. The MODB pin serves the alternate function of a
standby power supply (VSTBY) to maintain RAM contents when VDD is
not present. The power-saving mode, stop, is an alternate way to save
RAM contents, which does not require a separate standby power
source.

The LIR function is intended for monitoring on a logic analyzer during
debug of a system. Since this status indicator shows where each
instruction begins, programs can be followed easily. The mode A select
levels and the LIR status levels were selected to prevent interference
between the shared functions of the pin. In single-chip applications, this

Table 2-1. Hardware Mode Select Summary

Inputs
Mode Description

Control Bits in HPRIO (Latched at Reset)

MODB MODA RBOOT SMOD MDA IRV

1 0 Normal single chip 0 0 0 0

1 1 Normal expanded 0 0 1 0

0 0 Special bootstrap 1 1 0 1

0 1 Special test 0 1 1 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 47

Pins and Connections
pin is simply connected to VSS. Since the LIR output is open-drain, there
is no conflict between the direct VSS connection and the LIR signal that
drives the pin low during the first E cycle of each instruction. There is no
practical reason to monitor LIR during single-chip modes because there
is no visibility to internal data and address buses. In expanded-mode
systems, the MODA/LIR pin is normally pulled up to VDD by a 4.7-kΩ
resistor. During reset, the pullup resistor instructs the MODA pin to
select expanded modes. During-program execution, the pin is driven low
during the first cycle of each instruction by the LIR signal and is pulled
up between LIR signals by the external 4.7-kΩ pullup.

In expanded-mode systems where it is important to minimize
power-supply current, logic could be used to drive the MODA/LIR pin
rather than just using a simple pullup (see Figure 2-7). During reset, the
MODA pin would be driven high to select expanded mode. After reset,
the LIR pin would be driven low by logic. The logic should not be
operating against a pullup, but rather it should be a logic-gate-type
output with some series resistance to protect against the unlikely event
of a conflict between an active-low LIR signal and an active-high
logic-gate output signal. Such a conflict could only occur briefly at the
falling edge of reset. Since LIR is active for about one out of every three
cycles during normal execution (average instructions take about three
cycles), IDD could be reduced by about 350 µA (5 V ÷ 4.7 kΩ × 33% duty
cycle).

Figure 2-7. Reduced IDD MODA/LIR Connections

The VSTBY function is accomplished by a transistor switch that connects
either VSTBY or VDD to the RAM and reset logic, depending upon the
relative levels of VSTBY and VDD. The switch connects VDD unless VSTBY
is more than a threshold higher than VDD. A threshold is approximately
a diode drop (0.7 V) but varies from lot to lot due to processing
variations. During normal operation of the MCU, VDD is supplying power
to the RAM. In a standby situation, VSTBY should be maintained at a valid
level, and RESET should be activated (pulled low) when VDD drops
below legal limits. RESET should always be held low whenever VDD is

4.7K
RESET

74HC04

TO MODA/LIR

OF M68HC11
Reference Manual M68HC11 — Rev. 6

48 Pins and Connections MOTOROLA

Pins and Connections
Pin Descriptions
below its operating limit. If the MCU is to be operated in a special mode
(MODB low before applying reset) and the MODB/VSTBY pin is being
used to back up the RAM, the MODB/VSTBY pin should not be driven low
unless VDD is at (has returned to) a legal level. Some logic may be
required in systems that use MODB/VSTBY as a standby supply and want
to use one of the special modes of operation. In most applications, the
MODB pin would be connected to VDD through a 4.7 kΩ pullup resistor
for normal modes or directly to ground for special modes.

There are two ways to maintain the contents of on-chip RAM with
minimal power consumption (as in a battery-based application).

• The preferred method uses the stop mode of operation.

• The second method uses the MODB/VSTBY pin (see Figure 2-8).

Each of these methods has advantages. The stop mode method is
preferred because it is much simpler than the separate power-supply
method in terms of hardware costs and complexity. The STOP method
saves power by stopping all MCU clocks, which reduces the VDD current
to a few microamps. No external logic is needed, and the contents of
internal registers are maintained in addition to the contents of internal
RAM.

The MODB/VSTBY pin method would be used in cases where there is a
significant amount of external circuitry operating from VDD so that the
added complexity of two supplies and added logic is justified by the
power savings.

Figure 2-8. RAM Standby MODB/VSTBY Connections

OUT

4.7K
TO MODB/VSTBY

MAX
690

V

V BATT

V DD

+
4.8 V
NiCd

OF M68HC11

V DD
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 49

Pins and Connections
2.4.3 Crystal Oscillator and Clock Pins (EXTAL, XTAL, and E)

The oscillator pins can be used with an external crystal network or an
externally generated CMOS-compatible clock source. The frequency
applied to these pins is four times higher than the desired bus frequency
(E-clock rate). The E clock is the bus frequency clock output, which is
used as a basic timing reference signal. When the E clock is low
(address portion of a bus cycle), an internal process is occurring; when
E is high, data is being addressed. The E clock is free running at
one-fourth the crystal frequency as long as the oscillator is active (stop
mode stops all clocks).

The oscillator in the MC68HC11A8 consists of a large 2-input NAND
gate. One of the inputs to this gate is driven by an internal signal that
disables the oscillator when the MCU is in the stop mode. The other input
is the EXTAL input pin of the MCU. The output of this NAND gate is the
XTAL output pin of the MCU.

The XTAL pin is normally left unterminated when using an external
CMOS-compatible clock input to the EXTAL pin. However, a 10-kΩ to
100-kΩ load resistor to ground may be used to reduce generated radio
frequency interference (RFI) noise emission. The XTAL output is
normally intended to drive only a crystal, but XTAL can be used as a
4 x clock output if special care is taken to avoid undesirable loading. The
XTAL output may be buffered with a high-impedance buffer such as the
74HC04, or it may be used to drive the EXTAL input of another
M68HC11 MCU. In all cases, the circuit-board layout around the
oscillator pins is critical. Load capacitances specified in the data sheets
and technical summary include all stray layout capacitances. Thus, the
physical capacitors connected to these pins should always be less than
the specified load capacitances by the estimated interconnection
capacitances.

Figure 2-9 and Figure 2-10 show the internal and external components
that form the crystal oscillator, called a Pierce oscillator (also known as
a parallel resonant crystal oscillator).

Figure 2-9 shows the connections for high-frequency crystals (greater
than 1 MHz), and Figure 2-10 shows connections for low-frequency
operation (less than 1 MHz). The resistor, Rf, provides a direct current
Reference Manual M68HC11 — Rev. 6

50 Pins and Connections MOTOROLA

Pins and Connections
Pin Descriptions
bias to the input so the NAND operates in its linear region. In
low-frequency designs, RS and C2 provide a phase shift. RS also limits
the power into the crystal, which is important for many small crystals
because they are designed for very low drive levels (typically 1-µW
maximum). In high-frequency applications (see Figure 2-9), the output
impedance of the NAND driver, combined with the lower impedance of
C1 and C2, provides the same effect as the RS in low-frequency designs.
Higher frequency AT-cut crystals are designed for much higher drive
levels.

Exact values for the external components are a function of wafer
processing parameters, package capacitance, printed circuit board
(PCB) capacitance and inductance, socket capacitance, operating
voltage, crystal technology, and frequency.

Typical values are:

Figure 2-9. High-Frequency Crystal Connections

Rf = 1 MΩ–20 MΩ Higher values are sensitive to humidity;
lower values reduce gain and could
prevent startup.

C1 = 5 pF–25 pF Value is usually fixed.

C2 = 5 pF–25 pF Value may be varied to trim frequency.

M68HC11

XTALEXTAL

R f

C2C1

XTAL

STOP
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 51

Pins and Connections
Figure 2-10. Low-Frequency Crystal Connections

A tune-up procedure for experimentally determining RS is discussed at
the conclusion of this subsection. Since circuit and layout capacitances
effectively add to the values of C1 and C2, the physical capacitances are
usually smaller than the intended capacitances.

In most high-frequency applications, the values of C1 and C2 are equal.
In low-frequency designs, it is often desirable to make C1 smaller than
C2, which provides a higher voltage at the EXTAL input due to an
impedance transformation. The wider voltage swing at this input will
result in lower power-supply current.

As in all crystal oscillator designs, all leads should be kept as short as
possible. It is also good practice to route VSS paths as shown in
Figure 2-11. These paths isolate the oscillator input from the output and
the oscillator from adjacent circuitry, only adding capacitance in parallel
with C1 and C2. Potentially noisy lines should be kept as far as possible
from the oscillator components. Ground loops should be avoided around
oscillator components (note the unterminated VSS paths ending under
C1 and C2 in Figure 2-11).

M68HC11

XTALEXTAL
R f

C2C1

XTAL

STOP

R S
Reference Manual M68HC11 — Rev. 6

52 Pins and Connections MOTOROLA

Pins and Connections
Pin Descriptions
Figure 2-11. Crystal Layout Example

Usually, the operation of the oscillator cannot be observed with an
oscilloscope connected to one of the oscillator pins. The oscilloscope
adds from 3 to 30 pF and from 1 to 10 MΩ to VSS, which will usually affect
oscillator operation. When the oscilloscope is connected to the EXTAL
input, the 10 MΩ to VSS (oscilloscope input) forms a resistive divider with
Rf and often disables the oscillator by biasing the circuit out of the linear
region of the EXTAL input. This problem can sometimes be overcome by
capacitively coupling the oscilloscope with a very small capacitor
(1–5 pF) between the oscilloscope probe and the oscillator pin. It is
usually better to observe the E-clock output from the MCU since this
does not alter the operation of the oscillator.

In low-frequency designs, it is often possible to observe the XTAL node
with an oscilloscope because the high-impedance nodes of the oscillator
are isolated from XTAL by RS. Observe IDD without the oscilloscope
connected and again with the oscilloscope connected. If the IDD is
unchanged, it is usually safe to assume the oscillator was unaffected.

CRYSTAL

C1C2

R f
PIN 7
EXTAL

PIN 8
XTAL

M68HC11
MCU
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 53

Pins and Connections
Low-frequency crystal circuits tend to be very high impedance. Thus, the
PCB must be clean, dry, and free of conductive material such as solder
rosin and excessive moisture from high humidity. If problems occur, the
value of Rf can be reduced so the contaminant impedance is less
significant in comparison. Of course, it is still best to eliminate the
contaminants.

Usually, startup time is inversely proportional to the frequency; thus,
low-frequency oscillators start slower than high-frequency oscillators.
There are many exceptions to this rule because there are many
variables affecting startup time. Observation of a few circuits using the
MC68HC11A8 with an 8-MHz crystal reveals startup from stop mode
takes approximately 2 ms, and startup from power-up occurs within a
few milliseconds of when VDD reaches approximately 1 volt. Power-up
performance varies greatly since power-source turn-on characteristics
vary greatly. Since the MC68HC11A8 is a fully static design, the
oscillator is not required to be running full speed before the processor
starts executing instructions (most applications do not require a stable
oscillator within the first few milliseconds after power-up). If the oscillator
is not running at full speed, instructions will take longer to execute, but
no unpredictable behavior will result as it would in an NMOS processor.
An oscillator in the 32-kHz range could require hundreds of milliseconds
or even a few seconds to start and stabilize.

NOTE: The following tune-up procedure is only meaningful for crystal
frequencies below 1 MHz. In higher frequency applications, because RS
is normally 0 Ω, this procedure is not needed.

The value of RS can be determined experimentally by using the final
PCB and an MCU of the exact type that will be used in the final
application. The MCU need not have the final mask program because
the MCU will be held in reset throughout the experiment. Because of the
number of variables involved, use components with the exact properties
of those that will be used in production. For example, do not use a
ceramic-packaged MCU prototype for the experiment when a
plastic-packaged MCU will be used in production. An emulator version
of the part will also have slightly different electrical properties than the
masked ROM version of the same part.
Reference Manual M68HC11 — Rev. 6

54 Pins and Connections MOTOROLA

Pins and Connections
Pin Descriptions
To determine the optimum value for RS, observe the operating current
(IDD) of the MCU as a function of RS. The MCU should be held in reset
throughout this procedure because operating current variations during
run modes are much greater than the current variations due to varying
RS. Normally, a dip in current will occur. This dip is not sharp as in many
LC circuits but is instead very broad. As the shape of this curve
suggests, the exact value of RS is not critical.

Finally, verify that the maximum-operating supply voltage does not
overdrive the crystal. Observe the output frequency as a function of VDD
at the buffered E-clock output. Under proper operating conditions, the
frequency should increase a few parts per million as supply voltage
increases. If the crystal is overdriven, an increase in supply voltage will
cause a decrease in frequency, or the frequency will become unstable.
If frequency problems arise, supply voltage must be decreased, or the
values of RS, C1, and C2 should be increased to reduce the crystal drive.

2.4.4 Crystal Oscillator Application Information

Some crystal oscillator application information is presented in this
subsection.

2.4.4.1 Crystals for Parallel Resonance

Parallel resonance refers to a Pierce oscillator that has the crystal in
parallel with an inverter. Almost all (if not all) CMOS MCUs use this type
oscillator. AT-cut crystals are available as standard devices for both
series resonant circuits and Pierce oscillators. The load capacitance has
to be specified for the Pierce version. The series resonant versions do
not require this specification and are more likely to be listed as a
standard product. The type circuit affects the oscillating frequency of the
crystal.

Any 4- to 8-MHz AT-cut crystal will normally meet the requirements of an
M68HC11. However, for a very accurate oscillator frequency, use the
Pierce version of the crystal with C1 and C2 values to match the
specified load capacitance value for the crystal. The load capacitance is
approximately equal to the series combination of C1 and C2.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 55

Pins and Connections
2.4.4.2 Using Crystal Oscillator Outputs

The crystal oscillator is actually an RF (radio frequency) application.
Connecting the crystal pins to other circuitry is likely to interfere with
proper operation of the oscillator. Modern CMOS inputs are very high
impedance and relatively low capacitance; thus, one of these inputs can
be connected to the oscillator without disturbing the oscillator. The data
sheet for a particular part shows examples of ways the crystal oscillator
can be used to drive other circuits for crystal frequencies between 4 and
8 MHz.

2.4.4.3 Using External Oscillator

An externally built Pierce oscillator will operate like a crystal connected
to the M68HC11. Use a single inverter and connect the crystal feedback
resistor and load capacitors as if the external inverter input were the
EXTAL pin and the inverter output were the XTAL pin. Use a 74HCU04
for this inverter. This device is an unbuffered HCMOS hex inverter. Avoid
Schmitt-trigger devices because the oscillator may fail to start. Buffer the
output of the external Pierce oscillator to drive additional logic.

2.4.4.4 AT-Strip versus AT-Cut Crystals

The AT-strip is a new-technology low-power crystal. Connecting one of
these crystals to the M68HC11 may cause problems due to the NAND
gate in the MCU overdriving the crystal. Use an AT-cut crystal with the
M68HC11 to avoid this problem.

2.4.5 Reset Pin (RESET)

This active-low, bidirectional control signal is used as an input to initialize
the MC68HC11A8 to a known startup state and as an open-drain output
to indicate that an internal failure has been detected in either the clock
monitor or computer operating properly (COP) watchdog circuit. This
RESET signal is significantly different from the RESET signal used on
earlier MCUs. More detailed information about this pin can be found in
Section 5. Resets and Interrupts.
Reference Manual M68HC11 — Rev. 6

56 Pins and Connections MOTOROLA

Pins and Connections
Pin Descriptions
The reset circuitry is specifically designed to work with lower levels of
VDD than other MCU circuitry. Thus, RESET can be used to prevent
undesirable performance as VDD power is applied or decays, which is
important for applications in which the contents of on-chip RAM must be
maintained in the absence of VDD. In this situation, the RAM and reset
input logic in the MCU would be powered from a standby power source
connected to the MODB/VSTBY pin whenever VDD is too low to support
proper MCU operation. Secondly, RESET must be controlled when VDD
is below legal operating limits to prevent unintentional corruption of
EEPROM data. Even if an application is not using the 512-byte
EEPROM, the CONFIG register is still an EEPROM byte and must be
protected from corruption.

Virtually all MC68HC11A8 systems should include automatic control of
RESET to drive it low whenever VDD is below legal limits. A simple,
inexpensive, low-voltage inhibit (LVI) device such as the MC34064 or
MC34164 can be used. The MC34064 is available in TO-92 or SOT-8
plastic packages and provides an open-drain output to directly drive the
RESET pin of the MC68HC11A8. This device is connected to VDD, VSS,
and the RESET pin of the MCU. A pullup resistor from RESET to VDD is
the only other component required for the reset circuit in most
applications. Figure 2-12 shows a typical reset circuit.

Figure 2-12. Reset Circuit Example

4.7K

TO RESET

V DDV DD

V DD

47K

MANUAL
RESET

OPTIONAL POR DELAY AND MANUAL RESET SWITCH

MC34064
RESET

GND

IN

1 µF MC34064
RESET

GND

IN

OF M68HC11
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 57

Pins and Connections
2.4.6 Interrupt Pins (XIRQ and IRQ)

The XIRQ pin provides a means for requesting non-maskable interrupts
after reset initialization. During reset, the X bit in the condition code
register (CCR) is set, and any interrupts are masked until MCU software
enables them. Since the XIRQ input is level sensitive, it can be
connected to a multiple-source wired-OR network with an external pullup
resistor. XIRQ is often used as a power loss detect interrupt.

The IRQ input provides a means for requesting asynchronous interrupts
to the MC68HC11A8. IRQ is program selectable (OPTION register),
having a choice of either level-sensitive or falling-edge-sensitive
triggering. After reset, IRQ is configured for level-sensitive operation by
default.

Whenever XIRQ or IRQ are used with multiple interrupt sources (IRQ
must be configured for level-sensitive operation if there is more than one
source of IRQ interrupt), each source must drive the interrupt input with
an open-drain-type driver to avoid contention between outputs. There
should be a single pullup resistor near the MCU interrupt input pin
(typically 4.7 kΩ). There must also be an interlock mechanism at each
interrupt source so that the source holds the interrupt line low until the
MCU recognizes and acknowledges the interrupt request. If one or more
other interrupt sources are still pending after the MCU services a
request, the interrupt line will still be low; thus, the MCU will be
interrupted again as soon as the interrupt mask bit in the MCU becomes
clear (normally upon return from an interrupt).

The IRQ pin is used during factory testing as a bulk VPP programming
voltage source, which allows for parallel programming of as many as half
of the bytes in the EEPROM in a single programming operation. Since
the on-chip charge pump does not have sufficient drive capability to
simultaneously program this many EEPROM locations, the external
20-V power supply is needed to supplement the on-chip charge pump.
The switchover mechanism, which decides whether EEPROM is
powered by the internal charge pump or the external voltage source, is
similar to the VSTBY logic at the MODB/VSTBY pin. When the external
voltage is more than the charge-pump voltage, the switch connects the
external high-voltage source to the internal VPP line. The added circuitry
Reference Manual M68HC11 — Rev. 6

58 Pins and Connections MOTOROLA

Pins and Connections
Pin Descriptions
at this pin has no effect on normal IRQ functions, but it does have some
effect on the way the pin reacts to illegal levels.

In addition to XIRQ and IRQ, five other pins on the MC68HC11A8 can
also be used to generate interrupt requests to the MCU. These pins are
associated with other on-chip peripherals such as the timer or
handshake I/O systems. The pins are PA0/IC3, PA1/IC2, PA2/lC1,
PA7/PAI/OC1, and AS/STRA. The input-capture pins can be configured
to detect rising edges, falling edges, or any edge. The PAI and STRA
inputs can be configured to detect rising edges or falling edges. The
STRA input is only available if the MCU is operating in a single-chip
mode because the pin is used as the address strobe (AS) output when
the MCU is in expanded modes. These five pins have advantages over
the IRQ and XIRQ pins in that each of these five interrupts is
independently maskable with a local control bit as well as the global I bit
in the CCR. Each of these five interrupts also has a readable status
indication, and a pending request can be cleared without being serviced.

2.4.7 A/D Reference and Port E Pins (VREFL, VREFH, and PE7–PE0)

The VREFH and VREFL pins provide the reference voltages for the A/D
converter circuitry. Since the A/D converter is an all-capacitive
charge-redistribution converter, there is essentially no dc current
associated with these pins. Very small dynamic currents are caused by
charge-redistribution switching during conversions (see Section 12.
Analog-to-Digital Converter System). These pins are normally
connected to VDD and VSS through a low-pass filter network (see
Figure 2-13) to isolate noise on the logic power supply from the relatively
sensitive analog measurements. A low-noise precision reference supply
can be used alternatively. There should be at least 2.5 V between VREFL
and VREFH for full A/D accuracy. Lower values will result in more
inaccuracy, but the converter will continue to operate. The A/D system is
tested at 4.5 V and 5.5 V across the reference supply pins.

There is an inherent diode from VREFL to VSS. If VREFL goes below VSS
by more than this diode drop, any conversion in progress may be
corrupted, but no permanent physical damage will result until significant
current is drawn. The only documented cases of damage have been
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 59

Pins and Connections
Figure 2-13. Low-Pass Filter for A/D Reference Pins

caused by blatant misapplication, such as connecting –12 V directly to
the VREFL pin. Since no P-channel devices are associated with the
VREFH pin, there is no diode clamping to VDD. The gates of analog
switches associated with the A/D reference and input pins are controlled
by signals that switch between VSS and about 7 V. This higher-than-VDD
supply is the output of a charge pump (separate from the charge pump
used for programming on-chip EEPROM). There is no special
requirement to keep VREFH below VDD. In fact, the converter will
continue to produce good results up to approximately 6 V on VREFH.

The port E input pins are used for general-purpose inputs and/or A/D
analog inputs. These inputs are designed so that the digital input buffers
are disabled at all times except for part of a cycle during an actual read
of port E; thus, analog levels near the switch point of the digital input
buffer do not result in high power-supply current drains as in a normal
CMOS input buffer. The buffers are enabled by an extra N-channel
device in series with the N-channel device in the input inverter. During a
digital read of port E, these extra N-channel devices are turned on for
part of the read cycle. Because of this special circuitry, it is not necessary
to terminate unused port E pins.

The analog and digital functions of port E do not normally interfere with
each other; thus, any combination of pins can be used as digital inputs
while the remaining port E pins are used for analog inputs. Turning on
the digital buffer during an analog sample may cause small disturbances
on the input line, which may cause small errors in the sampled analog
level. The disturbances would be caused by small gate-to-drain and
gate-to-source capacitances and would have to occur very close to the
trailing edge of a sample period to have any noticeable effect. The

1K

1 µF

V DD

TO V REFH
OF M68HC11

TO V REFL
OF M68HC11
Reference Manual M68HC11 — Rev. 6

60 Pins and Connections MOTOROLA

Pins and Connections
Pin Descriptions
disturbances are so small (if they exist) that they probably would not
cause any measurable inaccuracy. Since it is so easy to arrange
software to avoid this condition, it is probably easier to avoid potential
disturbances.

2.4.8 Timer Port A Pins

Port A includes three input-only pins, four output-only pins, and one pin
that can be configured to operate as an input or as an output. The
input-only pins (PA0/IC3, PA1/IC2, and PA2/lC1) also serve as
edge-sensitive timer input-capture pins. The four output-only pins
(PA3/OC5/OC1, PA4/OC4/OC1, PA5/OC3/OC1, and PA6/OC2/OC1)
also serve as main timer output-compare pins. Whenever an
output-compare function is enabled, that pin cannot be used for
general-purpose output. These four pins can be controlled by output
compare 1 (OC1) and/or another output compare. The PA7/PAI/OC1 pin
can be used as a general-purpose I/O pin, as a pulse-accumulator input,
or as an OC1 output pin.

2.4.9 Serial Port D Pins

Port D includes six general-purpose, bidirectional I/O pins that can be
individually configured as inputs or as outputs. When the serial
communications interface (SCI) receiver is enabled, the PD0/RxD pin
becomes an input dedicated to the RxD function. When the SCI
transmitter is enabled, the PD1/TxD pin becomes an output dedicated to
the TxD function. When the serial peripheral interface (SPI) system is
enabled, the PD2/MISO, PD3/MOSI, PD4/SCK, and PD5/SS pins
become dedicated to SPI functions. Even while the SPI system is
enabled, the PD5/SS pin can be used as a general-purpose output by
setting the corresponding DDRD5 bit, provided the SPI system is
configured for master mode of operation.

The six port D pins can be configured (port D wired-OR mode (DWOM)
control bit in SPI control register (SPCR)) for wired-OR operation. This
option disables the P-channel device in the output drivers so port D
outputs can actively drive low but not high, allowing two or more such
outputs to be connected without contention. Since the P-channel device
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 61

Pins and Connections
is physically present (just turned off), there is an inherent diode from the
output pin to VDD so the pin cannot be pulled to a level higher than VDD
(unlike a transistor-transistor logic (TTL) open-collector output). An
external pullup resistor is required on all port D outputs when the
wired-OR option is used. The firmware bootloader program configures
port D for wired-OR operation when the MCU is reset in bootstrap mode.
If the application is using bootstrap mode, either turn off the wired-OR
option after downloading or supply external pullup resistors on port D
output pins.

2.4.10 Ports B and C and STRA and STRB Pins

These 18 pins are used for general-purpose I/O while the MCU is
operating in single-chip mode. When an expanded mode is used, these
18 pins become a multiplexed address/data bus with an address strobe
(AS) and a read/write (R/W) control line. Table 2-2 summarizes the
functions of these pins related to the MCU operating mode.

Table 2-2. Ports B and C and STRA and STRB Pins

Port Bit
Single-Chip

and Bootstrap Mode
Expanded-Multiplexed
and Special Test Mode

B
B
B
B
B
B
B
B

0
1
2
3
4
5
6
7

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

Output
Output
Output
Output
Output
Output
Output
Output

A8
A9

A10
A11
A12
A13
A14
A15

Address output
Address output
Address output
Address output
Address output
Address output
Address output
Address output

C
C
C
C
C
C
C
C

0
1
2
3
4
5
6
7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

Input/output
Input/output
Input/output
Input/output
Input/output
Input/output
Input/output
Input/output

A0/D0
A1/D1
A2/D2
A3/D3
A4/D4
A5/D5
A6/D6
A7/D7

Address/data multiplexed
Address/data multiplexed
Address/data multiplexed
Address/data multiplexed
Address/data multiplexed
Address/data multiplexed
Address/data multiplexed
Address/data multiplexed

STRA Input strobe (edge in) AS Address strobe (out)

STRB Output strobe R/W Read/write select
Reference Manual M68HC11 — Rev. 6

62 Pins and Connections MOTOROLA

Pins and Connections
Pin Descriptions
In single-chip modes, no external address/data bus is needed; thus,
these 18 pins are available for general-purpose I/O. Port B is an 8-bit
output-only port; port C is an 8-bit bidirectional I/O port. Any combination
of bits in port C can be configured as outputs; the remaining bits are used
as inputs. Several automated handshake I/O functions are associated
with ports B and C. These strobe and handshake functions use the
STRA and STRB pins as strobes and handshake controls. The STRA
pin is an edge-detecting input that causes port C data to be latched into
a special internal latch register. The active edge for STRA is software
selectable, and any port C pin can be used for general-purpose static I/O
while other pins are being used for latched inputs. If strobe and
handshake functions are not being used, STRA can still be used as an
edge-detecting interrupt input but cannot be used as a general-purpose
static input. The STRB pin is an output strobe associated with the
handshake I/O functions of ports B and C. If handshake functions are not
being used, STRB can still be used as a general-purpose output, though
it is more difficult to control than a normal port output pin. For a detailed
discussion of the handshake I/O functions of ports B and C, refer to
Section 7. Parallel Input/Output.

When the MCU is operating in expanded modes, these 18 pins are used
for an address/data bus to allow the central processor unit (CPU) to
access a 64-Kbyte memory space. To save pins, the low-order address
and 8-bit data are time multiplexed on eight pins. During the first half of
each bus cycle, address output signals, A7–A0, are present on these
eight pins; during the second half of each bus cycle, these eight pins are
used as a bidirectional data bus, D7–D0. The AS signal is used as an
active-high latch enable to an external address latch. Address
information is allowed through this external transparent latch while AS is
high, and the stable address information is latched when AS is low. The
E clock is used to enable external devices to drive data into the CPU
during the second half of a read bus cycle (E clock high). The R/W signal
indicates the direction of data — high for read cycles, low for write
cycles.

NOTE: The AS/STRA pin is an output in expanded modes and an input in
single-chip modes. Remember to terminate this pin as an unused input
in single-chip modes.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 63

Pins and Connections
2.5 Termination of Unused Pins

Because the MC68HC11A8 is a CMOS device, unused input pins must
be terminated to ensure proper operation and reliability. Figure 2-14
shows a CMOS inverter, which is representative of circuitry found on
CMOS input pins. When the input is logic 0, the P-channel transistor is
on (conducting), and the N-channel transistor is off. When the input is
logic 1, the P-channel transistor is off, and the N-channel transistor is on.
These transistors are actually linear devices with relatively broad switch
points. As the input passes through midsupply, there is a region where
both transistors conduct to some degree. Under normal circumstances,
the input does not remain in this linear region for very long. Once the
inverter has completely switched so that only one of the two transistors
is conducting, there is virtually no current flow. This principle is why the
overall current drain of a CMOS device is directly proportional to the rate
of switching. Essentially, all current is due to gates that are in the linear
region during transitions and for charging and discharging internal
capacitances. Because the input is very high impedance, if it is not
connected, the input can oscillate or float to a midsupply level. Either of
these conditions can result in added power-supply current. The
oscillation case can result in coupling of noise to the power supply. In
older CMOS designs, the large currents caused by an input that floated
to midsupply could even induce CMOS latchup, which could destroy the
integrated circuit. Current design techniques on the MC68HC11A8 have
made latchup due to a floating input unlikely, but it is still important to
terminate unused inputs to avoid oscillation, noise, and added supply
current.

NOTE: Some inputs on the MCU (RESET, EXTAL, MODA, and MODB) cannot
be left unterminated in any system.

Figure 2-14. CMOS Inverter

OUT

V DD

P

N

IN
Reference Manual M68HC11 — Rev. 6

64 Pins and Connections MOTOROLA

Pins and Connections
Termination of Unused Pins
The port E input pins have an extra N-channel device between VSS and
the bottom of the N-channel device of the input inverter. Since this extra
device is only enabled for half a cycle during a digital read of port E, it is
less important to terminate unused port E pins than other unused inputs.
In cases of very slow bus frequencies, even half a cycle might be a
significant length of time, and unused port E pins could be terminated. In
some battery-powered systems where port E is read often, it would be
desirable to eliminate the potential added supply current.

Since the VREFL and VREFH pins do not connect to the inputs of any
CMOS gates within the MC68HC11A8, these pins do not need
terminating if they are not used. Although termination is not required, it
may reduce the risk of damage due to high-voltage static electricity.

Other than A/D pins, there are two basic types of input pins on the
MC68HC11A8 — an input-only pin and an input/output pin. The best
method to terminate unused inputs is with a pullup or pulldown resistor
for each unused pin. Input-only pins can be connected to each other and
then to a common termination point. Although this method is less
expensive and takes less space than individual pullups, it is much harder
to separate and use one of these pins if it is needed later. Although
input-only pins can be connected directly to VDD or VSS, it is better not
to because this connection makes it difficult to change the level at that
input. If a pullup or pulldown resistor is used instead, a signal can easily
be connected to the input later. The preferred method of terminating pins
that can be configured for input or output is with individual pullup or
pulldown resistors for each unused pin. Some users leave these pins
unconnected and reconfigure them as outputs during initialization. There
is still a brief period during reset and initialization where these pins are
unterminated inputs. There is also a small risk that a defective system
might fail to reconfigure these pins as outputs. A pin capable of being
configured as an output should never be connected to another such pin
or directly to either power-supply rail. If the pin ever became an output,
there is a possibility of high current drain due to an output conflict.

To eliminate potential problems, part of the verification procedure for the
design of every MCU system should be a pin-by-pin review of what is
connected to every pin on the MCU.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 65

Pins and Connections
2.6 Avoidance of Pin Damage

Any integrated circuit can be damaged or destroyed by exposure to
illegal voltages or conditions. By understanding the failure mechanisms,
a designer can protect against damaging conditions. In some cases, a
product can even be designed to tolerate common end-user errors by
designing protective interface circuits.

The data sheets for integrated circuits state conservative limits and
conditions that will definitely protect the integrated circuit. The
consequences of violating the specified limits are not usually discussed
because there are too many variables affecting the results. In some
cases, the MCU can tolerate significantly worse conditions than the
stated limits, although it is almost impossible to quantify or guarantee
this better performance for all parts and conditions.

There are several basic types of pin interface circuits on the
MC68HC11A8. The exact devices connected to the pin influence what
happens as the voltage level at the pin is driven above VDD or below
VSS. Many other factors, including ambient temperature and lot-to-lot
process variations, also influence the reaction of the MCU to illegal
voltage levels and conditions. The following discussion explains the
conditions leading to actual damage and what that damage might be.
This information should be used as a guideline to help engineers avoid
conditions leading to possible MCU damage.

Connected to the substrate of the silicon die, the VSS pin is the reference
point from which all other voltages are measured. The VDD pin is the
main positive power supply for the MCU. Data sheet information is
tested and guaranteed for VDD equal to 5 V ±10 percent, but, in limited
temperature range applications, the MCU can operate over a wider
range of VDD (some timing and drive capability specifications may not be
met). VDD and operating temperature have a significant effect on the
speed of CMOS logic. As VDD is reduced, the maximum crystal
frequency must also be reduced. For VDD equal 5 V ±10 percent, the
MC68HC11A8 can operate with a maximum bus frequency of 2.1 MHz;
when VDD is 3 V, the maximum bus frequency is about 1 MHz. At low
temperatures, speed increases and power-supply current decreases.
The MCU can typically operate with VDD levels up to 7 V without
Reference Manual M68HC11 — Rev. 6

66 Pins and Connections MOTOROLA

Pins and Connections
Avoidance of Pin Damage
damaging the MCU, but timing and drive levels will differ from the
specified limits. Also, there may be some adverse effects on gate oxides
from long-term exposure to VDD greater than or equal to 7 V. A
battery-based application could be exposed to VDD greater than 5 V
when batteries are new and still be expected to work properly as the
battery voltage slowly decays to some level well below 5 V. Although the
MC68HC11A8 could be used in such an application, published
specifications do not cover this range of VDD.

2.6.1 Zap and Latchup

Zap and latchup are terms familiar to failure analysis engineers that work
on CMOS integrated circuits. Zap refers to damage caused by very
high-voltage static-electricity exposure. Static-electricity (zap) damage
usually appears as breakdown of the relatively thin oxide layers that
causes leakage or shorts. Often secondary damage occurs after an
initial zap failure causes a short.

Latchup refers to a usually catastrophic condition caused by turning on
an unintentional, bipolar, silicon-controlled rectifier (SCR). A latchup
SCR is formed by N and P regions in the layout of the integrated circuit,
which act as the collector, base, and emitters of unintentional, parasitic
transistors. Bulk resistance of silicon in the wells and substrate act as
resistors in the SCR circuit. Application of voltages above VDD or below
VSS, in conjunction with enough current to develop voltage drops across
the parasitic resistors in the unintentional SCR circuit, can cause the
SCR to turn on. Normally, once this SCR is turned on, it can be turned
off only by removing all power from the integrated circuit. The
on-impedance of the SCR can overheat and destroy the integrated
circuit.

Improvements in layout and processing techniques have made newer
HCMOS devices, such as the MC68HC11A8, much less likely to suffer
damage from zap and latchup. Because of the destructive nature of
these mechanisms, it is impossible to test every device for zap and
latchup limits the way timing and drive levels are tested. To ensure
product reliability, sample groups of devices are destructively tested.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 67

Pins and Connections
2.6.2 Protective Interface Circuits

In applications where MCU pins might be exposed to detrimental
conditions, protective interfaces may be needed to protect the MCU from
damage. The two main goals of any protective interface are to prevent
high currents from flowing and to prevent illegal voltage levels at a pin.
A low-pass filter can often satisfy both goals. In less common situations,
it may also be necessary to provide diode clamps to prevent high
voltages at some pins. All pins on the M68HC11 have internal inherent
diode clamps to VSS, but only some of the pins include clamps to VDD.
The following subsections discuss the internal circuits for each type
MCU pin and note special considerations for the protection of these pin
types.

Usually, the only pins needing protection are those that are exposed to
signals from outside the system. For example, in an automobile engine
controller, the sensors for air and fuel flow are connected to the engine
control module and ultimately to MCU inputs. These signals are prime
candidates for protective interfaces because noise or illegal levels could
accidentally be applied through the interface wiring. On the other hand,
any buses and signals wholly contained within the control module
probably do not require any sort of protective interface because there is
little chance that these signals would be exposed to illegal levels. In a
few cases, a protective interface can even interfere with normal
operation of an MCU signal. For example, a low-pass filter on an address
or data line of an expanded MCU system would introduce significant
delays to these signals, dramatically limiting the maximum operating
speed of the system.

2.6.3 Internal Circuitry — Digital Input-Only Pin

Figure 2-15 shows the MOS circuitry for a digital input-only pin. The
gates of input buffer [3] are very high impedance for all voltages that
would ever be applied to the pin. The thick-field protection device [2]
normally prevents the pin voltage from reaching levels that could
damage the gates of the input buffer. The exact circuitry of the input
buffer may be different for different digital inputs (for example, to provide
hysteresis, etc.), but only device gates will be connected directly to the
Reference Manual M68HC11 — Rev. 6

68 Pins and Connections MOTOROLA

Pins and Connections
Avoidance of Pin Damage
pin. Allowing a pin to float (or be driven) to a midsupply level can result
in both the N- and P-channel devices in the input buffer simultaneously
being partially on, which causes excess current and noise on the
VDD/VSS power supply. Port E inputs are exceptions because they are
specifically designed to be driven by analog levels.

Figure 2-15. Internal Circuitry — Digital Input-Only Pin

If a digital input pin (see Figure 2-15) is driven with voltages below VSS,
the thick-field protection device [2] forms an inherent diode junction to
VSS, which conducts when the pin voltage gets more than a diode drop
below VSS. As the pin voltage is driven more negative with respect to
VSS, current increases. These currents have a tendency to influence the
die substrate in the area around the protection device, thus affecting the
electrical characteristics of devices in the vicinity. When the pin current
is increased to very high levels (typically more than 100 mA, specified
limit is 25 mA), physical damage can result.

As voltage at [1] is driven above VDD, the protection device will begin to
conduct and tend to clamp the input voltage to protect input buffer [3].
The voltage at which this condition will occur varies significantly from lot
to lot and over the operating temperature range. At room temperature,
the pin typically does not draw any current until approximately 20 V; at
125°C, the pin may start conducting at a slightly lower level. Up to this
point, the pin appears to function normally and will return a logic 1 if read.
As the pin voltage increases, the thick-field protection device begins to
conduct more current to the die substrate, which is VSS. There should be
some external series impedance between the pin and the input voltage
source if the MCU will be used in a detrimental environment. If the input

P

N

V DD

TH
IC

K
FI

EL
D

PR
O

TE
C

TI
O

N

PIN

N

[1]

[2]

[3]

INPUT
BUFFER
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 69

Pins and Connections
voltage is increased even further, the protection device [2] will
avalanche, and the pin voltage will eventually fold back (typically to
about 7 to 12 V). Under these conditions, a parasitic bipolar transistor,
which is not obvious from the MOS schematic, is turned on and is
holding the pin at the 7-volt level. This avalanche is still normally not
destructive to the pin. Since the foldback clamp level is relatively low
impedance, the pin voltage cannot be raised further without supplying a
large current. If the offending voltage source is increased to increase the
pin current, the pin circuitry will be damaged (specified limit is 25 mA,
typically takes more than 100 mA). Gate oxides in these inputs are not
intended to be exposed to voltages above 7 V for any significant amount
of time. With the HCMOS processing used in the MC68HC11A8, a
latchup failure is unlikely unless legal drive limits are grossly exceeded.

2.6.4 Internal Circuitry — Analog Input-Only Pin

Figure 2-16 shows the MOS circuitry associated with an analog
input-only pin. This MOS logic is similar to that for a digital input-only pin
except for the addition of the analog multiplexer [5] and the extra
N-channel device below the buffer. The N-channel device [5] acts as an
analog multiplexer and affects the behavior of an analog input pin when
exposed to negative voltages. The N-channel device [4] allows the
analog input pins to be driven by intermediate levels without causing the
noise and current normally associated with the input buffer when its input
is at a midsupply level. This device is only turned on for half an E-clock
cycle during a digital read of port E. Since the analog input pins
(including the VREF pins) are only connected to N-channel devices and
high-impedance gates, these pins can be driven with levels above VDD
without the usual fear of latchup. This aspect is important because the
analog reference supply is typically independent of the VDD supply for
noise isolation reasons.

An analog input pin (see Figure 2-16) responds very much like a digital
input to illegal levels except that negative levels at the pin can affect A/D
operations. The analog functions associated with these pins also
present some special challenges to protective interface circuits.
Although the N-channel device [4] eliminates the need for external pullup
or pulldown resistors on unused port E pins, a conservative designer
would still terminate these pins to help prevent static damage.
Reference Manual M68HC11 — Rev. 6

70 Pins and Connections MOTOROLA

Pins and Connections
Avoidance of Pin Damage
Figure 2-16. Internal Circuitry — Analog Input-Only Pin

If the pin voltage is driven low enough relative to the gate voltage of the
analog multiplexer device, this N-channel device can turn on. A
conductive path between the negative pin and the A/D capacitor array
may discharge the capacitors and disrupt any A/D conversion in
progress. The thick-field protection device and other circuit and layout
measures around the N-channel multiplexer device are intended to
prevent the pin voltage from becoming negative enough to turn on the
multiplexer device. Even with these internal protective measures, a
cautious user should avoid negative levels on any A/D pin because a
large negative transient could still disrupt an A/D conversion. An A/D
conversion can be disrupted in this manner if any A/D pin experiences a
serious negative transient; the transient need not be on the pin
associated with the conversion.

External diode clamps to VDD are not necessarily a good idea on the
analog inputs. Leakage through an external diode would be significant in
relationship to the pin leakage current; thus, this extra leakage could
affect the accuracy of analog conversion results. Analog input pins can
usually be protected by a low-pass filter with enough series impedance
to limit the pin voltage. The amount of series resistance is a trade-off
between a high enough value to limit pin voltage and a low enough value
to prevent pin leakage current from adversely affecting conversion

P

N

V DD

TH
IC

K
FI

EL
D

PR
O

TE
C

TI
O

N

PIN

N

[1]

[2]

[3]

INPUT
BUFFER

N

[4]

[5]

ANALOG
MULTIPLEXER

N

M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 71

Pins and Connections
results. Conversion accuracy is specified for a maximum external series
resistance of 10 kΩ. The worst-case specified leakage current at the pin
is 400 nA (at room temperature, leakage is typically much less). The
400 nA acting through 10 kΩ causes an absolute conversion error of
minus one-fifth of a least significant bit (LSB) when VREF is 5.12 V,
leaving only about one-quarter of an LSB for actual A/D circuit errors
before the results would be out of specified limits. Using a larger external
resistance in series with an A/D pin may cause some inaccuracy due to
the leakage current acting through this resistance, but the A/D will still
respond in a predictable manner. There may be valid system design
reasons for choosing a high external series resistance (for example, to
minimize power consumption in a battery-based system). For additional
detailed information concerning the A/D input pins, see 12.5 A/D Pin
Connection Considerations.

2.6.5 Internal Circuitry — Digital I/O Pin

Figure 2-17 shows the MOS circuitry for an MCU pin capable of
operating as an input or an output. Even when the pin is configured to
disable the output driver circuitry, the MOS transistors still affect the way
the pin reacts to illegal levels. The P-channel device of the output driver
[3] forms an inherent diode to VDD, and the N-channel device forms an
inherent diode to VSS, which is in parallel with the inherent diode of the
thick-field protection device.

Figure 2-17. Internal Circuitry — Digital I/O Pin

P

N

TH
IC

K
FI

EL
D

PR
O

TE
C

TI
O

N

PIN

N

[1]

[2]

[3]

INPUT
BUFFER

V DD

N

P

[4]

[5]

OUTPUT
BUFFER

V DD
Reference Manual M68HC11 — Rev. 6

72 Pins and Connections MOTOROLA

Pins and Connections
Avoidance of Pin Damage
When the pin is configured as a high-impedance input, input signals are
clamped to within a diode drop of the VSS and VDD power-supply rails.
When the pin is configured as an output, the P- or N-channel device
provides a low-impedance path to VDD or VSS, respectively. The current
into or out of the pin should be limited to prevent damage. The specified
current limit is 25 mA, although these pins can typically withstand
transients of more than 100 mA at nominal room temperature.

The port C and port D I/O pins of the M68HC11 can be configured as
open-drain-type outputs. This configuration disables the gate signal to
the P-channel device of the output buffer so the pin cannot be driven to
an active-high logic level, but the P-channel device is still physically
present and forms an inherent diode to VDD. In a few applications, the
situation will arise where two or more MCU I/O pins are tied to the same
point. Software would be arranged so that no more than one of these I/O
pins is configured as an output at any time to avoid output driver
contention. In these applications, the I/O pins should be configured for
the open-drain mode so the output drivers are prevented from
high-current contention.

2.6.6 Internal Circuitry — Input/Open-Drain-Output Pin

Two pins on the M68HC11 (RESET and MODA/LIR) have
high-impedance input functions as well as open-drain output functions
(see Figure 2-18). These pins are similar to I/O pins except that there is
no P-channel device in the output driver. Since the P-channel output
device is not present, there is no inherent diode to VDD. In terms of
negative illegal levels at these pins, two diodes clamp the pin to a diode
drop below ground. In terms of positive levels above VDD, the N-channel
output device starts to conduct before the thick-field protection device;
thus, typically the clamp level for these pins will be lower than that for a
digital input-only pin. As for any MCU pin, current should be limited to
prevent damage.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 73

Pins and Connections
Figure 2-18. Internal Circuitry — Input/Open-Drain-Output Pin

2.6.7 Internal Circuitry — Digital Output-Only Pin

Output-only pins react to illegal levels exactly like I/O pins. Figure 2-19
shows the MOS circuitry for a digital output-only pin.

Figure 2-19. Internal Circuitry — Output-Only Pin

2.6.8 Internal Circuitry — MODB/VSTBY Pin

The MODB/VSTBY pin is unusual because it serves as a standby voltage
source in addition to acting as a mode select input (see Figure 2-20). A
MOS switch automatically connects the internal RAM power supply to
the higher of VDD or VSTBY. If an illegal high level is applied to the

P

N

TH
IC

K
FI

EL
D

PR
O

TE
C

TI
O

N

PIN

N

[1]

[2]

[3]

INPUT
BUFFER

N [4]

N-CHANNEL ONLY
OUTPUT BUFFER

V DD

TH
IC

K
FI

EL
D

PR
O

TE
C

TI
O

N

PIN

N

V DD

N

P

OUTPUT
BUFFER
Reference Manual M68HC11 — Rev. 6

74 Pins and Connections MOTOROLA

Pins and Connections
Avoidance of Pin Damage
MODB/VSTBY pin, this illegal voltage is passed into the internal RAM
system. A minor elevation of VSTBY relative to VDD can be tolerated
during MCU operation, but any significant elevation can result in
incorrect reads of RAM data.

When a battery or other standby voltage source will be used to maintain
RAM contents in the absence of VDD, the MODB/VSTBY pin should be
driven by VDD (rather than the standby source) during normal operation.
The MODB/VSTBY pin should not be driven by a higher level than VDD,
except during standby periods; during these periods, RESET should be
driven low.

Figure 2-20. Internal Circuitry — MODB/VSTBY Pin

P

N

[3]

INPUT
BUFFER

PIN

[1]

MODB/V STBY

MOS POWER SWITCH

[4]

[5]

[6]

[7]
POWER
TO RAM

V DD
TH

IC
K

FI
EL

D
PR

O
TE

C
TI

O
N

N

[2]

N

V DD

V DD
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 75

Pins and Connections
2.6.9 Internal Circuitry — IRQ/VPPBULK Pin

The IRQ pin is used as a high-voltage (20 V) power source during factory
testing. This high-voltage source supplies power for bulk programming
operations because the internal charge pump is not designed to provide
enough current for these bulk programming operations. Figure 2-21
shows the MOS circuitry for the IRQ/VPPBULK pin. The IRQ/VPPBULK pin
essentially reacts like an input-only pin to illegal levels.

The normal VPP level used during testing is very near the level where the
thick-field protection device begins to conduct. It is important to limit the
current of the VPP power supply into the IRQ/VPPBULK pin with an
external series resistor (typically 27 kΩ) because noise or overshoot can
trigger the low-impedance foldback mechanism of the protection device.
Without a current-limiting resistor, the small metal line connecting the
bonding pad to the pin input circuitry will instantly vaporize. Normal users
would not encounter this potential problem since the VPP function of the
IRQ/VPPBULK pin is only intended for use by Motorola. The
current-limiting resistor has no adverse effect on the bulk programming
process since the current requirements for EEPROM programming are
very small.

Figure 2-21. Internal Circuitry — IRQ/VPPBULK Pin

P

N

V DD

TH
IC

K
FI

EL
D

PR
O

TE
C

TI
O

N

PIN

N

[1]

[2]

[3]

INPUT
BUFFER

IRQ/V PPBULK

[4]

V PPN N
Reference Manual M68HC11 — Rev. 6

76 Pins and Connections MOTOROLA

Pins and Connections
Typical Expanded Mode System Connections
2.7 Typical Expanded Mode System Connections

The schematic shown in Figure 2-22 is for a fairly straightforward
expanded mode system, which can be operated in normal expanded
mode or special test mode. This circuitry can be used as the basis for
any expanded mode application. In most cases, the circuitry for the
power supply, oscillator, and mode selects can be used exactly as
shown in this system. If additional memory or peripheral functions are
added to the address and data buses, the loading should be reviewed to
determine whether additional buffering is required. Loading is generally
limited by load capacitance before the dc drive capabilities of the MCU
drivers are reached. At bus frequencies lower than 2 MHz, more
capacitance can be driven before buffers are required. In applications
where heavy bus loading occurs, it is necessary to increase
power-supply bypass capacitors to provide for these higher bus
switching demands on VDD.

The address decoding used in this example system is unusual in that the
external EPROM is decoded to appear in either of two memory areas.
Some commonly used terms to describe this type of decoding are partial
decode, redundant mapping, and mirroring. In this system, the external
EPROM appears at $E000–$FFFF and at $A000–$BFFF so that the
reset vector can be fetched out of this EPROM whether the MCU is
operating in normal expanded mode or special test mode. This mapping
also allows the MCU to come out of reset in special test mode, check the
contents of the EEPROM-based CONFIG register (change CONFIG if
necessary), and then change the operating mode to normal expanded
mode. There are several potential advantages to starting a system this
way (see 3.7.3 Special Test Mode).

The 74HC138 decoder provides address-qualified read enable and write
enable signals for two 8-Kbyte by 8 static RAMs. The other four outputs
of this 74HC138 provide additional chip selects for additional RAM or
peripheral devices. Since the R/W signal drives one of the address
selects of the 74HC138, there are four active-low read enable outputs
and four active-low write enable outputs. The timing for these outputs is
controlled by the E clock and the propagation delay through the
74HC138 decoder. Address and R/W are stable long before the rising
edge of the E clock.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 77

Pins and Connections
Figure 2-22. Basic Expanded Mode Connections (Sheet 1 of 2)

V DD

+

4.7K

MC34064

V DD

RESET

V DD

GND

IN

1K

1 µF

V DD

10M

8.0 MHz

18 pF

18 pF

V DD
4.7K

4.7K

0.01 µF

10 µFSY
ST

EM
PO

W
ER

CONNECT
JUMPER FOR
TEST MODE

RESET

XIRQ

IRQ

V

V

RH

RL

MODA/LIR

V

STBYMODB/V

DD

VSS

EXTAL

XTAL

MC68HC11A8

PA0/IC3

PA1/IC2

PA2/IC0

PA3/OC5/OC1

PA4/OC4/OC1

PA5/OC3/OC1

PA6/OC2/OC1

PA7/PAI/OC1

A8

A9

A10

A11

A12

A13

A14

A15

PE4/AN4

PE5/AN5

PE6/AN6

PD0/RxD

PD1/TxD

PD2/MISO

PD3/MOSI

PD4/SCK

PD5/SS

PE7/AN7

PE0/ANO

PE1/AN1

PE2/AN2

PE3/AN3

V DD

10K TYP

E

4.7K

4.7K

1 µF

AS

AD0

AD1

AD2

AD3

AD4

AD5

AD6

AD7

OE

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

LE

D0

D1

D2

D3

D4

D5

D6

D7

74HC373

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

D0

D1

D2

D3

D4

D5

D6

D7

R/W

E

AS

R/W

CONTROL BUS

DATA BUS

AD
D

R
ESS BU

S

Reference Manual M68HC11 — Rev. 6

78 Pins and Connections MOTOROLA

Pins and Connections
Typical Expanded Mode System Connections
Figure 2-22. Basic Expanded Mode Connections (Sheet 2 of 2)

CONTROL BUS

DATA BUS

ADDRESS BUS

D0

D1

D2

D3

D4

D5

D6

D7

A0

A1

A2

A3

A4

A5

A6

A7

D0

D1

D2

D3

D4

D5

D6

D7

A8

A9

A10

A11

A12

8K X 8 RAM

OE

D0

D1

D2

D3

D4

D5

D6

D7

CS

A0

A1

A2

A3

A4

A5

A6

A7

D0

D1

D2

D3

D4

D5

D6

D7

A8

A9

A10

A11

A12

8K X 8 EPROM

D0

D1

D2

D3

D4

D5

D6

D7

A0

A1

A2

A3

A4

A5

A6

A7

D0

D1

D2

D3

D4

D5

D6

D7

A8

A9

A10

A11

A12

8K X 8 RAM

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

V DD

D0

D1

D2

D3

D4

D5

D6

D7

10K TYP

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

A0

A1

A2

G

G1

G2

A14

A15

A13

RD

WE

RD

WE

E

R/W

E

R/W

A15

A13

74HC138
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 79

Pins and Connections
Figure 2-23. Basic Single-Chip Mode Connections

4.7K

MC34064
RESET

GND

IN

1K

1 µF

10M

8.0 MHz

18 pF

18 pF

4.7K

4.7K

0.1 µF

4.7 µF

SYSTEM
POWER

4.7KCONNECT
JUMPER FOR

BOOTSTRAP MODE

RESET

XIRQ

IRQ

V

V

RH

RL

STBY

MODA/LIR

V

MODB/V

DD

VSS

EXTAL

XTAL

MC68HC11A8

PA0/IC3

PA1/IC2

PA2/IC0

PA3/OC5/OC1

PA4/OC4/OC1

PA5/OC3/OC1

PA6/OC2/OC1

PA7/PAI/OC1

PB0

PB1

PB2

PB3

PB4

PB5

PB6

PB7

STRB

PE4/AN4

STRA

PE5/AN5

PC0

PC1

PC2

PC3

PC4

PC5

PC6

PC7

PE6/AN6

PD0/RxD

PD1/TxD

PD2/MISO

PD3/MOSI

PD4/SCK

PD5/SS

PE7/AN7

PE0/ANO

PE1/AN1

PE2/AN2

PE3/AN3

10K TYP

E

V DD

+

V DDV DD

V DD

V DD

V DD
Reference Manual M68HC11 — Rev. 6

80 Pins and Connections MOTOROLA

Pins and Connections
Typical Single-Chip Mode System Connections
The decoding for the EPROM was done with two sections of a quad
NAND gate. Address valid time controls the chip select access time of
the EPROM. This chip select decode provides for a longer access time
than the chip select arrangement on the RAMs because EPROMs are
typically slower than static RAMs. The E clock controls the output enable
of the EPROM, which typically has a much shorter setup time
requirement than the chip-select input to the EPROM. Since address line
A14 is not included in the decode for the EPROM, the EPROM will
appear twice in the memory map: at $A000–$BFFF where A14 is low
and at $E000–$FFFF where A14 is high.

A few potential address conflicts can occur in this system. The on-chip
ROM and/or on-chip EEPROM can conflict with the external EPROM.
For the purposes of this example, it is assumed that the internal ROM
will not be used and will be disabled by the ROMON control bit in the
CONFIG register. The potential for conflict with the EEPROM poses no
concern in normal expanded mode because the external MCU data bus
is high impedance and ignored during reads of the internal EEPROM. In
special test mode, there is a potential for an undesirable conflict if the
EEPROM is read while the IRV function is enabled (see 2.9.2 Internal
Read Visibility (IRV). Although normally this conflict would not be
destructive, it would increase power consumption and generated noise.
In this example system, the special test mode would be in effect only for
a short time after reset, and reads of the internal EEPROM could be
avoided easily during this time.

2.8 Typical Single-Chip Mode System Connections

Figure 2-23 is the schematic for a simple single-chip-mode system,
which can be operated in normal single-chip or special bootstrap mode.
This circuit can be used as the basis for any single-chip-mode
application. In most cases, the circuitry for the power supply, oscillator,
and mode selects can be used exactly as shown in this system. Only
specialized I/O circuitry specific to the application needs to be designed
from scratch. All unused inputs are terminated in an appropriate manner.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 81

Pins and Connections
2.9 System Development and Debug Features

The designers of the M68HC11 carefully considered the system
development needs of the user. Since smaller users cannot afford
thousands of dollars for a development system, the M68HC11 was
specifically designed to accommodate low-cost development tools. The
M68HC11EVB evaluation board and M68HC11EVM evaluation module
are two examples of such low-cost tools. Several customers have also
built small plug-in modules that emulate the MC68HC11A8 for product
development purposes. The small size of these plug-in emulators is
possible because of the development features designed into the
M68HC11.

2.9.1 Load Instruction Register (LIR)

The LIR signal is intended as a debugging aid. This signal is driven to
active low for the first bus cycle of each new instruction, making it easy
to reverse assemble (disassemble) instructions from the display of a
logic analyzer.

2.9.2 Internal Read Visibility (IRV)

During debugging of an application, it is useful to see what is being read
from internal registers and memory locations. The IRV feature provides
this capability. Usually this feature should be disabled during normal
operation of the system due to the possibility of bus conflicts.

The IRV feature is controlled by the IRV bit in the HPRIO register. When
the IRV bit is 1, the data from a read of an internal register or memory
location is driven out on the data bus so it can be monitored by a logic
analyzer. If the IRV bit is 0, the IRV function is disabled, and the data bus
is undriven during reads of an internal address. Special restrictions apply
to the use of the IRV bit and function. When the MCU is reset in normal
modes, the IRV bit is initially 0. In all but the newest derivatives in the
M68HC11 Family, the IRV bit may not be written to 1 in the normal
modes. In special test and bootstrap modes, the IRV bit is initially 1 and
may be written to 0 after which it becomes a read-only bit.
Reference Manual M68HC11 — Rev. 6

82 Pins and Connections MOTOROLA

Pins and Connections
System Development and Debug Features
Be careful when the IRV function is enabled. During reads of an internal
address, the data bus is driven out even though the R/W line indicates
that the bus direction is toward the MCU. Some external device may also
be trying to drive the data lines, which leads to an undesirable bus
contention. In a test or debugging situation, special address decode
logic can be used to prevent such contention. It would be expensive and
inappropriate to have this additional decode logic on all normal mode
systems; thus, the IRV function was only provided in the special test and
bootstrap modes. Due to several customer requests for the IRV function
in normal modes, the logic was changed to allow the function to be
enabled in normal modes on new versions of the M68HC11. The default
condition in normal modes is still IRV equals 0, which disables the
function. If a user specifically wants the IRV function, IRV may be written
to 1, and the user becomes responsible for avoiding bus contentions.
IRV can be written to 1 at any time unless it has previously been written
to 0. If the IRV bit is written to 0, the function becomes disabled until the
next reset sequence.

2.9.3 MC68HC24 Port Replacement Unit (PRU)

The MC68HC24 PRU is a gate array that emulates the single-chip mode
functions of ports B and C, which are lost to the expansion bus function
when the MCU is operated in expanded modes. The expanded mode
permits program development in an external EPROM. A system
consisting of an M68HC11 in expanded mode, an MC68HC24, an
HC373 octal latch, and an external EPROM performs like the
MC68HC11A8 operating in single-chip modes, thus allowing an
application program to be developed and tested before a masked ROM
pattern is ordered.

The logic in the M68HC11 was specifically designed to permit emulation
of single-chip functions with the MC68HC24. First, the addresses
associated with ports B and C and their handshake I/O functions are
treated as external addresses when the MCU is operating in expanded
modes. Next, the interrupts associated with the handshake I/O system
are vectored to the same address as IRQ interrupts. Thus, the interrupt
output of the MC68HC24 can be connected to the IRQ interrupt input of
the MCU, and handshake interrupts will be treated the same as internal
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pins and Connections 83

Pins and Connections
handshake functions. The M68HC11 allows registers and/or internal
RAM to be remapped to any 4-Kbyte boundary. The MC68HC24 copies
this logic so that the registers in the MC68HC24 will automatically track
the internal remapping logic. Software written on an expanded system,
including an MC68HC24, will operate exactly as it would in the internal
ROM of an MC68HC11A8 in single-chip mode.
Reference Manual M68HC11 — Rev. 6

84 Pins and Connections MOTOROLA

Reference Manual — M68HC11

Section 3. Configuration and Modes of Operation
3.1 Contents

3.2 Introduction .86

3.3 Hardware Mode Selection .86
3.3.1 Hardware Mode Select Pins. .87
3.3.2 Mode Control Bits in the HPRIO Register 88

3.4 EEPROM-Based Configuration (CONFIG) Register.89
3.4.1 Operation of CONFIG Mechanism .90
3.4.2 CONFIG Register .91

3.5 Protected Control Register Bits .94
3.5.1 RAM and I/O Mapping Register (INIT)95
3.5.2 Protected Control Bits in the TMSK2 Register98
3.5.3 Protected Control Bits in the OPTION Register99

3.6 Normal MCU Operating Modes .101
3.6.1 Normal Single-Chip Mode .101
3.6.2 Normal Expanded Mode. .101

3.7 Special MCU Operating Modes .102
3.7.1 Testing Functions Control Register (TEST1)104
3.7.2 Test-Related Control Bits in the BAUD Register 107
3.7.3 Special Test Mode .108
3.7.4 Special Bootstrap Mode .109
3.7.4.1 Loading Programs in Bootstrap Mode110
3.7.4.2 Executing User Programs in Bootstrap Mode111
3.7.4.3 Using Interrupts in Bootstrap Mode112
3.7.4.4 Bootloader Firmware Options .113

3.8 Test and Bootstrap Mode Applications114

3.9 Example 3-1: Programming CONFIG
(Uses Special Test Mode) .115
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Configuration and Modes of Operation 85

Configuration and Modes of Operation
3.2 Introduction

This section discusses the mechanisms that allow the MC68HC11A8 to
conform to a wide variety of applications. These mechanisms include
hardware mode selection circuitry, a nonvolatile electrically erasable
programmable ROM (EEPROM)-based configuration register, and
protected control register bits. The majority of the control bits in the
MC68HC11A8 are accessible at any time by software and are discussed
throughout this manual.

The term mode is used in more than one context in discussing the
microcontroller unit (MCU). For example, the serial peripheral interface
(SPI) is said to be in either the master or slave mode, the parallel
input/output (I/O) system is said to be in simple strobed mode, full-input
handshake mode, or full-output handshake mode. In most cases, there
is no confusion about what the term mode refers to; however, the use of
the term mode in conjunction with stop and wait is often misunderstood.
Stop and wait are actually modes of operation of the central processor
unit (CPU) as opposed to single-chip and expanded modes, which are
modes of operation of the MCU integrated circuit. In this section, the
MCU operating modes and other mechanisms controlling the basic
configuration of the MCU are discussed.

Very few MCU functions are influenced by the mode of operation. For
example, the timers, analog-to-digital converter (A/D), and serial I/O
functions all work the same in expanded modes as they do in single-chip
modes. The parallel I/O functions of 18 pins are lost in the expanded
modes but can be regained with a special, external, port-replacement
chip called the MC68HC24. In the two special modes of MCU operation,
some special testing functions become accessible, including the ability
for software to change the MCU mode.

3.3 Hardware Mode Selection

There are only two fundamental modes of operation for the
MC68HC11A8 MCU:

• Single-chip mode

• Expanded mode
Reference Manual M68HC11 — Rev. 6

86 Configuration and Modes of Operation MOTOROLA

Configuration and Modes of Operation
Hardware Mode Selection
Each mode has a normal variation and a special variation. These four
mode variations are selected by the levels on the mode A (MODA) and
mode B (MODB) pins during reset. The special variation of single-chip
mode is called special bootstrap mode; the special variation of the
expanded mode is called special test mode. The special bootstrap mode
allows programs to be downloaded through the on-chip serial
communications interface (SCI) into internal random-access memory
(RAM) to be executed. The bootloaded program is used for a variety of
tasks such as loading calibration values into internal EEPROM or
performing diagnostics on a finished module. The bootstrap mode is a
special user’s mode, not a factory test mode. The special test mode,
which is intended primarily for factory testing, is seldom chosen by the
user except for emulation, development, or in other rare circumstances.

3.3.1 Hardware Mode Select Pins

The hardware mode select mechanism starts with the logic levels on the
MODA and MODB pins while the MCU is in the reset state. The logic
levels on the MODA and MODB pins are fed into the MCU by way of a
clocked pipeline path. The levels captured are those that were present
part of a clock cycle before the RESET pin rose, which assures there will
be a zero hold-time requirement on the mode select pins relative to the
rising edge at the RESET pin. The captured levels determine the logic
state of the special mode (SMOD) and mode A select (MDA) control bits
in the highest priority interrupt (HPRIO) register. These two control bits
actually control the logic circuits involved in hardware mode selection.
Table 3-1 summarizes the operation of the mode pins and mode control
bits.

Table 3-1. Hardware Mode Select Summary

Inputs Mode
Description

Control Bits in HPRIO (Latched at Reset)

MODB MODA RBOOT SMOD MDA IRV

1 0 Normal single chip 0 0 0 0

1 1 Normal expanded 0 0 1 0

0 0 Special bootstrap 1 1 0 1

0 1 Special test 0 1 1 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Configuration and Modes of Operation 87

Configuration and Modes of Operation
After RESET rises, the mode select pins no longer influence the MCU
operating mode. The MODA pin serves the alternate function of load
instruction register (LIR) when the MCU is not in reset. The open-drain
active-low LIR output pin drives low during the first E-clock cycle of each
instruction. The MODB pin serves the alternate function of a standby
power supply (VSTBY) to maintain RAM contents when VDD is not
present. The power-saving mode, stop, is an alternate way to save RAM
contents, which does not require a separate standby power source.

3.3.2 Mode Control Bits in the HPRIO Register

Figure 3-1 and the following paragraphs describe the highest priority
I-bit interrupt and miscellaneous (HPRIO) register. The four low-order
bits (PSEL3–PSEL0]) are not related to the mode select logic and will be
discussed in Section 5. Resets and Interrupts. The HPRIO register
may be read at any time, but the four high-order bits may be written only
under special circumstances. Usually, control bits for unrelated on-chip
systems would not be mixed in the same register.

RBOOT — Read Bootstrap ROM Bit

Can be written only while SMOD equals 1
1 = Bootstrap ROM enabled at $BF40–$BFFF
0 = Bootstrap ROM disabled and not present in memory map

The RBOOT control bit enables or disables the special bootstrap
control ROM. This 192-byte, mask-programmed ROM contains the
firmware required to load a user’s program through the SCI into the
internal RAM and jump to the loaded program. In all modes other than
the special bootstrap mode, this ROM is disabled and does not

Address: $103C

Bit 7 6 5 4 3 2 1 Bit 0

Read:
RBOOT SMOD MDA IRV PSEL3 PSEL2 PSEL1 PSEL0

Write:

Reset: Refer to Table 3-1. 0 1 0 1

Figure 3-1. Highest Priority I-Bit Interrupt
and Miscellaneous Register (HPRIO)
Reference Manual M68HC11 — Rev. 6

88 Configuration and Modes of Operation MOTOROLA

Configuration and Modes of Operation
EEPROM-Based Configuration (CONFIG) Register
occupy any space in the 64-Kbyte memory map. Although it is 0 when
the MCU comes out of reset in test mode, the RBOOT bit may be
written to 1 while in special test mode.

SMOD — Special Mode Bit

May be written to 0 but not back to 1
1 = Special mode variation in effect
0 = Normal mode variation in effect

MDA — Mode A Select Bit

Can be written only while SMOD equals 1
1 = Normal expanded or special test mode in effect
0 = Normal single-chip or special bootstrap mode in effect

IRV — Internal Read Visibility Bit

Can be written only while SMOD equals 1; forced to 0 if SMOD
equals 0

1 = Data driven onto external bus during internal reads
0 = Data from internal reads not visible on expansion bus (levels

on bus ignored)

The IRV control bit is used during factory testing and sometimes
during emulation to allow internal read accesses to be visible on the
external data bus. Care is required to avoid data bus contention while
IRV is active because the bidirectional data bus is driven out during
reads of internal addresses, even though the R/W line suggests the
data bus is in the high-impedance read mode. In normal modes, this
function is disabled; thus, complex decode logic is not required to
protect against accidental bus conflicts.

3.4 EEPROM-Based Configuration (CONFIG) Register

The nonvolatile configuration (CONFIG) register allows additional
flexibility in the MCU that would otherwise be provided by a more
complex hardware mode select structure. By using EEPROM to
implement the CONFIG register, these system controls are retained
even when no power is applied to the MCU. The functions controlled by
this register are characteristics that must be inherently known to the
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Configuration and Modes of Operation 89

Configuration and Modes of Operation
MCU system as it comes out of the reset state. Ordinary
software-accessible control bits would not effectively regulate these
controls.

3.4.1 Operation of CONFIG Mechanism

The CONFIG register actually consists of an EEPROM byte (separate
from the 512-byte EEPROM array), a static register that holds the
configuration information during operation, and the associated logic,
which controls the transfer of information from the EEPROM byte to the
working static register. Programming and erasure of this register use the
same logic used for programming and erasure of the 512-byte EEPROM
array. Reads of this register return the contents of the static working
register, not the EEPROM byte. During any reset, the contents of the
EEPROM byte are transferred to the working static register over the data
bus. Due to this mechanism, changes to the EEPROM CONFIG location
are not visible and do not alter the operation of the MCU until after a
subsequent reset.

Some versions of the M68HC11 Family allow the CONFIG working
register to be written directly as a normal control register while operating
in the special mode variations. This capability is included primarily to
accelerate product testing but could be useful to the user in some
applications. In versions that have this ability, the MCU could be reset in
one of the special modes. The CONFIG register could be checked or
written to any desired value; then the mode could be written to a normal
mode to re-enable system-protection mechanisms. This procedure is
independent of the EEPROM byte and the transfer during reset. Only
some versions of the M68HC11 offer this capability. Risk factors are
associated with operating in a special mode; therefore, keep the time
between reset and writing the mode control bits back to a normal mode
as short as possible to minimize these risks.
Reference Manual M68HC11 — Rev. 6

90 Configuration and Modes of Operation MOTOROLA

Configuration and Modes of Operation
EEPROM-Based Configuration (CONFIG) Register
3.4.2 CONFIG Register

The system configuration register (CONFIG) is an unusual control
register used to enable or disable ROM, EEPROM, the computer
operating properly (COP) watchdog system, and, optionally, the
EEPROM security feature of the MCU. Unlike ordinary control registers,
CONFIG retains its contents even when there is no power applied to the
MCU. The contents are retained when the MCU is completely removed
from a system (for instance, when shipped from the Motorola factory). In
this way, the control bits in the CONFIG register are like
mask-programmed options. Unlike mask options, the contents of this
register can be altered after the MCU is manufactured to meet the
customer’s specific requirements.

The CONFIG register is read like any other memory location. The
contents of the working static register are returned on such reads as
previously described. The CONFIG register is erased and programmed
like an EEPROM location rather than being written as other registers.
The programming and erase operations alter the EEPROM byte, which
does not alter the operation of the MCU until after a subsequent reset
operation. The programming and erase procedures, which are the same
as those used to program EEPROM locations, use the PPROG register
and are discussed in 4.5 Electrically Erasable Programmable ROM
(EEPROM).

Figure 3-2 and the following paragraphs describe the CONFIG register
and control bits of the MC68HC11A8. For specific information about the
CONFIG register of other M68HC11 Family members, refer to the
technical summary for that member.

Address: $103F

Bit 7 6 5 4 3 2 1 Bit 0

Read:
0 0 0 0 NOSEC NOCOP ROMON EEON

Write:

Reset: 0 0 0 0 See 3.4.1 Operation of CONFIG Mechanism.

Figure 3-2. System Configuration Register (CONFIG)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Configuration and Modes of Operation 91

Configuration and Modes of Operation
NOSEC — EEPROM Security Disabled Bit

A special security feature is available on the MC68HC11A8 if it is
requested at the time a user submits a mask ROM pattern. Once this
feature is enabled at the mask-programming level, the user activates
it by programming the NOSEC bit to 0. While NOSEC is 0, the MCU
can only be reset in single-chip modes (normal single chip or special
bootstrap). This restriction is accomplished by forcing the MDA
control bit to 0 rather than allowing it to follow the MODA pin level at
the rising edge of RESET. By disallowing expanded modes, a
software pirate is prevented from seeing the data in EEPROM or RAM
because there is no external address/data bus in single-chip modes.

The software pirate can see what is in the on-chip ROM by disabling
the security option, which can only be accomplished after the
contents of EEPROM and RAM have been erased. When a secured
part is reset in bootstrap mode, the firmware in the small bootloader
program will not proceed with bootloading until the EEPROM, RAM,
and CONFIG register have been successfully erased. When a
secured part is operated in normal single-chip mode, the user’s
program in ROM is responsible for keeping the MCU secured. The
CONFIG register in current versions of the MC68HC11A8 cannot be
altered except in special bootstrap and special test modes.

NOCOP — COP Watchdog System Disabled Bit

The default erased state of this bit corresponds to COP system off.
1 = The COP system is disabled and does not generate system

resets.
0 = The COP system is enabled as the MCU comes out of reset.

A software service mechanism must be periodically completed prior
to COP timeout to avoid a system reset. This service will occur only
at the proper repeating rate if the software is executing in the
expected, orderly fashion. If a software failure occurs, the watchdog
will time out and will generate a system reset to force the MCU to
return to proper operation. The COP watchdog mechanism is
discussed in detail in Section 5. Resets and Interrupts.
Reference Manual M68HC11 — Rev. 6

92 Configuration and Modes of Operation MOTOROLA

Configuration and Modes of Operation
EEPROM-Based Configuration (CONFIG) Register
ROMON — Enable On-Chip ROM Bit

The default erased state of this bit corresponds to ROM enabled.
1 = The 8-Kbyte on-chip program memory is enabled.
0 = The 8-Kbyte ROM is disabled and takes no space in the

memory map.

In the normal single-chip operating mode, this control bit is overridden
so that ROM is always enabled. In expanded modes, turning off the
ROM with this bit allows the reset and interrupt vectors to be fetched
from external memories; therefore, the user need not know where
vectors should point at the time the MCU is manufactured.

EEON — Enable On-Chip EEPROM Bit

The default erased state of this bit corresponds to EEPROM enabled.
1 = The 512-byte on-chip EEPROM memory is enabled at

locations $B600–$B7FF.
0 = The 512-byte EEPROM is disabled and takes no space in the

memory map.

Some versions of the M68HC11 Family have additional control bits in
this register. For example, the MC68HC811E2 uses the upper four bits
to remap its 2-Kbyte EEPROM to the upper half of any 4-Kbyte page of
memory. This reference manual is based primarily on the
MC68HC11A8; specific information about other family members can be
found in the technical summaries.

The erased state of CONFIG is $0F on an MC68HC11A8. The
MC68HC11A1 is the same die as the MC68HC11A8 but comes from the
factory with $0D in CONFIG to disable the internal 8-Kbyte masked
ROM. Similarly, the MC68HC11A0 version of the part comes with $0C
in CONFIG to disable both the 8-Kbyte ROM and 512-byte EEPROM.
The CONFIG byte is not part of the 512-byte EEPROM. If the CONFIG
register of an MC68HC11A1 or MC68HC11A0 device is erased to $0F,
the internal ROM and EEPROM memories become enabled but are not
necessarily useful. The ROM of an MC68HC11A1 or MC68HC11A0 part
may contain a customer’s program (with their permission) or a defective
program. The EEPROM of an MC68HC11A0 part could be
partially/completely broken and should not be used because the error
could be related to temperature or voltage. Therefore, the EEPROM
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Configuration and Modes of Operation 93

Configuration and Modes of Operation
might check as flawless but later fail when least expected. The upper
four bits are not implemented in the working static register and always
read 0. Although the corresponding bits in the EEPROM byte are
implemented, they are not visible to the user.

The erased state of the CONFIG register in the MC68HC811E2 version
is $FF, which means the 2-Kbyte EEPROM is enabled in the area from
$F800–$FFFF when the part comes from the Motorola factory. To use
the part, the user must have a meaningful reset vector at $FFFE,FFFF
or must connect the mode pins so the system will come out of reset in
one of the special modes. The reset vector can be programmed into the
internal EEPROM before installing the part into a finished system, or the
EEPROM can be moved out of the way (by programming the CONFIG
register) so an external memory in the end system can provide the reset
vector.

3.5 Protected Control Register Bits

In the MC68HC11A8, several sensitive control registers and bits are
protected against writes except under special circumstances. The
protect mechanisms include the ability to write these bits only within the
first 64 bus cycles after any reset and/or the ability to write them
only one time after each reset. These bits control the basic configuration
of the MCU where an accidental write could cause serious system
problems — that is, these protections make it practical to include
software-controlled features that might otherwise be excluded. As new
members of the M68HC11 Family are developed, additional control bits
could fall into this category, but in the MC68HC11A8, only three control
registers are involved (INIT, TMSK2, and OPTION). Some users have
expressed concern about being able to write all of these control bits
within 64 cycles, which will not be a problem since only three writes are
required.

Because these protect mechanisms are overridden in the special
operating modes, these bits may be changed repeatedly during testing
without going through a reset sequence. If the MCU is going to be
changed to a normal mode variation after being reset in a special mode,
write to the protected registers before writing the SMOD control bit to 0.
Reference Manual M68HC11 — Rev. 6

94 Configuration and Modes of Operation MOTOROLA

Configuration and Modes of Operation
Protected Control Register Bits
3.5.1 RAM and I/O Mapping Register (INIT)

RAM3–RAM0 — RAM Map Position Bits

These four bits, which specify the upper hexadecimal digit of the RAM
address, control the position of the RAM in the memory map. By
changing these bits, the RAM can be repositioned to the beginning of
any 4-Kbyte page in the memory map. After reset, these bits are 0s
($0); thus, the RAM is initially positioned from $0000–$00FF. If these
four bits are written to 1s ($F), the RAM moves to $F000–$F0FF. The
following explanation of the INIT register discusses what happens
when RAM or registers are mapped to the same area of memory as
some other internal resource.

REG3–REG0 — 64-Byte Register Block Position Bits

These four bits, which specify the upper hexadecimal digit of the
address for the 64-byte block of internal registers, control the position
of these registers in the memory map. By changing these bits, the
register block is repositioned to the beginning of any 4-Kbyte page in
the memory map. After reset, these bits are 0001 ($1); therefore, the
registers are initially positioned from $1000–$103F. If these four bits
are written to 1s ($F), the registers move to $F000–$F03F.

The following explanation discusses what happens when RAM or
registers are mapped to the same area of memory as some other
internal resource.

Address: $103D

Bit 7 6 5 4 3 2 1 Bit 0

Read:
RAM3 RAM2 RAM1 RAM0 REG3 REG2 REG1 REG0

Write:

Reset: 0 0 0 0 0 0 0 1

Figure 3-3. RAM and I/O Mapping Register (INIT)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Configuration and Modes of Operation 95

Configuration and Modes of Operation
The INIT register allows software to reposition the internal 256-byte
RAM and/or 64-byte register space to any 4-Kbyte page boundary in the
64-Kbyte memory map. There are two main reasons a user might want
this capability. First, this capability allows the user to position RAM, I/O
registers, or both in the direct addressing mode range ($0000–$00FF).
Instructions that use the direct addressing mode assume the upper eight
bits of the address are $00; thus, these instructions take up less program
memory space and operate faster than the equivalent extended
addressing mode instructions. The second reason for remapping RAM
or registers would be to make the MCU compatible with the memory map
of an existing system. For example, the MC6801 MCU is not compatible
with the Motorola EXORciser®. The MDOS™ disk-operating system
software requires RAM to exist from $0000–$7FFF, ROM routines to
exist from $E800–$EBFF, and system I/O devices to exist from
$EC00–$F000. Because the MC6801 MCU has internal RAM and
registers in $0000–$00FF that cannot be disabled or moved, it cannot be
made compatible with the EXORciser. However, the MC68HC11A8 can
disable its internal ROM with the CONFIG register, and the RAM and
registers can be remapped to $D000 and $C000, respectively, by writing
$DC to the INIT register. This procedure makes the MC68HC11A8
compatible with the EXORciser system without requiring changes to the
existing MDOS software. A variation on this second reason for
remapping RAM and registers would be to make maximum use of an
external 32-Kbyte RAM in the lower half of the memory map.

Users not needing this capability can leave the RAM and I/O registers in
their default locations ($0000–$00FF for RAM and $1000–$103F for
registers). Since the INIT register becomes write protected shortly after
reset, the user need not worry about accidental changes due to a
software error.

The internal address decode circuitry automatically protects against
conflicts among internal resources or between an internal and external
resource. When an internal resource is read, the external data bus is
ignored (even if some external device tries to drive the data bus) so the

EXORciser is a registered trademark of Motorola, Inc.
MDOS is trademark of Motorola, Inc.
Reference Manual M68HC11 — Rev. 6

96 Configuration and Modes of Operation MOTOROLA

Configuration and Modes of Operation
Protected Control Register Bits
CPU will read valid data. If the internal RAM and/or I/O register spaces
are remapped so an overlap occurs between RAM, register space, or
ROM, priority logic disables all but the highest priority resource. For
example, consider the case of an expanded mode system where ROM
is enabled and both RAM and registers have been remapped to $F000.
For accesses from $F000–$F03F, ROM and RAM are disabled, and
registers have highest access priority. From $F040–$F0FF, ROM is
disabled, and RAM has access priority.

Some users have questions about the priority of access for unused
register locations in the 64-byte register space or the priority of registers
in an external MC68HC24. In the previous example, $F035 would
correspond to an unused location in the 64-byte register space (the
register block was moved from its usual position of $1000–$103F such
that it overlaps RAM and ROM at $F000). Reads of this address access
the undriven internal data bus, and any data present on the data bus pins
is ignored. Six locations in the 64-byte register space become external
accesses when the MC68HC11A8 is operating in an expanded mode.
This process allows the MC68HC24 to properly emulate the internal
parallel I/O functions associated with the 18 MCU pins, which are
dedicated to the multiplexed expansion bus. Again referring to the earlier
example, if any of these six addresses are accessed, the internal ROM
and RAM are disabled so the CPU gets valid data from the external
MC68HC24, which is considered a part of the internal register space.
The six locations of interest are $x002–$x007 (PIOC, PORTC, PORTB,
PORTCL, one reserved location, and DDRC). Although x is usually 1, it
was changed to $F by software in this example.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Configuration and Modes of Operation 97

Configuration and Modes of Operation
3.5.2 Protected Control Bits in the TMSK2 Register

Figure 3-4 and the following paragraphs describe the time-protected
timer prescale select bits (PR1–PR0) in the timer mask register 2
(TMSK2). The upper four bits of this register, which are related to the
timer and pulse accumulator subsystems, will be discussed in Section
10. Main Timer and Real-Time Interrupt and Section 11. Pulse
Accumulator. Bits 3 and 2 are not implemented and always read as 0s.

PR1–PR0 — Timer Prescaler Select Bits

These two bits select the prescale rate for the main 16-bit free-running
timer system. The following table shows the relationship between the
prescale factor and the value of these control bits. A prescale factor
of one corresponds to a timer count rate of E clock ÷ 1; a prescale
factor of 16 corresponds to a timer count rate of E clock ÷ 16. In
normal modes, this prescale rate can be changed only once within the
first 64 bus cycles after reset, and the resulting count rate stays in
effect until the next reset.

Address: $1024

Bit 7 6 5 4 3 2 1 Bit 0

Read:
TOI RTII PAOVI PAII 0 0 PR1 PR0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 3-4. Timer Mask Register 2 (TMSK2)

PR1 PR0 Prescale Factor

0 0 1

0 1 4

1 0 8

1 1 16
Reference Manual M68HC11 — Rev. 6

98 Configuration and Modes of Operation MOTOROLA

Configuration and Modes of Operation
Protected Control Register Bits
3.5.3 Protected Control Bits in the OPTION Register

Figure 3-5 and the following paragraphs discuss the time-protected
control bits on the option (OPTION) control register. Bit 2 of this register
is not implemented and always reads 0. ADPU, CSEL, and CME are not
time-protected bits.

IRQE — Configure IRQ for Edge-Sensitive-Only Operation Bit

The default configuration is IRQE equals 0 or level-sensitive IRQs.
1 = IRQ is configured for edge-sensitive-only operation. Falling

edges at the IRQ pin are latched until the IRQ is honored.
0 = IRQ is configured for level-sensitive operation. IRQ interrupts

are requested by a low level on the IRQ pin. The low level must
remain until the interrupt service routine does something to
acknowledge the source of the interrupt. Level-sensitive
operation allows more than one source to be connected to the
IRQ pin in a wired-OR configuration.

DLY — Enable Oscillator Startup Delay Bit
1 = A delay of approximately 4,000 E-clock cycles is imposed as

the MCU is started from the stop power-saving mode. This
delay is intended to allow the crystal oscillator to stabilize. The
actual time required for a crystal oscillator to stabilize depends
on external components and physical layout. As far as the
MCU is concerned, it is not necessary for the oscillator to be
stable at its operating frequency because the MC68HC11A8 is
a fully static processor that can operate at frequencies down to

Address: $1039

Bit 7 6 5 4 3 2 1 Bit 0

Read:
ADPU CSEL IRQE DLY CME 0 CR1 CR0

Write:

Reset: 0 0 0 1 0 0 0 0

Figure 3-5. System Configuration Option Register (OPTION)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Configuration and Modes of Operation 99

Configuration and Modes of Operation
dc. This delay is provided for the convenience of those
applications requiring proper timing measurements soon after
restart, thus requiring a stable oscillator.

0 = The relatively long oscillator startup delay coming out of stop is
bypassed, and the MCU resumes processing within about four
bus cycles.

CR1–CR0 — COP Timer Rate Select Bits

The MCU internal E clock is first divided by 215 before it enters the
COP watchdog system. The CR1 and CR0 control bits control a
further scaling factor for the watchdog timer as shown in Table 3-2.
The columns at the right of the table show the resulting watchdog
timeout periods for three typical oscillator frequencies. After reset, the
timeout period is configured for the shortest timeout period by default.
In normal operating modes, these bits can be written only once, and
that write must be within 64 bus cycles after reset. The COP system
is discussed in detail in Section 5. Resets and Interrupts.

Table 3-2. Watchdog Rates versus Crystal Frequency

CR1 CR0 E ÷ 215 Divided by

Crystal Frequency

223 Hz 8 MHz 4 MHz

Nominal Timeout

0 0 1 15.625 ms 16.384 ms 32.768 ms

0 1 4 62.5 ms 65.536 ms 131.07 ms

1 0 16 250 ms 262.14 ms 524.29 ms

1 1 64 1 s 1.049 s 2.1 s

2.1 MHz 2 MHz 1 MHz

Bus frequency (E clock)
Reference Manual M68HC11 — Rev. 6

100 Configuration and Modes of Operation MOTOROLA

Configuration and Modes of Operation
Normal MCU Operating Modes
3.6 Normal MCU Operating Modes

The normal modes of operation are selected by having a logic 1 on the
MODB pin during reset. The reset vector is fetched from addresses
$FFFE,FFFF, and program execution begins from the address indicated
by this vector. In normal single-chip mode, the internal 8-Kbyte program
memory is enabled in this memory space so the reset vector is fetched
from this internal ROM. In normal expanded mode, the internal 8-Kbyte
ROM may or may not be enabled, depending on the ROMON bit in the
CONFIG register. If the internal ROM is on, the reset vector is fetched
from within this ROM; otherwise, it is fetched from external memory
addresses $FFFE,FFFF.

3.6.1 Normal Single-Chip Mode

The normal single-chip mode is selected by a logic 1 on the MODB pin
and a logic 0 on the MODA pin during reset. Because the single-chip
modes do not require any external address and data bus functions, port
B, port C, strobe A (STRA), and strobe B (STRB) pins are available for
general-purpose parallel I/O. In this mode, all software needed to control
the MCU is contained in internal memories.

The ROMON control bit in the EEPROM-based CONFIG register is
overridden in normal single-chip mode to force the internal 8-Kbyte ROM
on. This procedure is required because there must be a valid reset
vector for the MCU to operate in a logical manner.

3.6.2 Normal Expanded Mode

The normal expanded mode is selected by having a logic 1 on both the
MODB pin and MODA pin during reset. This mode of operation allows
external memory and peripheral devices to be accessed by a
time-multiplexed address/data bus. By multiplexing the low-order eight
bits of address with data on the port C pins, only 18 pins are needed to
provide an 8-bit data bus, a 16-bit address bus, and two bus control
lines. The low-order address lines are separated from data with an
external transparent latch such as a 74HC373, which is clocked by the
address strobe (AS) signal. All bus cycles, whether internal or external,
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Configuration and Modes of Operation 101

Configuration and Modes of Operation
execute at the E-clock frequency (no throughput penalty for external
devices). The maximum bus frequency for the MC68HC11A8 is 2.1
MHz, which is comparable to the fastest external EPROMs available at
the time the M68HC11 was introduced. Section 2. Pins and
Connections gives more detailed information on the use of the
expansion bus, including a discussion of an expanded-system example.

For emulation purposes, there is a special companion chip called the
MC68HC24 port replacement unit (PRU). This device reconstructs the
parallel I/O functions that are lost to the 18 expansion bus lines. Software
developed on an expanded system, which includes an MC68HC24, can
later be submitted as a masked ROM pattern. The resulting
custom-ROM part can then be operated in the single-chip mode, and all
parallel I/O functions will work as they did in the expanded system.
Usually, the MC68HC24 companion chip would not be used as a
general-purpose, peripheral I/O chip because cheaper ways exist to add
general-purpose I/O to an expanded system.

3.7 Special MCU Operating Modes

The special mode variations are selected by having a logic 0 on the
MODB pin during reset. In the special mode variations, the reset and
interrupt vectors are located at $BFC0–$BFFF, and software has access
to special test features. One of these special test features (the disable
resets (DISR) control bit in the TEST1 control register) temporarily
disables the COP watchdog and clock monitor reset functions. All the
special functions and privileges are available in the special test mode
and special bootstrap mode.

Since the reset vectors are located at $BFFE,BFFF, the internal 8-Kbyte
ROM cannot interfere with the vectors. The expanded special test mode
ensures that the reset vector is fetched from external memory even if the
internal 8-Kbyte ROM is enabled. In special bootstrap mode, an on-chip
bootloader firmware ROM is enabled at addresses $BF40–$BFFF so the
reset vector is fetched from this internal ROM.
Reference Manual M68HC11 — Rev. 6

102 Configuration and Modes of Operation MOTOROLA

Configuration and Modes of Operation
Special MCU Operating Modes
The SMOD control bit is latched as logic 1 when the MCU is reset in the
special modes. While SMOD is a 1, special test functions and privileges
are available. RBOOT and MDA can be turned on or off, and SMOD and
IRV can be turned off but not back on. Thus, the operating mode of the
MCU can be changed, but once the mode is changed to a normal mode
(SMOD = 0), the privileges are revoked. An important, often overlooked,
application of this privilege is the ability to reset the MCU in bootstrap
mode, which is a single-chip mode, then change the MDA bit to 1 to
enable the multiplexed expansion bus.

On present mask sets of the MC68HC11A8 (B96D and newer), the
SMOD bit must be set to 1 to allow programming of the EEPROM-based
CONFIG register. In some M68HC11 Family members, the
EEPROM-based CONFIG register can be written in special modes as if
it were an ordinary static register. This privilege is not available in the
original MC68HC11A8 but is present in the MC68HC811A2.

Another group of control bits in the MCU have special protection
mechanisms to prevent accidental writes while operating in normal
modes. These protections include write permission only within the first
64 E-clock cycles after reset and/or the ability to write these bits only one
time. While in either special mode, these protections are overridden, and
these control bits may be written as if they were ordinary control bits.
For a detailed description of these protection mechanisms, see
3.5 Protected Control Register Bits.

A special register (TEST1) becomes accessible in the special modes.
This register reverts to all 0s and cannot be written when SMOD is 0
(normal modes). Other than the DISR control bit in this register, the user
should not be interested in the operation of these bits since they are only
useful for factory testing of the MCU. Two other control bits in the SCI
baud-rate control register are similarly enabled only in the special
modes.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Configuration and Modes of Operation 103

Configuration and Modes of Operation
3.7.1 Testing Functions Control Register (TEST1)

Figure 3-6 and the following paragraphs discuss the testing functions
control register (TEST1). Testing functions are not recommended for
use by the user since they may change at any time to meet the
manufacturing requirements of Motorola; however, brief descriptions of
these testing functions are presented here. Occasionally, knowledge of
these functions will help a user understand what is happening if one of
these functions is accidentally invoked during development of an
application.

TILOP — Test Illegal Opcode Bit

Can be written only while SMOD equals 1
1 = Enable illegal opcode testing function
0 = Function disabled

In factory test equipment, information presented to the data bus pins
is independent of the address coming from the MCU. In normal
systems, the address outputs from the MCU enable a specific location
in a memory device so the data presented to the MCU is specifically
related to the address. The TILOP works in conjunction with the LIR
pin to allow testing of illegal opcodes on consecutive bus cycles rather
than requiring the time-consuming interrupt service normally
associated with illegal opcodes. One consequence of the
implementation of this function is that the address bus begins to
decrement after the first illegal opcode is detected at the data bus.
Since there is no cause-effect relationship between address and data
on the factory test equipment, this unusual address bus activity poses

Address: $103E

Bit 7 6 5 4 3 2 1 Bit 0

Read:
TILOP 0 OCCR CBYP DISR FCM FCOP TCON

Write:

Reset: 0 0 0 0 0(1) 0 0 0

1. The DISR control bit resets to 1 in special modes.

Figure 3-6. Testing Functions Control Register (TEST1)
Reference Manual M68HC11 — Rev. 6

104 Configuration and Modes of Operation MOTOROLA

Configuration and Modes of Operation
Special MCU Operating Modes
no difficulty for factory testing of illegal opcodes. However, this
unusual address bus activity makes the illegal opcode test function
unusable in a normal system.

OCCR — Output Condition Code Register Status to Timer Port

Can be written only while SMOD equals 1
1 = The condition code register bits (H, N, Z, V, and C) are driven

out of the five most significant bits of port A (bits 7–3,
respectively), which allows the CPU operation to be verified
without the burden of complex branching routines.

0 = Function disabled; port A operates as in normal modes.

NOTE: While OCCR is set to 1, the internal 8-Kbyte ROM is disabled, regardless
of the states of the ROMON bit in the CONFIG register or the TCON bit
in the TEST1 register.

CBYP — Timer Divider Chain Bypass Bit

Can be written only while SMOD equals 1
1 = The 16-bit free-running timer is divided into 8-bit halves, and

the prescaler is bypassed. The E clock directly drives both
halves of the timer. This function greatly reduces testing time
for the main timer system.

0 = Timer system operates normally.

DISR — Disable Resets from COP and Clock Monitor Bit

Can be written only while SMOD equals 1; forced to 0 if SMOD
equals 0

1 = Regardless of other control bit states, the COP and clock
monitor systems do not generate a system reset. This function
ensures that testing operations are not interrupted by the COP
or clock monitor protection mechanisms.

0 = COP and clock monitor resets operate normally.

NOTE: Users of the special bootstrap mode often forget that this bit is reset to
a 1 in the bootstrap mode. If a bootloaded program uses one of these
reset functions, this bit must be explicitly cleared by the loaded program.
This is probably the only test-related control bit that is of interest to the
user.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Configuration and Modes of Operation 105

Configuration and Modes of Operation
FCM — Force Clock Monitor Failure Bit

Can be written only while SMOD equals 1
1 = Writing a logic 1 to this location generates an immediate clock

monitor failure reset if the clock monitor enable (CME) bit in the
OPTION register is also set.

0 = System operates normally.

The DISR control bit has priority over this bit and inhibits the forced
reset functions.

FCOP — Force COP Watchdog Timeout Bit

Can be written only while SMOD equals 1
1 = Writing a logic 1 to this location generates an immediate COP

failure reset if either the NOCOP bit in the CONFIG register is
0 or the TCON bit in the TEST1 register is 1.

0 = System operates normally.

The DISR control bit has priority over this bit and inhibits the forced
reset functions.

TCON — Test Configuration Bit

Can be written only while SMOD equals 1
1 = Overrides the specifications in the CONFIG register so that

COP is enabled and ROM and EEPROM are in the memory
map. If the OCCR bit is set to 1, ROM is removed from the
memory map, regardless of other control bits.

0 = Configuration options are controlled by the CONFIG register.
Reference Manual M68HC11 — Rev. 6

106 Configuration and Modes of Operation MOTOROLA

Configuration and Modes of Operation
Special MCU Operating Modes
3.7.2 Test-Related Control Bits in the BAUD Register

Figure 3-7 and the following paragraphs describe the two test-related
control bits in the SCI baud-rate (BAUD) control register. These bits,
which are only accessible in the special modes, revert to 0s if the mode
is changed to a normal mode. Because no read path is implemented for
these two bits, they always read 0, even after they are written to 1 in a
special mode.

TCLR — Clear Baud-Rate Timing Chain Bit

Can be written only while SMOD equals 1. Writing a 1 to this bit
triggers a reset of the baud-rate counter chain. This bit always
reads 0.

RCKB — SCI Baud-Rate Clock Test Bit

Can be written only while SMOD equals 1. Writing a 1 to this bit
enables a baud-rate clock test using the PD1 pin. When this baud-rate
test function is enabled, the exclusive OR of the SCI receive clock
(16 times the baud rate) and the SCI transmit clock (1 times the baud
rate) is driven out the PD1 pin so it can be monitored by factory test
equipment. This bit always reads 0.

The other bits in this register are related to the asynchronous SCI and
are described in Section 9. Asynchronous Serial Communications
Interface.

Address: $102B

Bit 7 6 5 4 3 2 1 Bit 0

Read:
TCLR 0 SCP1 SCP0 RCKB SCR2 SCR1 SCR0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 3-7. Testing Functions Control Register (BAUD)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Configuration and Modes of Operation 107

Configuration and Modes of Operation
3.7.3 Special Test Mode

The special test mode is primarily intended for Motorola internal
production testing; however, in a few cases, the user can utilize the test
mode. These special cases include programming the CONFIG register,
programming calibration data into the EEPROM, and development
situations such as emulation and debug. Since the mode control bits can
be written in test mode, it is possible to come out of reset in special test
mode, check the contents of the CONFIG register, and then switch to a
normal operating mode to re-enable the automatic protection
mechanisms. This trick is also useful for a first-time turn-on situation
where the contents of the CONFIG register might not be known. Except
for these few limited cases, the MC68HC11A8 should not be in test
mode in a user’s application.

Because the test mode overrides several automatic protection
mechanisms or allows them to be overridden, there are risks associated
with these modes of operation. For example, by default the COP and
clock monitor are disabled in special modes. Also in special modes, the
$00 opcode is a legal opcode, which causes the address bus to become
an uninterruptable 16-bit counter (useful for testing but a disaster in a
real application). Several of the test functions are included in this
category. Such risks must be weighed against whatever benefit is
derived from using special test or bootstrap operating mode.

One important use of the test mode is to allow programming of the
CONFIG register and/or EEPROM. Since the reset and interrupt vectors
are fetched from the user’s external memory at the $BFC0–$BFFF area,
it is not necessary for the user to know if internal ROM is on or off. Even
if the COP watchdog is enabled in the CONFIG register, there is no need
to service it because COP resets are inhibited in special modes. The
program needed to change EEPROM data could be as simple as the
program shown in Example 3-1 (see 3.8 Test and Bootstrap Mode
Applications), which just reprograms the CONFIG register to a fixed
value; or it could be as complex as a complete monitor, similar to the
BUFFALO monitor, which would allow interactive examination and
modification of EEPROM data.
Reference Manual M68HC11 — Rev. 6

108 Configuration and Modes of Operation MOTOROLA

Configuration and Modes of Operation
Special MCU Operating Modes
The test mode is useful in the debug phase of a project. In test mode,
the data from reads of internal addresses can be seen on the external
data bus. This function is called IRV and is useful for debugging with a
logic analyzer or bus state monitor. In normal operating modes, IRV is
disabled since it could interfere with external circuitry. For example, if an
external 32-Kbyte EPROM were mapped at $8000–$FFFF, it would
overlap the internal EEPROM from $B600–$B7FF. The easiest decode
logic would be to select the external EPROM when A15 and R/W are
both high, which is perfectly legal and reasonable for the MC68HC11A8
operating in normal expanded mode. Although the external EPROM is
selected for reads of the internal EEPROM, the read data from the
external data bus is ignored, and the CPU receives valid, internal
EEPROM data. If the IRV function were allowed in normal mode, this
example would result in a direct contention between the read data from
the internal EEPROM, which is driven out the data bus for visibility, and
the read data from the external EPROM. To overcome this contention,
more complex decoding would be required for the external devices. A
mass-produced product should not bear the cost of a debug feature; the
more complex decoding belongs in the low-volume emulator tool where
IRV is used.

3.7.4 Special Bootstrap Mode

When the MCU is reset in the special bootstrap mode, a small on-chip
ROM is enabled at address $BF40–$BFFF. The reset vector is fetched
from this bootstrap ROM, and the MCU proceeds to execute the
firmware in this ROM. The program in this ROM initializes the on-chip
SCI system, checks for a security option, accepts a 256-byte program
through the SCI, and then jumps to the loaded program at address
$0000 in the on-chip RAM. There are almost no limitations on the
programs that can be loaded and executed through the bootstrap
process.

While the MCU is operating in bootstrap mode, the MDA control bit can
be written; thus, it is possible to turn on the multiplexed expansion bus.
This possibility makes the bootstrap mode useful in both single-chip and
expanded systems. In some systems, it may be necessary to disable the
bootstrap ROM by writing a 0 to the RBOOT control bit to allow access
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Configuration and Modes of Operation 109

Configuration and Modes of Operation
to external devices in $BF40–$BFFF. If the bootstrap ROM is disabled,
it is necessary for the user to externally provide reset and interrupt
vectors at $BFC0–$BFFF or switch the SMOD control bit back to 0 so
interrupt and reset vectors return to $FFC0–$FFFF.

3.7.4.1 Loading Programs in Bootstrap Mode

This subsection describes the bootloader firmware in the standard
MC68HC11A8. When the security mode is not specifically requested, it
is disabled at the mask level so it will not be invoked accidentally. In
these cases, the program steps, which check for security and optionally
erase the EEPROM and CONFIG register, are not included in the
bootloader program. On some early production units before 1988,
however, the security checks were included even on parts having the
security mode disabled in the mask. Also, the security feature was
enabled in the mask of some parts where the security feature was not
specifically requested.

The bootloader ROM program initializes the SCI so that the receiver and
transmitter are enabled and the baud rate is E clock/16/16 (7812 baud if
E = 2 MHz). If the security feature is present and enabled, $FF is
transmitted. The EEPROM is then erased. If the erasure was
unsuccessful, $FF is again transmitted, and erasure is attempted again.
After successful erasure of EEPROM, the RAM is written over with $FF,
and the CONFIG register is erased. Only after all of these operations are
successful can the bootloading process continue as if the part were
never secured.

If the MCU is not secured (or if the previous erase sequence has been
completed), a break character is transmitted. For normal use of the
bootloader, the user then sends an $FF character at a baud rate of either
E clock/16/16 (7812 baud if E = 2 MHz) or E clock/16/13 (1200 baud if
E = 2 MHz). This initial character is used to establish the baud rate for
the rest of the transfer and is not echoed to the transmitter as the
remaining characters are.

The user next downloads 256 bytes of program data, which will be put
into on-chip RAM beginning at address $0000. If the program to be
loaded is less than 256 bytes, dummy characters must be sent to make
Reference Manual M68HC11 — Rev. 6

110 Configuration and Modes of Operation MOTOROLA

Configuration and Modes of Operation
Special MCU Operating Modes
a total of 256 bytes. These 256 characters are echoed out the SCI
transmitter for the user to optionally verify that they were received
correctly. When the bootloader program receives the 256th byte, a jump
is executed to location $0000, and the loaded program gains control.

Future M68HC11 Family derivatives could have additional features in
the bootloader program. One such feature is a variable-length download
rather than the fixed-length, 256-byte download on the MC68HC11A8
version. This feature will probably be included on M68HC11 members
that have more than 256 bytes of on-chip RAM. The MC68HC11E9
version has 512 bytes of RAM and includes a variable-length download.

3.7.4.2 Executing User Programs in Bootstrap Mode

An often overlooked aspect of the bootstrap mode is that the bootloader
firmware in the bootstrap ROM executes after reset but before the user’s
downloaded program begins. Many users make the mistake of assuming
all registers and I/O pins are still in their reset state when their
downloaded program starts. Actually, the bootloader firmware has made
some significant changes to the reset state of the MCU in the course of
its operation. Because the SCI receiver and transmitter have been
enabled, the user must disable them if the PD0 or PD1 pins are to be
used as general-purpose I/O pins. The port D wired-OR mode (DWOM)
control bit in the SPCR has been written to 1 so the port D outputs
(especially PD1/TxD) would operate as open-drain outputs during the
download. This DWOM bit must be written back to 0 if the user wants any
port D pins to act as push-pull outputs.

Because the bootstrap mode is a special mode, test-related functions
are enabled. The DISR control bit is a 1, which disables the COP
watchdog and clock monitor functions. As long as the SMOD control bit
is a 1, all reset and interrupt vectors are located in $BFC0–$BFFF rather
than $FFxx. A user’s program may have to change some of these control
bits.

Special attention should be paid to the circuitry connected to the
PD1/TxD pin if the bootstrap mode variation is used. Since the
bootloader firmware enables the SCI transmitter, the PD1 pin is forced
to operate as an output. To minimize limitations on external circuitry on
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Configuration and Modes of Operation 111

Configuration and Modes of Operation
the PD1 pin, port D is also configured for wired-OR operation to make it
look like an open-collector-type output during downloading. Most users
will use the PD1/TxD pin as a serial data output line; therefore, no
conflict will occur between the bootstrap use of PD1 and the user’s use
of this pin. If the application uses the PD1 pin as an input to detect a
switch or contact closure, there is still no conflict, although the user could
not use the verify feature of the bootloader program if the PD1 pin
happened to be driven low during the download.

A downloaded program can jump back to the beginning of the bootstrap
ROM, causing a new program segment to be serially downloaded. The
downloaded program might also contain a routine to read information
into the MCU over the SPI interface or from a parallel I/O port. The
loaded program can even turn on the multiplexed expansion bus to gain
access to external memory or peripheral devices. Users are limited only
by their imagination.

3.7.4.3 Using Interrupts in Bootstrap Mode

The reset and interrupt vectors for the bootstrap mode are located in the
bootstrap ROM at $BFC0–$BFFF. Although this ROM is mask
programmed, it is impossible to know in advance where a user’s service
routines will be located. To allow users to use their own service-routine
addresses, a system of pseudo-vectors is included for bootstrap mode.
Specific RAM addresses are coded in the actual vector locations of the
bootstrap ROM (see Table 3-3). These RAM locations are called
pseudo-vectors because they can be used like vectors to direct control
to interrupt service routines. Each pseudo-vector is allowed three bytes
of space, rather than the two bytes for normal vectors, because an
explicit jump (JMP) opcode is needed to cause the desired jump to the
user’s service-routine address. For example, to use the software
interrupt (SWI), a jump instruction to the user’s SWI service routine
would be placed in RAM at addresses $00F4, $00F5, and $00F6. When
an SWI request is encountered, the registers are stacked, and the vector
in the bootstrap ROM passes control to $00F4, which, in turn, contains
a jump instruction to the user’s SWI service routine.
Reference Manual M68HC11 — Rev. 6

112 Configuration and Modes of Operation MOTOROLA

Configuration and Modes of Operation
Special MCU Operating Modes
3.7.4.4 Bootloader Firmware Options

The designers of the MC68HC11A8 anticipated the need for a practical
way to force the MCU to jump directly into EEPROM after a reset, but
they wanted to avoid special modes that would make the part more
difficult to understand. As a compromise, the bootloader firmware
provides for this direct jump to EEPROM. After initializing the SCI and
port D, the bootloader looks for the $FF character that will determine the
baud rate for the download. If a break character is received at this point,
instead of the $FF, an immediate jump to the start of EEPROM ($B600)
is executed. Since the bootloader already transmits a break character,
the user can tie the RxD and TxD pins together and to a pullup resistor,
and then reset the part in special bootstrap mode.

This procedure will cause a direct jump to EEPROM at $B600. Tying the
RxD line low will not accomplish the same result because a high-to-low
transition is required to indicate the beginning of a start bit (see
Section 9. Asynchronous Serial Communications Interface).

There is a small delay (a few milliseconds) between the reset and the
start of the program in EEPROM due to the time required for the SCI
preamble and break characters. The user should not be concerned

Table 3-3. Bootstrap Mode Pseudo-Vectors

Address Vector Name Address Vector Name

$00C4–$00C6 SCI $00E5–$00E7 Timer input capture 2

$00C7–$00C9 SPI $00E8–$00EA Timer input capture 1

$00CA–$00CC Pulse accumulator input edge $00EB–$00ED Real-time interrupt

$00CD–$00CF Pulse accumulator overflow $00EE–$00FD IRQ

$00D0–$00D2 Timer overflow $00F1–$00F3 XIRQ

$00D3–$00D5 Timer output compare 5 $00F4–$00F6 SWI

$00D6–$00D8 Timer output compare 4 $00F7–$00F9 Illegal opcode

$00D9–$00DB Timer output compare 3 $00FA–$00FC COP fail

$00DC–$00DE Timer output compare 2 $00FD–$00FF Clock monitor fail

$00DF–$00E1 Timer output compare 1 $BF40 Reset (bootloader start)

$00E2–$00E4 Timer input capture 3
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Configuration and Modes of Operation 113

Configuration and Modes of Operation
about running out of time to access the time-protected control bits
because bootstrap mode is a special mode and the protections are
overridden until the SMOD control bit is written to 0. Consider the current
state of SCI and port D controls as well as the DISR control bit in the
TEST1 control register, which disables COP and clock monitor resets. It
may be necessary for the program in EEPROM to change these bits.
The stack pointer is initialized as one of the first actions in the EEPROM
program (good practice in almost all programs). It is advisable to
initialize the illegal opcode pseudo-vector to help prevent program
runaway in the event of an error in the EEPROM program or a misread
opcode.

Another bootloader firmware option allows a direct jump to the start of
RAM, but this feature is probably not very useful to the user since it
assumes there is already a meaningful program in the internal RAM at
the time of reset. This option is invoked by sending a $55 character to
the SCI instead of the $FF or break characters previously described.
This $55 character can only use the E clock/16/16 (7812 baud for
E = 2 MHz) rate since it takes the place of the $FF character, which could
have changed the baud rate. This feature allows for testing the MCU for
proper single-chip mode operation when the E-clock frequency is
beyond the capability of the multiplexed expansion bus. Test equipment
can reset the MCU in special test mode (at a legal expansion bus
frequency) and parallel load a program into RAM. The tester can then
reset the MCU in bootstrap mode (at a higher clock frequency) and
serially send the $55 character to cause a jump to the start of RAM. This
procedure takes significantly less time than using the normal
bootloading procedure to serially load 256 characters. Since the
program segments are limited in size by the amount of on-chip RAM, the
time required to load enough program segments to fully test the MCU
would make such testing too expensive for all but a very few
applications.

3.8 Test and Bootstrap Mode Applications

Most users are familiar with the uses for normal operating modes, but the
special test and special bootstrap modes may be new. In this section, an
example is presented to stimulate the user’s imagination. After
Reference Manual M68HC11 — Rev. 6

114 Configuration and Modes of Operation MOTOROLA

Configuration and Modes of Operation
Example 3-1: Programming CONFIG (Uses Special Test Mode)
examining this example, some users will think of ways these special
mode variations can help in their applications.

3.9 Example 3-1: Programming CONFIG (Uses Special Test Mode)

This example demonstrates how the special test mode can be used to
program the EEPROM-based CONFIG register. Current versions of the
M68HC11 Family require the MCU to be in one of two special modes to
program the CONFIG register.

There are several reasons why a user might want to change the
CONFIG register. For example, suppose the user has an
MC68HC811E2 and wants to experiment with it in an expanded system
such as an MC68HC11EVB evaluation board. As shipped from
Motorola, the MC68HC811E2 part is not compatible with the memory
map of the EVB. The EEPROM must be disabled by programming the
EEON bit to 0, or the upper four bits of CONFIG must be changed to
relocate the EEPROM away from EVB resources. Suppose the user is
finished with initial debugging and wants to enable the COP watchdog
system by programming the NOCOP bit in CONFIG to 0. Perhaps the
CONFIG registers in some of the user’s parts have been corrupted
during initial experimentation. Some users forget to control reset during
power transitions; thus, the CONFIG register could be corrupted due to
program runaway when VDD is too low to allow proper operation. When
this runaway happens, the part is not defective; it needs to have the
CONFIG register returned to the proper value.

The schematic diagram shown in Figure 3-8 is a relatively simple
expanded-mode system that can be operated in special test mode. By
removing the jumper that pulls MODB low, this board can also be used
in normal expanded mode. An interesting feature of this system is that
the external EPROM appears in the memory map at $A000–$BFFF and
again at $E000–$FFFF because address line A14 is left out of the
address decode. This feature makes reset vectors in the highest
locations of the EPROM appear the same to the MCU whether the MCU
is reset in special test mode or normal expanded mode with the internal
ROM disabled. Several subtle benefits to this feature are evident. First,
it means no decode changes are needed to alternate between normal
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Configuration and Modes of Operation 115

Configuration and Modes of Operation
mode and special test operation of the board. In fact, after a reset in
special test mode, software can change to normal expanded mode, and
the reset and interrupt vectors are still available in the external EPROM.
If the internal 8-Kbyte ROM has a useful program in it (and internal ROM
is enabled), the external EPROM can be used for additional program
memory. Of course, when the CPU reads an internal ROM address, it
sees valid internal ROM data even though the external data bus has data
from the external EPROM. As long as the IRV function is not enabled,
there is no conflict between the internal 8 Kbytes ROM and the external
EPROM.

In Example 3-1, the program shown in Figure 3-9 is programmed into
the external 2764-type EPROM. When the board is turned on, this small
program reads the 8-part switch that is wired to the port E pins. If the
CONFIG register is different, it is reprogrammed to match the switches.
Because the EEPROM is subject to wearout (after thousands of
write-erase cycles), it should not be erased and reprogrammed unless it
is incorrect. Since this program is intended to be very simple, it does not
check to see if the change was successful.

This program could be modified to include the ability to check the results.
The security feature offers some challenges. For example, if security
mode is being enabled, it is not possible to verify the CONFIG value in
this setup. A reset is required to get the CONFIG value transferred into
the readable working register, and the part can only be reset in
single-chip modes after security is enabled. If the secured part is reset
while MODB is low, it comes up in special bootstrap mode (MODA pin is
ignored due to security). When reset in bootstrap mode, the EEPROM
and CONFIG register are automatically erased, which is self-defeating.
Presumably, a user has a meaningful program in internal ROM before
the security bit is finally enabled, which provides for orderly program
execution in normal single-chip mode. The user then verifies that
security is enabled by a checking function in that internal software.
Another way to check for security is to attempt to reset the part in normal
expanded mode. If security is not enabled, the AS/STRA pin acts as an
address strobe that clocks at the E-clock frequency even while RESET
is still low (part does not have to be out of reset to check for security). If
security is not activated, the AS/STRA pin acts as the strobe A
high-impedance input.
Reference Manual M68HC11 — Rev. 6

116 Configuration and Modes of Operation MOTOROLA

Configuration and Modes of Operation
Example 3-1: Programming CONFIG (Uses Special Test Mode)
Figure 3-8. Schematic for Figure 3-9 (Sheet 1 of 2)

V DD

+

4.7K

MC34064

V DD

RESET

V DD

GND

IN

1K

1 µF

V DD

10M

8.0 MHz

18 pF

18 pF

V DD
4.7K

4.7K

0.01 µF

10 µF

SYSTEM
POWER

CUT
JUMPER FOR

NORMAL MODE

RESET

XIRQ

IRQ

V

V

RH

RL

MODA/LIR

V

STBYMODB/V

DD

VSS

EXTAL

XTAL

MC68HC11A8

PA0/IC3

PA1/IC2

PA2/IC0

PA3/OC5/OC1

PA4/OC4/OC1

PA5/OC3/OC1

PA6/OC2/OC1

PA7/PAI/OC1

A8

A9

A10

A11

A12

A13

A14

A15

PE4/AN4

PE5/AN5

PE6/AN6

PD0/RxD

PD1/TxD

PD2/MISO

PD3/MOSI

PD4/SCK

PD5/SS

PE7/AN7

PE0/ANO

PE1/AN1

PE2/AN2

PE3/AN3

V DD

10K TYP

E

4.7K

4.7K

1 µF

AS

AD0

AD1

AD2

AD3

AD4

AD5

AD6

AD7

R/W

10K TYP

A8

A9

A10

A11

A12

A13

A15

PE4

PE5

PE6

PE7

PE0

PE1

PE2

PE3

E

AS

AD0

AD1

AD2

AD3

AD4

AD5

AD6

AD7

R/W
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Configuration and Modes of Operation 117

Configuration and Modes of Operation
Figure 3-8. Schematic for Figure 3-9 (Sheet 2 of 2)

DATA BUS

ADDRESS BUS

D0

D1

D2

D3

D4

D5

D6

D7

A0

A1

A2

A3

A4

A5

A6

A7

D0

D1

D2

D3

D4

D5

D6

D7

A8

A9

A10

A11

A12

8K X 8 EPROM

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

OE

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

LE

D0

D1

D2

D3

D4

D5

D6

D7

74HC373
A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

D0

D1

D2

D3

D4

D5

D6

D7

E

R/W

DIP
SWITCH

CS

OE

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

10K TYP

10K TYP

HC00

HC00

A13

A15
CS

OE

V DD

V DD

A8

A9

A10

A11

A12

A13

A15

PE4

PE5

PE6

PE7

PE0

PE1

PE2

PE3

E

AS

AD0

AD1

AD2

AD3

AD4

AD5

AD6

AD7

R/W
Reference Manual M68HC11 — Rev. 6

118 Configuration and Modes of Operation MOTOROLA

Configuration and Modes of Operation
Example 3-1: Programming CONFIG (Uses Special Test Mode)

* Example 3-1 ~ 65 bytes total *
* *
* This example program uses the hardware setup in figure 3-1 in test *
* mode. After reset the CONFIG register is checked against port E. *
* If it is different, CONFIG is erased and reprogrammed to the port E *
* value. $30 is written to port A and the program ends. *

 ORG $A000 Start of external EPROM

EX31A LDS #$00FF Establish top of stack
 BSR DLY10 Allow charge pump to stabilize
 LDAA $100A Read port E DIP switches
 ANDA $#0F Mask off upper 4 bits (not implimented on ’A8)
 CMPA $103F See if CONFIG is same
 BNE NOWOK If already OK
* Not OK so first erase CONFIG
 LDAB #$06 Bulk Erase, and EELAT on
 STAB $103B Write to PPROG register
 STAA $103F Write to CONFIG address (any data)
 INCB To $07 - turns on EEPGM bit
 STAB $103B Write to PPROG register
 BSR DLY10 Delay 10 mS for erase to complete
 CLR $103B Turn off charge pump (EEPGM to 0)
* Now reprogram CONFIG with data from port E (still in A-reg)
 LDAB #$02 Turn on EELAT
 STAB $103B Write to PPROG register
 STAA $103F Write port E data to CONFIG address
 INCB To $03 - Turns on EEPGM bit
 STAB $103B Write to PPROG register
 BSR DLY10 Delay 10 mS for erase to complete
 CLR $103B Turn off charge pump (EEPGM to 0)
* Programming complete but you can’t check results till next reset
NOWOK LDA #$30
 STAA $1000 You are done (check with scope)
 BRA * Branch to self (hangs till pwr off or rst)
*
* PROGRAM END subroutines follow
*

* DLY10 - Subroutine to delay 10mS (for E=2MHz)

DLY10 PSHX Save X (not required in this ex I just do)
 LDX #$0D06 3334 * 6~ * 500nS/~ = 10mS
DLOOP DEX [3] # in []s is cycles for that instruc
 BNE DLOOP [3] cont. for 3334 times (loop time = 6~)
 PULX Recover X value
 RTS ** RETURN **
*
* Establish a reset vector
*
 ORG $BFFE
RESET FDB $A000 Point to start of program

Figure 3-9. Program to Check/Change CONFIG
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Configuration and Modes of Operation 119

Configuration and Modes of Operation
Reference Manual M68HC11 — Rev. 6

120 Configuration and Modes of Operation MOTOROLA

Reference Manual — M68HC11

Section 4. On-Chip Memory
4.1 Contents

4.2 Introduction .122

4.3 Read-Only Memory (ROM). .122

4.4 Random-Access Memory (RAM) .124
4.4.1 Remapping Using the INIT Register.124
4.4.2 RAM Standby .125

4.5 Electrically Erasable Programmable ROM (EEPROM) 127
4.5.1 Logical and Physical Organization127
4.5.2 Basic Operation of the EEPROM .129
4.5.3 Systems Operating Below 2-MHz Bus

Speed (E Clock) .134
4.5.4 EEPROM Programming Register (PPROG) 134
4.5.5 Programming/Erasing Procedures137
4.5.5.1 Programming .138
4.5.5.2 Bulk Erase .138
4.5.5.3 Row Erase .139
4.5.5.4 Byte Erase .139
4.5.5.5 CONFIG Register. .139
4.5.6 Optional EEPROM Security Mode140

4.6 EEPROM Application Information. .143
4.6.1 Conditions and Practices to Avoid144
4.6.2 Using EEPROM to Select Product Options146
4.6.3 Using EEPROM for Setpoint

and Calibration Information .146
4.6.4 Using EEPROM during Product Development148
4.6.5 Logging Data .148
4.6.6 Self-Adjusting Systems Using EEPROM149
4.6.7 Software Methods to Extend Life Expectancy150
M68HC11 — Rev. 6 Reference Manual

MOTOROLA On-Chip Memory 121

On-Chip Memory
4.2 Introduction

The MC68HC11A8 includes on-chip random-access memory (RAM),
read-only memory (ROM), and electrically erasable programmable ROM
(EEPROM) memories. The on-chip RAM is a fully static read-write
memory used for storage of variable and temporary information.

The MC68HC11A8 has 256 bytes of RAM; whereas other members of
the M68HC11 Family include more or less RAM (MC68HC11E9 has 512
bytes of RAM and MC68HC11D3 has 192 bytes of RAM).

Members of the M68HC11 Family include various amounts of on-chip
mask-programmed ROM. The MC68HC11A8 has 8 Kbytes of user
ROM, the MC68HC11E9 has 12 Kbytes, and the MC68HC11D3 has 4
Kbytes. This ROM is used for storage of user program instructions and
fixed data. Some members of the M68HC11 Family have this internal
ROM disabled, and the user programs reside in external memories.

The last major memory system on the M68HC11 is the EEPROM. The
MC68HC11A8 includes 512 bytes of EEPROM; whereas other members
of the M68HC11 Family include as much as 8.5 Kbytes of EEPROM.
Data can be programmed into the EEPROM or erased from the
EEPROM under software control. No power supplies other than the
normal VDD (5 Vdc) supply are needed for programming or erasure of
the 512 bytes of on-chip EEPROM in the MC68HC11A8. No power
supplies are required to maintain the contents of this memory. This
memory is commonly used for semipermanent information such as
calibration tables, personality data, or product history information. The
EEPROM can also be used for program memory; furthermore, the
nonvolatile nature of this EEPROM supports programs that can adapt to
changing conditions.

4.3 Read-Only Memory (ROM)

The primary use for on-chip ROM is to hold the user’s application
program instructions. Since these instructions are programmed into the
microcontroller unit (MCU) when it is manufactured, they cannot be
changed. A user develops the application program and debugs it before
ordering production MCUs. The user places an order for production units
Reference Manual M68HC11 — Rev. 6

122 On-Chip Memory MOTOROLA

On-Chip Memory
Read-Only Memory (ROM)
with the pattern of instructions and data to be programmed into the
on-chip ROM. Motorola then translates this pattern into a photographic
mask to be used during processing of silicon wafers. Motorola then
produces a small batch of these parts and returns them to the customer
for verification. These units are called ROM verification units (RVUs).
After customer approval of these RVUs, Motorola begins full production
of these customized MCUs. The RVUs, processed on a quick
turnaround basis, are not tested to environmental extremes because
their sole purpose is to demonstrate that the customer-requested ROM
pattern was properly implemented.

The on-chip program ROM can be disabled by an EEPROM-based
control bit in the configuration control (CONFIG) register. When the
program ROM is disabled, it uses up no space in the 64-Kbyte memory
space, and an external memory is used for program instructions.
ROM-less versions of the M68HC11 Family, such as the MC68HC11A1,
actually have on-chip ROM, but the ROM is disabled by the enable
on-chip ROM (ROMON) control bit equals 0 in the CONFIG register.

The MC68HC11A8 actually has two separate on-chip ROM memories:

• 8-Kbyte user ROM, available for user-defined programs

• Separate 192-byte ROM, called the bootloader ROM

This bootloader ROM controls the bootstrap loading process of the
special bootstrap mode. In normal modes of operation, the bootloader
ROM is disabled and uses no space in the 64-Kbyte address space of
the MCU. During expanded test mode, the bootloader ROM can be
enabled for testing but is not in the memory map after a reset until/unless
the test program software enables it. In special bootstrap mode, the
bootloader ROM is enabled at $BF40–$BFFF by default out of reset, and
the reset vector in this ROM at $BFFE,BFFF vectors to the bootloader
program in this ROM.

The bootloader program is also involved with the security feature that
allows a user to protect the contents of EEPROM and RAM from being
read by software pirates. When the security option is enabled, the MCU
can be reset only in normal single-chip mode or special bootstrap mode.
In normal single-chip mode, the reset vector is located in the on-chip
8-Kbyte ROM, and the user’s program controls all program actions.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA On-Chip Memory 123

On-Chip Memory
Since there are no external address or data buses, a pirate could not see
what is in the internal EEPROM or RAM memories. In special bootstrap
mode, the reset vector is located in the on-chip bootloader ROM, and the
bootloader program is in control. The bootloader program checks the
security enable control bit before proceeding to the program
downloading step. If security is enabled, the entire EEPROM and RAM
are erased before downloading continues. After the EEPROM and RAM
have been erased and verified, the CONFIG register (which contains the
security enable control bit) is erased, and downloading can proceed. For
additional information about the CONFIG register and security option,
refer to 3.4 EEPROM-Based Configuration (CONFIG) Register.
Section 3. Configuration and Modes of Operation also includes
additional details about modes of operation.

4.4 Random-Access Memory (RAM)

This subsection discusses the on-chip RAM of the MC68HC11A8. This
256-byte RAM can be mapped to the beginning of any 4-Kbyte block in
the 64-Kbyte address space. The methods and reasons for this
remapping are discussed; two methods of RAM standby are also
discussed.

4.4.1 Remapping Using the INIT Register

By default, the on-chip RAM is located in the first 256 locations
($0000–$00FF) of the 64-Kbyte memory map. In many (but not all)
cases, this location is good for the on-chip RAM. The first 256 locations
in memory are accessible using the direct addressing mode, which
assumes the upper byte of the 16-bit address is $00. Since the direct
addressing mode can address these locations with a 1-byte address
rather than a two-byte address, each such instruction saves a byte of
program memory space and a cycle of execution time compared to the
same instruction using expanded addressing mode. Depending on the
application, maximum efficiency can be achieved by having RAM, I/O
registers, or both in this premium address space.
Reference Manual M68HC11 — Rev. 6

124 On-Chip Memory MOTOROLA

On-Chip Memory
Random-Access Memory (RAM)
The position of RAM in the 64-Kbyte address space is controlled by the
RAM and I/O mapping (INIT) register. The upper four bits of INIT
(RAM3–RAM0) specify the upper four bits of the 16-bit RAM addresses.
At reset, the RAM3–RAM0 bits are forced to 0 so the RAM is initially
located at $0000–$00FF. By writing some other value to the INIT
register, the RAM can be relocated to the beginning of any 4-Kbyte page
in the 64-Kbyte address space. In normal operating modes, the INIT
register is protected so that it can be changed only within the first 64
cycles after reset. For more detailed information about the INIT register,
see 3.5.1 RAM and I/O Mapping Register (INIT).

4.4.2 RAM Standby

A RAM standby function has several purposes. In battery operated
systems, the RAM standby function provides a way to conserve limited
battery power during times of MCU inactivity, which increases the
effective time the system can operate without battery charging or
replacement. In systems using a municipal electric system as the
primary source of power, operating power is not usually a major issue,
but power interruptions can be. Enough energy may be stored in
regulator filter capacitors to allow a system to operate for some period of
time after primary power is lost. The system current drain determines
how long the stored energy can maintain the system. By detecting the
loss of primary power and changing to a low-power standby mode, the
MCU system can be maintained through longer power interruptions.
After the interruption, the system can decide whether to continue
operation or to perform a complete reset initialization. In other
municipal-powered systems, it may be useful to maintain a limited
amount of information during very long interruptions of primary power. In
such cases, a separate standby power source based on a battery could
be used to maintain the contents of RAM while the system is
non-operational.

The on-chip RAM of the M68HC11 Family is fully static; there are two
ways RAM contents can be maintained while reducing system power
consumption to very low levels. The easiest method for low-power RAM
standby is the software-based stop mode. The alternate method uses
the MODB/VSTBY pin for standby power in a mostly hardware approach.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA On-Chip Memory 125

On-Chip Memory
Since the entire MCU, including RAM, is fully static, there is no minimum
oscillator clock frequency. In complementary metal oxide semiconductor
(CMOS) integrated circuits, power supply current is directly proportional
to operating frequency; thus, only very small leakage currents exist
when clocks are stopped. This is the basis for the stop method of RAM
standby. When the MCU is stopped, all CPU registers, control and I/O
registers, and all RAM contents remain unchanged as long as VDD is
present. IDD for the MCU is reduced to a few microamps when MCU
clocks are stopped.

In some systems, other circuitry may be powered from VDD that cannot
be easily placed in a low-power standby mode. In these systems, VDD
must be turned off to reduce system power drain. The MODB/VSTBY
method of RAM standby allows VDD to be removed without losing the
contents of on-chip RAM. This method is more hardware intensive
because it involves a second power supply and associated problems. In
CMOS systems, it is possible to power an integrated circuit through an
I/O pin because, on some I/O pins, there is an inherent diode between
the pin and the internal VDD. In some CMOS systems, even the
sequencing of power supplies is critical, which implies using caution
whenever there is more than one power supply in a system. Although the
sequencing of VDD relative to MODB/VSTBY is not important on the
MC68HC11A8 itself, the sequencing may be important to any other
CMOS device in the system exposed to both VDD and VSTBY.

Several I/O pins on the MCU should not have voltage on them while VDD
is off. Any pin having the source or drain node of a P-channel device in
the on-chip circuitry connected to this pin has an inherent diode to VDD.
If such a pin were connected to a signal powered by VSTBY rather than
VDD, the entire VDD network would be powered by VSTBY through the
inherent diode. Powering the VDD network in this way may result in
unexpected operation of the system and definitely results in more load
on the VSTBY supply than expected.
Reference Manual M68HC11 — Rev. 6

126 On-Chip Memory MOTOROLA

On-Chip Memory
Electrically Erasable Programmable ROM (EEPROM)
4.5 Electrically Erasable Programmable ROM (EEPROM)

This subsection describes the operation of the EEPROM on the
MC68HC11A8 and explores some of its applications. In addition to the
512 bytes of user EEPROM on the MC68HC11A8, there is another
EEPROM byte (CONFIG register) controlling some basic features of the
MCU. The CONFIG register and mechanism are described in detail in
3.4 EEPROM-Based Configuration (CONFIG) Register, but some
aspects of the EEPROM enable bit (EEON) and the security mode
disable bit (NOSEC) are discussed in terms of how they relate to
EEPROM.

The MC68HC11A8 was the first MCU to include CMOS EEPROM. This
512-byte EEPROM memory can be used in the same ways ROM would
be used, but some interesting possibilities arise that are not possible
with ROM or RAM memories. A simple example is to store a unique
serial number in the EEPROM of each finished product. Once
information is programmed into the on-chip EEPROM, it remains
unchanged even if VDD power is removed indefinitely. Unlike information
in ROM, information in EEPROM can be erased or reprogrammed under
software control. Since EEPROM programming and erasure operations
use an on-chip charge pump driven by VDD, no special power supplies
are needed.

The M68HC11 Family of MCUs includes members with various amounts
of EEPROM. The MC68HC811A8 (emulator for the basic
MC68HC11A8) has 8.5 Kbytes of EEPROM. The principles presented
here apply specifically to the original MC68HC11A8. Some details of
EEPROM operation may vary slightly for other members of the
M68HC11 Family; however, the basic concepts presented here can be
extended to explain the operation of these other members.

4.5.1 Logical and Physical Organization

The logical organization of the 512-byte EEPROM is important for
identification of rows when using the row-erase feature. The physical
organization may be useful in isolating problems in rare cases.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA On-Chip Memory 127

On-Chip Memory
Although some family members (for example, MC68HC811E2) allow
remapping of the on-chip EEPROM, the 512-byte EEPROM in the
MC68HC11A8 is fixed at locations $B600–$B7FF. This 512-byte block
is logically arranged into 32 rows of 16 bytes each. The first row occupies
the locations $B600–$B60F, the second row occupies $B610–$B61F,
etc. EEPROM locations can be erased individually (byte erase), in rows
of 16 bytes each (row erase), or all 512 bytes at once (bulk erase). The
CONFIG byte is separate from this 512-byte block. Special restrictions
apply to erasure of the CONFIG EEPROM byte. Figure 4-1 shows the
topological organization of the 512 bytes of EEPROM in the
MC68HC11A8. Figure 4-2 shows the topological arrangement of bits
within a byte of EEPROM.

Figure 4-1. Topological Arrangement of EEPROM Bytes (MC68HC11A8)

Figure 4-2. Topological Arrangement of Bits in an EEPROM Byte

B7E1 B7E0

ARRAY
LEFT HALF

B62F B620
B64F B640
B66F B660
B68F B680
B6AF B6A0
B6CF B6C0
B6EF B6E0
B70F B700
B72F B720
B74F B740
B76F B760
B78F B780
B7AF B7A0
B7CF B7C0

B60F B60E B601 B600

B7EF B7EE B7FE B7FF

ARRAY
RIGHT HALF

B630 B63F
B650 B65F
B670 B67F
B690 B69F
B6B0 B6BF
B6D0 B6DF
B6F0 B6FF
B710 B71F
B730 B73F
B750 B75F
B770 B77F
B790 B79F
B7B0 B7BF
B7D0 B7DF

B610 B611 B61E B61F

B7F0 B7F1
CONFIG ROW

COLUMN DECODERS AND SENSE AMPS

R
O

W
 D

EC
O

D
ER

S
AN

D
 D

R
IV

ER
S

CHARGE
PUMP

ROM ARRAY

FOR LEFT HALF FOR RIGHT HALF

B601 B600 B610 B611

BIT 7 BIT 7 BIT 7BIT 7 BIT 0 BIT 065 4321 6 5 4 3 2 165 6 5
Reference Manual M68HC11 — Rev. 6

128 On-Chip Memory MOTOROLA

On-Chip Memory
Electrically Erasable Programmable ROM (EEPROM)
4.5.2 Basic Operation of the EEPROM

The following paragraphs briefly describe how the EEPROM operates.
Figure 4-3, a condensed schematic of the EEPROM array, provides
insight into the operation of the EEPROM system and illustrates the
complexity of a byte-erasable EEPROM. Each byte in the EEPROM
array consists of 17 transistors, eight floating-gate transistors, a select
transistor for each floating-gate transistor, and a byte-select transistor.
In comparison, an ultraviolet erasable EPROM byte requires only the
eight floating-gate transistors.

Figure 4-3. Condensed Schematic of EEPROM Array

1 BYTE

ROW (0)

ROW (N)

COL (0)

COL (N)

V

I/O (7)

I/O (0)

ERASE

ARRAY
GROUND
M68HC11 — Rev. 6 Reference Manual

MOTOROLA On-Chip Memory 129

On-Chip Memory
Figure 4-4 shows an EEPROM bit with important features and nodes
labeled. These terms are used in the following explanation of basic
EEPROM operations. Figure 4-5, Figure 4-6, and Figure 4-7 show an
EEPROM byte being erased, programmed, and read, respectively. The
floating-gate transistor is the storage element in the EEPROM cell. Since
the floating gate is isolated by thin oxide layers, any charge on this gate
remains indefinitely unless a large enough field is created, as in
programming and erase modes. When a large enough field is present,
Fowler-Nordheim electron tunneling allows charge to be transferred to or
from the floating gate, depending on the polarity of the field. In the
following discussion, VDD is nominally 5 V and VPP is about 20 V. In the
MC68HC11A8, VPP is developed from VDD with an on-chip charge
pump; thus, no external high voltages are required.

Figure 4-4. EEPROM Cell Terminology

In erase mode (see Figure 4-5), the array ground is connected to VSS.
The row and column selects cause the control gates of the byte(s) being
erased to be connected to VPP. Other bytes in the array that are not
being erased would have their control gates connected to an undriven
logic 0. The bit-select devices are all turned on by VPP on the word lines;
however, the drains of the bit-select devices are high impedance. Thus,
the drains of the floating-gate transistors are effectively floating. The
high voltage on the control gate of the floating-gate transistor is
capacitively coupled onto the floating gate. The large field between the
floating gate and the substrate results in electron tunneling from the
substrate to the floating gate. After erasure, the floating gate has a

ARRAY GROUND

BIT LINE

BIT-SELECT
DEVICE

FLOATING-GATE
DEVICE

ROW
SELECT

CONTROL
GATE

FLOATING GATE

S

D

G

Reference Manual M68HC11 — Rev. 6

130 On-Chip Memory MOTOROLA

On-Chip Memory
Electrically Erasable Programmable ROM (EEPROM)
negative charge, which keeps the floating-gate transistor turned off
during reads. If leakage in the floating-gate transistor caused the
negative charge to leak off so that there was no charge on the floating
gate, the bit would still read back as 1. This fact implies that long-term
retention errors cannot cause a logic 1 bit to deteriorate to a logic 0.

Figure 4-5. Erasing an EEPROM Byte

Figure 4-6 shows an EEPROM byte being programmed to the value $55
(0101 0101) to demonstrate the effect of programming both 1s and 0s.
Since the erased state of an EEPROM bit is 1, programming a 1 is the
same as doing nothing. During programming, the array ground is not
driven. The control gates of the byte to be programmed are driven to 0
through the row-select and column-select path. Control gates for bytes
not being programmed will be high impedance because the
column-select and/or row-select device will be off. The bit-select devices
are turned on hard because the row select, for the row containing the
byte being programmed, is driven to VPP. The bit lines are driven to VDD
for bits not being programmed (1s) and to VPP for bits being
programmed (0s).

For bits not being programmed (1s), the drain of the floating-gate
transistor is at VDD, and the control gate is at VSS. This configuration
does not result in a large enough field for tunneling to occur; thus, no
charge transfer occurs.

ARRAY GROUND

7

V PP

NOT DRIVEN

6 5 4 3 2 1 0

V TN

V SS

V PP
M68HC11 — Rev. 6 Reference Manual

MOTOROLA On-Chip Memory 131

On-Chip Memory
Figure 4-6. Programming an EEPROM Byte

For bits being programmed (0s), the drains of the floating-gate
transistors are at VPP – VTN (because of the drain-to-source threshold
voltage drop across the bit-select device), and the control gate is at VSS.
This configuration results in a large enough field so electrons can tunnel
from the floating gate to the drain region of the floating-gate transistor.
Since the floating gate of a programmed bit has a positive charge, the
floating-gate transistor will conduct during reads.

Figure 4-7 shows an EEPROM byte being read. During a read
operation, the bit lines are precharged to 1. Column selects enable the
bit lines from the byte being read to the sense amp inputs. The row select
for the row containing the byte being read is driven to VDD to enable the
bit-select devices. The array ground is connected to VSS. The floating
gate devices of programmed bits conduct and pull the corresponding bit
lines to 0. The floating-gate devices of bits not programmed do not
conduct; therefore, the corresponding bit lines remain at the precharged
level and read as 1s. EEPROM operations are actually much more
complicated than this discussion suggests, but these general statements
may be useful to designers using the EEPROM:

1. Since no high voltages are present during read operations, no
degradation of data can result from repeated read operations.

2. Erase operations normally take less time than programming
operations.

ARRAY GROUND

7

V PP

6 5 4 3 2 1 0

V SS

(NOT DRIVEN)

0 1 0 1 0 1 0 1

V PP V DD V PP V DD V PP V DD V PP V DD
Reference Manual M68HC11 — Rev. 6

132 On-Chip Memory MOTOROLA

On-Chip Memory
Electrically Erasable Programmable ROM (EEPROM)
3. The most common EEPROM failure (write 1s) is an unintended bit
change from 1 to 0 during programming of $FF data. This failure
occurs during endurance testing as the part approaches wearout
(typically after tens of thousands of write-erase cycles).

4. Retention failures result in programmed 0s reverting to 1s due to
leakage of the floating-gate charge.

5. Ones never revert to 0s without an explicit programming operation
(though the programming operation need not involve any 0s in the
pattern being programmed).

Figure 4-7. Reading an EEPROM Byte

EEPROM programming and erasure involve the movement of charge
through a thin oxide layer. This charge movement requires a relatively
large field to be present for a significant length of time (milliseconds).
Noise is not likely to cause individual bits to change state. Most failures
of the EEPROM involve breakdowns due to the relatively high voltages
or to an oxide degradation phenomenon (trapped charge). After many
cycles of programming and erasure, charge may become trapped in the
thin oxide layers isolating the floating gate. This trapped charge causes
programming and erase operations to take longer as the amount of
trapped charge increases. When the cell fails to program to 0 in the
allotted time, it is worn out. In many cases, these bits can still be
programmed and erased provided the program and erase times are
increased. The useful life of an EEPROM byte cannot be extended very
far by extending the programming time because a worn bit exhibits a
reduced ability to retain valid 0s for very long time periods.

ARRAY GROUND

7

V DD

6 5 4 3 2 1 0

V SS

V SS

PRECHARGE THEN SENSE
M68HC11 — Rev. 6 Reference Manual

MOTOROLA On-Chip Memory 133

On-Chip Memory
4.5.3 Systems Operating Below 2-MHz Bus Speed (E Clock)

The on-chip charge pump that generates VPP from VDD uses MOS
capacitors, which are relatively small in value. The efficiency of this
charge pump and its drive capability are affected by the level of VDD and
the frequency of the driving clock. The load depends on the number of
bits being programmed or erased and capacitances in the EEPROM
array. Effective array load capacitances are influenced to some degree
by the data in the array.

The clock source driving the charge pump is software selectable. When
the clock select (CSEL) control bit in the OPTION register is 0, the E
clock is used; when CSEL is 1, an on-chip resistor-capacitor (RC)
oscillator is used. The frequency of this on-chip RC oscillator is about
2.5 MHz but varies with processing.

The recommended programming and erase time is 10 ms when VDD is
5 Vdc ±10 percent and the E clock is 2 MHz. If the E clock is 1 MHz or
less, the CSEL bit should be written to 1 to enable the on-chip RC
oscillator to drive the VPP charge pump. For an E clock between 1 and
2 MHz, the programming and erase times can be increased to 20 ms, or
the RC oscillator can be selected. Experimentation has shown the
EEPROM is programmable with VDD equal to 3 Vdc and CSEL equals 1
to enable the on-chip RC clock.

CSEL also enables a separate RC oscillator associated with the A/D
converter system. The E-clock frequency (where switchover to CSEL
equals 1 is recommended) is lower for the A/D than it is for EEPROM
operations. In the A/D system, switching to CSEL equals 1 can increase
conversion errors; thus, it is better to perform A/D conversions with
CSEL equals 0. In some applications, it is worthwhile to switch CSEL on
and off, depending on whether A/D or EEPROM programming/erase
operations are occurring. Refer to 12.4.2 A/D Charge Pump and
Resistor-Capacitor (RC) Oscillator for additional information.

4.5.4 EEPROM Programming Register (PPROG)

The PPROG register controls programming and erasure of the on-chip
EEPROM. The PPROG register may be read or written at any time, but
Reference Manual M68HC11 — Rev. 6

134 On-Chip Memory MOTOROLA

On-Chip Memory
Electrically Erasable Programmable ROM (EEPROM)
programming and erase sequences are strictly controlled by logic to
prevent unintentional changes to EEPROM data. In the MC68HC11A8,
the CONFIG register EEPROM location cannot be programmed or
erased unless the MCU is operating in special test or special bootstrap
mode. The VPP power supply voltage is not enabled to the EEPROM
array until all sequence requirements are met for a programming or
erase operation. The required sequence consists of these steps:

1. Write to PPROG with EEPROM latch control (EELAT) bit equals 1
and EEPROM programming voltage enable (EEPGM) bit equals 0

2. Write to a valid EEPROM location or the CONFIG address

3. Write to PPROG with EELAT and EEPGM bits equal 1

Hardware logic enforces this sequence by imposing the following
restrictions. If an attempt is made to change both EELAT and EEPGM to
1s with the same write operation, neither bit is set (enforces step 1).
Writes to EEPROM addresses are inhibited while EEPGM is 1, which
prevents two kinds of errors. First, step 2 must be performed before
step 3, or no EEPROM changes will occur. Second, a write to a different
EEPROM location is prevented while a programming or erase operation
is in progress.

In some members of the M68HC11 Family, there is a block protection
mechanism that can inhibit programming and erasure of the CONFIG
register or selected areas of EEPROM. After reset, these block protect
control bits (in a block protect (BPROT) register) are set to inhibit
EEPROM changes. A user can write these bits to 0 to enable
programming and erase operations, but this write must be performed
within 64 cycles after reset. The user may write these bits back to 1 at
any time to inhibit further EEPROM changes. Once this protection is
re-enabled, it remains in effect until another reset. There is no BPROT
register in the MC68HC11A8.

Figure 4-8 and the following paragraphs describe the bits in the PPROG
control register.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA On-Chip Memory 135

On-Chip Memory
ODD — Program Odd Rows in Half the EEPROM Array

EVEN — Program Even Rows in Half the EEPROM Array

These two bits are used only during factory testing of the EEPROM.
To program all bytes in the odd (even) rows on one side of the
EEPROM array with the same data in a single programming
operation, set the ODD (EVEN) and EELAT bits to 1s, write to an
EEPROM location in an odd (even) row, and then set the EEPGM bit.
Since the on-chip VPP charge pump does not have enough drive to

perform this bulk programming operation, an external 20-V
current-limited supply must be connected to the external EEPROM
voltage source (IRQ/VPPBULK) pin. The intended purpose of this

function is to allow the entire EEPROM array to be filled with a
checkerboard pattern in only four programming operations. This
feature is not intended for customer use since the function serves no
practical purpose other than product testing.

BYTE — Byte/Other EEPROM Erase Mode Bit

ROW — Row/All EEPROM Erase Mode Bit

These two bits specify the type of erase operation that is to be
performed. These bits have no meaning when the ERASE bit is clear.
The following table shows the relationship between the state of these
bits and the type of erase operation that will be performed.

Address: $103B

Bit 7 6 5 4 3 2 1 Bit 0

Read:
ODD EVEN 0 BYTE ROW ERASE EELAT EEPGM

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 4-8. EEPROM Programming Register (PPROG)

BYTE ROW Type of Erase

0 0 Bulk erase (all 512 bytes)

0 1 Row erase (16-byte row)

1 0 Byte erase

1 1 Byte erase
Reference Manual M68HC11 — Rev. 6

136 On-Chip Memory MOTOROLA

On-Chip Memory
Electrically Erasable Programmable ROM (EEPROM)
ERASE — Erase/Normal Control Bit for EEPROM
0 = Normal read or program mode
1 = Erase mode

EELAT — EEPROM Latch Control Bit

When this bit is 0, the EEPROM acts as a ROM in the MCU memory
map. When EELAT is 1, the EEPROM acts as if it has been removed
from the memory map and placed into a programming socket.
Latches on the address and data lines to the EEPROM array are
enabled to capture data and address information needed during
program or erase operations. While EELAT is 1, the EEPROM cannot
be read, which implies a software routine that programs or erases
EEPROM cannot be executed from that same EEPROM. The
operation of EELAT also implies that programs that access data from
the EEPROM must not be executed while an EEPROM location is
being programmed or erased.

EEPGM — EEPROM Programming Voltage Enable Bit

This control bit enables the VPP power supply to the EEPROM logic

for programming and erase operations. When EEPGM is 0, VPP is off;

when EEPGM is 1, VPP is on. A logic interlock mechanism prevents

setting this bit unless EELAT was written to 1 earlier.

4.5.5 Programming/Erasing Procedures

The following discussion and program segments demonstrate the
various programming and erase operations that can be performed on
EEPROM locations. These program segments are intended to be
simple, straightforward examples of the sequences needed for basic
program and erase operations. There are no special restrictions on the
addressing modes used, and bit manipulation instructions may be used.
Other operations can be performed during programming and erasure
provided these operations do not include reads from the EEPROM (the
EEPROM is disconnected from the read data bus during program and
erase operations). The subroutine (DLY10) used in these program
segments is not shown but can be any set of instructions that takes
10 ms.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA On-Chip Memory 137

On-Chip Memory
If several bytes of EEPROM are to be programmed, the EELAT bit can
be left at 1 for the entire block. After each byte is programmed, EEPGM
is written to 0 and EELAT is left at 1. The next EEPROM location is then
written, and the EEPGM bit is written back to 1 to execute the
programming request.

4.5.5.1 Programming

During EEPROM programming, the ROW and BYTE bits are not used.
If the E-clock frequency is less than 2 MHz, the programming time may
need to be increased, or the CSEL bit in the OPTION register may have
to be set to enable an on-chip RC oscillator to drive the VPP charge
pump. Since programming can only change 1s to 0s in the EEPROM, it
is sometimes necessary to erase a byte to $FF in a separate operation
before programming it to a new value.

This programming segment demonstrates how to program an EEPROM
byte:

* On entry, A = data to be programmed and X = an EEPROM address
 "
 "

PROG LDAB #$02
STAB $103B Set EELAT bit (EEPGM=0)
STAA 0,X Store data to EEPROM address
LDAB #$03
STAB $103B Set EEPGM bit (EELAT=1)
JSR DLY10 Delay 10 mS
CLR $103B Turn off high voltage & set to read mode
 "
 "

4.5.5.2 Bulk Erase

This program segment demonstrates how to bulk erase the 512-byte
EEPROM. The CONFIG register is not affected in this example.

 "
 "

BULKE LDAB #$06
STAB $103B Set to BULK erase mode
STAB $B600 Write any data to any EEPROM address
LDAB #$07
STAB $103B Turn on programming voltage
JSR DLY10 Delay 10 mS
CLR $103B Turn off high voltage & set to read mode
 "
 "
Reference Manual M68HC11 — Rev. 6

138 On-Chip Memory MOTOROLA

On-Chip Memory
Electrically Erasable Programmable ROM (EEPROM)
4.5.5.3 Row Erase

This example demonstrates the row-erase function. A row is 16 bytes
($B600–$B60F, $B610–$B61F ... $B7F0–$B7FF). When large sections
of EEPROM are to be erased, this type erase operation saves time
compared to byte erase.

* On entry, X=any address in ROW to be erased
 "
 "

ROWE LDAB #$0E
STAB $103B Set to ROW erase mode
STAB 0,X Write any data to any address in ROW
LDAB #$0F
STAB $103B Turn on high voltage
JSR DLY10 Delay 10 mS
CLR $103B Turn off high voltage & set to read mode
 "
 "

4.5.5.4 Byte Erase

This program segment demonstrates how to erase a single byte of
EEPROM.

* On entry, X=any address of BYTE to be erased
 "
 "

BYTEE LDAB #$16
STAB $103B Set to BYTE erase mode
STAB 0,X Write any data to address to be erased
LDAB #$17
STAB $103B Turn on high voltage
JSR DLY10 Delay 10 mS
CLR $103B Turn off high voltage & set to read mode
 "
 "

4.5.5.5 CONFIG Register

This program segment shows how to program the CONFIG register in
the MC68HC11A8 to a new value. The CONFIG byte can be erased only
with the bulk-erase method on the original MC68HC11A8; however,
some new members of the M68HC11 Family allow the CONFIG byte to
be byte erased. If any question arises about which members can use
byte erase, refer to the data sheet for that member. It is possible to
M68HC11 — Rev. 6 Reference Manual

MOTOROLA On-Chip Memory 139

On-Chip Memory
program additional bits in CONFIG to 0 without erasing the location first;
however, it is better to perform an erase first as shown in this example
and explained in 4.6 EEPROM Application Information.

* On entry, A=data to be programmed into CONFIG
 "
 "

CNFCH LDAB #$06
STAB $103B Set to BULK erase mode
STAB $103F Write any data to CONFIG address
LDAB #$07
STAB $103B Turn on programming voltage
JSR DLY10 Delay 10 mS
LDAB #$02
STAB $103B Turn off EEPGM, leave EELAT on
STAA $103F Store new CONFIG data
LDAB #$03
STAB $103B Set EEPGM bit (EELAT=1)
JSR DLY10 Delay 10 mS
CLR $103B Turn off high voltage & set to read mode
 "
 "

4.5.6 Optional EEPROM Security Mode

An optional security mode feature can be used to protect the EEPROM
and RAM contents from unauthorized access. Most MCU products are
of little or no use without the software programs that control them. By
protecting the secrecy of the program or a key part of the program, a
product can be protected against unauthorized duplication. The
MC68HC11A8 solves the dilemma of protecting against unauthorized
access while permitting testing and recovery of protected parts for reuse.

The protection mechanism operates on the principle of restricting
protected devices to the single-chip modes of operation. Since
single-chip modes do not allow visibility of the internal address and data
buses, the contents of memory locations cannot be monitored externally.
Since the user’s program has unlimited access to the internal EEPROM
and RAM, it is still possible for the application program to read
information out of these memories, write new information into them, or
even report the contents of these memories via MCU I/O ports. The user
can develop a program to enter secret information into the MCU or to
read secret information out of the MCU by some secret access
Reference Manual M68HC11 — Rev. 6

140 On-Chip Memory MOTOROLA

On-Chip Memory
Electrically Erasable Programmable ROM (EEPROM)
procedure. All or part of this secret access procedure should be
programmed in the EEPROM so that a software pirate could not decode
the secret procedure by disassembling the ROM program, which can be
read after turning off the security mode. Although the security mode can
be turned off easily by anyone at any time, this can be done only after
the information in EEPROM and internal RAM have been completely
erased.

Two conditions are required to engage the security option. First, the
option must be enabled by a mask option. This option is normally
requested at the time the customer submits the mask program for the
internal 8-Kbyte ROM. Since this option is enabled or disabled during
physical manufacturing of the silicon die, the choice must be made prior
to manufacturing. Although this first level of enable makes the MCU
capable of being secured, it does not activate the security mode. The
second requirement to engage the security option is that the NOSEC bit
in the CONFIG register be programmed to 0. Programming NOSEC to 0
does not engage the security mode unless the MCU was manufactured
with the capability to recognize the security option. The reason for a
2-level enable is to prevent accidental activation of the security option in
applications that never intend to use it.

Bootloader firmware is used to disengage the security option.
Bootloader firmware checks the NOSEC bit in CONFIG to determine
whether the security option is on. If security is on, the entire EEPROM is
erased, and the entire RAM is written with $FF to overwrite anything that
was in RAM before. The EEPROM and RAM are then rechecked to
make sure the erase operations were successful. If the operations were
not successful, they are repeated until successful. Once the EEPROM
and RAM have been verified as erased, the CONFIG register is erased
to disengage the security option, and the downloading operation is
started. It is not necessary to actually download a program via the
bootstrap mode to disengage security. The only requirement is to come
out of reset in the bootstrap mode. The security option is disengaged
regardless of whether anything is downloaded.

The presence of the security option can be detected while the MCU is in
reset by forcing the mode A (MODA) and mode B (MODB) pins to 1 and
monitoring the strobe A/address strobe (STRA/AS) pin. When MODA
M68HC11 — Rev. 6 Reference Manual

MOTOROLA On-Chip Memory 141

On-Chip Memory
and MODB are 1s, the normal expanded mode is requested. If security
is engaged, the STRA/AS pin will act as a high-impedance input
because the security option causes the MODA pin to be interpreted as a
0 even if it is a 1. In single-chip modes, the STRA/AS pin is configured
for the strobe A input function. If the security mode is not engaged, the
STRA/AS pin will act as the address strobe output, which can easily be
recognized on an oscilloscope. This checking procedure allows the
security mode to be detected without disengaging it. If the MODB pin
were low in this experiment, the bootstrap mode would be requested
rather than the normal single-chip mode. In the case of MODB low, care
is required not to release reset because doing so would cause the
security option to be disengaged.

When developing a security strategy, the user should remember ROM
contents are not protected. A software pirate can disengage the security
option, read the contents of the internal ROM, and disassemble the
programs and subroutines in that ROM. Some measures to protect an
application program intentionally make the program more difficult to
understand. Programs that are difficult to understand are also difficult to
develop and maintain. Careful documentation of the function and intent
of every written program is essential.

A key can be stored in EEPROM. A user can then be required to supply
a matching key value before the program will operate. This approach is
somewhat weak because all of the operational programs are intact in the
ROM; thus, a software pirate could find and bypass the key-checking
routine. However, if the key-checking routine is repeated in more than
one way and place, this approach can make unauthorized access
difficult.

Another approach is to program a vital subroutine entirely within the
EEPROM. This approach is better than the previous key-checking
approach because the ROM does not contain all of the programs
needed to make the product function. The weakness of this approach is
that a software pirate can still duplicate the product after solving that one
routine. The pirate also gains a development cost advantage over the
original manufacturer, because only part of the application program has
to be developed.
Reference Manual M68HC11 — Rev. 6

142 On-Chip Memory MOTOROLA

On-Chip Memory
EEPROM Application Information
Many application programs are modularly organized as a major loop
consisting of calls to submodules. The application relies on both the
routines that are called and the order in which they are called. A degree
of security can be achieved by putting the major loop (which calls all the
subprograms) in the EEPROM. In this case, a software pirate can
decode the submodules, but the order of execution is not known. To
make the program more difficult to decipher, extra incorrect programs
could be included in ROM. The software pirate could not distinguish real
routines from fake routines. There is a useful side-effect of this
approach. Since the major loop is resident in the EEPROM, it can be
changed to call a replacement or patch routine if one of the subprograms
is defective. Rather than throwing away the entire MCU, the EEPROM
can be reprogrammed to correct or replace the defective subprogram.

Another approach to software secrecy involves accessing variables
indirectly through a pointer stored in the EEPROM. The program in ROM
could execute a sequence such as loading X with the pointer value from
EEPROM (LDX addr; LDAA 0,X). Since the software pirate does not
know what X points to, there is no way of knowing what is being loaded
into accumulator A. By mixing direct accesses and indirect accesses to
the same variables, the software pirate is unable to recognize that two
accesses are to the same variable.

4.6 EEPROM Application Information

Since EEPROM is a relatively new technology, very little published
application information exists. This subsection presents practices that
could cause application problems and discusses several practical uses
for EEPROM on an MCU. Next, there is a discussion of the use of
EEPROM in programs that adjust themselves to accommodate variable
conditions. Many applications can benefit from this type of programming,
which is presently becoming practical because of the inclusion of
EEPROM on an MCU. The subsection concludes with a detailed look at
some proposed methods to extend the useful write-erase lifetime of the
EEPROM.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA On-Chip Memory 143

On-Chip Memory
4.6.1 Conditions and Practices to Avoid

When programming a new value over an old value in EEPROM without
first erasing the EEPROM location, it is very important to avoid certain
data patterns. The most common method for programming a new
non-FF value to an EEPROM location containing a non-FF value is to
erase the location before programming the new value. This procedure
works for any combination of old and new data values. In less common
situations in which an EEPROM location endures many write-erase
cycles, it may be desirable to program a new value over an old value
without erasing the location first. This procedure is only possible when
the new value has no 1s where the EEPROM location already has a 0.
A method called "write-more-zeros" can be used to program additional
bits in an EEPROM location without erasing the location first, which
eliminates a write-erase cycle. Another method called "selective-write"
has been proposed but has not been tested and characterized enough
to be sure it will work in all cases. In this method, the data pattern used
in the programming operation would have 1s in all positions except the
bits that are 0s in the new value but were 1s in the previous value. The
idea in this method is to avoid reprogramming bits already programmed.
The benefits are theoretical and have not been proven. Although both of
these methods (write-more-zeros and selective-write) appear to work
correctly in laboratory experimentation, the combination of the two
methods is known to fail. An example of a failing combination would be
to attempt to program $FC to a location that previously contained the
value $0D in an attempt to change the location to the value $0C. In this
case, bit 1 follows the write-more-zeros method; whereas, bits 4–7 follow
the selective-write method. A detailed explanation of this case is given
in 4.6.7 Software Methods to Extend Life Expectancy.

System software should be partitioned so that data and programs in
EEPROM will never be used while an EEPROM programming or erase
operation is in progress. When the EELAT control bit is set to 1 at the
beginning of a program or erase operation, the EEPROM is
electronically removed from the MCU memory map; thus, it is not
accessible during the programming or erase operation. Since it is
possible to perform other tasks while the 10-ms EEPROM operation is
in progress, it is fairly common to start the operation and return to the
main program until the 10 ms is completed. If a routine in the main
Reference Manual M68HC11 — Rev. 6

144 On-Chip Memory MOTOROLA

On-Chip Memory
EEPROM Application Information
program or an interrupt tries to access a value in EEPROM while a
programming operation is in progress, that operation will fail since the
EEPROM is temporarily inaccessible.

In an interrupt-driven system, it may be possible for an asynchronous
interrupt to occur in the middle of an EEPROM programming or erase
operation. Such an interrupt can cause the programming or erase
operation to extend beyond the normal 10-ms period. A small extension
of the programming or erase time will not damage the EEPROM or
compromise the intended operation. Repeated extension or long
extensions may involve a slight acceleration of write-erase wear-out
because wear-out is related to the length of time high voltages are
present in the EEPROM array. The most significant effects of wear-out
occur near the beginning of a program or erase operation because the
charge tunneling activity follows an exponential decay curve, which
implies that extensions of programming time should have very little effect
on the EEPROM cell. Another risk, which is difficult to quantify, is the
possibility of high-voltage breakdown of row and column devices due to
the presence of programming voltage. If programming and erase times
are extended, these devices are exposed to high voltages for a longer
time; thus, there is increased risk that a breakdown might occur.

In some systems, an EEPROM programming or erase operation could
be in progress when a power failure or reset occurs, which presents the
possibility that an EEPROM location might be corrupt or unreliable due
to an incomplete programming operation. A way to avoid this problem is
to design the system so power failures generate a non-maskable
interrupt prior to complete loss of power. This interrupt would allow
EEPROM operations to be completed prior to system shutdown. Other
systems may have battery backup of RAM so programming status could
be maintained in this memory. Upon reset, this status (in RAM) could be
checked, and any operation that was in progress could be redone to
ensure reliability.

Avoid unnecessary erasures of the CONFIG register EEPROM location.
In a normal system, the CONFIG register is established during the
design of an end product and does not change. In rare cases, the
CONFIG register may be reprogrammed after a gross system failure
accidentally corrupts the intended value. One suggested technique for
M68HC11 — Rev. 6 Reference Manual

MOTOROLA On-Chip Memory 145

On-Chip Memory
tolerating such errors involves starting the MCU in special test or special
bootstrap mode after any reset. The CONFIG register can then be
evaluated and changed if necessary. In this scheme, it is not appropriate
to routinely erase and reprogram the CONFIG register. Changes should
only be made when an error is detected, which minimizes the possibility
of wearing out the CONFIG EEPROM location.

4.6.2 Using EEPROM to Select Product Options

In many applications, it is possible to provide for several product
variations with a single MCU ROM pattern. This variation allows a user
to pay for a single ROM mask charge and amortize the cost over a higher
volume of end products. This variation also reduces the customer’s
inventory requirements by reducing the number of unique customized
MCUs that have to be stocked. Before the availability of on-chip
EEPROM, it was possible to include multiple program variations in a
single ROM pattern. The ROM program would determine the specific
program variation to execute by reading some unique value on an I/O
port or by looking for unique devices in the memory map of the finished
system. An ideal place to store such optional identifiers is in the on-chip
EEPROM. The on-chip EEPROM has some advantages over the
previous methods. The EEPROM method requires no I/O pins for option
selection. The EEPROM method can accommodate upgrades in the
options after the end product is manufactured, and no hardware
changes are necessary. A common software technique is to program the
various tasks for an application as a series of subroutines, which are
called in the desired order by a main program loop. The main program
loop is usually quite small, consisting of little more than a series of jump
to subroutine (JSR) instructions. If this main loop is programmed into the
on-chip EEPROM, it is relatively easy to modify the number and order of
ROM routines to be executed.

4.6.3 Using EEPROM for Setpoint and Calibration Information

Another ideal use for EEPROM is for storage of setpoints or calibration
information that will not change often. In some older systems, this
information had to be entered each time a system was activated. By
Reference Manual M68HC11 — Rev. 6

146 On-Chip Memory MOTOROLA

On-Chip Memory
EEPROM Application Information
storing this information in EEPROM, the product configuration and setup
requirements can be simplified for the end user, and this data can be
maintained indefinitely without power.

An example of setpoint data is the temperature setting of a home
thermostat or the setback schedule for a more sophisticated thermostat.
The two alternatives to storing this information in EEPROM are to
require that the information be re-entered after a power interruption or to
provide relatively expensive batteries and power sequencing logic. The
home thermostat example can also benefit from a calibration table in
EEPROM.

There are many types of temperature sensors with various degrees of
accuracy and linearity; however, the most accurate and most linear
devices also tend to be the most expensive. Since the application
dictates a minimum degree of accuracy, the designer must decide how
to arrive at this accuracy. One approach is to use a very inexpensive
sensor and calibrate it at the factory. The combination of on-chip
EEPROM and an on-chip analog-to-digital (A/D) converter is ideally
suited to this task without requiring any expensive external circuitry. The
thermostat could be completely assembled, and calibration information
could be determined and stored in the EEPROM during final test of the
assembled unit. The software required for this calibration could be part
of the on-chip ROM program, or it could be loaded from a test fixture via
the special bootstrap mode. The bootstrap mode approach offers the
advantage that the calibration routines need not occupy any space in the
limited internal ROM.

There are two main approaches to calibration of inexpensive sensors.
The choice of the best approach depends primarily on the characteristics
of the sensor but also depends on the degree of system accuracy
required in the end application. If a sensor is basically linear but has wide
variation in absolute offset, a gain-offset approach may be a good
choice. This technique requires calibration at two standard levels from
which a gain (slope) and offset are determined. The gain and offset
values are then stored in EEPROM. An actual level is calculated by
applying these values algebraically to an A/D input level. Although this
technique requires some calculations during calibration and during use,
it uses very little EEPROM space. If a sensor is non-linear, a
M68HC11 — Rev. 6 Reference Manual

MOTOROLA On-Chip Memory 147

On-Chip Memory
table-lookup approach may be required. An actual level is determined by
using the A/D reading as an index into the calibration lookup table.
During use, this method is very simple and fast, but the lookup table
requires more EEPROM, and the calibration process requires more
calibration points than the gain-offset method.

4.6.4 Using EEPROM during Product Development

During product development, the EEPROM can be used for storage of
data and limited-sized programs. If errors are discovered, they can be
corrected even more easily than a program in an EPROM. In cases in
which there is external memory, such as an EPROM in a system under
development, it would be a good idea to store the main program loop in
the on-chip EEPROM. This approach allows routines in the external
EPROM to be checked one at a time without reprogramming the external
EPROM. If errors are discovered, a substitute corrected routine could be
programmed into the EEPROM to check the corrections before erasing
and reprogramming the external EPROM.

4.6.5 Logging Data

Data logging can involve several types of data. One traditional data type
could be temperatures measured at specific times of day over a period
of weeks or months. Other data types could include historical data, such
as the number of times a device has been exposed to illegal operating
conditions or the total accumulated time a device has been used. This
type information can be useful for monitoring product reliability. When
such a device is returned to the factory for repair, the historical data can
be read out of the EEPROM. Even if batteries and other power sources
failed, this information could be valid.

In this context, logging means to make a semi-permanent record of data
not requiring power or other normal operating conditions to remain valid.
In many cases, there is also an implication that the data is not accessible
to the end user for modification (for instance, the end user cannot erase
the data by simply removing a battery or unplugging the unit). The
on-chip EEPROM of the MC68HC11A8 provides a convenient electronic
medium for nonvolatile storage of logged data.
Reference Manual M68HC11 — Rev. 6

148 On-Chip Memory MOTOROLA

On-Chip Memory
EEPROM Application Information
4.6.6 Self-Adjusting Systems Using EEPROM

One of the most interesting uses for EEPROM in an MCU system is to
implement self-adjusting or self-adapting systems. A fairly simple form of
self-adaptation would be a system that can calibrate or recalibrate a
sensor as it ages. A more sophisticated form of self-adaptation would be
a system that can modify its behavior to perform a desired task more
efficiently as operating conditions change. The adaptation would be
semi-permanent so the modified behavior would be in effect the next
time the system was activated (as if the system had originally been
programmed that way).

Potentially any process-control algorithm that includes a feedback
mechanism for monitoring results could be programmed to improve itself
through self-adaptation. Traditionally, process-control programs
followed a fixed procedure, which was the result of experimentation and
development by engineers. The MCU is an excellent tool for such work
because it can quickly repeat complex sets of instructions, including
precise timing, with flawless accuracy. Unfortunately, this type system
often requires tight tolerances on other system components such as
sensors and valves. Cheaper (less precise) components could be used
if the system provides for calibration, but calibration is often
time-consuming and expensive. As technology advanced, some
systems were designed to automate the calibration process, thus
making it practical to use less precise system components. For these
automated systems, the calibration step was still performed outside the
context of actual system use. With the M68HC11, it is practical to
consider systems that systematically make small adjustments while
monitoring end results. Depending on the application, the MCU could
either suggest changes to a human operator or directly modify
process-control parameters to maintain optimum end results. The
nonvolatile EEPROM is a critical element in such adaptive algorithms
because it can save what has been learned over a period of time, even
if power is lost.

Consider using an adaptive algorithm in a system consisting of many
tasks. High-priority tasks are executed quickly; whereas, low-priority
tasks are delayed. One problem is to decide which tasks are most
important, which can be accomplished by noting how many times a task
M68HC11 — Rev. 6 Reference Manual

MOTOROLA On-Chip Memory 149

On-Chip Memory
was actually needed over some period of time. A second problem is to
find some nonvolatile way to maintain the list of high- and low-priority
tasks. The main loop could be programmed into EEPROM, or the main
program could call tasks indirectly through a list of task addresses in the
EEPROM. A background program could monitor the activity and
demands of various tasks and rearrange the priorities to match real
application demands. As a task requests more frequent service, it could
be elevated in priority, and as a high-priority task reduces its frequency
of requests, it could be lowered in priority. In this manner, the tasks
requiring the most frequent service would become the set of tasks that
are serviced on every main loop pass. Although both the fixed priority
and the dynamically adaptive priority schemes would accomplish the
same amount of work, the adaptive scheme is more responsive.
Because the learned priorities would remain in effect through power-off
periods, the system would begin with these learned priorities. As system
demands change, priorities would change to match system
requirements.

4.6.7 Software Methods to Extend Life Expectancy

EEPROM memory is subject to a long-term wear-out mechanism.
Though the detailed mechanics of the failure mechanism are still the
subject of much research, the current understanding is that charge is
trapped in the thin oxide layers isolating the floating gate of the EEPROM
storage transistor. The charge is trapped during tunneling, which only
occurs while programming or erasing an EEPROM bit. The life
expectancy of an EEPROM bit is expressed as a number of write-erase
cycles (such as 10,000 write-erase cycles). Changing a bit from 1 to 0
(write) followed by a change from 0 back to 1 (erase) is considered one
write-erase cycle. As a bit accumulates trapped charge and approaches
wear-out, the time required to program or erase the location gets longer
until the allotted time is no longer enough to program or erase the
location, which implies that some extension of life expectancy might be
achieved by using longer programming and erase times. However, the
same wear-out mechanism that causes longer programming time also
causes reduced retention capability. Limited data has been collected to
support the use of as much as 20 ms for program and erase times rather
than the 10 ms suggested in the data sheets. A new MC68HC11A8
Reference Manual M68HC11 — Rev. 6

150 On-Chip Memory MOTOROLA

On-Chip Memory
EEPROM Application Information
operating at 5 V and 2 MHz can typically program an EEPROM location
in about 2 ms.

Many factors affect the useful life expectancy of an EEPROM location.
Programming or erasing an EEPROM location at high ambient
temperature accelerates wear-out. The Motorola reliability figures are
based on all program and erase operations occurring at worst-case
ambient temperature, but no realistic application would experience such
harsh conditions. Temperature has a dramatic effect on write-erase
endurance. An EEPROM having a life expectancy of 5,000 write-erase
cycles at 125°C typically has a life expectancy of 100,000 write-erase
cycles at 55°C. Motorola publishes a quarterly reliability report which
includes the latest life-expectancy data for this rapidly changing
technology. The quality of the thin oxides (processing) is maintained at
a very high level, but there is still some lot-to-lot variation affecting
write-erase endurance. The belief is that charge is more easily trapped
at sites where the oxide lattice structure is imperfect.

The method recommended in Motorola data sheets for changing an
EEPROM byte from one data value (other than $FF) to another is to
erase the location before programming the new value. In this manual,
this method will be called "erase-before-write." When the new data value
contains no 1s where there is currently a 0 in the EEPROM location (no
bits need to be erased), there are two additional methods of arriving at
the desired value without first erasing the EEPROM location. The first of
these methods is called "program-more-zeros." To program more zeros,
the new value would be programmed into the EEPROM location. Bits
previously not programmed will be programmed to 0, and bits already 0
remain programmed. The second method, which does not involve
erasure of the location before reprogramming, is called "selective-write."
In the selective-write method, a value is calculated that contains 0s in
bits needing to change from 1 to 0 and contains 1s in all other bits. This
calculated value is programmed to the EEPROM location. The bits
corresponding to 0s in the calculated pattern become programmed to 0s.
The bits already programmed are not reprogrammed but remain 0s. The
bits that were not 0s in the old or new data values are not programmed
and remain 1s. The theoretical objective of the selective-write method is
to avoid programming some bits longer than others.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA On-Chip Memory 151

On-Chip Memory
The erase-before-write method is used in production testing and for
ongoing reliability monitoring. Every part that Motorola ships is exposed
to a significant number of write-erase cycles at high temperature to
eliminate parts having infant mortality problems and to identify any lots
having processing problems. In addition, sample batches of parts are
endurance tested to monitor processing quality. Data sheet and
reliability figures are based on the erase-before-write method.

A problem in production testing was traced to an unsuccessful attempt
to program an EEPROM location, which unintentionally employed a
composite of the program-more-zeros and the selective-write methods.
An attempt was made to program an EEPROM location with $FC when
the location previously contained the value $0D. From what has been
said about EEPROM programming and the program-more-zeros and
selective-write methods, one would expect that the location would
change to $0C. In practice, the operation fails if the location was
previously $0D but passes if the location was previously $FF. This table
shows the situation more clearly.

The expected value shows the value one should expect to get as a result
of an attempt to program the value written to an EEPROM location
already containing the original value. The tester-read value shows what
the tester read from the location after the attempted programming
operation. Case B looks odd because the upper four bits are 0s where
1s are expected because the location involved was the CONFIG
register. Reads of the CONFIG register of an MC68HC11A8 return 0s in
the upper four bits, regardless of what is in the upper four bits of the
physical EEPROM location. Parts that failed (case A) were initially
thought to have a defective bit 0 in the CONFIG register EEPROM
location; however, the real problem was finally discovered to be the
unintentional combination of the program-more-zeros and
selective-write methods. Bit 1 is a 0 in the original value and the value

Value Case A — Fail Case B — Pass

Original value 0000 1101 1111 1111

Value written 1111 1100 1111 1100

Expected result 0000 1100 1111 1100

Tester read 0000 1101 0000 1100
Reference Manual M68HC11 — Rev. 6

152 On-Chip Memory MOTOROLA

On-Chip Memory
EEPROM Application Information
written (like the program-more-zeros method). The upper four bits are 0s
in the original value and 1s in the value written (like the selective-write
method). Case B, which always works, is equivalent to the
erase-before-write method.

NOTE: Because the user has no way of knowing what is in the upper four bits of
the CONFIG register EEPROM location, the calculated value for the
selective-write method cannot be determined. Thus, the selective-write
method cannot be used for the CONFIG location. Since the CONFIG
location is only changed a few times in the lifetime of a product, there is
no motivation to use any method other than erase-before-write to
change the CONFIG location.

An examination of the electrical conditions during each of the
programming methods explains why the combination of
write-more-zeros method and selective-write method fails as it did in
case A. This analysis also presents possible advantages and
disadvantages of these programming methods. The basic operation of
the floating-gate EEPROM is discussed in 4.5.2 Basic Operation of the
EEPROM. Figure 4-9 demonstrates the erase-before-write method.
One disadvantage of this method is that it requires a time-consuming
erase step prior to the programming step. One advantage of this method
is that it can be used to change any data pattern to any other data
pattern. Another advantage is that this method is the same as that used
for rating the write-erase life expectancy; thus, much characterization
data exists to validate this method.

The goal of the other two methods is to achieve a longer life expectancy
without compromising data retention or programming integrity. The
program-more-zeros method appears to have no risks, and some
experimental evidence shows that data retention and program integrity
are not compromised. The selective-write method appears to have some
theoretical problems, but experimental data has not confirmed any
practical problem. Due to the theoretical risks of the selective-write
method, that method should probably not be used without a complete
understanding of the risks.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA On-Chip Memory 153

On-Chip Memory
Figure 4-9. Erase-Before-Write Programming Method

Figure 4-10 shows the program-more-zeros method being used to
change an EEPROM location from $F0 to $C0. In this example, the
low-order four bits were previously programmed, and the current
programming operation will change bits 4 and 5 to 0s.

It has been suggested that it might be undesirable to program some bits
longer than other bits. Since charge transfer during programming occurs
at an exponentially decaying rate, it seems unlikely that the additional
programming time would result in any significant difference in
floating-gate charge. Only considerable characterization data can prove
or disprove these theories, but preliminary data supports the suggestion
that the extra programming time on some bits has no detrimental effects.

ARRAY GROUND

7

V PP

NOT DRIVEN

6 5 4 3 2 1 0

V TN

V SS

V PP

ERASE FIRST

ARRAY GROUND

7

V PP

6 5 4 3 2 1 0

V SS

THEN PROGRAM $55
(NOT DRIVEN)

0 1 0 1 0 1 0 1

V PP V DD V PP V DD V PP V DD V PP V DD
Reference Manual M68HC11 — Rev. 6

154 On-Chip Memory MOTOROLA

On-Chip Memory
EEPROM Application Information
Figure 4-10. Program-More-Zeros Programming Method

Figure 4-11 shows the selective-write method being used to change an
EEPROM location from $F0 to $C0. The calculated data pattern, $CF,
was written to the location during this programming operation (note the
data pattern and voltage levels across the top of the diagram). The
floating gates are highlighted for the bits that should be programmed to 0
after the operation. The floating gates of the programmed bits are
positively charged so these floating-gate transistors conduct, which
introduces an interesting question. For bits [3:0], there is a conductive
path from VDD to the array ground node. After programming, bits 4 and
5 have a conductive path from VPP to the array ground node. Since there
is effectively a conductive path from VDD to VPP, how does the
selective-write method work? Experimental results for this method are
good; however, additional study is required.

Figure 4-11. Selective-Write Programming Method

ARRAY GROUND

7

V PP

6 5 4 3 2 1 0

V SS

(NOT DRIVEN)

1 0 1 1

V DD V PP V DD V DD

1 1

V DD V DD

0

V PP

1

V DD

ARRAY GROUND

7

V PP

6 5 4 3 2 1 0

V SS

(NOT DRIVEN)

0 0 11 01

V DD V DD V PPV DD V PPV DD

0 0

V DD V DD
M68HC11 — Rev. 6 Reference Manual

MOTOROLA On-Chip Memory 155

On-Chip Memory
The production testing failure provides some additional information
about the selective-write method but does not answer all the questions.
Figure 4-12 shows the voltages driving the EEPROM bits during the
production test failure. The location was previously programmed to $0D,
as indicated by the highlighted floating gates. The bit pattern and
voltages across the top of Figure 4-12 reflect the $FC value that was
written to the location during this programming operation. This
programming operation was expected to cause bit 0 to be programmed,
but the operation failed (indicated by the bit 0 floating gate not
highlighted). This operation fails because there is already a conductive
path from VDD to VPP at the start of the programming operation. Since
the weak VPP supply is shunted to VDD, no programming can occur.

Figure 4-12. Composite Programming Method

The failure of the composite programming case verifies that the
conductive paths exist from VDD to the array ground and from VPP to the
array ground. The failure also shows that these conductive paths are
capable of shunting VPP to a low enough level to prevent programming.

VPP comes from a charge pump having very little drive-current
capability. It is not surprising that VPP could be effectively shorted to VDD
without producing any noticeable load to VDD. In the selective-write
method (see Figure 4-11), the path from VDD to the array ground is
conductive from the beginning of the operation. The path from VPP to the
array ground (through the bits being programmed) does not become
conductive until these floating gates are charged to a high enough
positive level for the floating-gate transistor to become conductive. It

ARRAY GROUND

7

V PP

6 5 4 3 2 1 0

V SS

(NOT DRIVEN)

0 0 11 01

V DD V DD V PPV DD V PPV DD

0 0

V DD V DD
Reference Manual M68HC11 — Rev. 6

156 On-Chip Memory MOTOROLA

On-Chip Memory
EEPROM Application Information
may be that the shunting path does not develop until the bits have
already finished programming. If two or more new bits are being
programmed and one were to become programmed (conductive) before
the other(s), VPP might become shunted before the other bit(s) could
finish being programmed. One possible reason this unequal
programming problem does not arise is because the bits in a byte are so
physically close to each other that they should have nearly identical
properties.

The selective-write method may result in soft programming. The shunt
path may develop so late in the programming process that the bits are
programmed well enough to be read back as 1s but not well enough to
provide reliable data retention. On the other hand, soft programming
might be beneficial by limiting the stress on the thin oxides. The
selective-write strategy should be viewed with skepticism until additional
study can prove it has merit.

In most cases, EEPROM locations are only exposed to a few write-erase
cycles in the lifetime of a product. In some applications, a few variables
need to endure several hundred thousand write-erase cycles (for
example, the odometer reading in an automobile). Since only a few
variables require these extended write-erase cycle lifetimes, it is
practical to consider solutions involving the use of multiple EEPROM
locations for the storage of each such variable. Using an EEPROM
location as an ordinary binary counter is perhaps the worst case for
EEPROM wear-out because the least significant bit toggles at every
count; thus, the EEPROM location must be erased and reprogrammed
at each count and is exposed to one write-erase cycle for every two
counts.

A count value could be encoded so that an EEPROM location could be
programmed eight times by the program-more-zeros method before it
has to be erased. In such a scheme, the EEPROM location would only
experience one write-erase cycle every eight counts. This scheme of
bit-position coding would be needed only for the low-order bits of a
counter since the high-order bits change much less frequently.

To extend the write-erase lifetime of a variable even further, using
multiple EEPROM locations would allow switching to a different location
M68HC11 — Rev. 6 Reference Manual

MOTOROLA On-Chip Memory 157

On-Chip Memory
when the current location approached wear-out. The problem is to
decide when a location is approaching wear-out.

Counting the number of times the location has been changed has two
problems. First, there is no good way of storing the usage count in
EEPROM without wearing out the usage count location in the same way
as the location being monitored. Second, if 10,000 is used as the
nominal life-expectancy number, the user may actually wear out the
location sooner than expected and fail, or he may not actually be using
the location to its potential. The life expectancy is approximately 100,000
write-erase cycles at 55°C even though it is only 5,000 at 125°C.
Reference Manual M68HC11 — Rev. 6

158 On-Chip Memory MOTOROLA

Reference Manual — M68HC11

Section 5. Resets and Interrupts
5.1 Contents

5.2 Introduction .160

5.3 Initial Conditions Established During Reset161
5.3.1 System Initial Conditions .162
5.3.1.1 Central Processor Unit (CPU) .162
5.3.1.2 Memory Map .162
5.3.1.3 Parallel Input/Output (I/O) .162
5.3.1.4 Timer .163
5.3.1.5 Real-Time Interrupt .163
5.3.1.6 Pulse Accumulator .163
5.3.1.7 Computer Operating Properly (COP) Watchdog164
5.3.1.8 Serial Communications Interface (SCI)164
5.3.1.9 Serial Peripheral Interface (SPI) 164
5.3.1.10 Analog-to-Digital (A/D) Converter 164
5.3.1.11 Other System Controls. .165
5.3.2 CONFIG Register Allows Flexible Configuration165
5.3.3 Mode of Operation Established .166
5.3.4 Program Counter Loaded with Reset Vector167

5.4 Causes of Reset .167
5.4.1 Power-On Reset (POR) .169
5.4.2 COP Watchdog Timer Reset .170
5.4.3 Clock Monitor Reset .172
5.4.4 External Reset .174

5.5 Interrupt Process .175
5.5.1 Interrupt Recognition and Stacking Registers 177
5.5.2 Selecting Interrupt Vectors .178
5.5.3 Return from Interrupt .181
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Resets and Interrupts 159

Resets and Interrupts
5.6 Non-Maskable Interrupts .181
5.6.1 Non-Maskable Interrupt Request (XIRQ)186
5.6.2 Illegal Opcode Fetch .188
5.6.3 Software Interrupt. .189

5.7 Maskable Interrupts .190
5.7.1 I Bit in the Condition Code Register190
5.7.2 Special Considerations for I-Bit-Related Instructions192

5.8 Interrupt Request .192
5.8.1 Selecting Edge Triggering or Level Triggering193
5.8.2 Sharing Vector with Handshake I/O Interrupts194

5.9 Interrupts from Internal Peripheral Subsystems195
5.9.1 Inhibiting Individual Sources. .195
5.9.2 Clearing Interrupt Status Flag Bits195
5.9.3 Automatic Clearing Mechanisms on Some Flags.196

5.2 Introduction

Reset and interrupt operations are often discussed together because
they share the common concept of vector fetching to force a new starting
point for further central processor unit (CPU) operations. The reset
structure in the MC68HC11A8, which is quite different from other MCUs,
is presented in this section. This reset system can generate a reset
output if reset-causing conditions are detected by internal systems. The
on-chip electrically erasable programmable read-only memory
(EEPROM) also places extra demands on external circuitry connected
to the RESET pin.

The MC68HC11A8 includes 18 separate interrupt sources. On-chip
peripheral systems generate maskable interrupts, which are recognized
only if the global interrupt mask bit (I) in the condition code register
(CCR) is clear. Three interrupt sources considered non-maskable will be
discussed in detail in this section.

Maskable interrupts are prioritized according to a default arrangement;
however, any one source may be elevated to the highest maskable
priority position by a software-accessible control register. This highest
Reference Manual M68HC11 — Rev. 6

160 Resets and Interrupts MOTOROLA

Resets and Interrupts
Initial Conditions Established During Reset
priority interrupt (HPRIO) register may be written at any time provided
the I bit in the CCR is set.

When interrupt conditions occur in an on-chip peripheral system, an
interrupt status flag is set to indicate the condition. When the user’s
program has properly responded to this interrupt request, the status flag
must be cleared. The method of clearing varies from one system to
another, depending on the requirements of the system. The various flag
clearing methods and considerations are discussed in 5.9 Interrupts
from Internal Peripheral Subsystems.

5.3 Initial Conditions Established During Reset

Reset is used to force the microcontroller unit (MCU) to assume a set of
initial conditions and to begin executing instructions from a
predetermined starting address. For most practical applications, the
initial conditions take effect almost immediately after applying an
active-low level to the RESET pin. Some reset conditions cannot take
effect until/unless a clock is applied to the external clock input (EXTAL)
pin. One example is port B, which acts as an address output port in the
expanded modes and as a general-purpose output port in the single-chip
modes. During reset in expanded mode, these pins would be $FF
because this is the high-order half of $FFFE. During reset in single-chip
mode, these pins would be $00. Since the mode pins are pipelined into
the MCU, a clock is needed for the MCU to recognize the mode selected.

If no clock is present, the port B pins could be in the wrong state due to
the inability of the MCU to recognize the correct mode of operation. If no
clock is present, the MCU cannot advance out of the reset condition
since internal reset is a clocked sequence; thus, the MCU cannot
advance past the first step of this sequence. Even with no clock present,
a RESET signal will cause some changes. Most important, an unclocked
RESET signal resets the clock divider circuitry so the on-chip oscillator
will start. If an application includes external clock circuitry driving the
EXTAL pin, the RESET signal should force this external clock to resume
oscillation.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Resets and Interrupts 161

Resets and Interrupts
5.3.1 System Initial Conditions

Once the reset condition is recognized, internal registers and control bits
are forced to an initial state. These initial states, in turn, control on-chip
peripheral systems to force them to known start-up states. Most of the
initial conditions are independent of the operating mode. This subsection
summarizes the initial conditions of the MCU as it leaves reset.

5.3.1.1 Central Processor Unit (CPU)

After reset, the CPU fetches the restart vector from locations
$FFFE,FFFF ($BFFE,BFFF if in special test or bootstrap mode) during
the first three cycles and begins executing instructions. The stack pointer
and other CPU registers are indeterminate immediately after reset;
however, the X and I interrupt mask bits in the CCR are set to mask any
interrupt requests. Also, the S bit in the CCR is set to disable the stop
mode.

5.3.1.2 Memory Map

After reset, the RAM and I/O mapping (INIT) register is initialized to $01,
putting the 256 bytes of random-access memory (RAM) at locations
$0000–$00FF and the control registers at locations $1000–$103F. The
8-Kbyte read-only memory (ROM) and/or the 512-byte EEPROM may or
may not be present in the memory map because the two bits that enable
them in the configuration control (CONFIG) register are EEPROM cells
not affected by reset or power-down.

5.3.1.3 Parallel Input/Output (I/O)

When a reset occurs in expanded-multiplexed operating mode, the 18
pins used for handshake I/O are dedicated to the expansion bus. If a
reset occurs in the single-chip operating mode, the strobe A flag (STAF),
strobe A interrupt (STAI), and handshake (HNDS) control bits in the
parallel input/output control (PIOC) register are cleared so that no
interrupt is pending or enabled, and the simple strobed mode (rather
than full-handshake mode) of parallel I/O is selected. The port C
wired-OR mode (CWOM) bit in PIOC is cleared. Port C is initialized as
an input port (data direction register for port C, DDRC = $00); port B is a
Reference Manual M68HC11 — Rev. 6

162 Resets and Interrupts MOTOROLA

Resets and Interrupts
Initial Conditions Established During Reset
general-purpose output port with all bits cleared. STRA is the
edge-sensitive strobe A input, and the active edge is initially configured
to detect rising edges (edge select for strobe A (EGA) bit in PIOC is set).
Port C, port D (bits 5–0), port A (bits 0, 1, 2, and 7), and port E are
configured as general-purpose high-impedance inputs. Port B and
bits 6–3 of port A have their directions fixed as outputs, and their reset
state is logic 0.

5.3.1.4 Timer

During reset, the timer system is initialized to a count of $0000. The
prescaler bits are cleared, and all output-compare registers are
initialized to $FFFF. All input-capture registers are indeterminate after
reset. The output-compare 1 (OC1M) mask register is cleared so that
successful OC1 compares do not affect any I/O pins. The other four
output compares are configured to not affect any I/O pins on successful
compares. All three input-capture edge-detector circuits are configured
for capture-disabled operation. The timer overflow interrupt flag and all
eight timer function interrupt flags are cleared. All nine timer interrupts
are disabled since their mask bits are cleared.

5.3.1.5 Real-Time Interrupt

The real-time interrupt flag is cleared, and automatic hardware interrupts
are masked. The rate control bits are cleared after reset and may be
initialized by software before the real-time interrupt system is used.

5.3.1.6 Pulse Accumulator

The pulse accumulator system is disabled at reset so that the pulse
accumulator input (PAI) pin defaults to being a general-purpose input
pin.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Resets and Interrupts 163

Resets and Interrupts
5.3.1.7 Computer Operating Properly (COP) Watchdog

The computer operating properly (COP) watchdog system is enabled if
the NOCOP control bit in the CONFIG register (EEPROM cell) is clear
and disabled if NOCOP is set. The COP rate is set for the shortest
duration timeout.

5.3.1.8 Serial Communications Interface (SCI)

The reset condition of the SCI system is independent of the operating
mode. At reset, the SCI baud rate is indeterminate and must be
established by a software write to the BAUD register. All transmit and
receive interrupts are masked, and both the transmitter and receiver are
disabled so the port pins default to being general-purpose I/O lines. The
SCI frame format is initialized to an 8-bit character size. The send break
and receiver wakeup functions are disabled. The transmit data register
empty (TDRE) and transmit complete (TC) status bits in the SCI status
register are both set, indicating that there is no transmit data in either the
transmit data register or the transmit serial shift register. The receive
data register full (RDRF), IDLE, overrun (OR), and framing error (FE)
receive-related status bits are all cleared. Upon reset in special
bootstrap mode, execution begins in the 192-byte bootstrap ROM, which
changes some of the initial conditions by the time the bootloading
process is finished. This firmware sets port D to wired-OR mode,
establishes a baud rate, and enables the SCI receiver and transmitter.

5.3.1.9 Serial Peripheral Interface (SPI)

The SPI system is disabled by reset. The port pins associated with this
function default to being general-purpose I/O lines.

5.3.1.10 Analog-to-Digital (A/D) Converter

The A/D converter system configuration is indeterminate after reset. The
conversion complete flag is cleared by reset. The A/D power-up (ADPU)
bit is cleared by reset, disabling the A/D system.
Reference Manual M68HC11 — Rev. 6

164 Resets and Interrupts MOTOROLA

Resets and Interrupts
Initial Conditions Established During Reset
5.3.1.11 Other System Controls

The EEPROM programming controls are all disabled so the memory
system is configured for normal read operation. The highest priority I-bit
interrupt defaults to being the external interrupt request (IRQ) pin by
PSEL3–PSEL0 equal to 0:1:0:1. The IRQ pin is configured for
level-sensitive operation (for wired-OR systems). The read bootstrap
ROM (RBOOT), special mode (SMOD), and mode A (MDA) bits in the
HPRIO register reflect the status of the mode B (MODB) and MODA
inputs at the rising edge of reset. The enable oscillator start-up delay
(DLY) control bit is set to specify that an oscillator start-up delay is
imposed upon recovery from STOP mode. The clock monitor system is
disabled by clock monitor enable (CME) equals 0.

The MC68HC11A8 has three internal sources that can cause reset as
well as the external application of a low level to the RESET pin. No
matter which of these sources causes reset, the entire MCU is reset. The
RESET pin is driven low as a result of any of the reset sources. The only
distinction that is made between the causes of reset is the reset vector,
which is used to tell the CPU the starting address for execution when
reset is released.

A few registers are not forced to a startup condition as a result of reset.
Since these registers do not affect the starting conditions at MCU pins,
it is not important to force them to a startup state during reset. One such
example is the main-timer input-capture registers. Since these registers
are not useful until after an input capture occurs, it is not important to
force them to a startup state during reset.

5.3.2 CONFIG Register Allows Flexible Configuration

The M68HC11 includes a nonvolatile CONFIG register, which controls a
number of options typically controlled by mask options or by additional
mode selection choices in other MCUs. By using a nonvolatile
EEPROM-based register, it is possible to achieve the same effects as if
the options were mask programmed and, at the same time, allow users
to change these features after the MCU is manufactured. The most
important aspect of this method of selecting options is that the selections
automatically take effect on any power-up or reset without any software
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Resets and Interrupts 165

Resets and Interrupts
intervention. Two classes of features can be controlled in this manner.
First, there are configuration choices that must inherently be made
before the reset vector is even fetched. For example, the ROM enable
must be decided so that the reset vector can be fetched out of the correct
memory as the MCU comes out of reset. The COP watchdog timer
enable is an example of the second class of features that can be
controlled by an EEPROM bit. The COP watchdog timer is intended to
detect software failures; thus, it is important to enable or disable this
feature without any software intervention. If software could disable or
was required to enable the COP watchdog, the COP watchdog timer
could not detect a failure of that software.

The CONFIG register controls the presence or absence of ROM and/or
EEPROM, enables/disables the COP watchdog timer, and
engages/disengages the security option. The CONFIG register and
mechanism are described in greater detail in 3.4.1 Operation of
CONFIG Mechanism. The features enabled by the CONFIG register
can be thought of as mask-programmed options that do not require
software service.

5.3.3 Mode of Operation Established

During reset, the basic mode of operation is established, which
determines whether the MCU will operate as a self-contained single-chip
system or as an expanded system that includes external memory
resources. There are also special variations of these two basic modes of
operation. The bootstrap mode is the special variation of the normal
single-chip mode, and the special test mode is the special variation of
the normal expanded mode. The levels on the two mode select pins
during reset determine which of these four modes of operation will be
selected.

The hardware mode select mechanism begins with the logic levels on
the MODA and MODB pins while the MCU is in the reset state. The logic
levels on the MODA and MODB pins are fed into the MCU via a clocked
pipeline path. The captured levels will be those that were present part of
a clock cycle before the RESET pin rose. This fact ensures a 0 hold-time
requirement on the mode select pins relative to the rising edge at the
Reference Manual M68HC11 — Rev. 6

166 Resets and Interrupts MOTOROLA

Resets and Interrupts
Causes of Reset
RESET pin. The captured levels determine the logic state of the SMOD
and MDA control bits in the HPRIO register. These two control bits
actually control the logic circuits involved in hardware mode selection.
Table 5-1 summarizes the operation of the mode pins and mode control
bits.

5.3.4 Program Counter Loaded with Reset Vector

As reset is released, the CPU program counter is loaded with the reset
vector that points to the first instruction in the user’s program. Depending
on the cause of reset and the mode of operation, the reset vector may
be fetched from any of six possible locations. In older Motorola MCUs,
there was only one reset vector at $FFFE,FFFF.

5.4 Causes of Reset

In the MC68HC11A8, on-chip systems can detect MCU system failures
and generate a low level out the RESET pin to reinitialize other
peripherals in the system. To distinguish between these causes,
separate reset vectors are used. The primary reset vector is used when
the cause of reset is the internal power-on reset circuit or application of
a low level to the RESET pin. In normal expanded and normal
single-chip modes, this vector is located at $FFFE,FFFF. If the oscillator
input stops or is running too slow, the clock monitor circuit will generate
a reset (provided the clock monitor is enabled). Timeout of the internal
COP watchdog timer will generate a reset (provided the COP system is

Table 5-1. Hardware Mode Select Summary

Inputs
Mode Description

Control Bits in HPRIO
(Latched at Reset)

MODB MODA RBOOT SMOD MDA IRV

1 0 Normal single chip 0 0 0 0

1 1 Normal expanded 0 0 1 0

0 0 Special bootstrap 1 1 0 1

0 1 Special test 0 1 1 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Resets and Interrupts 167

Resets and Interrupts
enabled). Table 5-2 summarizes the reset-vector locations versus the
cause of reset and mode of operation.

In special test and bootstrap modes, MCU vectors are located at
$BFC0–$BFFF rather than the normal $FFC0–$FFFF area. The primary
reason for this change is to be sure the reset vector can be supplied from
an external source in special test mode. The normal reset vector is
located at $FFFE,FFFF, which can be internal ROM or external memory
space (depending on whether the internal ROM is enabled). The special
test mode reset vector is at $BFFE,BFFF, which is always an external
access independent of other system conditions.

This alternate mapping is important to the operation of bootstrap mode
because it allows reset and other vectors to be located within the
192-byte bootloader ROM. As the MCU comes out of reset in special
bootstrap mode, the reset vector is fetched out of the bootloader ROM,
and execution begins at the start of the bootloader program. While in
bootstrap mode, interrupts can be vectored to locations in the
bootloaded program in RAM rather than vectoring to the routines
specified in the internal ROM program.

The M68HC11 MCU is capable of distinguishing between an external
reset and resets from the internal COP and clock monitor systems.
When the COP watchdog timer times out or the clock monitor detects a
clock failure, the COP and clock monitor status is temporarily saved. The
RESET pin is then driven low for about four E-clock cycles and is
released. Two E-clock cycles later, the RESET input is sampled. If
RESET is high (has risen to logic 1 within the two cycles since it was
released), the source of reset is presumed to be either the COP or clock
monitor system. If RESET is still low, the source is presumed to be an
external reset request, and the temporarily saved status from the COP

Table 5-2. Reset Vector versus Cause and MCU Mode

Cause of Reset
Normal Mode

Vector
Special Test

or Bootstrap Vector

POR or RESET pin $FFFE,FFFF $BFFE,BFFF

Clock monitor fail $FFFC,FFFD $BFFC,BFFD

COP watchdog timeout $FFFA,FFFB $BFFA,BFFB
Reference Manual M68HC11 — Rev. 6

168 Resets and Interrupts MOTOROLA

Resets and Interrupts
Causes of Reset
and clock monitor systems is erased. Although there would rarely be
more than one cause for a particular reset sequence, the three reset
vectors are prioritized. If an external reset request drives the RESET pin
low for less than four E-clock cycles, the differentiation logic could
assume the source of reset was the internal COP or clock monitor
system; however, as long as neither of these causes was indicated by
the temporarily latched status, the normal reset vector would still be
used by default. Although this MCU can differentiate between different
reset causes, the most common implementation would direct all reset
vectors to the same initialization software, regardless of the cause of
reset.

There are four possible sources of reset in the MC68HC11A8. An
internal circuit detects the rising edge on VDD and initiates a power-on
reset. An on-chip COP watchdog timer monitors proper software
execution; if software does not service this timer within its timeout
period, a system reset is generated. Another on-chip circuit monitors the
MCU clock frequency. If the MCU clock stops or is running too slow, a
system reset is generated. Finally, a user can initiate an external reset
by momentarily driving the RESET pin low. The COP and clock monitor
features can be disabled. The power-on reset and external reset share
the normal reset vector; whereas, the COP and clock monitor reset each
have their own vector. The four causes of reset are described in greater
detail in the following paragraphs.

5.4.1 Power-On Reset (POR)

The POR is only intended to initialize internal MCU circuits. As VDD is
applied to the MCU, the POR circuit triggers and initiates a reset
sequence. POR triggers an internal timing circuit that holds the RESET
pin low for 4064 cycles of the internal PH2 clock. The MCU does not
advance past this reset condition until a clock is present at the EXTAL
pin long enough for these 4064-cycle PH2 clocks to be detected. The
internal POR circuit will not retrigger unless VDD has discharged to 0 V;
therefore, the internal POR circuit is not suitable as a power-loss
detector.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Resets and Interrupts 169

Resets and Interrupts
In almost all M68HC11 systems, there will be an external circuit to hold
the RESET pin low whenever VDD is below normal operating level. This
external voltage-level detector or other external reset circuits are the
normal source of reset in a system; the internal POR circuit only serves
to initialize internal control circuitry during cold starts.

In some unusual applications, it may be desirable to hold RESET low
long enough for the oscillator to reach stable operating frequency. This
stable operating frequency is not a requirement of the MCU because the
M68HC11 is a fully static design, which can operate correctly even when
the oscillator has not reached stable operating frequency. If the oscillator
has not reached stable operating frequency by the time RESET is
released, software and timed delays will be longer than expected since
these delays are based on the oscillator frequency. In most applications,
such errors within the first few milliseconds of operation are of no
concern, and no external power-on delay is necessary. In cases where
timing is critical immediately out of RESET, an external POR circuit must
be provided. The required amount of delay depends on the oscillator
startup time, which varies with the frequency and design of the oscillator
as well as such things as VDD rise time. In a typical M68HC11 design
with an E-clock frequency of 2 MHz, the internal POR will only hold
RESET low for about 2 ms after oscillator start. With an 8-MHz crystal,
the M68HC11 oscillator will typically start when VDD reaches about 1 V.
For a typical VDD rise time, the internal POR times out well before VDD
reaches an acceptable level. Thus, POR alone is rarely able to provide
for all reset needs, and some external reset circuitry will be required.

5.4.2 COP Watchdog Timer Reset

The COP watchdog timer system is intended to detect software
processing errors. When the COP is being used, software is responsible
for keeping a free-running watchdog timer from timing out. If the
watchdog timer times out, it is an indication that software is no longer
being executed in the intended sequence; thus, a system reset is
initiated.
Reference Manual M68HC11 — Rev. 6

170 Resets and Interrupts MOTOROLA

Resets and Interrupts
Causes of Reset
The COP system is enabled or disabled, depending on the state of the
NOCOP bit in the CONFIG register. This enable is like a mask option in
that it is effective immediately out of reset and is not dependent on any
software action. Unlike a programmed mask option, the COP enable
may be changed by the end user. The requirements for changing the
enable bit are designed so the NOCOP bit is very unlikely to be changed
by accident in the end system. The only way to change the enable status
of the COP system is to change the contents of the EEPROM-based
CONFIG register. Even after the NOCOP bit is changed, the MCU must
be reset before the new status becomes effective. In the special test and
bootstrap operating modes, the COP system is initially inhibited by the
disable resets (DISR) control bit in the TEST1 register. The DISR bit can
be written to 0 to enable COP resets while the MCU is in special test or
bootstrap operating mode.

The COP timeout period is set by the COP timer rate control bits (CR1
and CR0) in the configuration options (OPTION) register. After reset,
these bits are both 0, which selects the fastest timeout period. The MCU
internal E clock is first divided by 215 before it enters the COP watchdog
system. The CR1 and CR0 bits control a further scaling factor for the
watchdog timer (see Table 5-3). The columns at the right of the table
show the resulting watchdog timeout periods for three typical oscillator
frequencies. In normal operating modes, these bits can be written once
only, and that write must be within 64 bus cycles after reset.

Table 5-3. Watchdog Rates versus Crystal Frequency

CR1 CR0 E ÷ 215 Divided By

Crystal Frequency

223 Hz 8 MHz 4 MHz

Nominal Timeout

0 0 1 15.625 ms 16.384 ms 32.768 ms

0 1 4 62.5 ms 65.536 ms 131.07 ms

1 0 16 250 ms 262.14 ms 524.29 ms

1 1 64 1 s 1.049 s 2.1 s

2.1 MHz 2 MHz 1 MHz

Bus frequency (E clock)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Resets and Interrupts 171

Resets and Interrupts
The COP timer must be reset by a software sequence prior to timeout to
avoid a COP reset. The software COP reset is a 2-step sequence. The
first step is to write $55 to the COPRST register to arm the COP
timer-clearing mechanism. The second step is to write $AA to the
COPRST register, which clears the COP timer. Any number of
instructions can be performed between these two steps as long as both
steps are performed in the correct sequence before the timer times out.
This reset sequence is sometimes referred to as servicing the COP
timer.

Since the COP timer is based on the MCU clock, the COP watchdog
cannot detect errors that cause the MCU clock to stop. The clock monitor
system (see 5.4.3 Clock Monitor Reset) can be used as a backup for
COP to force a system reset if the MCU clocks stop.

Placing the COP service instructions in an interrupt service routine is
bad practice. In such a case, the interrupt could occur often enough to
keep the COP system satisfied even if the main-line program was no
longer functioning.

The implementation of the COP timer causes a tolerance on the timeout
period. The E ÷ 215 clock into the COP system is free-running and, for
practical purposes, is asynchronous to the COP service software. All
additional divider stages in the COP timer are reset each time the COP
service sequence is performed. There is an uncertainty about when the
first E ÷ 215 clock will reach the COP timer stages. This uncertainty
causes the specified timeout period to have a tolerance of minus zero to
plus one cycle of the E ÷ 215 clock. This tolerance varies with E-clock
frequency but does not change with respect to the COP rate selected by
the CR1 and CR0 bits. Figure 10-4. Major Clock Divider Chains in the
MC68HC11A8 and 10.4.3 Computer Operating Properly (COP)
Watchdog Function contain additional information about this clocking
structure.

5.4.3 Clock Monitor Reset

The clock monitor circuit is based on an internal resistor-capacitor (RC)
time delay. If no MCU clock edges are detected within this RC time
delay, the clock monitor can optionally generate a system reset. The
Reference Manual M68HC11 — Rev. 6

172 Resets and Interrupts MOTOROLA

Resets and Interrupts
Causes of Reset
clock monitor function is enabled/disabled by the CME control bit in the
OPTION register. This timeout is based on an RC delay so that the clock
monitor can operate without any MCU clocks.

Processing variations cause the RC timeout to vary somewhat from lot
to lot and part to part. An E-clock frequency below 10 kHz will definitely
be detected as a clock monitor error. An E-clock frequency of 200 kHz
or more will prevent clock monitor errors. Any system operating below
200 kHz E-clock frequency should not use the clock monitor function.

When the clock monitor is enabled and the MCU clocks slow down or
stop, a system reset is generated. The bidirectional RESET pin is driven
low to reset the external system and the MCU. Clock monitor has a
separate reset vector from COP reset and external reset to enable
software to determine the cause of reset. While the MCU is in special
test or bootstrap mode, resets from the COP and clock monitor systems
are initially disabled by a 1 in the DISR bit in the TEST1 register. While
still in the special operating modes, COP and clock monitor resets can
be re-enabled by writing the DISR control bit to 0. In normal operating
modes, the DISR bit is forced to 0 and cannot be set to 1.

Clock monitor is often used as a backup for the COP watchdog system.
Since the COP needs a clock to function, it is unable to function if the
clocks stop. In such a case, the clock monitor system could detect clock
failures not detected by the COP system.

Another use for the clock monitor is to protect against the unintentional
execution of the STOP instruction. Some applications view the STOP
instruction as a serious problem because it causes MCU clocks to stop,
thus disabling all software execution and on-chip peripheral functions. A
stop disable bit (S) in the CCR is the first line of defense against
unwanted STOP instructions. While the S bit is 1, the STOP instruction
acts as a no-operation (NOP) instruction, which does not interfere with
MCU clock operation. Clock monitor can provide an additional level of
protection by generating a system reset if the MCU clocks are
accidentally stopped.

It is possible to use the clock monitor in systems that also use the STOP
instruction. In such a system, the CME control bit would be written to 0
to disable the clock monitor prior to executing an intentional STOP
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Resets and Interrupts 173

Resets and Interrupts
instruction. After recovery from STOP, the CME bit would be written to 1
to enable the clock monitor during normal execution.

The reset sequence is a clocked operation; whereas, clock monitor
resets are generated when the clocks stop. In many cases, the low level
on RESET will correct the cause of the stopped MCU clocks, and
recovery can proceed much as in the COP reset case. In cases where
the MCU clocks do not resume as a result of the clock monitor reset, the
driven low level at the RESET pin will remain indefinitely.

5.4.4 External Reset

In addition to the internal sources, reset can be forced by applying a low
level to the RESET pin. The resulting reset sequence is identical to the
internal causes. Upon recognition of the reset request, internal logic
turns on an internal N-channel device, which actively holds the RESET
pin low for about four cycles. In a normal system, the external source of
RESET would be redundantly driving the pin low during this time and
would continue to hold the pin low longer than this four cycles. Two
E-clock cycles after the internal N-channel driver releases the pin, the
RESET pin is sampled. A low level at this time indicates the reset was
caused by some external source. When the RESET pin is eventually
released, the normal reset vector is fetched and processing begins.

In all cases of reset, the internal N-channel device holds the RESET pin
low for at least four E-clock cycles. All resets cause internal registers and
on-chip peripherals to be re-initialized. The only difference between
causes of reset is the vector locations used.

In the abnormal case where the RESET pin is not held low long enough
to be detected as the cause, the reset is tentatively assumed to have
come from the COP or clock monitor systems. Priority logic assigns
highest priority to the clock monitor and second highest priority to the
COP watchdog. If neither of these sources is pending, the normal reset
vector is selected by default. In another abnormal case where the
RESET line is loaded by too much capacitance to rise within two cycles
after the internal N-channel turns off, there will be no way for the internal
logic to discriminate between an internal or external reset source; thus,
all resets are interpreted as external requests.
Reference Manual M68HC11 — Rev. 6

174 Resets and Interrupts MOTOROLA

Resets and Interrupts
Interrupt Process
Figure 5-1 shows an example of an external reset circuit. The
low-voltage inhibit (LVI) device [1] holds RESET low whenever VDD is
below operating level. The LVI device [2] and the RC on its input provide
an external POR delay. The switch [3] provides for manual reset.
Voltage detectors [1] and [2] have open-drain outputs, and the pullup
resistor holds the RESET pin high unless either voltage detector or the
internal MCU reset circuitry drives the RESET pin low. The LVI circuit [1]
(or some equivalent circuit) is required for virtually all M68HC11
systems. The external POR delay and manual reset switch are optional.
For many applications, the voltage detector [1] and the pullup resistor [4]
are the only external components needed for reset.

Figure 5-1. Typical External Reset Circuit

5.5 Interrupt Process

The CPU in a microcontroller sequentially executes instructions. In many
applications, it is necessary to execute sets of instructions in response
to requests from various peripheral devices. These requests are often
asynchronous to the execution of the main program. Interrupts provide
a way to temporarily suspend normal program execution so the CPU can
be freed to service these requests. After an interrupt has been serviced,
the main program resumes as if there had been no interruption.

4.7K

TO RESET

V DDV DD

MC34064
RESET

GND

IN

OF M68HC11

(AND OTHER
SYSTEM PARTS)

RESET

GND

IN

MANUAL
RESET SWITCH R

C[3]

[1]

[2]

[4]2

1

3

2

1

3

MC34064
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Resets and Interrupts 175

Resets and Interrupts
The instructions executed in response to an interrupt are called the
interrupt service routine. These routines are much like subroutines
except that they are called through the automatic hardware interrupt
mechanism rather than by a subroutine call instruction, and all CPU
registers are saved on the stack rather than just saving the program
counter. An interrupt (provided it is enabled) causes normal program
flow to be suspended as soon as the currently executing instruction
finishes. The interrupt logic then pushes the contents of all CPU
registers onto the stack so the CPU context can be restored after the
interrupt is finished. After stacking the CPU registers, the vector for the
highest priority pending interrupt source is loaded into the program
counter, and execution continues with the first instruction of the interrupt
service routine. An interrupt is concluded with a return-from-interrupt
(RTI) instruction, which causes all CPU registers and the return address
to be recovered from the stack so that the interrupted program can
resume as if there had been no interruption.

Interrupts can be enabled or disabled by mask bits (X and I) in the CCR
and by local enable mask bits in the on-chip peripheral control registers.
A few important interrupt sources that are always enabled are called
non-maskable interrupts. The non-maskable interrupt request (XIRQ)
pin is effectively a non-maskable interrupt source except that it is
disabled immediately after reset. Very special logic is associated with
the interrupt mask bit (X) for XIRQ in the CCR to overcome classic
problems associated with a non-maskable interrupt while allowing all of
the benefits of such an interrupt. The remaining interrupt sources are
maskable by the interrupt mask bit (I) in the CCR.

The interrupt mask bits in the CCR provide a means of controlling the
nesting of interrupts. In rare cases, it may be useful to allow an interrupt
routine to be interrupted (nesting of interrupts). Nesting of interrupts is
discouraged because it greatly complicates a system and rarely
improves system performance. By default, the interrupt structure inhibits
interrupts during the interrupt entry sequence by setting the interrupt
mask bit(s) in the CCR. As the CCR is recovered from the stack during
the RTI instruction, the CCR bits return to the enabled state so additional
interrupts can be serviced. If nesting of interrupts is desired, it must be
specifically allowed by clearing the interrupt mask bit(s) after entering
the interrupt service routine. Care must be taken to specifically mask
Reference Manual M68HC11 — Rev. 6

176 Resets and Interrupts MOTOROLA

Resets and Interrupts
Interrupt Process
(disable) the present interrupt with a local enable mask bit or to clear the
interrupt source flag before clearing the mask bit in the CCR; otherwise,
the same source would immediately interrupt, and an infinite loop could
result.

Upon reset, both the X and I bits are set to inhibit all maskable interrupts
and XIRQ. After minimum system initialization, software may clear the X
bit by a transfer accumulator A to CCR (TAP) instruction, thus enabling
XIRQ. Thereafter, software cannot set the X bit; thus, an XIRQ is
effectively a non-maskable interrupt. Since the operation of the
I-bit-related interrupt structure has no effect on the X bit, the external
XIRQ pin remains effectively non-maskable. In the interrupt priority logic,
XIRQ is a higher priority than any source that is maskable by the I bit. All
I-bit-related interrupts operate normally with their own priority
relationship. When an I-bit-related interrupt occurs, the I bit is
automatically set by hardware after stacking the CCR byte, but the X bit
is not affected. When an XIRQ occurs, both the X and I bits are
automatically set by hardware after stacking the CCR. An RTI instruction
restores the X and I bits to their pre-interrupt request state.

5.5.1 Interrupt Recognition and Stacking Registers

An interrupt can be recognized at any time provided it is enabled by its
local mask (if any) and by the global mask bit in the CCR. Once any
interrupt source is recognized, the CPU will respond at the completion of
the currently executing instruction. Instructions cannot be interrupted;
rather, the CPU decides whether to fetch another instruction or process
an interrupt. In calculating the latency time from the actual interrupt
request to the CPU response to that request, the user must consider the
possibility that the CPU had just started a long instruction as the interrupt
was requested. Most instructions are two to four cycles long, but the
multiply (MUL) and integer divide (IDIV) or fractional divide (FDIV)
instructions are 10 and 41 cycles, respectively.

When the CPU decides to service an interrupt, the contents of CPU
registers are pushed (stored) on the stack in the order PCL, PCH, IYL,
IYH, IXL, IXH, ACCA, ACCB, and CCR (following the same
cycle-by-cycle order as cycles 3–14 of the SWI instruction). After the
CCR value is stacked, the I bit in the CCR (and the X bit if XIRQ is
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Resets and Interrupts 177

Resets and Interrupts
pending) is set to inhibit further interrupts. The interrupt sequence then
proceeds to the priority resolution step.

5.5.2 Selecting Interrupt Vectors

After the CCR has been stacked, the CPU evaluates all pending
interrupt requests to determine which source has the highest priority.
Since the priority resolution step occurs several cycles after the original
decision to service an interrupt, a higher priority source could become
pending after the stacking operation started but before the priority is
resolved. In such a case, the interrupt that is serviced can be different
from the source that initiated the interrupt sequence. This subtle aspect
means that the latency from an interrupt request to when it is serviced
can be shorter than expected.

Interrupts obey a fixed hardware-priority circuit to resolve simultaneous
requests; however, one I-bit-related interrupt source may be elevated to
the highest I bit priority position in the resolution circuit. The first six
interrupt sources are not masked by the I bit in the CCR and have the
fixed priority interrupt relationship: reset, clock monitor fail, COP fail,
illegal opcode, and XIRQ. Each of these sources is an input to the priority
resolution circuit. Software interrupt (SWI) is actually an instruction and
has the highest priority other than reset because, once the SWI opcode
is fetched, no other interrupt can be honored until the SWI vector has
been fetched. The highest I-bit-related priority input is assigned under
software control (of the HPRIO register) to be connected to any one of
the remaining I-bit-related interrupt sources. To avoid timing races, the
HPRIO register may be written only while the I-bit-related interrupts are
inhibited (I bit in CCR = 1). An interrupt that is assigned to this highest
priority position is still subject to masking by any associated control bits
or by the I bit in the CCR. The interrupt vector address is not affected by
assigning a source to this highest priority position.

Figure 5-2 shows the HPRIO register. The HPRIO register may be read
at any time but may be written only under special circumstances. The
high-order four bits of HPRIO may be written only while the MCU is
operating in one of the special modes (SMOD = 1). The low-order four
bits may be written only while the I bit in the CCR is 1.
Reference Manual M68HC11 — Rev. 6

178 Resets and Interrupts MOTOROLA

Resets and Interrupts
Interrupt Process
RBOOT — Read Bootstrap ROM

Can be written only while SMOD equals 1
1 = Bootstrap ROM enabled and located from $BF40–$BFFF
0 = Bootstrap ROM disabled and not present in memory map

The RBOOT control bit enables or disables the special bootstrap
control ROM. This 192-byte mask-programmed ROM contains the
firmware required to load a user’s program through the SCI into the
internal RAM and jump to the loaded program. In all modes other than
the special bootstrap mode, this ROM is disabled and does not
occupy any space in the 64-Kbyte memory map. Although it is 0 when
the MCU comes out of reset in test mode, the RBOOT bit may be
written to 1 while in special test mode.

SMOD — Special Mode Bit

May be written to 0 but not back to 1
1 = Special mode variation in effect
0 = Normal mode variation in effect

MDA — Mode A Select Bit

Can be written only while SMOD equals 1
1 = Normal expanded or special test mode in effect
0 = Normal single-chip or special bootstrap mode in effect

IRV — Internal Read Visibility Bit

Can be written only while SMOD equals 1; forced to 0 if SMOD
equals 0

1 = Data driven onto external bus during internal reads
0 = Data from internal reads not visible on expansion bus (levels

on bus ignored)

Address: $103C

Bit 7 6 5 4 3 2 1 Bit 0

Read:
RBOOT SMOD MDA IRV PSEL3 PSEL2 PSEL1 PSEL0

Write:

Reset: Refer to Table 5-1. 0 1 0 1

Figure 5-2. Highest Priority I-Bit Interrupt
and Miscellaneous Register (HPRIO)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Resets and Interrupts 179

Resets and Interrupts
The IRV control bit is used during factory testing and sometimes
during emulation to allow internal read accesses to be visible on the
external data bus. Care is required to avoid data bus contention while
IRV is active because the bidirectional data bus is driven out during
reads of internal addresses, even though the R/W line suggests the
data bus is in the high-impedance read mode. In normal modes, this
function is disabled; thus, complex decode logic is not required to
protect against accidental bus conflicts.

PSEL3–PSEL0 — Priority Select Bits 3–0

Can be written only while I bit in CCR equals 1. These four bits allow
any one maskable interrupt source to be elevated to the highest
priority position. Non-maskable interrupts still take priority over all
maskable interrupts. Table 5-4 shows the relationship between the
PSEL3–PSEL0 bit values and the interrupt source that is promoted.
The priority can be changed only while interrupts are masked (I bit in
CCR = 1) to avoid race conditions.

Table 5-4. Highest Priority I Interrupt versus PSEL3–PSEL0

PSEL3 PSEL2 PSEL1 PSEL0 Interrupt Source Promoted

0 0 0 0 Timer overflow

0 0 0 1 Pulse accumulator overflow

0 0 1 0 Pulse accumulator input edge

0 0 1 1 SPI transfer complete

0 1 0 0 SCI serial system

0 1 0 1 Reserved (default to IRQ)

0 1 1 0 IRQ (external pin or parallel I/O)

0 1 1 1 Real-time interrupt

1 0 0 0 Timer input capture 1

1 0 0 1 Timer input capture 2

1 0 1 0 Timer input capture 3

1 0 1 1 Timer output compare 1

1 1 0 0 Timer output compare 2

1 1 0 1 Timer output compare 3

1 1 1 0 Timer output compare 4

1 1 1 1 Timer output compare 5
Reference Manual M68HC11 — Rev. 6

180 Resets and Interrupts MOTOROLA

Resets and Interrupts
Non-Maskable Interrupts
Figure 5-2, Figure 5-3, and Figure 5-4 illustrate the interrupt process as
it relates to normal processing. Figure 5-3 shows how the CPU begins
from a reset and how interrupt detection relates to normal opcode
fetches. Figure 5-3, an expansion of a block in Figure 5-2, shows how
interrupt priority is resolved. Figure 5-4, an expansion of the SCI
interrupt block in Figure 5-3, shows the resolution of interrupt sources
within the SCI subsystem.

5.5.3 Return from Interrupt

When an interrupt has been serviced as needed, the return-from-
interrupt (RTI) instruction terminates interrupt processing and returns to
the program that was running at the time of the interruption. During
servicing of the interrupt, some or all of the CPU registers will have
changed. To continue the former program as if it had not been
interrupted, the registers must be restored to the values present at the
time the former program was interrupted. The RTI instruction
accomplishes this by pulling (loading) the saved register values from the
stack memory. The last value to be pulled from the stack is the program
counter, which causes processing to resume where it was interrupted.

5.6 Non-Maskable Interrupts

This subsection discusses the illegal opcode fetch interrupt, the software
interrupt (SWI) instruction, and the XIRQ input pin. The illegal opcode
fetch interrupt is a non-maskable interrupt source intended to improve
system integrity. Although it performs like an interrupt, SWI is an
instruction rather than an asynchronous interrupt. The XIRQ input is an
updated version of the non-maskable interrupt (NMI) input of earlier
MCUs.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Resets and Interrupts 181

Resets and Interrupts
Figure 5-3. Processing Flow Out of Resets (Sheet 1 of 2)

1B

1A

HIGHEST

LOWEST

POWER-ON RESET
(POR)

EXTERNAL RESET

CLOCK MONITOR FAIL
(WITH CME = 1)

COP WATCHDOG
TIMEOUT

(WITH NOCOP = 0)

LOAD PROGRAM COUNTER
WITH CONTENTS OF

$FFFA, FFFB (VECTOR FETCH)

DELAY 4064 E CYCLES

SET S, X, AND I BITS
IN CCR

RESET MCU
HARDWARE

BEGIN AN INSTRUCTION
SEQUENCE

STACK CPU
REGISTERS

SET X AND I BITS

FETCH VECTOR
$FFE4, FFE5

XIRQ PIN
LOW ?

YES

NO

YES

NO

X BIT
IN CCR
SET ?

LOAD PROGRAM COUNTER
WITH CONTENTS OF

$FFFC, FFFD (VECTOR FETCH)

LOAD PROGRAM COUNTER
WITH CONTENTS OF

$FFFE, FFFF (VECTOR FETCH)

PRIORITY
Reference Manual M68HC11 — Rev. 6

182 Resets and Interrupts MOTOROLA

Resets and Interrupts
Non-Maskable Interrupts
Figure 5-3. Processing Flow Out of Resets (Sheet 2 of 2)

ANY I BIT
INTERRUPT

PENDING
?

STACK CPU
REGISTERS

SET X AND I BITS

FETCH VECTOR
$FFE6, FFE7

YES

NO

I BIT
IN CCR
SET ?

1A

1B

YES

NO

STACK CPU
REGISTERS

SET X AND I BITS

FETCH VECTOR
$FFE8, FFE9

FETCH OPCODE

STACK CPU
REGISTERS

STACK CPU
REGISTERS

SET I BIT

EXECUTE THIS
INSTRUCTION

RESTORE CPU
REGISTERS

FROM STACK

RESOLVE INTERRUPT
PRIORITY AND FETCH
VECTOR FOR HIGHEST

PENDING SOURCE
(SEE FIGURE 5-3)

START NEXT
INSTRUCTION

SEQUENCE

RTI ?

SWI ?

WAI ?

LEGAL
OPCODE

?

INTERRUPT
YET ?

YES

NO

NO

YES

NO

YES

NO

YES

YES

NO
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Resets and Interrupts 183

Resets and Interrupts
Figure 5-4. Interrupt Priority Resolution (Sheet 1 of 2)

2A

BEGIN

SET X BIT IN CCR

FETCH VECTOR
$FFF4, FFF5

X BIT
IN CCR
SET ?

YES

NO

XIRQ PIN
LOW ?

YES

NO

FETCH VECTOR
HIGHEST
PRIORITY

INTERRUPT
?

YES

NO

IRQ ?
YES

NO

EXTERNAL
PIN ?

YES

NO

FETCH VECTOR
$FFF2, FFF3

NO STAF AND
STAI = 1 ?

YES

FETCH VECTOR
$FFF0, FFF1

RTII = 1 ?
YES

NO

REAL-TIME
INTERRUPT

?

YES

NO

FETCH VECTOR
$FFEE, FFEF

IC1I = 1 ?
YES

NO

TIMER
IC1F ?

YES

NO

FETCH VECTOR
$FFEC, FFED

IC2I = 1 ?
YES

NO

TIMER
IC2F ?

YES

NO

FETCH VECTOR
$FFEA, FFEB

IC3I = 1 ?
YES

NO

TIMER
IC3F ?

YES

NO

FETCH VECTOR
$FFE8, FFE9

OC1I = 1 ?
YES

NO

TIMER
OC1F ?

YES

NO

2B
Reference Manual M68HC11 — Rev. 6

184 Resets and Interrupts MOTOROLA

Resets and Interrupts
Non-Maskable Interrupts
Figure 5-4. Interrupt Priority Resolution (Sheet 2 of 2)

FETCH VECTOR
$FFE6, FFE7

OC2I = 1 ?
YES

NO

TIMER
OC2F ?

YES

NO

FETCH VECTOR
$FFE4, FFE5

OC3I = 1 ?
YES

NO

TIMER
OC3F ?

YES

NO

FETCH VECTOR
$FFE2, FFE3

OC4I = 1 ?
YES

NO

TIMER
OC4F ?

YES

NO

FETCH VECTOR
$FFE0, FFE1

OC5I = 1 ?
YES

NO

TIMER
OC5F ?

YES

NO

FETCH VECTOR
$FFDE, FFDF

TOI = 1 ?
YES

NO

TIMER
TOF ?

YES

NO

FETCH VECTOR
$FFDC, FFDD

PAOVI = 1 ?
YES

NO

PULSE
ACCUMULATOR

PAOVF ?

YES

NO

FETCH VECTOR
$FFDA, FFDB

PAII = 1 ?
YES

NO

YES

NO

FETCH VECTOR
$FFD8, FFD9

SPIE = 1 ?
YES

NO

SPIF OR
MODF ?

YES

NO

FETCH VECTOR
$FFD6, FFD7

SCI SERIAL ?
(SEE FIGURE

5-4)

YES

NO

2A 2B

END

FETCH VECTOR
$FFF2, FFF3

PULSE
ACCUMULATOR

PAII ?

SPURIOUS INTERRUPT — TAKE IRQ VECTOR
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Resets and Interrupts 185

Resets and Interrupts
Figure 5-5. Interrupt Source Resolution within SCI

5.6.1 Non-Maskable Interrupt Request (XIRQ)

Non-maskable interrupts are useful because they can always interrupt
CPU operation. The most common use for such an interrupt is for very
serious system problems, such as program runaway or power failure.
The XIRQ mechanism overcomes two significant problems with an NMI
input while retaining the important capabilities associated with a
non-maskable source.

BEGIN

RDRF = 1 ?
YES

NO

OR = 1 ?
YES

NO

RIE = 1 ?
YES

NO

NO VALID SCI
REQUEST

YES — VALID SCI
REQUEST

RE = 1 ?
YES

NO

TDRE = 1 ?
YES

NO

TIE = 1 ?
YES

NO

TE = 1 ?
YES

NO

TC = 1 ?
YES

NO

TCIE = 1 ?
YES

NO

IDLE = 1 ?
YES

NO

ILIE = 1 ?
YES

NO

RE = 1 ?
YES

NO
Reference Manual M68HC11 — Rev. 6

186 Resets and Interrupts MOTOROLA

Resets and Interrupts
Non-Maskable Interrupts
The first NMI problem is as follows: What if an NMI is requested before
the stack pointer has been initialized? If this request happens, the
register stacking operation causes register values to be written to a
random area of memory. If the stack pointer is pointing to some
unimplemented memory area or to a read-only area, there will be no way
to return to the program in progress at the time of the interrupt. If the
stack pointer is pointing at a data area in memory, the register values will
be written over the data (thus corrupting it). Since this situation is not
desirable, the NMI had to be externally inhibited after reset until the stack
pointer could be initialized.

The second NMI problem is as follows: What if the NMI signal bounces
so that NMI is nested? If nesting occurs, the stack can be filled with
several copies of the register values, possibly filling the stack beyond its
allotted space. Nesting in this way would also cause excessive latency
from the request until the resulting program actions are executed.

The M68HC11 solves both these problems with the X bit in the CCR. The
X bit is very similar to the I bit except that there are special restrictions
on setting and clearing of the X bit. Since X can only be cleared by a
software instruction, the programmer has control over when the XIRQ
input becomes enabled. The two software instructions that can clear the
X bit are TAP and RTI (provided the stacked CCR value has a 0 in the X
bit position). The two hardware conditions that can set the X bit are
system reset and the recognition of an XIRQ.

Immediately after any reset, the X bit is set; thus, XIRQ is inhibited.
When software has established initial conditions, including setting the
stack pointer, the X bit may be cleared with a TAP instruction to enable
XIRQ. These two steps overcome the first NMI problem. Since software
cannot set the X bit, the XIRQ can be considered a non-maskable source
at this point. When an XIRQ occurs, the CCR value is stacked (with the
X bit clear); the X bit is then automatically set to inhibit additional
interrupts. This step overcomes the second NMI problem. When an RTI
instruction is executed, the CCR is restored to the stacked value (which
had the X bit clear). A common misconception is that the X bit can be set
by executing an RTI instruction with a 1 in the X bit position of the
stacked CCR value. In reality, the X bit is implemented as a set-reset
flip-flop rather than a D-type flip-flop. The set input is connected to the
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Resets and Interrupts 187

Resets and Interrupts
OR of reset and XIRQ acknowledge. The reset input is connected to the
AND of a CCR write and data bit 6 equals 0. If an attempt is made to TAP
or unstack a 1 to the X bit, neither the set nor the clear input to the X bit
flip-flop will be activated, and the X bit will remain unchanged.

The M68HC11 supports a stop mode where all clocks are stopped to
reduce power consumption to a few microamps. Recovery to active
mode is accomplished by a reset or an interrupt (IRQ or XIRQ).
Depending upon the state of the X bit in the CCR, the XIRQ input offers
a choice of two recovery methods. If X is 0, XIRQ interrupts are enabled,
and recovery leads to register stacking and normal interrupt service. If X
is 1, XIRQ interrupts are inhibited, but the XIRQ pin can still be used for
recovery from the stop mode. Rather than resuming operation with
service of an interrupt (XIRQ), the clocks start and processing resumes
with the next opcode after the STOP opcode. This technique can be
thought of as a STOP-continue mechanism.

Some M68HC11 MCUs were manufactured with a subtle defect that can
cause failure to properly recover from stop with an interrupt input (IRQ
or XIRQ). If the opcode immediately preceding the STOP opcode came
from column 4 or 5 of the opcode map, recovery was incorrect. Column
4 and 5 opcodes are accumulator instructions, such as negate A (NEGA)
or decrement B (DECB), which seldom appear immediately before a
STOP instruction; therefore, a long time elapsed before the problem was
discovered. A simple NOP instruction before the stop opcode ensures
proper recovery from stop in all cases.

5.6.2 Illegal Opcode Fetch

Since not all possible opcodes or opcode sequences are defined, an
illegal opcode detection circuit has been included. When an illegal
opcode is detected, an interrupt is requested to the illegal opcode vector.
The illegal opcode vector should never be left uninitialized. The stack
pointer should be re-initialized as a result of an illegal opcode interrupt
so repeated execution of illegal opcodes does not cause stack overruns.
If the illegal opcode vector were left uninitialized, it could point to a
memory location that contained an illegal opcode. In such a case, there
would be an infinite loop of repeated illegal opcodes and an infinite stack
Reference Manual M68HC11 — Rev. 6

188 Resets and Interrupts MOTOROLA

Resets and Interrupts
Non-Maskable Interrupts
overflow, which would cause the register contents to be stored to all
memory addresses in a very short time.

The illegal opcode trap mechanism works for all unimplemented
opcodes on all four opcode map pages. The address stacked as the
return address for the illegal opcode interrupt is the address of the first
byte of the illegal opcode. Otherwise, it would be almost impossible to
determine whether the illegal opcode had been one or two bytes. The
stacked return address can be used as a pointer to the illegal opcode so
the illegal opcode service routine can evaluate the offending opcode.

The illegal opcode mechanism can be used to create a number of
special-purpose instructions that use otherwise illegal opcodes. When
one of these opcodes is encountered, the interrupt service routine can
look up the special opcode and perform some special task. The return
address would need to be manually changed since it points to the illegal
opcode rather than to the instruction that follows the illegal opcode.

The TEST instruction (opcode $00) is a legal opcode in special test and
bootstrap modes, but it is an especially offensive illegal opcode in
normal operating modes. The illegal opcode detection logic treats the
TEST opcode as illegal when the MCU is in normal operating modes and
as legal in special test and bootstrap modes.

5.6.3 Software Interrupt

The SWI is executed in the same manner as other instructions and takes
precedence over pending interrupts only if the other interrupts are
masked (I and X bits in the CCR set). The SWI instruction is executed in
a manner similar to other maskable interrupts in that it sets the I bit, CPU
registers are stacked, etc. SWI is not inhibited by the global interrupt
mask bits (X or I) in the CCR.

NOTE: The SWI instruction will not be fetched if any other interrupt is pending.
However, once an SWI instruction begins, no other interrupt can be
honored until the SWI vector has been fetched.

SWI instructions are commonly used in debug monitors to transfer
control from a user program to the debug monitor. For example, while
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Resets and Interrupts 189

Resets and Interrupts
operating under monitor control, a designer can specify a breakpoint at
some address in the user program being debugged. The monitor will
replace the user’s opcode at this address with the opcode for an SWI
instruction. When the user’s program is running and this SWI opcode is
encountered, the monitor, recognizing that this is a breakpoint, will take
control. The SWI opcodes are usually placed into the user’s program just
before the program is run, and these locations are restored to the original
opcode when the debug monitor regains control.

5.7 Maskable Interrupts

The remaining 20 interrupt sources in the MC68HC11A8 are subject to
masking by a global interrupt mask bit (I bit in CCR). In addition to the
global I bit, all of these sources except the external interrupt (IRQ pin)
are subject to local enable bits in control registers. Most interrupt
sources in the M68HC11 have separate interrupt vectors; thus, there is
usually no need for software to poll control registers to determine the
cause of an interrupt. The maskable interrupt sources respond to a
fixed-priority relationship except that any one source can be dynamically
elevated to the highest priority position of any maskable source.

This subsection discusses the maskable interrupt structure rather than
the specific interrupts from individual internal peripheral subsystems.
The interrupts associated with the internal subsystems are discussed
throughout this manual during the discussion of each peripheral system.

5.7.1 I Bit in the Condition Code Register

The I bit in the CCR acts as a primary enable control for all maskable
interrupts. When the I bit is set, interrupts can become pending but will
not be honored. When the I bit is clear, interrupts are enabled to interrupt
normal program flow when an interrupt source requests service.

The I bit is set during reset to prevent interrupts from being honored until
minimum system initialization has been performed. Part of this minimum
initialization would be to load the stack pointer so it points to an
appropriate area of RAM. The I bit is also automatically set during entry
into any interrupt service routine to prevent an infinite source of
Reference Manual M68HC11 — Rev. 6

190 Resets and Interrupts MOTOROLA

Resets and Interrupts
Maskable Interrupts
interrupts from overwhelming the CPU. Software can also set the
interrupt mask bit to inhibit interrupts during sensitive operations.

The I bit can be cleared by software instructions or during the execution
of an RTI instruction. In most applications, the I bit remains set during
interrupt service routines so other interrupts will not be honored until a
current interrupt service routine finishes (that is, nesting is not
permitted). In more unusual applications, it is possible to allow nesting of
interrupts by clearing the I bit during an interrupt service routine. Since
this procedure requires much expertise, it should not be attempted by a
novice programmer. In some cases, worst-case interrupt latency can be
reduced by allowing interrupt nesting, but usually the best procedure is
to minimize the execution time of interrupt service routines. Since the
overhead associated with interrupt nesting usually violates this principle,
nesting is not recommended.

The operation of the I bit during service of an interrupt proceeds as
follows. When an enabled interrupt occurs and the I bit is clear, the CPU
completes the current instruction and begins the interrupt response
sequence. The current contents of the CPU registers are pushed onto
the stack (stored in stack RAM). The register values are saved one byte
at a time in the following order: PCL, PCH, IYL, IYH, IXL, IXH, ACCA,
ACCB, and CCR. After the CCR value is stacked, the I bit in the CCR is
set to inhibit further interrupts. Next, the vector for the highest priority
pending interrupt is fetched, and processing continues with execution of
the first instruction in the interrupt service routine. The last instruction in
the interrupt service routine is the RTI instruction. This instruction
causes the previously stacked register values to be loaded back into the
registers in reverse order. Since the program counter is restored to its
pre-interrupt value, the next instruction executed will be the instruction
that would have been executed if the interrupt had not occurred.

A common error for new users is to put a set interrupt mask (SEI)
instruction at the beginning of an interrupt service routine and a clear
interrupt mask (CLI) instruction just before the RTI instruction. These
instructions should not be used in this way because they are redundant.
The automatic interrupt logic already sets the I bit on the way into an
interrupt and clears the I bit during normal execution of the RTI
instruction.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Resets and Interrupts 191

Resets and Interrupts
5.7.2 Special Considerations for I-Bit-Related Instructions

Some special conditions associated with the I bit require additional
consideration. The I bit is actually a sequential logic circuit rather than a
simple flip flop. When the I bit is set by an SEI or a TAP instruction,
interrupts are inhibited immediately. An interrupt occurring while an SEI
instruction is executing will not be honored until/unless the I bit is later
cleared. When the I bit is cleared by a CLI or TAP instruction, the actual
clear operation is delayed for one bus cycle so the instruction following
the CLI or TAP will always be executed. This procedure implies that the
following loop can never be interrupted by a maskable interrupt:

LOOP CLI Enable Interrupts
SEI Disable Interrupts
BRA LOOP Repeat

The reason for this delayed clear operation can be seen in this
instruction sequence:

CLI Enable Interrupts
WAI Wait for Interrupt

If there were not a delay in clearing the I bit, it is possible the interrupt
could be recognized between the CLI and WAI instructions. Upon return
from the interrupt service routine, the WAI instruction would be
executed, and the CPU would erroneously wait for the interrupt that was
just serviced.

During execution of an RTI instruction, the first register to be restored
from the stack is the CCR. In this situation, the 1-cycle delay in clearing
the I bit expires long before the RTI instruction is finished; thus, a new
interrupt sequence can be started even before a single instruction of the
interrupted program is executed.

5.8 Interrupt Request

The maskable interrupt structure in the M68HC11 can be extended to
additional external interrupting sources through the IRQ input. This
subsection discusses the IRQ input as it relates to the interrupt structure.
Reference Manual M68HC11 — Rev. 6

192 Resets and Interrupts MOTOROLA

Resets and Interrupts
Interrupt Request
The alternate use of the IRQ pin as an EEPROM programming voltage
source during factory testing is discussed in 2.4.6 Interrupt Pins (XIRQ
and IRQ).

Although this subsection is primarily concerned with the IRQ pin, there
are several additional MCU pins that can be used as interrupt inputs. The
XIRQ pin provides for non-maskable interrupts. The main-timer
input-capture pins (IC3–IC1) can be used as edge-sensitive interrupt
inputs with separate controls for selecting the significant edge and
separate interrupt vectors. The pulse accumulator input pin can also be
used as an additional edge-sensitive interrupt. If the MCU is operating in
single-chip mode, the strobe A (STRA/AS) pin is available as an
edge-triggered interrupt input. Though there is only one IRQ pin, these
other pins allow an MC68HC11A8 to have up to seven interrupt pins.

5.8.1 Selecting Edge Triggering or Level Triggering

The default and most common configuration for the IRQ pin in an
M68HC11 application is a low-level-sensitive wired-OR network. In less
common applications, IRQ can be a low-going edge-sensitive input. The
edge-sensitive configuration is less common because it only allows a
single interrupt source to use the IRQ pin; whereas, the level-sensitive
configuration can accommodate many sources on the single IRQ pin.
The IRQ select edge-sensitive only IRQE bit in the OPTION control
register is used to select the IRQ pin configuration (IRQE = 0 for low level
sensitive and IRQE = 1 for low-going edge sensitive). The IRQE control
bit is time-protected, which means it can only be written once within the
first 64 E-clock cycles after reset. IRQE is cleared by default during
reset.

The interrupt sources within the MCU all operate as a wired-OR
level-sensitive network. When an event triggers an interrupt, a
software-accessible interrupt flag is set, which (if enabled) causes a
constant request for interrupt service. When software has recognized
the interrupt, this flag is cleared, thus releasing the request for service.
The flag bit acts as a static indication that service is required. If more
than one interrupt source is connected to a single level-sensitive line, the
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Resets and Interrupts 193

Resets and Interrupts
line may remain asserted for several overlapping events from different
sources, and the flag bits ensure that all requests will be serviced.

In an edge-sensitive network, the MCU is responsible for latching a
request upon recognition of a low-going edge at the interrupt input. This
configuration is only capable of recognizing that an edge occurred (there
is no software-accessible record to identify the requesting source); thus,
the edge-sensitive configuration is appropriate only where a single
source could have made the request.

5.8.2 Sharing Vector with Handshake I/O Interrupts

Because the IRQ vector is shared by the handshake I/O subsystem and
the IRQ input pin, the handshake I/O functions can be rebuilt externally
when the MCU is operating in expanded modes. While the MCU is in an
expanded mode, 18 pins, which were used for the handshake I/O
subsystem, become dedicated to the expansion bus. The MC68HC24 is
a port replacement unit (PRU) that rebuilds the handshake I/O functions.
The MCU is specifically designed to treat the associated addresses as
external locations while in expanded modes so that software sees no
difference between an expanded system with a PRU and an M68HC11
operating in single-chip mode. Since the handshake I/O system uses the
same vector as the IRQ pin, the PRU can drive the IRQ pin of the MCU.
Even the interrupts for the handshake I/O system are faithfully emulated.

The shared interrupt with IRQ solves most emulation problems for the
PRU; however, there are some difficulties in applications where IRQ is
configured for edge-sensitive operation. In such a system, the PRU is
connected to the IRQ pin and to the user’s external interrupt source. The
edge-sensitive configuration is not able to distinguish which source
caused an interrupt. Also, if an edge-triggered interrupt is generated by
the external source while an interrupt is pending from the PRU, the low
level on the IRQ line prevents any new-edge from being detected. Since
the level-sensitive configuration is more common for IRQ and since so
many other pins can act as edge-sensitive interrupt inputs, this limitation
should not be serious.
Reference Manual M68HC11 — Rev. 6

194 Resets and Interrupts MOTOROLA

Resets and Interrupts
Interrupts from Internal Peripheral Subsystems
5.9 Interrupts from Internal Peripheral Subsystems

This sub-section discusses common aspects of the interrupts generated
by on-chip peripheral systems. The interrupt sources for on-chip
peripheral systems are discussed in greater detail in the sections for
each peripheral system.

5.9.1 Inhibiting Individual Sources

All on-chip interrupt sources have software-accessible control bits to
enable the interrupt sources on an individual basis. Each source has a
flag bit, which indicates service is required, and an interrupt enable bit,
which enables the flag to generate hardware interrupt requests. The
programmer decides which sources will be used to generate interrupts
and which will be handled by software polling rather than by interrupts.
The global interrupt mask (I bit in CCR) can be used to inhibit all
maskable interrupts.

5.9.2 Clearing Interrupt Status Flag Bits

The method for clearing the interrupt status flags varies from one system
to another. Detailed explanations of the clearing requirements for each
flag are provided in the sections for each on-chip peripheral system.

Timer system interrupt flags are cleared by writing a logic 1 to the flag bit
positions to be cleared. This action is explicit and is intended to prevent
these flags from being cleared unintentionally. The most straightforward
way to accomplish clearing is to load an accumulator with an immediate
value (with 1s in the bit positions corresponding to a flag bit(s) to be
cleared) and then write this value to the status register. Other instruction
sequences can be used to clear these timer flag bits, including bit
manipulation instructions. Several instruction sequences for clearing
timer flags are discussed in detail in 10.4.4 Tips for Clearing Timer
Flags.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Resets and Interrupts 195

Resets and Interrupts
5.9.3 Automatic Clearing Mechanisms on Some Flags

For some of the interrupt sources, such as the parallel I/O interrupt and
the SCI interrupts, the flags are automatically cleared during the normal
course of responding to the interrupt requests. For example, the RDRF
flag in the SCI system is cleared by the automatic clearing mechanism
consisting of a read of the SCI status register while RDRF is set, followed
by a read of the SCI data register. The normal response to an RDRF
interrupt request would be to read the SCI status register to check for
receive errors, then read the received data from the SCI data register.
These two steps satisfy the automatic clearing mechanism without
requiring any special instructions.

In unusual cases, a programmer must take special care not to
unintentionally trigger the automatic clearing mechanisms. The following
guidelines help to avoid such problems. Reads of registers containing
status flags should be minimized. Ideally, the status register should be
read only during the course of servicing the interrupt, and the status flag
should be read only once for each time the interrupt is requested. If more
than one part of the service routine uses different bits in the status
register, the register should be read only once, and a copy should be
kept in RAM or in a CPU register for further use.

The cycle-by-cycle operation of instructions that access status registers
may also present another problem. Some instructions are
read-modify-write instructions even though the read information is not
actually needed for the instruction. For example, the clear (CLR)
instruction performs a read of the operand address even though the
value read is irrelevant. A situation could arise where the SCI data
register is cleared to transmit a $00 value via the SCI transmitter.
Though it is not obvious, this action can satisfy the second step of the
automatic clearing mechanism for the RDRF flag because clearing of the
SCI transmit data register involves a read of the SCI data register prior
to the write of $00.
Reference Manual M68HC11 — Rev. 6

196 Resets and Interrupts MOTOROLA

Reference Manual — M68HC11

Section 6. Central Processor Unit (CPU)
6.1 Contents

6.2 Introduction .198

6.3 Programmer’s Model .199
6.3.1 Accumulators (A, B, and D) .200
6.3.2 Index Registers (X and Y) .200
6.3.3 Stack Pointer (SP) .201
6.3.4 Program Counter (PC) .203
6.3.5 Condition Code Register (CCR) .203

6.4 Addressing Modes .206
6.4.1 Immediate (IMM) .206
6.4.2 Extended (EXT) .208
6.4.3 Direct (DIR) .208
6.4.4 Indexed (INDX and INDY) .210
6.4.5 Inherent (INH). .211
6.4.6 Relative (REL) .212

6.5 M68HC11 Instruction Set .213
6.5.1 Accumulator and Memory Instructions214
6.5.1.1 Loads, Stores, and Transfers. .215
6.5.1.2 Arithmetic Operations .216
6.5.1.3 Multiply and Divide .217
6.5.1.4 Logical Operations .218
6.5.1.5 Data Testing and Bit Manipulation219
6.5.1.6 Shifts and Rotates .220
6.5.2 Stack and Index Register Instructions221
6.5.3 Condition Code Register Instructions.223
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Central Processor Unit (CPU) 197

Central Processor Unit (CPU)
6.5.4 Program Control Instructions .224
6.5.4.1 Branches .225
6.5.4.2 Jumps .226
6.5.4.3 Subroutine Calls and Returns

(BSR, JSR, and RTS) .226
6.5.4.4 Interrupt Handling (RTI, SWI, and WAI).227
6.5.4.5 Miscellaneous (NOP, STOP, and TEST)227

6.2 Introduction

This section discusses the M68HC11 central processor unit (CPU),
which is responsible for executing all software instructions in their
programmed sequence. The M68HC11 CPU can execute all M6800 and
M6801 instructions (source and object-code compatible) and more than
90 new instruction opcodes. Since more than 256 instruction opcodes
exist, a multiple-page opcode map is used in which some new
instructions are specified by a page-select prebyte before the opcode
byte.

The architecture of the M68HC11 CPU causes all peripheral,
input/output (I/O), and memory locations to be treated identically as
locations in the 64-Kbyte memory map. Thus, there are no special
instructions for I/O that are separate from those used for memory. This
technique is sometimes called memory-mapped I/O. In addition, there is
no execution-time penalty for accessing an operand from an external
memory location as opposed to a location within the MCU.

The M68HC11 CPU offers several new capabilities when compared to
the earlier M6801 and M6800 CPUs. The biggest change is the addition
of a second 16-bit index register (Y). Powerful, new bit-manipulation
instructions are now included, allowing manipulation of any bit or
combination of bits in any memory location in the 64-Kbyte address
space. Two new 16-bit by 16-bit divide instructions are included.
Exchange instructions allow the contents of either index register to be
exchanged with the contents of the 16-bit double accumulator. Finally,
several instructions have been upgraded to make full 16-bit arithmetic
operations even easier than before.
Reference Manual M68HC11 — Rev. 6

198 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Programmer’s Model
This section discusses the CPU architecture, addressing modes, and
the instruction set (by instruction types). Examples are included to show
efficient ways of using this architecture and instruction set. To condense
this section, detailed explanations of each instruction are included in
Appendix A. Instruction Set Details. These explanations include
detailed cycle-by-cycle bus activity and Boolean expressions for
condition code bits. This section should be used to gain a general
understanding of the CPU and instruction set.

6.3 Programmer’s Model

Figure 6-1 shows the programmer’s model of the M68HC11 CPU. The
CPU registers are an integral part of the CPU and are not addressed as
if they were memory locations. Each of these registers is discussed in
the subsequent paragraphs.

Figure 6-1. M68HC11 Programmer’s Model

CARRY

OVERFLOW

ZERO

NEGATIVE

I INTERRUPT MASK

HALF-CARRY (FROM BIT 3)

X INTERRUPT MASK

STOP DISABLE

CCR

PC

SP

IY

IX

D

A:B

S

PROGRAM COUNTER

STACK POINTER

INDEX REGISTER Y

INDEX REGISTER X

DOUBLE ACCUMULATOR D

ACCUMULATOR B

CONDITION CODE REGISTER X H I N Z V C

7 0

ACCUMULATOR A 7 07 0

015

015

015

015

015
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Central Processor Unit (CPU) 199

Central Processor Unit (CPU)
6.3.1 Accumulators (A, B, and D)

Accumulators A and B are general-purpose 8-bit accumulators used to
hold operands and results of arithmetic calculations or data
manipulations. Some instructions treat the combination of these two
8-bit accumulators as a 16-bit double accumulator (accumulator D).

Most operations can use accumulator A or B interchangeably; however,
there are a few notable exceptions. The ABX and ABY instructions add
the contents of the 8-bit accumulator B to the contents of the 16-bit index
register X or Y, and there are no equivalent instructions that use A
instead of B. The TAP and TPA instructions are used to transfer data
from accumulator A to the condition code register or from the condition
code register to accumulator A; however, there are no equivalent
instructions that use B rather than A. The decimal adjust accumulator A
(DAA) instruction is used after binary-coded decimal (BCD) arithmetic
operations, and there is no equivalent BCD instruction to adjust B.
Finally, the add, subtract, and compare instructions involving both A and
B (ABA, SBA, and CBA) only operate in one direction; therefore, it is
important to plan ahead so the correct operand will be in the correct
accumulator.

6.3.2 Index Registers (X and Y)

The 16-bit index registers X and Y are used for indexed addressing
mode. In the indexed addressing mode, the contents of a 16-bit index
register are added to an 8-bit offset, which is included as part of the
instruction, to form the effective address of the operand to be used in the
instruction. In most cases, instructions involving index register Y take
one extra byte of object code and one extra cycle of execution time
compared to the equivalent instruction using index register X. The
second index register is especially useful for moves and in cases where
operands from two separate tables are involved in a calculation. In the
earlier M6800 and M6801, the programmer had to store the index to
some temporary location so the second index value could be loaded into
the index register.
Reference Manual M68HC11 — Rev. 6

200 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Programmer’s Model
The ABX and ABY instructions along with increment and decrement
instructions allow some arithmetic operations on the index registers, but,
in some cases, more powerful calculations are needed. The exchange
instructions, XGDX and XGDY, offer a simple way to load an index value
into the 16-bit double accumulator, which has more powerful arithmetic
capabilities than the index registers themselves.

It is very common to load one of the index registers with the beginning
address of the internal register space (usually $1000), which allows the
indexed addressing mode to be used to access any of the internal I/O
and control registers. Indexed addressing requires fewer bytes of object
code than the corresponding instruction using extended addressing.
Perhaps a more important argument for using indexed addressing to
access register space is that bit-manipulation instructions are available
for indexed addressing but not for extended addressing.

6.3.3 Stack Pointer (SP)

The M68HC11 CPU automatically supports a program stack. This stack
may be located anywhere in the 64-Kbyte address space and may be
any size up to the amount of memory available in the system. Normally,
the stack pointer register is initialized by one of the first instructions in an
application program. Each time a byte is pushed onto the stack, the
stack pointer is automatically decremented, and each time a byte is
pulled off the stack, the stack pointer is automatically incremented. At
any given time, the stack pointer register holds the 16-bit address of the
next free location on the stack. The stack is used for subroutine calls,
interrupts, and for temporary storage of data values.

When a subroutine is called by a jump-to-subroutine (JSR) or branch-to-
subroutine (BSR) instruction, the address of the next instruction after the
JSR or BSR is automatically pushed onto the stack (low half first). When
the subroutine is finished, a return-from-subroutine (RTS) instruction is
executed. The RTS causes the previously stacked return address to be
pulled off the stack, and execution continues at this recovered return
address.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Central Processor Unit (CPU) 201

Central Processor Unit (CPU)
Whenever an interrupt occurs (provided it is not masked), the current
instruction finishes normally, the address of the next instruction (the
current value in the program counter) is pushed onto the stack, all of the
CPU registers are pushed onto the stack, and execution continues at the
address specified by the vector for the highest priority pending interrupt.
After completing the interrupt service routine, a return from interrupt
(RTI) instruction is executed. The RTI instruction causes the saved
registers to be pulled off the stack in reverse order, and program
execution resumes as if there had been no interruption.

Another common use for the stack is for temporary storage of register
values. A simple example would be a subroutine using accumulator A.
The user could push accumulator A onto the stack when entering the
subroutine and pull it off the stack just before leaving the subroutine. This
method is a simple way to ensure a register(s) will be the same after
returning from the subroutine as it was before starting the subroutine.

The most important aspect of the stack is that it is completely automatic.
A programmer does not normally have to be concerned about the stack
other than to be sure that it is pointing at usable random-access memory
(RAM) and that there is sufficient space. To ensure sufficient space, the
user would need to know the maximum depth of subroutine or interrupt
nesting possible in the particular application.

There are a few less common uses for the stack. For instance, the stack
can be used to pass parameters to a subprogram, which is fairly
common in high-level language compilers but is often overlooked by
assembly-language programmers. There are two advantages of this
technique over specific assignment of temporary or variable locations.
First, the memory locations are only needed for the time the subprogram
is being executed; they can be used for something else when the
subprogram is completed. Second, this feature makes the subprogram
re-entrant so that an interrupting program could call the same
subprogram with a different set of values without disturbing the
interrupted use of the subprogram.

In unusual cases, a programmer may want to look at or even manipulate
something that is on the stack, which should only be attempted by an
experienced programmer because it requires a detailed understanding
of how the stack operates. Monitor programs like BUFFALO sometimes
Reference Manual M68HC11 — Rev. 6

202 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Programmer’s Model
place items on a stack manually and then perform an RTI instruction to
go to a user program. This technique is an odd use of the stack and RTI
instruction because an RTI would normally correspond to a previous
interrupt.

6.3.4 Program Counter (PC)

The program counter is a 16-bit register that holds the address of the
next instruction to be executed.

6.3.5 Condition Code Register (CCR)

This register contains five status indicators, two interrupt masking bits,
and a STOP disable bit. The register is named for the five status bits
since that is the major use of the register. In the earlier M6800 and
M6801 CPUs, there was no X interrupt mask and no STOP disable
control in this register.

The five status flags reflect the results of arithmetic and other operations
of the CPU as it performs instructions. The five flags are half carry (H),
negative (N), zero (Z), overflow (V), and carry/borrow (C). The half-carry
flag, which is used only for BCD arithmetic operations (see 6.5.1.2
Arithmetic Operations), is only affected by the add accumulators A and
B (ABA), ADD, and add with carry (ADC) addition instructions (21
opcodes total). The N, Z, V, and C status bits allow for branching based
on the results of a previous operation. Simple branches are included for
either state of any of these four bits. Both signed and unsigned versions
of branches are provided for the conditions <, ≤, =, ≠, ≥, or >.

The H bit indicates a carry from bit 3 during an addition operation. This
status indicator allows the CPU to adjust the result of an 8-bit BCD
addition so it is in correct BCD format, even though the add was a binary
operation. This H bit, which is only updated by the ABA, ADD, and ADC
instructions, is used by the DAA instruction to compensate the result in
accumulator A to correct BCD format.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Central Processor Unit (CPU) 203

Central Processor Unit (CPU)
The N bit reflects the state of the most significant bit (MSB) of a result.
For twos complement, a number is negative when the MSB is set and
positive when the MSB is 0. The N bit has uses other than in
twos-complement operations. By assigning an often tested flag bit to the
MSB of a register or memory location, the user can test this bit by loading
an accumulator.

The Z bit is set when all bits of the result are 0s. Compare instructions
do an internal implied subtraction, and the condition codes, including Z,
reflect the results of that subtraction. A few operations (INX, DEX, INY,
and DEY) affect the Z bit and no other condition flags. For these
operations, the user can only determine = and ≠.

The V bit is used to indicate if a twos-complement overflow has occurred
as a result of the operation.

The C bit is normally used to indicate if a carry from an addition or a
borrow has occurred as a result of a subtraction. The C bit also acts as
an error flag for multiply and divide operations. Shift and rotate
instructions operate with and through the carry bit to facilitate
multiple-word shift operations.

In the M68HC11 CPU, condition codes are automatically updated by
almost all instructions; thus, it is rare to execute any extra instructions to
specifically update the condition codes. For example, the load
accumulator A (LDAA) and store accumulator A (STAA) instructions
automatically set or clear the N, Z, and V condition code flags. (In some
other architectures, few instructions affect the condition code bits; thus,
it takes two instructions to load and test a variable.) The challenge in a
Motorola processor lies in finding instructions that specifically do not
alter the condition codes in rare cases where that is desirable. The most
important instructions that do not alter condition codes are the pushes,
pulls, add B to X (ABX), add B to Y (ABY), and 16-bit transfers and
exchanges. It is always a good idea to refer to an instruction set
summary such as the pocket guide (Motorola document order number
MC68HC11A8RG/AD) to check which condition codes are affected by a
particular instruction.
Reference Manual M68HC11 — Rev. 6

204 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Programmer’s Model
The STOP disable (S) bit is used to allow or disallow the STOP
instruction. Some users consider the STOP instruction dangerous
because it causes the oscillator to stop; however, the user can set the S
bit in the CCR to disallow the STOP instruction. If the STOP instruction
is encountered by the CPU while the S bit is set, it will be treated like a
no-operation (NOP) instruction, and processing continues to the next
instruction.

The interrupt request (IRQ) mask (I bit) is a global mask that disables all
maskable interrupt sources. While the I bit is set, interrupts can become
pending and are remembered, but CPU operation continues
uninterrupted until the I bit is cleared. After any reset, the I bit is set by
default and can be cleared only by a software instruction. When any
interrupt occurs, the I bit is automatically set after the registers are
stacked but before the interrupt vector is fetched. After the interrupt has
been serviced, an RTI instruction is normally executed, restoring the
registers to the values that were present before the interrupt occurred.
Normally, the I bit would be 0 after an RTI was executed. Although
interrupts can be re-enabled within an interrupt service routine, to do so
is unusual because nesting of interrupts becomes possible, which
requires much more programming care than single-level interrupts and
seldom improves system performance.

The XIRQ mask (X bit) is used to disable interrupts from the XIRQ pin.
After any reset, X is set by default and can be cleared only by a software
instruction. When XIRQ is recognized, the X bit (and I bit) are
automatically set after the registers are stacked but before the interrupt
vector is fetched. After the interrupt has been serviced, an RTI
instruction is normally executed, causing the registers to be restored to
the values that were present before the interrupt occurred. It is logical to
assume the X bit was clear before the interrupt; thus, the X bit would be 0
after the RTI was executed. Although XIRQ can be re-enabled within an
interrupt service routine, to do so is unusual because nesting of
interrupts becomes possible, which requires much more programming
care than single-level interrupts.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Central Processor Unit (CPU) 205

Central Processor Unit (CPU)
6.4 Addressing Modes

In the M68HC11 CPU, six addressing modes can be used to reference
memory: immediate, direct, extended, indexed (with either of two 16-bit
index registers and an 8-bit offset), inherent, and relative. Some
instructions require an additional byte (a prebyte) before the opcode to
accommodate a multiple-page opcode map.

Each of the addressing modes (except inherent) results in an internally
generated, double-byte value referred to as the effective address. This
value, which is the result of a statement operand field, is the value that
appears on the address bus during the memory reference portion of the
instruction. The addressing mode is an implicit part of every M68HC11
instruction.

Bit-manipulation instructions actually employ two or three addressing
modes during execution but are classified by the addressing mode used
to access the primary operand. All bit-manipulation instructions use
immediate addressing to fetch a bit mask, and branch variations use
relative addressing mode to determine a branch destination.

The following paragraphs provide a description of each addressing
mode. In these descriptions, effective address is used to indicate the
memory address from which the argument is fetched or stored or from
which execution is to proceed.

6.4.1 Immediate (IMM)

In the immediate addressing mode, the actual argument is contained in
the byte(s) immediately following the instruction in which the number of
bytes matches the size of the register. These instructions are two, three,
or four (if prebyte is required) bytes.

Machine-code byte(s) that follow the opcode are the value of the
statement rather than the address of a value. In this case, the effective
address of the instruction is specified by the character # sign and
implicitly points to the byte following the opcode. The immediate value is
limited to either one or two bytes, depending on the size of the register
involved in the instruction. Examples of several assembly-language
Reference Manual M68HC11 — Rev. 6

206 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Addressing Modes
statements using the immediate addressing mode are shown. Symbols
and expression used in these statements are defined immediately after
the examples.

The first three statements are assembler directives that set up values to
be used in the remaining statements. The remaining nine statements are
examples of immediate addressing. The value of each statement
operand field appears in byte(s) immediately following the opcode. The
operand field for immediate addressing begins with the character # sign.
The character # sign is used by the assembler to detect the immediate
mode of addressing. A common programming error is to forget this
character # sign.

Machine Code Label Operation Operand Comments

CAT EQU 7 CAT SAME AS 7
ORG $1000 SET LOCATION COUNTER

REGS EQU * ADDR(REGS) IS $1000

86 16 LDAA #22 DECIMAL 22 ⇒ ACCA ($16)
C8 34 EORB #$34 XOR ($34,ACCB) ⇒ ACCB
81 24 CMPA #%100100 RIGHT ALIGNED BINARY

86 07 LDAA #CAT 7 ⇒ ACCA
CC 12 34 LDD #$1234
CC 00 07 LDD #7 7 ⇒ ACCA:ACCB

86 12 LDAA #@22 OCTAL
86 41 LDAA #’A ASCII
CE 10 00 LDX #REGS ADDR(REGS) ⇒ X

A variety of symbols and expressions can be used following the
character # sign. Since not all assemblers use the same rules of syntax
and special characters, the user should refer to the documentation for
the particular assembler that will be used. Character prefixes used in the
previous example statements are defined as follows:

Prefix Definition
None Decimal

$ Hexadecimal
@ Octal
% Binary
’ Single ASCII character
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Central Processor Unit (CPU) 207

Central Processor Unit (CPU)
6.4.2 Extended (EXT)

In the extended addressing mode, the effective address of the
instruction appears explicitly in the two bytes following the opcode.
Therefore, the length of most instructions using the extended addressing
mode is three bytes: one for the opcode and two for the effective
address. The last two bytes of the instruction contain the absolute
address of the operand. These instructions are three or four (if prebyte
is required) bytes: one or two for the opcode and two for the effective
address. Instructions from the second, third, and fourth opcode map
pages require a page-select prebyte prior to the opcode byte. Only four
extended addressing mode instructions involving index register Y
require this extra prebyte.

Examples of assembly-language statements that use extended
addressing mode are grouped with direct addressing mode examples
and appear after the discussion of the direct addressing mode.

6.4.3 Direct (DIR)

In the direct addressing mode, the least significant byte of the effective
address of the instruction appears in the byte following the opcode. The
high-order byte of the effective address is assumed to be $00 and is not
included as an instruction byte (saves program memory space and
execution time). This fact limits the use of direct addressing mode to
operands in the $0000–$00FF area of memory (called the direct page).
The direct addressing mode is sometimes called zero-page addressing
mode. The length of most instructions using the direct addressing mode
is two bytes: one for the opcode and one for the effective address.
Instructions from the second, third, and fourth opcode-map pages
require a page-select prebyte prior to the opcode byte. Only four direct
addressing mode instructions involving index register Y require this extra
prebyte.

Direct addressing allows the user to access $0000–$00FF, using
instructions that take one less byte of program memory space than the
equivalent instructions using extended addressing. By eliminating the
additional memory access, execution time is reduced by one cycle. In
the course of a large program, this savings can be substantial. For most
Reference Manual M68HC11 — Rev. 6

208 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Addressing Modes
applications, the default memory map of the MCU, which places internal
random-access memory (RAM) in the $0000–$00FF area, is a good
choice because the designer can assign these locations to frequently
referenced data variables. In some MCU applications, it is desirable to
locate the internal registers in this premium memory space. This
arrangement might be desirable in an I/O-intensive application in which
the program space savings are important or in the case of some very
critical timing requirement in which the extra cycle for extended
addressing mode is undesirable. In the M68HC11 MCU, software can
configure the memory map so that internal RAM, and/or internal
registers, or external memory space can occupy these addresses (see
3.5.1 RAM and I/O Mapping Register (INIT)).

Some instructions provide for extended addressing mode but not direct
addressing mode. These instructions, which are members of a group
called read-modify-write instructions, operate directly on memory
(opcodes $40–$7F except jump (JMP) and test for zero or minus (TST)
on all opcode pages) and have the following form:

<operation>M ⇒ M

The increment memory byte (INC), decrement memory byte (DEC),
clear memory byte (CLR), and one’s complement memory byte (COM)
instructions are members of this group, and each supports extended
addressing mode but not direct addressing mode. The following
example shows the direct and extended addressing modes.

Machine Code Label Operation Operand Comments

B3 00 12 SUBD CAT FWD REF TO CAT
CAT EQU $12 DEFINE CAT = $12

93 12 SUBD CAT BKWD REF TO CAT
7F 00 12 CLR CAT EXTENDED ONLY

In the previous example, the first reference to the CAT label is a forward
reference, and the assembler selected the extended addressing mode.
The second reference, which is a backward reference, enabled the
assembler to know the symbol value when processing the statement,
and the assembler selected the direct addressing mode. The last
reference to CAT is also a backward reference to a symbol in the direct
addressing area, but the extended addressing mode was selected
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Central Processor Unit (CPU) 209

Central Processor Unit (CPU)
because there is no direct addressing mode variation of that particular
instruction. Some assemblers allow the direct or extended addressing
modes to be forced (by preceding the operand field with < or >,
respectively), even when other conditions would suggest the other
mode.

6.4.4 Indexed (INDX and INDY)

In the indexed addressing mode, either index register X or Y is used in
calculating the effective address. In this case, the effective address is
variable and depends on the current contents of index register X or Y
and a fixed, 8-bit, unsigned offset contained in the instruction. This
addressing mode can be used to reference any memory location in the
64-Kbyte address space. These instructions are usually two or three
bytes (if prebyte is required) — the opcode and the 8-bit offset.

In microprocessor-based systems, instructions usually reside in
read-only memory (ROM). Therefore, the offset in the instruction should
be considered a fixed value that is determined at assembly time rather
than during program execution. The use of dynamic single-byte offsets
is facilitated with the use of the add accumulator B to index register X
(ABX) instruction. More complex address calculations are aided by the
arithmetic capability of the 16-bit accumulator D and the XGDX and
XGDY instructions.

If no offset is specified or desired, the machine code will contain $00 in
the offset byte. The offset is an unsigned single-byte value that, when
added to the current value in the index register, yields the effective
address of the operand, leaving the index register unchanged. Because
the offset byte is unsigned, only positive offsets in the range 0–255 can
be specified. To use the indexed addressing mode to access on-chip
registers in the MC68HC11A8, it is best to initialize the index register to
the starting address of the register block (usually $1000) and use an 8-bit
offset ($00–$3F) in the instructions that access registers. This method is
preferred over loading the index register with the 16-bit address of a
register and then specifying a zero offset in the instruction. This latter
method requires modification of the index register for each register
access; whereas, the former method does not.
Reference Manual M68HC11 — Rev. 6

210 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
Addressing Modes
Examples of the indexed addressing mode are shown (EA indicates
effective address):

Machine Code Label Operation Operand Comments

E3 00 ADDD X EA=(X)
E3 00 ADDD ,X EA=(X)
E3 00 ADDD 0,X EA=(X)

E3 04 ADDD 4,X EA=(X)+4
CAT EQU 7 DEFINE CAT=7

E3 07 ADDD CAT,X EA=(X)+7
E3 22 ADDD $22,X EA=(X)+$22
E3 22 ADDD CAT*8/2+6,X EA=(X)+(CAT*8÷2+6)

Bit-manipulation instructions support direct and indexed addressing
modes but not extended addressing mode. The indexed addressing
mode becomes very important for these instructions because the direct
addressing mode only permits access to the first 256 memory locations;
whereas, the indexed addressing mode allows access to any memory
location in the 64-Kbyte memory map.

The second index register (Y) improves the efficiency of move
operations and operations involving data from more than one table. Most
instructions involving index register Y require two-byte opcodes, thus
requiring one extra byte of program memory space and one extra cycle
of execution time compared to the equivalent index register X
instruction.

6.4.5 Inherent (INH)

In the inherent addressing mode, everything needed to execute the
instruction is inherently known by the CPU. The operands (if any) are
CPU registers and thus are not fetched from memory. These instructions
are usually one or two bytes.

Many M68HC11 MCU instructions use one or more registers as
operands. For instance, the ABA instruction causes the CPU to add the
contents of accumulators A and B and place the result in accumulator A.
The INCB instruction causes the contents of accumulator B to be
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Central Processor Unit (CPU) 211

Central Processor Unit (CPU)
incremented by one. Similarly, the INX instruction causes the index
register X to be incremented by one. These three assembly-language
statements are examples of the inherent addressing mode:

Machine Code Label Operation Operand Comments

1B ABA A + B ⇒ A
5C INCB B + 1 ⇒ B
08 INX X + 1 ⇒ X

6.4.6 Relative (REL)

The relative addressing mode is used only for branch instructions.
Branch instructions, other than the branching versions of
bit-manipulation instructions, generate two machine code bytes: one for
the opcode and one for the relative offset. Because it is desirable to
branch in either direction, the offset byte is a signed twos-complement
offset with a range of –128 to +127 bytes (with respect to the address of
the instruction immediately following the branch instruction). If the
branch condition is true, the contents of the 8-bit signed byte following
the opcode (offset) are added to the contents of the program counter to
form the effective branch address; otherwise, control proceeds to the
instruction immediately following the branch instruction.

The offset byte is always the last byte of a branch instruction. If the offset
byte is 0, execution will proceed to the instruction immediately following
the branch instruction, regardless of the test involved. A branch always
(BRA) instruction with an offset of $FE will result in an infinite loop back
to itself. Direct or indexed X addressing mode branch if bit clear
(BRCLR) and branch if bit set (BRSET) instructions are four-byte
instructions; therefore, an offset byte of $FC will cause the instruction to
execute repeatedly until the bit test becomes false. Indexed Y
addressing mode BRCLR and BRSET instructions are five-byte
instructions; thus, an offset byte of $FB will cause the instruction to
execute repeatedly until the bit test becomes false.
Reference Manual M68HC11 — Rev. 6

212 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
M68HC11 Instruction Set
Examples of the relative addressing mode are shown in the following
assembly-language statements:

Machine Code Label Operation Operand Comments

20 00 THERE BRA WHERE FORWARD BRANCH
22 FC WHERE BHI THERE BACKWARD BRANCH
24 04 BCC LBCC L-O-N-G BCC

27 FE HANG BEQ HANG BRANCH TO SELF
27 FE BEQ * "*" MEANS "HERE"
7E 10 00 LBCC JMP $1000

8D F7 BSR HANG

6.5 M68HC11 Instruction Set

This section explains the basic capabilities and organization of the
instruction set. For this discussion, the instruction set is divided into
functional groups of instructions. Some instructions appear in more than
one functional group. For example, transfer accumulator A to CCR
(TAP) appears in the CCR group and in the load/store/transfer subgroup
of accumulator/memory instructions. Detailed explanations of each
instruction are given in Appendix A. Instruction Set Details.

To expand the number of instructions used in the M68HC11 CPU, a
prebyte mechanism that affects certain instructions has been added.
Most of the instructions affected are associated with index register Y.
Instructions that do not require a prebyte reside in page 1 of the opcode
map. Instructions requiring a prebyte reside in pages 2, 3, and 4 of the
opcode map. The opcode-map prebyte codes are $18 for page 2, $1A
for page 3, and $CD for page 4. A prebyte code applies only to the
opcode immediately following it. That is, all instructions are assumed to
be single-byte opcodes unless the first byte of the instruction happens to
correspond to one of the three prebyte codes rather than a page 1
opcode.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Central Processor Unit (CPU) 213

Central Processor Unit (CPU)
6.5.1 Accumulator and Memory Instructions

Most of these instructions use two operands. One operand is either an
accumulator or an index register; whereas, the second operand is
usually obtained from memory using one of the addressing modes
discussed earlier. These accumulator memory instructions can be
divided into six subgroups:

1. Loads, stores, and transfers

2. Arithmetic operations

3. Multiply and divide

4. Logical operations

5. Data testing and bit manipulation

6. Shifts and rotates

These instructions are discussed in the following tables and paragraphs.
Reference Manual M68HC11 — Rev. 6

214 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
M68HC11 Instruction Set
6.5.1.1 Loads, Stores, and Transfers

Almost all MCU activities involve transferring data from memories or
peripherals into the CPU or transferring results from the CPU into
memory or I/O devices. The load, store, and transfer instructions
associated with the accumulators are summarized in Table 6-1.
Additional load, store, push, and pull instructions are associated with the
index registers and stack pointer register (see 6.5.2 Stack and Index
Register Instructions).

Table 6-1. Load, Store, and Transfer Instructions

Function Mnemonic IMM DIR EXT INDX INDY INH

Clear Memory Byte CLR X X X

Clear Accumulator A CLRA X

Clear Accumulator B CLRB X

Load Accumulator A LDAA X X X X X

Load Accumulator B LDAB X X X X X

Load Double Accumulator D LDD X X X X X

Pull A from Stack PULA X

Pull B from Stack PULB X

Push A onto Stack PSHA X

Push B onto Stack PSHB X

Store Accumulator A STAA X X X X X

Store Accumulator B STAB X X X X X

Store Double Accumulator D STD X X X X X

Transfer A to B TAB X

Transfer A to CCR TAP X

Transfer B to A TBA X

Transfer CCR to A TPA X

Exchange D with X XGDX X

Exchange D with Y EGDY X
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Central Processor Unit (CPU) 215

Central Processor Unit (CPU)
6.5.1.2 Arithmetic Operations

This group of instructions supports arithmetic operations on a variety of
operands; 8- and 16-bit operations are supported directly and can easily
be extended to support multiple-word operands. Twos-complement
(signed) and binary (unsigned) operations are supported directly. BCD
arithmetic is supported by following normal arithmetic instruction
sequences, using the DAA instruction, which restores results to BCD
format. Compare instructions perform a subtract within the CPU to
update the condition code bits without altering either operand. Although
test instructions are provided, they are seldom needed since almost all
other operations automatically update the condition code bits.

Table 6-2. Arithmetic Operation Instructions

Function Mnemonic IMM DIR EXT INDX INDY INH

Add Accumulators ABA X

Add Accumulator B to X ABX X

Add Accumulator B to Y ABY X

Add with Carry to A ADCA X X X X X

Add with Carry to B ADCB X X X X X

Add Memory to A ADDA X X X X X

Add Memory to B ADDB X X X X X

Add Memory to D (16 Bit) ADDD X X X X X

Compare A to B CBA X

Compare A to Memory CMPA X X X X X

Compare B to Memory CMPB X X X X X

Compare D to Memory (16 Bit) CPD X X X X X

Decimal Adjust A (for BCD) DAA X

Decrement Memory Byte DEC X X X

Decrement Accumulator A DECA X

Decrement Accumulator B DECB X

Increment Memory Byte INC X X X

Increment Accumulator A INCA X

Increment Accumulator B INCB X
Reference Manual M68HC11 — Rev. 6

216 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
M68HC11 Instruction Set
6.5.1.3 Multiply and Divide

One multiply and two divide instructions are provided. The 8-bit by 8-bit
multiply produces a 16-bit result. The integer divide (IDIV) performs a
16-bit by 16-bit divide, producing a 16-bit result and a 16-bit remainder.
The fractional divide (FDIV) divides a 16-bit numerator by a larger 16-bit
denominator, producing a 16-bit result (a binary weighted fraction
between 0 and 0.99998) and a 16-bit remainder. FDIV can be used to
further resolve the remainder from an IDIV or FDIV operation.

Twos Complement Memory Byte NEG X X X

Twos Complement Accumulator A NEGA X

Twos Complement Accumulator B NEGB X

Subtract with Carry from A SBCA X X X X X

Subtract with Carry from B SBCB X X X X X

Subtract Memory from A SUBA X X X X X

Subtract Memory from B SUBB X X X X X

Subtract Memory from D (16 Bit) SUBD X X X X X

Test for Zero or Minus TST X X X

Test for Zero or Minus A TSTA X

Test for Zero or Minus B TSTB X

Table 6-2. Arithmetic Operation Instructions (Continued)

Function Mnemonic IMM DIR EXT INDX INDY INH

Table 6-3. Multiply and Divide Instructions

Function Mnemonic INH

Multiply (A × B ⇒ D) MUL X

Fractional Divide (D ÷ X ⇒ X; r ⇒ D) FDIV X

Integer Divide (D ÷ X ⇒ X; r ⇒ D) IDIV X
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Central Processor Unit (CPU) 217

Central Processor Unit (CPU)
6.5.1.4 Logical Operations

This group of instructions is used to perform the Boolean logical
operations AND, inclusive OR, exclusive OR, and one’s complement.

Table 6-4. Logical Operation Instructions

Function Mnemonic IMM DIR EXT INDX INDY INH

AND A with Memory ANDA X X X X X

AND B with Memory ANDB X X X X X

Bit(s) Test A with Memory BITA X X X X X

Bit(s) Test B with Memory BITB X X X X X

One’s Complement Memory Byte COM X X X

One’s Complement A COMA X

One’s Complement B COMB X

OR A with Memory (Exclusive) EORA X X X X X

OR B with Memory (Exclusive) EORB X X X X X

OR A with Memory (Inclusive) ORAA X X X X X

OR B with Memory (Inclusive) ORAB X X X X X
Reference Manual M68HC11 — Rev. 6

218 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
M68HC11 Instruction Set
6.5.1.5 Data Testing and Bit Manipulation

This group of instructions is used to operate on operands as small as a
single bit, but these instructions can also operate on any combination of
bits within any 8-bit location in the 64-Kbyte memory space. The bit test
(BITA or BITB) instructions perform an AND operation within the CPU to
update condition code bits without altering either operand. The BSET
and BCLR instructions read the operand, manipulate selected bits within
the operand, and write the result back to the operand address. Some
care is required when read-modify-write instructions such as BSET and
BCLR are used on I/O and control register locations because the
physical location read is not always the same as the location written.

Table 6-5. Data Testing and Bit Manipulation Instructions

Function Mnemonic IMM DIR EXT INDX INDY

Bit(s) Test A with Memory BITA X X X X X

Bit(s) Test B with Memory BITB X X X X X

Clear Bit(s) in Memory BCLR X X X

Set Bit(s) in Memory BSET X X X

Branch if Bit(s) Clear BRCLR X X X

Branch if Bit(s) Set BRSET X X X
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Central Processor Unit (CPU) 219

Central Processor Unit (CPU)
6.5.1.6 Shifts and Rotates

All the shift and rotate functions in the M68HC11 CPU involve the carry
bit in the CCR in addition to the 8- or 16-bit operand in the instruction,
which permits easy extension to multiple-word operands. Also, by
setting or clearing the carry bit before a shift or rotate instruction, the
programmer can easily control what will be shifted into the opened end
of an operand. The arithmetic shift right (ASR) instruction maintains the
original value of the MSB of the operand, which facilitates manipulation
of twos-complement (signed) numbers.

The logical-left-shift instructions are shown in parentheses because
there is no difference between an arithmetic and a logical left shift. Both
mnemonics are recognized by the assembler as equivalent, but having
both instruction mnemonics makes some programs easier to read.

Table 6-6. Shift and Rotate Instructions

Function Mnemonic IMM DM EXT INDX INDY INH

Arithmetic Shift Left Memory ASL X X X

Arithmetic Shift Left A ASLA X

Arithmetic Shift Left B ASLB X

Arithmetic Shift Left Double ASLD X

Arithmetic Shift Right Memory ASR X X X

Arithmetic Shift Right A ASRA X

Arithmetic Shift Right B ASRB X

(Logical Shift Left Memory) (LSL) X X X

(Logical Shift Left A) (LSLA) X

(Logical Shift Left B) (LSLB) X

(Logical Shift Left Double) (LSLD) X

Logical Shift Right Memory LSR X X X

Logical Shift Right A LSRA X

Logical Shift Right B LSRB X

Logical Shift Right D LSRD X

Rotate Left Memory ROL X X X

Rotate Left A ROLA X

Rotate Left B ROLB X

Rotate Right Memory ROR X X X

Rotate Right A RORA X

Rotate Right B RORB X
Reference Manual M68HC11 — Rev. 6

220 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
M68HC11 Instruction Set
6.5.2 Stack and Index Register Instructions

Table 6-7 summarizes the instructions available for the 16-bit index
registers (X and Y) and the 16-bit stack pointer.

Table 6-7. Stack and Index Register Instructions

Function Mnemonic IMM DIR EXT INDX INDY INH

Add Accumulator B to X ABX X

Add Accumulator B to Y ABY X

Compare X to Memory (16 Bit) CPX X X X X X

Compare Y to Memory (16 Bit) CPY X X X X X

Decrement Stack Pointer DES X

Decrement Index Register X DEX X

Decrement Index Register Y DEY X

Increment Stack Pointer INS X

Increment Index Register X INX X

Increment Index Register Y INY X

Load Index Register X LDX X X X X X

Load Index Register Y LDY X X X X X

Load Stack Pointer LDS X X X X X

Pull X from Stack PULX X

Pull Y from Stack PULY X

Push X onto Stack PSHX X

Push Y onto Stack PSHY X

Store Index Register X STX X X X X X

Store Index Register Y STY X X X X X

Store Stack Pointer STS X X X X X

Transfer SP to X TSX X

Transfer SP to Y TSY X

Transfer X to SP TXS X

Transfer Y to SP TYS X

Exchange D with X XGDX X

Exchange D with Y XGDY X
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Central Processor Unit (CPU) 221

Central Processor Unit (CPU)
The exchange D with X (XGDX) and exchange D with Y (XGDY) provide
a simple way of transferring a pointer value from a 16-bit index register
to accumulator D, which has more powerful 16-bit arithmetic capabilities
than the 16-bit index registers. Since these are bidirectional exchanges,
the original value of accumulator D is automatically preserved in the
index register while the pointer is being manipulated in accumulator D.
When pointer calculations are finished, another exchange
simultaneously updates the index register and restores accumulator D to
its former value.

The transfers between an index register and the stack pointer deserve
additional comment. The stack pointer always points at the next free
location on the stack as opposed to the last item that was pushed onto
the stack. The usual reason for transferring the stack pointer value into
an index register is to allow indexed addressing access to information
that was formerly pushed onto the stack. In such cases, the address
pointed to by the stack pointer is of no value since nothing has yet been
stored at that location. This fact explains why the value in the stack
pointer is incremented during transfers to an index register. There is a
corresponding decrement of a 16-bit value as it is transferred from an
index register to the stack pointer.
Reference Manual M68HC11 — Rev. 6

222 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
M68HC11 Instruction Set
6.5.3 Condition Code Register Instructions

These instructions allow a programmer to manipulate bits in the CCR.

Initially, it may appear that there should be a set and a clear instruction
for each of the eight bits in the CCR; however, these instructions are
present for only three of the eight bits (C, I, and V). Upon closer
consideration, good reasons exist for not including the set and clear
instructions for the other five bits. The STOP disable (S) bit is an unusual
case because this bit is intended to lock out the STOP instruction for
those who view it as an undesirable function in their application.
Providing set and clear instructions for this bit would make it easier to
enable STOP when it was not wanted or disable STOP when it was
wanted. The TAP instruction provides a way to change the S bit but
reduces the chance of an undesirable change to S because the value of
accumulator A at the time the TAP instruction is executed determines
whether the S bit will actually change.

The XIRQ mask (X bit) is another unusual case. The definition of this bit
specifically states that software shall not be allowed to change X from
0 to 1; in fact, this change is even prohibited by hardware logic. This
feature immediately eliminates a need for a set X instruction. For
arguments similar to those used for the S bit, the TAP instruction is
preferred over a clear X instruction to clear X because TAP makes it a
little less likely that X will become cleared before the programmer
intended.

Table 6-8. Condition Code Register Instructions

Function Mnemonic INH

Clear Carry Bit CLC X

Clear Interrupt Mask Bit CLI X

Clear Overflow Bit CLV X

Set Carry Bit SEC X

Set Interrupt Mask Bit SEI X

Set Overflow Bit SEV X

Transfer A to CCR TAP X

Transfer CCR to A TPA X
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Central Processor Unit (CPU) 223

Central Processor Unit (CPU)
The half-carry (H) bit needs no set or clear instructions because this
condition code bit is used only by the DAA instruction to adjust the result
of a BCD add or subtract. Since the H bit is not used as a test condition
for any branches, it would not be useful to be able to set or clear this bit.

This leaves only the negative (N) and zero (Z) condition code bits. In
contrast to S, X, and H, it is often useful to be able to easily set or clear
these flag bits. A clear accumulator instruction, such as CLRB, will clear
the N and set the Z condition code bits. The load instruction, LDAA #$80,
causes N to be set and Z to be cleared. Since there are so many simple
instructions that can set or clear N and Z, it is not necessary to provide
specific set and clear instructions for N and Z in this group.

6.5.4 Program Control Instructions

This group of instructions, which is used to control the flow of a program
rather than to manipulate data, is divided into five subgroups:

1. Branches

2. Jumps

3. Subroutine calls and returns

4. Interrupt handling

5. Miscellaneous
Reference Manual M68HC11 — Rev. 6

224 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
M68HC11 Instruction Set
6.5.4.1 Branches

These instructions allow the CPU to make decisions based on the
contents of the condition code bits. All decision blocks in a flow chart
would correspond to one of the conditional branch instructions
summarized in Table 6-9.

The limited range of branches (–128/+127 locations) is more than
adequate for most (but not all) situations. In cases where this range is
too short, a jump instruction must be used. For every branch, there is a
branch for the opposite condition; thus, it is simple to replace a branch

Table 6-9. Branch Instructions

Function Mnemonic REL DIR INDX INDY Comments

Branch if Carry Clear BCC X C = 0 ?

Branch if Carry Set BCS X C = 1 ?

Branch if Equal Zero BEQ X Z = 1 ?

Branch if Greater Than or Equal BGE X Signed ≥

Branch if Greater Than BGT X Signed >

Branch if Higher BHI X Unsigned >

Branch if Higher or Same
(same as BCC)

BHS X Unsigned ≥

Branch if Less Than or Equal BLE X Signed ≤

Branch if Lower (same as BCS) BLO X Unsigned <

Branch if Lower or Same BLS X Unsigned ≤

Branch if Less Than BLT X Signed <

Branch if Minus BMI X N = 1 ?

Branch if Not Equal BNE X Z = 0 ?

Branch if Plus BPL X N = 0 ?

Branch if Bit(s) Clear
in Memory Byte

BRCLR X X X
Bit

Manipulation

Branch Never BRN X 3-cycle NOP

Branch if Bit(s) Set
in Memory Byte

BRSET X X X
Bit

Manipulation

Branch if Overflow Clear BVC X V = 0 ?

Branch if Overflow Set BVS X V = 1 ?
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Central Processor Unit (CPU) 225

Central Processor Unit (CPU)
having an out-of-range destination with a sequence consisting of the
opposite branch around a jump to the out-of-range destination. For
example, if a program contained this instruction

BHI TINBUK2 Unsigned >

where TINBUK2 was out of the –128/+127 location range, this
instruction sequence could be substituted:

BLS AROUND Unsigned ≤
JMP TINBUK2 Still go to TINBUK2 if >

AROUND EQU *

6.5.4.2 Jumps

The jump instruction allows control to be passed to any address in the
64-Kbyte memory map.

6.5.4.3 Subroutine Calls and Returns (BSR, JSR, and RTS)

These instructions provide an easy way to divide a programming task
into manageable blocks called subroutines. The CPU automates the
process of remembering the address in the main program where
processing should resume after the subroutine is finished. This address
is automatically pushed onto the stack when the subroutine is called and
is pulled off the stack during the RTS instruction that ends the
subroutine.

Table 6-10. Jump Instruction

Function Mnemonic DIR EXT INDX INDY INH

Jump JMP X X X X

Table 6-11. Subroutine Call and Return Instructions

Function Mnemonic REL DIR EXT INDX INDY INH

Branch to Subroutine BSR X

Jump to Subroutine JSR X X X X

Return from Subroutine RTS X
Reference Manual M68HC11 — Rev. 6

226 Central Processor Unit (CPU) MOTOROLA

Central Processor Unit (CPU)
M68HC11 Instruction Set
6.5.4.4 Interrupt Handling (RTI, SWI, and WAI)

This group of instructions is related to interrupt operations.

The software interrupt (SWI) instruction is similar to a JSR instruction,
except the contents of all working CPU registers are saved on the stack
rather than just the return address. SWI is unusual in that it is requested
by the software program as opposed to other interrupts that are
requested asynchronously to the executing program.

Wait for interrupt (WAI) has two main purposes. WAI is executed to place
the MCU in a reduced power-consumption standby state (wait mode)
until some interrupt occurs. It is also used to reduce the latency time to
some important interrupt. The reduction of latency occurs because the
time-consuming task of storing the CPU registers on the stack is
performed as soon as the WAI instruction begins executing. When the
interrupt finally occurs, the CPU is ready to fetch the appropriate vector
so the delay associated with register stacking is eliminated from latency
calculations.

6.5.4.5 Miscellaneous (NOP, STOP, and TEST)

NOP, which can be used to introduce a small time delay into the flow of
a program, is often useful in meeting the timing requirements of slow
peripherals. By incorporating NOP instructions into loops, longer delays
can be produced.

Table 6-12. Interrupt Handling Instructions

Function Mnemonic INH

Return from Interrupt RTI X

Software Interrupt SWI X

Wait for Interrupt WAI X

Table 6-13. Miscellaneous Instructions

Function Mnemonic INH

No Operation (2-cycle delay) NOP X

Stop Clocks STOP X

Test TEST X
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Central Processor Unit (CPU) 227

Central Processor Unit (CPU)
During debugging, it is common to replace various instructions with NOP
opcodes to effectively remove an unwanted instruction without having to
rearrange the rest of the program. By using the memory modify function
of a debug monitor, the instruction can easily be removed and restored
to see the effect.

Occasionally, a programmer is faced with the problem of fine-tuning the
delays through various paths in his program. In such cases, it is
sometimes useful to use a branch never (BRN) instruction as a 3-cycle
NOP. It is also possible to fine-tune execution time by choosing alternate
addressing-mode variations of instructions to change the execution time
of an instruction sequence without changing the program’s function.

STOP is an unusual instruction because it causes the oscillator and all
MCU clocks to freeze. This frozen state is called stop mode, and power
consumption is dramatically reduced in this mode. The operation of this
instruction is also dependent upon the S condition code bit because the
stop mode is not appropriate for all applications. If S is 1, the STOP
instruction is treated as a NOP instruction, and processing continues to
the next instruction.

The TEST instruction is used only during factory testing and is treated as
an illegal opcode in normal operating modes of the MCU. This instruction
causes unusual behavior on the address bus (counts backward), which
prevents its use in any normal system.
Reference Manual M68HC11 — Rev. 6

228 Central Processor Unit (CPU) MOTOROLA

Reference Manual — M68HC11

Section 7. Parallel Input/Output
7.1 Contents

7.2 Introduction .230

7.3 Parallel I/O Overview .231

7.4 Parallel I/O Register and Control Bit Explanations234
7.4.1 Port Registers. .236
7.4.2 Data Direction Registers .236

7.5 Detailed I/O Pin Descriptions .238
7.5.1 Port A .238
7.5.1.1 PA2–PA0 (IC3–IC1) Pin Logic .238
7.5.1.2 PA6–PA3 (OC5–OC2) Pin Logic240
7.5.1.3 PA7 (OC1 and PAI) Pin Logic .242
7.5.1.4 Port A Idealized Timing .244
7.5.2 Port B .245
7.5.2.1 Port B Pin Logic .245
7.5.2.2 Port B Idealized Timing .246
7.5.2.3 Special Considerations for Port B

on MC68HC24 PRU .248
7.5.3 R/W (STRB) Pin .248
7.5.3.1 R/W (STRB) Pin Logic .248
7.5.3.2 Special Considerations for STRB

on MC68HC24 PRU .250
7.5.4 Port C .251
7.5.4.1 Port C Pin Logic for Expanded Modes.251
7.5.4.2 Summary of Port C Idealized Expanded

Mode Timing .252
7.5.4.3 Port C Single-Chip Mode Pin Logic253
7.5.4.4 Port C Idealized Single-Chip Mode Timing 257
7.5.4.5 Special Considerations for Port C

on MC68HC24 PRU .259
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 229

Parallel Input/Output
7.5.5 AS (STRA) Pin .259
7.5.5.1 AS (STRA) Pin Logic .259
7.5.5.2 Special Considerations for STRA

on MC68HC24 PRU .261
7.5.6 Port D .261
7.5.6.1 PD0 (RxD) Pin Logic .262
7.5.6.2 PD1 (TxD) Pin Logic .264
7.5.6.3 PD2 (MISO) Pin Logic .266
7.5.6.4 PD3 (MOSI) Pin Logic .269
7.5.6.5 PD4 (SCK) Pin Logic .272
7.5.6.6 PD5 (SS) Pin Logic .274
7.5.6.7 Idealized Port D Timing .277
7.5.7 Port E .278
7.5.7.1 Port E Pin Logic .278
7.5.7.2 Idealized Port E Timing .280

7.6 Handshake I/O Subsystem. .281
7.6.1 Simple Strobe Mode. .282
7.6.1.1 Port B Strobe Output .283
7.6.1.2 Port C Simple Latching Input .283
7.6.2 Full-Input Handshake Mode .283
7.6.3 Full-Output Handshake Mode .285
7.6.3.1 Normal Output Handshake .286
7.6.3.2 Three-State Variation of Output Handshake 286
7.6.4 Parallel I/O Control Register (PIOC) 286
7.6.5 Non-Handshake Uses of STRA and STRB Pins 290

7.2 Introduction

This section describes parallel input/output (I/O) operations in the
MC68HC11A8, which includes port reads and writes as well as strobe
and handshake operations on ports B and C. The section begins with an
overview, followed by detailed descriptions of each port and the
handshake I/O subsystem. A number of schemes for efficient use of
parallel I/O on the MC68HC11A8 are included.
Reference Manual M68HC11 — Rev. 6

230 Parallel Input/Output MOTOROLA

Parallel Input/Output
Parallel I/O Overview
7.3 Parallel I/O Overview

The MC68HC11A8 has a total of 40 I/O pins, which are discussed in
7.5 Detailed I/O Pin Descriptions. All these pins are shared between
general-purpose I/O usage and at least one other on-chip peripheral
function. Although the following paragraphs are primarily concerned with
the general-purpose I/O capabilities of these pins, some important
interactions with the alternate functions also are discussed.

Shared functions of port A include general-purpose I/O, the main timer
system, and the pulse accumulator system. Port A has three
fixed-direction input pins, four fixed-direction output pins, and one
bidirectional pin. The direction of the PA7 pin is controlled by the data
direction register A bit 7 control bit (DDRA7) in the pulse accumulator
control (PACTL) register. Port A data is read from and written to the
PORTA register. Meaningful data may be read from port A even when
the pins are configured for an alternate timer or pulse accumulator
function. Data written to port A does not directly affect port A pins
configured for an alternate timer output function, but the data is
remembered in an internal latch so that, if the alternate function is
disabled later, the last data written to port A will be driven out of the
associated output pin.

Ports B and C and the strobe A (STRA) and strobe B (STRB) pins should
be considered together because their function depends on the basic
operating mode of the MC68HC11A8. When the microcontroller unit
(MCU) is operating in a single-chip mode, these 18 pins are used for
general-purpose I/O and for the handshake I/O subsystem. When the
MCU is operating in an expanded mode, these pins are used for a
multiplexed address/data bus. The handshake and general-purpose I/O
functions, which are lost in the expanded mode, can be regained by use
of the MC68HC24 port replacement unit. Special care was taken in
designing both these parts so that software could be developed on an
expanded system using these two parts and then later be mask
programmed into the read-only memory (ROM) of an MC68HC11A8,
which will be used in single-chip mode.

Although care was taken to ensure that the expanded system with an
MC68HC24 would work exactly like the MC68HC11A8 in single-chip
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 231

Parallel Input/Output
mode, there are a few subtle differences. For the vast majority of
applications, these differences are irrelevant. For the benefit of those
rare cases where a problem could arise, the differences will be explained
in the detailed descriptions of these ports and pins in 7.5 Detailed I/O
Pin Descriptions.

Port B is a general-purpose, 8-bit, fixed-direction output port. Writes to
the port B register (PORTB) cause data to be latched and driven out of
the port B pins. Reads of PORTB return the last data that was written to
port B. When the handshake I/O subsystem is operating in simple
strobed mode, writes to PORTB automatically cause a pulse on the
STRB output pin. The simple strobe mode is selected by the handshake
(HNDS) control bit equal to 0 in the parallel I/O control (PIOC) register.

Port C is a general-purpose, 8-bit, bidirectional I/O port. The primary
direction of data flow at each port C pin is independently controlled by a
corresponding bit in the data direction control register for port C (DDRC).
In addition to normal I/O functions at port C, there is an independent,
8-bit, parallel latch that captures port C data whenever a selected active
edge is detected on the STRA input pin. Reads of PORTCL return the
contents of this port C latch; whereas, reads of PORTC return the current
data from port C. Writes to either PORTC or PORTCL cause the written
data to be driven out of port C output pins. However, PORTCL writes
also trigger output handshake sequences; PORTC writes do not. Writes
to port C pins not configured as outputs do not cause data to be driven
out of those pins, but the data is remembered in internal latches. Thus,
if the pins later become outputs, the last data written to PORTC or
PORTCL will be driven out the port C pins.

Port C can be configured for wired-OR operation by setting the port C
wired-OR mode (CWOM) control bit in the PIOC register. This procedure
disables the P-channel pullup drivers of port C output pins and allows
port C pins to be directly connected to each other or to other
open-drain-type pins. In this configuration, there is no danger of
destructive conflicts if two output drivers try to drive the same node at the
same time. As with any open-drain line, an external pullup resistor is
required.
Reference Manual M68HC11 — Rev. 6

232 Parallel Input/Output MOTOROLA

Parallel Input/Output
Parallel I/O Overview
Whenever the handshake I/O subsystem is configured for a
full-handshake mode, port C is used for parallel data input or output.
STRA is a strobe input pin that causes port C data to be captured when
a selected edge is detected. In the three-state variation of full-output
handshake, the STRA pin also acts as an output enable control to force
port C pins to be driven outputs while STRA is in its selected state. STRB
is a strobe output pin that can be used in a pulsed or interlocked
configuration. In the pulsed configuration, some action in the handshake
I/O subsystem initiates STRB, which then stays active for two E-clock
cycles before reverting to its inactive state. In the interlocked
configuration, STRB is initiated by one action in the handshake
subsystem and terminated by a separate action. The final major element
of the handshake subsystem is the strobe A flag (STAF) status bit. STAF
is always set upon recognition of the selected edge at the STRA pin, but
the action that clears STAF depends on the handshake mode. A more
detailed description of the handshake I/O subsystem is located in
7.6 Handshake I/O Subsystem.

Port D is a general-purpose, 6-bit, bidirectional data port. Two port D
pins are alternately used by the asynchronous serial communications
interface (SCI) subsystem. The remaining four port D pins are alternately
used by the synchronous serial peripheral interface (SPI) subsystem.
The primary direction of data flow at each of the port D pins is selected
by a corresponding bit in the data direction register for port D (DDRD).
Port D can be configured for wired-OR operation by setting the port D
wired-OR mode control bit (DWOM) in the SPI control register (SPCR).

Port E is an 8-bit, fixed-direction input port. Port E pins alternately
function as analog-to-digital (A/D) converter channel inputs. Port E input
buffers are specially designed so they will not draw excessive
power-supply currents when their inputs are driven by intermediate
levels.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 233

Parallel Input/Output
7.4 Parallel I/O Register and Control Bit Explanations

Figure 7-1 shows all the registers and control bits concerned with the
discussion of parallel I/O in the following paragraphs. The registers are
shown in the order they appear in the memory map of the MC68HC11A8
because this order is significant in the case of double-byte reads and
writes. Figure 7-2 shows a number of registers and control bits
mentioned in 7.5 Detailed I/O Pin Descriptions. These control bits are
used to enable other on-chip peripheral subsystems to use the I/O pins.
These registers, which are shown here for reference, are discussed
throughout this manual. Bit positions labeled with a 0 rather than a name
indicate unimplemented bits that always read as 0s. Shaded bits are not
directly related to the discussion of parallel I/O.

Reg. Name Address Bit 7 6 5 4 3 2 1 Bit 0

PORTA $1000 Bit 7 — — — — — — Bit 0

PIOC $1002 STAF STAI CWOM HNDS OIN PLS EGA INVB

PORTC $1003 Bit 7 — — — — — — Bit 0

PORTB $1004 Bit 7 — — — — — — Bit 0

PORTCL $1005 Bit 7 — — — — — — Bit 0

DDRC $1007 Bit 7 — — — — — — Bit 0

PORTD $1008 0 0 Bit 5 — — — — Bit 0

DDRD $1009 0 0 Bit 5 — — — — Bit 0

PORTE $100A Bit 7 — — — — — — Bit 0

PACTL $1026 DDRA7 PAEN PAMOD PEDGE 0 0 RTR1 RTR0

SPCR $1028 SPIE SPE DWOM MSTR CPOL CPHA SPR1 SPRO

Figure 7-1. Parallel I/O Registers and Control Bits
Reference Manual M68HC11 — Rev. 6

234 Parallel Input/Output MOTOROLA

Parallel Input/Output
Parallel I/O Register and Control Bit Explanations
The addresses for the registers in Figure 7-1 and Figure 7-2 are in the
form $10xx where xx is a hexadecimal number between 00 and 3F.
The 1 indicates that the most significant hexadecimal digit is a variable
controlled by user software. The RAM and I/O mapping (INIT) register is
used to specify the location of internal registers and RAM. By default,
RAM is located from $0000 to $00FF, and registers are located from
$1000 to $103F at reset. The user can elect to move either one or both
of these resources by writing a new value into the INIT register within 64
bus cycles after reset. The INIT register is discussed in greater detail in
Section 4. On-Chip Memory.

The bit-manipulation instructions in the MC68HC11A8 can only be used
in zero-page or indexed addressing modes. To use indexed addressing
mode to access internal registers, the user would first set either the X or
Y index register equal to the base address of the registers (usually
$1000). To use the zero-page addressing mode, the user would first
remap the internal registers by writing to the INIT register during reset
initialization.

Reg. Name Address Bit 7 6 5 4 3 2 1 Bit 0

CFORC $100B FOC1 FOC2 FOC3 FOC4 FOC5 0 0 0

OC1M $100C OC1M7 OC1M6 OC1M5 OC1M4 OC1M3 0 0 0

OC1D $100D OC1D7 OC1D6 OC1D5 OC1D4 OC1D3 0 0 0

TCTL1 $1020 OM2 OL2 OM3 OL3 OM4 OL4 OM5 OL5

SPCR $1028 SPIE SPE DWOM MSTR CPOL CPHA SPR1 SPR0

SCCR2 $102D TIE TCIE RIE ILIE TE RE RWU SBK

HPRIO $103C RBOOT SMOD MDA IRV PSEL3 PSEL2 PSEL1 PSEL0

INIT $103D RAM3 RAM2 RAM1 RAM0 REG3 REG2 REG1 REG0

Figure 7-2. Pin Logic Registers and Control Bits
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 235

Parallel Input/Output
7.4.1 Port Registers

Reads of port registers will return either the level at the pin itself or the
logic state at a point inside the output pin buffer. Usually, the state of the
corresponding DDR bit will determine which of these points will be used
for a read if a choice exists. Refer to 7.5 Detailed I/O Pin Descriptions
for more specific information. Writes to port registers cause the written
data to be latched and driven out of the corresponding port output pins.

If a port pin is capable of being an output, this written information is
latched even if the pin is not configured as a port output at the time of the
write. If the pin is subsequently reconfigured to be a port output, the
output pin will be driven with the last data that was written to that port.
Writes to port bits that are fixed-direction input pins have no meaning or
effect.

PORTCL, a special port register associated with port C, is part of the
handshake I/O subsystem. Reads of this address return data from an
8-bit port C latch. The inputs to this port C latch are connected to the port
C pins, and the latches are clocked when a selected edge is recognized
at the STRA pin. Contrary to first impressions, writes to PORTCL do not
change the data in the port C latch register. Instead, writes to PORTCL
are used as an alternate way to write data to port C. In addition to writing
data to the port C output latches, writes to PORTCL also trigger special
handshake sequences in the handshake I/O subsystem, which allows
some port C pins to be treated as general-purpose outputs while others
are being used for full-handshake outputs. A user would write data to
PORTC to change the non-handshake pins in port C. To change the data
on a full-handshake pin of port C, the user would write to PORTCL.

7.4.2 Data Direction Registers

These registers and control bits are used to specify the primary direction
of data flow at each bidirectional port pin. A 0 in a data direction register
(DDR) bit disables the output buffer for that pin so the pin is configured
as an input. When a DDR bit is set to 1, it enables the output driver for
the associated port pin so the pin is configured as an output. During
reset, internal logic in the MC68HC11A8 forces all DDR bits to 0; thus,
Reference Manual M68HC11 — Rev. 6

236 Parallel Input/Output MOTOROLA

Parallel Input/Output
Parallel I/O Register and Control Bit Explanations
all bidirectional I/O pins are configured as high-impedance inputs until
they are reconfigured by software.

In some cases, an enabled on-chip subsystem can override the DDR bit
and force a pin to be an input or an output. For example, it is illogical for
the TxD pin to be configured as an input while the SCI transmitter is
using this pin. Whenever the SCI transmitter subsystem is enabled, the
TxD pin is configured as an output, regardless of what the corresponding
DDRD bit is. There is a subtle benefit to this override besides the obvious
savings gained by not having to write to the DDR. Depending on the
overall system attached to the TxD pin, it may be desirable for this pin to
revert to a specific driven logic level or to a high-impedance condition. If
the DDR bit is 0, the TxD pin will revert to a general-purpose,
high-impedance input pin when not being used by the transmitter. If the
DDR bit is 1, the TxD pin will revert to a general-purpose output pin, and
the driven logic level will reflect what was last written to bit 1 of port D.

In other cases, the DDR bits continue to affect the configuration of a port
pin even after an on-chip subsystem has been enabled to use the pin.
Consider the SPI bidirectional data pins master in/slave out (MISO) and
master out/slave in (MOSI). Although the MC68HC11A8 SPI system is
capable of full-duplex operation, some synchronous serial protocols are
configured for half-duplex operation with a single, bidirectional data line.
For the MC68HC11A8 to operate in such a system, it must be able to
selectively disable its MOSI and MISO outputs.

The state of a DDR bit influences the source of data when the
corresponding port bit is read. In general, when a pin is configured as an
input, reads return the logic level from the pin itself. When a pin is
configured as an output, reads return a value corresponding to the level
at the inside of the output buffer for that pin. This fact is especially
important in the case of pins configured for wired-OR operation or for the
three-state variation of full-output handshake at port C. In these cases,
the value at the pin itself does not necessarily reflect the value last
written to the port; therefore, it is important to read the level inside the
output buffer rather than the level at the pin.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 237

Parallel Input/Output
7.5 Detailed I/O Pin Descriptions

The logic associated with each of the I/O pins is described in detail in the
following paragraphs. All circuitry directly connected to a pin is shown
exactly as it is implemented in the MC68HC11A8. Logic not directly
connected to a pin is functionally accurate, but the drawings have been
simplified. Figure 7-3 shows some of the symbols used in the logic
drawings, which may not be familiar to all readers. The protection
devices, which are intended to protect the MC68HC11A8 from
high-voltage transients, have no effect while pins are within the VSS to
VDD range. Although transmission gates are actually full CMOS
bidirectional switches, they are shown in simplified form in the logic
diagrams. Half flip-flops (HFFS) are latches that are transparent while
the clock input is high and are latched while the clock input is low. Set
and reset inputs are optional on HFFS. Any name enclosed in a
rectangle indicates a control bit within the MC68HC11A8. Numbers in
square brackets are references for the text descriptions.

7.5.1 Port A

The eight port A pins can be independently configured for
general-purpose I/O or for timer or pulse accumulator functions. The
following paragraphs describe the pin logic for port A pins. The idealized
timing for critical port A signals is presented in 7.5.1.4 Port A Idealized
Timing.

7.5.1.1 PA2–PA0 (IC3–IC1) Pin Logic

Refer to Figure 7-4 for the following discussion. The cross-coupled
NAND circuit with four associated inverters is a hysteresis buffer.
Hysteresis is provided by sizing inverter [1] so its switch point is higher
than normal and by sizing inverter [2] so its switch point is lower than
normal.
Reference Manual M68HC11 — Rev. 6

238 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
Figure 7-3. Special Symbols Used in Pin Logic Diagrams

Figure 7-4. PA2–PA0 (IC3–IC1) Pin Logic

DDRA7

[3] — REFERENCE NUMBER

— CONTROL BIT
PR

O
TE

C
TI

O
N

THICK-FIELD
PROTECTION
DEVICE

TRANSMISSION GATE

HALF FLIP-FLOP

R S

Q

Q

C

D

D

C Q

Q
S

HFF

R

PIN
[3]

PR
O

TE
CT

IO
N

Q

Q PA2–PA0
(IC1–IC3)D2–D0

RPORTA

R

S

[2]

[1]

IC1–IC3
TRIGGER

TIMER
INPUT-CAPTURE
EDGE DETECT
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 239

Parallel Input/Output
Starting with 0 on the pin, a slowly rising signal causes inverter [2] to
switch so that the R signal goes to an inactive-high state. As the input
continues to rise, inverter [1] switches, causing a low S, which causes
the cross-coupled NAND latch to set Q high and clear Q low. The low Q
reinforces the S signal so that, even if noise causes inverter [1] to switch
back to S = 1, the cross-coupled latch will not reset.

Conversely, starting with 1 on the pin, a slowly failing signal causes
inverter [1] to switch, causing the S signal to be placed in an
inactive-high state. As the input continues to fall, inverter [2] switches,
causing a low R. This low R resets the cross-coupled NAND latch,
setting Q high and clearing Q low. The low Q reinforces the R signal so
that, even if noise causes inverter [2] to switch back to R = 1, the
cross-coupled latch will not become set.

For bits 0, 1, and 2, port A reads return the buffered states of the
corresponding pins. Port A reads are completely independent of timer
input-capture functions.

7.5.1.2 PA6–PA3 (OC5–OC2) Pin Logic

Refer to Figure 7-5 for the following discussion. For bits 3, 4, 5, and 6,
port A reads return the logic state from a point inside the output pin
buffer. During a port A read, transmission gate [1] is enabled to couple
the logic state at the input of inverter [2] to the internal data bus.

Inverter [2] is driven by a head-to-tail cheater latch. The feedback
inverter [3] in this cheater latch is sized to be overridden by transmission
gate [4], [5], or [6]. These three transmission gates correspond to the
three possible sources of data for these port A pins as follows.
General-purpose port A outputs come through transmission gate [4]
from HFF latch [7]. Output compares 5 through 2 (OC5–OC2) affect their
corresponding port A pin via transmission gate [6]; output compare 1
(OC1) can affect these port A pins via transmission gate [5].

Control gate [8] enables general-purpose port A outputs during PTACLK
when no timer function is enabled to control this pin. PTACLK is an
internal clock signal that synchronizes port A pin changes to the falling
edge of E. OC1 is enabled when the corresponding OC1Mx bit is 1,
which disables control gate [8] and enables control gate [9]. The
Reference Manual M68HC11 — Rev. 6

240 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
Figure 7-5. PA6–PA3 (OC5–OC2) Pin Logic

Q

Q

R

S

[12]

[13]

[6]

[9]

[5]

[10]

[14]

[11]

[8]

[7]

[1]

[3]

[4]

[2]

DISABLE

TOGGLE

CLEAR

SET11

01

10

00

OLxOLx

OL2OM2

OL3OM3

OL4OM4

OL5OM5

NEXT TIMER
OUT STATE

PREVIOUS
TIMER OUT

STATE

PA6–PA3
(OC2–OC5)

FOCx
x=5,4,3,2

OCxCMP
x=5,4,3,2

PTACLK

FOC1

x=5,4,3,2

OC1CMP

x=5,4,3,2

RST

WPORTA

D6–D3

RPORTA

D

C

Q

Q

HFFR

R

VDD

PR
O

TE
C

TI
O

N

PIN

N

P

OC1Dx

OC1Mx
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 241

Parallel Input/Output
OC5–OC2 functions are enabled to control their corresponding port A
pin by the OMx:OLx bits not equal to 0:0. When OMx:OLx are not 0:0,
control gate [8] is disabled and control gate [10] is enabled.

Control gate [9] allows OC1 to affect this port A pin. When the
corresponding OC1Mx control bit is 1, control gate [9] is enabled. The
PTACLK clock signal acts as a strobe. When there is a successful OC1
compare (OC1CMP) or when OC1 is forced by FOC1 equals 1, control
gate [9] enables transmission gate [5], which causes the corresponding
OC1Dx state to be transferred to cheater latch [3]. NAND gate [11]
provides a disable to control gate [10] so that if OC1 and another output
compare simultaneously attempt to change the same port A pin, OC1
will override.

Control gate [10] is enabled by the corresponding OMx:OLx control bits
not equal to 0:0. When there is a successful output compare x
(OCxCMP) or when OCx is forced by FOCx equals 1, control gate [10]
enables transmission gate [6] and momentarily disables transmission
gate [12]. Transmission gate [12] transfers the previous port A pin state
to cheater latch [14]. Cheater latch [14] holds the previous pin state
stable for logic [13] while transmission gate [12] is disabled and
transmission gate [6] is enabled. Set-reset (S/R) latch [13] and
associated logic is used to determine the next timer output state that
would result from a successful OCx compare. This next timer output
state is determined by the states of the associated OMx and OLx control
bits and the previous port A pin state.

7.5.1.3 PA7 (OC1 and PAI) Pin Logic

Refer to Figure 7-6 for the following discussion. Hysteresis buffer [1]
was previously described in 7.5.1.1 PA2–PA0 (IC3–IC1) Pin Logic.
Reads of port A bit 7 always return the buffered state of the PA7 pin. For
this bidirectional I/O pin, the state of the corresponding DDR control bit
has no effect on the source of the data for the read. During a port A read,
transmission gate [2] is enabled so the buffered state of the PA7 pin is
driven onto the internal data bus.
Reference Manual M68HC11 — Rev. 6

242 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
Figure 7-6. PA7 (OC1 and PAI) Pin Logic

Output buffer [3] is enabled when DDRA7 is 1. When DDRA7 is 0, the N-
and P-channel drivers are disabled so the PA7 pin acts as a
high-impedance input. Data for the PA7 pin is held in cheater latch [4].
Transmission gates [5] and [6] correspond to the two possible sources
of output data for the PA7 pin.

When the OC1M7 control bit is 0, control gate [9] is disabled and control
gate [8] is enabled. Control gate [8] enables transmission gate [5] so
general-purpose output data from HFF [7] is transferred to cheater latch
[4]. A write to port A causes data to be written into HFF [7], which is
cleared to 0 during reset.

Q

Q
D7

RPORTA

R

S

[2] [1]

[5]

[7]

[6]

[3][4] PA7
(PAI)RST

WPORTA

OC1CMP

D

C

Q

Q

HFFR

R

VDD

PR
O

TE
CT

IO
N

PIN

N

P

PTACLK

OC1M7

FOC1

[9]

[8]

OC1D7

DDRA7

TO PULSE
ACCUMULATOR
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 243

Parallel Input/Output
When the OC1M7 control bit is 1, control gate [8] is disabled and control
gate [9] is enabled. While control gate [9] is enabled, a successful OC1
compare (OC1CMP) or a force OC1 (FOC1) will enable transmission
gate [6]. Transmission gate [6] causes the OC1D7 state to be transferred
to cheater latch [4].

7.5.1.4 Port A Idealized Timing

Figure 7-7 shows the idealized timing for important port A control
signals. This timing diagram, which does not consider any propagation
delays, cannot be used as a substitute for data-sheet timing
specifications. This information is useful for understanding the basis for
data-sheet timing specifications so timing information can be
extrapolated for bus frequencies other than that used for the data sheet.

Figure 7-7. Idealized Port A Timing

NEW PORT A DATA

VALID DATA REQUIRED AT CPU

WRITE TO PORT A

READ FROM PORT A

PH2 (INTERNAL)

EXTAL

AS

PTACLK

PORT A INPUT

RPORTA

PORT A OUTPUT

WPORTA

PORT A OUTPUT PINS

CONTROL BIT CHANGES
FOR BITS: OC1Mx, OC1Dx,

OMx, OLx, DDRA7, FOCx

E

Reference Manual M68HC11 — Rev. 6

244 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
On a port A read, the RPORTA signal enables transmission gates
driving port A data onto the internal data bus. After the RPORTA signal
is deasserted, data is held stable on the self-latching internal data bus.
The central processor unit (CPU) actually requires this data to be valid
for a setup and hold time around the rising edge of the internal PH2 clock
signal.

All operations that can cause changes to the port A output pins (except
DDRA7 control bit changes) are synchronized to the falling edge of the
E clock. Changes to DDRA7 cause port A pins to change state at the
falling edge of the internal PH2 clock.

7.5.2 Port B

The eight port B pins are fixed-direction output pins. When the
MC68HC11A8 is operating in an expanded mode, port B is used for
high-order address outputs. In single-chip modes, port B is used for
general-purpose output or for simple strobe output. The following
paragraphs describe the port B pin logic and the idealized timing for
selected port B signals.

When the MC68HC11A8 is operating in an expanded mode, reads and
writes to the port B address are treated as external accesses to allow
port B functions to be emulated with external logic. The MC68HC24 port
replacement unit (PRU) duplicates the general-purpose and handshake
I/O functions of ports B and C and the STRA and STRB pins. The
MC68HC24 connects to the multiplexed address/data bus of the
MC68HC11A8.

7.5.2.1 Port B Pin Logic

Refer to Figure 7-8 for the following discussion. Reads of port B return
the logic state from a point inside the output pin buffer. During reads of
port B, transmission gate [1] is enabled by the RPORTB signal to couple
logic state [2] to the internal data bus. The RPORTB signal is not
asserted for port B reads in expanded modes since port B is an external
address in that case.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 245

Parallel Input/Output
Figure 7-8. Port B Pin Logic

In single-chip modes, the mode A (MDA) control bit is 0, which enables
AND gate [3] and disables AND gate [4]. The internal data bus is coupled
through AND gate [3] and clocked into HFF [5] by the write port B
(WPORTB) signal. The output of HFF [5] is buffered and driven out the
port B pins. In single-chip modes, HFF [5] is set to 1 by AND gate [6]
during reset, which results in logic 0 at the port B pins.

In expanded modes, the MDA control bit is 1, enabling AND gate [4] and
disabling AND gate [3], which couples high-order addresses to HFF [5].
In expanded modes, HFF [5] is transparent while address strobe (AS) is
high and latched while AS is low. The output of HFF [5] is buffered and
driven out the port B pins.

7.5.2.2 Port B Idealized Timing

Figure 7-9 shows the idealized timing for important port B control
signals. This timing diagram, which does not consider any propagation
delays, cannot be used as a substitute for data-sheet timing
specifications. This information is useful for understanding the basis for

[5]

[1]

[2]
PB7–PB0

EXPANDED — AS
SINGLE CHIP — WPORTB

VDD

PR
O

TE
C

TI
O

N

PIN

N

P

MDA

Q

D

C

Q
S

HFFS
[3]

[4]

[6]RST

A15–A8

D7–D0

RPORTB
Reference Manual M68HC11 — Rev. 6

246 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
data-sheet timing specifications so timing information can be
extrapolated for bus frequencies other than that used for the data sheet.

On a port B read, the RPORTB signal enables transmission gates, which
drive port B data onto the internal data bus. There is no case where port
B data can change in the same cycle in which a port B read is occurring.
Port B writes cause changes to the port B output pins at the falling edge
of the internal PH2 clock. This edge corresponds to the middle of the
E-clock high time.

Although this section is not specifically concerned with expanded-mode
operation of port B, it is included here for reference. A more detailed
discussion of the expansion bus is included in 2.7 Typical Expanded
Mode System Connections. Port B logic provides a full
one-eighth-cycle hold time on the high-order addresses relative to the
falling edge of E.

Figure 7-9. Idealized Port B Timing

NEW PORT B DATA

VALID DATA REQUIRED AT CPU

WRITE TO PORT B

READ FROM PORT B

PH2 (INTERNAL)

EXTAL

AS

PORT B INPUT (SINGLE-CHIP MODE)

RPORTB

PORT B OUTPUT (SINGLE-CHIP MODE)

WPORTB

PORT B PINS

E

NEW PORT B DATAPORT B PINS
(MC68HC24 ONLY)

EXPANDED MODE

PORT B PINS

AS (REPEATED)

HIGH ORDER ADDRESS
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 247

Parallel Input/Output
7.5.2.3 Special Considerations for Port B on MC68HC24 PRU

The external port replacement unit (PRU) does not have access to the
internal PH2 clock of the MC68HC11A8; therefore, slight differences
exist in the timing of port B, port C, STRA, and STRB activities. See
Figure 7-9 for differences in timing for writes to port B of the
MC68HC11A8 in single-chip mode as compared to writes to port B of the
MC68HC24.

7.5.3 R/W (STRB) Pin

When the MC68HC11A8 is operating in an expanded mode, this pin acts
as the read/write (R/W) bus control signal. When the MC68HC11A8 is
operating in a single-chip mode, this pin acts as the STRB output signal
for the handshake I/O subsystem. The MC68HC24 can be used to
regain the STRB functions when the MCU is operating in an expanded
mode.

7.5.3.1 R/W (STRB) Pin Logic

Refer to Figure 7-10 for the following discussion. When the
MC68HC11A8 is operating in an expanded mode, the MDA control bit
is 1. A 1 on MDA disables transmission gate [2] and enables
transmission gate [1], which, in turn, couples the output of HFF [3] to the
pin output buffer. HFF [3] is transparent when AS is high and latched
when AS is low, which gives R/W the same timing as a high-order
address line at port B and assures a long hold time on R/W relative to
the falling edge of E. R/W and the expansion bus are described more
fully in 2.7 Typical Expanded Mode System Connections.

When the MC68HC11A8 is operating in a single-chip mode, MDA is low,
disabling transmission gate [1] and enabling transmission gate [2].
Transmission gates [4] and [5] further select whether the Q or Q of
cross-coupled latch [6] will be coupled to the STRB pin. When the invert
strobe B (INVB) control bit in the PIOC register is 0, the Q of
cross-coupled latch [6] is coupled to the STRB pin, and STRB signals
are active low. When the INVB control bit is 1, the Q of cross-coupled
latch [6] is coupled to the STRB pin and STRB signals are active high.
Reference Manual M68HC11 — Rev. 6

248 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
Figure 7-10. R/W (STRB) Pin Logic

The start strobe B (STARTSTRB) is an active-low signal from the
handshake I/O subsystem. The conditions that enable strobe B depend
on the strobe or handshake mode in effect. The strobe and handshake
modes are controlled by the state of the HNDS and output/input (OIN)
control bits in the PIOC register. When HNDS is 0, the simple strobe
mode is selected, and the state of the OIN control bit is ignored. In simple
strobe mode, STARTSTRB is asserted at the rising edge of the internal
PH2 clock following a write to the PORTB register. This time
corresponds to the center of the E low time following the write to port B.
When HNDS is 1 and OIN is 0, full-input handshake is selected. In
full-input handshake mode, STARTSTRB is asserted at the rising edge
of the internal PH2 clock following a read of the PORTCL register. This
time corresponds to the center of the E low time following the read of port
C latched data. When HNDS and OIN are 1, full-output handshake is
selected. In full-output handshake mode, STARTSTRB is asserted at the
rising edge of the internal PH2 clock following a write to the PORTCL
register. This time corresponds to the center of the E low time following
the write to port C at PORTCL address.

[2]

R/W
(STRB)

VDD

PR
O

TE
C

TI
O

N

PIN

N

P

MDA

Q

D

C

Q

HFF

R/W (INTERNAL)

AS

STARTSTRB

ENDSTRB

[3]

[1]

INVB

INVB

Q

Q
[4]

[5]

[6]
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 249

Parallel Input/Output
The end strobe B (ENDSTRB) is an active-low signal from the
handshake I/O subsystem. Three possible conditions can cause the
ENDSTRB to be asserted. If the HNDS bit is 0 or if the pulse (PLS)
control bit is 1, ENDSTRB is asserted exactly two full E-clock periods
after STARTSTRB was asserted. This configuration corresponds to the
simple strobe mode or a full-handshake mode where strobe B is
configured for pulsed-mode operation. The second condition causing
ENDSTRB to be asserted corresponds to the full-handshake modes
where strobe B has been configured for interlocked operation by PLS
equal 0. In this case, the ENDSTRB signal is asserted at the next PH2
rising edge after the selected active edge is detected at the STRA input
pin. The internal PH2 rising edge corresponds to the center of the E low
time. The third condition that can cause ENDSTRB to be asserted is
included to avoid a problem if strobe B is changed from interlocked
operation to pulsed operation while strobe B is active. If PLS is written
to 1 while HNDS is a 1, the ENDSTRB signal is asserted so the strobe B
signal will be terminated at the next PH2 rising edge, which corresponds
to the center of the E low time following the cycle where PIOC was
written with HNDS and PLS equal to 1.

7.5.3.2 Special Considerations for STRB on MC68HC24 PRU

Because the external PRU does not have access to the internal PH2
clock of the MC68HC11A8, slight differences exist in the timing of port B,
port C, STRA, and STRB activities. In the MC68HC24, edges on strobe
B occur one-quarter E cycle later than they would in the MC68HC11A8
in single-chip mode. In the case of full-handshake interlocked mode,
strobe B will be terminated on the next rising edge of E after a strobe A
edge is detected. The MC68HC24 has a synchronizer on the strobe A
input, which is clocked by AS; thus, the worst-case delay from an edge
on strobe A to a response on strobe B is one and one-eighth E cycles
rather than one E cycle (MC68HC11A8).

Because the implementation of the strobe B logic in the MC68HC24 is
slightly different than that in the MC68HC11A8, the third condition that
could terminate a strobe B signal was not included in the MC68HC24.
Since changing from interlocked operation to pulsed operation in the
middle of a transaction is not normal, this subtle difference should not
concern most users.
Reference Manual M68HC11 — Rev. 6

250 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
7.5.4 Port C

Port C is the most complex port on the MC68HC11A8 because it can act
as general-purpose bidirectional I/O, full-input or full-output handshake
I/O, or as a time-multiplexed address/data bus port. Due to the
complexity of the port C pin logic, expanded and single-chip modes of
operation will be discussed separately. The following paragraphs explain
the logic associated with port C pins and the idealized timing of selected
signals.

Although this section is not specifically concerned with expanded mode
operation of port C, it is included for reference. A more detailed
discussion of the expansion bus is included in 2.7 Typical Expanded
Mode System Connections.

7.5.4.1 Port C Pin Logic for Expanded Modes

In expanded modes, port C is a time-multiplexed address/data bus.
During the first half of a cycle, addresses are driven out of port C. During
the second half of the cycle, data is either written out of port C or read
into port C. Refer to Figure 7-11 for the following discussion.

Pin output buffer [1] can be enabled or disabled by the PTCTSC signal.
This signal is driven to 0 when address or data information needs to be
driven out of port C. When PTCTSC is 1, the output buffer is disabled so
port C pins become high-impedance input pins (for example, while data
is being read into port C).

Information to be driven out of port C can come from either transmission
gate [2] or [3]. When the address enable (ADDREN) signal is 1,
transmission gate [2] is enabled to couple address lines ADDR[7:0] to
the output buffer of their associated port C pin. When the write data
enable (WDATEN) signal is 1, transmission gate [3] is enabled to couple
data lines DATA[7:0] to the output buffer of their associated port C pin.

In the read direction, data comes from the port C pins to strobe input
buffers [6]. Data from buffers [6] is then clocked into HFF [5] during the
E high time. Data is coupled to the CPU through transmission gate [4]
when the read data enable (RDATEN) signal is 1. Since the CPU
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 251

Parallel Input/Output
Figure 7-11. Port C Expanded Mode Pin Logic

actually uses the read data during the one-quarter cycle after E goes
low, HFF [5] also provides a level of synchronization for the incoming
data.

In normal operation, the stop/wait (STOPWAIT) signal is logic 1, which
enables buffers [6]. When the MCU is in the stop/wait low-power modes,
STOPWAIT is 0, and buffers [6] are disabled. While buffers [6] are
disabled, intermediate or switching levels on the port C pins will not
cause the relatively high currents normally expected for CMOS inputs.

7.5.4.2 Summary of Port C Idealized Expanded Mode Timing

Port C expanded mode timing includes four types of bus cycles. Write
cycles look identical at port C regardless of the address written to. The
second type cycle is a read from an external address. The last two cycle
types are reads of internal addresses — that is, reads of a memory
location or register inside the MC68HC11A8. For debugging, the data
read from the internal location is driven out of port C to be monitored with

PC7–PC0

VDD

PR
O

TE
C

TI
O

N

PIN

N

P

Q

D

C

Q

HFF

PTCTSC

A7–A0

WDATEN

STOPWAIT

[5]

[1]
[2]

[4]

[3]

[6]

ADDREN

D7–D0

RDATEN

E

Reference Manual M68HC11 — Rev. 6

252 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
a logic analyzer. For normal use of the MCU, the data from the internal
reads is not driven out of port C because it could conflict with some
external device. There is an internal read visibility (IRV) control bit in the
MC68HC11A8 determining whether internal read data will be driven out
of port C. The IRV bit and the expansion bus are described in greater
detail in 2.7 Typical Expanded Mode System Connections.

Logic in the MC68HC11A8 generates the signals PTCTSC, ADDREN,
WDATEN, and RDATEN to control the activity of port C, depending on
the type bus cycle to be performed. The operation of these signals is
explained in 7.5.4.1 Port C Pin Logic for Expanded Modes.
Figure 7-12 summarizes the idealized timing of these signals for the four
types of bus cycles.

7.5.4.3 Port C Single-Chip Mode Pin Logic

Refer to Figure 7-13 for the following discussion. During a write to
DDRC, data is clocked into HFF [1] by the write DDRC (WDDRC) signal.
During a read of DDRC, transmission gate [2] is enabled by the read
DDRC (RDDRC) signal, which couples the output of the DDRC HFF
onto the internal data bus. During reset, HFF [1] is forced to 0, which
configures port C pins as high-impedance inputs. The state of DDRC at
the output of HFF [1] controls port C output buffer [3] via NOR gate [4].
The state of DDRC also influences the source of data for reads of the
PORTC register via NAND gate [6].

The CWOM control bit allows the user to disable the P-channel driver of
output buffer [3]. CWOM simultaneously affects all eight bits of port C.
Since the N-channel driver is not affected by CWOM, CWOM = 1 causes
port C to become an open-drain-type output port. When a port C bit is
logic 0, it is actively driven low by the N-channel driver. When a port C
bit is logic 1, it becomes high impedance since neither the N- nor
P-channel devices are active. It is customary to have an external pullup
resistor on lines that are driven by open-drain devices. Port C can be
configured for wired-OR operation only when the MCU is in a single-chip
mode of operation.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 253

Parallel Input/Output
Figure 7-12. Summary of Idealized Port C Expanded Mode Timing

EXTAL

AS

E

IN
TE

R
N

AL
 S

IG
N

AL
S

DATA TO CPU

DATA FROM CPU

ADDRESS, R/W

PH2

PH1

OSCCLK

PORT C

WDATEN

RDATEN

ADDREN

PTCTSC

READ FROM
INTERNAL
ADDRESS

(IRV=1)

PORT C

RDATEN

ADDREN

PTCTSC

READ FROM
INTERNAL
ADDRESS

(IRV=0)

PORT C

RDATEN

ADDREN

PTCTSC

READ FROM
EXTERNAL
ADDRESS

PORT C

WDATEN

ADDREN

PTCTSC

WRITE
TO ANY

ADDRESS

ADDR

ADDR

ADDR

ADDR DATA NEXT ADDR

NEXT ADDRDATA

DATA

VALID

VALID

MUST BE VALID
Reference Manual M68HC11 — Rev. 6

254 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
Figure 7-13. Port C Single-Chip Mode Pin Logic

CWOM

OIN

HNDS

PC7–PC0

VDD

PR
O

TE
C

TI
O

N

PIN

N

P

DQ

HFF

RPORTC

WDDRC

WPORTCL

STOPWAIT

[14]

[3]

[2]

[16]

[13]

RST

D7–D0

RPORTCL

STRAEDGE

Q

D

C

Q

HFF

[15]
[6]

[10]

[8]

D

C

Q

Q

HFF

D

C

Q

Q

HFFR

OIN

HNDS

EGA

WPORTC

RDDRC

STRA PIN

[7]

[5]

[4]

[1]

[12]
[17]

[11]

[9]

[18]

[19]

[20] Q C

R

M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 255

Parallel Input/Output
AND gate [5] provides an override to DDRC during the three-state
variation of full-output handshake. In this handshake mode, the HNDS
and OIN control bits are 1s, enabling AND gate [5]. While AND gate [5]
is enabled, a 1 from exclusive-OR gate [7] will force output buffer [3] to
be enabled, regardless of the state of the DDRC bit from HFF [1]. The
EGA control bit specifies the level required at the STRA pin to force
port C pins to be outputs.

While the output-handshake mode is specified, any of the port C bits
having their corresponding DDRC bits set to 0 are configured for the
three-state variation of full-output handshake. For those bits, the
corresponding port C pins will appear as high-impedance inputs while
the STRA pin is at its selected inactive level. When the STRA pin goes
to its active level, AND gate [5] will force all port C pins to the output
mode. Any port C bits having their corresponding DDRC bits set to 1 will
be driven outputs, regardless of the logic at AND gate [5].

While the MCU is operating in output-handshake mode, NAND gate [14]
outputs 0 and NAND gate [6] outputs 1. When PORTC is read in this
case, AND gate [10] enables transmission gate [11] to couple the logic
state from point [12] inside the output buffer onto the internal data bus.
When a port C pin is configured for output by its corresponding DDRC
bit equals 1 at HFF [1], inverter [15] outputs 0 and NAND gate [6]
outputs 1. Again, when PORTC is read, AND gate [10] enables
transmission gate [11] to couple the logic state from point [12] inside the
output buffer onto the internal data bus. When neither of the previous
conditions are true, the port C pin is configured for input and NAND gate
[6] outputs a 0. In this case, when PORTC is read, AND gate [8] enables
transmission gate [9] to couple the buffered state of the corresponding
port C pin from the strobed buffers [13] onto the internal data bus.

On writes to port C, data is clocked into the HFF [16] by the output of OR
gate [17]. A write to either the PORTC register or the PORTCL register
will enable HFF [16] via OR gate [17]. The output of HFF [16] drives the
port C pins through buffer [3] subject to the controls on the buffer
described in the previous paragraphs.

The port C latch register (PORTCL) is composed of HFFs [18] and [19].
Normally, the strobe A edge signal (STRAEDGE) is low so HFF [19] is
latched and HFF [18] is transparent. When a selected edge is
Reference Manual M68HC11 — Rev. 6

256 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
asynchronously detected at the strobe A pin, a short active-high pulse is
issued on STRAEDGE. While STRAEDGE is high, HFF [18] is
temporarily latched so stable data is transferred into HFF [19]. When the
PORTCL register is read, the RPORTCL signal enables transmission
gate [20] to couple the output of HFF [19] onto the internal data bus.

The STOPWAIT signal is normally high, enabling strobe buffers [13].
When the MCU is in the stop or wait power-saving modes, STOPWAIT
is low, and strobe buffers [13] are disabled. This function was included
to reduce power consumption mainly in the expanded modes where port
C is a multiplexed address/data bus, but there is a side effect that can
influence strobe and handshake input at port C in a very special case.

The wait mode definition states that any enabled interrupt source can be
used to force the MCU to return to normal operation. An active edge at
the STRA pin is a possible source of the interrupt that will wake the MCU
from the wait standby mode. Although the edge at STRA will wake the
MCU from the wait mode, valid data will not be latched into PORTCL
because strobe input buffers [13] were disabled at the time of the
asynchronous edge at STRA.

7.5.4.4 Port C Idealized Single-Chip Mode Timing

Figure 7-14 shows the idealized timing for important port C control
signals. Because this timing diagram does not reflect any propagation
delays, it cannot be used as a substitute for data-sheet timing
specifications. This information is useful for understanding the basis for
data-sheet timing specifications so timing information can be
extrapolated for bus frequencies other than that used for the data sheet.

During a read of port C, the RPORTC signal enables transmission gates
that drive port C data onto the internal data bus. After the RPORTC
signal is deasserted, data is held stable on the self-latching internal data
bus. The CPU actually requires data to be stable for a setup time before
and a hold time after the rising edge of the internal PH2 clock. The
RPORTC signal is deasserted one-quarter cycle before this time so data
will be stable while the CPU is actually reading it.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 257

Parallel Input/Output
Figure 7-14. Idealized Port C Single-Chip Mode Timing

During a DDRC read, the RDDRC signal enables a transmission gate to
couple the state of the DDRC bit to the internal data bus. In contrast to
the RPORTC signal, RDDRC is active while the CPU is actually reading
the data from the internal data bus, which does not pose potential
problems because it is not possible for the DDRC value to change in the
same cycle it is being read.

The timing for the RPORTCL signal is the same as that for the RDDRC
signal. Unlike DDRC data, data in the PORTCL register can change at
any time since the strobe A latching edge is asynchronous. Since it is
undesirable for data to be changing at the instant the CPU is latching in
this data, the user should avoid this synchronization hazard. Usually, the
system design automatically solves the problem because an edge on
STRA cannot normally occur during a read of PORTCL. For example, in
a full-input handshake, PORTCL is only read in response to recognizing

PORT C OUTPUT (SINGLE-CHIP MODE)

NEW PORT C DATA

VALID DATA REQUIRED AT CPU

WRITE TO PORT C

READ FROM PORT C

PH2 (INTERNAL)

EXTAL

AS

RPORTC

WPORTC OR WPORTCL

PORT C OUTPUT PINS

E

NEW PORT C DATAPORT C OUTPUT PINS
(MC68HC24 ONLY)

RPORTCL OR RDDRC

READ PORTCL OR DDRC

WDDRC

WRITE TO DDRC

PORT C INPUT (SINGLE-CHIP MODE)
Reference Manual M68HC11 — Rev. 6

258 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
that the STAF has been set. In such a case, the edge that caused STAF
to be set and data to be latched into PORTCL will have occurred several
cycles before the PORTCL read could possibly occur. Also, in the
full-handshake protocol, the external device is inhibited from latching
new data into PORTCL until the previous data is read from PORTCL.
This inhibit is accomplished by the STRB handshake output.

Writes to port C at PORTC or PORTCL and writes to DDRC are
controlled by WPORTC, WPORTCL, and WDDRC, respectively. All
three signals are synchronized to the falling edge of the internal PH2
clock, which corresponds to the center of the E high time.

7.5.4.5 Special Considerations for Port C on MC68HC24 PRU

Since the external PRU does not have access to the internal PH2 clock
of the MC68HC11A8, there are slight differences in the timing of port B,
port C, STRA, and STRB activities. Figure 7-14 shows the differences
between internal MC68HC11A8 writes to port C and MC68HC24 writes
to port C.

7.5.5 AS (STRA) Pin

In expanded modes, this pin acts as the AS control signal, which is used
to demultiplex low-order addresses from data at port C. In single-chip
modes, this pin acts as the STRA input, which serves the handshake I/O
subsystem on the MC68HC11A8. The MC68HC24 can be used to
regain the STRA functions when the MCU is operating in an expanded
mode.

7.5.5.1 AS (STRA) Pin Logic

Refer to Figure 7-15 for the following discussion. When the
MC68HC11A8 is operating in a single-chip mode, the MDA control bit is
0; thus, both the P- and N-channel output drivers are disabled. While the
MCU is operating in an expanded mode, the MDA control bit enables the
output driver logic. As long as the MCU is not in stop mode, the AS signal
is buffered and driven out the AS pin.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 259

Parallel Input/Output
Figure 7-15. AS (STRA) Pin Logic

When the MC68HC11A8 is in stop mode, the STOP signal goes high,
which forces the AS pin to logic 0. A 1 on STOP forces a 0 on one input
of NAND gate [1], which forces a 0 on one input of NAND gate [2], which
disables the P-channel driver. The 1 on STOP also forces a 1 at the
output of NAND gate [3], which places a 0 on the lower input of NOR
gate [4]. Since the 1 on MDA forces the other input of NOR gate [4] to 0,
the output of this NOR gate will be 1, which enables the N-channel driver
and forces the pin to 0.

Hysteresis buffer [5] is described in 7.5.1.1 PA2–PA0 (IC3–IC1) Pin
Logic. EGA controls the block of logic [7], which detects asynchronous
edges on the signal from inverter [6], the buffered signal from the strobe
A pin. The output from the block of logic [7] is a short high-going
asynchronous pulse, which is used to asynchronously latch data from
the port C pins into the PORTCL register.

SYNCHRONIZE
TO PH2

USED TO SET STAF FLAG
AND TO TERMINATE STRB

Q

[5]

STOP

AS

MDA

[1]

EGA

DETECT
ACTIVE EDGE

ON STRA

SHORT ASYNCHRONOUS
PULSE USED TO TRIGGER
PORTCL LATCHES

[3]

[6]

[7] [8]

AS
(STRA)

VDD

PR
O

TE
C

TI
O

N

PIN

N

P

[2]

[4]

Q
R

S

Reference Manual M68HC11 — Rev. 6

260 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
In response to the asynchronous pulse from block [7], the block of logic
[8] produces a pulse that is synchronized to the internal PH2 clock.
Provided the asynchronous pulse meets a setup time before the rising
edge of PH2, the output of block [8] will go high at that PH2 rising edge
and stay high until PH2 goes low. If the setup time is not met, the pulse
will appear at the next PH2, causing a delay from when an edge is
presented at the STRA pin until it is recognized by the logic of block [8].
The delay could be from a few nanoseconds to a full E-clock cycle,
depending on where the edge occurs relative to the clocks. The rising
edge of the internal PH2 clock corresponds to the center of the E-clock
low time. A significant number of internal logic-gate delays exists
between the STRA pin and the block of logic [8].

The synchronized pulse from block [8] is used for several functions in the
handshake I/O subsystem. STAF is set by this pulse. The arming
mechanism for automatically clearing STAF is cleared by this pulse. This
pulse can terminate the STRB output in some handshake modes.
These functions and their timing are discussed in greater detail in
7.6 Handshake I/O Subsystem.

7.5.5.2 Special Considerations for STRA on MC68HC24 PRU

Because the external PRU does not have access to the internal PH2
clock of the MC68HC11A8, slight differences exist in the timing of port
B, port C, STRA, and STRB activities. The differences for strobe A
are associated with the block of logic [8] in Figure 7-15. Although
Figure 7-15 depicts the MC68HC11A8, there is a similar block of logic
in the MC68HC24. In the MC68HC24, AS and E are used to synchronize
the strobe A pulse to the E clock. Any strobe A edge meeting a setup
time to the falling edge of AS results in a synchronized pulse that is high
for the next E-clock high time. This pulse is used for the same purposes
as the PH2 synchronized pulse in the MC68HC11A8.

7.5.6 Port D

Port D is a 6-bit bidirectional data port. Two port D pins alternately serve
as the receive and transmit data pins for the on-chip asynchronous SCI
system. The other four port D pins alternately serve the on-chip
synchronous SPI system. Although the pin logic for all six port D pins is
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 261

Parallel Input/Output
essentially identical, each pin is described separately to note subtle
differences. The following paragraphs explain the detailed logic
associated with port D pins and the idealized timing of important port D
control signals.

7.5.6.1 PD0 (RxD) Pin Logic

Refer to Figure 7-16 for the following discussion. The data direction
specification for this pin is held in HFF [1]. During a write to the DDRD
register, the WDDRD signal is asserted, which causes data to be
transferred into HFF [1] from the internal data bus. A read of DDRD
causes the RDDRD signal to be asserted, which enables transmission
gate [2] to couple the output of HFF [1] onto the internal data bus. During
reset, HFF [1] is cleared to 0, configuring this pin as a high-impedance
input.

Figure 7-16. PD0 (RxD) Pin Logic

HFF

D

C

Q

R

PD0
(RxD)

VDD

PR
O

TE
C

TI
O

N

PIN

N

P

[9]

[1]

DWOM

HFFR

D

C

Q

TO SCI RECEIVER

RDDRD

RCVON

WPORTD

D0

RST

WDDRD

RPORTD

[2]

[4]

[5]
[7]

[6]

[3]

[8]

Q

Q

Reference Manual M68HC11 — Rev. 6

262 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
The state of DDRD controls the pin output buffer via AND gate [3], and
DDRD affects the source of data for port D reads via transmission gates
[4] and [5]. When the DDRD bit from HFF [1] is 0, AND gate [3] outputs
a 0, which disables output driver [9]. When the DDRD bit from HFF [1]
is 0, transmission gate [5] is enabled. In this case, reads of port D enable
transmission gate [6], coupling the buffered pin state from inverters [7] to
the internal data bus. When the DDRD bit from HFF [1] is 1, transmission
gate [4] is enabled. In this case, reads of port D enable transmission gate
[6], coupling the level from the output of HFF [8] to the internal data bus,
which corresponds to the output level for the pin before output driver [9].
Since output driver [9] can be configured for wired-OR operation, some
external source can force the pin low, even if the logic for this pin is trying
to output a 1. In this case, a read of port D will return the intended logic 1
from inside the output buffer rather than the 0 from the pin.

During a write to port D, the WPORTD signal is asserted, causing data
from the internal data bus to be latched into HFF [8]. Written data is then
buffered to the pin by output driver [9] subject to data direction control
from AND gate [3] and wired-OR control from the DWOM control bit.
When the DWOM control bit is 1, the P-channel driver is disabled so
port D outputs act as open-drain drivers. The DWOM control bit
simultaneously affects all port D pins.

When the output of AND gate [3] is 0, the output driver is completely
disabled; thus, this pin is configured as a high-impedance input. AND
gate [3] will output a 0 to disable the output driver whenever the
corresponding DDRD bit is 0 from HFF [1]. AND gate [3] will also disable
the output driver when the SCI receiver is enabled by the receiver-on
signal (RCVON). The state of the DDRD bit still influences the source of
read data when the RCVON signal is forcing the pin to a high-impedance
state.

This pin alternately serves as the receive data (RxD) input pin for the
asynchronous SCI system. The SCI receiver is enabled by the receive
enable (RE) control bit in an SCI control register, which forces the
RCVON signal to 1, disabling pin output driver [9], regardless of the state
of the DDRD bit from HFF [1]. The state of the DDRD bit allows the
programmer to read the RxD pin (DDRD = 0) or the value in port D latch
[8] (when DDRD = 1). Data from the pin is buffered by inverters [7] and
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 263

Parallel Input/Output
driven to the SCI receive logic. The data path from the pin to the SCI
receive logic is not affected by the state of DDRD.

7.5.6.2 PD1 (TxD) Pin Logic

Refer to Figure 7-17 for the following discussion. The data direction
specification for this pin is held in HFF [1]. During a write to the DDRD
register, the WDDRD signal is asserted, causing data to be transferred
into HFF [1] from the internal data bus. A read of DDRD causes the
RDDRD signal to be asserted, which enables transmission gate [2] to
couple the output of HFF [1] onto the internal data bus. During reset,
HFF [1] is cleared to 0, which configures this pin as a high-impedance
input.

Figure 7-17. PD1 (TxD) Pin Logic

HFF

D

C

Q

R

PD1
(TxD)

VDD

PR
O

TE
C

TI
O

N

PIN

N

P

[9]

[1]

DWOM

HFFR

D

C

Q

RDDRD

WPORTD

D1

RST

WDDRD

RPORTD

[2]

[4]

[5]
[7]

[6]

[3]

[8]

XMITON

XMITDATA

[10]

[11]

Q

Q

Reference Manual M68HC11 — Rev. 6

264 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
The state of DDRD controls the pin output buffer via OR gate [3], and
DDRD affects the source of data for port D reads via transmission gates
[4] and [5]. When the DDRD bit from HFF [1] is 1, OR gate [3] outputs
a 1, which enables output driver [9]. Also, when the DDRD bit from HFF
[1] is 1, transmission gate [4] is enabled. In this case, reads of port D
enable transmission gate [6], which couples the level from the output of
HFF [8] to the internal data bus. The value returned on such a read
corresponds to the last value written to the corresponding bit of port D.
Since output driver [9] can be configured for wired-OR operation, some
external source can force the pin low even if the pin logic for this pin is
attempting to output a 1. If the DDRD bit did not affect the source of the
read data, an erroneous 0 could be read when the pin logic is actually
trying to output a 1. When the DDRD bit from HFF [1] is 0, OR gate [3]
outputs a 0, which disables output driver [9]. Also, when the DDRD bit
is 0, transmission gate [5] is enabled. In this case, reads of port D enable
transmission gate [6], which couples the buffered pin state from inverters
[7] to the internal data bus.

During a write to port D, the WPORTD signal is asserted, causing data
from the internal data bus to be latched into HFF [8]. When the SCI
transmitter is enabled, the transmit-on (XMITON) signal is 1 and
transmission gate [10] is enabled, which couples serial transmit data
(XMITDATA) to pin driver [9]. When the SCI transmitter is disabled, the
XMITON signal is 0, and transmission gate [11] is enabled, which
couples port D data from HFF [8] to pin driver [9]. Pin output driver [9] is
enabled by data direction logic from OR gate [3]. The DWOM control bit
can optionally disable the P-channel driver of output buffer [9].

When the DWOM control bit is 1, the P-channel driver is disabled,
causing port D outputs to act as open-drain drivers. The DWOM control
bit concurrently affects all port D pins. When the output of OR gate [3] is
0, the output driver is completely disabled; thus, this pin is configured as
a high-impedance input. OR gate [3] will output a 0 to disable the output
driver whenever the corresponding DDRD bit is 0 from HFF [1] and the
SCI transmitter is disabled by the XMITON signal. The state of the
DDRD bit still influences the source of read data when the XMITON
signal is forcing the pin to the output configuration.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 265

Parallel Input/Output
This pin alternately serves as the transmit data (TxD) output pin for the
asynchronous SCI system. The SCI transmitter is enabled by the TE
control bit in an SCI control register. Enabling the transmitter forces the
pin driver to be configured as an output by forcing a 1 at the output of OR
gate [3]. The state of the DDRD bit allows the programmer to read the
TxD pin (DDRD = 0) or the value in port D latch [8] (when DDRD = 1).
The SCI transmitter retains control of the port D pin by keeping XMITON
equal to 1 as long as any information is being transmitted (even after the
TE bit is written to 0). This control ensures that a transmission will not be
cut off in the middle of a serial character.

The user can control what happens to the TxD pin when the transmitter
is finished. When the transmitter is finished using the TxD pin, the
XMITON signal switches from 1 to 0, which causes the data direction to
be controlled by the DDRD bit from HFF [1] instead of the XMITON input
to OR gate [3]. Disabling XMITON also causes transmission gate [10] to
be disabled and transmission gate [11] to be enabled. If the
corresponding DDRD bit is 0, the pin will revert to being a
high-impedance input when the transmitter is finished. If the DDRD bit
is 1 and the last data written to the corresponding bit of port D was a 0,
the pin will revert to a driven logic 0 when the transmitter is finished. If
the DDRD bit is 1 and the last data written to the corresponding bit of
port D was a 1, the pin will revert to a driven logic 1 when the transmitter
is finished.

7.5.6.3 PD2 (MISO) Pin Logic

This pin alternately functions as the MISO pin when the synchronous
SPI system is enabled. Refer to Figure 7-18 for the following discussion.
The data direction specification for this pin is held in HFF [1]. During a
write to the DDRD register, the WDDRD signal is asserted, which
causes data to be transferred into HFF [1] from the internal data bus. A
read of DDRD causes the RDDRD signal to be asserted, enabling
transmission gate [2] to couple the output of HFF [1] onto the internal
data bus.
Reference Manual M68HC11 — Rev. 6

266 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
Figure 7-18. PD2 (MISO) Pin Logic

When HFF [1] is cleared to 0, this pin is configured as a high-impedance
input. OR gate [13] causes HFF [1] to be cleared to 0 during reset. OR
gate [13] also causes HFF [1] to be cleared if an SPI mode fault
(MFAULT) occurs. An SPI mode fault is caused when a device
configured as a master SPI device is selected as if it were a slave. This
condition could indicate that more than one SPI device is attempting to
drive the common SPI lines, which could cause a bus conflict. To avoid
the possibility of latchup, the port D pins associated with the SPI are
immediately forced to their input configuration.

HFF

D

C

Q

R

PD2
(MISO)

VDD

PR
O

TE
CT

IO
N

PIN

N

P

[9]

[1]

DWOM

HFFR

D

C

Q

RDDRD

WPORTD

D2

MFAULT

WDDRD

RPORTD

[2]

[4]

[5]
[7]

[6]

[3]

[8]

[10]

[11]

SLAVDO

SPE

RST

SLAVON

[12]

[13] TO SPI
MASTER DATA IN

Q

Q

M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 267

Parallel Input/Output
The actual data direction for this port D pin is determined by the logic
output of NAND gate [3]. When the SPI system is disabled, the DDRD
bit from HFF [1] controls direction. When the SPI system is enabled in
master mode, this pin is forced to a high-impedance input. When the SPI
system is enabled in slave mode, the DDRD bit from HFF [1] controls
direction. This last condition means that the user must set the
corresponding DDRD bit to 1 to enable slave data output from this pin
when the SPI system is enabled for slave operation. The uses and
implications of this logic are discussed in greater detail in Section 8.
Synchronous Serial Peripheral Interface.

When the output of NAND gate [3] is 1, driver [9] is disabled so the pin
is configured as a high-impedance input. To enable pin driver [9], both
inputs to NAND gate [3] must be 1s. When the SPI system is disabled,
SPE is 0, which makes the output of NAND gate [12] a 1. A logic 1
enables NAND gate [3] so that the DDRD bit from HFF [1] can enable or
disable driver [9]. When the SPI system is operating as a master, SPE
will be 1 and slave on (SLAVON) will be 0. This configuration causes
NAND gate [12] to output a 0, which disables output driver [9], regardless
of the state of the DDRD bit at HFF [1]. When the SPI system is enabled
as a slave, SPE is 1 and SLAVON is 1. This configuration causes NAND
gate [12] to output a 1, which enables NAND gate [3] to control the
direction of output buffer [9] based on the state of the DDRD bit from
HFF [1].

Output driver [9] can be placed in a wired-OR configuration by the
DWOM control bit. This control bit simultaneously affects all six port D
pins. When DWOM is 1, the P-channel device in the output driver is
disabled so the pin cannot be actively driven high. When the pin attempts
to output a logic 1, the N-channel device is disabled; thus, the pin
appears as a high-impedance input. An external pullup is used to
passively pull the pin high.

The data for output driver [9] comes from transmission gate [10] or [11].
When the SPI system is enabled, the SPE bit is 1; thus, transmission
gate [10] is enabled, and data for the output driver comes from the SPI
slave data output signal (SLAVDO). When the SPI system is disabled,
the SPE control bit is 0; thus, transmission gate [10] is disabled and
transmission gate [11] is enabled. In this case, port D data is coupled
Reference Manual M68HC11 — Rev. 6

268 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
from the output of HFF [8] to the input of output driver [9]. During a write
to port D, the WPORTD signal is asserted, which causes data to be
latched into HFF [8] from the internal data bus.

During a read of port D, transmission gate [6] is enabled by the RPORTD
signal to couple data to the internal data bus. The source of data for
port D reads depends on the direction control for the output driver. If the
output of NAND gate [3] is 0, output driver [9] is enabled and
transmission gate [4] is enabled. In this case, port D reads return the
data from a point inside the output driver. If the output of NAND gate [3]
is 1, transmission gate [5] is enabled. In this case, reads of port D return
the buffered state from the pin through inverters [7].

The output of inverters [7] drives the serial master data input to the SPI
system logic. The source of this data is always from the MISO pin and is
not affected by the data direction logic.

7.5.6.4 PD3 (MOSI) Pin Logic

This pin alternately functions as the MOSI pin when the synchronous
SPI system is enabled. Refer to Figure 7-19 for the following discussion.
The data direction specification for this pin is held in HFF [1]. During a
write to the DDRD register, the WDDRD signal is asserted, causing data
to be transferred into HFF [1] from the internal data bus. A read of DDRD
causes the RDDRD signal to be asserted, which enables transmission
gate [2] to couple the output of HFF [1] onto the internal data bus.

When HFF [1] is cleared to 0, this pin is configured as a high-impedance
input. OR gate [13] causes HFF [1] to be cleared to 0 during reset. OR
gate [13] also causes HFF [1] to be cleared if an SPI mode fault occurs.
An SPI mode fault is caused when a device configured as a master SPI
is selected as if it were a slave. This condition could indicate that more
than one SPI device is attempting to drive the common SPI lines, which
could cause a bus conflict. To avoid the possibility of latchup, the port D
pins associated with the SPI are immediately forced to their input
configuration.

The actual data direction for this port D pin is determined by the logic
output of NAND gate [3]. When the SPI system is disabled, the DDRD
bit from HFF [1] controls direction. When the SPI system is enabled in
slave mode, this pin is configured as a high-impedance input. When the
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 269

Parallel Input/Output
Figure 7-19. PD3 (MOSI) Pin Logic

SPI system is enabled in master mode, the DDRD bit from HFF [1]
controls direction. This last condition means that the user must set the
corresponding DDRD bit to 1 to enable master data output from this pin
when the SPI system is configured for master operation. The uses and
implications of this logic are discussed in greater detail in Section 8.
Synchronous Serial Peripheral Interface.

When the output of NAND gate [3] is 1, driver [9] is disabled; thus, the
pin is configured as a high-impedance input. To enable pin driver [9],
both inputs to NAND gate [3] must be 1s. When the SPI system is

HFF

D

C

Q

R

PD3
(MOSI)

VDD

PR
O

TE
C

TI
O

N

PIN

N

P

[9]

[1]

DWOM

HFFR

D

C

Q

RDDRD

WPORTD

D3

MFAULT

WDDRD

RPORTD

[2]

[4]

[5]
[7]

[6]

[3]

[8]

[10]

[11]

MSTRDO

SPE

RST

MSTRON

[12]

[13]
TO SPI
SLAVE DATA IN

Q

Q

Reference Manual M68HC11 — Rev. 6

270 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
disabled, SPE is 0, making the output of NAND gate [12] a 1. This
configuration enables NAND gate [3] so that the DDRD bit from HFF [1]
can enable or disable driver [9]. When the SPI system is enabled as a
slave, SPE is 1 and master on (MSTRON) is 0. This configuration
causes NAND gate [12] to output 0, which disables output driver [9],
regardless of the state of the DDRD bit at HFF [1]. When the SPI system
is enabled as a master, SPE is 1 and MSTRON is 1. This configuration
causes NAND gate [12] to output a 1, which enables NAND gate [3] to
control the direction of output buffer [9] based on the state of the DDRD
bit from HFF [1].

Output driver [9] can be placed in a wired-OR configuration by the
DWOM control bit. This control bit simultaneously affects all six port D
pins. When DWOM is 1, the P-channel device in the output driver is
disabled so the pin cannot be actively driven high. When the pin attempts
to output logic 1, the N-channel device is disabled; thus, the pin appears
as high-impedance input. An external pullup is used to passively pull the
pin high.

The data for output driver [9] comes from transmission gate [10] or [11].
When the SPI system is enabled, the SPE bit is 1; transmission gate [10]
is enabled, and data for the output driver comes from the SPI master
data output signal (MSTRDO). When the SPI system is disabled, the
SPE control bit is 0; transmission gate [10] is disabled and transmission
gate [11] is enabled. In this case, port D data is coupled from the output
of HFF [8] to the input of output driver [9]. During a write to port D, the
WPORTD signal is asserted, which causes data to be latched into
HFF [8] from the internal data bus.

During a read of port D, transmission gate [6] is enabled by the RPORTD
signal to couple data to the internal data bus. The source of data for
port D reads depends on the direction control for the output driver. If the
output of NAND gate [3] is 0, output driver [9] is enabled and
transmission gate [4] is enabled. In this case, port D reads return the
data from a point inside the output driver. If the output of NAND gate [3]
is 1, transmission gate [5] is enabled. In this case, reads of port D return
the buffered state from the pin through inverters [7].

The output of inverters [7] drives the serial slave data input to the SPI
system logic. Because the source of this data is always from the MOSI
pin, it is not affected by the data direction logic.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 271

Parallel Input/Output
7.5.6.5 PD4 (SCK) Pin Logic

This pin alternately functions as the SPI SCK output pin when the
synchronous SPI system is enabled. Refer to Figure 7-20 for the
following discussion. The data direction specification for this pin is held
in HFF [1]. During a write to the DDRD register, the WDDRD signal is
asserted, causing data to be transferred into HFF [1] from the internal
data bus. A read of DDRD causes the RDDRD signal to be asserted,
which enables transmission gate [2] to couple the output of HFF [1] onto
the internal data bus.

Figure 7-20. PD4 (SCK) Pin Logic

HFF

D

C

Q

R

PD4
(SCK)

VDD

PR
O

TE
C

TI
O

N

PIN

N

P

[9]

[1]

DWOM

HFFR

D

C

Q

RDDRD

WPORTD

D4

MFAULT

WDDRD

RPORTD

[2]

[4]

[5]
[7]

[6]

[3]

[8]

[10]

[11]

SPISCK

SPE

RST

MSTRON

[12]

[13]
TO SPI
SLAVE CLOCK

Q

Q

Reference Manual M68HC11 — Rev. 6

272 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
When HFF [1] is cleared to 0, this pin is configured as a high-impedance
input. OR gate [13] causes HFF [1] to be cleared to 0 during reset. OR
gate [13] also causes HFF [1] to be cleared if there is an SPI mode fault.
An SPI mode fault is caused when a device configured as a master SPI
device is selected as if it were a slave. This condition could indicate that
more than one SPI device is attempting to drive the common SPI lines,
which could cause a bus conflict. To avoid the possibility of latchup, the
port D pins associated with the SPI are immediately forced to their input
configuration.

The actual data direction for this port D pin is determined by the logic
output of NAND gate [3]. When the SPI system is disabled, the DDRD
bit from HFF [1] controls direction. When the SPI system is enabled in
slave mode, this pin is forced to a high-impedance input. When the SPI
system is enabled in master mode, the DDRD bit from HFF [1] controls
direction. This last condition means that the user must set the
corresponding DDRD bit to 1 to enable the master clock output from this
pin when the SPI system is configured for master operation. The uses
and implications of this logic are discussed in greater detail in
Section 8. Synchronous Serial Peripheral Interface.

When the output of NAND gate [3] is 1, driver [9] is disabled so the pin
is configured as a high-impedance input. To enable pin driver [9], both
inputs to NAND gate [3] must be 1s. When the SPI system is disabled,
SPE is 0, which makes the output of NAND gate [12] a 1. This enables
NAND gate [3] so that the DDRD bit from HFF [1] can enable or disable
driver [9]. When the SPI system is enabled as a slave, SPE is 1 and
MSTRON is 0. This configuration causes NAND gate [12] to output a 0,
which disables output driver [9], regardless of the state of the DDRD bit
at HFF [1]. When the SPI system is enabled as a master, SPE is 1 and
MSTRON is 1. This configuration causes NAND gate [12] to output a 1,
which enables NAND gate [3] to control the direction of output buffer [9]
based on the state of the DDRD bit from HFF [1].

Output driver [9] can be placed in a wired-OR configuration by the
DWOM control bit. This control bit simultaneously affects all six port D
pins. When DWOM is 1, the P-channel device in the output driver is
disabled so the pin cannot be actively driven high. When the pin attempts
to output a logic 1, the N-channel device is off; thus, the pin appears as
a high-impedance input. An external pullup is used to passively pull the
pin high.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 273

Parallel Input/Output
The data for output driver [9] comes from transmission gate [10] or [11].
When the SPI system is enabled, the SPE bit is 1; thus, transmission
gate [10] is enabled, and data for the output driver comes from the SPI
master clock output signal (SPISCK). When the SPI system is disabled,
the SPE control bit is 0; transmission gate [10] is disabled and
transmission gate [11] is enabled. In this case, port D data is coupled
from the output of HFF [8] to the input of output driver [9]. During a write
to port D, the WPORTD signal is asserted, which causes data to be
latched into HFF [8] from the internal data bus.

During a read of port D, transmission gate [6] is enabled by the RPORTD
signal to couple data to the internal data bus. The source of data for port
D reads depends on the direction control for the output driver. If the
output of NAND gate [3] is 0, output driver [9] is enabled and
transmission gate [4] is enabled. In this case, port D reads return the
data from a point inside the output driver. If the output of NAND gate [3]
is 1, transmission gate [5] is enabled. In this case, reads of port D return
the buffered state from the pin through inverters [7].

The output of inverters [7] drives the SPI slave clock input to the SPI
system logic. Because the source of this clock is always from the SCK
pin, it is not affected by the data direction logic. When the SPI system is
operating in master mode, the SPI clock is generated by the SPI system
logic, and the slave clock input from inverters [7] is ignored.

7.5.6.6 PD5 (SS) Pin Logic

This pin alternately functions as the (SS) pin when the synchronous SPI
system is enabled. Refer to Figure 7-21 for the following discussion. The
data direction specification for this pin is held in HFF [1]. During a write
to the DDRD register, the WDDRD signal is asserted, causing data to be
transferred into HFF [1] from the internal data bus. A read of DDRD
causes the RDDRD signal to be asserted, which enables transmission
gate [2] to couple the output of HFF [1] onto the internal data bus. When
HFF [1] is cleared to 0 during reset, this pin is configured as a
high-impedance input. Unlike the other three pins associated with the
SPI system, the direction of this pin is not affected by mode faults.
Reference Manual M68HC11 — Rev. 6

274 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
Figure 7-21. PD5 (SS) Pin Logic

The actual data direction for this port D pin is determined by the logic
output of NAND gate [3]. When the SPI system is disabled, the DDRD
bit from HFF [1] controls direction. When the SPI system is enabled in
slave mode, this pin is configured as a high-impedance input. When the
SPI system is enabled in master mode, the DDRD bit from HFF [1]
controls direction. This last condition allows a user to decide how this pin
will be used when the SPI system is configured for master mode. If the
DDRD bit is cleared to 0, this SS pin is used as an input to detect mode
faults. If the SPI system is configured so that mode faults would not
occur, as in a single-master system, the user can set the DDRD bit
corresponding to the SS pin. In this case, the pin becomes a
general-purpose output pin not associated with the SPI system. The
uses and implications of this logic are discussed in greater detail in
Section 8. Synchronous Serial Peripheral Interface.

HFF

D

C

Q

R

PD5

VDD

PR
O

TE
C

TI
O

N

PIN

N

P

[9]

[1]

DWOM

HFFR

D

C

Q

RDDRD

WPORTD

D5

WDDRD

RPORTD

[2]

[4]

[5]
[7]

[6]

[3]

[8]

SPE

RST

[10]

SLAVE ENABLE
TO SPI

SPE [11]

MSTR

Q

Q
[12]
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 275

Parallel Input/Output
When the output of NAND gate [3] is 1, driver [9] is disabled; thus, the
pin is configured as a high-impedance input. To enable pin driver [9],
both inputs to NAND gate [3] must be 1s. When the SPI system is
disabled, SPE is 0, making the output of NAND gate [10] a 1. This
configuration enables NAND gate [3] so that the DDRD bit from HFF [1]
can enable or disable driver [9]. When the SPI system is enabled as a
slave, SPE is 1, and the master/slave control bit (MSTR) is 0. This
configuration causes NAND gate [10] to output 0, which disables output
driver [9], regardless of the state of the DDRD bit at HFF [1]. When the
SPI system is enabled as a master, SPE is 1 and MSTR is 1. This
causes NAND gate [10] to output 1, which enables NAND gate [3] to
control the direction of output buffer [9] based on the state of the DDRD
bit from HFF [1].

Output driver [9] can be placed in a wired-OR configuration by the
DWOM control bit. This control bit simultaneously affects all six port D
pins. When DWOM is 1, the P-channel device in the output driver is
disabled so the pin cannot be actively driven high. When the pin attempts
to output logic 1, the N-channel device is disabled; thus, the pin appears
as a high-impedance input. An external pullup is used to passively pull
the pin high. The data for output driver [9] comes from the output of
HFF [8]. During a write to port D, the WPORTD signal is asserted, which
causes data to be latched into HFF [8] from the internal data bus.

During a read of port D, transmission gate [6] is enabled by the RPORTD
signal to couple data to the internal data bus. The source of data for
port D reads depends on the direction control for the output driver. If the
output of NAND gate [3] is 0, output driver [9] is enabled and
transmission gate [4] is enabled. In this case, port D reads return the
data from a point inside the output driver. If the output of NAND gate [3]
is 1, transmission gate [5] is enabled. In this case, reads of port D return
the buffered state from the pin through inverters [7].

The slave enable signal to the SPI logic is developed by NOR gate [11].
The active-low SS signal from the pin is buffered by inverters [7] and
drives one input of NOR gate [11]. The other two inputs to this NOR gate
act as enables, and the output of the NOR gate is an active-high slave
select signal to the main SPI logic. When the SPI system is disabled,
SPE is 0, disabling NOR gate [11] by forcing its output to 0. When pin
output driver [9] is enabled by a 0 at the output of NAND gate [3], NOR
gate [11] is also disabled by the output of inverter [12]. This disabled
Reference Manual M68HC11 — Rev. 6

276 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
condition corresponds to SPI being enabled as a master and the DDRD
bit associated with the SS pin being set to 1. In this case, the PD5 pin is
being used as a general-purpose output and has nothing to do with the
SPI system. To avoid an erroneous mode fault condition due to a 0 at
this pin, the SS signal is disabled to the SPI logic.

7.5.6.7 Idealized Port D Timing

Figure 7-22 shows the idealized timing for important port D control
signals. Since this timing diagram does not consider any propagation
delays, it cannot be used as a substitute for data-sheet timing
specifications. This information is useful for understanding the basis for
data-sheet timing specifications so timing information can be
extrapolated for bus frequencies other than that used for the data sheet.
Timing information concerning the SPI system is included in Section 8.
Synchronous Serial Peripheral Interface.

Figure 7-22. Idealized Port D Timing

NEW PORT D DATA

VALID DATA REQUIRED AT CPU

WRITE TO PORT D

READ FROM PORT D

PH2 (INTERNAL)

EXTAL

AS

PORT D INPUT

RPORTD

PORT D OUTPUT

WPORTD

PORT D OUTPUT PINS

E

RDDRD

READ DDRD

WDDRD

WRITE TO DDRD
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 277

Parallel Input/Output
On a port D read, the RPORTD signal enables transmission gates that
drive port D data onto the internal data bus. After the RPORTD signal is
negated, data is held stable on the self-latching internal data bus. The
CPU actually requires this data to be valid for a setup before and hold
time after the rising edge of the internal PH2 clock.

Port D writes cause changes to the port D output pins at the falling edge
of the internal PH2 clock. This edge corresponds to the center of the
E-clock high time.

During a DDRD read, the RDDRD signal enables a transmission gate to
couple the state of the DDRD bit to the internal data bus. In contrast to
the RPORTD signal, RDDRD is active while the CPU is actually reading
the data from the internal data bus. Although it should pose no problems
to the user, there is a remote chance that the state of the DDRD bits
associated with three of the SPI pins (MISO, MOSI, and SCK) could
change asynchronously with respect to a DDRD read due to a mode
fault. In such a case, the bits in transition could be read incorrectly.

The timing for writes to DDRD is such that the pin configuration will
change at the falling edge of the internal PH2 clock. This edge
corresponds to the middle of the E-clock high time.

7.5.7 Port E

The eight port E pins are fixed-direction input pins that also serve as A/D
analog channel inputs. Each of the port E pins has this same logic. The
following paragraphs describe the detailed port E pin logic and the
idealized timing of important port E signals.

7.5.7.1 Port E Pin Logic

Figure 7-23 shows the detailed pin logic for one port E pin. When the
internal A/D converter system samples a port E pin, N-channel device [1]
is enabled to couple the analog level from the port E pin to the sample
and hold capacitance in the A/D system. The enable signal to device [1]
is active for the first 12 E-clock cycles of a conversion cycle for the
associated analog channel. A more detailed discussion of the timing of
this enable signal is included in Section 12. Analog-to-Digital
Converter System. N-channel device [1] and the gate signal driving it
are specially designed to accurately pass analog levels over the full
VREFL to VREFH range, even if VREFH is slightly above VDD.
Reference Manual M68HC11 — Rev. 6

278 Parallel Input/Output MOTOROLA

Parallel Input/Output
Detailed I/O Pin Descriptions
Figure 7-23. Port E Pin Logic

N- and P-channel devices [2] form an inverter whose input is connected
to the pin and whose output is connected to the similar inverter stage [3].
Unlike a typical CMOS inverter, the N-channel device is connected
through another series N-channel device to VSS. This extra device acts
as a strobe enable for the inverter. Since the port E pins are also used
as analog inputs, there will be times when the pin is at an intermediate
level. Intermediate levels cause normal CMOS inverters to draw
excessive power-supply currents because both the N- and the
P-channel devices can be partially turned on simultaneously, creating a
low-impedance path between VDD and VSS. For port E pins, this path is
interrupted by extra N-channel device [4].

Four N-channel devices [4] and [5] are used to isolate the potential
analog levels at the port E pins from the digital logic associated with
port E. When port E is read digitally, the RPORTE signal is asserted to
enable these devices. The devices [4] enable inverters [2] and [3]. The

PE7–PE0

PR
O

TE
C

TI
O

N

PIN

RPORTE

VDD

D7–D0

ATDREAD

SAMPLE 8–
SAMPLE 1

TO
CAPACITIVE

DAC
[1]

[2][3]

[4]

[5]

[6]

[7]

[8]

VDD VDD
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 279

Parallel Input/Output
devices [5] connect the outputs of inverters [2] and [3] to the set and
reset inputs of cross-coupled NAND latch [7]. The RPORTE signal is
only asserted for one-fourth of an E-clock cycle for the cycle where port
E is read. The cross-coupled NAND latch holds this port E data until later
in the read cycle when the CPU actually reads the data. The A/D read
signal (ATDREAD) is asserted during port E reads to enable
transmission gate [8] to couple the data from output latch [7] to the
internal data bus.

Digital reads of port E are not recommended during the sample portion
of an A/D conversion cycle when the gate signal to N-channel device [1]
is enabled. The concern is that enabling inverters [2] and [3] might
disturb the analog sample that is occurring. This disturbance is caused
by very tiny gate-to-source and gate-to-drain capacitances in N- and
P-channel devices [2].

7.5.7.2 Idealized Port E Timing

Figure 7-24 shows the idealized timing for important port E control
signals. This timing diagram, which does not consider any propagation
delays, cannot be used as a substitute for data-sheet timing
specifications. This information is useful for understanding the basis for
data-sheet timing specifications so timing information can be
extrapolated for bus frequencies other than that used for the data sheet.

Figure 7-24. Idealized Port E Timing

VALID DATA REQUIRED AT CPU

READ FROM PORT E

PH2 (INTERNAL)

EXTAL

AS

PORT E INPUT

RPORTE

ATDREAD

E

Reference Manual M68HC11 — Rev. 6

280 Parallel Input/Output MOTOROLA

Parallel Input/Output
Handshake I/O Subsystem
On a port E read, the RPORTE signal is asserted for one-fourth E-clock
cycle to enable the pin input buffers and transfer the digital value from
the port E pins into cross-coupled NAND latches in the pin logic for each
port E pin. The ATDREAD signal is also asserted to enable transmission
gates that couple the outputs of the NAND latches to the internal data
bus. Since the CPU does not actually use the data from the NAND
latches until after the RPORTE signal is disabled, the latches are
actually acting as synchronizers for port E data.

7.6 Handshake I/O Subsystem

The handshake I/O subsystem involves ports B and C, STRA input,
STRB output, and the PIOC register. The following paragraphs explain
the strobe and handshake protocols and the detailed operation of the
PIOC register.

There are three primary modes of operation for the handshake I/O
subsystem. The first (default) mode of operation is the simple strobe
mode, which uses port B as a simple strobe output port and port C as a
simple latching input port. The second mode of operation is a full-input
handshake; the third mode is a full-output handshake. In the
full-handshake modes of operation, port B is not involved; therefore, it
defaults to being a general-purpose output port.

If the application does not require handshake functions, these functions
can generally be ignored. Ports B and C can be used for simple
general-purpose I/O; in fact, the STRA and STRB pins can even be used
for limited non-handshake functions. When handshake functions are
being used, it is usually possible to use any port C pins which are not
needed for handshake as general-purpose I/O pins, without interfering
with the handshake functions of the other port C pins. The one exception
to this possibility is that while full-output handshake is specified, port C
pins cannot usually function as general-purpose input pins. Examples of
mixed use of port C pins are presented in 7.6.5 Non-Handshake Uses
of STRA and STRB Pins.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 281

Parallel Input/Output
7.6.1 Simple Strobe Mode

The simple strobe mode for the handshake I/O subsystem is selected by
HNDS equal to 0 in the PIOC register. At reset, HNDS is forced to 0,
which is the default mode of operation for the handshake I/O subsystem.
In this mode, the OIN and PLS control bits in PIOC have no meaning or
effect.

In simple strobe mode, port B is used as a strobe output port in
conjunction with the STRB output pin. Port C is simultaneously used as
a latching input port in conjunction with the STRA input pin. The strobe
output function at port B is independent of the latching input function at
port C.

Figure 7-25 shows the idealized timing for simple strobe mode
operations in the MC68HC11A8. The timing for the MC68HC24 is
slightly different because the MC68HC24 does not have access to the
internal PH2 clock of the MC68HC11A8. Detailed descriptions of the
strobe A and strobe B pins are presented in 7.5.3.2 Special
Considerations for STRB on MC68HC24 PRU and 7.5.5.2 Special
Considerations for STRA on MC68HC24 PRU.

Figure 7-25. Idealized Timing for Simple Strobe Operations

STROBED OUTPUT

LATCHED INPUT

STAF

PORT C

STROBE A

STROBE B

PORT B

E

PH2 (INTERNAL)

WRITE PORT B

NEW PORT B DATA
Reference Manual M68HC11 — Rev. 6

282 Parallel Input/Output MOTOROLA

Parallel Input/Output
Handshake I/O Subsystem
7.6.1.1 Port B Strobe Output

In response to a write to PORTB, data is changed at port B, and then a
two E-cycle pulse is generated at the STRB pin. Although the INVB
control bit in PIOC allows a choice of polarity for strobe B pulses,
Figure 7-25 only shows the INVB = 1 case, which selects active-high
strobe B pulses.

7.6.1.2 Port C Simple Latching Input

Data at port C is required to be valid for a short setup time before and a
short hold time after the selected edge on the strobe A pin. Since the
edge on strobe A is asynchronous, it need not have any special
relationship with the E clock. The internal STAF bit, which indicates that
port C data has been latched, must be synchronized with the internal
clocks to avoid setting the flag in the portion of a cycle where it could be
read. This factor implies there may be a delay between when the actual
port C data is latched and when the MCU becomes aware of it. Not
counting internal propagation delays, the MC68HC11A8 would have a
delay between 0 nanoseconds and one E-clock period. If the relationship
between the strobe A edges and the E clock is known, the user can
predict the delay between port C data latching and setting STAF by a
careful study of the strobe A pin description.

7.6.2 Full-Input Handshake Mode

Full-input handshake mode is selected when HNDS is 1 and OIN is 0. In
this mode, the strobe B output acts as a ready signal to an external
system. The external system should not attempt to strobe data into
port C until the strobe B signal has been asserted, indicating a ready
condition. The strobe A input is an edge-sensitive latch command,
allowing the external system to asynchronously latch information into
port C.

When a ready condition is recognized, the external device places data
on the port D inputs, then pulses the strobe A input. The active edge on
strobe A latches data into the PORTCL register, sets STAF (optionally
causing an interrupt), and negates strobe B. Negation of strobe B
automatically inhibits the external system from strobing any new data
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 283

Parallel Input/Output
into port C. Reading the latched data from PORTCL (independent of
clearing STAF) causes strobe B to be asserted, indicating new data may
now be strobed into port C.

Control bits allow flexibility to adapt to the requirements of a particular
application. The INVB control bit selects the polarity of the strobe B
signals. The EGA determines whether rising or failing edges will be the
active edges for the strobe A input. The PLS bit determines whether
strobe B will operate in pulsed mode or interlocked mode. In the
interlocked mode, strobe B is asserted when the PORTCL register is
read and is negated when an active edge is detected at the strobe A
input. In the pulsed mode, strobe B is asserted when the PORTCL
register is read but only remains asserted for two E-clock cycles.

Figure 7-26 illustrates the full-input handshake protocol. Separate wave
forms are included to clarify the pulsed versus interlocked modes of
strobe B. Although the polarity of strobe B and the active edge for strobe
A can be selected, the figure only shows the case where INVB and EGA
are 1s. This configuration specifies strobe A to be sensitive to rising
edges and the active level on strobe B to be high. The timing shown in
Figure 7-26 is the idealized timing for the MC68HC11A8. The idealized
timing for the MC68HC24 port replacement unit has small differences,
which do not concern most users.

Figure 7-26. Idealized Timing for Full-Input Handshake

READ PORTCL
(AFTER READING

PIOC WITH STAF=1)

STAF

(PULSED)

(INTERLOCKED)

STROBE B

PORT C

STROBE A

E

PH2 (INTERNAL)
Reference Manual M68HC11 — Rev. 6

284 Parallel Input/Output MOTOROLA

Parallel Input/Output
Handshake I/O Subsystem
7.6.3 Full-Output Handshake Mode

Full-output handshake mode is selected when HNDS and OIN are 1s. In
this mode, port C is used to output data to some external system. The
strobe B output signal indicates that port C data is ready for the external
system. The strobe A input is pulsed by the external system to
acknowledge that it has accepted the data on port C. In the three-state
variation of output handshake, strobe A also acts like the output enable
of a 74HC244 buffer.

Figure 7-27 illustrates the full-output handshake protocol. This figure
shows strobe B waveforms for both interlocked and pulsed modes.
Waveforms are also provided to show the three-state variation of the
output-handshake protocol. Although the polarities for strobes A and B
are software programmable, only the case in which EGA and INVB are
1s is shown. This case specifies strobe B is active high, strobe A
responds to rising edges, and the active level on strobe A is low for the
three-state variation of output handshake.

Figure 7-27. Idealized Timing for Full-Output Handshake

E

PH2 (INTERNAL)

(PULSED)

(INTERLOCKED)

STROBE B

(DDR BITS = 0)

(DDR BITS = 1)

PORT C

STROBE A

STAF

WRITE PORTCL

NEW PORT C DATA

DRIVEN
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 285

Parallel Input/Output
7.6.3.1 Normal Output Handshake

In an output-handshake transaction, data is output to port C pins by
writing to the PORTCL register, which automatically causes strobe B to
be asserted. The external system recognizes this strobe B signal as a
ready indication. After accepting the data from port C, the external
system pulses the strobe A input to acknowledge the receipt of data. The
active edge on strobe A causes strobe B to be deasserted and STAF to
be set. STAF signals that the MCU can begin the next transaction by
writing the next byte of data to PORTCL.

7.6.3.2 Three-State Variation of Output Handshake

The three-state variation of output handshake can be thought of as if a
74HC244 buffer had been placed in series with the port C outputs with
its output enable connected to the strobe A signal. The transaction
sequence is identical to the normal output handshake protocol
previously described.

Port C pins, which are to act as three-state outputs, have their
corresponding DDRC control bits cleared to 0. As long as the strobe A
input is at its inactive level, all port C pins obey their corresponding
DDRC specification. When strobe A goes to its active level, all port C
pins act as driven outputs, regardless of their corresponding DDRC
specification. The active level is automatically specified when EGA is
selected. If EGA is 0, failing edges are selected and the active level is
high. If EGA is 1, rising edges are selected and the active level is low.
The relationship between the active edge and the active level at strobe A
was chosen so that the active edge will correspond to the trailing edge
of a port C output enable pulse to strobe A.

7.6.4 Parallel I/O Control Register (PIOC)

The PIOC register is used to configure and control the handshake I/O
subsystem in the MC68HC11A8. The register in Figure 7-28 and the
following paragraphs describe each of the control or status bits in greater
detail.
Reference Manual M68HC11 — Rev. 6

286 Parallel Input/Output MOTOROLA

Parallel Input/Output
Handshake I/O Subsystem
STAF — Strobe A Flag

This status flag is a key element of the handshake I/O subsystem.
Independent of the strobe or handshake mode, STAF is always set as
a result of a selected active edge at the STRA pin. The edge at STRA,
which is asynchronous to the MCU E clock, causes data to be
asynchronously latched into the PORTCL register. The STAF bit is
synchronized to the internal PH2 clock. Provided the asynchronous
edge occurs at least a setup time before the rising edge of PH2, STAF
will become set at that PH2 rising edge. If this setup time is not met,
then STAF would not be set until the next PH2. The rising edge of
PH2 corresponds to the center of the E-clock low time. The active
edge at STRA is software selectable by the EGA bit in the PIOC
register.

The STAF bit is cleared by a 2-step, automatic clearing sequence.
The first step arms the clearing mechanism; the second step clears
STAF to 0. To arm the clearing mechanism, software reads the PIOC
register while the STAF bit is set to 1. The second step depends upon
the strobe or handshake mode in effect. In simple strobe mode
(HNDS = 0), the second step of the clearing sequence is to read the
PORTCL register. In full-input handshake mode (HNDS = 1 and
OIN = 0), the second step of the clearing sequence is to read the
PORTCL register. In full-output handshake mode (HNDS = 1 and
OIN = 1), the second step of the clearing sequence is to write to the
PORTCL register. The handshake mode can be changed between
the arming and clearing steps of this sequence. If the mode is
changed, the action required for the second step of the clearing
sequence is governed by the state of HNDS and OIN at the time the
second step is performed. Although any amount of delay is permitted
between the two steps of this clearing sequence, it is best to keep the
steps as close together as possible. The arming mechanism is

Address: $1002

Bit 7 6 5 4 3 2 1 Bit 0

Read: STAF
STAI CWOM HNDS OIN PLS EGA INVB

Write:

Reset: 0 0 0 0 0 U 1 1

U = Unaffected

Figure 7-28. Parallel I/O Control Register (PIOC)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 287

Parallel Input/Output
automatically cleared whenever the selected edge is detected at the
STRA pin. If an edge is recognized after the arming step but before
the clearing step, the internal arming signal will be deasserted, and
the clearing step will not clear STAF.

STAI — Strobe A Interrupt Enable Bit

This control bit determines whether STAF will cause interrupts. When
STAI is 1, a hardware interrupt request is generated whenever the
STAF bit is set. When STAI is 0, STAF interrupts are inhibited.

CWOM — Port C Wired-OR Mode Bit

This bit is used to configure all port C outputs for wired-OR operation.
When CWOM is 0, port C outputs operate as active push-pull drivers.
When CWOM is 1, the P-type pullup devices are disabled, causing
port C outputs to act as open-drain drivers. The CWOM bit
simultaneously affects all eight port C bits. The P-channel device
forms a P-N junction between the VDD supply and the output pin so

that the pin cannot be pulled more than a diode drop above the VDD

supply. For this reason, the wired-OR mode cannot be used for level
conversion the way open-collector TTL devices are sometimes used.

In a TTL system, a brief contention between two push-pull drivers,
though not good practice, generally has no serious consequences. In
a CMOS system, a brief contention between push-pull drivers can
induce destructive latchup. In cases where two CMOS output drivers
could be in contention, they should be configured for wired-OR
operation. If there is a brief contention between the time one driver is
turned on and the other is turned off, there will be no danger of latchup
damage.

HNDS — Handshake/Simple Strobe Mode Select Bit

When HNDS is 0, the simple strobe mode is selected. In the simple
strobe mode, the STRB pin is pulsed for two E-clock cycles after each
write to port B. Also, port C data is asynchronously latched into the
PORTCL register each time the selected edge is detected at the
STRA pin. When HNDS is set to 1, either full-input or full-output
handshake mode is selected. All full-handshake modes use port C,
the STRA strobe input pin, and the STRB handshake output pin.
Since the handshake I/O subsystem does not use port B when a
full-handshake mode is selected, port B defaults to being a
general-purpose output port.
Reference Manual M68HC11 — Rev. 6

288 Parallel Input/Output MOTOROLA

Parallel Input/Output
Handshake I/O Subsystem
OIN — Output/Input Handshake Select Bit

This bit has no effect unless HNDS is 1. When HNDS is 1, OIN further
qualifies the handshake mode. When OIN is 1, full-output handshake
is selected. When OIN is 0, full-input handshake is selected.

PLS — Strobe B Pulse Mode Select Bit

This control bit determines whether the STRB pin is configured for
pulsed or interlocked operation. In interlocked mode, once STRB is
asserted, it will remain active until an acknowledge edge is detected
at the STRA pin. The interlocked mode is selected when PLS is 0.
Interlocked mode cannot be specified unless HNDS is logic 1. In
pulsed mode, STRB is deasserted exactly two E-clock cycles after it
is asserted. When the simple strobe mode is selected (HNDS = 0), the
pulsed mode is assumed, even if PLS is set to 1. Additional
information about strobe B can be found in 7.5.3 R/W (STRB) Pin.

EGA — Edge Select for Strobe A Bit

This control bit selects which polarity edge will be recognized at the
STRA input pin. When EGA is 0, falling edges are detected and rising
edges are ignored. When EGA is 1, only rising edges are recognized
at the STRA pin. When the three-state variation of the full-output
handshake mode is being used, EGA also specifies the level on
STRA that will cause port C output buffers to be enabled. The output
enable for port C pins is an active-high internal signal, which is the
exclusive OR of EGA with the level at the STRA pin. Thus, the trailing
edge of the enable signal on the STRA pin will be the selected active
edge used by the handshake sequence.

INVB — Invert Strobe B Bit

The STRB signal is developed in an S/R flip-flop in the STRB pin
logic. The INVB control bit selects either the Q or Q output of this
flip-flop to be coupled out of the STRB pin. If INVB is 0, the Q of this
latch is coupled out of the STRB pin, and STRB signals are active low.
If INVB is 1, the Q of this latch is used, and STRB signals are active
high. Changes to INVB do not affect the state of the internal S/R
flip-flop.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Parallel Input/Output 289

Parallel Input/Output
7.6.5 Non-Handshake Uses of STRA and STRB Pins

When not being used for handshake functions, the STRA pin can be
used as a general-purpose edge-detection interrupt source, which is
fairly common use for the STRA pin. The STAF is set each time a
selected edge is recognized. The STAI control bit allows strobe A edges
to force a maskable interrupt to the IRQ vector. The EGA control bit
allows the user to select either rising edges or falling edges as the
triggering edge for the strobe A input.

Though not a very common practice, the STRB pin can be used as an
extra static output. When full-input handshake mode is selected, STRB
remains at its inactive level until the PORTCL register is read. If
PORTCL is never read, STRB stays at its inactive level indefinitely. The
INVB control bit allows the user to switch the inactive level from 1 to 0 by
writing to the PIOC register. In this scheme, it is important never to read
the PORTCL register because this would cause STRB to automatically
go to its active level. Other similar schemes may be developed to meet
specific application needs.

Usually when the STRA and STRB pins are being used for
non-handshake functions, the handshake I/O subsystem would be
configured for full-input handshake mode because the other two modes
result in interactions between the strobe pins and the port B and C pins.
If simple strobe mode is selected, any write to port B will generate a
pulse on the STRB pin. If full-output handshake is selected, each time
the STRA pin goes to its selected active level, all port C pins are forced
to be outputs (even if the DDRC bits indicate they should be inputs).
These interactions are a normal consequence of the handshake I/O
functions but could interfere with non-handshake use of the STRA and
STRB pins. For this reason, users are encouraged to study the operation
of the handshake I/O subsystem carefully if they plan to use STRA and
STRB for non-handshake functions.
Reference Manual M68HC11 — Rev. 6

290 Parallel Input/Output MOTOROLA

Reference Manual — M68HC11

Section 8. Synchronous Serial Peripheral Interface
8.1 Contents

8.2 Introduction .292

8.3 SPI Transfer Formats .293
8.3.1 SPI Clock Phase and Polarity Controls 293
8.3.2 CPHA Equals Zero Transfer Format 293
8.3.3 CPHA Equals One Transfer Format.294

8.4 SPI Block Diagram .295

8.5 SPI Pin Signals .295

8.6 SPI Registers .298
8.6.1 Port D Data Direction Control Register (DDRD).298
8.6.2 SPI Control Register (SPCR) .300
8.6.3 SPI Status Register (SPSR). .302

8.7 SPI System Errors .303
8.7.1 SPI Mode-Fault Error .303
8.7.2 SPI Write-Collision Errors. .304

8.8 Beginning and Ending SPI Transfers305
8.8.1 Transfer Beginning Period (Initiation Delay).305
8.8.2 Transfer Ending Period .306

8.9 Transfers to Peripherals with Odd Word Lengths.309
8.9.1 Example 8-1: On-Chip SPI Driving

an MC144110 D/A. .311
8.9.2 Example 8-2: Software SPI Driving

an MC144110 D/A. .311
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Synchronous Serial Peripheral Interface 291

Synchronous Serial Peripheral Interface
8.2 Introduction

The serial peripheral interface (SPI) is one of two independent serial
communications subsystems included on the MC68HC11A8. As the
name implies, the SPI is primarily used to allow the microcontroller unit
(MCU) to communicate with peripheral devices. The SPI is also capable
of interprocessor communications in a multiple-master system.
Peripheral devices are as simple as an ordinary transistor-transistor
logic (TTL) shift register or as complex as a complete subsystem, such
as a liquid crystal diode (LCD) display driver or an analog-to-digital (A/D)
converter subsystem. The SPI system is flexible enough to interface
directly with numerous standard product peripherals from several
manufacturers. The system can be configured as a master or a slave
device. Data rates as high as 1 Mbit per second are accommodated
when the system is configured as a master; rates as high as 2 Mbits per
second are accommodated when the system is operated as a slave.

Clock control logic allows a selection of clock polarity and a choice of two
fundamentally different clocking protocols to accommodate most
available synchronous serial peripheral devices. When the SPI is
configured as a master, software selects one of four different bit rates for
the serial clock.

Error-detection logic is included to support interprocessor
communications. A write-collision detector indicates when an attempt is
made to write data to the serial shift register while a transfer is in
progress. A multiple-master mode-fault detector automatically disables
SPI output drivers if more than one MCU simultaneously attempts to
become bus master.

The I/O pin control logic on the MC68HC11A8 is more flexible than that
of other Motorola MCUs. This added I/O pin control allows the
MC68HC11A8 to implement systems with a single, bidirectional data line
or other unusual synchronous serial configurations.
Reference Manual M68HC11 — Rev. 6

292 Synchronous Serial Peripheral Interface MOTOROLA

Synchronous Serial Peripheral Interface
SPI Transfer Formats
8.3 SPI Transfer Formats

During an SPI transfer, data is simultaneously transmitted (shifted out
serially) and received (shifted in serially). A serial clock line synchronizes
shifting and sampling of the information on the two serial data lines. A
slave select line allows individual selection of a slave SPI device; slave
devices that are not selected do not interfere with SPI bus activities. On
a master SPI device, the slave select line can optionally be used to
indicate a multiple-master bus contention.

8.3.1 SPI Clock Phase and Polarity Controls

Software can select any of four combinations of serial clock (SCK) phase
and polarity using two bits in the SPI control register (SPCR). The clock
polarity is specified by the CPOL control bit, which selects an active high
or active low clock and has no significant effect on the transfer format.
The clock phase (CPHA) control bit selects one of two fundamentally
different transfer formats. The clock phase and polarity should be
identical for the master SPI device and the communicating slave device.
In some cases, the phase and polarity are changed between transfers to
allow a master device to communicate with peripheral slaves having
different requirements. The flexibility of the SPI system on the
MC68HC11A8 allows direct interface to almost any existing
synchronous serial peripheral.

8.3.2 CPHA Equals Zero Transfer Format

Figure 8-1 is a timing diagram of an SPI transfer where CPHA is 0. Two
waveforms are shown for SCK: one for CPOL equals 0 and another for
CPOL equals 1. The diagram may be interpreted as a master or slave
timing diagram since the SCK, master in/slave out (MISO), and master
out/slave in (MOSI) pins are directly connected between the master and
the slave. The MISO signal is the output from the slave, and the MOSI
signal is the output from the master. The SS line is the slave select input
to the slave; the SS pin of the master is not shown but is assumed to be
inactive. The SS pin of the master must be high or must be reconfigured
as a general-purpose output not affecting the SPI. This timing diagram
functionally depicts how a transfer takes place; it should not be used as
a replacement for data-sheet parametric information.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Synchronous Serial Peripheral Interface 293

Synchronous Serial Peripheral Interface
Figure 8-1. CPHA Equals Zero SPI Transfer Format

8.3.3 CPHA Equals One Transfer Format

Figure 8-2 is a timing diagram of an SPI transfer where CPHA = 1. Two
waveforms are shown for SCK: one for CPOL = 0 and another for
CPOL = 1. The diagram may be interpreted as a master or slave timing
diagram since the SCK, MISO, and MOSI pins are directly connected
between the master and the slave. The MISO signal is the output from
the slave, and the MOSI signal is the output from the master. The SS line
is the slave select input to the slave; the SS pin of the master is not
shown but is assumed to be inactive. The SS pin of the master must be
high or must be reconfigured as a general-purpose output not affecting
the SPI. This timing diagram functionally illustrates how a transfer takes
place; it should not be used as a replacement for data-sheet parametric
information.

Figure 8-2. CPHA Equals One SPI Transfer Format

MSB 6 5 4 3 2 1 LSB *

6 5 4 3 2 1 LSB

2 3 4 5 6 7 81

MSB

MISO
(FROM SLAVE)

MOSI
(FROM MASTER)

SCK (CPOL=1)

SCK (CPOL=0)

SCK CYCLE #
(FOR REFERENCE)

SS (TO SLAVE)

LSB

*Not defined but normally MSB of character just received.

*Not defined but normally LSB of previously transmitted character.

6 5 4 3 2 1 LSB

6 5 4 3 2 1 LSB

2 3 4 5 6 7 81

MSB

MISO
(FROM SLAVE)

MOSI
(FROM MASTER)

SCK (CPOL=1)

SCK (CPOL=0)

SCK CYCLE #
(FOR REFERENCE)

SS (TO SLAVE)

MSB*
Reference Manual M68HC11 — Rev. 6

294 Synchronous Serial Peripheral Interface MOTOROLA

Synchronous Serial Peripheral Interface
SPI Block Diagram
When CPHA = 0, the SS line must be deasserted and reasserted
between each successive serial byte. Also, if the slave writes data to the
SPI data register (SPDR) while SS is active low, a write-collision error
results.

When CPHA = 1, the SS line may remain active low between successive
transfers (can be tied low at all times). This format is sometimes
preferred in systems having a single fixed master and a single slave
driving the MISO data line.

8.4 SPI Block Diagram

Figure 8-3 is a block diagram of the SPI subsystem. When an SPI
transfer occurs, an 8-bit character is shifted out one data pin while a
different 8-bit character is simultaneously shifted in a second data pin.
Another way to view this transfer is that an 8-bit shift register in the
master and another 8-bit shift register in the slave are connected as a
circular 16-bit shift register. When a transfer occurs, this distributed shift
register is shifted eight bit positions; thus, the characters in the master
and slave are effectively exchanged.

The central element in the SPI system is the block containing the shift
register and the read data buffer. The system is single buffered in the
transmit direction and double buffered in the receive direction. This fact
means new data for transmission cannot be written to the shifter until the
previous transaction is complete; however, received data is transferred
into a parallel read data buffer so the shifter is free to accept a second
serial character. As long as the first character is read out of the read data
buffer before the next serial character is ready to be transferred, no
overrun condition will occur. A single MCU register address is used for
reading data from the read data buffer and for writing data to the shifter.

8.5 SPI Pin Signals

Four I/O pin signals are associated with SPI transfers: the SCK, the
MISO data line, the MOSI data line, and the active low SS pin. When the
SPI system is disabled, the four pins are configured for general-purpose
I/O, and the primary direction of data is controlled by a data direction
control bit corresponding to each I/O pin. When the SPI system is
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Synchronous Serial Peripheral Interface 295

Synchronous Serial Peripheral Interface
Figure 8-3. SPI System Block Diagram

enabled, the data direction control bits still influence the direction of data
at the pins. Detailed logic for these pins is included in Section 7. Parallel
Input/Output. The following rules answer the most common questions.
When the SPI system is on and expects a pin to be an input, the pin will
be configured as an input regardless of the state of its data direction
control bit. When the SPI system is on and expects a pin to be an output,
the pin will be configured as an output only if its data direction control bit
is set to 1. When the SPI is configured as a master, the PD5/SS pin is a
special case.

SP
R

0

SP
R

1

C
PH

A

C
PO

L

M
ST

R

D
W

O
M

SP
E

SP
IE

SPI CONTROL REGISTER

M
O

D
F

W
C

O
L

SP
IF

SPI STATUS REGISTER

8-BIT SHIFT REGISTER

READ DATA BUFFER

MSB LSB

INTERNAL
DATA BUS

SPI INTERRUPT
REQUEST

MSTR

SPE

M
ST

R

D
W

O
M

SP
E

SP
R

0

SPI CLOCK (MASTER)

SPI CONTROL

SELECT

DIVIDER

PH2
(INTERNAL)

CLOCK
LOGIC

CLOCK

PI
N

 C
O

N
TR

O
L

LO
G

IC

S

M

S
M

M

S

MISO
PD2

MOSI
PD3

SCK
PD4

SS
PD5

SP
R

1

÷2 ÷4 ÷16 ÷32

8 8

8

Reference Manual M68HC11 — Rev. 6

296 Synchronous Serial Peripheral Interface MOTOROLA

Synchronous Serial Peripheral Interface
SPI Pin Signals
NOTE: SPI transfers will not occur unless the outputs are enabled by setting the
corresponding DDRD bits. SPI outputs are disabled (high impedance)
unless their corresponding DDRD bits are set to 1. SPI inputs are
configured as high-impedance inputs even if their corresponding DDRD
bits are set to 1.

The SCK pin is an output when the SPI is configured as a master and an
input when the SPI is configured as a slave. When the SPI is configured
as a master, the SCK signal is derived from the internal MCU bus clock.
When the master initiates a transfer, eight clock cycles are automatically
generated on the SCK pin. When the SPI is configured as a slave, the
SCK pin is an input, and the clock signal from the master synchronizes
the data transfer between the master and slave devices. Slave devices
ignore the SCK signal unless the slave select pin is active low. In both
the master and slave SPI devices, data is shifted on one edge of the
SCK signal and is sampled on the opposite edge where data is stable.
Edge polarity is determined by the SPI transfer protocol.

The MISO and MOSI data pins are used for transmitting and receiving
serial data. When the SPI is configured as a master, MISO is the master
data input line, and MOSI is the master data output line. When the SPI
is configured as a slave, these pins reverse roles. In a multiple-master
system, all SCK pins are tied together, all MOSI pins are tied together,
and all MISO pins are tied together. A single SPI device is configured as
a master; all other SPI devices on the SPI bus are configured as slaves.
The single master drives data out its SCK and MOSI pins to the SCK and
MOSI pins of the slaves. One selected slave device optionally drives
data out its MISO pin to the MISO master pin. The automatic control of
the direction of these pins makes reconfiguration through external logic
unnecessary when a new device becomes the master.

The SS pin behaves differently on master and slave devices. On a slave
device, this pin is used to enable the SPI slave for a transfer. If the SS
pin of a slave is inactive (high), the device ignores SCK clocks and keeps
the MISO output pin in the high-impedance state. On a master device,
the SS pin can optionally serve as an error-detection input for the SPI or
as a general-purpose output not affecting the SPI. The choice is based
on the corresponding data direction control bit (DDRD5). When DDRD5
is logic 1 and the SPI is configured as a master, the PD5/SS pin acts as
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Synchronous Serial Peripheral Interface 297

Synchronous Serial Peripheral Interface
a general-purpose output that is independent of SPI activities. When the
DDRD5 bit is logic 0 and the SPI system is configured as a master, the
SS pin acts as an error-detection input, which should remain high. If the
SS pin goes low while the SPI is a master and is using the SS pin as an
error-detection input, it indicates that some other device on the SPI bus
is attempting to be a master. This attempt causes the master device
sensing the error to immediately exit the SPI bus to avoid potentially
damaging driver contentions. This detection is called a mode fault and is
discussed in 8.7.1 SPI Mode-Fault Error.

The port D I/O pins, including the four SPI pins, can be configured to
behave as open-drain drivers. The port D wired-OR mode (DWOM)
control bit is used to enable this option. An external pull-up resistor is
required on each port D output pin while this option is selected. In
multiple-master systems, this option provides extra protection against
CMOS latchup because, even if more than one SPI device tries to
simultaneously drive the same bus line, there will be no destructive
contention. Other unusual SPI system configurations also benefit from
this option (for example, when MISO and MOSI are tied together to form
a single, bidirectional data line).

8.6 SPI Registers

The SPI control register (SPCR), SPI status register (SPSR), and SPDR
are software-accessible registers used to configure and operate the SPI
system. Because the port D data direction control register (DDRD)
influences SPI activities, it is discussed briefly. Detailed logic diagrams
of the port D pins can be found in Section 7. Parallel Input/Output.

8.6.1 Port D Data Direction Control Register (DDRD)

This register, which may be read or written at any time, is used to control
the primary direction of port D pins. Bits 5, 4, 3, and 2 of port D are used
by the SPI system when the SPI enable (SPE) control bit is 1. The serial
communications interface (SCI) system uses the other two bits of port D
when the SCI receiver and transmitter are enabled. This description of
DDRD is intended to cover only material related to the SPI system.
Reference Manual M68HC11 — Rev. 6

298 Synchronous Serial Peripheral Interface MOTOROLA

Synchronous Serial Peripheral Interface
SPI Registers
DDRD5 — Data Direction Control for Port D Bit 5 (SS)

When the SPI system is enabled as a slave (SPE = 1; MSTR = 0), the
PD5/SS pin is the slave select input, regardless of the value of
DDRD5. When the SPI system is enabled as a master (SPE = 1;
MSTR = 1), the function of the PD5/SS pin depends on the value in
DDRD5.

0 = The SS pin is used as an input to detect mode-fault errors. A
low on this pin indicates that some other device in a
multiple-master system has become a master and is trying to
select this MCU as a slave. To prevent harmful contentions
between output drivers, a mode fault is generated, which
causes the device sensing the fault to immediately change all
of its SPI pins to high impedance. Additional information on
mode faults is given in 8.7.1 SPI Mode-Fault Error.

1 = The PD5/SS pin acts as a general-purpose output not affected
by the SPI system. Because the mode-fault detection logic in
the SPI is disabled, changing this PD5 output pin to 0 does not
affect the SPI system.

DDRD4 — Data Direction Control for Port D Bit 4 (SCK)

When the SPI system is enabled as a slave, the PD4/SCK pin acts as
the SPI serial clock input, regardless of the state of DDRD4. When the
SPI system is enabled as a master, the DDRD4 bit must be set to 1
to enable the SCK output.

DDRD3 — Data Direction Control for Port D Bit 3 (MOSI)

When the SPI system is enabled as a slave, the PD3/MOSI pin acts
as the slave serial data input, regardless of the state of DDRD3.

Address: $1009

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0
DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0

Write

Reset: 0 0 0 0 0 0 0 0

Reference: — — SS SCK MOSI MISO TxD RxD

Figure 8-4. Port D Data Direction Register (DDRD)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Synchronous Serial Peripheral Interface 299

Synchronous Serial Peripheral Interface
When the SPI system is enabled as a master, the DDRD3 bit must be
set to 1 to enable the master serial data output. If a master device
wants to initiate an SPI transfer to receive a byte of data from a slave
without transmitting a byte, it might purposely leave the MOSI output
disabled. SPI systems that tie MOSI and MISO together to form a
single bidirectional data line also need to selectively disable the MOSI
output.

DDRD2 — Data Direction Control for Port D Bit 2 (MISO)

When the SPI system is enabled as a slave, the DDRD2 bit must be
set to 1 to enable the slave serial data output. A master SPI device
can simultaneously broadcast a message to several slaves as long as
no more than one of the slaves tries to drive the MISO line. SPI
systems that tie MOSI and MISO together to form a single
bidirectional data line also need to selectively disable the MISO
output.

When the SPI system is enabled as a master, the PD2/MISO pin acts
as the master serial data input, regardless of the state of DDRD2.

8.6.2 SPI Control Register (SPCR)

This register, which may be read or written at any time, is used to
configure the SPI system. The DDRD register must also be properly
configured before SPI transfers can occur.

SPIE — SPI Interrupt Enable Bit
0 = SPI interrupts disabled; polling used to sense the SPIF and

MODF flags
1 = SPI interrupt requested if SPIF or MODF set (provided I bit in

condition code register (CCR) is 0)

Address: $1028

Bit 7 6 5 4 3 2 1 Bit 0

Read:
SPIE SPE DWOM MSTR CPOL CPHA SPR1 SPR0

Write

Reset: 0 0 0 0 0 1 U U

U = Unaffected

Figure 8-5. SPI Control Register (SPCR)
Reference Manual M68HC11 — Rev. 6

300 Synchronous Serial Peripheral Interface MOTOROLA

Synchronous Serial Peripheral Interface
SPI Registers
SPE — SPI System Enable Bit
0 = SPI system off
1 = SPI system on

DWOM — Port D Wired-OR Mode Select Bit
0 = Port D outputs push-pull
1 = P-channel pullups on all six port D output drivers disabled, so

port D outputs act as open-drain drivers

MSTR — Master/Slave Mode Select Bit
0 = SPI configured as a slave
1 = SPI configured as a master

CPOL — Clock Polarity Select Bit
0 = Active high clocks selected; SCK idles low
1 = Active low clocks selected; SCK idles high

CPHA — Clock Phase Select Bit

This control bit selects one of two fundamentally different transfer
formats (see 8.3 SPI Transfer Formats).

SPR1 and SPR0 — SPI Bit Rate Select Bits

The following table shows the relationship between the SPR1 and
SPR0 control bits and the bit rate for transfers when the SPI is
operating as a master. When the SPI is operating as a slave, the
serial clock is input from the master; therefore, the SPR1 and SPR0
control bits have no meaning.

SPR1 SPR0
E Clock

Divided By

0 0 2

0 1 4

1 0 16

1 1 32
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Synchronous Serial Peripheral Interface 301

Synchronous Serial Peripheral Interface
8.6.3 SPI Status Register (SPSR)

This read-only register contains status flags indicating the completion of
an SPI transfer and the occurrence of certain SPI system errors. The
flags are automatically set by the occurrence of the corresponding SPI
events; the flags are cleared by automatic software sequences.

SPIF — SPI Transfer Complete Flag

This flag is automatically set to 1 at the end of an SPI transfer. SPIF
is automatically cleared by reading the SPSR with SPIF set, followed
by an access of the SPDR. The definition of end of a transfer varies
with master versus slave and the transfer format specified by CPHA.
This subject is discussed in 8.8 Beginning and Ending SPI
Transfers.

WCOL — Write Collision Error Flag

This flag is automatically set if the SPDR is written while a transfer is
in progress. WCOL is automatically cleared by reading the SPSR with
WCOL set, followed by an access of the SPDR. The details of when
a transfer technically begins and ends depend on the configuration of
the SPI system, which is discussed in 8.8 Beginning and Ending SPI
Transfers.

Bit 5 — Not implemented; always reads 0

MODF — Mode-Fault Error Flag

This flag is set if the SS signal goes to active low while the SPI is
configured as a master (MSTR = 1). MODF is automatically cleared
by reading the SPSR with MODF set, followed by a write to the SPCR.
Because the mode-fault mechanism is intended to prevent damage
due to conflicts between output drivers, it takes effect immediately,
regardless of the SPI system configuration at the time of the fault. The

Address: $1029

Bit 7 6 5 4 3 2 1 Bit 0

Read: SPIF
WCOL

0
MODF

0 0 0 0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 8-6. SPI Status Register (SPSR)
Reference Manual M68HC11 — Rev. 6

302 Synchronous Serial Peripheral Interface MOTOROLA

Synchronous Serial Peripheral Interface
SPI System Errors
MSTR control bit in the SPCR and all four DDRD control bits
associated with the SPI are cleared, and an interrupt is generated
subject to masking by the SPIE control bit and the I bit in the CCR.
Mode-fault errors are discussed in greater detail in 8.7.1 SPI
Mode-Fault Error.

Bits [3:0] — Not implemented; always read 0

8.7 SPI System Errors

Two system errors can be detected by the SPI system in the
MC68HC11A8:

• The first type error arises in a multiple-master system when more
than one SPI device simultaneously tries to be a master. This error
is called a mode fault.

• The second type error, a write collision, indicates that an attempt
has been made to write data to the SPDR while a transfer was in
progress.

8.7.1 SPI Mode-Fault Error

When the SPI system is configured as a master and the SS input line
goes to active low, a mode-fault error has occurred. Only an SPI master
can experience a mode-fault error, caused when a second SPI device
becomes a master and selects this device as if it were a slave. In cases
where more than one device is concurrently configured as a master,
there is a chance of contention between two pin drivers. For push-pull
CMOS drivers, this contention can cause catastrophic latchup. When
this type error is detected, the following actions are taken immediately:

1. The DDRD bits corresponding to the four SPI-related I/O pins are
forced to 0 to disable all SPI output drivers.

2. The MSTR control bit is forced to 0 to reconfigure the SPI as a
slave.

3. The SPE control bit is forced to 0 to disable the SPI system.

4. The MODF status flag is set, and an SPI interrupt is generated
subject to masking by the SPIE bit and the I bit in the CCR.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Synchronous Serial Peripheral Interface 303

Synchronous Serial Peripheral Interface
After software has corrected the problems that led to the mode fault,
MODF is cleared and the system is returned to normal operation. The
MODF flag is automatically cleared by reading SPSR while MODF is set,
followed by a write to the SPDR. The DDRD must also be restored
before SPI transfers can resume.

In some cases, the mode-fault mechanism does not fully protect
multiple-master systems from driver contention. For example, suppose
a second device becomes a master but does not immediately drive the
SS pin of this master low. Perhaps a system fault selects two slave
devices, and these slave devices try to simultaneously drive the MISO
line. Both these cases result in output driver contentions, but neither
causes a mode-fault error. Too many system configurations are possible
to discuss them all, but some suggestions will help the system designer
find practical ways to prevent problems.

Under normal conditions, a moderate resistance, (for instance,
1 to 10 kΩ) in series with an SPI pin does not adversely affect SPI
transfer operations. If a driver contention occurs, this series resistance
will protect the drivers against latchup. Another way to protect against
latchup is to employ the DWOM option, which transforms the SPI output
drivers into open-drain-type drivers. When the DWOM option is selected,
it affects all six port D pins; therefore, pullup resistors are needed on the
PD0 and PD1 pins if they are being used as outputs. Both of these
suggestions affect the maximum usable data rate, depending on the
loading capacitance on the SPI lines.

8.7.2 SPI Write-Collision Errors

A write collision occurs if the SPDR is written while a transfer is in
progress. Since the SPDR is not double buffered in the transmit
direction, writes to SPDR cause data to be written directly into the SPI
shift register. Because this write corrupts any transfer in progress, a
write-collision error is generated. The transfer continues undisturbed,
and the write data that caused the error is not written to the shifter.

A write collision is normally a slave error because a slave has no control
over when a master will initiate a transfer. A master knows when a
transfer is in progress; thus, there is no excuse for a master to generate
Reference Manual M68HC11 — Rev. 6

304 Synchronous Serial Peripheral Interface MOTOROLA

Synchronous Serial Peripheral Interface
Beginning and Ending SPI Transfers
a write-collision error, although the SPI logic can detect write collisions
in a master as well as in a slave.

The details of what constitutes a transfer in progress depend on the SPI
configuration. For a master, a transfer starts when data is written to
SPDR and ends when SPIF is set. For a slave with CPHA equals 0, a
transfer starts when SS goes low and ends when SS returns high. In this
instance, SPIF is set at the middle of the eighth SCK cycle when data is
transferred from the shifter to the parallel data register, but the transfer
is still in progress until SS goes high. For a slave with CPHA = 1, a
transfer starts when the SCK line goes to its active level, which is the
edge at the beginning of the first SCK cycle. The transfer ends in a slave
in which CPHA = 1 when SPIF is set.

8.8 Beginning and Ending SPI Transfers

The two basic SPI transfer formats are described in 8.3 SPI Transfer
Formats. A transfer includes the eight SCK cycles plus an initiation
period at the beginning and ending period of the transfer. The details of
the beginning and ending periods depend on the CPHA format selected
and whether the SPI is configured as a master or a slave. The initiation
delay period is also affected by the SPI clock rate selection when the SPI
is configured as a master.

To understand how the beginning and ending details fit into a complete
transfer operation, refer to the transfer format illustrated in Figure 8-1
and Figure 8-2.

8.8.1 Transfer Beginning Period (Initiation Delay)

All SPI transfers are started and controlled by a master SPI device. As a
slave, the MC68HC11A8 considers a transfer to begin with the first SCK
edge or the falling edge of SS, depending on the CPHA format selected.
When CPHA = 0, the falling edge of SS indicates the beginning of a
transfer. When CPHA = 1, the first edge on the SCK indicates the start
of the transfer. In either CPHA format, a transfer can be aborted by
taking the SS line high, which causes the SPI slave logic and bit counters
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Synchronous Serial Peripheral Interface 305

Synchronous Serial Peripheral Interface
to be reset. The SCK rate selected has no effect on slave operations
since the clock from the master is controlling transfers.

When the SPI is configured as a master, transfers are started by a
software write to the SPDR. CPHA has no effect on the delay to the start
of the transfer, but it does affect the initial state of the SCK signal. When
CPHA equals 0, the SCK signal remains inactive for the first half of the
first SCK cycle. When CPHA equals 1, the first SCK cycle begins with an
edge on the SCK line from its inactive to its active level. The SPI clock
rate (selected by SPR1–SPR0) affects the delay from the write to SPDR
and the start of the SPI transfer (see Figure 8-7). The internal SPI clock
in the master is a free-running derivative of the internal MCU clock
(PH2). SCK edges occur a small propagation delay after the rising edge
of PH2. The rising edge of PH2 occurs at the middle of the E-clock low
period. Since the SPI clock is free-running, there is an uncertainty about
where the write to SPDR will occur relative to the slower SCK. This
uncertainty causes the variation in the initiation delay shown in
Figure 8-7.

8.8.2 Transfer Ending Period

An SPI transfer is technically complete when the SPIF flag is set, but,
depending on the configuration of the SPI system, there may be
additional tasks. Because the SPI bit rate does not affect timing of the
ending period, only the fastest rate is considered in discussions of the
ending period.

When the SPI is configured as a master, SPIF is set at the end of the
eighth SCK cycle. When CPHA equals 1, SCK is inactive for the last half
of the eighth SCK cycle. Figure 8-8 shows the transfer ending period for
a master. The SCK waveforms in this figure show only the CPOL = 0
case, since clock polarity does not affect timing of the ending period.

When the SPI is operating as a slave, the ending period is different
because the SCK line can be asynchronous to the MCU clocks of the
slave and because the slave does not have access to as much
information about SCK cycles as the master. For example, when
CPHA = 1, where the last SCK edge occurs in the middle of the eighth
SCK cycle, the slave has no way of knowing when the end of the last
Reference Manual M68HC11 — Rev. 6

306 Synchronous Serial Peripheral Interface MOTOROLA

Synchronous Serial Peripheral Interface
Beginning and Ending SPI Transfers
Figure 8-7. Delay from Write SPDR to Transfer Start (Master)

SCK cycle is. For these reasons, the slave considers the transfer
complete after the last bit of serial data has been sampled, which
corresponds to the middle of the eighth SCK cycle. A synchronization
delay is required so the setting of the SPIF flag is properly positioned
relative to the internal PH2 clock of the slave. Figure 8-9 shows the
ending period for a slave. The SCK waveforms in this figure show only
the CPOL = 0 case, since clock polarity does not affect timing of the
ending period.

MIN

MAX

E CYCLE WHERE SPDR WRITTEN

MAX

MIN

MAX

MIN

MAX

SC
K=

E÷
32

SC
K=

E÷
16

SC
K=

E÷
4

SC
K=

E÷
2

SCK CYCLE
NUMBER

SCK
(CPHA=0)

SCK
(CPHA=1)

MOSI

E

WRITE
TO SPDR

INITIATION DELAY

MSB BIT 6

1 2

INSET: Detailed view of initiation delay from write SPDR to transfer begin.

POSSIBLE TRANSFER START POINTS
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Synchronous Serial Peripheral Interface 307

Synchronous Serial Peripheral Interface
Figure 8-8. Transfer Ending for an SPI Master

Figure 8-9. Transfer Ending for an SPI Slave

SCK CYCLE #

SCK (CPHA = 0)

SCK (CPHA = 1)

7 8

PC (LOW) PC (HIGH)
SPIF SET

E

NEW OPCODE
(NOT EXECUTED DUE TO INTERRUPT)

R/W

• • •

EARLIEST POSSIBLE STACKING
DUE TO SPF INTERRUPT
(NO OTHER INTERRUPT PENDING)

PC (LOW) PC (HIGH)
SPIF SET

E

NEW OPCODE
(NOT EXECUTED DUE TO INTERRUPT)

SYNCHRONIZATION
UNCERTAINTY

R/W

• • •

SCK (CPHA = 0)
SECOND LAST EDGE

SCK (CPHA = 1)
LAST EDGE

EARLIEST POSSIBLE STACKING
DUE TO SPIF INTERRUPT
(NO OTHER INTERRUPT PENDING)
Reference Manual M68HC11 — Rev. 6

308 Synchronous Serial Peripheral Interface MOTOROLA

Synchronous Serial Peripheral Interface
Transfers to Peripherals with Odd Word Lengths
When CPHA = 0, there is a potential problem that can be avoided by
proper software but is sometimes overlooked. The SPIF flag is set at the
end of a transfer, but the slave is not permitted to write new data to the
SPDR while the SS line is still low. If the master device is busy, the SS
line to the slave can remain low longer than the slave expects. The
proper way for the slave to manage this problem is to read the state of
the port D bit 5 pin (SS) before writing to SPDR. If this procedure is not
followed (slave mode and CPHA = 0) and an attempt is made to write to
SPDR before SS goes high, a write collision will result.

8.9 Transfers to Peripherals with Odd Word Lengths

The SPI system in the MC68HC11A8 is oriented toward 8-bit transfers,
but not all peripherals use eight bits. Some peripherals use multiples of
eight bits, but a few use odd word lengths. When a peripheral uses an
odd number of bits, it is usually possible to send it some multiple of eight
bits, and the peripheral will ignore the extra bits. Serial peripherals are
commonly designed for cascading. In these devices, only the most
recent bits received will be important, and extra leading bits pass
through the peripheral. In more unusual peripheral designs, the leading
bits can alter the way the peripheral will interpret the remaining bits in a
serial stream. In all cases, the requirements of each peripheral in the
system must be considered.

The MC144110 6-channel, 6-bit, D/A converter peripheral is an example
of a peripheral with an odd word length. This device requires six 6-bit
words (a total of 36 bits) to update all six channels. The following
examples show two possible approaches for managing this device to
illustrate some of the possible trade-off decisions found in unusual
peripherals. The hardware hookup, which is identical for both examples,
is shown in Figure 8-10. A software program includes the routines
needed for both examples. Figure 8-11 shows the register definitions
and RAM variables used by both example programs.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Synchronous Serial Peripheral Interface 309

Synchronous Serial Peripheral Interface
Figure 8-10. Hardware Hookup for Examples 8-1 and 8-2

 * Register definitions for 68HC11 registers (used for Ex 8-1 & 8-2)
1008 PORTD EQU $1008 Port D data register
 * " - , - ,SS* ,SCK ;MOSI,MISO,TxD ,RxD "
1009 DDRD EQU $1009 Port D data direction
1028 SPCR EQU $1028 SPI control register
 * "SPIE,SPE ,DWOM,MSTR;CPOL,CPHA,SPR1,SPR0"
1029 SPSR EQU $1029 SPI status register
 * "SPIF,WCOL, - ,MODF; - , - , - , - "
102a SPDR EQU $102A SPI data register; Read-Buffer; Write-Shifter

 * RAM variables (DAx used by Ex 8-1 & 8-2, SPIx used only by 8-1)
0000 DA1 EQU $00 6-bit val for D/A ch 1 "-,-,15,14;13,12,11,10"
0001 DA2 EQU $01 6-bit val for D/A ch 2 "-,-,25,24;23,22,21,20"
0002 DA3 EQU $02 6-bit val for D/A ch 3 "-,-,35,34;33,32,31,30"
0003 DA4 EQU $03 6-bit val for D/A ch 4 "-,-,45,44;43,42,41,40"
0004 DA5 EQU $04 6-bit val for D/A ch 5 "-,-,55,54;53,52,51,50"
0005 DA6 EQU $05 6-bit val for D/A ch 6 "-,-,65,64;63,62,61,60"
 * Upper 2 bits of DAx should be 0 but will be ignored.
0006 SPI1 EQU $06 SPI packed byte 1 "--,--,--,--;65,64,63,62"
0007 SPI2 EQU $07 SPI packed byte 2 "61,60,55,54;53,52,51,50"
0008 SPI3 EQU $08 SPI packed byte 3 "45,44,43,42;41,40,35,34"
0009 SPI4 EQU $09 SPI packed byte 4 "33,32,31,30;25,24,23,22"
000a SPI5 EQU $0A SPI packed byte 5 "21,20,15,14;13,12,11,10"
 * NOTE: Upper 4 bits of SPI1 are unused extras but will be 0.

Figure 8-11. Register Definitions and RAM Variables for Examples 8-1 and 8-2

DIN

DOUT

VDD

MC68HC11EVB BOARD
3
2

5
4

7
17

12
11

14
13

16
15

R1
Q1

R2
Q2

R3
Q3

R4
Q4

R5
Q5

R6
Q6

CLK
1

10

18

8
EN

MC144110 D/A

P1-26

P1-24

P1-23

P1-1

P1-25

CLK

PD3/MOSI

PD5/SS

VSS

NOTE: Pin numbers on P1 of the MC68HC11EVB board are the same as those for a 52-pin MC68HC11A8.

VDD

VDD VDD

VSS

6

MEASURE WITH
HIGH-IMPEDANCE

VOLTMETER
Reference Manual M68HC11 — Rev. 6

310 Synchronous Serial Peripheral Interface MOTOROLA

Synchronous Serial Peripheral Interface
Transfers to Peripherals with Odd Word Lengths
8.9.1 Example 8-1: On-Chip SPI Driving an MC144110 D/A

In this example, software must reformat (pack) the six 6-bit data values
into five 8-bit words, which can then be transferred to the MC144110 D/A
using the on-chip SPI. Figure 8-12 is the software listing for the Example
8-1 routines.

In the Example 8-1 setup, the MCU is running at 2-MHz E-clock
frequency. To meet the timing requirements of the MC144110 D/A, the
slowest SPI clock rate (E ÷ 32) is used. Figure 8-13 shows a detailed
analysis of important timing parameters. These timing details are
derived from knowledge of the cycle-by-cycle activity of software
instructions and detailed SPI system timing. This timing analysis depicts
the strong interdependence of software and hardware in MCU systems.

8.9.2 Example 8-2: Software SPI Driving an MC144110 D/A

Sometimes it is easier and/or more efficient to use software to emulate
an SPI to allow even more flexibility than the on-chip SPI system allows
(for example, odd word lengths). As Example 8-2 shows, it is not
necessarily difficult to manipulate I/O pins to create an SPI-like interface.
In this example, a software SPI allows 6-bit transfers so the six D/A
values can be used without any packing or reformatting (needed in the
previous example). Figure 8-14 is the software listing for Example 8-2.

Figure 8-15 shows a detailed analysis of important timing parameters.
These timing details are derived from knowledge of the cycle-by-cycle
activity of software instructions. This timing analysis illustrates the strong
interdependence of software and hardware in MCU systems.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Synchronous Serial Peripheral Interface 311

Synchronous Serial Peripheral Interface

 * Example 8-1 *
 * *
 * This example program uses the on-chip hardware SPI to drive an *
 * MC144110 six channel D to A converter peripheral. *
 * *
 * To try Ex 8-1, connect MC144110 to Port D pins on EVB, load *
 * program into EVB RAM, manually enter data for DA1 to DA6 and *
 * execute a GO to $C000. *

c000 ORG $C000 Start of user’s RAM in EVB
c000 8e cf ff [3] INIT1 LDS #$CFFF Top of C page RAM
c003 86 2f [2] LDAA #$2F -,-,1,0;1,1,1,1
 * SS*-Hi, SCK-Lo, MOSI-Hi
c005 b7 10 08 [4] STAA PORTD So SS stays high when DDRD5 set
c008 86 38 [2] LDAA #$38 -,-,1,1;1,0,0,0
c00a b7 10 09 [4] STAA DDRD SS*, SCK, MOSI - Outs
 * MISO, TxD, RxD - Ins
 * DDRD5=1 so SS* pin is a general purpose output
c00d 86 57 [2] LDAA #$57
c0f b7 10 28 [4] STAA SPCR SPI on as Master, CPHA=1, CPOL=0
 * E/32 Clk rate

 * Following two instructions call main routine for Ex 8-1

c012 8d 38 [6] BSR UPDAT1 Xfer 5 8-bit words to MC144110
c00f b7 10 28 [3] JMP $E000 Restart BUFFALO

c04c 3c [4] UPDAT1 PSHX Save registers X and A
c04d 18 3c [5] PSHY
c04f 36 [3] PSHA
c050 8d c5 [6] BSR REFORM Reformat data so SPI can xfer it
c052 ce 00 06 [3] LDX #SPI1 Point at 1st byte to send via SPI
c055 18 ce 10 00 [4] LDY #$1000 Point at on-chip registers
c059 18 ld 08 20 [8] BCLR PORTD,Y %00100000 Drive SS* low
c05d a6 00 [4] TFRLP1 LDAA 0,X Get a byte to transfer via SPI
c05f b7 10 2a [4] STAA SPDR Write SPI data reg to start xfer
c062 b6 10 29 [4] WAIT1 LDAA SPSR Loop to wait for SPIF
c065 2a fb [3] BPL WAIT1 SPIF is in MSB of SPSR
 * (when SPIF set, SPSR neg)
c067 08 [3] INX Point to next SPI byte
c068 8c 00 0b [4] CPX #SPI5+1 Done yet ?
c06b 26 f0 [3] BNE TFRLP1 If not, tfr another byte
c06d 18 1c 08 20 [8] BSET PORTD,Y %00100000 Drive SS* high
c071 32 [4] PULA When done, restore regs X, Y & A
c072 18 38 [6] PULY
c074 38 [5] PULX
c075 39 [5] RTS ** Return **

Figure 8-12. Example 8-1 Software Listing (Sheet 1 of 2)
Reference Manual M68HC11 — Rev. 6

312 Synchronous Serial Peripheral Interface MOTOROLA

Synchronous Serial Peripheral Interface
Transfers to Peripherals with Odd Word Lengths

 * REFORM - This subroutine reformats six 6 bit values into five 8 bit *
 * values so they can be sent by the SPI system. *
 * *
 * The MC144110 needs 36 bits of information which is not a multiple *
 * of 8 bits; however, we can send five 8 bit words (40 bits) and the *
 * MC144110 will use only the last 36 bits. *
 * *
 * Original format Change to this format *
 * DA1 "-,-,15,14;13,12,11,10" SPI1 "--,--,--,--;65,64,63,62" *
 * DA2 "-,-,25,24;23,22,21,20" SPI2 "61,60,55,54;53,52,51,50" *
 * DA3 "-,-,35,34;33,32,31,30" SPI3 "45,44,43,42;41,40,35,34" *
 * DA4 "-,-,45,44;43,42,41,40" SPI4 "33,32,31,30;25,24,23,22" *
 * DA5 "-,-,55,54;53,52,51,50" SPI5 "21,20,15,14;13,12,11,10" *
 * DA6 "-,-,65,64;63,62,61,60" *

c017 37 [3] REFORM PSHB Save registers B and A
c018 36 [3] PSHA
c019 96 00 [3] LDAA DA1 A="--,--,15,14;13,12,11,10"
c01b 48 [2] ASLA A="--,15,14,13;12,11,10, 0"
c01c 48 [2] ASLA A="15,14,13,12;11,10, 0, 0"
c01d d6 01 [3] LDAB DA2 B="--,--,25,24;23,22,21,20"
c01f c4 3f [2] ANDB #$3F B=" 0, 0,25,24;23,22,21,20"
c021 54 [2] LSRB B=" 0, 0, 0,25;24,23,22,21" C="20
c022 46 [2] RORA A="20,15,14,13;12,11,10, 0"
c023 54 [2] LSRB B=" 0, 0, 0, 0;25,24,23,22" C="21
c024 46 [2] RORA A="21,20,15,14;13,12,11,10"
c025 97 0a [3] STAA SPI5 SPI5 is done
c027 d7 09 [3] STAB SPI4 SPI4 intermediate value
c029 96 03 [3] LDAA DA4 A="--,--,45,44;43,42,41,40"
c02b d6 02 [3] LDAB DA3 B="--,--,35,34;33,32,31,30"
c02d 58 [2] ASLB B="--,35,34,33;32,31,30, 0"
c02e 58 [2] ASLB B="35,34,33,32;31,30, 0, 0"
c02f 58 [2] ASLB B="34,33,32,31;30, 0, 0, 0" C="35
c030 49 [2] ROLA A="--,45,44,43;42,41,40,35"
c031 58 [2] ASLB B="33,32,31,30; 0, 0, 0, 0" C="34
c032 49 [2] ROLA A="45,44,43,42;41,40,35,34"
c033 da 09 [3] ORAB SPI4 B="33,32,31,30;25,24,23,22"
c035 d7 09 [3] STAB SPI4 SPI4 now complete
c037 97 08 [3] STAA SPI3 SPI3 done
c039 96 04 [3] LDAA DA5 A="--,--,55,54;53,52,51,50"
c03b 48 [2] ASLA A="--,55,54,53;52,51,50, 0"
c03c 48 [2] ASLA A="55,54,53,52;51,50, 0, 0"
c03d d6 05 [3] LDAB DA6 B="--,--,65,64;63,62,61,60"
c03f c4 3f [2] ANDB #$3F B=" 0, 0,65,64;63,62,61,60"
c041 54 [2] LSRB B=" 0, 0, 0,65;64,63,62,61" C="60
c042 46 [2] RORA A="60,55,54,53;52,51,50, 0"
c043 54 [2] LSRB B=" 0, 0, 0, 0;65,64,63,62" C="61
c044 46 [2] RORA A="61,60,55,54;53,52,51,50"
c045 97 07 [3] STAA SPI2 SPI2 done
c047 d7 06 [3] STAB SPI1 SPI1 done
c049 32 [4] PULA Restore registers A and B
c04a 33 [4] PULB
c04b 39 [5] RTS ** Return **

Figure 8-12. Example 8-1 Software Listing (Sheet 2 of 2)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Synchronous Serial Peripheral Interface 313

Synchronous Serial Peripheral Interface
Figure 8-13. Timing Analysis for Example 8-1

6 E CYCLES

DELAY; EN LOW TO CLK (MIN 11.5 µS/MAX 19.5 µS)

E

LDAA 0,X

a) EN Low to Clock Start Delay (MC144110 Needs 5 µs)

BNE
TFRLP1

c) Last SCK Edge to EN Release Timing (MC144110 Needs 5 µs)

b) Data Valid vs. SCK Timing (MC144110 Needs 1 µs Setup/5 µs Hold)

CPX #SP15+1

BCLR PORTD,X $20 STAA SPDR

EN

SCK

LAST SCK EDGE TO EN RELEASE (MIN 19.5 µS/MAX 22.5 µS)

E

LDAA SPSR

EARLIEST READ OF SPIF = 1

SCK

SS

~ 8 µS SETUP

MOSI

SCK

VALID DATA

~ 8 µS HOLD

BSET PORTD,X $40INXBPL
WAIT1

 • • • LDAA SPSR INXBPL
WAIT1

LDAA SPSR BPL
WAIT1

SPIF NOT SET YET SPIF SET NOW

SPIF SET NOW

LONGEST CASE

SHORTEST CASE

(VARIES WITH SCK
ALIGNMENT TO
SOFTWARE)

~ 8 µS

15 TO 31 E CYCLES
(SEE Figure 8-7)

(REFER TO Figure 8-8 FOR SPI TRANSFER ENDING DETAILS)
Reference Manual M68HC11 — Rev. 6

314 Synchronous Serial Peripheral Interface MOTOROLA

Synchronous Serial Peripheral Interface
Transfers to Peripherals with Odd Word Lengths

 * Example 8-2 *
 * *
 * This example program uses a software equivalent of the SPI to *
 * drive an MC144110 six channel D to A converter peripheral. The *
 * physical hookup is the same as that of the previous example to make *
 * comparisons easier. *
 * *
 * To try Ex 8-2, connect MC144110 to Port D pins on EVB, load *
 * program into EVB RAM, manually enter data for DA1 to DA6 and *
 * execute a GO to $C100. *

c100 ORG $C100
c100 8e cf ff [3] INIT2 LDS #$CFFF Top of C page RAM
c103 86 2f [2] LDAA #$2F -,-,1,0;1,1,1,1
c105 b7 10 08 [4] STAA PORTD PD5/SS*-Lo,PD4/SCK-Lo,PD3/MOSI-Hi
c108 86 38 [2] LDAA #$38 -,-,1,1;1,0,0,0
c10a b7 10 09 [4] STAA DDRD PD5, PD4, PD3 =Outs; Others =Ins
c10d 86 04 [2] LDAA #$04
 * "SPIE,SPE,DWOM,MSTR;CPOL,CPHA,SPR1,SPR0"
c10f b7 10 28 [4] STAA SPCR Make sure SPI off

 * Following two instructions call main routine for Ex 8-2

c112 8d 03 [6] BSR UPDAT2 Xfer six 6 bit words to MC144110
c114 7e e0 00 [3] JMP $E000 Restart BUFFALO

c117 3c [4] UPDAT2 PSHX Save X, Y and A
c118 18 3c [5] PSHY
c11a 36 [3] PSHA
c11b 18 ce 00 05 [4] LDY #DA6 Point at 1st D/A value to xfer.
c11f ce 10 00 [3] LDX #$1000 Point at register area.
c122 86 20 [2] TFRLP2 LDAA #$20 1st pntr to MSB of 6 bit data val
c124 1d 08 20 [7] BCLR PORTD,X %00100000 PD5(SS*) Falling edge
c127 01 [2] NOP Need more dly for MC144110 specs.
c128 01 [2] NOP
c129 1c 08 10 [7] NXTBIT BSET PORTD,X %00010000 PD4(SCK) Rising edge
c12c 18 a5 00 [5] BITA 0,Y Test sense of bit to be sent
c12f 27 05 [3] BEQ ZBIT If zero skip around
c131 1c 08 08 [7] BSET PORTD,X %00001000 PD3(MOSI) Hi bit
c134 20 05 [3] BRA ENDBIT
c131 1d 08 08 [7] ZBIT BCLR PORTD,X %00001000 PD3(MOSI) Lo bit
c139 20 00 [3] BRA ENDBIT Want Lo time to match Hi time
c13b 1d 08 10 [7] ENDBIT BCLR PORTD,X %00010000 PD4(SCK) Falling edge
c13e 44 [2] LSRA Pointer to nxt lower bit position
c13f 26 e8 [3] BNE NXTBIT Done if pointer shifted past LSB
c141 18 09 [4] DEY Point at next value to send
c143 18 8c ff ff [5] CPY #DA1-1 Done yet ?
c147 26 db [3] BNE TFRLP2 If not go back to top of loop
c149 1c 08 20 [7] BSET PORTD,X %00100000 PD5(SS*) Rising edge
c14c 32 [4] PULA Restore X, Y and A
c14d 18 38 [6] PULY
c14f 38 [5] PULX
c150 39 [5] RTS ** RETURN **

Figure 8-14. Example 8-2 Software Listing
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Synchronous Serial Peripheral Interface 315

Synchronous Serial Peripheral Interface
(a) EN Low to SCK Start Delay (MC144110 Needs 5 µs)

(b) Data to SCK Setup (MC144110 Needs 1 µs)

(c) Data Hold vs. SCK (MC144110 Needs 5 µs)

(d) SCK Low to EN Hold (MC144110 Needs 5 µs)

Figure 8-15. Timing Analysis for Example 8-2

DELAY; EN LOW TO CLK (5.5 µS)

E

NOPBCLR PORTD,X $20 BITA 0,Y

EN

SCK

 • • • NOP BSET PORTD,X $10

~ 5 µS SETUP

E

BRA
ENDBIT

BSET PORTD,X $10

SCK

MOSI

 • • • BSET PORTD,X $08 BCLR PORTD,X $10
BCLR PORTD,X $08

BEQ
ZBIT

BITA 0,Y

DATA HOLD (13.5 µS)

E

LSRABCLR PORTD,X $10

SCK

MOSI

BITA 0,YBSET PORTD,X $10 BEQ
ZBIT

BSET PORTD,X $08
BCLR PORTD,X $08

BNE
NXTBIT

SCK TO EN HOLD (12 µS)

E

CPY #DA1 1BCLR PORTD,X $10

SCK

EN

BNE
TFRLP2

BSET PORTD,X $20LSRA BNE
NXTBIT

DEY
Reference Manual M68HC11 — Rev. 6

316 Synchronous Serial Peripheral Interface MOTOROLA

Reference Manual — M68HC11

Section 9. Asynchronous Serial Communications
Interface
9.1 Contents

9.2 Introduction .318

9.3 General Description .318
9.3.1 Transmitter Block Diagram. .319
9.3.2 Receiver Block Diagram. .321

9.4 SCI Registers and Control Bits .323
9.4.1 Port D Related Registers and Control Bits

(PORTD, DDRD, and SPCR) .325
9.4.2 Baud-Rate Control Register (BAUD)327
9.4.3 SCI Control Register 1 (SCCR1) .329
9.4.4 SCI Control Register 2 (SCCR2) .331
9.4.5 SCI Status Register (SCSR) .333
9.4.6 SCI Data Register (SCDR). .337

9.5 SCI Transmitter. .338
9.5.1 8- and 9-Bit Data Modes .339
9.5.2 Interrupts and Status Flags .340
9.5.3 Send Break. .341
9.5.4 Queued Idle Character .341
9.5.5 Disabling the SCI Transmitter .343
9.5.6 TxD Pin Buffer Logic .344

9.6 SCI Receiver. .346
9.6.1 Data Sampling Technique .346
9.6.2 Worst-Case Baud-Rate Mismatch353
9.6.3 Double-Buffered Operation .355
9.6.4 Receive Status Flags and Interrupts 355
9.6.5 Receiver Wakeup Operation .356
9.6.5.1 Idle-Line Wakeup .356
9.6.5.2 Address-Mark Wakeup .357

9.7 Baud-Rate Generator .357
9.7.1 Timing Chain Block Diagram .358
9.7.2 Baud Rates versus Crystal Frequency.358
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 317

Asynchronous Serial Communications Interface
9.8 SCI Timing Details .359
9.8.1 Operation as Transmitter Is Enabled361
9.8.2 TDRE and Transfers from SCDR

to Transmit Shift Register .361
9.8.3 TC versus Character Completion .363
9.8.4 RDRF Flag Setting versus End

of a Received Character .363

9.2 Introduction

This section describes the universal asynchronous receiver transmitter
(UART) type serial communications interface (SCI) system, which is one
of two independent serial input/output (I/O) subsystems in the M68HC11
Family. The other serial I/O subsystem (called SPI) provides for
high-speed synchronous serial communication to peripherals or other
microcontroller units (MCU), usually located on the same printed circuit
board as the M68HC11. This SCI system can be used to connect a CRT
terminal or personal computer to the MCU, or several widely distributed
MCUs can use their SCI subsystems to form a serial communication
network.

9.3 General Description

The SCI is a full-duplex UART-type asynchronous system, using
standard non-return-to-zero (NRZ) format (one start bit, eight or nine
data bits, and a stop bit). An on-chip baud rate generator derives
standard baud-rate frequencies from the MCU oscillator. Both the
transmitter and the receiver are double buffered; thus, back-to-back
characters can be handled easily, even if the central processor unit
(CPU) is delayed in responding to the completion of an individual
character. The SCI transmitter and receiver are functionally independent
but use the same data format and baud rate. In this reference manual,
baud rate and bit rate are used synonymously. The user will usually have
to provide external level-shifter buffers to translate the RS232 or RS422
levels (typically ±12 V) to the 0- to 5-V logic levels used by the MCU.

This SCI receiver includes a number of advanced features to ensure
high-reliability data reception and to assist development of efficient
communications networks. The M68HC11 resynchronizes the receiver
Reference Manual M68HC11 — Rev. 6

318 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
General Description
bit clock on all 1-to-0 transitions in the bit stream rather than just at the
beginning of the start bit time; therefore, differences in baud rate
between the sending device and the MCU are not as likely to cause
reception errors. Three logic-level samples are taken near the middle of
each bit time, and majority logic decides the sense for the bit. Even if
noise causes one of these samples to be incorrect, the bit will still be
received correctly. The receiver also has the ability to enter a temporary
standby mode (called receiver wakeup) to ignore messages intended for
a different receiver. Logic automatically wakes up the receiver in time to
see the first character of the next message. This wakeup feature greatly
reduces CPU overhead in multi-drop SCI networks.

The SCI transmitter can produce queued characters of idle (whole
characters of all logic 1) and break (whole characters of all logic 0). In
addition to the usual transmit data register empty (TDRE) status flag, this
SCI also provides a transmit complete (TC) indication that can be used
in applications with a modem.

9.3.1 Transmitter Block Diagram

Figure 9-1 is a block diagram of the transmitter section of the SCI
subsystem. The description given in the following paragraphs is an
overview; a more detailed discussion of the SCI transmitter is given in
9.5 SCI Transmitter.

The heart of the transmitter is the transmit serial shift register near the
top of the figure. Usually, this shift register gets its data from the
write-only transmit buffer. Data gets into the transmit buffer when
software writes to the SCI data register (SCDR). Whenever data is
transferred into the shifter from the transmit buffer, a 0 is loaded into the
least significant bit (LSB) of the shifter to act as a start bit, and a logic 1
is loaded into the last bit position to act as a stop bit. In the case of a
preamble, the shifter is jammed to all 1s, including the bit position usually
holding the logic 0 start bit. A preamble is jammed each time the transmit
enable bit is written from 0 to 1. In the case of a send break command,
the shifter is jammed to all 0s, including the last bit position usually
holding the logic 1 stop bit.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 319

Asynchronous Serial Communications Interface
Figure 9-1. SCI Transmitter Block Diagram

FEN
F

O
R

ID
LE

R
D

RF

TCTD
R

E

SCSR INTERRUPT STATUS

SB
K

R
W

U

R
E

TEIL
IE

R
IE

TC
IE

TI
E

SCCR2 SCI CONTROL 2

TCIE

TC

TIE

TDRE

SCI Rx
REQUESTS

SCI INTERRUPT
REQUEST

INTERNAL
DATA BUS

PIN BUFFER
AND CONTROLH (8) 7 6 5 4 3 2 1 0 L

10 (11) - BIT Tx SHIFT REGISTER

DDD1

PD1
TxD

SCDR Tx BUFFER

TR
AN

SF
ER

 T
x

BU
FF

ER

SH
IF

T
EN

AB
LE

JA
M

 E
N

AB
LE

PR
EA

M
BL

E—
JA

M
 1

s

BR
EA

K—
JA

M
 0

s

(WRITE ONLY)

FORCE PIN DIRECTION (OUT)

SI
ZE

 8
/9

W
AK

E

MT8R
8

SCCR1 SCI CONTROL 1

1X
BAUD RATE

CLOCK

TRANSMITTER
CONTROL LOGIC
Reference Manual M68HC11 — Rev. 6

320 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
General Description
enable bit is written from 0 to 1. In the case of a send break command,
the shifter is jammed to all 0s, including the last bit position usually
holding the logic 1 stop bit.

The T8 bit in SCI control register 1 (SCCR1) acts like an extra high-order
bit (ninth bit) of the transmit buffer register. This ninth bit is only used if
the M bit in SCCR1 is 1 to select the 9-bit data character format. The M
bit also controls the length of idle and break characters. The R8 and
WAKE bits in SCCR1 are associated with the SCI receiver and are
shown in Figure 9-1 only for reference.

The pin buffer logic is quite flexible and useful in some SCI systems. This
block diagram is not detailed enough to show all of the functions of this
block. 9.5.6 TxD Pin Buffer Logic describes this logic in greater detail,
and a complete MOS transistor-level schematic and explanation of this
logic is included in 7.5.6.2 PD1 (TxD) Pin Logic.

The status flag and interrupt generation logic is shown in Figure 9-1. The
TDRE and TC status flags in the SCI status register (SCSR) are
automatically set by the transmitter logic. These two bits can be read at
any time by software. The transmit interrupt enable (TIE) and transmit
complete interrupt enable (TCIE) interrupt control bits enable the TDRE
and TC bits, respectively, to generate SCI interrupt requests.

9.3.2 Receiver Block Diagram

Figure 9-2 is a block diagram of the receiver section of the SCI
subsystem. The description given in the following paragraphs is an
overview; a more detailed discussion of the SCI receiver is given in
9.6 SCI Receiver.

SCI receive data comes in the RxD pin, is buffered, and drives the data
recovery block. The data recovery block is actually a high-speed shifter
operating at 16 times the bit rate; whereas, the main-receive serial
shifter operates at one times the bit rate. This higher speed sample rate
allows the start-bit leading edge to be located more accurately than a 1×
clock would allow. The high-speed clock also allows several samples to
be taken within a bit time so logic can make an intelligent decision about
the logic sense of a bit (even in the presence of noise). The data
recovery block provides the bit level to the main receiver shift register
and also provides a noise flag status indication.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 321

Asynchronous Serial Communications Interface
Figure 9-2. SCI Receiver Block Diagram

FEN
F

O
R

ID
LE

R
D

R
F

TCTD
R

E

SCSR SCI STATUS 1

SB
K

R
W

U

R
E

TEIL
IE

R
IE

TC
IE

TI
E

SCCR2 SCI CONTROL 2

W
AK

E

MT8R8

WAKEUP
LOGIC

RIE

OR

ILIE

IDLE

SCI Tx
REQUESTS

SCI INTERRUPT
REQUEST INTERNAL

DATA BUS

PIN BUFFER
AND CONTROL

DDD0

PD0
RxD

SCDR Rx BUFFER

ST
O

P

(8) 7 6 5 4 3 2 1 0

10 (11) - BIT
Rx SHIFT REGISTER

(READ-ONLY)

SCCR1 SCI CONTROL 1

RIE

RDRF

ST
AR

T

MSB ALL ONES

DATA
RECOVERY

÷16

RWU

RE
M

DISABLE
DRIVER

16X
BAUD RATE

CLOCK
Reference Manual M68HC11 — Rev. 6

322 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Registers and Control Bits
This block diagram is not detailed enough to show all of the subtleties of
the RxD pin buffer logic; a complete schematic and explanation of this
pin logic can be found in 7.5.6.1 PD0 (RxD) Pin Logic.

The heart of the receiver is the receive serial shift register shown in
Figure 9-2. This shifter is enabled by the receive enable (RE) bit from
the SCI control register 2 (SCCR2). The M bit from the SCCR1 register
determines whether the shifter will be 10 or 11 bits long. After detecting
the stop bit of a character, the received data is transferred from the
shifter to the SCDR, and the receive data register full (RDRF) status flag
is set. When a character is ready to be transferred to the receive buffer
but the previous character has not yet been read, an overrun condition
occurs. In the overrun condition, data is not transferred and the overrun
(OR) status flag is set to indicate the error.

The wakeup block uses the WAKE control bit from SCCR1 to decide
whether to use the most significant bit (MSB) signal (address mark) or
the ALL 1s signal (idle line) to wake up the receiver. When the selected
condition is detected, the wakeup logic clears the receiver wake-up
(RWU) bit in SCCR2, which wakes up the receiver.

There are three receiver-related interrupt sources in the SCI. These
flags can be polled by software or optionally cause an SCI interrupt
request. The receive interrupt enable (RIE) control bit enables the RDRF
and the OR status flags to generate hardware interrupt requests. The
idle line interrupt enable (ILIE) control bit allows the IDLE status flag to
generate SCI interrupt requests.

9.4 SCI Registers and Control Bits

Primarily, the SCI system is configured and controlled by five registers
(BAUD, SCCR1, SCCR2, SCSR, and SCDR). In addition, the port D
register, data direction register for port D (DDRD), and the port D
wired-OR mode bit in the SPI control register (SPCR) are secondarily
related to the SCI system. First, the main function of each of these
registers is presented, and then detailed descriptions of each bit are
presented.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 323

Asynchronous Serial Communications Interface
When the SCI receiver and/or transmitter is enabled, the SCI logic takes
control of the pin buffers for the associated port D pin(s). Data directions
for the RxD and TxD pins are overridden to input and output,
respectively. Even though it does not control the direction of port D pins
while the SCI has control, the DDRD can be important to a user because
it influences what will be read when port D is read by software. The
DDRD also determines how the pin will behave when the SCI gives up
control. The port D register is important to an SCI user because the value
written to port D can determine what will be driven out of port D when the
SCI gives up control.

The port D wired-OR mode bit in the SPCR modifies the driver functions
of port D pins, even if they are being used for SCI or SPI functions.

The baud-rate control register (BAUD) is used to select the baud rate for
SCI operations and contains two control bits for factory testing.

SCCR1 includes three bits associated with the optional 9-bit data format.
The WAKE bit is used to select one of two methods of receiver wake up.

SCCR2 contains the main SCI controls. The upper four bits are local
interrupt enable controls, which determine whether SCI status flags will
be polled or will generate hardware interrupt requests. The TE and RE
bits are the respective transmitter and receiver subsystem enable
controls. The RWU bit allows software to put the receiver to sleep and
hardware to automatically wake it up by clearing this bit. The send break
SBK bit allows software to generate break characters on the TxD line.

The SCSR contains two transmitter status flags and five receiver-related
status flags. The transmitter generates flags for TDRE and TC. The
receiver generates flags for RDRF, OR, idle-line detect (IDLE), a noise
flag (NF), and a framing error (FE) indication.

The SCDR is actually two separate registers. TDR is a write-only
transmit data buffer register, and RDR is a read-only receive data buffer
register. When software reads SCDR, it is accessing RDR; when
software writes to SCDR, it is accessing TDR.
Reference Manual M68HC11 — Rev. 6

324 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Registers and Control Bits
9.4.1 Port D Related Registers and Control Bits (PORTD, DDRD, and SPCR)

The following registers are the port D related registers. Because the SCI
system uses the two LSBs of this port, only the interactions between
general-purpose I/O and the use of these pins by the SCI is discussed.
The actual MOS logic for port D pins is shown and discussed in
7.5.6 Port D.

Each internal peripheral subsystem interacts with port I/O pins in
different ways. In some cases, such as the SCI system, the internal
subsystem overrides other pin controls to actively take charge of the pin.
In other cases, such as the SPI and pulse accumulator, the pin controls
(data direction and others) still influence the configuration of the pin
logic. The user must never assume that all pins in a port are affected in
the same way by data direction controls.

Bit 7 6 5 4 3 2 1 Bit 0

PORTD — $1008

0 0
Bit 5 4 3 2 1 Bit 0

Reset:
Reference:

0
—

0
—

0
PD5/SS

0
PD4/SCK

0
PD3/MOSI

0
PD2/MISO

0
PD1/TxD

0
PD0/RxD

DDRD — $1009

0 0
DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0

Reset: 0 0 0 0 0 0 0 0

SPCR — $1028

SPIE SPE DWOM MSTR CPOL CPHA SPR1 SPR0

Reset: 0 0 0 0 0 1 U U

U = Unaffected

Figure 9-3. Port D Related Registers
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 325

Asynchronous Serial Communications Interface
When the SCI receiver is enabled (by the RE bit in the SCCR2 register),
bit 0 of DDRD is overridden, and the output buffer is disabled. Writes to
port D bit 0 while the SCI has control of the pin do not alter the logic state
at the pin; however, any value written is remembered in an internal latch.
If the SCI receiver later relinquishes control of the pin, the logic value in
this latch will drive the PD0/RxD pin. Although the DDRD0 bit does not
affect the pin while the SCI receiver is enabled, it still affects what is
returned when port D is read. If DDRD0 is 0, the pin is read. If DDRD0
is 1 (suggesting the pin should be an output), the value in the internal
port D bit 0 latch is returned.

When the SCI transmitter is active, bit 1 of DDRD is overridden, and the
corresponding output buffer is forced on and is driven by SCI logic (as
opposed to port output logic). The transmitter is active (controlling the
PD1/TxD pin) whenever the transmitter enable bit (TE in the SCCR2
register) is 1 or an unfinished character is being transmitted after the TE
bit is disabled. Writes to bit 1 of port D while the SCI has control of the
pin do not alter the logic state at the pin; however, any value written is
remembered in an internal latch. If the SCI transmitter later relinquishes
control of the pin, the logic value in this latch will drive the PD1/TxD pin.
Although the DDRD1 bit does not affect the pin while the SCI transmitter
is active, it still affects what is returned when port D is read. If DDRD1
is 0, the pin is read (reflects what the SCI transmitter is currently driving
out of the pin). If DDRD1 is 1 (suggesting the pin should be an output),
the value in the internal port D bit 1 latch is returned (reflects what the
pin would revert to if the SCI transmitter relinquishes control of the pin).

All six bits of port D are affected by the port D wired-OR mode control bit
(DWOM in the SPCR). Whenever DWOM is 1, the high-side driver
(P-channel device) for all port D pins is disabled. This disabling makes
port D pins behave somewhat like open-collector outputs; thus, an
external pullup resistor is needed for any port D pin being used as an
output (general-purpose or peripheral subsystem outputs). The DWOM
bit does not affect the use of port D pins as inputs.
Reference Manual M68HC11 — Rev. 6

326 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Registers and Control Bits
9.4.2 Baud-Rate Control Register (BAUD)

Figure 9-4 and the following paragraphs describe the baud-rate control
register (BAUD), which is used to set the bit rate for the SCI system.
Normally, this register is written once during initialization to set the baud
rate for SCI communications. Both the receiver and the transmitter use
the same baud rate, which is derived from the MCU bus rate clock. A
two-stage divider is used to develop customary baud rates from normal
MCU crystal frequencies; therefore, it is not necessary to use special
baud-rate crystal frequencies. Table 9-1 and Table 9-2 should be
adequate for most users, but a more comprehensive tabulation of baud
rates is provided in Table 9-3 to help users with unusual requirements.

TCLR — Clear Baud-Rate Timing Chain Bit (Test Modes Only)

This bit is disabled and remains low in any mode other than test or
bootstrap modes. Reset clears this bit. While in test or bootstrap
modes, writing a 1 to this bit causes the baud-rate counter chains to
be reset. Because the 1 state of this bit is transitory, reads always
return a logic 0. This control bit is intended only for factory testing of
the MCU.

SCP1–SCP0 — SCI Baud-Rate Prescale Select Bits

These two bits select a prescale factor for the SCI baud-rate
generator. The output frequency of this prescaler determines the
highest available baud rate in the system. The actual 16× baud rate
will be a binary submultiple (÷1, ÷2, ÷4,... ÷128) of this prescaler
output as selected by the SCR2–SCR0 bits. Table 9-1 shows the
highest baud rates that result for various combinations of crystal
frequency and prescaler select control bit values. The actual

Address: $102B

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0
0 SCP1 SCP0

0
SCR2 SCR1 SCR0

Write: TCLR RCKB

Reset: 0 0 0 0 0 U U U

U = Unaffected

Figure 9-4. Baud Rate Control Register (BAUD)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 327

Asynchronous Serial Communications Interface
frequency coming out of this prescaler stage is 16 times the baud
rates listed. Since not all of these entries are of practical use, the ones
of interest are highlighted in bold. This prescaler is set to its fastest
rate by default out of reset and may be changed at any time. Of
course, it makes no sense to change the baud rate while any SCI
transfer is in progress.

RCKB — SCI Baud-Rate Clock Test Bit (Test Modes Only)

This bit is disabled and remains low in any mode other than test or
bootstrap modes. Reset clears this bit. While in test or bootstrap
modes, this bit may be written but not read (reads always return a
logic 0). Writing a 1 to this bit enables a baud-rate counter test mode
where the exclusive-OR of the receiver clock (16× the baud rate) and
the transmit clock (16× the baud rate) is driven out the PD1/TxD pin.
This control bit is intended only for factory testing of the MCU.

SCR2–SCR0 — SCI Baud-Rate Select Bits

These three bits are used in conjunction with the SCI prescaler bits
(see Table 9-1) to specify the SCI baud rate. The prescale bits,
SCP1–SCP0, determine the highest baud rate; whereas, the
SCR2–SCR0 bits select an additional binary submultiple (÷1, ÷2,
÷4, ... ÷128) of this highest baud rate. The result of these two dividers
working in series is the 16× receiver baud-rate clock. Table 9-2 shows
the SCI baud rates that result for various settings of SCR2–SCR0 and
the highest baud rates from Table 9-1. Since not all of these entries

Table 9-1. Baud Rate Prescale Selects

SCP1 SCP0
Division
Factor

Crystal Frequency

223 Hz 8 MHz 4.9152 MHz 4 MHz 3.6864 MH

Highest Baud Rate

0 0 1 131.072 k 125.000 k 76.80 k 62.50 k 57.60 k

0 1 3 43.691 k 41.667 k 25.60 k 20.833 k 19.20 k

1 0 4 32.768 k 31.250 k 19.20 k 15.625 K 14.40 k

1 1 13 10.082 k 9600 5.908 k 4800 4431 k

2.1 MHz 2 MHz 1.2288 MHz 1 MHz 921.6 kHz

Bus frequency (E clock)
Reference Manual M68HC11 — Rev. 6

328 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Registers and Control Bits
are of practical use, the ones of interest have been highlighted in bold.
The SCR2–SCR0 bits are not affected by reset and may be changed
at any time. Of course, it makes no sense to change the baud rate
while any SCI transfer is in progress.

9.4.3 SCI Control Register 1 (SCCR1)

SCCR1 contains control bits related to the 9-bit data character format
and the receiver wake-up feature. Four of the bits in this register are not
used and always read as 0s.

Table 9-2. Baud Rate Selects

SCR2 SCR1 SCR0
Division
Factor

Highest Baud Rate (from Table 9-1)

131.072
kBaud

32.768
kBaud

76.80
kBaud

19.20
kBaud

9600
Baud

SCI Baud Rate

0 0 0 1 131.072 k 32.768 k 76.80 k 19.20 k 9600

0 0 1 2 65.536 k 16.384 k 38.40 k 9600 4800

0 1 0 4 32.768 k 8192 19.20 k 4800 2400

0 1 1 8 16.384 k 4096 9600 2400 1200

1 0 0 16 8192 2048 4800 1200 600

1 0 1 32 4096 1024 2400 600 300

1 1 0 64 2048 512 1200 300 150

1 1 1 128 1024 256 600 150 75

Address: $102C

Bit 7 6 5 4 3 2 1 Bit 0

Read: R8
T8

0
M WAKE

0 0 0

Write:

Reset: U U 0 0 0 0 0 0

U = Unaffected

Figure 9-5. SCI Control Register 1 (SCCR1)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 329

Asynchronous Serial Communications Interface
R8 — Receive Data Bit 8

When the SCI system is configured for 9-bit data characters, this bit
acts as an extra (ninth) bit of the RDR. The MSB of received
characters is transferred into this bit at the same time the remaining
eight bits are transferred from the serial receive shifter to the SCDR.

T8 — Transmit Data Bit 8

When the SCI system is configured for 9-bit data characters, this bit
acts as the extra (ninth) bit of the TDR. When the low-order eight bits
of a transmit character are transferred from the SCDR to the serial
transmit shift register, this bit is transferred to the ninth bit position of
the shifter. In cases where the sense of this bit is the same as it was
for the previous character, it is not necessary to write to this bit before
transmission of the new character. For example, if the 9-bit format is
used to get an extra stop bit (logic 1), the T8 bit is written to 1 before
transmitting the first character, and no other writes are needed.

M — SCI Character Length Bit
0 = One start bit, eight data bits, one stop bit
1 = One start bit, nine data bits, one stop bit

The M bit controls the character length for both the transmitter and
receiver at the same time. The 9-bit data format is most commonly
used for an extra stop bit or in conjunction with the address-mark
wakeup method, but it can also be used for parity. Mark and space
parity are trivial, but odd and even parity require software
calculations.

WAKE — Wakeup Method Select Bit
0 = Idle line; detection of at least a full character time of idle line

causes the receiver to wake up
1 = Address mark; a logic 1 in the MSB position (eighth or ninth

data bit depending on character size selected by M bit) causes
the receiver to wake up
Reference Manual M68HC11 — Rev. 6

330 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Registers and Control Bits
9.4.4 SCI Control Register 2 (SCCR2)

SCCR2 is the main control register for the SCI subsystem.

TIE — Transmit Interrupt Enable Bit
0 = TDRE interrupts disabled (software polling mode)
1 = SCI interrupt requested when TDRE is set to 1

TCIE — Transmit Complete Interrupt Enable Bit
0 = TC interrupts disabled (software polling mode)
1 = SCI interrupt requested when TC is set to 1

RIE — Receive Interrupt Enable Bit
0 = RDRF and OR interrupts disabled (software polling mode)
1 = SCI interrupt requested when either RDRF or OR is set to 1

ILIE — Idle-Line Interrupt Enable Bit
0 = IDLE interrupts disabled (software polling mode)
1 = SCI interrupt requested when IDLE is set to 1

The idle-line function is inhibited while the receiver wake-up function
is enabled.

TE — Transmit Enable Bit
0 = SCI transmitter disabled
1 = SCI transmitter enabled

The transmitter does not turn off in the middle of a character. When
TE is written to 0, the transmitter keeps control of the TxD pin until any
character in progress (including preambles or break characters) is
finished. When TE is written from 0 to 1, the transmitter sends a
preamble character consisting of 10 (11 if M = 1) bits of logic 1. This
mechanism can be used to queue an idle character time between the

Address: $102D

Bit 7 6 5 4 3 2 1 Bit 0

Read:
TIE TCIE RIE ILIE TE RE RWU SBK

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 9-6. SCI Control Register 2 (SCCR2)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 331

Asynchronous Serial Communications Interface
last character of one message and the first character of the
succeeding message. The procedure would be to wait for TDRE to be
set after writing the last character to the SCDR (this signals that the
character has transferred to the shifter to be sent serially). Then write
TE to 0 and back to 1. Since the last character is still being shifted out,
the transmitter will not relinquish control of the TxD pin, but the act of
writing TE from 0 to 1 causes an idle preamble character to be queued
to be sent as soon as the last character from the previous message
finishes being shifted out. Finally, write the first character of the next
message to the SCDR. This new character will start transmitting as
soon as the queued idle character finishes.

RE — Receive Enable Bit
0 = SCI receiver disabled
1 = SCI receiver enabled

While the SCI receiver is disabled, the RDRF, IDLE, OR, NF, and FE
status flags cannot become set. If these flags were set, turning off RE
does not cause them to be cleared.

RWU — Receiver Wakeup Bit
0 = Normal SCI receiver operation (wakeup feature not enabled)
1 = Places the SCI receiver in a standby mode where

receiver-related interrupts are inhibited until some hardware
condition is met to wake up the sleeping receiver

The condition that wakes up the receiver depends on which method
of wakeup was specified with the WAKE bit in SCCR1.

Although it is possible for software to write the RWU bit to 0, it is
unusual to do so. The normal sequence is for software to set the RWU
bit after deciding that a particular SCI message is of no interest.
Setting the RWU bit causes the receiver to go to sleep (ignore further
receiver interrupt sources) until the start of the next message.
Receiver wakeup logic recognizes when the unimportant message is
over and automatically clears the RWU bit to wake up the sleeping
receiver.
Reference Manual M68HC11 — Rev. 6

332 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Registers and Control Bits
SBK — Send Break Bit
0 = Normal transmitter operation
1 = Enable transmitter to send synchronous break characters.

Whenever the SBK bit is written to 1, at least one character time of
break will be queued and sent. In the context of the M68HC11, a
break character causes the TxD line to go to logic 0 for 10
(11 if M = 1) bit times.

In old teletype systems, a break was caused by simply disconnecting
the serial line, which caused the line to go to logic 0 for some
asynchronous length of time (usually as long as the break key was
pressed). A receiver seeing a break character produced by an
M68HC11 would receive an all-zero character with a framing error
(FE) because the line would be low where the receiver expected to
see a logic-high stop bit.

The break characters in the M68HC11 are synchronous because no
partial character times of the break condition are ever produced.
When SBK is set to 1, a break character is queued pending
completion of any character currently shifting out of the transmit shift
register. When the transmit shift register becomes available, the
queued break character is jammed into the shift register to be serially
sent, and, if the SBK bit is still 1, another break is queued. It will
always be at least one character time from when the SBK bit is written
back to 0 before the transmitter can resume sending normal
characters.

9.4.5 SCI Status Register (SCSR)

The seven status bits associated with the SCI system are located in the
SCI status register (SCSR), which is depicted in Figure 9-7. Some of
these bits optionally generate hardware interrupt requests; whereas,
others simply indicate errors in the reception of a character. These
status bits are set automatically by the corresponding conditions having
been met in the SCI logic. Once set, these bits remain set until software
completes a clearing sequence. The clearing sequences are somewhat
automatic in that they are satisfied by performing functions normally
done anyway. For example, to clear the TDRE flag, software must read
the SCSR while TDRE is set and then write to the TDR. Since these are
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 333

Asynchronous Serial Communications Interface
exactly the normal steps in response to the TDRE, no instructions are
needed to clear the flag.

TDRE — Transmit Data Register Empty Bit
0 = Not empty; a character previously written to the SCDR and has

not yet transferred to the transmit shift register to be serially
sent

1 = Indicates a new character may now be written to the SCDR

In normal transmit operations, this bit is checked before each new
character is sent to see if the SCDR can accept the new data. The SCI
transmitter is double buffered so the TDR holds the second character
in line while the transmit serial shift register holds the character in the
process of being transmitted serially. The TDRE flag is cleared by
reading SCSR, followed by a write to the SCDR. TDRE must be read
as 1 during the read of SCSR, or the first step of the clearing
sequence is not satisfied. The TDRE bit is set to 1 during reset to
indicate that there is no meaningful data in the SCDR.

TC — Transmit Complete Bit
0 = The transmitter is busy sending a character, preamble, or break

character.
1 = The transmitter has completed sending and has reached an

idle state.

This bit is useful in systems where the SCI is driving a modem. When
TC is set at the end of a transmission, the modem can be disabled. In
older ACIA and SCI systems, the TDRE status bit was the only
indication that a transmission was near completion. Since TDRE only
indicated that the last character had transferred to the transmit shift
register, software had to delay an amount of time greater than or
equal to the time it took for this last character to finish transmitting

Address: $102E

Bit 7 6 5 4 3 2 1 Bit 0

Read: TDRE TC RDRF IDLE OR NF FE 0

Write:

Reset: 1 1 0 0 0 0 0 0

Figure 9-7. SCI Status Register (SCSR)
Reference Manual M68HC11 — Rev. 6

334 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Registers and Control Bits
serially. Since the delay time depended on the baud rate, it was
relatively difficult to know when it was safe to disable the modem. The
TC bit on the M68HC11 offers a much more convenient way to tell
when the transmitter has completed sending. The TC flag is cleared
by reading SCSR, followed by a write to the SCDR. TC must be read
as 1 during the read of SCSR, or the first step of the clearing
sequence is not satisfied. The TC bit is set to 1 during reset to indicate
that the transmitter is not busy transmitting.

RDRF — Receive Data Register Full Bit
0 = Not full; nothing received since the last character read out of

the SCDR
1 = A character was received and transferred from the receive shift

register to the parallel SCDR where software can read it

This is the normal indication that a character has been received by the
SCI. The NF and FE status bits provide additional information about
this normally received character in the SCDR. If set, the OR flag
would indicate that another character was serially received and was
ready to be transferred to the SCDR, but the previously received
character was not yet read. Software should check RDRF, OR, NF,
and FE for any error in the reception of a character (RDRF should be
set and the other three flags should be clear). The RDRF flag is
cleared by reading SCSR, followed by a read of the SCDR. RDRF
must be read as 1 during the read of SCSR, or the first step of the
clearing sequence is not satisfied. Since the NF and FE flags are set
at the same time as RDRF, the clearing sequence for RDRF will also
clear NF and FE if they were set for this received character.

IDLE — Idle-Line Detect Bit
0 = The RxD line is either active now or has never been active

since IDLE was last cleared.
1 = The RxD line has become idle.

The idle condition is defined as at least a full character time of logic 1
on the RxD line. A character time is 10 bit times if M = 0 or 11 bit times
if M = 1. The IDLE flag is cleared by reading SCSR, followed by a read
of the SCDR. IDLE must be read as 1 during the read of SCSR, or the
first step of the clearing sequence is not satisfied. Once IDLE has
been cleared, it cannot be set again until the RxD line has been active
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 335

Asynchronous Serial Communications Interface
and then becomes idle again. The idle-line function is inhibited while
the receiver wakeup function is enabled (RWU = 1).

OR — Overrun Error Bit
0 = No overrun error
1 = Indicates that another character was serially received and was

ready to be transferred to the SCDR, but the previously
received character was not yet read

Since the SCI receiver is double buffered, there is a full character time
between reception of a character and when it must be read from the
SCDR to avoid an OR caused by a subsequent character. In an OR
condition, the character that caused the OR is lost, but the previously
received character in the SCDR is not disturbed. The NF and FE
status bits are associated with the normally received character in the
SCDR (never the character that caused an OR). The OR flag is
cleared by reading SCSR, followed by a read of the SCDR. OR must
be read as 1 during the read of SCSR, or the first step of the clearing
sequence is not satisfied.

NF — Noise Flag
0 = No noise detected during reception of the character in the

SCDR
1 = Data recovery logic detected noise during reception of the

character in the SCDR.

NF does not generate interrupt requests because it is always
associated with the setting of RDRF, which does cause interrupts.
Even if the noise is detected early in the reception of the character,
NF is not set until RDRF is set at the end of reception of a character.
Perceived noise in any of the data bit times or the start or stop bit
times will cause NF to be set. During data bit times and the stop bit
time, noise is indicated if the three samples taken near the middle of
the bit time do not unanimously agree. During reception of the start
bit, four additional samples are taken during the first half of the bit time
to detect the leading edge of the bit time and to verify that it is a start
bit. If all seven samples taken during the start bit time are not 0, noise
is indicated and NF is set. Many systems ignore the NF because the
data recovery logic has already made a good first-order attempt to
correct the problem. In critical applications, the NF could be used to
generate a request for retransmission of the questionable data. The
Reference Manual M68HC11 — Rev. 6

336 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Registers and Control Bits
NF flag is cleared by reading SCSR followed by a read of the SCDR.
NF must be read as 1 during the read of SCSR, or the first step of the
clearing sequence is not satisfied.

FE — Framing Error Bit
0 = No framing error detected
1 = A framing error was detected for the character in the SCDR.

Asynchronous serial data reception requires the receiver to properly
align the character reception frame with the incoming serial data. This
alignment is achieved by asynchronously searching for the falling
edge of the start bit; alignment is verified by looking for the expected
logic high during the last bit time (stop bit) of the character. If a logic 0
is detected where the stop bit was expected, the FE flag is set. The
FE indicator is not a foolproof indication of improper framing. It is
possible for the receiver to be misframed without there being any FE
indication because the RxD line could by chance be high when the
receiver expected to see the stop bit.

The FE flag is cleared by reading SCSR followed by a read of the
SCDR. FE must be read as 1 during the read of SCSR, or the first step
of the clearing sequence is not satisfied.

9.4.6 SCI Data Register (SCDR)

SCDR shown in Figure 9-8 is actually two separate registers. When
SCDR is read, the read-only RDR is accessed; when SCDR is written,
the write-only TDR is accessed. In discussions of the SCI system, any of
the mnemonics SCDR, TDR, or RDR might be used to refer to this
register location.

Address: $102F

Bit 7 6 5 4 3 2 1 Bit 0

Read: R7 R6 R5 R4 R3 R2 R1 R0

Write: T7 T6 T5 T4 T3 T2 T1 T0

Reset: Unaffected by reset

Figure 9-8. SCI Data Register (SCDR)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 337

Asynchronous Serial Communications Interface
9.5 SCI Transmitter

The SCI transmitter (see Figure 9-1) uses an internally generated
bit-rate clock to serially shift data out of the TxD pin. A normal
transmission is initiated by enabling the transmitter (setting TE to 1) and
then writing data to be transmitted to the SCDR. Since the SCI
transmitter is double buffered, a new character may be written to the
transmit queue whenever the TDRE status flag is set to 1.

The transmit bit-rate clock is free running, and there is normally no way
to know where a bit clock transition will occur relative to the software
instructions that write data to the TDR. Since transfers to the transmit
shift register and transmission of data must be synchronized to this
bit-rate clock, there will be an uncertainty about exactly when a character
will start being transmitted relative to when it was written to the TDR. The
transmit bit-rate clock is free running as opposed to being started when
a character is written to the TDR.

Transmitter logic adds a 0 start bit and a 1 stop bit to the data characters
presented by the CPU for transmission. The transmitter can be
configured to send characters with eight (M = 0) or nine (M = 1) data bits.
When the TDR is able to accept a new data character, the TDRE status
flag is set, and an interrupt can optionally be generated. Another status
flag (TC) and optional interrupt are produced when the transmitter has
finished sending everything in its queue. In addition to data characters,
the transmitter is capable of sending idle-line characters and break
characters, which are useful in multi-drop SCI networks. The transmitter
is double buffered, which means that one character can be in the parallel
TDR while another is in the transmit shift register being sent. In the case
of queued idle and break characters, three characters can be in the
queue, but no more than two can be data characters. The last topic of
discussion for the transmitter will be the TxD pin buffer. This flexible
buffer can be used to control what happens to the TxD pin when the
transmitter is finished using the pin.
Reference Manual M68HC11 — Rev. 6

338 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Transmitter
9.5.1 8- and 9-Bit Data Modes

The M bit in the SCCR1 determines the length of SCI characters for both
the transmitter and receiver. The most common configuration is one start
bit, eight data bits, and one stop bit, which is selected by M equals 0.
When M = 1, characters are composed of one start bit, nine data bits,
and one stop bit. In this 9-bit data mode, the low-order eight bits come
from the normal TDR, and the ninth bit comes from the T8 bit of SCCR1.
Data is transmitted LSB first, and this ninth bit becomes the new MSB,
which is transmitted just before the stop bit. Since this bit is adjacent to
the stop bit, it can be used as an extra stop bit by setting T8 to 1.

Another common use for the 9-bit data format is in conjunction with the
address-mark variation of receiver wakeup. In a multi-drop SCI network,
all receivers evaluate the first characters of a message to decide
whether this message is important to this receiver. If not, receiver
wakeup may be activated by writing a 1 to the RWU bit in SCCR2. A 1
in RWU causes the receiver to ignore any other characters in the
message, thus allowing the MCU to perform more useful functions than
responding to interrupts from the SCI. The SCI receiver is still monitoring
characters normally except that status flags and interrupts are not being
produced. When address-mark wakeup is used, the SCI receive logic
automatically clears RWU when it sees a character whose MSB is 1.
The 1 in the MSB of a character indicates that this character is the first
addressing character of a new message; thus, all receivers should
wakeup and evaluate this character. The 9-bit data format allows for full
8-bit data characters to be used in the body of a message while the ninth
bit acts as the address marker. The first character of each message will
have this ninth bit set to 1; whereas, the remaining characters in the
message will have a 0 in this ninth bit. Address-mark wakeup can be
used with 8-bit data format, but message characters could only use the
lower seven bits for information.

The ninth bit can also be used as a parity bit. Mark or space parity can
be produced by simply making T8 equals 1 or T8 equals 0, respectively.
Odd and even parity require software calculations with the resulting
parity-bit value stored in T8. A new T8 value will have to be calculated
for each serial character.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 339

Asynchronous Serial Communications Interface
9.5.2 Interrupts and Status Flags

Two status flags are associated with the SCI transmitter. These flags are
read by software to tell when the corresponding condition exists. This
technique is called polling. Alternatively, a local interrupt enable bit can
be set to enable each of these status conditions to generate interrupt
requests when the corresponding condition is present. This technique is
called an interrupt-driven operation. Status flags are automatically set by
hardware logic conditions, but software clears these flags, which
provides an interlock mechanism for logic to know when software has
noticed the status indication. The software clearing sequence for these
status flags is automatic in that functions normally performed in
response to the status flags also satisfy the conditions of the clearing
sequence.

When the transmitter is first enabled (TE written to 1), the TDRE and TC
flags are normally already set. The SCI transmitter should be initialized
in such a manner that the system can handle these interrupts before the
TE bit is written to 1 because an immediate interrupt can occur from
these sources.

The TDRE flag indicates that there is room in the transmit queue to store
another data character in the TDR. The TIE bit is the local interrupt mask
for TDRE. When TIE is 0, TDRE must be polled; when TIE is 1, an
interrupt is requested whenever TDRE is 1. To clear TDRE, the user
must read SCSR while TDRE is 1, then write to SCDR.

The TC flag indicates that the transmitter has finished transmitting
everything in its queue, including any idle preamble or break character
that has been queued. The TCIE bit is the local interrupt mask for TC.
When TCIE is 0, TC must be polled; when TCIE is 1, an interrupt is
requested whenever TC is 1. To clear TC, the user must read SCSR
while TC is 1, then write to SCDR.

One interrupt vector is associated with the SCI system; therefore, the
interrupt service routine must begin by reading the SCSR to determine
which interrupt(s) caused the service routine to be called. Possible
interrupt sources include the two transmitter sources previously
discussed and three receiver-related sources.
Reference Manual M68HC11 — Rev. 6

340 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Transmitter
9.5.3 Send Break

In the M68HC11, break characters are character-length periods where
the TxD line goes to 0. The character length for all characters, including
idle and break characters, is influenced by the M bit in SCCR1. When
M = 0, all characters are 10 bit times long; when M equals 1, all
characters are 11 bit times long. Break characters have no start or stop
bits. As long as the SBK control bit is 1, break characters will be queued
and sent. The TxD line will continuously remain at 0 while break
characters are being sent. When SBK is written back to 0, at least one
bit time of logic 1 will appear on the TxD line as soon as the last break
character is finished. This high bit time ensures that a receiver can detect
the falling edge at the beginning of the start bit for the next data
character.

If the transmitter is busy transmitting a character when SBK is toggled
on and back off by software, exactly one break character will be
produced following completion of the character that was being
transmitted. If the transmitter is idle at the time the SBK bit is toggled on
and off, it is not certain whether one or two break characters will be sent.
When SBK is set to 1, a break character is queued. When the transmit
shift register becomes available and synchronization requirements are
met with respect to the internal 1× baud-rate clock, the queued break
character is jammed into the shift register to be serially sent and, if the
SBK bit is still 1, another break is queued. The transfer mechanism from
the queue to the shifter is internally synchronized to the 1× baud-rate
clock; however, the relationship of this clock to operating software is not
normally known. The instructions to write 1 and then write 0 to the SBK
bit execute very quickly relative to a normal baud-rate frequency, but
there is still a small probability that the baud-rate clock edge could occur
between writing the 1 and writing the 0 to SBK.

9.5.4 Queued Idle Character

When the SCI transmitter is not sending some character, it is idle and the
TxD line rests at logic 1. This idle-line condition can last for essentially
any length of time and should not be confused with idle characters. Idle
characters are character-length periods where the TxD line goes to
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 341

Asynchronous Serial Communications Interface
logic 1. The character length for all characters, including idle and break
characters, is influenced by the M bit in SCCR1. When M = 0, all
characters are 10 bit times long; when M = 1, all characters are 11 bit
times long. Idle characters have no start or stop bits.

Idle characters are only produced when the transmitter is enabled from
a disabled state (TE changed from 0 to 1). The first time the transmitter
is enabled, this idle character acts as a preamble. The character-length
period of logic 1 ensures that any receiver connected to this transmitter
will be resynchronized so that it can properly recognize the leading edge
of the start bit for the next character.

Software can queue an idle character into a serial data stream by
momentarily turning TE off and then back on again. This queueing
function is useful when using the idle-line variation of receiver wakeup.
In a multi-drop SCI network, all receivers evaluate the first character(s)
of a message to decide whether this message is important to this
receiver. If not, receiver wakeup is invoked by writing a 1 to the RWU bit
in SCCR2. A 1 in RWU causes the receiver to ignore any other
characters in the message, thus allowing the MCU to perform more
useful functions than responding to interrupts from the SCI. The SCI
receiver is still monitoring characters normally except that status flags
and interrupts are not being produced. When idle-line wakeup is used,
the SCI receive logic automatically clears RWU (waking up the receiver)
when it sees a full character time of logic 1. During a message, there
must never be any gap between characters within a message because
even a single bit time of idle can trigger wakeup if the previous character
was $FF. The queued idle function allows exactly one character time of
idle to be inserted into the data stream to maintain maximum efficiency
and data throughput. Before queued idle was available, software had to
avoid writing to the TDR for two or more character times after seeing
TDRE go high, which caused the TxD line to go idle for enough time to
trigger RWU. The new queued idle function is much cleaner and easier
to use.

The procedure for queueing an idle character is as follows. Write the last
character to the TDR and wait for TDRE to become set (indicates the last
character has transferred to the transmit shifter to be transmitted
serially). Write 0 and then write 1 to TE. Since the last character is still
Reference Manual M68HC11 — Rev. 6

342 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Transmitter
being transmitted, the transmitter will not give up control of the TxD pin,
and the character being transmitted is undisturbed. The 0-to-1 transition
of TE queues the idle character to be sent as soon as the transmit shifter
becomes available. As soon as TE is written back to 1, the first character
of the next message may be written to the TDR. In this unusual case, the
transmit queue can be three characters deep: the last data character of
the previous message still transmitting, the queued idle character, and
the first character of the next message in the parallel TDR.

One subtle aspect of the TxD pin buffer logic can be especially useful
with the queued idle function. In the previous queued idle discussion, it
was assumed that the transmitter would not relinquish control of the TxD
pin because the last character was still being transmitted, but what if this
character is completed while TE is 0? This completion could occur if the
user is using a fast baud rate and the system is so busy that there is a
delay in responding to the TDRE request. The TxD pin will revert to the
general-purpose input/output (I/O) function. If this scenario is a
possibility, write bit 1 of PORTD and DDRD to 1. This configures the
PD1/TxD pin to behave as an output and drive a 1 if the transmitter
relinquishes control of the pin. Since this pin state is identical to an idle
TxD line, the system would see a slightly longer than expected idle
character time.

Since the queuing of an idle character occurs at the rising edge of the TE
bit, exactly one idle character results from the queueing procedure.
There is never any possibility of a second idle character being produced
because of uncertainty about the relationship between the software and
the internal baud-rate clock (as there was with queued break
characters).

9.5.5 Disabling the SCI Transmitter

Writing a 0 to TE requests that the transmitter stop when it can. The
transmitter will finish any transmission in progress before actually
shutting down. Only an MCU reset can cause the transmitter to stop and
shut down immediately.

If TE is written to 0 when the transmitter is already idle, the pin will revert
to its general-purpose I/O function (synchronized to the bit-rate clock). If
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 343

Asynchronous Serial Communications Interface
anything is being transmitted when TE is written to 0, that character is
completed before the pin reverts to general-purpose I/O, but any other
characters waiting in the transmit queue are lost. The TC and TDRE
flags are set at the completion of this last character even though TE has
been disabled.

9.5.6 TxD Pin Buffer Logic

Several features of the TxD pin buffer logic are especially important to
an SCI user. When the SCI transmitter is enabled, the data direction
control is overridden, and the output buffer is forced on. When the
transmitter is disabled and the transmission in progress is completed,
the pin reverts to being a general-purpose I/O pin controlled by the
PORTD and DDRD registers. In some systems, it is very important to
know just what will happen to the pin when the SCI stops controlling it.
Another feature of this pin buffer allows it to act like an
open-collector-type buffer, which helps prevent otherwise catastrophic
problems if two or more drivers connected to this same TxD line were to
become enabled at the same time. Finally, the DDRD1 control bit still
influences what is returned on reads of PORTD even though it is
overridden in terms of controlling the output buffer enable.

Figure 9-9 is a simplified block diagram of the TxD pin logic that
illustrates the points of the following discussion. The MOS
transistor-level schematic and a more detailed description of the TxD pin
logic are found in 7.5.6 Port D.

Output buffer [1] is enabled by DDRD or by the SCI transmitter on
(XMITON) signal. The XMITON signal is active while the TE bit is 1 and
long enough after TE is written to 0 to allow any currently transmitting
character to finish. The DWOM signal determines whether port D pins
will act as open-collector-type drivers or as totem-pole-type drivers.
DWOM simultaneously controls all six port D pins; thus, if
open-collector-type operation is needed on any port D pin(s), it must be
used on all six. A fairly common case might be where the SPI needed
open-collector operation so DWOM was set to 1. In this case, the TxD
pin needs a pullup resistor since the internal high-side driver was
disabled.
Reference Manual M68HC11 — Rev. 6

344 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Transmitter
Figure 9-9. TxD Pin Logic Block Diagram

The data driven out the TxD pin is selected by multiplexer [2]. When the
transmitter is enabled, SCI transmit data will drive the pin buffer. When
the transmitter is disabled, latched port D data from half flip-flop (HFF)
[3] drives the pin buffer. HFF [3] holds the last data written to PORTD
even if the transmitter was enabled at the time.

The DDRD1 control bit provides an enable for pin output buffer [1] and a
select to multiplexer [4]. When PORTD is read, analog switch [5] couples
the output of multiplexer [4] onto the data bus to the CPU. Multiplexer [4]
determines what will be returned on reads of port D. If DDRD1 is 1, the
output of the port D bit 1 latch [3] is read. If DDRD1 is 0, pin input buffer
[6] is read. When the SCI transmitter is enabled, setting DDRD1 to 0
allows software to directly read the current state of the TxD pin as data
is being serially transmitted. In unusual cases, port D bit 1 latch [3] can
be used as a software flag bit that can be written and read without
disturbing SCI transmissions.

Probably the most commonly used aspect of the TxD pin logic is the
ability to control what the pin does after the SCI gives up control. For the
pin to revert to a driven high, write DDRD1 and port D bit 1 to 1s. For the
pin to revert to high impedance, write a 0 to DDRD1. This

D

C

Q

Q

HFF

OUTPUT
BUFFER

DWOM

MUX

A

B

A/B

MUX

A

B

A/B

INPUT
BUFFER

[2]

[4]

[6]

[1]

[3]

XMITON

WPORTD

DDRD1

INTERNAL
DATA BUS

RPORTD

SCI
TRANSMIT

DATA

ENABLE

OPEN DRAIN/TOTEM

[5]

PD1
TxD
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 345

Asynchronous Serial Communications Interface
high-impedance choice is useful in multidrop systems where more than
one transmitter is connected to a common transmit line but no more than
one transmitter is ever simultaneously using the line. The
high-impedance choice can also be used to make a 2-wire SCI system
where the TxD and RxD pins of the M68HC11 are tied together and data
travels in only one direction at a time (half duplex).

Since the M68HC11 is a CMOS device, it is a good idea to select the
wired-OR option with DWOM whenever more than one output driver
could potentially try to drive the same line.

9.6 SCI Receiver

The SCI receiver is responsible for synchronization to the serial data
stream and recovery of data characters. Since the data stream has no
clock, data recovery depends on the transmitting device and the
receiving device operating at close to the same baud rate. The SCI
system can tolerate a moderate amount of system noise without losing
any information.

The SCI receive function is somewhat more difficult than the transmit
function due to the asynchronous nature of incoming serial data. A
significant amount of discussion here will devoted to the way the
M68HC11 recognizes a start bit because this procedure determines the
amount of baud-rate frequency mismatch that can be tolerated and gives
an indication of how well this SCI receiver can handle noise. Second,
basic double-buffered receive functions are discussed. Finally, the two
variations of the receiver wake-up function are explained.

9.6.1 Data Sampling Technique

The receiver front-end logic uses a sampling clock that is 16 times the
baud-rate frequency. This sampling clock is called the RT clock in the
following discussion, and one RT is understood to be one-sixteenth of a
bit time. In the following figures, the RT clock cycles are numbered from
one (start of a bit time) to 16 (end of a bit time).

When the receiver is first enabled and after the reception of a stop bit at
the end of a frame, an asynchronous search is initiated to find the
leading edge of the next start bit. The goal of this asynchronous search
Reference Manual M68HC11 — Rev. 6

346 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Receiver
is to gain bit-time synchronization between the serial data stream and
the internal RT clock. Once synchronization has been established, the
RT clock controls where the MCU perceives the bit-time boundaries to
be. The first step in locating a start bit is to find a sample where RxD is
0 preceded by three consecutive samples of logic 1. These four samples
are called start-bit qualifiers. Until the start-bit qualifiers are detected, the
RT clock is reset to state RT1 after each sample. Once the qualifiers are
found, the beginning of a start bit is tentatively assumed, and
subsequent samples are assigned successive RT state numbers. Next,
start-bit verification samples are taken at RT3, RT5, and RT7. If any two
of the three verification samples are logic 1s, the low at RT1 is assumed
to have been noise, and the asynchronous search is started again.
When the start-bit qualifiers and the start-bit verification requirements
are met, synchronization has been achieved, and the RT count state is
used to determine the position of bit-time boundaries.

During each bit time, including the start and stop, data samples are taken
at RT8, RT9, and RT10 to determine the logic sense of the bit time and
to (possibly) set a working NF. The logic sense of the bit time is
considered to be the majority of all samples taken during the bit time. If
any sample disagrees with the rest, the working NF is set. Even if the
samples at RT8, RT9, and RT10 suggest it should be 1, the start bit time
is always assumed to be 0. The primary reason for this assumption is to
avoid an accidental wakeup while using the idle-line variation of receiver
wakeup. If the previous character had been all 1s ($FF), the stop bit and
the erroneous logic high in the new start bit would combine to make a full
character time of logic 1 and would erroneously wakeup the receiver.
Also, at least three of the four samples at RT1, RT3, RT5, and RT7 were
logic 0, which would contradict a decision of logic 1 based on the
samples at RT8, RT9, and RT10.

If there is any disagreement among the samples taken during any bit
time in a frame (including the start and stop), the working NF is set. At
the end of a character reception, data is transferred from the receive
shifter to the parallel RDR, and the RDRF flag is set. If noise was
detected during reception of the character, the NF is set at the same time
as RDRF.

Figure 9-10 shows the details of the ideal case of start-bit recognition.
All samples taken at [1] detect logic 1s on the RxD line and correspond
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 347

Asynchronous Serial Communications Interface
Figure 9-10. Start Bit — Ideal Case

to the idle-line time or a stop-bit time prior to this start bit. At [2] a logic-0
sample is preceded by three logic 1 samples. These four samples are
called the start-bit qualifiers. The beginning of the start-bit time is
tentatively perceived to occur between the third logic 1 sample and the
logic 0 sample of the start qualifiers. Next, the samples at RT3, RT5, and
RT7 [3] are taken to verify that this bit time is indeed the start bit. The
samples at RT8, RT9, and RT10 are called the data samples [4]. In any
bit time other than the start bit, these samples would drive a majority
voting circuit to determine the logic sense of the bit time. In the special
case of the start bit time, the bit value is forced to be 0 independent of
what the data samples at RT8, RT9, and RT10 suggest.

In this ideal case, the actual start bit and the perceived start bit match.
The resolution of the RT clock leads to an uncertainty about the exact
placement of the leading edge of the start bit. The uncertainty in the
placement of the edge will be one-sixteenth of a bit time.

Figure 9-11 shows what occurs if noise causes a sample to be
erroneously detected as a 0 before the actual beginning of the start bit.
Logic 0 sample [1] in conjunction with the three preceding samples of
logic 1 meet the conditions for start qualification; thus, logic tentatively
perceives the start bit as beginning here. Subsequent start-verification
samples at RT3 and RT5 [2] are both 1s; therefore, the tentative
placement of the start edge is rejected, and the search is restarted.
When the sample at the actual beginning of the start bit is detected, the
preceding three samples are 1s; the start bit is now perceived to begin
here. In this case, the three samples taken at RT3, RT5, and RT7 now
verify that the start bit has been found.

RT
1

RT
1

RT
1

RT
1

RT
1

RT
1

RT
1

RT
1

RT
1

RT
1

RT
1

RT
2

RT
3

RT
4

RT
5

RT
6

RT
7

RT
8

RT
9

R
T1

0

R
T1

1

R
T1

2

R
T1

3

R
T1

4

R
T1

5

R
T1

6

RT
2

RT
3

[1] [2] [3] [4]

01 01 01 1 01 1 01 01 01

ACTUAL START BIT

PERCEIVED START BIT

LSB

RT
4

RxD PIN

SAMPLES

RT CLOCK
(16X BAUD RATE)

RT CLOCK
STATE

RESET RT
Reference Manual M68HC11 — Rev. 6

348 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Receiver
Figure 9-11. Start Bit — Noise Case One

Figure 9-12 is similar to the previous case except noise [1] is now closer
to the actual beginning of the start bit. The noise sample and the
preceding three 1s meet the start qualification requirements. The
start-verification sample at RT3 [2] is 1, which will cause the working NF
to be set. The samples at RT5 and RT7 [3] are 0s. Since two out of three
of the start-verification samples are correct, the original perceived
position for the beginning of the start bit is accepted. The RT clock will
roll over from state 16 to state 1 [4], and bit-time misalignment [5] will
continue for the remainder of this character. (A 1-to-0 transition in the
data character would cause the alignment to be readjusted.) Even
though the perceived alignment of the serial data to the RT clock is
technically incorrect, the data samples at RT8, RT9, and RT10 fall well
within the actual bit time. This character would almost certainly be
received correctly; however, the NF will be set to inform the user of the
questionable character.

Figure 9-12. Start Bit — Noise Case Two

R
T1

R
T1

R
T1

R
T1

R
T1

R
T2

R
T3

R
T4

R
T5

R
T1

R
T1

R
T2

R
T3

R
T4

R
T5

R
T6

R
T7

R
T8

R
T9

R
T1

0

R
T1

1

R
T1

2

R
T1

3

R
T1

4

R
T1

5

R
T1

6

R
T2

R
T3

01 01 01 0 01 01 01 01

ACTUAL START BIT

PERCEIVED START BIT

LSB

R
T4

RxD PIN

SAMPLES

RT CLOCK
(16X BAUD RATE)

RT CLOCK
STATE

RESET RT [2]

[1]

RT
1

RT
1

RT
1

RT
1

RT
1

RT
1

RT
1

RT
2

RT
3

RT
5

RT
6

RT
7

RT
8

RT
4

RT
5

RT
6

RT
7

RT
8

RT
9

RT
10

RT
11

RT
12

RT
13

RT
14

RT
15

RT
16

RT
2

RT
3

01 01 01 0 01 1 01

ACTUAL START BIT

PERCEIVED START BIT

LSB

RT
4

RxD PIN

SAMPLES

RT CLOCK
(16X BAUD RATE)

RT CLOCK
STATE

RESET RT

[2]

[1]

[3]

[4]

PERCEIVED LSB
[5]
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 349

Asynchronous Serial Communications Interface
Figure 9-13 shows a burst of noise [1] causing two samples to detect
erroneous 0s. The sample at RT5 would cause the working NF to set.
Even though this example shows a worst-case alignment of perceived
bit-time boundaries to actual bit-time boundaries, the data samples
taken at RT8, RT9, and RT10 will fall within the actual bit time, and data
recovery should still be successful. Perceived bit-time boundary [2] is
almost half a bit time too soon; however, the data samples for LSB [3]
still fall within the actual LSB bit time. This example is a theoretical case,
and such gross noise should never be seen in an actual application. This
case is an indication of how tolerant the SCI receiver is to system noise.

Figure 9-13. Start Bit — Noise Case Three

Figure 9-14 depicts the case of noise causing an erroneous sample of
1 early in the start bit. In this case, the NF would be set due to the 1 at
sample RT3. The alignment of the perceived bit-time boundary matches
that of the actual bit-time boundary.

Figure 9-14. Start Bit — Noise Case Four

R
T1

R
T1

R
T1

R
T1

R
T1

R
T2

R
T3

R
T5

R
T6

R
T7

R
T8

R
T4

R
T5

R
T6

R
T7

R
T8

R
T9

R
T1

0

R
T1

1

R
T1

2

R
T1

3

R
T1

4

R
T1

5

R
T1

6

R
T2

R
T3

01 01 01 00 1 0

ACTUAL START BIT

PERCEIVED START BIT

LSB

R
T4

RxD PIN

SAMPLES

RT CLOCK
(16X BAUD RATE)

RT CLOCK
STATE

RESET RT

[1]

PERCEIVED LSB

R
T9

R
T1

0

[2]

[3]

0 0 0

RT
1

RT
1

RT
1

RT
1

RT
1

RT
1

RT
1

RT
2

RT
3

RT
4

RT
5

RT
6

RT
7

RT
8

RT
9

R
T1

0

R
T1

1

R
T1

2

R
T1

3

R
T1

4

R
T1

5

R
T1

6

RT
2

RT
3

01 01 11 01 01 01 01

ACTUAL START BIT

PERCEIVED START BIT

LSB

RT
4

RxD PIN

SAMPLES

RT CLOCK
(16X BAUD RATE)

RT CLOCK
STATE

RESET RT

1 1

RT
1

RT
1

RT
1

RT
1

Reference Manual M68HC11 — Rev. 6

350 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Receiver
Figure 9-15 shows a gross burst of noise [1] during the start-verification
samples. The two logic-1 samples at RT5 and RT7 cause the 1-to-0
transition at the actual beginning of the start bit to be rejected as the
perceived start bit. Since there are no more cases of three logic-1
samples in a row [2], the start bit is never detected. Because the circuit
could not locate the start bit, the frame will be received as a framing
error, be improperly received, or be missed entirely, depending on the
data in the frame and when the start search logic synchronized on what
it thought was a start bit. This example shows two independent noise
incidents that are specifically positioned within a frame. Of the six cases
of noise during the start-bit search, this case is the only one that causes
incorrect data reception.

Figure 9-15. Start Bit — Noise Case Five

The final start-bit case shown in Figure 9-16 shows a burst of noise in
the middle of the start-bit time. The noise [1] causes two out of three data
samples to be erroneously detected as 1s. The start-bit logic forces this
bit to be detected as a 0 even though the majority of samples RT8, RT9,
and RT10 suggest it should be 1. The majority of all seven samples
taken during the start bit time agree with the forced 0.

Figure 9-16. Start Bit — Noise Case Six

RT
1

RT
1

RT
1

RT
1

RT
1

RT
1

RT
1

RT
2

RT
3

RT
4

RT
5

RT
6

RT
7

01 01 01 11 1 01 01

ACTUAL START BIT

NO START BIT FOUND—SEE TEXT

LSB

RxD PIN

SAMPLES

RT CLOCK
(16X BAUD RATE)

RT CLOCK
STATE

RESET RT

1 1

RT
1

RT
1

RT
1

RT
1

[2]

[1] 1 0 0 0 0 0 0 d d d

RT
1

RT
1

RT
1

RT
1

RT
1

RT
1

RT
1

RT
1

RT
1

RT
1

RT
1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T2

R
T3

R
T4

R
T5

R
T6

R
T7

R
T8

R
T9

R
T1

0

R
T1

1

R
T1

2

R
T1

3

R
T1

4

R
T1

5

R
T1

6

R
T2

R
T3

01 11 11 01 01 01 01

ACTUAL START BIT

PERCEIVED START BIT

LSB

R
T4

RxD PIN

SAMPLES

RT CLOCK
(16X BAUD RATE)

RT CLOCK
STATE

RESET RT

1 1

R
T1

R
T1

R
T1

R
T1

[1]
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 351

Asynchronous Serial Communications Interface
Another advanced feature of the data sampling technique allows the RT
clock to be resynchronized on any valid 1-to-0 transition in a frame. Data
is constantly being sampled and shifted into a 16 x baud-rate shift
register. A 1-to-0 transition is indicated by the pattern (1110d0d0d0),
which corresponds to three logic 1 samples preceding the falling edge
and logic 0 samples at RT1, RT3, RT5, and RT7. (As long as no more
than one of the samples at RT3, RT5, and RT7 was a 1, the falling edge
would be recognized.) This feature does not help a worst-case analysis.
However, this feature improves the probability of proper alignment
between perceived bit times and actual bit times in the data stream, thus
improving the reliability of normal data reception.

After a framing error is detected (provided a break was not detected at
the same time), the three logic-1 samples leading to start-bit qualification
are forced into the high-speed shift register. This procedure is analogous
to pretending the stop bit of the misframed character was really a logic 1.
The forced logic-1 samples are positioned at RT14, RT15, and RT16 of
the perceived stop bit in an attempt to permit normal reception to
proceed. If the samples were not forced to 1s, the subsequent start bit
could be missed. A break is detected when a framing error occurs and
the data character associated with it is all 0s. In the case of a break
detect, the artificial start edge is not forced.

From an understanding of how character alignment is achieved and
where the logic sense of a bit time is sampled, it is possible to calculate
the worst-case baud-rate mismatch that can be tolerated between two
SCI devices. In this worst-case analysis, no 1-to-0 transitions are
assumed to occur within the character to cause realignment. The noise
cases discussed previously are ignored because they do not apply to
normal reception. In the case of baud-rate mismatch, the data sampling
technique may be unable to recover correct data in the presence of
gross noise.
Reference Manual M68HC11 — Rev. 6

352 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Receiver
9.6.2 Worst-Case Baud-Rate Mismatch

Two cases must be considered and each of these cases must be
modified for normal 8-bit data format and optional 9-bit data format. In
the first case, a too-slow transmitting device sends characters to this SCI
receiver. In the second case, a too-fast transmitting device is operating
above the ideal baud rate. When the accumulated bit-time alignment
error causes more than one of the three data samples for the stop bit
time to fall outside the actual stop bit time, an error has occurred. In both
cases, assume the receiver is operating at the ideal baud rate for
reference, which should provide the basis for any worst-case baud-rate
analysis. For most users, the amount of mismatch that can be tolerated
is much more than the amount that is ever likely to be encountered.

Figure 9-17(a) shows a worst-case slow signal on RxD relative to the RT
clock states of the 16× receiver RT clock. The alignment of the falling
edge of start bit [1] in Figure 9-17(a) and [3] in Figure 9-17(b) shows the
uncertainty resulting from the resolution of the RT clock. Only two out of
the three data samples for the stop bit fall within actual stop bit [2].
Majority sampling can still correctly detect the stop-bit value of 1, even if
the MSB had been a 0. Of course, this worst-case analysis is not
considering other errors or noise.

(a) Receive Data Slower Than Receiver Baud Rate

(b) Receive Data Faster Than Receiver Baud Rate

Figure 9-17. Baud-Rate Frequency Tolerance

PERCEIVED START BIT

RxD PIN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10
RECEIVER
RT CLOCK

STATE

[2] STOPMSBSTART

PERCEIVED STOP BIT

[1]

PERCEIVED START BIT

RxD PIN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 6 7 8 9 10
RECEIVER
RT CLOCK

STATE

[4]STOP IDLE OR NEXT CHARACTERSTART

PERCEIVED STOP BIT

[3]
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 353

Asynchronous Serial Communications Interface
For 8-bit data format, the ratio of the frequency of incoming data to the
frequency of the receiver baud-rate clock can be written as:

(9 bit times) ÷ [15/16 + 8(16/16) + 8/16]

The nine bit times are measured from the leading edge of the start bit to
the trailing edge of the MSB (the stop bit was not measured although it
could have been if a different denominator time had been used). The
15/16 is the amount of overlap between the actual start bit and the
perceived start bit. For convenience, multiply everything by 16 to obtain
measurements in terms of RT clock cycles as opposed to baud-rate
clock cycles. The 8(16/16) corresponds to the eight bit times of data
between the perceived start and stop bits. The 8/16 corresponds to the
portion of the perceived stop bit time to the boundary between the actual
MSB and stop bit. This ratio calculates as:

(9 × 16)/(15 + (8 × 16) + 8) = 144/(15 + 128 + 8) = 144/151 = 95.36%

The equivalent calculation for 9-bit data format is:

(10 × 16)/(15 + (9 × 16) + 8) = 160/(15 + 144 + 8) = 160/167 = 95.81%

Figure 9-17(b) can be used in a similar way to derive the calculations for
the fastest serial data rate that can be tolerated. The actual start bit and
the perceived start bit both begin at [3]. In this case, measure the time
for the complete actual frame, which ends between RT clock states 9
and 10 of the perceived stop bit. The calculation for 8-bit data format is:

(10 × 16)/((9 × 16) + 9) = 160/153 = 104.56%

The equivalent calculation for 9-bit data format is:

(11 × 16)/((10 × 16) + 9) = 176/169 = 104.14%

For 8-bit data format, the baud-rate variation that can be tolerated is
about ±4.5 percent; for 9-bit data format, the variation is about
±4 percent. This analysis assumes one of the devices was operating at
the exact baud-rate frequency, and the calculations show how much the
other device could vary from this. One device operating four percent too
slow cannot communicate with another device operating 4 percent too
fast.
Reference Manual M68HC11 — Rev. 6

354 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Receiver
9.6.3 Double-Buffered Operation

The SCI receiver in the M68HC11 is double buffered, which means that
the receiver can have up to two characters in it at any given moment.
One of the characters is in a readable parallel receive data buffer
(SCDR); another could be shifting into the receive serial shift register.
This double-buffered arrangement gives software some time to notice a
received character and read it before the next serial character is
finished. Without double buffering, the transmitting device would be
required to insert delays between transmitted characters to avoid a
receiver overrun. An overrun occurs in a double-buffered M68HC11 if a
serial character is received and is ready to transfer into the parallel RDR
while there is still a previously received character in the RDR. The
transfer could not occur without destroying the previously received
character.

9.6.4 Receive Status Flags and Interrupts

Five status flags are associated with the SCI receiver. RDRF is set and
optionally generates an interrupt request when a character has been
received and transferred into the parallel RDR. The OR flag is set and
optionally generates an interrupt request instead of RDRF (if RDRF was
already set when a new character was ready to be transferred into the
parallel RDR). When an overrun takes place, the new character is lost,
and the character that was in its way in the parallel RDR is undisturbed.
The NF and FE flags provide additional information about the character
in the parallel RDR. Since NF and FE are always accompanied by RDRF
and since RDRF already generates an interrupt request, NF and FE do
not. The last receiver status flag and interrupt source comes from the
IDLE flag. The RxD line is idle if it has constantly been at logic 1 for a full
character time. The IDLE flag is set only after the RxD line has been
busy and becomes idle, which prevents repeated interrupts for the
whole time RxD remains idle.

Status flags are set by the SCI logic in response to specific conditions in
the receiver. These flags can be read (polled) at any time by software.
Three of the flags (RDRF, OR, and IDLE) can also optionally generate
an automatic interrupt request. The RIE is a local enable for both RDRF
and OR. If RIE is set to 1, RDRF and OR generate interrupts whenever
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 355

Asynchronous Serial Communications Interface
either is set to 1. If RIE is 0, RDRF and OR do not generate interrupts,
and the receiver operates in polled mode. ILIE works similarly as a local
enable for the IDLE status flag. When ILIE is set to 1, an interrupt request
is generated whenever IDLE is a 1. When ILIE is 0, the IDLE status flag
does not generate interrupt requests. When the receiver wake-up
function is enabled (RWU = 1), setting the IDLE flag is inhibited.

9.6.5 Receiver Wakeup Operation

The M68HC11 receiver logic hardware also supports a receiver wake-up
function, which is intended for systems having more than one receiver.
With this function, a transmitting device directs messages to an
individual receiver or group of receivers by passing addressing
information as the initial byte(s) of each message. Receivers not
addressed activate the receiver wakeup function, which makes these
receivers dormant for the remainder of the unwanted message and
eliminates any further software overhead to service the remaining
characters of the unwanted message.

The receiver is placed in wakeup mode by writing a 1 to the RWU bit in
the SCCR2 register. While RWU is 1, all of the receiver-related status
flags (RDRF, IDLE, OR, NF, and FE) are inhibited (cannot become set).
Although RWU can be cleared by a software write to SCCR2, to do so
would be unusual. Normally, RWU is set by software and is cleared
automatically with hardware by either idle-line wakeup or address-mark
wakeup.

9.6.5.1 Idle-Line Wakeup

To use this receiver wakeup method in an actual system, a software
addressing scheme is established to allow the transmitting device(s) to
direct messages to individual receivers or groups of receivers. This
addressing scheme is purely a software device and may take any form
as long as all transmitting and receiving devices are programmed to
understand the same scheme. The addressing information is usually the
first frame(s) in a message; therefore, uninterested receivers are
burdened only with these minimum addressing frames. All receivers are
awake (RWU = 0) when each message begins. As soon as a receiver
Reference Manual M68HC11 — Rev. 6

356 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
Baud-Rate Generator
determines that the message is not intended for it, software sets the
RWU bit (RWU = 1), which inhibits further flag setting until the RxD line
goes idle at the end of the message. As soon as an idle line is detected
by receiver logic, hardware automatically clears the RWU bit so that the
first frame of the next message can be received. This method of receiver
wakeup requires a minimum of one idle-line frame time between
messages and no idle time between frames in a message.

9.6.5.2 Address-Mark Wakeup

In this method of receiver wakeup, all serial characters consist of seven
(eight if M = 1) information bits and an MSB, which is used to indicate an
address character (when set to 1 (mark)). The first character of each
message is an addressing character (MSB is 1). All receivers in the
system evaluate this character to determine if the remainder of the
message is directed toward this particular receiver. As soon as a
receiver determines that a message is not intended for it, the receiver
activates the RWU function by setting (with a software write) the RWU
bit. Since setting RWU inhibits receiver-related flags, there is no further
software overhead for the rest of this message. When the next message
begins, its first character will have its MSB set, which automatically
clears the RWU bit and enables normal character reception. The first
character whose MSB is set will also be the first character to be received
after wakeup because RWU gets cleared before the stop bit for that
frame is serially received. This method of wakeup allows messages to
include gaps of idle time, unlike the earlier idle-line method, but there is
an efficiency loss due to the extra bit time per character (address bit)
required in all characters.

9.7 Baud-Rate Generator

This discussion, which provides a more detailed description of the
baud-rate generator, is useful to those users who have an odd crystal
frequency or some other unusual requirement. The usual approach to
selecting a baud rate is to start from a particular crystal frequency and
select one of the 32 available division factors to arrive at a desired baud
rate. If a system uses equipment from other manufacturers (such as a
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 357

Asynchronous Serial Communications Interface
CRT terminal or host computer), a standard baud rate, such as 9600
baud, is used. Many applications include SCI networks that do not have
to communicate with ordinary RS232-type sources. In these cases, any
frequency can be used as long as all of the devices in the network use
the same baud rate — for example, in the automotive industry,
32.768 kbaud has commonly been used. These systems include
separate controllers for various parts of the car and test equipment
interfaces. All of the custom equipment is controlled by the automobile
manufacturer. In this environment, high throughput on the SCI and
maximum bus frequency are more important than a customary baud
rate.

9.7.1 Timing Chain Block Diagram

Figure 9-18 is a block diagram of the SCI baud-rate timing chain. The
crystal frequency is divided by four to get the bus rate PH2 clock. PH2 is
the same frequency as E (but leads E by 90°). The prescale select bits,
SCP1–SCP0, select an initial division factor of 1, 3, 4, or 13 that drives
a series of divide-by-two stages. The rate select bits (SCR2–SCR0)
determine where the RT clock will be tapped off of this divider chain. The
RT clock is 16 times the baud-rate frequency. This 16× baud-rate clock
is finally divided by 16 to get the transmitter baud-rate clock. The actual
baud-rate generator functions like this block diagram although the
implementation is slightly different to overcome potential circuit-delay
problems. (It is important to the overall SCI circuit design to maintain
minimum delays from PH2 to baud rate clock edges.)

9.7.2 Baud Rates versus Crystal Frequency

Table 9-3 is a complete listing of all possible baud rates that can be
achieved for five crystal frequencies. The entries most likely to be of
interest are in bold.
Reference Manual M68HC11 — Rev. 6

358 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Timing Details
9.8 SCI Timing Details

The timing information presented in the following paragraphs is much
more detailed than most users need but will help normal users better
understand the SCI system. For rare applications needing this much
detail, this discussion is an authoritative reference source although it is
not intended to replace guaranteed data-sheet timing information.

Figure 9-18. Baud-Rate Generator Block Diagram

÷3 ÷4 ÷13

OSCILLATOR
AND

CLOCK GENERATOR

(÷4)
XTAL

EXTAL

E

AS

INTERNAL BUS CLOCK (PH2)

1:1

SCP1:SCP0

1:00:10:0

÷2

0:0:0

÷2

0:0:1

÷2

0:1:0

÷2

0:1:1

÷2

1:0:0

÷2

1:0:1

÷2

1:1:0

1:1:1

÷16
SCI

RECEIVE
BAUD RATE

(16X)

SCR2:SCR1:SCR0

SCI
TRANSMIT

BAUD RATE
(1X)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 359

Asynchronous Serial Communications Interface
Table 9-3. Baud Rates by Crystal Frequency, SCP1, SCP0, and SCR2–SCR0

SCP1 SCP0 SCR2 SCR1 SCR0

Crystal Frequency

223 Hz 8 MHz 4.9152 MHz 4 MHz 3.6864 MHz

Baud Rates

0 0 0 0 0 131.072 k 125.000 k 76.80 k 62.50 k 57.60 k

0 0 0 0 1 65.536 k 62.50 k 38.40 k 31.25 k 28.80 k

0 0 0 1 0 32.768 k 31.25 k 19.20 k 15.625 k 14.40 k

0 0 0 1 1 16.384 k 15.625 k 9600 7812.5 7200

0 0 1 0 0 8192 7812.5 4800 3906 3600

0 0 1 0 1 4096 3906 2400 1953 1800

0 0 1 1 0 2048 1953 1200 977 900

0 0 1 1 1 1024 977 600 488 450

0 1 0 0 0 43.691 k 41.666 k 25.60 k 20.833 k 19.20 k

0 1 0 0 1 21.845 k 20.833 k 12.80 k 10.417 k 9600

0 1 0 1 0 10.923 k 10.417 k 6400 5208 4800

0 1 0 1 1 5461 5208 3200 2604 2400

0 1 1 0 0 2731 2604 1600 1302 1200

0 1 1 0 1 1365 1302 800 651 600

0 1 1 1 0 683 651 400 326 300

0 1 1 1 1 341 326 200 163 150

1 0 0 0 0 32.768 k 31.250 k 19.20 k 15.625 k 14.40 k

1 0 0 0 1 16.384 k 15.625 k 9600 7812.5 7200

1 0 0 1 0 8192 7812.5 4800 3906 3600

1 0 0 1 1 4096 3906 2400 1953 1800

1 0 1 0 0 2048 1953 1200 977 900

1 0 1 0 1 1024 977 600 488 450

1 0 1 1 0 512 488 300 244 225

1 0 1 1 1 256 244 150 122 112.5

1 1 0 0 0 10.082 k 9600 (+0.16%) 5908 4800 (+0.16%) 4431

1 1 0 0 1 5041 4800 2954 2400 2215

1 1 0 1 0 2521 2400 1477 1200 1108

1 1 0 1 1 1260 1200 738 600 554

1 1 1 0 0 630 600 369 300 277

1 1 1 0 1 315 300 185 150 138

1 1 1 1 0 158 150 92 75 69

1 1 1 1 1 79 75 46 38 35

2.1 MHz 2 MHz 1.2288 MHz 1 MHz 921.6 kHz

Bus frequency (E clock)
Reference Manual M68HC11 — Rev. 6

360 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Timing Details
9.8.1 Operation as Transmitter Is Enabled

When the transmitter is initially enabled (writing 1 to TE), the SCI logic
overrides DDRD control of the PD1/TxD pin, and an initial preamble
character is sent. This preamble character is 10 (11 if M = 1) bit times of
continuous logic high at the pin. An uncertainty arises because all
transmissions are synchronized to the relatively slow baud-rate clock,
and the relationship of this clock to running software is normally not
known. Figure 9-19 summarizes the timing details related to transmitter
enable.

TE can be written to 1 anytime in the interval from [1] to [3]; it will be
recognized at the falling edge of Tx clock [4]. The rising edge of TE [1] is
too late relative to the falling edge of internal Tx clock [2]. The rising edge
of TE [3] is in time to be recognized at the falling edge of internal Tx clock
[4]. This reflects an uncertainty about the delay from writing TE to 1 and
when the SCI transmitter actually takes control of the TxD pin. The pin
functions as the general-purpose I/O pin (PD1) until [5] where the SCI
transmitter takes over and begins sending the preamble character.

Figure 9-19. Transmitter Enable Timing Details

9.8.2 TDRE and Transfers from SCDR to Transmit Shift Register

To transmit information, data is written to the SCDR, which places data
in the write-only TDR. This parallel buffer register holds the character
until the transmit serial shift register is available. When any previously
queued characters have finished, the data from the parallel TDR is
transferred into the transmit shift register, and a start and stop bit are

SYNCHRONIZATION
UNCERTAINTY

TE

Tx CLOCK

[1]

PIN ACTS AS PD1
GENERAL PURPOSE I/O

FIRST BIT TIME
OF PREAMBLE

TxD PIN

[3]

[2] [4]

[5]
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 361

Asynchronous Serial Communications Interface
added to it. Figure 9-20 shows the case where data was written to the
SCDR some time before the middle of the last bit time of a previous
character. From this figure and a functional understanding of the
transmitter, a user could develop a similar timing diagram for cases
where the transmitter is idle when SCDR is written.

Figure 9-20. Write SCDR to Serial Data Start

A sequence of events begins at the middle of the last bit time of the
previous character frame [1]. The inset of Figure 9-20 shows an
expanded view of this sequence. The rising edge of internal Tx clock [2]
occurs at a falling edge of the internal PH2 clock. At the next falling edge
of PH2 [3], a one-half cycle transfer signal is generated. This internal
pulse causes the data waiting in the parallel TDR to be transferred into
the transmit shift register. TxD pin [5] finishes sending the stop bit from
the previous character even though the next character is already in the
transmit shift register to transmit immediately after the stop bit ends. At

TRANSFER TO
Tx SHIFTER

TxD PIN

Tx CLOCK

[1]

STOP BIT

[3]

[2]

[4]

[5]

TDRE

NEXT
START BIT

TRANSFER TO
Tx SHIFTER

Tx CLOCK

PH2

TDRE

INSET: Expanded Timing Diagram
Reference Manual M68HC11 — Rev. 6

362 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Timing Details
the next falling edge of PH2 [4], the TDRE flag is set to indicate that the
parallel TDR is available for another character.

In a case where no data is waiting in the parallel TDR, the TDRE flag
would already be 1 prior to [4]. No transfer pulse would be generated as
there is nothing available to transfer. Whenever data is finally written to
the parallel TDR, it will transfer almost immediately to the shift register
subject to synchronization delays. All transfers are synchronized to
rising edges of the internal free-running Tx clock signal. Normally, the
relationship between this internal baud-rate clock and running software
is not known.

9.8.3 TC versus Character Completion

The last timing detail for the transmitter involves the end of a
transmission. When the transmitter is disabled by writing TE to 0, any
character in progress finishes its transmission before TC is set and the
TxD pin reverts to the PD1 general-purpose I/O function. Figure 9-21
shows a case where TE is cleared while a character is transmitted.

Some time before completion of a transmit character, TE is written to 0
to disable the SCI transmitter. The transmitter does not relinquish control
of the PD1 pin until the end of the character that is in progress. At the
end of stop bit [1] (the last bit time in the frame), TC is set, and the TxD
pin reverts to the PD1 general-purpose I/O function. The inset, an
expanded view of the end of the stop bit, shows how these events are
related to the PH2 clock. All bit-time boundaries are aligned to falling
edges of the internal Tx clock. A falling edge of the Tx clock occurs at a
falling edge of the PH2 clock.

9.8.4 RDRF Flag Setting versus End of a Received Character

A user is not generally concerned with timing relationships between an
operating program and the serial receive data until a character has been
completely received. After receiver logic detects the stop bit of a serial
character, the character is transferred to the parallel RDR and the RDRF
flag is set to 1. Figure 9-22 shows the details related to receive character
completion.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 363

Asynchronous Serial Communications Interface
Figure 9-21. Ending Details of Transmission

Although the bit-time sampling is performed about the middle of a bit
time, the RDRF flag is not set until the end of the perceived stop bit.
Small differences can exist between the perceived and actual bit-time
boundaries. The inset for Figure 9-22 is expanded to show how the
signals of interest relate to the relatively fast PH2 clock. In reality, bit
times are not aligned with the falling edge of PH2, but perceived bit times
are specifically aligned with the falling edge of PH2. The falling edge of
PH2 [1] at the perceived end of the stop bit sets RDRF [2]. At the same
time, a half-cycle transfer pulse is generated. This half-cycle active-low
pulse [3] causes a received character to be transferred from the Rx
shifter to the parallel RDR.

TxD PIN

Tx CLOCK

[1]

STOP BIT

TC

TxD PIN

TC

PH2

INSET: Expanded Timing Diagram

PIN REVERTS
TO PD1

FUNCTION

Tx CLOCK
Reference Manual M68HC11 — Rev. 6

364 Asynchronous Serial Communications Interface MOTOROLA

Asynchronous Serial Communications Interface
SCI Timing Details
Figure 9-22. RDRF Flag-Setting Details

PERCEIVED RxD

RDRF

[1]

PERCEIVED STOP BIT

PH2

INSET: Expanded Timing Diagram

RDRF

XFER

[2]

[3]XFER

PERCEIVED END
OF STOP BIT
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Asynchronous Serial Communications Interface 365

Asynchronous Serial Communications Interface
Reference Manual M68HC11 — Rev. 6

366 Asynchronous Serial Communications Interface MOTOROLA

Reference Manual — M68HC11

Section 10. Main Timer and Real-Time Interrupt
10.1 Contents

10.2 Introduction .368

10.3 General Description .368
10.3.1 Overall Timer Block Diagram .369
10.3.2 Input-Capture Concept .371
10.3.3 Output-Compare Concept .372

10.4 Free-Running Counter and Prescaler.373
10.4.1 Overall Clock Divider Structure .375
10.4.1.1 Prescaler .378
10.4.1.2 Overflow. .380
10.4.1.3 Counter Bypass (Test Mode) .382
10.4.2 Real-Time Interrupt (RTI) Function 382
10.4.3 Computer Operating Properly (COP)

Watchdog Function .386
10.4.4 Tips for Clearing Timer Flags .387

10.5 Input-Capture Functions .389
10.5.1 Programmable Options .392
10.5.2 Using Input Capture to Measure Period

and Frequency .393
10.5.3 Using Input Capture to Measure Pulse Width 396
10.5.4 Measuring Very Short Time Periods 401
10.5.5 Measuring Long Time Periods

with Input Capture and Overflow401
10.5.6 Establishing a Relationship between Software

and an Event .405
10.5.7 Other Uses for Input-Capture Pins406

10.6 Output-Compare Functions .406
10.6.1 Normal Input/Output Pin Control Using OC5–OC2 412
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 367

Main Timer and Real-Time Interrupt
10.6.2 Advanced Input/Output Pin Control Using OC1415
10.6.2.1 One Output Compare Controlling up to Five Pins416
10.6.2.2 Two Output Compares Controlling One Pin.417
10.6.3 Forced Output Compares. .420

10.7 Timing Details for the Main Timer System421

10.8 Listing of Timer Examples .425

10.2 Introduction

This section describes the main timer system of the MC68HC11A8.
Because the clocking chains associated with the real-time interrupt (RTI)
and computer operating properly (COP) watchdog timer branch off the
main timer counter, these timing functions are also discussed in this
section. All major clock divider chains in the microcontroller unit (MCU)
are illustrated from the oscillator to the serial baud-rate generators,
which helps put the timer counter chain in context with the rest of the
MCU system.

Since the architecture of the main timer is primarily a software-driven
system, several application examples are included throughout this
section. Some examples demonstrate how to measure pulse widths and
frequencies. Other examples demonstrate techniques for controlling
timer output signals. Still other examples depict how output compares
can be used for software timing.

10.3 General Description

This timer system is based on a free-running 16-bit counter with a
4-stage programmable prescaler. A timer overflow function allows
software to extend the timing capability of the system beyond the 16-bit
range of the counter. Three independent input-capture functions are
used to automatically record (latch) the time when a selected transition
is detected at a respective timer input pin. Five output-compare functions
are included for generating output signals or for timing software delays.
Since the input-capture and output-compare functions may not be
familiar to all users, these concepts are explained in greater detail.
Reference Manual M68HC11 — Rev. 6

368 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
General Description
A programmable periodic interrupt circuit called RTI is tapped off of the
main 16-bit timer counter. Software can select one of four rates for the
RTI, which is most commonly used to pace the execution of software
routines.

The COP watchdog function is loosely related to the main timer in that
the clock input to the COP system (E ÷ 215) is tapped off the free-running
counter chain. The clocking structure for this system will be discussed
briefly in this section, but the overall COP system is explained in greater
detail in Section 5. Resets and Interrupts.

The timer subsystem involves more registers and control bits than any
other subsystem on the MCU. Each of the three input-capture functions
has its own 16-bit time capture latch (input-capture register) and each of
the five output-compare functions has its own 16-bit compare register.
All timer functions, including the timer overflow and RTI, have their own
interrupt controls and separate interrupt vectors. Additional control bits
permit software to control the edge(s) that trigger each input-capture
function and the automatic actions that result from output-compare
functions. Although hardwired logic is included to automate many timer
activities, this timer architecture is essentially a software-oriented
system. This structure is easily adaptable to a very wide range of
applications although it is not as efficient as dedicated hardware for
some specific timing applications.

10.3.1 Overall Timer Block Diagram

Figure 10-1 is an overall block diagram of the main timer system. It is
helpful to refer to this figure as the detailed explanations of the various
control registers and bits are discussed in the remainder of this section,
which helps put these details in context with the overall timer system.

The port A pin control block includes logic for timer functions and for
general-purpose input/output (I/O). For pins PA0, PA1, and PA2, this
block contains edge-detection logic as well as control logic that allows
the user to select which edges will trigger an input capture. The digital
level on these pins can be read at any time (read PORTA register) even
if the pin is being used for the input-capture function. Pins PA6–PA3 are
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 369

Main Timer and Real-Time Interrupt
Figure 10-1. Main Timer System Block Diagram

MCU
E CLOCK

PA0/

4

3

5

6

7

8

2

1

BIT 7

BIT 6

BIT 5

BIT 4

BIT 3

BIT 2

BIT 1

BIT 0

PORT A
PIN

OC1I

OC2I

OC3I

OC4I

OC5I

IC1I

IC2I

IC3I

TFLG 1
INTERRUPT

FLAGS

FOC1

FOC2

FOC3

FOC4

FOC5

IC1F

IC2F

IC3F

PA1/

PA2/

16-BIT COMPARATOR

TOC1 (HI) TOC1 (LO)

16-BIT COMPARATOR

TOC2 (HI) TOC2 (LO)

16-BIT COMPARATOR

TOC3 (HI) TOC3 (LO)

16-BIT COMPARATOR

TOC4 (HI) TOC4 (LO)

16-BIT LATCH

TIC1 (HI) TIC2 (LO)

CLK

16-BIT COMPARATOR

TOC5 (HI) TOC4 (LO)

16-BIT FREE RUNNING
COUNTER

TCNT (HI) TCNT (LO)
9

TOI

TOF

INTERRUPT REQUESTS
(FURTHER QUALIFIED

BY I BIT IN CCR)

TAPS FOR RTI,
COP WATCHDOG, AND
PULSE ACCUMULATOR

PRESCALER
DIVIDE BY

1, 4, 8, OR 16

PR1 PR0

16-BIT TIMER BUS

TO PULSE
ACCUMULATOR

TMSK 1
INTERRUPT
ENABLES

CFORC

PORT A
PINS

FORCE
OUTPUT

COMPARES

PA7/
PAI/
OC1

PA6
OC2/
OC1

PA5/
OC3/
OC1

PA4/
OC4/
OC1

PA3/
OC5/
OC1

OC1F

OC2F

OC3F

OC4F

OC5F

CONTROL

16-BIT LATCH

TIC2 (HI) TIC2 (LO)

CLK

16-BIT LATCH

TIC2 (HI) TIC2 (LO)

CLK

=

=

=

=

=

IC1

IC2

IC3

16
-B

IT
 T

IM
ER

 B
U

S

Reference Manual M68HC11 — Rev. 6

370 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
General Description
used for general-purpose output or as output-compare pins. When one
of these pins is being used for an output-compare function, it cannot be
written directly as if it were a general-purpose output. Each of the
output-compare functions (OC5–OC2) is related to one of the port A
output pins. Output compare 1 (OC1) has extra control logic, allowing it
to optionally control any combination of the PA7–PA3 pins. This extra
logic is presented in 10.6.2 Advanced Input/Output Pin Control Using
OC1. The PA7 pin can be used as a general-purpose I/O pin, as an input
to the pulse accumulator, or as an OC1 output pin.

The timer functions of these pins are discussed in detail throughout this
section. In some cases, a user may need more detailed information
about the logic associated with these pins, especially when part of port A
is used for timer I/O and the rest is used for general-purpose I/O. The
best source for such details appears in 7.5.1 Port A, which includes
complete logic diagrams for all of the port A pins.

10.3.2 Input-Capture Concept

The input-capture function is a fundamental element of the timer
architecture of the MC68HC11A8. For the MCU, physical time is
represented by the count in the 16-bit free-running counter. This counter
is the central element in the main timer system. Input-capture functions,
used to record the time at which some external event occurred, are
accomplished by latching the contents of the free-running counter when
a selected edge is detected at the related timer input pin. The time when
the event occurred is saved in the input capture register (16-bit latch);
therefore, although it may take an undetermined variable amount of time
to respond to the event, software can tell exactly when the event
occurred.

By recording the times for successive edges on an incoming signal,
software can determine the period and/or pulse width of the signal. To
measure a period, two successive edges of the same polarity are
captured. To measure a pulse width, two alternate polarity edges are
captured. For example, to measure the pulse width for a high-going
pulse, the user would capture at a rising edge and subtract this time from
the time captured for the subsequent falling edge. When the period or
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 371

Main Timer and Real-Time Interrupt
pulse width is less than a full 16-bit counter overflow period, the
measurement is very straightforward. In practice, software usually has to
keep track of the overflows of the 16-bit counter to extend its range.

Another important use for the input-capture functions is to establish a
time reference. In this case, an input-capture function is used in
conjunction with an output-compare function. For example, if the user
wants to activate an output signal a certain number of clock cycles after
detecting an input event (edge), the input-capture function would be
used to record the time when the edge occurred. A number
corresponding to the desired delay would be added to this captured
value and stored to an output-compare register. Since both input
captures and output compares are referenced to the same 16-bit
counter, the delay can be controlled to the resolution of the free-running
counter independent of software latencies. Details about the
implementation of the input-capture functions as well as more specific
examples of how to use input-capture functions in the MC68HC11A8 are
included in 10.5 Input-Capture Functions.

10.3.3 Output-Compare Concept

The output-compare function is also a fundamental element of the timer
architecture of the MC68HC11A8. For the MCU, physical time is
represented by the count in the 16-bit free-running counter. This counter
is the central element in the main timer system. Output-compare
functions are used to program an action to occur at a specific time (when
this 16-bit counter reaches a specific value). For each of the five
output-compare functions, there is a separate 16-bit compare register
and a dedicated 16-bit comparator. The value in the compare register is
compared to the value of the free-running counter on every bus cycle.
When the compare register matches the counter value, an output is
generated, which sets an output-compare status flag and initiates the
automatic actions for that output-compare function. Optional automatic
actions initiated by an output compare include generation of a hardware
interrupt request and state changes at the related timer output pin(s).

One of the easiest uses of an output-compare function is to produce a
pulse of a specific duration. First, a value corresponding to the leading
Reference Manual M68HC11 — Rev. 6

372 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Free-Running Counter and Prescaler
edge of the pulse is written to the output-compare register. The output
compare is configured to automatically set the corresponding output
either high or low, depending on the polarity of the pulse being produced.
After this compare occurs, the output compare is reprogrammed to
automatically change the output pin back to its inactive level at the next
compare. A value corresponding to the width of the pulse is added to the
original output-compare register value, and this result is written to the
output-compare register. Since the pin-state changes occur
automatically at specific values of the free-running counter, the pulse
width can be controlled accurately to the resolution of the free-running
counter independent of software latencies. By repeating the actions for
generating pulses, an output signal of a specific frequency and duty
cycle can be generated.

Another use of the output-compare function is to generate a specific
delay. For example, to produce a 10-ms delay to time programming of
an EEPROM byte, follow the initial programming steps to the point
where the programming supply has been enabled (EEPGM bit has been
written to 1). Read the current value of the main timer counter and add
a number corresponding to 10 ms (if the count rate is 2 MHz, the value
corresponding to 10 ms would be 20,00010 or $4E20). Write this sum to
the output-compare register so that an interrupt will occur when the
counter gets to this value. In this example, the actual EEPROM
programming time started just before the current time was read from the
counter and ended after responding to the output compare and turning
off EEPGM. The small delays for setting up the output compare and the
latency for responding to the output compare are not considered
because they only make the EEPROM programming time longer by a
few microseconds. A more advanced user of output-compare functions
will learn how to correct for these details, although it is often not
necessary. Details about the implementation of the output-compare
functions and specific examples of how to use output-compare functions
in the MC68HC11A8 are included in 10.6 Output-Compare Functions.

10.4 Free-Running Counter and Prescaler

The central element of the main timer system in the MC68HC11A8 is a
16-bit free-running counter. This counter starts from a count of $0000 as
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 373

Main Timer and Real-Time Interrupt
the MCU is coming out of reset and then counts up continuously. When
the maximum count is reached ($FFFF), the counter rolls over to a count
of $0000, sets an overflow flag, and continues to count up. As long as
the MCU is running in a normal operating mode, there is no way to reset,
change, or interrupt the counting of this counter. This counter may be
read at any time to tell what time it is. All activities of the main timer
system are referenced to this one free-running counter; therefore, all
timer functions have a known relationship to each other.

The timer counter (TCNT) register is meant to be read using a
double-byte read instruction such as load D (LDD) or load X (LDX). The
low-order half of the counter passes through a normally transparent
buffer to the TCNT register. When the low-order half of the counter is
read using a single-byte read instruction, the value returned is simply the
value of the low-order eight bits of the main timer counter. When the
high-order byte of the TCNT register is read, the transparent buffer on
the low-order byte of the TCNT register is inhibited for one bus cycle. In
the case of a double-byte read of TCNT, the high-order byte is accessed
first, which returns the high-order count value, and at the same time
freezes the low-order count value buffer, which is read during the next
bus cycle. This procedure ensures that the two bytes read from TCNT
belong with each other. The count value that is returned on a
double-byte read corresponds to the value of the free-running counter at
the second-to-last cycle of the double-byte read instruction. This and
other subtle timing details related to the main timer are discussed in
10.7 Timing Details for the Main Timer System.

Address: $100E

Read: Bit 15 14 13 12 11 10 9 Bit 8

Write:

Address: $100F

Read: Bit 7 6 5 4 3 2 1 Bit 0

Write:

Figure 10-2. Timer Counter (TCNT)
Reference Manual M68HC11 — Rev. 6

374 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Free-Running Counter and Prescaler
10.4.1 Overall Clock Divider Structure

The following figures, registers, and paragraphs describe the major
clock divider chains for the entire MCU system. The largest chain
includes the 16-bit timer counter and its associated prescaler. Clocks for
the pulse accumulator system, RTI, and COP watchdog branch off the
main timer clocking chain. The alternative to tapping these slower clocks
off the main timer chain would have been to build additional clock divider
chains, which would have used expensive chip area. These taps off the
main timer clocking chain have special circuitry to compensate for the
main timer prescaler so that the clock frequency at these taps is
independent of the prescale factor. These postscaler circuits make it
practical to share portions of the timer clocking chain in a way that still
allows the rates of the various systems to be selected independent of
each other.

A relatively complex block of logic divides the 4× oscillator clock down to
the internal phase 2 (PH2) clocks and the external E clock. The address
strobe (AS) signal for demultiplexing the low-order address from data is
also developed in this first oscillator divider block. Almost everything that
happens inside the MCU is referenced to the internal PH2 clocks rather
than the E clock, which lags 90° behind the internal PH2 clocks. Users
who are familiar with the older MC6800 and MC6801 Families should
note that this phase shift between E and PH2 is different from what they
are used to. From an external point of view, they can still think of bus
cycles as starting and ending on falling edges of E, but they will notice a
big improvement in address and data hold times relative to this edge.

Figure 10-3 shows idealized timing relationships for the clocks and AS
that are developed in the initial oscillator divider block. Since this section
is devoted to the main timer system, these clocks will not be discussed
in any great detail; Figure 10-3 is presented for reference only. For more
information concerning these signals, refer to Section 2. Pins and
Connections and Figure 7-12. Summary of Idealized Port C
Expanded Mode Timing.

The logic associated with the stop power-saving mode also contributes
to the complexity of the initial oscillator divider block. When the stop
mode is exited, the internal clocks resume before the external E clock
starts.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 375

Main Timer and Real-Time Interrupt
The pulse accumulator can be clocked by an external source (event
counting mode) or an internal source (time accumulation mode). The
internal clocking source is an E ÷ 64 rate clock, which is tapped off of the
main timer clocking chain. The pulse accumulator is described in more
detail in Section 11. Pulse Accumulator, but the E ÷ 64 tap is
discussed in this section since it is tapped off the main timer. The pulse
accumulator tap is also used to inhibit write permission to the
time-protected control registers and bits. Certain registers and bits, such
as the timer prescaler control bits in the TMSK2 register, can be written
only within the first 64 E-clock cycles after reset.

Figure 10-3. Timing Summary for Oscillator Divider Signals

The divider chains for the serial peripheral interface (SPI) clock rate and
the serial communications interface (SCI) baud-rate generator are the
last two major clock divider chains in the MCU. The 4,064 bus-cycle
oscillator startup delay at power-up and after stop is derived from the SCI
baud-rate counter. Like the main timer divider chain, this divider is free
running and uninterruptable except by special commands available only
in special test modes.

Figure 10-4, which illustrates all of the major clock divider chains in the
MC68HC11A8, will help the user understand how the timer fits into the
overall MCU system. The main timer counter and its prescaler and
derived clock chains for RTI and COP watchdog are described in more
detail in subsequent paragraphs.

ONE BUS CYCLE

EXTAL

PH2

E

AS

ADDRESS/DATA DATAADDR
Reference Manual M68HC11 — Rev. 6

376 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Free-Running Counter and Prescaler
Figure 10-4. Major Clock Divider Chains in the MC68HC11A8

OSCILLATOR
AND

CLOCK GENERATOR
(÷ 4)

XTAL

EXTAL

÷2

÷2 1:0

÷2 1:1

÷2

÷2

÷2

÷2 0:0

0:1

÷2

÷2

÷2

÷2

÷2

÷2

÷2

÷2

÷2

TIMER
OVERFLOW

TIMER BUS
(16 BITS)

POSTSCALER
PR1:PR0

1:0

1:1

0:0

0:1

POSTSCALER
PR1:PR0

CBYP ÷2 ÷ 2 ÷ 4

0:0
PR1:PR0

0:11:01:1

EXTERNAL BUS CLOCK (E)

ADDRESS STROBE (AS)

PH2

INTERNAL BUS CLOCK (PH2)

÷3 ÷4 ÷13

0:0
SCP1:SCP0

0:1 1:0 1:1

PRESCALER

÷2

÷2 0:0:1

0:0:0

0:1:0

÷2 0:1:1

SCR2:SCR1:SCR0

÷2

÷2 1:0:1

1:0:0

1:1:0

÷2

÷2 1:1:1

÷4

÷2 0:1

0:0

1:0

÷2 1:1

SPR1:SPR0

÷2

÷ 2

÷ 2 0:1

0:0

1:0

÷ 2 1:1

RTR1:RTR0

0:1

1:0

÷ 4 1:1

÷ 4

÷ 4

0:0

CLEAR
COP

TIMER

SYSTEM
RESET

CR1:CR0

÷16 SCI
RECEIVE

BAUD RATE
(16X)

SCI
TRANSMIT

BAUD RATE
(1X)

SPI
BIT RATE

REAL TIME
INTERRUPT

TO PULSE
ACCUMULATOR

(E ÷ 64)

S

R

Q

Q

FF1

S
R

Q
Q

FF2

FORCE
COP

RESET

ALWAYS

ALWAYS
E÷ 215

ALWAYS
E÷ 213

CBYP

E ÷ 26
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 377

Main Timer and Real-Time Interrupt
10.4.1.1 Prescaler

A programmable prescaler allows the user to select one of four clocking
rates to drive the 16-bit main timer counter. This choice allows the
programmer to make a trade-off between timer resolution and timer
range. The default fastest rate causes the main timer counter to clock at
the E-clock rate, which results in a timer resolution of 500 ns and a timer
range of 32.77 ms between overflows (for E = 2 MHz). The slowest rate
(largest prescale factor) causes the main timer counter to clock at an
E ÷ 16 rate, which results in timer resolution of 8 µs and a timer range of
524.3 ms between overflows (for E = 2 MHz).

The timer range is important because the software needed for timing
functions is more complex if timer overflows must be considered. If time
periods are known to be less than the time between successive
overflows, then the overflows can be ignored, and time periods are
calculated using simple 16-bit arithmetic instructions (even if an overflow
occurs within the timed period). The overflow from 16-bit arithmetic
instructions behaves just like an overflow from the 16-bit counter. To
illustrate this point, if the timer counter is near its maximum count
($FFF0) and an output compare is desired in 10010 cycles, add $FFF0
plus $0064 (modulo $FFFF) to get $0054 (in base 10 modulo 65,536,
that would be 65,520 + 100 = 84). Then write this result ($0054) to an
output-compare register. In 100 cycles, the timer counter will have
overflowed and counted up to $0054 where the output compare will
occur. When overflow has to be considered, timing calculations become
much more complicated.

Another factor to consider in selecting the prescaler rate is power
consumption. Since CMOS power consumption is directly proportional to
its frequency of operation, power is saved by reducing frequency. The
amount of logic driven by the prescaled timer clock is fairly small
compared to the amount of logic driven by the PH2 clock, but some
savings will still result from selecting a slower count rate.

The user should consider resolution needed and the longest time period
needed (or the length of the longest pulse needed). As an example,
consider measuring periods between 10 ms and 100 ms. For an E-clock
frequency of 2 MHz, a prescale division factor of 4 would result in a
timing range of 131.1 ms; therefore, overflows could be ignored in
Reference Manual M68HC11 — Rev. 6

378 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Free-Running Counter and Prescaler
calculations. Since the resolution would be 2 µs, an error of one count
would represent an error of 0.02 percent of the shortest expected pulse
(10 ms). For most applications, this accuracy is more than required.

When software has to handle overflows, the latency and execution time
of the overflow service routine can become a factor in the overall
accuracy of timer output functions. For example, consider the case
where an output compare coincidentally occurs shortly after a timer
overflow. In the most straightforward approach to generating pulses that
are longer than the range of the timer counter, the output compare is not
rescheduled until after a certain number of overflows. If the output
compare occurs on a very low counter value (shortly after an overflow),
the value could pass by while the overflow routine is being executed.
Since the desired time for the output compare has already passed, the
output compare is forced rather than being scheduled. Because this
forced compare is subject to software latencies rather than being strictly
referenced to the timer counter, an error will occur in the timing of the
generated output signal. These errors can be avoided by careful
software treatment; however, this example demonstrates some of the
costs of using an unnecessarily small prescaler value.

Figure 10-5 and the following paragraphs explain the prescaler select
bits, PR1 and PR0, which are in the timer mask register 2 (TMSK2). The
other bits in this register are not related to the timer prescaler.

PR1–PR0 — Timer Prescaler Select Bits

These two bits select the prescale rate for the main 16-bit free-running
timer system. Table 10-1 shows the relationship between the
prescale factor and the value of these control bits. A prescale factor
of one corresponds to an E ÷ 1 rate for the main timer; whereas, a

Address: $1024 — Timer Mask Register 2 (TMSK2)

Bit 7 6 5 4 3 2 1 Bit 0

Read:
TOI RTII PAOVI PAII 0 0 PR1 PR0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 10-5. Prescaler Select Bits (PR1 and PR0)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 379

Main Timer and Real-Time Interrupt
prescale factor of 16 corresponds to a timer count rate of E ÷ 16. In
normal modes, this prescale rate can be changed only once within the
first 64 bus cycles after reset, and the resulting count rate stays in
effect until the next reset.

10.4.1.2 Overflow

In cases where periods greater than the range of the timer counter have
to be measured or produced, the timer overflow must be used, which is
similar to measuring times greater than 60 seconds by using the
seconds display of a digital clock. The minute and hour displays can be
thought of as software counters, which extend the range of the seconds
counter. Each time the seconds counter overflows (goes from 59 to 0),
the minutes counter is incremented. If a period less than 60 seconds is
desired, add (modulo 60) the desired number of seconds to the starting
time to get the ending time.

In the MC68HC11A8, the timer overflow flag (TOF) status bit is set each
time the timer counter overflows from $FFFF to $0000. This bit can
optionally generate an automatic interrupt request each time it is set by
setting the timer overflow interrupt (TOI) enable bit in the timer mask
register 2 (TMSK2). Software must acknowledge that it has seen the
overflow condition by clearing the TOF status indicator. The free-running
counter continues to run even if the TOF status indicator is not cleared.
If overflow indications are not important to a particular application, they
may be ignored.

Table 10-1. Crystal Frequency versus PR1 and PR0 Values

PR1 PR0
Prescale
Factor

Crystal Frequency

223 Hz 8 MHz 4 MHz

One Count (Resolution)/Overflow (Range)

0 0 1 477 ns/31.25 ms 500 ns/32.77 ms 1 µs/65.54 ms

1 0 4 191 µs/125 ms 2 µs/131.1 ms 4 µs/262.1 ms

1 0 8 3.81 µs/250 ms 4 µs/262.1 ms 8 µs/524.3 ms

1 1 16 7.63 µs/0.5 s 8 µs/524.3 ms 16 µs/1.049 s

2.1 MHz 2 MHz 1 MHz

Bus Frequency (E Clock)
Reference Manual M68HC11 — Rev. 6

380 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Free-Running Counter and Prescaler
Figure 10-6, Figure 10-7, and the following paragraphs describe the
TOF status bit and the TOI interrupt enable. The other bits in these
registers are not associated with the timer overflow.

TOI — Timer Overflow Interrupt Enable Bit
TOF —Timer Overflow Flag

The TOF status bit is automatically set to 1 each time the free-running
16-bit counter rolls over from $FFFF to $0000. This status bit is
cleared by writing to the TFLG2 register with a 1 in the corresponding
data bit position (bit 7). The TOI control bit allows the user to configure
the timer overflow for polled or interrupt-driven operation but does not
affect the setting or clearing of the TOF bit. When TOI is 0, timer
overflow interrupts are inhibited, and the timer overflow is operating in
a polled mode. In this mode, the TOF bit must be polled (read) by user
software to determine when an overflow has occurred. When the TOI
control bit is 1, a hardware interrupt request is generated whenever
the TOF bit is set to 1. Before leaving the interrupt service routine,
software must clear the TOF bit by writing to the TFLG2 register (see
10.4.4 Tips for Clearing Timer Flags).

Address: $1024 — Timer Mask Register 2 (TMSK2)

Bit 7 6 5 4 3 2 1 Bit 0

Read:
TOI RTII PAOVI PAII

0 0
PR1 PR0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 10-6. Timer Overflow Interrupt Enable Bit (TOI)

Address: $1025 — Timer Flag Register 2 (TFLG2)

Bit 7 6 5 4 3 2 1 Bit 0

Read: TOF
RTIF PAOVF PAIF

0 0 0 0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 10-7. Timer Overflow Flag Bit (TOF)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 381

Main Timer and Real-Time Interrupt
10.4.1.3 Counter Bypass (Test Mode)

In special modes of operation (test and bootstrap), is a counter bypass
function simplifies testing of the main timer functions. This function is
activated by writing a 1 to the counter bypass (CBYP) control bit in the
TEST1 control register, which can be written only in the special modes.
When CBYP is 1, the main timer counter is reconfigured so that the
prescaler is bypassed and the upper and lower halves of the 16-bit
counter are simultaneously driven by the internal PH2 clock. This
dramatically reduces testing time for the main timer.

The functions that are tapped off of the main timer would have erroneous
timing while the CBYP function is enabled. Since this configuration is
only possible in special test modes, it does not interfere with any use of
the systems in normal modes.

10.4.2 Real-Time Interrupt (RTI) Function

The RTI function can be used to generate hardware interrupts at a fixed
periodic rate. A common software practice is to organize the routines
that compose the software for an application into a sequence of major
subroutine calls. The length of time required to execute all of the routines
is a variable, which depends on how much each routine had to do, but
the worst-case time to execute the entire sequence of routines should be
known. After completing a pass through all the routines, software enters
a delay mode until a time reference signal is detected. Upon detecting
this signal, a jump is performed to the top of the sequence, and all the
subroutines are again executed in sequence. By knowing the time
between successive time reference signals, a routine can measure real
time by noting the number of times it is executed and multiplying by the
time between successive time reference signals (in this case, the RTI
period).

In the MC68HC11A8, the RTI system can be used to provide this
periodic time reference signal. To accommodate the needs of a variety
of applications, four different rates are available for the RTI signal. These
rates are a function of the MCU oscillator frequency and the value of two
software-accessible control bits (RTR1 and RTR0). Although the rate
Reference Manual M68HC11 — Rev. 6

382 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Free-Running Counter and Prescaler
can be changed at any time, it is typically established shortly after reset
and left alone.

The clock source for the RTI function is a free-running clock that cannot
be stopped or interrupted. This clock causes the time between
successive RTI timeouts to be a constant, which is independent of the
software latencies associated with flag clearing and service. Thus, an
RTI period starts from the previous RTI timeout, not from when RTIF is
cleared.

The most common problem users encounter with the RTI system is that
they forget to clear RTIF after it is recognized. If the flag is not cleared
by a specific software write to the TFLG2 register, it will already be
pending the next time it is checked. If the system is being used in an
interrupt-driven mode, the interrupt will be requested and serviced
immediately after the return-from-interrupt (RTI) instruction is executed
at the end of the RTI service routine. This sequence results in a system
lockup where the RTI service routine is executed continuously to the
exclusion of all else. The only way out of this infinite loop is a system
reset. If the RTI system is operating in a polled mode, the main routine
sequence will operate correctly the first time and wait until RTIF is set the
first time. As soon as RTIF is set, the jump is executed back to the top of
the sequence as expected. The routines will be executed the second
time and software should wait for the end of the next RTI period, but,
since RTIF is still set, software thinks the RTI period has already expired.
The result will be that the main sequence is repeated too quickly.

Figure 10-8, Figure 10-9, and the following paragraphs explain the RTI
flag and RTI enable. The other bits in these registers are not related to
the RTI system.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 383

Main Timer and Real-Time Interrupt
RTII — Real-Time Interrupt Enable Bit
RTIF — Real-Time Interrupt Flag

The RTIF status bit is set to 1 automatically at the end of every RTI
period. This status bit is cleared by writing to the TFLG2 register with
a 1 in the corresponding data bit position (bit 6). The RTII control bit
allows the user to configure the RTI system for polled or
interrupt-driven operation but does not affect the setting or clearing of
RTIF. When RTII is 0, interrupts are inhibited, and the RTI system is
operating in a polled mode. In this mode, the RTIF bit must be polled
(sampled) by user software to determine when an RTI period has
elapsed. When the RTII control bit is 1, a hardware interrupt request
is generated each time RTIF is set to 1. Before leaving the interrupt
service routine, software must clear RTIF by writing to the TFLG2
register (see 10.4.4 Tips for Clearing Timer Flags).

Address: $1024 — Timer Mask Register 2 (TMSK2)

Bit 7 6 5 4 3 2 1 Bit 0

Read:
TOI RTII PAOVI PAII

0 0
PR1 PR0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 10-8. Real-Time Interrupt Enable Bit (RTII)

Address: $1025 — Timer Flag Register 2 (TFLG2)

Bit 7 6 5 4 3 2 1 Bit 0

Read: TOF RTIF PAOVF PAIF 0 0 0 0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 10-9. Real-Time Interrupt Flag (RTIF)
Reference Manual M68HC11 — Rev. 6

384 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Free-Running Counter and Prescaler
Figure 10-10 and the following paragraphs explain the RTI rate select
bits in the pulse accumulator control register (PACTL). The other bits in
this register are not related to the RTI system.

RTR1 and RTR0 — Real-Time Interrupt Rate Select Bits

These two bits determine the rate at which interrupts will be requested

by the RTI system. The RTI system is driven by an E ÷ 213 rate clock
compensated so that it is independent of the timer prescaler. These
two control bits select an additional division factor. Table 10-2 shows
the RTI rates that result for various combinations of crystal frequency
and RTI rate-select control bit values. RTI is set to its fastest rate by
default out of reset and may be changed at any time.

Address: $1026 — Pulse Accumulator Control Register (PACTL)

Bit 7 6 5 4 3 2 1 Bit 0

Read:
DDRA7 PAEN PAMOD PEDGE

0 0
RTR1 RTR0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 10-10. Real-Time Interrupt Rate Select Bits (RTR1 and RTR0)

Table 10-2. RTI Rates versus RTR1 and RTR0
for Various Crystal Frequencies

RTR1 RTR0 E ÷ 213

Divided By

Crystal Frequency

223 Hz 8 MHz 4 MHz

Nominal RTI Rate

0 0 1 3.91 ms 4.10 ms 8.19 ms

0 1 2 7.81 ms 8.19 ms 16.38 ms

1 0 4 15.62 ms 16.38 ms 32.77 ms

1 1 8 31.25 ms 32.77 ms 65.54 ms

2.1 MHz 2 MHz 1 MHz

Bus frequency (E clock)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 385

Main Timer and Real-Time Interrupt
10.4.3 Computer Operating Properly (COP) Watchdog Function

The COP watchdog function is only superficially related to the main timer
system. The clocking chain for the watchdog function is tapped off of the
main timer divider chain. Figure 10-4 illustrates how the COP clock is
derived from the main timer clocking chain. Although the COP clocking
chain is discussed briefly, the COP system is explained in greater detail
in Section 5. Resets and Interrupts.

The counter stages up to the E ÷ 215 tap have no reset input; whereas,
the divider stages after this tap are reset each time the COP clearing
sequence is executed (see Figure 10-4). This structure determines the
uncertainty of the COP timeout period because software has no practical
way of knowing when the first clocking edge will appear at the E ÷ 215
tap relative to the COP clearing sequence. For a bus frequency of 2 MHz
(E), the first clock can appear at the E ÷ 215 tap anywhere between ~0
to 16.4 ms after a COP clearing sequence. This tolerance or uncertainty
depends on the bus frequency (E) but does not vary with respect to the
rate selects (CR1 and CR0).

Figure 10-11 and the following paragraphs explain the COP timer rate
select bits located in the options control register (OPTION). The other
bits in this register are not related to the main timer system or the COP
system.

CR1 and CR0 — COP Timer Rate Select Bits

The MCU internal E clock is first divided by 215 before it enters the
COP watchdog system. The CR1 and CR0 control bits regulate a
further scaling factor for the watchdog timer as shown in Table 10-3.
The columns at the right of the table show the resulting watchdog

Address: $1039 — Options Control Register (OPTION)

Bit 7 6 5 4 3 2 1 Bit 0

Read:
ADPU CSEL IRQE DLY CME

0
CR1 CR0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 10-11. COP Timer Rate Select Bits (CR1 and CR0)
Reference Manual M68HC11 — Rev. 6

386 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Free-Running Counter and Prescaler
timeout periods for three typical oscillator frequencies. After reset, the
timeout period is configured for the shortest timeout period by default.
In normal operating modes, these bits can be written only once, and
that write must be within 64 bus cycles after reset.

10.4.4 Tips for Clearing Timer Flags

The most common method of clearing a status flag bit in the timer flag
registers is to load an accumulator with a mask that has a 1 in the bit(s)
corresponding to the flag(s) to be cleared; then write this value to TFLG1
or TFLG2. A bit clear (BCLR) instruction can also be used to clear a flag
in TFLG1 or TFLG2. The mask, which is supplied with the BCLR
instruction, should have 0s in the bit positions corresponding to the flags
to be cleared and 1s in all other bits. To clear the TOF flag, execute
BCLR TFLG2 with a mask of %01111111. The BCLR instruction will
read TFLG2, AND it with the inverse of the supplied mask (%10000000
in this case), and write the result back to TFLG2. The condition of the
other flags in the register is not important, even if they become set in the
middle of the BCLR instruction, because the write cycle of the instruction
will write 0s to all bits except those corresponding to flags that are to be
cleared. Writing a 0 to a bit corresponding to a flag that is set does not
disturb the flag.

It is not appropriate to use the bit set (BSET) instruction to clear flags in
the timer flag registers because this could inadvertently clear one or
more of the other flags in the register. Again, consider the case of

Table 10-3. COP Timeout versus CR1 and CR0 Values

CR1 CR0 E ÷ 215

Divided By

Crystal Frequency

223 Hz 8 MHz 4 MHz

Nominal Timeout

0 0 1 15.625 ms 16.384 ms 32.768 ms

0 1 4 62.5 ms 65.536 ms 131.07 ms

1 0 16 250 ms 262.14 ms 524.29 ms

1 1 64 1 s 1.049 s 2.1 s

2.1 MHz 2 MHz 1 MHz

Bus frequency (E clock)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 387

Main Timer and Real-Time Interrupt
clearing the TOF bit. Suppose RTIF is set after the TOF interrupt is
recognized but before the BSET instruction is started. The BSET
instruction is a read-modify-write instruction that reads the operand, ORs
this with a mask having 1s in the bit(s) to be set, and writes the resulting
value back to the operand address. Using this instruction on TFLG1 or
TFLG2 will clear all flags that are set at the time the operand (in this
case, the TFLG2 register) is read.

Many instruction sequences can be used to clear timer flags. In general,
each sequence takes a different number of bytes of object code and a
different number of cycles of execution time. The best sequence
depends on a number of factors, including (but not limited to) whether
the user wants minimum execution time or minimum program memory
space. In many cases, the subtle differences in program size and
execution time are unimportant, and any of the sequences shown would
be equally acceptable. Some sequences require registers to be in the
direct addressing mode memory space ($0000–$00FF), which is not
practical in many applications. Since other sequences use indexed
addressing, their efficiency will depend on whether the index register
already points to the register space (extra instructions and time are
required if the index register has to be changed). Table 10-4 illustrates
seven different instruction sequences that could be used to clear the
TOF status bit in TFLG2.

Table 10-4. Instruction Sequences to Clear TOF

Instruction
Sequence

Opcode Operand(s)
Address

Mode
Bytes Cycles

Total Sequence

Bytes Cycles

1
LDAA
STAA

#$80
<TFLG2

(IMM)
(DIR)

2
2

2
3 4 5

2 BCLR <TFLG2 $7F (DIR) 3 6 3 6

3
LDAA
STAA

#$80
TFLG2

(IMM)
(EXT)

2
3

2
4 5 6

4
LDAA
STAA

#$80
TFLG2,X

(IMM)
(IND,X)

2
2

2
4 4 6

5 BCLR TFLG2,X $7F (IND,X) 3 7 3 7

6
LDAA
STAA

#$80
TFLG2,Y

(IMM)
(IND,Y)

2
3

2
5 5 7

7 BCLR TFLG2,Y $7F (IND,Y) 4 8 4 8
Reference Manual M68HC11 — Rev. 6

388 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Input-Capture Functions
10.5 Input-Capture Functions

Each input-capture function includes a 16-bit latch, input edge-detection
logic, and interrupt generation logic. The 16-bit latch captures the current
value of the free-running counter when a selected edge is detected at
the corresponding timer input pin. The edge-detection logic includes
control bits so that user software can select the edge polarity that will be
recognized. Each of the three input-capture functions can be
independently configured to detect rising edges only, falling edges only,
or any edge (rising or falling). The interrupt generation logic includes a
status flag, which indicates that an edge has been detected, and a local
interrupt enable bit, which determines whether the corresponding
input-capture function will generate a hardware interrupt request. If the
interrupt request is inhibited, the input capture is operating in polled
mode where software must read the status flag to recognize that an edge
was detected.

Input-capture edges are generally asynchronous to the internal timer
counter, which is clocked relative to the PH2 clock. These asynchronous
capture requests are then synchronized to PH2 so that the actual
latching will occur on the opposite half cycle of PH2 from when the timer
counter is being incremented. This synchronization process introduces
a delay from when the actual edge occurs to when the counter value is
latched. In almost all cases, this very short delay should be ignored.
When the time between two edges is being measured, both edges are
subject to the same delay; therefore, these delays will offset each other.
When an input capture is being used in conjunction with an output
compare, there will be a similar delay between the actual compare point
and when the output pin actually changes state. When a prescale factor
other than 1 is being used, the capture delay is smaller than the
uncertainty due to timer resolution. Detailed information about timer
system delays is given in 10.7 Timing Details for the Main Timer
System.

The central element of each input-capture function is the input-capture
latch, which can be read by software as a pair of 8-bit registers (see
Figure 10-12). The TICx registers are not affected by reset and cannot
be written by software. When an edge has been detected and
synchronized, the 16-bit free-running counter value is transferred into
the input-capture register pair as a single 16-bit parallel transfer.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 389

Main Timer and Real-Time Interrupt
Timer-counter value captures and timer-counter incrementing occur on
opposite half cycles of the PH2 clock so that the count value is stable
whenever a capture occurs. The input-capture functions operate
independently of each other, and all three functions can capture the
same 16-bit count value if the input edges are all detected within the
same timer count cycle.

Address: $1010 — Timer Interrupt Capture 1 Register (TIC1) High

Bit 7 6 5 4 3 2 1 Bit 0

Read: Bit 15 14 13 12 11 10 9 Bit 8

Write:

Address: $1011 — Timer Interrupt Capture 1 Register (TIC1) Low

Bit 7 6 5 4 3 2 1 Bit 0

Read: Bit 7 6 5 4 3 2 1 Bit 0

Write:

Address: $1012 — Timer Interrupt Capture 2 Register (TIC2) High

Bit 7 6 5 4 3 2 1 Bit 0

Read: Bit 15 14 13 12 11 10 9 Bit 8

Write:

Address: $1013 — Timer Interrupt Capture 2 Register (TIC2) Low

Bit 7 6 5 4 3 2 1 Bit 0

Read: Bit 7 6 5 4 3 2 1 Bit 0

Write:

Address: $1014 — Timer Interrupt Capture 3 Register (TIC3) High

Bit 7 6 5 4 3 2 1 Bit 0

Read: Bit 15 14 13 12 11 10 9 Bit 8

Write:

Address: $1015 — Timer Interrupt Capture 3 Register (TIC3) Low

Bit 7 6 5 4 3 2 1 Bit 0

Read: Bit 7 6 5 4 3 2 1 Bit 0

Write:

Figure 10-12. Input-Capture Registers
Reference Manual M68HC11 — Rev. 6

390 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Input-Capture Functions
A read of the high-order byte of an input-capture register pair inhibits a
new capture transfer for one bus cycle. As long as a double-byte read
instruction such as load D (LDD) is used to read input-capture values,
the user is assured that the two bytes belong with each other. If a new
input-capture occurs so that a transfer would have occurred immediately
after the high-byte read, it will be delayed for one more cycle but will not
be lost.

The latching action of an input-capture function occurs every time a
selected edge is detected on the corresponding timer input pin (even if
the corresponding input-capture flag is already set). This means that the
value read from the input-capture register corresponds to the most
recent edge at the pin, which may not be the edge that caused the
input-capture flag to be set. In a few applications, there could be a
number of closely spaced edges (for instance, an unfiltered bouncing
switch contact). In cases where these extra captures are undesirable,
software can write to the edge-select control bits to inhibit further
captures until after the current capture has been handled.

Figure 10-13, Figure 10-14, and the following paragraphs explain the
input-capture status flags and the local interrupt enable control bits for
the input-capture functions.

Address: $1022 — Timer Interrupt Mask 1 Register (TMSK1)

Bit 7 6 5 4 3 2 1 Bit 0

Read:
OC1I OC2I OC3I OC4I OC5I IC1I IC2I IC3I

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 10-13. Input Capture Interrupt Enable Bits (ICxI)

Address: $1023 — Timer Interrupt Flag 1 Register (TFLG1)

Bit 7 6 5 4 3 2 1 Bit 0

Read: OC1F OC2F OC3F OC4F OC5F IC1F IC2F IC3F

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 10-14. Input Capture Flags (ICxF)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 391

Main Timer and Real-Time Interrupt
ICxI — Input Capture Interrupt Enable Bits (x = 1, 2, or 3)
ICxF — Input Capture Flags (x = 1, 2, or 3)

The ICxF status bit is set to 1 automatically each time a selected edge
is detected at the corresponding input-capture pin. This status bit is
cleared by writing to the TFLG1 register with a 1 in the corresponding
data bit position. The ICxI control bit allows the user to configure each
input-capture function for polled or interrupt-driven operation but does
not affect the setting or clearing of the corresponding ICxF bit. When
ICxI is 0, the corresponding input-capture interrupt is inhibited, and
the input capture is operating in a polled mode. In this mode, the ICxF
bit must be polled (read) by user software to determine when an edge
has been detected. When the ICxI control bit is 1, a hardware interrupt
request is generated whenever the corresponding ICxF bit is set to 1.
Before leaving the interrupt service routine, software must clear the
ICxF bit by writing to the TFLG1 register (see 10.4.4 Tips for
Clearing Timer Flags).

10.5.1 Programmable Options

The user can program each input-capture function to detect a particular
edge polarity on the corresponding timer input pin. A pair of control bits
(EDGxB and EDGxA) in the timer control register 2 (TCTL2) are used to
select the edge(s) detected by each input-capture function.

EDGxB and EDGxA — Input Capture Edge Control Bits (x = 1, 2, or 3)

These pairs of bits determine which edge(s) the input-capture
functions will be sensitive to. These bit pairs are encoded as shown
in Table 10-5.

Address: $1021

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0
EDG1B EDG1A EDG2B EDG2A EDG3B EDG3A

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 10-15. Timer Control Register (TCTL2)
Reference Manual M68HC11 — Rev. 6

392 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Input-Capture Functions
10.5.2 Using Input Capture to Measure Period and Frequency

Timer Examples 10-1(a) and 10-1(b) show how to measure a period
using an input-capture function. A complete assembly listing for all timer
section examples is shown in 10.8 Listing of Timer Examples. Timer
Example 10-1(a) measures the time between two successive rising
edges on an input signal at the PA2/IC1 pin. This program uses the
input-capture function in polled mode for demonstration because it is a
little simpler than the interrupt-driven operation. Other examples in this
section will demonstrate interrupt-driven operation, which is often a more
flexible approach because the MCU can be performing other tasks while
waiting for a particular timer event.

Example 10-1(b) changes the period obtained from Example 10-1(a) into
a frequency to display the results in a more familiar form. Also, support
routines are provided to convert hexadecimal numbers into decimal
numbers. When running the example, a period is measured at the IC1
pin and displayed as a decimal period (in E cycles) and as a frequency
(in Hz). After printing the result, the program returns to its start and
repeats continuously. Depending on the display-device speed and the
signal at IC1, a screen can be filled with results very quickly. To stop, just
press the reset button on the EVB board.

Figure 10-16 shows the critical instructions in the measurement of the
period of the signal at the PA2/IC1 pin. The numbers in square brackets
in the listings indicate the number of MCU E cycles needed to execute
each instruction. This information is used in the timing analysis
presented in Figure 10-17.

Table 10-5. EDGxB and EDGxA Encoding

EDGxB EDGxA Configuration

0 0 Capture disabled

0 1 Capture on rising edges only

1 0 Capture on falling edges only

1 1 Capture on any edge (rising or falling)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 393

Main Timer and Real-Time Interrupt
 * Ready to detect first rising edge
c00e 1f 23 04 fc [7] BRCLRTFLG1,X$04 *Loop here until edge

 * First edge detected
c012 ec 10 [5] LDD TIC1,X Read time of first edge
c014 fd d0 0d [5] STD FRSTE Save first capture value
c017 86 04 [2] LDAA #$04
c019 a7 23 [4] STAA TFLG1,X Clear IC1F before next edge

 * Ready to capture time of second edge
c01b 1f 23 04 fc [7] BRCLR TFLG1,X$04 * Loop here until edge

 * Second edge detected
c01f ec 10 [5] LDD TIC1,X Read time of second edge
c021 b3 d0 0d [6] SUBD FRSTE 2nd - 1st -> D
c024 fd d0 0f [5] STD PERC Save result (period in cycles)

Figure 10-16. Measuring a Period with Input Capture

Figure 10-17. Timing Analysis for Example 10-1

The timing analysis for Example 10-1 is shown in Figure 10-17, which is
very detailed to show exactly what occurs in an input capture. Software
instructions are used to read the first captured value, to prepare for the
second capture, and to reset the input-capture flag. These instructions
require a finite amount of time. If the period of the signal being measured
is too short, the second edge can come before the program is ready for
it. This period will determine the highest frequency that can be measured
with this example program. If the signal period being measured is longer
than the range of the 16-bit timer counter, then two periods, which are
exactly one overflow time apart, are not distinguishable. Since this
program does not consider overflows, this period will determine the
lowest frequency that can be measured with this program. These
limitations are program limits, and, as shown in other examples, the

BEST CASE MINIMUM PERIOD (20 CYCLES)

E

IC1
PIN

BRCLR TFLG1,X $04 * LDAA
#$04

LDD TIC1,XBRCLR TFLG1,X $04 * STD FRSTE STAA
TFLG1,X

BRCLR TFLG1,X $04 *

[1] [2] [3] [4] [5]

WORST CASE MINIMUM PERIOD (27 CYCLES)
Reference Manual M68HC11 — Rev. 6

394 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Input-Capture Functions
input-capture functions can be used to measure much shorter or much
longer periods.

As shown in Example 10-1(a), the CPU repeats the BRCLR instruction
continuously, waiting for the first rising edge. Since the edge is
asynchronous to the program execution, where the edge will occur
relative to this program is uncertain. This uncertainty leads to a
best-case and a worst-case minimum period that can be measured by
this program. The worst case arises if the edge is detected too late to be
seen by the BRCLR instruction at [1]. The best case arises when the
edge is detected in time to be seen by the BRCLR instruction at [2]. From
the cycle-by-cycle description of the BRCLR instruction, the read of the
operand (TFLG1 register in this case) is shown to occur in the third cycle
of the instruction. The captured value is read during the last two cycles
of the LDD instruction at [3], and the IC1F status flag is cleared during
the last cycle of the STAA TFLG1,X instruction at [4]. Although a new
capture could occur between [3] and [4], it would be cleared by the STAA
at [4] and would not be recognized by the program. The earliest place
the second edge could occur and be properly handled is during the cycle
after the status flag clear instruction [4].

This timing analysis is based on a detailed knowledge of timer logic and
instruction timing. Instruction timing tells which cycle within the
instruction actually reads or writes a register. Instruction details can be
found in Appendix A. Instruction Set Details. Detailed information
concerning timer captures is given in 10.7 Timing Details for the Main
Timer System. For most applications, it is not necessary to study the
timing in this much detail, but at least one detailed example should be
studied.

Example 10-1(b), which converts the period from Example 10-1(a) into
frequency, is more of a demonstration of FDIV and XGDX than anything
else. In a real application, the user would normally work with the period
value rather than converting it to a frequency. Some shortcuts were
taken since the results were not that critical. For example, the partial
sums were truncated rather than rounding or extending the precision of
the calculations. Although these shortcuts lead to small errors in the
results, these errors were not important, considering the resolution of the
measurements. To measure the frequency of an incoming signal, a user
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 395

Main Timer and Real-Time Interrupt
could accumulate the time of many cycles of the signal and calculate an
average period, which would yield much finer resolution than the
single-cycle measurement taken in Example 10-1.

After working with the timer and pulse accumulator for a while, a good
exercise might be to develop a way to measure the signal frequency to
five digits of accuracy. The following discussion presents a proposed
technique that could be tried, although it has not been proven. First,
connect the signal to the pulse accumulator input and to an input-capture
input. Capture the time of a first edge and start the pulse accumulator at
a count of 256 minus 200. While waiting for 199 cycles of the incoming
signal, monitor timer overflows, like Example 10-3 does, because 200
cycles of the signal are very likely to take longer than one timer overflow.
When the pulse accumulator has counted 199 cycles of the signal, clear
the input-capture flag and wait for a capture of the time of the 200th
cycle. From the number of overflows and the difference between the final
capture value and the first capture value, the user can determine the
period of 200 cycles of the incoming signal. Finally, convert this into
frequency. The accuracy is basically one E cycle in 200 cycles of the
signal, which corresponds to about ±1 Hz at 20 kHz, and the accuracy
improves for lower frequencies. For very low frequencies, it is not
necessary to measure many periods to get the accuracy. Try to include
a preliminary trial measurement to decide how many cycles should be
measured to get the needed accuracy (auto ranging).

10.5.3 Using Input Capture to Measure Pulse Width

Timer Example 10-2 shows how to measure a pulse width with an input
capture, which is almost the same as measuring a period, except that the
input-capture edge sensitivity must be reconfigured between the capture
of the first edge and the second edge. Since this particular program
measures the period of a high-going pulse, the input capture is first
configured to capture on a rising edge at the input. After detecting the
first edge, the input capture is reconfigured to detect a falling edge.

Since this program is interrupt driven, it must have an interrupt service
routine, which is automatically called as a result of an interrupt, an
initialization portion, and a mainline program portion. Since this example
Reference Manual M68HC11 — Rev. 6

396 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Input-Capture Functions
is only demonstrating the input-capture function, the mainline program
will be a trivial 2-instruction loop that repeats until a pulse has been
measured. In a practical application, the mainline portion would be
everything other than initialization and interrupt service routines.

This example is intended to run on an M68HC11EVB evaluation board;
thus, the interrupt vector will be treated in a somewhat unusual way. The
actual interrupt vector for input capture 1 is at $FFEE and $FFEF, which
is in the monitor program EPROM on the EVB board. To allow use of
these vectors, they have been initialized to point at specific RAM
locations called pseudo-vectors. To use a vector, put a jump (JMP)
instruction to the address of the interrupt service routine at the RAM
pseudo-vector locations ($00E8, E9, and EA for timer input-capture 1).

In a normal application, the address of the service routine would be hard
coded into the double-byte vector location rather than writing a jump
instruction into RAM during initialization. For additional information about
interrupts, see Section 5. Resets and Interrupts.

The partial listing shown in Figure 10-18 depicts the important parts of
the pulse-width measurement illustrated in Example 10-2.

A detailed timing analysis for Example 10-2 is shown in Figure 10-19.
Unlike the previous example, interrupt latencies must be considered to
determine the minimum pulse width that can be measured by this
program. The instructions in the main program do not affect the
minimum measurable pulse except that the execution time of the longest
instruction executing at the time of the interrupt determines the longest
possible latency from an input-capture edge to when it can be serviced.
The interrupt operation does not begin until the currently executing
instruction is completed. If the pulse width being measured is too short,
the second edge can come before the program is ready for it. This time
will determine the shortest pulse that can be measured with this example
program. As in the previous example, if the signal being measured is
longer than the range of the 16-bit timer counter, then two pulse widths,
which were different by an exact multiple of the overflow period, are not
distinguishable. Since this program does not consider overflows, the
overflow period of the 16-bit timer will determine the longest pulse that
can be measured correctly with this program. These limitations are
program limits and, as shown in other examples, the input-capture
functions can be used to measure much shorter or much longer times.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 397

Main Timer and Real-Time Interrupt
*** initialization - (see full listing) ***

c09c ce 10 00 [3] PWTOP LDX #REGBAS Point to register block
c09f 86 10 [2] LDAA #%00010000 EDG1B:EDG1A = 0:1,
c0a1 a7 21 [4] STAA TCTL2,X IC1 rising edges
c0a3 86 ff [2] LDAA #$FF
c0a5 b7 d0 06 [4] STAA IC1MOD FF-off; 0-1st edge; 1-last edge
c0a8 7f d0 05 [6] CLR IC1DUN Signal pulse not done
c0ab 1d 23 fb [7] BCLR TFLG1,X $FB clear IC1F (if any)
c0ae 1c 22 04 [7] BSET TMSK1,X $04 enable IC1 interrupts
c0b1 03 [2] CLI Enable Interrupts

c0b2 b6 d0 05 [4] WAITL2LDAA IC1DUN Sets after pulse done
c0b5 27 fb [3] BEQ WAITL2 Tight loop till pulse has been timed
c0b7 0f [2] SEI Pulse done, disable interrupts

*** display results - (see full listing) ***

 * SV2IC1 - Input Capture 1 service routine
 *
 * Called first when a rising edge is detected and again when
 * a falling edge is detected.

c0d8 ce 10 00 [3] SV2IC1LDX #REGBAS point at top of register block
c0db 7c d0 06 [6] INC IC1MOD $FF->0 at 1st edge; 0->1 at 2nd
c0de 26 0d [3] BNE NO1ST2 if not 0, this is trailing edge

 * Process leading edge of pulse
c0e0 ec 10 [5] LDD TIC1,X read time of first edge
c0e2 fd d0 0d [5] STD FRSTE save till next capture
 * Reconfigure IC1 for trailing falling edge
c0e5 1d 21 30 [7] BCLR TCTL2,X $30 EDG1B:EDG1A->0:0
c0e8 1c 21 20 [7] BSET TCTL2,X $20 EDG1B:EDG1A->1:0
c0eb 20 10 [3] BRA OU2IC1 done processing first edge

 * Process trailing edge of pulse
c0ed ec 10 [5] NO1ST2LDD TIC1,X get time of trailing edge
c0ef b3 d0 0d [6] SUBD FRSTE time of last minus time of first
c0f2 fd d0 15 [5] STD HPW update result
c0f5 1d 21 30 [7] BCLR TCTL2,X $30 disable IC1
c0f8 86 01 [2] LDAA #1
c0fa b7 d0 05 [4] STAA IC1DUN signal pulse measured
c0fd 1d 23 fb [7] OU2IC1BCLR TFLG1,X $FB clear IC1F
c100 3b [12] RTI ** Return from IC1 service **

Figure 10-18. Measuring a Pulse Width with Input Capture
Reference Manual M68HC11 — Rev. 6

398 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Input-Capture Functions
(a) Leading Edge Latency

(b) Process First Edge, Earliest Opportunity for Second Edge

Figure 10-19. Timing Analysis for Example 10-2

As shown in Example 10-2, the CPU repeats the WAITL2 loop
continuously, waiting for the first rising edge. Since the edge is
asynchronous to the program execution, where the edge will occur
relative to this program is uncertain. This uncertainty leads to a
best-case and a worst-case minimum period that can be measured by
this program. The worst case arises when the first edge is not
recognized before the end of the BEQ WAITL2 instruction at [1]. In this
worst case, the LDAA IC1DUN instruction would have to finish, which
causes an extra 4-cycle delay. The best case arises when the edge is
recognized just before the end of an instruction in the main program. In
this best case, interrupt processing starts almost immediately. A more
obscure possibility would exist if there were other lower priority interrupts
enabled in the system. In that case, a lower priority interrupt could initiate
stacking leading to the interrupt. The priority resolution to decide which
vector to take does not occur until the stacking operations are finished.
If the IC1 edge is recognized before the condition code register (CCR) is
stacked, it will be serviced rather than the lower priority interrupt that

BEST CASE MINIMUM RESPONSE (17 CYCLES)

E

IC1
PIN

LDX
#REGBAS

INTERRUPT RESPONSE

[1]

[2]

[4] [5]

WORST CASE MINIMUM RESPONSE (21 CYCLES)

BEQ
WAITL2

LDAA
IC1DUN

LDAA
IC1DUN

BEQ
WAITL2

VECTPC
L H L H L H B A CC

Y Y X X

EVB
PSEUDO
VECTOR

JMP
SV2IC1

INC IC1MOD BNE
NO1ST2

[3]

(12 CYCLES)

(34 CYCLES)

E

IC1
PIN

BRA
OU2IC1

BCLR TCTL2,X $30STD FRSTE

[6]

[7]

[8]

[9]LDD TIC1,X BSET TCTL2,X $20 BCLR TFLG1,X $FB
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 399

Main Timer and Real-Time Interrupt
started the interrupt process. In this unusual case, the best-case
minimum response could be much shorter. This case does not arise in
Example 10-2 because no lower priority interrupts are enabled.

The response time in Figure 10-19 is slightly longer than it would be for
a normal program because of the pseudo-vector mechanism in the EVB
board. The JMP instruction at [3] is not shown in Example 10-2 because
it is actually constructed by program instructions during the initialization
portion of this example program. This indirect vectoring is done in the
EVB board because the vectors are located in the monitor EPROM and
are not accessible to an EVB user. To allow use of the interrupts in an
EVB, the vectors were purposely pointed at specific RAM locations
called pseudo-vectors. A JMP instruction would be stored in these RAM
locations, which points to the start of the interrupt service routine. In a
normal application, the starting address of the interrupt service routine
would be hard coded into the vector locations at the top of memory.
When an interrupt occurs, the user would vector directly to the service
routine rather than having to execute the extra JMP instruction.

The BNE NO1ST2 instruction at [5] will not branch during processing of
the leading edge of the pulse being measured. Execution continues with
the LDD instruction in Figure 10-19(b). The BCLR; BSET sequence at
[6] is not as fast as a simple LDAA #, STAA TCTL2, but the longer
sequence was chosen because it does not disturb the other bits in the
register.

The earliest place the second edge could occur and be properly handled
is during the cycle after the status flag clear instruction [7], which occurs
before returning from the interrupt service routine after processing the
leading edge of the pulse. If the second edge came before this time, it
would still be captured, but the IC1F flag would be cleared by the
clearing instruction intended to clear the flag from the first edge. The
minimum pulse width that can be measured by this program would be
the time from [1] or [2] through [7]. This time is a total of 63 to 67 cycles
or about 34 µs.

This timing analysis is based on this specific example running by itself in
the EVB board and is not intended to show the smallest pulse that can
be measured. Since no other tasks are being performed in this example,
the interrupt latency is somewhat shorter than it would be in a realistic
Reference Manual M68HC11 — Rev. 6

400 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Input-Capture Functions
system. In a normal system, the user would not have to work through the
EVB’s pseudo-vector mechanism and would save three cycles of latency
time (because of the JMP in the pseudo-vector locations). Conversely,
in a real system, the user could get this interrupt just as a multiply
instruction had started; thus, there could be a wait of up to 10 cycles
(MUL takes 10 cycles) for that instruction to finish before servicing the
input-capture interrupt. Worse yet, the user may have just started
servicing another interrupt source when the edge was recognized; thus,
the input capture would have to wait for that interrupt service routine to
be completed before it could be serviced. A much more detailed
discussion of interrupts is presented in Section 5. Resets and
Interrupts. The shortest pulse the user would be able to measure in a
realistic system will be a few hundred cycles rather than the few dozen
cycles shown in this isolated example.

This timing analysis is based on a detailed knowledge of timer logic and
instruction timing. Instruction timing tells which cycle within the
instruction actually reads or writes a register. Instruction details can be
found in Appendix A. Instruction Set Details. Detailed information
concerning timer captures is given in 10.7 Timing Details for the Main
Timer System. Detailed operation of the interrupt mechanism is
presented in Section 5. Resets and Interrupts.

10.5.4 Measuring Very Short Time Periods

Since the MC68HC11A8 has three input-capture functions, it is
theoretically possible to measure pulse widths as short as one timer
count by connecting the signal to two input-capture pins. One input
capture is configured to detect the leading edge of the pulse; whereas,
the other is configured to detect the trailing edge. Although this function
is possible, it is not commonly used.

10.5.5 Measuring Long Time Periods with Input Capture and Overflow

There are at least two ways to measure time periods that are longer than
the range of the 16-bit free-running timer. The following paragraphs
discuss an example based on input capture and counting timer
overflows, which is accurate to ± 1 timer count (500 ns in this case). If
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 401

Main Timer and Real-Time Interrupt
the user were measuring times in the seconds range to a resolution of ±
100 ms, a software approach might be easier than the
input-capture/overflow method. In the software approach, the user sets
up a real-time loop structure where the main program is executed once
each tenth of a second. Other real-time periods could be used, but a
tenth of a second is easier. The user starts a software counter when the
signal first changes, increments the count once each time through the
main loop, and stops the count at the end of a period. This method is
very simple and yields an accuracy of ±100 ms, which is quite
reasonable for many applications.

To measure a time greater than the range of the 16-bit main timer
counter with an input capture, timer overflows must be considered. A
program is presented that extends the range of the timer to 24 bits by
keeping track of overflows in an 8-bit software counter. By increasing the
size of this software counter, the user could measure even longer
periods. At 2-MHz bus speed and a divide-by-one prescale factor, 24
bits allow the user to measure periods up to about 8.38 s.

The most difficult part of this procedure is deciding whether to count an
overflow when a capture occurs very close to a timer overflow. Given
some assumptions, the user can tell if the capture happened before or
after the overflow by looking at the MSB of the captured value. Once the
user knows which happened first, the case can be treated accordingly.

First, assume that all timer overflow conditions (TOF = 1) will be handled
before the MSB of the free-running counter becomes set again (that is,
in less than half the time between successive overflows). If TOF and
ICxF are both set and the captured value has a 1 in its MSB, then the
user knows the capture occurred before the overflow. Conversely, if TOF
and ICxF are both set and the captured value is positive (MSB = 0), then
the capture occurred after the overflow. Servicing an overflow interrupt
takes less than 15 ms, even in a busy system.

Second, assume that if a capture and an overflow happen in the vicinity
of each other, the input capture will be serviced before the overflow.
Vicinity means so close together that both are pending when the user
reaches the input-capture service routine. The input-capture routine
checks for a close overflow; therefore, if an overflow occurred just after
the leading edge or just before a trailing edge of a measurement period,
Reference Manual M68HC11 — Rev. 6

402 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Input-Capture Functions
it can be included correctly. This assumption is needed to avoid the
possibility of missing an overflow that should have been counted or to
avoid counting one that occurred just outside the period being
measured. Again, this condition is easy to service because timer
overflow is a lower priority interrupt than input captures. The only way an
overflow can be serviced before an input capture that occurred in the
vicinity is if the overflow happened enough before the input capture for
the stacking and vector selection to be completed before the capture is
detected. Such a case, which is no different from having the overflow
occur long before the capture, is treated correctly without taking any
special action.

Example 10-3 uses input capture and counts overflows in an 8-bit
software counter to allow measurement of periods between about 70
and 16,777,215 cycles (35 RS to 8.38 s). The program runs on an EVB
board and displays results on the EVB terminal display. The important
parts of the program are shown in Figure 10-20; see 10.8 Listing of
Timer Examples for a complete listing.

Example 10-3 was specifically structured to allow easy expansion to
other functions. For example, two more period measurement functions
can be added by adding a few instructions to the overflow service routine
and basically duplicating the IC1 service routine for IC2 and IC3. The
following lines of code are from Example 10-3:

c191 a6 25 [4] LDAA TFLG2,X Check for TOF in MSB
c193 2a 23 [3] BPL OU3IC1 If no overflow, you’re done
c195 7a d0 07 [6] DEC OVCNT1 This TOF shouldn’t count

 * decrement OVCNT1 to -1, TOF svc routine will inc to 0

This example demonstrates the idea of indicating the TOF should not
count rather than directly clearing it to make it not count. Although the
TOF is not needed for this period measurement function, it may be
needed for some other function that might be in progress. Although the
three input-capture functions and the five output-compare functions are
effectively independent of each other, they are all specifically related to
the single, 16-bit, free-running counter and thus share the overflow
mechanism. The capture and compare functions can independently
monitor the overflow, but they should not directly interfere with its
operation.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 403

Main Timer and Real-Time Interrupt
*** initialization — (see full listing) ***

c114 ce 10 00 [3] PER24T LDX #REGBAS Point to register block
c117 86 10 [2] LDAA #%00010000 EDG1B:EDGIA - 0:1
c119 a7 21 [4] STAA TCTL2,X IC1 rising edges
c11b 86 ff [2] LDAA #$FF
c11d b7 d0 06 [4] STAA IC1MOD FF-IC1 off; 0-1st edge; 1-last
c120 7f d0 05 [6] CLR IC1DUN Signal period not done
c123 1d 23 fb [7] BCLR TFLG1,X $FB clear IC1F (if any)
c126 1d 25 7f [7] BCLR TFLG2,X $7F clear TOF (if any)
c129 1c 22 04 [7] BSET TMSK1,X $04 enable IC1 interrupts
c12c 1c 24 80 [7] BSET TMSK2,X $80 enable TOF interrupts
c12f 0e [2] CLI Enable Interrupts

c130 b6 d0 05 [4] WAITL3 LDAA IC1DUN Sets after period done
c133 27 fb [3] BEQ WAITL3 Loop till period has been timed
c135 0f [2] SEI Done, disable interrupts

** display results — (see full listing) ***

 * SV3TOF - Timer Overflow service routine
 *
 * Called whenever any timer overflow is detected.
 * If the IC1 period measurement is in progress
 * (IC1MOD positive) then the overflow counter
 * (upper 8-bits of period) is incremented.

c171 7d d0 06 [6] SV3TOF TST IC1MOD 0 or 1, IC1 active; count TOFs
c174 2b 03 [3] BMI OU3TOF if neg, IC1 not active
c176 7c d0 07 [6] INC OVCNT1 increment IC1 overflow count
c179 86 80 [2] OU3TOF LDAA #$80
c17b b7 10 25 [4] STAA REGBAS+TFLG2 Clear overflow flag
c17e 3b [12] RTI ** Return from TOF service **

 * SV3IC1 - Input Capture 1 service routine
 *
 * Called at start and end of a period being measured

c17f ce 10 00 [3] SV3IC1 LDX #REGBAS point at top of register block
c182 7c d0 06 [6] INC IC1MOD $FF->O at 1st edge; 0->1 at 2nd
c185 26 13 [3] BNE NO1ST3 if not 0, this is second edge

 * Process first edge of period
c187 7f d0 07 [6] CLR OVCNT1 Zero the overflow count
c18a ec 10 [5] LDD TIC1,X Read time of first edge
c18c fd d0 08 [5] STD RES1 Save till next capture
c18f 2b 27 [3] BMI OU3IC1 If IC was before any overflow
c191 a6 25 [4] LDAA TFLG2,X Check for TOF in MSB
c193 2a 23 [3] BPL OU3IC1 If no overflow, you’re done
c195 7a d0 07 [6] DEC OVCNT1 This TOF shouldn’t count
 * decrement OVCNT1 to -1, TOF svc routine will inc to 0
c198 20 1e [3] BRA OU3IC1 Done processing first edge

Figure 10-20. Measuring Long Periods with Input Capture and TOF (Sheet 1 of 2)
Reference Manual M68HC11 — Rev. 6

404 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Input-Capture Functions
 * Process second edge of period
c19a ec 10 [5] NO1ST3 LDD TIC1,X Get time of second edge
c19c 2b 07 [3] BMI ARNOV1 If MSB-1, skip TOF check
c19e 6d 25 [6] TST TFLG2,X Check for overflow
c1a0 2a 03 [3] BPL ARNOV1 If no TOF, skip increment
c1a2 7c d0 07 [6] INC OVCNT1 TOF was before edge so count it
c1a5 b3 d0 08 [6] ARNOV1 SUBD RES1 (Time of last) - (time of 1st)
c1a8 fd d0 08 [5] STD RES1 Update result
c1ab 24 03 [3] BCC RES1OK Check for borrow
c1ad 7a d0 07 [6] DEC OVCNT1 If borrow, fix overflow count
c1b0 1d 21 30 [7] RES1OK BCLR TCTL2,X $30 Disable IC1
c1b3 86 01 [2] LDAA #1
c1b5 b7 d0 05 [4] STAA lC1DUN Signal period measured
c1b8 1d 23 fb [7] OU3IC1 BCLR TFLG1,X $FB Clear IC1F
c1bb 3b [12] RTI ** Return from IC1 service

Figure 10-20. Measuring Long Periods with Input Capture and TOF (Sheet 2 of 2)

10.5.6 Establishing a Relationship between Software and an Event

In common microcontroller unit (MCU) applications, a software program
must generate various output control signals as a result of various input
signals or events. A software program monitors the input signals and
produces output signals as needed. Sometimes it is important for the
output signals to be in some strict timing relationship to an input signal.
A problem, which is called latency, arises when software requires some
time to notice and respond to an input event. In many MCU systems, this
latency determines the worst-case uncertainty in the ability of software
to know exactly when an event occurred and the accuracy of the timing
relationship between the event and a resulting output signal. In the
MC68HC11A8, the timer system allows much more accurate control of
the relationship between events and resulting output signals.

The critical input signal will drive one of the input-capture pins of the
MCU. When an event (edge) occurs on this pin, the input-capture
function automatically latches the current value of the free-running timer
counter. Even though software takes a variable amount of time to
respond to the event, the time at which it took place was latched
(recorded), thus eliminating uncertainty due to software latency. Now
software can read the timer counter to determine the present timing
relationship between the program and when the event occurred. Better
yet, an output-compare function can be set up to produce the desired
output signal action at another specific value of the timer counter (for
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 405

Main Timer and Real-Time Interrupt
instance, at another specific time relative to the input event). Since both
the input event and the output action are referenced to the same timer
counter, the resolution of the counter determines the worst-case
uncertainty in the timing relationship. Although software latency still
determines the minimum controllable delay between the input event and
the output action, it no longer influences the accuracy of the timing
relationship.

10.5.7 Other Uses for Input-Capture Pins

At any time, software can read the logic levels on the pins used for
input-capture functions (even if the input-capture function is enabled).
These three pins may also be used as flexible interrupt input pins when
the timer input-capture functions are not needed. Each of these pins can
be used as a separate edge-triggered interrupt with its own interrupt
vector. The significant edge(s) can be individually selected by the control
bits in the TCTL2 register. An important advantage of these interrupt
pins over the IRQ pin is that these interrupts can be enabled/disabled
with the local interrupt enable bits (ICxI) in the TMSK1 register. Another
advantage of these pins is that there is a readable status indicator (ICxF)
so software can tell if an interrupt request is pending from these sources.
Software can also choose to clear any pending interrupt from one of
these sources before enabling it. As with all maskable interrupt sources,
interrupts can be disabled from these pins by setting the I bit in the CCR
in the CPU.

10.6 Output-Compare Functions

Rather than being specifically configured to perform a single function,
such as variable-frequency square-wave generation, the
output-compare functions in the MC68HC11A8 are configured and
controlled by software-accessible control registers and bits so they can
perform a wide variety of tasks. Although some software overhead exists
for some common timing functions, such as pulse-width modulation
(PWM) signals, these software-controlled output-compare functions are
easily adaptable to a much wider range of applications than dedicated
timer functions would be.
Reference Manual M68HC11 — Rev. 6

406 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Output-Compare Functions
There are five output-compare functions in the MC68HC11A8. Each
output compare has a 16-bit compare register and a dedicated 16-bit
comparator. The comparator checks the free-running timer value against
the 16-bit compare register during every timer count. When a match is
detected, a status flag is set (OCxF), an interrupt is optionally generated,
and timer output pins are automatically changed according to
software-accessible control bits. Since each of the five interrupts is
separately maskable with a local interrupt enable control bit and since
each has its own interrupt vector, there is no need to perform any
software polling to determine the cause of an interrupt.

Four of the output compares operate much like the output compares on
the M6801 Family of MCUs except that the M68HC11 has more
output-compare channels and has slightly more control over the timer
output pins. The fifth output compare on the MC68HC11A8 (OC1) can
control any combination of the five timer output pins even if another
output compare is already controlling the pin(s). The value and
implications of this feature will be explained in greater detail.

For OC5–OC2, a pair of control bits in the timer control register 1
(TCTL1) control the automatic action that will occur at the respective
timer output pin when an output compare happens (16-bit OCx register
matches the free-running timer). The control bit pairs (OMx, OLx, x = 2,
3, 4, or 5) are encoded to allow the four following possibilities: 1) timer
output compare causes no pin change; 2) toggle pin on each successful
compare; 3) force pin to 0 on a successful compare; and 4) force pin to
1 on a successful compare. Each of the output compares (OC5–OC2) is
associated with a separate port A pin, and the automatic pin actions for
each output compare are independently controlled.

For OC1, the automatic pin actions are controlled by the OC1 mask
(OC1M) and OC1 data (OC1D) registers. The OC1M register specifies
which port A pins are to be affected by OC1. The OC1D register
specifies the data to be sent to the affected port A pin(s) when there is a
successful OC1 match. If OC1 and another output compare are both
controlling the same pin and if both attempt to change the pin
simultaneously, OC1 will have priority.

Output pins for the five output-compare functions can be used as
general-purpose output pins having nothing to do with the timer system
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 407

Main Timer and Real-Time Interrupt
or as timer outputs directly controlled by the timer system. When one of
these pins is configured for timer use, it cannot be written directly from
software as a general-purpose port A output line. If the user needs to
change a timer output pin without waiting for an actual output compare,
the force output-compare function can be used. This function may be
used to initialize the state of timer outputs or to force an output change
before it was scheduled to occur by the associated output-compare
register. Another way to change the state of a timer output pin is to
temporarily disengage the timer by changing the timer control registers.
This method requires a more detailed understanding of the actual port A
pin logic. Detailed schematics of the port A output pins are shown and
explained in Section 7. Parallel Input/Output.

The 16-bit output-compare register for each output-compare function
can be read or written by software as a pair of 8-bit registers. The TOCx
registers are forced to $FFFF during reset.

Address: $1016 — Timer Output Compare 1 Register (TOC1) High

Bit 7 6 5 4 3 2 1 Bit 0

Read: Bit 15 14 13 12 11 10 9 Bit 8

Write:

Address: $1017 — Timer Output Compare 1 Register (TOC1) Low

Bit 7 6 5 4 3 2 1 Bit 0

Read: Bit 7 6 5 4 3 2 1 Bit 0

Write:

Address: $1018 — Timer Output Compare 2 Register (TOC2) High

Bit 7 6 5 4 3 2 1 Bit 0

Read: Bit 15 14 13 12 11 10 9 Bit 8

Write:

Address: $1019 — Timer Output Compare 2 Register (TOC2) Low

Bit 7 6 5 4 3 2 1 Bit 0

Read: Bit 7 6 5 4 3 2 1 Bit 0

Write:

Figure 10-21. Output-Capture Registers
Reference Manual M68HC11 — Rev. 6

408 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Output-Compare Functions
A write to the high-order byte of an output-compare register pair inhibits
the output-compare function for one bus cycle. This inhibit prevents
erroneous comparisons using a 16-bit value whose high-order half was
just written and whose low-order half still contains data from the previous
output-compare value. Consider the case where an output-compare
register is $FF0F and the user tries to write it to $00FF as the

Address: $101A — Timer Output Compare 3 Register (TOC3) High

Bit 7 6 5 4 3 2 1 Bit 0

Read: Bit 15 14 13 12 11 10 9 Bit 8

Write:

Address: $101B — Timer Output Compare 3 Register (TOC3) Low

Bit 7 6 5 4 3 2 1 Bit 0

Read: Bit 7 6 5 4 3 2 1 Bit 0

Write:

Address: $101C — Timer Output Compare 4 Register (TOC4) High

Bit 7 6 5 4 3 2 1 Bit 0

Read: Bit 15 14 13 12 11 10 9 Bit 8

Write:

Address: $101D — Timer Output Compare 4 Register (TOC4) Low

Bit 7 6 5 4 3 2 1 Bit 0

Read: Bit 7 6 5 4 3 2 1 Bit 0

Write:

Address: $101E — Timer Output Compare 5 Register (TOC5) High

Bit 7 6 5 4 3 2 1 Bit 0

Read: Bit 15 14 13 12 11 10 9 Bit 8

Write:

Address: $101F — Timer Output Compare 5 Register (TOC5) Low

Bit 7 6 5 4 3 2 1 Bit 0

Read: Bit 7 6 5 4 3 2 1 Bit 0

Write:

Figure 10-21. Output-Capture Registers (Continued)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 409

Main Timer and Real-Time Interrupt
free-running timer is counting through the value $000F. Without the
1-cycle inhibit after writing to the upper half of the output-compare
register, an erroneous compare could occur at $000F. As long as the
user utilizes a double-byte write instruction, such as store D (STD), to
update output-compare registers, this 1-cycle inhibit mechanism will
ensure that no unintentional compares will result after the write of the
high-order half but before the write of the low-order half.

As long as an output-compare function is configured to change a pin
state or to generate an interrupt, the action occurs every time the
timer-count value matches the compare register (not just the first time a
match occurs). To generate a single interrupt after some delay, read the
TCNT register, add a value corresponding to the desired delay, write that
value to the output-compare register, and write the appropriate controls
to enable the interrupt. When the interrupt occurs, write the appropriate
controls to disable the interrupt, or another interrupt will occur as soon
as the free-running timer rolls around to the output-compare register
value again.

Figure 10-22, Figure 10-23, and the following paragraphs explain the
output-compare status flags and the local interrupt enable control bits for
the output-compare functions.

Address: $1022 — Timer Interrupt Mask 1 Register (TMSK1)

Bit 7 6 5 4 3 2 1 Bit 0

Read:
OC1I OC2I OC3I OC4I OC5I IC1I IC2I IC3I

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 10-22. Output Capture Interrupt Enable Bits (OCxI)

Address: $1023 — Timer Interrupt Flag 1 Register (TFLG1)

Bit 7 6 5 4 3 2 1 Bit 0

Read: OC1F OC2F OC3F OC4F OC5F IC1F IC2F IC3F

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 10-23. Output Capture Flags (OCxF)
Reference Manual M68HC11 — Rev. 6

410 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Output-Compare Functions
OCxI — Output Compare Interrupt Enable Bits (x = 1, 2, 3, 4, or 5)
OCxF — Output Compare Flags (x = 1, 2, 3, 4, or 5)

The OCxF status bit is automatically set to 1 each time the
corresponding output-compare register matches the free-running
timer. This status bit is cleared by writing to the TFLG1 register with
a 1 in the corresponding data bit position. The OCxI control bit allows
the user to configure each output-compare function for polled or
interrupt-driven operation but does not affect the setting or clearing of
the corresponding OCxF bit. When OCxl is 0, the corresponding
output-compare interrupt is inhibited, and the output compare is
operating in a polled mode. In this mode, the OCxF bit must be polled
(read) by user software to determine when a match has been
detected. When the OCxl control bit is 1, a hardware interrupt request
is generated whenever the corresponding OCxF bit is set to 1. Before
leaving the interrupt service routine, software must clear the OCxF bit
by writing to the TFLG1 register (see 10.4.4 Tips for Clearing Timer
Flags).

Example 10-4 is a very simple program that uses an output compare to
control a software time delay. For simplicity, this example uses polled
mode and does not cause any automatic pin changes as the result of the
output compare. The program generates a 10-ms delay like the user
might utilize to time an EEPROM program or erase operation; however,
instead of actually programming EEPROM, it will just produce a pulse on
an output port pin so the results can be studied on an oscilloscope.
Output-compare functions can also cause automatic pin changes and
generate interrupt requests (see Examples 10-5 and 10-6). A partial
listing of the program for Example 10-4 is shown in Figure 10-24.

The example in Figure 10-24 is only intended to show the most basic
use of an output-compare function. It is not intended to be an especially
efficient way to delay a fixed period of time. The following three
instructions are a simpler way to delay if no other tasks are to be
performed during the delay:

c1d9 18 ce 16 4e [4] LDY #5710 5710*(7~/loop)= about 20mS
c1dd 18 09 [4]DLP1 DEY Top of software delay loop
c1df 26 fc [3] BNE DLP1 Loop ’till Y is zero
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 411

Main Timer and Real-Time Interrupt
c1bc ce 10 00 [3] INZA LDX #REGBAS Point to register block
c1bf 86 80 [2] LDAA #$80
c1c1 a7 23 [4] STAA TFLG1,X Clear any pending OC1F flag
c1c3 6f 04 [6] CLR PORTB,X Initialize port B to zeros

c1c5 86 01 [2] TOP4A LDAA #1 Top of Ex10-4a
c1c7 a7 04 [4] STAA PORTB,X Set LSB of port B

 * This is where the 10mS delay part actually starts
 *
c1c9 ec 0e [5] LDD TCNT,X Get current timer count
c1cb c3 4e 20 [4] ADDD #20000 What will count be in 10mS?
c1ce ed 16 [5] STD TOC1,X Set OC1 to trigger then
c1d0 1f 23 80 fc [7] LP1 BRCLR TFLG1,X $80 LP1 Loop here till OC1F=1

 *Delay is actually done here; rest is just support

c1d4 1d 23 7f [7] BCLR TFLG1,X $7F Clear OC1F
c1d7 6f 04 [6] CLR PORTB,X Clear PB0 pin
c1d9 18 ce 16 4e [4] LDY #5710 5710*(7~/loop) = about 20ms
c1dd 18 09 [4] DLP1 DEY Top of software delay loop
c1df 26 fc [3] BNE DLP1 Loop ’till Y is zero
c1e1 20 e2 [3] BRA TOP4A Repeat continuously for O-scope

Figure 10-24. Simple Output-Compare Example

By contrast, an output compare in interrupt-driven mode has the
advantage of allowing the user to perform other tasks while waiting for
the delay.

10.6.1 Normal Input/Output Pin Control Using OC5–OC2

The user can independently program the automatic pin actions to occur
for each output-compare function. For OC5–OC2, a pair of control bits
(OMx and OLx) in TCTL1 are used to control the automatic pin actions.

Address: $1020

Bit 7 6 5 4 3 2 1 Bit 0

Read:
OM2 OL2 OM3 OL3 OM4 OL4 OM5 OL5

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 10-25. Timer Control Register 1 (TCTL1)
Reference Manual M68HC11 — Rev. 6

412 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Output-Compare Functions
OMx and OLx — Output Compare Pin Control Bits (x = 1, 2, 3, 4, or 5)

This pair of bits determines the automatic actions that occur on the
port A timer output pin when there is a successful output compare.
Each OC5–OC2 function corresponds to a specific pin of port A. Each
pair of bits controls the action for the corresponding output-compare
function. These bit pairs are encoded as shown in Table 10-6.

Example 10-5 uses OC2 to generate a square wave at the PA6/OC2 pin.
The program runs on an EVB board, and the results are monitored with
an oscilloscope. Before running this program, manually set the half-cycle
delay time (as a number of cycles) in the double-byte location HDLY
($D000,D001). For example, if $01,00 is stored at $D000,D001, a
square wave with a period of 256 µs would be generated
(half period = 256 cycles x 500 ns/cyc). Figure 10-26 shows the program
for Example 10-5.

c1e3 8e 00 47 [3] TOP5 LDS #$0047 Top of User’s Stack area on EVB
c1e6 86 7e [2] LDAA #$7E Jump (extended) Opcode
c1e8 97 dc [3] STAA PVOC2 Pseudo Vector see manual text
c1ea ce c1 fd [3] LDX #SV5OC2 Address of OC2 service routine
c1ed df dd [4] STX PVOC2+1 Finish jump instruc to TOF svc
c1ef ce 10 00 [3] LDX #REGBAS Point to register block
c1f2 86 40 [2] LDAA #%01000000 OM2:OL2 = 0:1
c1f4 a7 20 [4] STAA TCTL1,X Set OC2 for toggle on compare
c1f6 a7 23 [4] STAA TFLG1,X Clear any pending OC2F
c1f8 a7 22 [4] STAA TMSK1,X Enable OC2 interrupts
c1fa 0e [2] CLI Enable Interrupts
c1fb 20 fe [3] BRA * Interrupt driven; sit here

* SV5OC2 - Output Compare 2 service routine
*
* Called at each OC2 interrupt.

c1fd fc d0 00 [5] SV5OC2 LDD HDLY Get delay time for 1/2 cycle
c200 e3 18 [6] ADDD TOC2,X Add to last compare value
c202 ed 18 [5] STD TOC2,X Update OC2 (schedule next edge)
c204 1d 23 bf [7] BCLR TFLG1,X $BF Clear OC2F
c207 3b [12] RTI ** Return from OC2 service **

Figure 10-26. Generating a Square Wave with Output Compare

Table 10-6. OMx and OLx Encoding

OMx OLx Configuration

0 0 OCx does not affect pin (OC1 still may)

0 1 Toggle OCx pin on successful compare

1 0 Clear OCx pin on successful compare

1 1 Set OCx pin on successful compare
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 413

Main Timer and Real-Time Interrupt
The initialization of the pseudo-vector at the top of Example 10-5 is done
for the EVB board and would not be a normal part of a practical
application. The three cycles needed for the extra JMP instruction are
shown at [3] in Figure 10-27.

Figure 10-27 shows a detailed timing analysis for Example 10-5. This
degree of detail is not normally needed, but this analysis shows exactly
what occurs during an interrupt driven output compare. The timer count
has a fixed relationship to real time; whereas, software can be aligned to
the timer count in any of several ways. It is generally not known (nor
does it need to be) which of these several possible relationships is
correct. Although software latencies do not affect the accuracy with
which output edges are placed, these latencies do determine the
shortest possible delay between successive output edges. In this
isolated example, the software latencies are quite short, but in a practical
application, latencies from other interrupt sources must be considered.

Figure 10-27. Timing Analysis for Example 10-5

(28 CYCLES)

E

INTERRUPT RESPONSE

[1] [4] [5]

VECTPC
L H L H L H B A CC

Y Y X X

EVB
PSEUDO
VECTOR

JMP
SV5OC2

LDD HDLY

[3]
OC2
PIN

[2]

BRA * ADDD TOC2,X

OC2F

(26 CYCLES)

E

INTERRUPT RESPONSE

[7] [9]

PC
L H L H L H B

Y Y X X

[8]
OC2
PIN

BRA *STD TOC2,X BCLR TFLG1,X $BF

OC2F

PC
LH L H L HBACC

YYXX

RTI

[6]
Reference Manual M68HC11 — Rev. 6

414 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Output-Compare Functions
This timing analysis shows the case where the half-period delay (HDLY)
is 54 cycles, and the OC2F was set just before the BRA * finished [1].
This analysis represents the fastest response to the OC2F bit. The flag
is actually set [1] just before the pin state changes. The exact timing of
the flag and pin changes is discussed in detail in 10.7 Timing Details
for the Main Timer System. The period can be set as short as 52 cycles
(the total time needed to service each interrupt from [1] to [8]).

This example is intended to show a way to produce a simple square
wave and is not intended to be the most efficient way to perform this
task.

10.6.2 Advanced Input/Output Pin Control Using OC1

One of the five output-compare functions (OC1) in the MC68HC11A8
has special timer output pin controls that were not present on any
previous Motorola MCUs. These new controls allow this output-compare
function to simultaneously control the states of up to five output pins.
This output compare can also be configured to control a pin or pins that
are also being controlled by one of the other four output-compare
functions.

OC1 uses the OC1M and the OC1D to control the automatic timer output
pin actions occurring as a result of a match between the OC1 register
and the free-running timer. Each of the five MSBs of these registers
corresponds bit-for-bit with a port A output pin. The three remaining
low-order bits of these registers are not used and always read as 0s. For
each port A output pin to be affected by OC1, the user would set the
corresponding bit of OC1M. When a successful OC1 compare occurs,
each port A pin to be affected (indicated by the corresponding bit of
OC1M set) will assume the value of the corresponding bit of OC1D.
Values of bits in OC1D corresponding to 0s in the OC1M register are
don’t cares. Usually, the user only has to write to the OC1M register once
to establish which pins will be controlled by OC1. The relationship
between register bits and port A pins is provided in the reference below
Figure 10-28 and Figure 10-29.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 415

Main Timer and Real-Time Interrupt
OC1 can only affect the PA7 pin if the pin is configured as an output as
opposed to its default configuration as an input. To configure PA7 as an
output, the data direction control bit for port A bit 7 (DDRA7) in the pulse
accumulator control register (PACTL) must be set to 1.

10.6.2.1 One Output Compare Controlling up to Five Pins

The special pin control mechanisms on OC1 allow it to simultaneously
control as many as five timer output pins. (Software can be used to allow
any single output compare to control multiple outputs, but software
latency will affect the resolution and the ability to repeat timed actions
accurately.) The OC1 mechanism allows pins to be controlled with a
timing accuracy equal to one count of the timer counter.

The ability to control multiple outputs with a single output-compare
channel is especially useful where the outputs are all associated with a
single external device — for example, the signals driving a stepper
motor. In such a case, it is always possible to know the required state for
all of the outputs whenever any one is going to change. On the other

Address: $100C

Bit 7 6 5 4 3 2 1 Bit 0

Read:
OC1M7 OC1M6 OC1M5 OC1M4 OC1M3

0 0 0

Write:

Reset:
Reference:

0
PA7/PAI

0
PA6/OC2

0
PA5/OC3

0
PA4/OC4

0
PA3/OC5

0
PA2/IC1

0
PA1/IC2

0
PA0/IC3

Figure 10-28. Output Compare 1 Mask Register (OC1M)

Address: $100D

Bit 7 6 5 4 3 2 1 Bit 0

Read:
OC1D7 OC1D6 OC1D5 OC1D4 OC1D3

0 0 0

Write:

Reset:
Reference:

0
PA7/PAI

0
PA6/OC2

0
PA5/OC3

0
PA4/OC4

0
PA3/OC5

0
PA2/IC1

0
PA1/IC2

0
PA0/IC3

Figure 10-29. Output Compare 1 Data Register (OC1D)
Reference Manual M68HC11 — Rev. 6

416 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Output-Compare Functions
hand, if the outputs control unrelated devices, it might be more practical
to use separate output-compare channels for each output.

A side benefit to using OC1 to control several timer outputs is that the
other output-compare functions associated with these pins become
available for general-purpose software timing functions that do not
directly control pins.

10.6.2.2 Two Output Compares Controlling One Pin

OC1 can also be used in conjunction with one or more other output
compares to achieve even more timing flexibility. OC1 can control a
timer output even when one of the other output compares is already
controlling the same pin, which allows the programmer to schedule two
succeeding edges of each output signal at a time. This capability
reduces software overhead because only one of the two output
compares needs to generate an interrupt. Pulses as short as one E
cycle, which are accurately positioned with 1-cycle resolution (500-ns
resolution), can be generated.

Example 10-6 uses OC1, OC2, and OC3 together to produce two PWM
outputs. This particular program can produce active-high PWM signals
with a minimum period of 200 cycles (100 µs or 10 kHz) and a duty cycle
of 0 to 100 percent. Actually, the program only produces duty cycles of
50 to 100 percent. When a smaller duty cycle is specified, it is
automatically changed to 100 percent minus the specified duty cycle,
and the polarity of the output is switched. (A 30-percent active-high duty
cycle is the same as a 70-percent active-low duty cycle.) Figure 10-30
shows the important parts of the program for Example 10-6.

Before running this example program on the EVB board, the period and
duty cycle are established manually with memory modify commands.
Period is set indirectly by setting the location PWMP1P at $D002. This
value is 1 percent of the period (in cycles); thus, a value of $02 sets the
period to 200 cycles. When the program starts, this value is multiplied by
100 and stored to location PWMPER. Program latencies are such that a
period of 100 cycles (PWMP1P = $01) is too short, and the program will
not operate correctly. Duty cycles are stored as percentages at locations
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 417

Main Timer and Real-Time Interrupt
PWMDC1 and PWMDC2 ($D003 and $D004, respectively; $64 = 100
percent).

The larger upper portion of this program is executed only once to set up
and to start the PWM outputs. After this initial setup, the PWM signals
are free running and are controlled by OC1 interrupts only. When an
OC1 interrupt occurs, a value equal to the period is added to each of the
output-compare registers (TOC1, TOC2, and TOC3). When this OC1
service routine is enabled, the PWM outputs will have been forced to
their active level by the OC1 match that requested the interrupt. When
this service routine is done, OC1 is set to start the next PWM period;
OC2 and OC3 are set to terminate the current PWM pulse. The PWM
pulses, which are known to be at least 50 percent of the period, control
how quickly the OC1 service routine must finish (OC2 and OC3 must be
scheduled in time to occur as early as 50 percent of the way to the next
PWM pulse start). The OC1 interrupt service takes almost 100 cycles,
but OC2 and OC3 are updated somewhat before the end of the routine.
Thus, the theoretical minimum period is about 140 cycles (two times 70
cycles, where 70 cycles is the approximate latency time from an OC1
interrupt request to when OC2 and OC3 have been updated). Because
the example was set up so that period is specified by the number of
cycles in 1 percent of the period, a value of two makes period equal 200
cycles, which is acceptable; whereas, a value of one makes period equal
100 cycles, which is too small.

This example is only one of many ways to generate PWM signals in the
M68HC11. Example 10-7 demonstrates an alternate way, which uses
only one output compare. The approach used in that example does not
allow the duty cycle to be too close to 0 or 100 percent because there is
a minimum latency requirement between any two successive edges on
the PWM output signal. In general, any approach will be subject to some
unique set of limitations. As with many engineering problems, there is no
single best solution; the user will have to select the best method based
on all the application requirements.
Reference Manual M68HC11 — Rev. 6

418 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Output-Compare Functions
*** initialization - (see full listing) ***
c217 86 50 [2] LDAA #%0l010000 OMx:OLx = 0:1 for toggle
c219 a7 20 [4] STAA TCTL1,X OC2 and OC3 for toggle
c21b 86 70 [2] LDAA #%01110000 OClM6,5, & 4 = 1
c21d a7 0c [4] STAA OCIM,X Control OC2/PA6, OC3/PA5, & PA4
c21f 5f [2] CLRB Build OC1D initial value in B
c220 b6 d0 03 [4] LDAA PWMDC1 Check for OC2 duty > or = 50%
c223 81 32 [2] CMPA #50 If <50% OC1 drives low...
c225 23 02 [3] BLS ARNZ61 and OC2 toggles high.
c227 cb 40 [2] ADDB #%01000000 Else OC1 driv high/OC2 tog low
c229 b6 d0 04 [4] ARNZ61 LDAA PWMDC2 Check for OC3 duty > or = 50%
c22c 81 32 [2] CMPA #50 If <50% OC1 drives low...
c22e 23 02 [3] BLS ARNZ62 and OC3 toggles high.
c230 cb 20 [2] ADDB #%00100000 Else OC1 driv high/OC3 tog low
c232 e7 0d [4] ARNZ62 STAB OC1D,X Store starting value for OC1D

* Calculate period & duty cycle as cycle count offsets
c234 b6 d0 02 [4] LDAA PWMP1P 1% of period
c237 c6 64 [2] LDAB #100
c239 3d [10] MUL 100 * PWMP1P = PWMPER
c23a fd d0 1f [5] STD PWMPER Store period
c23d ed 16 [5] STD TOC1,X Start with TCNT = PWMPER
c23f b6 d0 03 [4] LDAA PWMDC1 Calculate offset for OC2
c242 8d 12 [6] BSR CALOFF Adj duty and calc offset
c244 ed 18 [5] STD TOC2,X Schedule first OC2 toggle
c246 b6 d0 04 [4] LDAA PWMDC2 Calculate offset for OC3
c249 0d 0b [6] BSR CALOFF Adj duty and calc offset
c24b ed 1a [5] STD TOC3,X Schedule first OC3 toggle
c24d 86 80 [2] LDAA #$80 Finish initialization
c24f a7 23 [4] STAA TFLG1,X Clear any old OC1 flag
c251 a7 22 [4] STAA TMSK1,X Enable OC1 interrupt
c253 0e [2] CLI
c254 20 fe [3] BRA * PWMs driven by OC1 interrupts

* SV6OC1 - Output Compare 1 service routine

c269 ce 10 00 [3] SV6OCI LDX #REGBAS Point to register block
c26c a6 0d [4] LDAA OC1D,X Change state of PA4 at next OC1
c26e 88 10 [2] EORA #%00010000 Inverts OClD4 (PA4 pin control)
c270 a7 0d [4] STAA OC1D,X Update OC1 automatic pattern
c272 ec 18 [5] LDD TOC2,x Get last OC2 compare value
c274 f3 d0 1f [6] ADDD PWMPER Add count equiv to period
c277 ed 18 [5] STD TOC2,X Update OC2 (schedule next OC2)
c279 ec 1a [5] LDD TOC3,x Get last OC3 compare value
c27b f3 d0 1f [6] ADDD PWMPER Add count equiv to period
c27e ed 1a [5] STD TOC3,X Update OC3 (schedule next OC3)
c280 ec 16 [5] LDD TOC1,X Get last OC1 compare value
c282 f3 d0 1f [6] ADDD PWMPER Add count equiv to period
c285 ed 16 [5] STD TOC1,X Update OC1 (schedule next OCl)
c287 1d 23 7f [7] BCLR TFLG1,X $7F Clear OC1F
c28a 3b [12] RTI ** Return from OC1 service **

Figure 10-30. Producing Two PWM Outputs with OC1, OC2, and OC3
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 419

Main Timer and Real-Time Interrupt
10.6.3 Forced Output Compares

The output-compare force mechanism provides a convenient way to
change timer output pin states without actually setting up and waiting for
an output-compare match. The force mechanism is useful to force an
initial state at the start of a timing sequence or to force an output
compare earlier than it was scheduled. Consider the case where the
user has scheduled an output compare to occur at a certain time, but as
the time approaches, the user decides instead the compare should
occur as soon as possible. (This case is an actual situation that arises in
spark timing control in some automotive engine control applications.) In
the older M6801 Family MCU, the user had to read the timer counter,
add a small value to it corresponding to a software delay, and write this
value to the output-compare register so that a compare match would
occur at the next E-clock cycle after the compare register update. With
the force mechanism in the M68HC11 Family, the user writes to the
CFORC register to force any combination of output-compare channels
to trigger.

To use the output-compare force mechanism, the user would write to the
CFORC register with 1s in the bit positions corresponding to the
output-compare channels to be forced. Writing a 0 to a bit in the CFORC
register has no effect on the corresponding output-compare channel. At
the next timer count after the write to CFORC, the forced channels will
trigger their programmed pin actions to occur. The forced actions are
synchronized to the timer counter clock, which is slower than E if a
prescale factor has been specified (PR1 and PR0). As shown in
Figure 10-1, the output-compare force signal causes pin action but does
not affect the OCxF bit or generate interrupts.

Normally, the force mechanism would not be used in conjunction with
the automatic pin action that toggles the corresponding output-compare
pin. Consider the case previously described where a force is being used
to trigger the pin action earlier than it was scheduled to occur. The user
might easily fall into the trap of forcing a toggle just before the
output-compare match was about to occur. The force mechanism would
toggle the pin once, and as soon as the match occurs, the pin would
toggle again, which is almost certainly not what the user would want to
happen. In the same situation, if the automatic pin action was
Reference Manual M68HC11 — Rev. 6

420 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Timing Details for the Main Timer System
programmed to set the pin high or clear the pin low, an actual match just
after a force mechanism would order the pin to change to the state it is
already in (same effect as doing nothing).

Figure 10-31 and the following bit descriptions explain the output
compare force register (CFORC).

FOCx — Force Output Compare Bits (x = 1, 2, 3, 4, or 5)

These bits may be used to force an output compare rather than
waiting for a match between the output-compare register and the
free-running counter. The automatic pin actions programmed for the
output compare happen as if a match had occurred, but no interrupt
is generated (OCxF is not set). To force one or more output-compare
channels, write to the CFORC register with 1s in the bit positions
corresponding to the channels to be forced. The logic-high state of
these bits is transitory, and the CFORC register will never be read as
anything other than 0. The force mechanism is synchronized to the
timer counter clock. As many as 16 E-clock cycles could occur
between the write to CFORC and the compare force if the largest
prescale factor is set for the timer system (PR1, PR0 = 1:1 to ÷ 16).

10.7 Timing Details for the Main Timer System

The detailed timing information presented is much more detailed than
most users will ever need, but it is given to provide additional insight into
the operation of the MCU.

Figure 10-32 shows the details concerning the timer counter as the
MCU leaves reset. During reset, the counter is forced to $FFFF and does
not count. As the internal reset signal is released, the counter begins to

Address: $100B

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0 0 0 0 0 0 0

Write: FOC1 FOC2 FOC3 FOC4 FOC5

Reset:: 0 0 0 0 0 0 0 0

Figure 10-31. Output Compare Force Register (CFORC)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 421

Main Timer and Real-Time Interrupt
count just before the reset vector appears on the address bus. Although
Figure 10-32 shows the reset vector to be $FFFE,FFFF, the timing
details would be the same if the processor is reset in any mode, including
test and bootstrap modes where the reset vector would be $BFFE,BFFF.
The timer overflow logic is inhibited so that this first $FFFF–$0000
transition does not register as an overflow.

Figure 10-33 shows timing details for a read of TCNT. The address and
data buses shown in Figure 10-33 are internal buses and have different
timing than the more familiar external buses. These internal buses were
used because it is much more difficult to understand what is occurring
from the external address and data buses.

Figure 10-32. Timer Counter as MCU Leaves Reset

Figure 10-33. Timer Counter Read — Cycle-by-Cycle Analysis

E

ADDRESS BUS

PH2

TIMER COUNT

VECTOR FETCH

FFFE FFFE VECTOR VECTOR + 1

FFFF FFFF 0000 0001 0002 0003

FIRST USER INSTRUCTION • • •

 Sequence is the same for any reset (external, COP, or clock monitor) and any mode (normal or special).

FFFE* FFFF *

*

PH2

ADDRESS BUS
(INTERNAL)

E

TIMER COUNT

LDD TCNT READ TIMER COUNT (EXTENDED ADDR MODE)

N N + 2N + 1 N + 3 N + 4 N + 5

OPCODE ADDR OPERAND (LO)OPERAND (HI) $100F/TCNT(LO) NEXT OPCODE

DATA BUS
(INTERNAL)

LO(N + 3)HI(N + 3)$0E$10OPCODE

$100E/TCNT(HI)

FETCH OPCODE FETCH 16-BIT OPERAND ADDRESS READ HIGH BYTE
OF TCNT

READ LOW BYTE
OF TCNT
Reference Manual M68HC11 — Rev. 6

422 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Timing Details for the Main Timer System
Figure 10-33 shows a cycle-by-cycle view of these internal buses for a
double-byte read instruction (LDD TCNT). When the upper byte of TCNT
is read in the fourth cycle of the LDD instruction, the current value of the
timer is n + 3. The low-order half of the timer is passed through a
normally transparent latch. This latch is frozen for one cycle after every
high-byte read of TCNT so that a double-byte read can read the
low-order half that belongs with the same count state as the upper half
just read. Even though the counter has actually advanced to n + 4 by the
last cycle of this LDD instruction, the value read will be the lower half of
count n + 3.

The information in Figure 10-32 and Figure 10-33 can be combined to
find the value that would be returned if the LDD instruction was
performed as the first instruction after reset — that is, if the reset vector
pointed directly to the LDD instruction. The value read will always be
$0005.

The prescaler is built around a divide by 16 counter. When a new value
is written to the prescaler control bits (PR1 and PR0) in the TMSK2
register, the clocking rate to the main timer changes to the new rate at
the next $F–$0 transition of this internal 4-bit prescaler counter.

Figure 10-34 shows timing details for an input capture. Input-capture
timing is not affected by a prescale factor; thus, this figure only shows
the divided by one case. This figure also only shows the case where the
input-capture function is configured to detect a rising edge. Again, the
polarity of the edge is not important to the timing.

Figure 10-34. Input-Capture Timing Details

PH2

ICxF

E

TIMER COUNT N 1 N + 1N N + 2 N + 3 N + 4

ICx PIN

READ TICx (HI) READ TICx (LO)

[4] [5]

[1]

[2]

[3] [6]
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 423

Main Timer and Real-Time Interrupt
The normal sequence of events in an input capture is:

1. Asynchronously detect an edge at the ICx pin.

2. Set the ICxF bit at the next falling edge of the internal PH2 clock.

3. Transfer the current timer count to the 16-bit TICx register during
the next PH2 logic high.

If the cycle at [4] happens to be a high-byte read of the TlCx register
(which would be unusual), the transfer at [3] will be delayed until [6] so
the transfer will not corrupt a double-byte read at cycles [4] and [5].

Figure 10-35 shows two timing situations related to output compares. A
normal compare match is shown at [1]; a compare inhibit situation is
shown at [4].

Figure 10-35. Output-Compare Timing Details

In the normal compare match situation, the timer count is compared to
the value in a TOCx register during PH2 high. Timer counting occurs at
the falling edges of PH2 to prevent interference between counting and
comparisons. PH2 is an internal clock that leads E by 90°. When the
match is detected [1], OCxF is set at the falling edge PH2 where the
match was true. The pin-state change (if any) is delayed by another
quarter cycle so changes will occur at the falling edge of the E clock. If
there were a prescale factor, the compare true would occur during the

TIMER COUNT N 1 N + 1N N + 2 N + 3 N + 4

PH2

E

WRITE TOCx (HI) WRITE TOCx (LO)

OCx PIN

[3]

[1]

OCxF

[2]

COMPARE
ENABLE

MATCH[4]

PREVIOUS PIN STATE NEW PIN STATE
Reference Manual M68HC11 — Rev. 6

424 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Listing of Timer Examples
first PH2 cycle where the count matched the TOCx value. Additional
matches would be inhibited until the next timer clock or until TOCx is
written. This inhibit mechanism protects against multiple compare
matches during a prescaled timer count (the TOCx register actually
matches the timer count for several PH2 cycles when there is a prescale
factor). In the unlikely case of a big prescale factor (for example, ÷ 16)
and a match at the start of count $nnnn, if the user wrote $nnnn to the
TOCx register while the count was still $nnnn, the output-compare
actions would be retriggered.

At [4] in Figure 10-35, the 1-cycle compare inhibit results from a write to
TOCx during cycle [3]. This inhibit mechanism prevents an erroneous
compare during the write to the low-order half of TOCx. If the output
compare were not inhibited here, the TOCx register would contain an
erroneous value composed of the new high byte written at [3] and the low
byte from the former value in TOCx. This inhibit mechanism is separate
from the compare mechanism discussed in the previous paragraph.

10.8 Listing of Timer Examples

The following listing is a composite of timer section Examples 10-1
through 10-7. Since many of the references and equates are common
for all the examples, it saves space to group them. All the examples can
be assembled and loaded into an EVB board for evaluation at the same
time. In general, the user must set up some initial signals and variables,
and then execute an EVB "go" command to start each example routine.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 425

Main Timer and Real-Time Interrupt
Listing - Timer Examples Sheet 1 of 16

* This listing contains all Examples for Reference Manual Section 10

** Equates - Registers will be addressed with Ind,X mode
*

1000 REGBAS EQU $1000 Starting address for register block
0004 PORTB EQU $04 Output port B
000c OC1M EQU $0C OClM7,OClM6,OClM5,OClM4;OClM3,-,-,-
000d OC1D EQU $0D OClD7,OClD6,OClD5,OClD4;OClD3,-,-,-
000e TCNT EQU $0E Free running counter (16-bit)
0010 TIC1 EQU $10 IC1 register (16-bit)
0016 TOC1 EQU $16 OC1 register (16-bit)
0018 TOC2 EQU $18 OC2 register (16-bit)
001a TOC3 EQU $1A OC3 register (16-bit)
0020 TCTL1 EQU $20 OM2,OL2,OM3,OL3;OM4,OL4,OM5,OL5
0021 TCTL2 EQU $21 -,-,EDGlB,EDGlA;EDG2B,EDG2A,EDG3B,EDG3A
0022 TMSK1 EQU $22 OC1I,OC2I,OC3I,OC4I;OC51,IC1I,IC2I,IC3I
0023 TFLG1 EQU $23 OC1F,OC2F,OC3F,OC4F;OC5F,IC1F,IC2F,IC3F
0024 TMSK2 EQU $24 TOI,RTII,PAOVI,PAII;-,-,PR1,PR0
0025 TFLG2 EQU $25 TOF,RTIF,PAOVF,PAIF;-,-,-,-

*** EVB Routine Addresses & Pseudo Vector Equates

ffb8 .OUTA EQU $FFB8 Print character in A-reg
ffc4 .OUTCRL EQU $FFC4 Output <cr><lf>
ffca .OUTSTO EQU $FFCA Output Msg seg (no <cr,lf>)
ffc7 .OUTSTR EQU $FFC7 Output Msg w/leading <cr,lf>

00e8 PVIC1 EQU $00E8 EVB Pseudo Vector for IC1
00d0 PVTOF EQU $00D0 EVB Pseudo Vector for TOF
00dc PVOC2 EQU $00DC EVB Pseudo Vector for OC2
00df PVOC1 EQU $00DF EVB Pseudo Vector for OC1

*** RAM Variable Assignments

d000 ORG $D000 Start variables in EVB RAM (upper half)
d000 HDLY RMB 2 Half-cycle delay (in 0.5mS increments)
d002 PWMP1P RMB 1 1% of PWM period (1 to 256 cyc) Ex 10-7
d003 PWMDC1 RMB 1 Duty cycle for PWM signal at OC2 pin
d004 PWMDC2 RMB 1 Duty cycle for PWM signal at OC3 pin
d005 IC1DUN RMB 1 flag: 0-not done,l-pulse measured
d006 IC1MOD RMB 1 s/w mode flag: FF-off,0-1st,1-last edge
d007 OVCNT1 RMB 1 Overflow cnt (upper 8-bits of result)
d008 RES1 RMB 2 Pulse Width in cycles (16-bits)
d00a HTEMP RMB 3 Temp for H6TOD8 (3 bytes)
d00d FRSTE RMB 2 Time of first edge (16-bits)
d00f PERC RMB 2 Period in cycles (16-bits)
d011 TEMP1 RMB 2 Temp for conversion (16-bits)
d013 FREQH RMB 2 Freq in Hex (16-bits)
d015 HPW RMB 2 Pulse Width (16-bits hex)
d017 DBUFR RMB 8 Decimal result buffer (8 bytes ASCII)

* Some routines use only first 5 bytes of DBUFR
d01f PWMPER RMB 2 Period of PWM signals in (cycles)
d021 OFFHI RMB 2 OC2 high offset (calculated)
d023 OFFLO RMB 2 OC2 low offset (calculated)
Reference Manual M68HC11 — Rev. 6

426 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Listing of Timer Examples
Listing - Timer ExamplesSheet 2 of 16

c000 ORG $C000 Prog starts in EVB RAM at $C000

* TIMER EXAMPLE 10–1 (a) Measuring Period with Input Capture
 *
 * Uses polling rather than interrupts.
 * Measures period between two rising edges at IC1 pin.
 * Overflows not considered so max period is 65,535 cyc
 * Min period measurable with this program is about 27 cyc
 *
 * This program runs on an EVB board and displays results
 * on the EVB terminal display.

OPT c

c000 8e 00 47 [3] PERTOP LDS #$0047 Top of User’s stack area on EVB
c003 ce 10 00 [3] LDX #REGBAS Point to register block
c006 86 10 [2] LDAA #%00010000
c008 a7 21 [4] STAA TCTL2,X EDGlB:EDGlA = 0:1, rising edges
c00a 86 04 [2] LDAA #$04
c00c a7 23 [4] STAA TFLG1,X Clear any old OC1 flag

* Ready to detect first rising edge

c00e 1f 23 04 fc [7] BRCLR TFLG1,X $04 * Loop here until edge

* First edge detected

c012 ec 10 [5] LDD TIC1,X Read time of first edge
c014 fd d0 0d [5] STD FRSTE Save first capture value
c017 86 04 [2] LDAA #$04
c019 a7 23 [4] STAA TFLG1,X Clear IC1F before next edge

* Ready to capture time of second edge

c01b 1f 23 04 fc [7] BRCLR TFLG1,X $04 * Loop here until edge

* Second edge detected

c01f ec 10 [5] LDD TIC1,X Read time of second edge
c021 b3 d0 0d [6] SUBD FRSTE 2nd - lst -> D
c024 fd d0 0f [5] STD PERC Save result (period in cycs)

* The period of the signal at PA2/IC1 pin has been
* measured and the time is stored at “PERC” as a 16-bit
* hex number representing the number of CPU bus cycles
* that elapsed between two rising edges

* TIMER EXAMPLE 10–1 (b) Changing Period to Frequency
 *
 * The period found in example 10-la is expressed as a number
 * of bus cycles (@E=2MHz, 1 bus cycle=0.5µS) and it is
 * currently in the D-reg and at “PERC”. Values < or = $20
 * will be considered too small (freq too high) to be
 * accurately measured with this program and will be trapped
 * out to make the period to frequency conversion program easier.
 * $0021 corresponds to 60,606 Hz, $FFFF is 30.5 Hz.

M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 427

Main Timer and Real-Time Interrupt
Listing — Timer Examples Sheet 3 of 16

c027 fe d0 0f [5] LDX PERC Period in cycles (16-bits)
c02a 1a 83 00 20 [5] CPD #32 ($20) Check against min allowed
c02e 22 03 [3] BHI OKP Skip if OK
c030 7e c0 88 [3] JMP OUTRNG Else go say it was too small
c033 cc 00 20 [3] OKP LDD #32 X=period; D=32
c036 03 [41] FDIV D/X -> X; r -> D
c037 ff d0 11 [5] STX TEMP1

* (Freq*16)+1,000,000; radix left of MSB

 *
 * We now have frequency but it isn’t in a good displayable
 * form yet. If we move the binary radix 16 places to the right
 * we would have a 16-bit integer representing
 * E(2**20)/(10**6) x freq] or [((1,048,576)/(1,000,000))*freq).
 * By adding and subtracting binary multiples of the freq we
 * will arrive at [((1,000,000)/(1,000,000))*freq] (or just frequency)
 *
 * 1,048,576 16-bit starting value ((2**20)freq)+(10**6)
 * - 32,768 2**15
 * - 16,384 2**14
 * + 512 2**9
 * + 64 2**6
 * =1,000,000 * freq
 *
 * The limitation of 33 ($21) cycles min was selected so
 * (1,048,576/1,000,000)*freq would fit in 16-bits so we would
 * only need 1 FDIV. Although it is pretty easy to extend the
 * precision of an FDIV
 *
 * The partial results which are added and subtracted in this
 * program may have an error of ±1 LSB ea. because I truncated
 * rather than rounding.
 *
c03a fc d0 11 [5] LDD TEMP1 (2**20)f; where f=freq+(10**6)
c03d 04 [3] LSRD
c03e 04 [3] LSRD
c03f 04 [3] LSRD A=(2**9)f; D=(2**17)f
c040 7f d0 13 [6] CLR FREQH Clr upper half of hex freq loc.
c043 b7 d0 14 [4] STAA FREQH+1 FREQH is a temp = 512f
c046 04 [3] LSRD
c047 04 [3] LSRD now D=(2**15)f or 32,768f
c048 fd d0 11 [5] STD TEMP1 Needs to be in mem for subtract
c04b 8f [3] XGDX D=(2**20)f; X=(2**15)f
c04c b3 d0 11 [6] SUBD TEMP1 1st subtraction (-32K)
c04f 8f [3] XGDX Working result -> X; D=(2**15)f
c050 04 [3] LSRD A=(2**6)f; D=(2**14)f
c051 fd d0 11 [5] STD TEMP1 Put in mem so you can subtract
c054 bb d0 14 [4] ADDA FREQH+1 (512+64)f
c057 b7 d0 14 [4] STAA FREQH+1 Update low half of FREQH
c05a 8f [3] XGDX D=1,015,808*f; X=junk
c05b b3 d0 11 [6] SUBD TEMP1 999,424*f
c05e f3 d0 13 [6] ADDD FREQH 1,000,000*f = frequency
c061 fd d0 13 [5] STD FREQH Save the 16-bit binary result
Reference Manual M68HC11 — Rev. 6

428 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Listing of Timer Examples
Listing — Timer Examples Sheet 4 of 16
* Since most of us don’t think in hexadecimal, let’s

* change to decimal before printing. The subroutine

* (HTODP) is shown at the end of this listing.

*

* The display will look like...

*

*ppppp Cyc fffff Hz --- or like---

*Freq. is too high

*

* where ppppp is period in cycles & fffff is freq.

* (decimal)

*

* EVB subroutines will be used and when done we will

* jump back to the beginning and repeat continuously.

*

c064 bd ff c4 [6] JSR .OUTCRL Print a <cr,lf>
c067 ce d0 0f [3] LDX #PERC Point at hex period
c06a bd c3 33 [6] JSR HTOD Convert to 5 digit decimal
c06d bd c2 df [6] JSR P5DEC Print 5 digit decimal
c070 ce c3 d3 [3] LDX #MSGCYC Point at “ Cycles ”
c073 bd ff ca [6] JSR .OUTSTO Print message segment
c076 ce d0 13 [3] LDX #FREQH Point at hex frequency
c079 bd c3 33 [6] JSR HTOD Convert to 5 digit decimal
c07c bd c2 df [6] JSR P5DEC Print 5 digit decimal
c07f ce c3 e0 [3] LDX #MSGHZ Point at “ Hz”
c082 bd ff ca [6] JSR .OUTSTO Print message segment
c085 7e c0 00 [3] JTOP JMP PERTOP To top & measure another period

c088 ce c3 e4 [3] OUTRNG LDX #MSGER1 Point at "Freq. is too high"
c08b bd ff c7 [6] JSR .OUTSTR Print msg w/leading <cr,lf>
c08e 20 f5 [3] BRA JTOP To top & measure another period

*

********* END Ex 10-1b

* TIMER EXAMPLE 10-2 Measuring Pulses With Input Capture
 *
 * Uses interrupts.
 * Measures time between a rising edge and a falling edge
 * (period of a positive pulse) at the IC1 pin.
 * Overflows not considered so max is 65,536 cyc
 * Min time measurable with this program is about __ cyc
 *
 * This program rune on an EVB board and displays results
 * on the EVB terminal display.

* Initialization Portion
*

c090 8e 00 47 [3] PWINZ LDS #$0047 Top of User’s stack area on EVB
c093 86 7e [2] LDAA #$7E Jump (extended) Opcode
c095 97 e8 [3] STAA PVIC1 IC1 Pseudo Vector
c097 ce c0 d8 [3] LDX #SV2IC1 Address of IC1 service routine
c09a df e9 [4] STX PVIC1+1 Finish JMP inst to IC1 routine
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 429

Main Timer and Real-Time Interrupt
Listing - Timer Examples Sheet 5 of 16

* Main Program Portion of Pulse Width program
*

c09c ce 10 00 [3] PWTOP LDX #REGBAS Point to register block
c09f 86 10 [2] LDAA #%00010000 Top of Main for PW24 prog
c0a1 a7 21 [4] STAA TCTL2,X EDG1B:EDG1A=0:l IC1 rising edge
c0a3 86 ff [2] LDAA #$FF
c0a5 b7 d0 06 [4] STAA IC1MOD FF-IC1 off; 0-lst; 1-last edge
c0a8 7f d0 05 [6] CLR IC1DUN Signal pulse not done
c0ab 1d 23 fb [7] BCLR TFLG1,X $FB clear IC1F (if any)
c0ae 1c 22 04 [7] BSET TMSK1,X $04 enable IC1 interrupts
c0b1 0e [2] CLI Enable Interrupts
c0b2 b6 d0 05 [4] WAITL2 LDAA IC1DUN Sets after pulse done
c0b5 27 fb [3] BEQ WAITL2 Loop till pulse has been timed
c0b7 0f [2] SEI Pulse done, disable interrupts

* Display pulse width as xx,xxx µS (32,768 max)
c0b8 bd ff c4 [6] JSR .OUTCRL Begin printing result
c0bb fc d0 15 [5] LDD HPW number of cyc (0.5µS/cyc)
c0be 04 [3] LSRD 16-bit +2 to change to µS
c0bf 24 03 [3] BCC ARNUP2 ? need to round result ?
c0c1 c3 00 01 [4] ADDD #1 yes; round up
c0c4 fd d0 15 [5] ARNUP2 STD HPW Update hex Pulse width
c0c7 ce d0 15 [3] LDX #HPW Point at hex pulse width
c0ca bd c3 33 [6] JSR HTOD Convert to 5 digit decimal
c0cd bd c2 df [6] JSR P5DEC Print 5 digi decimal
c0d0 ce c3 f6 [3] LDX #MSGMS Point at rest of display line
c0d3 bd ff ca [6] JSR .OUTSTO Print “ milliseconds”
c0d6 20 c4 [3] BRA PWTOP Goto top of main & repeat

*
* END of Main Program Portion

* SV2IC1 - Input Capture 1 service routine
*
* Called first when a rising edge is detected and again
* when a falling edge is detected.

c0d8 ce 10 00 [3] SV2IC1 LDX #REGBAS point at top of register block
c0db 7c d0 06 [6] INC IC1MOD $FF->0 at 1st edge; 0->1 at 2nd
c0de 26 0d [3] BNE NO1ST2 if not 0, this is trailing edge

* Process leading edge of pulse
c0e0 ec 10 [5] LDD TIC1,X read time of first edge
c0e2 fd d0 0d [5] STD FRSTE save till next capture

* Reconfigure IC1 for trailing falling edge
c0e5 1d 21 30 [7] BCLR TCTL2,X $30 EDG1B:EDG1A->0:0
c0e8 1c 21 20 [7] BSET TCTL2,X $20 EDG1B:EDG1A->1:0
c0eb 20 10 [3] BRA OU2IC1 done processing first edge

* Process trailing edge of pulse
c0ed ec 10 [5] NO1ST2 LDD TIC1,X get time of trailing edge
c0ef b3 d0 0d [6] SUBD FRSTE time of last minus time of 1st
c0f2 fd d0 15 [5] STD HPW update result
c0f5 1d 21 30 [7] BCLR TCTL2,X $30 disable IC1
c0f8 86 01 [2] LDAA #1
c0fa b7 d0 05 [4] STAA IC1DUN signal pulse measured
c0fd 1d 23 fb [7] OU2IC1 BCLR TFLG1,X $FB clear IC1F
c100 3b [12] RTI ** Return from IC1 service **

*
***** END Ex 10-2
Reference Manual M68HC11 — Rev. 6

430 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Listing of Timer Examples
Listing - Timer Examples Sheet 6 of 16

* TIMER EXAMPLE 10-3 Measuring Long Periods with IC
 *
 * Uses interrupts.
 * Measures period between two rising edges at the IC1 pin.
 * Overflows are counted so max is 16,777,215 cyc (~8.38 Sec)
 * Min time measurable with this program is about 70 cyc
 *
 * This program runs on an EVB board and displays results
 * on the EVB terminal display.

* Initialization Portion

*

c101 8e 00 47 [3] P24INZ LDS #$0047 Top of User’s stack area on EVB
c104 86 7e [2] LDAA #$7E Jump (extended) Opcode
c106 97 d0 [3] STAA PVTOF TOF Pseudo Vector see manual
c108 97 e8 [3] STAA PVIC1 IC1 Pseudo Vector
c10a ce c1 71 [3] LDX #SV3TOF Address of TOF service routine
c10d df d1 [4] STX PVTOF+1 Finish JMP inst to TOF routine
c10f ce c1 7f [3] LDX #SV3IC1 Address of IC1 service routine
c112 df e9 [4] STX PVIC1+1 Finish JMP inst to IC1 routine

* Main Program Portion of PER24 program
*

c114 ce 10 00 [3] PER24T LDX #REGBAS Point to register block
c117 86 10 [2] LDAA #%00010000 Top of Main for PER24 prog
c119 a7 21 [4] STAA TCTL2,X EDG1B:EDG1A=0:l IC1 rising edge
c11b 86 ff [2] LDAA #$FF
c11d b7 d0 06 [4] STAA IC1MOD FF-IC1 off; 0-1st; 1-last edge
c120 7f d0 05 [6] CLR IC1DUN Signal period not done
c123 1d 23 fb [7] BCLR TFLG1,X $FB clear IC1F (if any)
c126 1d 25 7f [7] BCLR TFLG2,X $7F clear TOF (if any)
c129 1c 22 04 [7] BSET TMSK1,X $04 enable IC1 interrupts
c12c 1c 24 80 [7] BSET TMSK2,X $80 enable TOF interrupts
c12f 0e [2] CLI Enable Interrupts

c130 b6 d0 05 [4] WAITL3 LDAA IC1DUN Sets after period done
c133 27 fb [3] BEQ WAITL3 Loop till period has been timed
c135 0f [2] SEI Done, disable interrupts

* Display period as x.xxxxxx Seconds (to nearest µS)

c136 ce d0 07 [3] LDX #OVCNT1 Point at hi byte of 6 digit hex
c139 64 00 [6] LSR O,x 24-bit +2 to change to µS
c13b 66 01 [6] ROR 1,X (lcyc=0.5µS)
c13d 66 02 [6] ROR 2,x RORs include carry
c13f 24 0a [3] BCC ARNUP3 ? need to round result ?
c141 6c 02 [6] INC 2,X yes; round up
c143 26 06 [3] BNE ARNUP3 carry to middle byte ?
c145 6c 01 [6] INC 1,x yes
c147 26 02 [3] BNE ARNUP3 carry to high byte ?
c149 6c 00 [6] INC 0,X yes
c14b bd c3 6c [6] ARNUP3 JSR H6TOD8 Convert to 8 digit decimal
c14e bd ff c4 [6] JSR .OUTCRL Begin printing result
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 431

Main Timer and Real-Time Interrupt
Listing - Timer Examples Sheet 7 of 16

c151 ce d0 18 [3] LDX #DBUFR+1 Start at 2nd digit (1st is 0)
c154 a6 00 [4] LDAA 0,X Seconds digit
c156 bd ff b8 [6] JSR .OUTA Print
c159 86 2e [2] LDAA #’.’ ASCII period
c15b bd ff b8 [6] JSR .OUTA Print
c15e 08 [3] DUMPLP INX Advance pointer to next digit
c15f a6 00 [4] LDAA 0,X get digit
c161 bd ff b8 [6] JSR .OUTA Print it
c164 8c d0 1e [4] CPX #DBUFR+7 Was that the last ?
c167 26 f5 [3] BNE DUMPLP If not continue
c169 ce c4 04 [3] LDX #MSGSEC Point at rest of display line
c16c bd ff ca [6] JSR .OUTSTO Print “Seconds”
c16f 20 a3 [3] BRA PER24T Goto top of main & repeat

*
* END of Main Program Portion

* SV3TOF - Timer Overflow service routine
*
* Called whenever any timer overflow is detected. If
* the IC1 period measurement is in progress (IC1MOD
* positive) then the overflow counter (upper 8-bits of
* period) is incremented.

c171 7d d0 06 [6] SV3TOF TST IC1MOD if 0 or 1 IC1 active-count TOFs
c174 2b 03 [3] BMI OU3TOF if neg, IC1 not active
c176 7c d0 07 [6] INC OVCNT1 increment IC1 overflow count
c179 86 80 [2] OU3TOF LDAA #$80
c17b b7 10 25 [4] STAA REGBAS+TFLG2 Clear overflow flag
c17e 3b [12] RTI **Return from TOF service**

* SV3IC1 - Input Capture 1 service routine
*
* Called first when a rising edge is detected and again
* when another rising edge is detected.

c17f ce 10 00 [3] SV3IC1 LDX #REGBAS point at top of register block
c182 7c d0 06 [6] INC IC1MOD $FF->0 at 1st edge; 0->1 at 2nd
c185 26 13 [3] BNE NO1ST3 if not 0, this is second edge

* Process first edge of period

c187 7f d0 07 [6] CLR OVCNT1 Zero the overflow count
c18a ec 10 [5] LDD TIC1,X Read time of first edge
c18c fd d0 08 [5] STD RES1 Save till next capture
c18f 2b 27 [3] BMI OU3IC1 Done if IC was before any TOF
c191 a6 25 [4] LDAA TFLG2,X Check for TOF in MSB
c193 2a 23 [3] BPL OU3IC1 If no overflow, you’re done
c195 7a d0 07 [6] DEC OVCNT1 This TOF shouldn’t count

* decrement OVCNT1 to -1....
* TOF svc routine will inc back to zero

c198 20 1e [3] BRA OU3IC1 Done processing first edge

Reference Manual M68HC11 — Rev. 6

432 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Listing of Timer Examples
Listing - Timer Examples Sheet 8 of 16

* Process second edge of period
c19a ec 10 [5] NO1ST3 LDD TIC1,X Get time of second edge
c19c 2b 07 [3] BMI ARNOV1 If MSB=1, skip TOF check
c19e 6d 25 [6] TST TFLG2,X Check for overflow
c1a0 2a 03 [3] BPL ARNOV1 If no TOF, skip increment
c1a2 7c d0 07 [6] INC OVCNT1 TOF was before edge so count it
c1a5 b3 d0 08 [6] ARNOV1 SUBD RES1 Time of last minus time of 1st
c1a8 fd d0 08 [5] STD RES1 Update result
c1ab 24 03 [3] BCC RES1OK Check for borrow
c1ad 7a d0 07 [6] DEC OVCNT1 If borrow, fix overflow count
c1b0 1d 21 30 [7] RES1OK BCLR TCTL2,X $30 Disable IC1
c1b3 86 01 [2] LDAA #1
c1b5 b7 d0 05 [4] STAA IC1DUN Signal period measured
c1b8 1d 23 fb [7] OU3IC1 BCLR TFLG1,X $FB Clear IC1F
c1bb 3b [12] RTI **Return from IC1 service**

*
*** END Ex 10-3

 *
* TIMER EXAMPLE 10-4 Simple Output Compare Example
 *
 * Exl0-4 uses polled mode.
 * Generate a 10mS period like you would use to time an EE write
 * but rather than wear out the EEPROM just change an output pin
 *
 * Example 10-4 runs on an EVB board and drives PB0 high for
 * 10mS once every 30mS so you can see on an oscilloscope.

c1bc ce 10 00 [3] INZA LDX #REGBAS Point to register block
c1bf 86 80 [2] LDAA # $80
c1c1 a7 23 [4] STAA TFLG1,X Clear any pending OC1F flag
c1c3 6f 04 [6] CLR PORTB,X Initialize port B to zeros

c1c5 86 01 [2] TOP4A LDAA #1 Top of Ex10-4a
c1c7 a7 04 [4] STAA PORTB,X Set LSB of port B

* This is where the 10mS delay part actually starts
*

c1c9 ec 0e [5] LDD TCNT,X Get current timer count
c1cb c3 4e 20 [4] ADDD #20000 What will count be in lOmS?
c1ce ed 16 [5] STD TOC1,X Set OC1 to trigger then
c1d0 1f 23 80 fc [7] LP1 BRCLR TFLG1,X $80 LP1 Loop here till OClF=l

*
*Delay is actually done here; rest is just support

c1d4 1d 23 7f [7] BCLR TFLG1,X $7F Clear OC1F
c1d7 6f 04 [6] CLR PORTB,X Clear PB0 pin
c1d9 18 ce 16 4e [4] LDY #5710 5710*(7∼ /loop)= about 2OmS
c1dd 18 09 [4] DLP1 DEY Top of software delay loop
c1df 26 fc [3] BNE DLP1 Loop ’till Y is zero
c1e1 20 e2 [3] BRA TOP4A Repeat continuously for O-scope

*
***** END Ex 10-4
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 433

Main Timer and Real-Time Interrupt
Listing - Timer Examples Sheet 9 of 16

 *
 * TIMER EXAMPLE 10-5 Square wave using Output Compare
 *
 * Ex10-5 uses interrupts.
 * Generate a square wave at the PA6 output pin using OC2
 *
 * This program runs on an EVB board. The half-cycle delay
 * time is entered into the double byte variable "HDLY" at
 * $D000,D001 with a memory modify before going to the program.

c1e3 8e 00 47 [3] TOP5 LDS #$0047 Top of User’s stack area on EVB
c1e6 86 7e [2] LDAA #$7E Jump (extended) Opcode
c1e8 97 dc [3] STAA PVOC2 OC2 Pseudo Vector see manual
c1ea ce c1 fd [3] LDX #SV5OC2 Address of OC2 service routine
c1ed df dd [4] STX PVOC2+1 Finish JMP inst to TOF routine
c1ef ce 10 00 [3] LDX #REGBAS Point to register block
c1f2 86 40 [2] LDAA #%01000000 OM2:OL2 = 0:1
c1f4 a7 20 [4] STAA TCTL1,X Setup OC2 to toggle on compares
c1f6 a7 23 [4] STAA TFLG1,X Clear any pending OC2F
c1f8 a7 22 [4] STAA TMSK1,X Enable OC2 interrupts
c1fa 0e [2] CLI Enable Interrupts
c1fb 20 fe [3] BRA * Interrupt driven from here

* SV5OC2 - Output Compare 2 service routine
*
* Called at each OC2 interrupt.

c1fd fc d0 00 [5] SV5OC2 LDD HDLY Get delay time for 1/2 cycle
c200 e3 18 [6] ADDD TOC2,X Add to last compare value
c202 ed 18 [5] STD TOC2,X Update OC2 (schedule next edge)
c204 1d 23 bf [7] BCLR TFLG1,X $BF Clear OC2F
c207 3b [12] RTI ** Return from OC2 service **

*
***** END Ex 10-5

* TIMER EXAMPLE 10-6
* OC1, OC2, and OC3 used together to produce 2 PWM signals
 *
 * OC1 controls two pins of port A in conjunction with OC2 and OC3
 * OC1 drives the period and the scheduling of OC2 and OC3
 * OC2 & OC3 automatically control pins but don’t generate interrupts
 * Set "PWMP1P", "PWMDC1" & "PWMDC2" manually before running this example
 * "PWMP1P" sets size of a 1% segment of PWM period (cycles)
 * min PWMP1P for this program is 2 (period = 200 cycles)
 * "PWMDC1" sets Duty cycle for OC2 pin in % (0 to $64 hex)
 * "PWMDC2" sets Duty Cycle for OC3 pin in % (0 to $64 hex)
 * Duty cycle (%) will be translated into a # of cycles offset
 * and period will be calculated as (100 * PWMP1P) at prog start
 * PA4 pin will toggle at each OC1 compare as a scope reference signal

Reference Manual M68HC11 — Rev. 6

434 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Listing of Timer Examples
Listing - Timer Examples Sheet 10 of 16

 * Produces high going PWM signals of the period and duty cycle specified
 * Note actually only produces PWMs of 50% to 100% because spec’d duty of
 * 0 to 50% is changed to low going PWM w/duty cyc = [100% - spec(0-50)]
 *
 * This program runs on an EVB board and drives output pins.
 * An oscilloscope is used to study the results.

c208 8e 00 47 [3] INZ6 LDS #$0047 Top of User’s stack area on EVB
c20b 86 7e [2] LDAA #$7E Jump (extended) Opcode
c20d 97 df [3] STAA PVOC1 OC1 Pseudo Vector see manual
c20f ce c2 69 [3] LDX #SV6OC1 Address of OC1 service routine
c212 df e0 [4] STX PVOC1+1 Finish JMP inst to OC1 routine
c214 ce 10 00 [3] LDX #REGBAS Point to register block
c217 86 50 [2] LDAA #%01010000 OMx:OLx = 0:1 for toggle
c219 a7 20 [4] STAA TCTL1,X OC2 and OC3 for toggle
c21b 86 70 [2] LDAA #%01110000 OC1M6,5, & 4 = 1
c21d a7 0c [4] STAA OC1M,X Control OC2/PA6, OC3/PA5, & PA4
c21f 5f [2] CLRB Build OC1D initial value in B
c220 b6 d0 03 [4] LDAA PWMDC1 Check for OC2 duty > or = 50%
c223 81 32 [2] CMPA #50
c225 23 02 [3] BLS ARNZ61 If<50% OC1 goes lo OC2 togls hi
c227 cb 40 [2] ADDB #%01000000 else OC1 goes high OC2 togls lo
c229 b6 d0 04 [4] ARNZ61 LDAA PWMDC2 Check for OC3 duty > or = 50%
c22c 81 32 [2] CMPA #50
c22e 23 02 [3] BLS ARNZ62 I<50% OC1 goes lo OC3 togls hi
c230 cb 20 [2] ADDB #%00100000 else OC1 goes hi, OC3 togls lo
c232 e7 0d [4] ARNZ62 STAB OC1D,X Store starting value for OC1D

* Calculate period & duty cycle as cycle count offsets
c234 b6 d0 02 [4] LDAA PWMP1P 1% of period
c237 c6 64 [2] LDAB #100
c239 3d [10] MUL 100 * PWMP1P = PWMPER
c23a fd d0 1f [5] STD PWMPER Store period
c23d ed 16 [5] STD TOC1,X Start 1st PWM per @ TCNT=PWMPER
c23f b6 d0 03 [4] LDAA PWMDC1 Calculate offset for OC2
c242 8d 12 [6] BSR CALOFF Adj duty as req’d & calc offset
c244 ed 18 [5] STD TOC2,X Schedule first OC2 toggle
c246 b6 d0 04 [4] LDAA PWMDC2 Calculate offset for OC3
c249 8d 0b [6] BSR CALOFF Adj duty as req’d & calc offset
c24b ed 1a [5] STD TOC3,X Schedule first OC3 toggle

* Finish initialization
c24d 86 80 [2] LDAA #$80
c24f a7 23 [4] STAA TFLG1,X OC1F=1 to clr any old OC1 flag
c251 a7 22 [4] STAA TMSK1,X then OC1I=1 to enable OC1 int.
c253 0e [2] CLI

c254 20 fe [3] BRA * OC1 interrupt runs PWMs now

M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 435

Main Timer and Real-Time Interrupt
Listing - Timer Examples Sheet 11 of 16

*** Local subroutine to change duty cycle to offset cnt
* If duty < 50% ($32) change to 100-duty
* If duty >100% ($64) force to $64
* Finally mult by 1% of period (cyc)
* Enter with PWMDCx duty in A-reg, Return offset in D

c256 81 32 [2] CALOFF CMPA #50 Check for 0-49%
c258 24 04 [3] BHS ARN6A Around fixup
c25a 16 [2] TAB If <50% set to 100 - duty cycle
c25b 86 64 [2] LDAA #100
c25d 10 [2] SBA A-B to A
c25e 81 64 [2] ARN6A CMPA #100 Check for > 100%
c260 23 02 [3] BLS ARN6B
c262 86 64 [2] LDAA #100 If > 100% - set to 100%
c264 f6 d0 02 [4] ARN6B LDAB PWMP1P
c267 3d [10] MUL PWMP1P * adj’d duty cyc =OFFOCx
c268 39 [5] RTS ** Return from CALOFF **

*

* SV6OC1 - Output Compare 1 service routine

c269 ce 10 00 [3] SV6OC1 LDX #REGBAS Point to register block
c26c a6 0d [4] LDAA OC1D,X Make PA4 flip @ nxt OC1 compare
c26e 88 10 [2] EORA #%00010000 Flips OC1D4 bit(PA4 pin contrl)
c270 a7 0d [4] STAA OC1D,X Update nxt OC1 auto pattern
c272 ec 18 [5] LDD TOC2,X Get last OC2 compare value
c274 f3 d0 1f [6] ADDD PWMPER Add count equiv to period
c277 ed 18 [5] STD TOC2,X Update OC2 (schedule next OC2)
c279 ec 1a [5] LDD TOC3,X Get last OC3 compare value
c27b f3 d0 1f [6] ADDD PWMPER Add count equiv to period
c27e ed 1a [5] STD TOC3,X Update OC3 (schedule next OC3)
c280 ec 16 [5] LDD TOC1,X Get last OC1 compare value
c282 f3 d0 1f [6] ADDD PWMPER Add count equiv to period
c285 ed 16 [5] STD TOC1,X Update OC1 (schedule next OCl)
c287 1d 23 7f [7] BCLR TFLG1,X $7F Clear OC1F
c28a 3b [12] RTI ** Return from OC1 service **

*
***** END Ex 10-6

* TIMER EXAMPLE 10-7
 * OC2 used alone to produce one PWH signal
 *
 * OC2 controls period and duty cycle of one port A pin
 * Set “PWMP1P” & “PWMDC1” manually before running this
 * example
 * “PWMP1P” sets size of a 1% segment of PWM period
 * (in cycles)
 * “PWMDC1” sets Duty cycle for OC2 pin in % - NOTE: This
 * program will not work properly with values of duty
 * cycle too near 0 or 100%
 * Refer to User’s Manual text for discussions
 * Program calculates “OFFHI” and “OFFLO” at start
Reference Manual M68HC11 — Rev. 6

436 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Listing of Timer Examples
Listing - Timer Examples Sheet 12 of 16

* This program runs on EVB board & drives PA6/OC2 pin.
* An oscilloscope is used to study the results.

c28b 8e 00 47 [3] INZ7 LDS #$0047 Top of User’s stack area on EVB
c28e 86 7e [2] LDAA #$7E Jump (extended) Opcode
c290 97 dc [3] STAA PVOC2 OC2 Pseudo Vector
c292 ce c2 c2 [3] LDX #SV7OC2 Address of OC2 service routine
c295 df dd [4] STX PVOC2+1 Finish JMP instruc to OC2 prog
c297 ce 10 00 [3] LDX #REGBAS Point to register block

c29a b6 d0 03 [4] LDAA PWMDC1 Calculate OC2 high time
c29d f6 d0 02 [4] LDAB PWMP1P 1% of period
c2a0 3d [10] MUL

* PWMP1P * duty cycle = high part of period
c2a1 fd d0 21 [5] STD OFFHI Save high offset
c2a4 b6 d0 02 [4] LDAA PWMP1P 1% of period
c2a7 c6 64 [2] LDAB #100
c2a9 3d [10] MUL 100 * PWMP1P = period
c2aa b3 d0 21 [6] SUBD OFFHI period - high time = low time
c2ad fd d0 23 [5] STD OFFLO Store low offset

* Finish initialization

c2b0 86 c0 [2] LDAA #%11000000 OM2:OL2 = 1:1 for set pin high
c2b2 a7 20 [4] STAA TCTL1,X 1st OC2 starts first high time
c2b4 cc 00 00 [3] LDD #$0000
c2b7 ed 18 [5] STD TOC2,X Start 1st PWM period @ TCNT=0
c2b9 86 40 [2] LDAA #$40
c2bb a7 23 [4] STAA TFLG1,X OC2F=1 to clr any old OC2 flag
c2bd a7 22 [4] STAA TMSK1,X then OC2I=1 to enable OC2 inter
c2bf 0e [2] CLI

c2c0 20 fe [3] BRA * OC2 interrupt runs PWM now

* SV7OC2 - Output Compare 2 service routine

c2c2 ce 10 00 [3] SV7OC2 LDX #REGBAS Point to register block
c2c5 1f 20 40 05 [7] BRCLR TCTL1,X %01000000 ADDLO Which half of cyc?
c2c9 fc d0 21 [5] LDD OFFHI High part so add OFFHI to OC2
c2cc 20 03 [3] BRA UPOC2
c2ce fc d0 23 [5] ADDLO LDD OFFLO Low part so add OFFLO to OC2
c2d1 e3 18 [6] UPOC2 ADDD TOC2,X Add to last compare value
c2d3 ed 18 [5] STD TOC2,X Update OC2 (schedule next edge)
c2d5 a6 20 [4] LDAA TCTL1,X Change OL2 to setup next edge
c2d7 88 40 [2] EORA #%01000000 Inverts OL2 bit
c2d9 a7 20 [4] STAA TCTL1,X Update control reg
c2db 1d 23 bf [7] BCLR TFLG1,X $BF Clear OC2F
c2de 3b [12] RTI ** Return from OC2 service **

*
***** END Ex 10-7
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 437

Main Timer and Real-Time Interrupt
Listing - Timer Examples Sheet 13 of 16

* General purpose subroutines

 * P5DEC - Subroutine to display a five digit decimal
 * number at "DBUFR".
 * Prints in the form “xx,xxx” with leading zeros
 * suppressed. Prints 6 columns, leading spaces,
 * units always prints (0-9)
 *
 * Calls EVB routine ".OUTA"
 * Calls "SKP1" with BSR to advance X and print a
 * leading space SKP1 subroutine follows P5DEC
 * All registers are unchanged upon return from P5DEC

c2df 3c [4] P5DEC PSHX Save registers
c2e0 37 [3] PSHB
c2e1 36 [3] PSHA
c2e2 ce d0 17 [3] LDX #DBUFR Point at decimal (MS character)
c2e5 86 30 [2] LDAA #$30 Chk for leading 0s (ASCII)
c2e7 a1 00 [4] CMPA 0,X Check 10,000s digit
c2e9 26 19 [3] BNE P10K Start at 10k digit
c2eb 8d 3d [6] BSR SKP1 INX & print a space
c2ed a1 00 [4] CMPA 0,X Chk 1,000s (A still=ASCII<sp>)
c2ef 26 19 [3] BNE P1K Start at 1k digit
c2f1 8d 37 [6] BSR SKP1 INX & print a space
c2f3 8d 35 [6] BSR SKP1 INX & print extra sp for “,”
c2f5 09 [3] DEX just wanted <sp> so back up 1
c2f6 a1 00 [4] CMPA 0,X Check 100s digit
c2f8 26 1b [3] BNE P100 Start at 100s digit
c2fa 8d 2e [6] BSR SKP1 INX & print a space
c2fc a1 00 [4] CMPA 0,X Check 10s digit
c2fe 26 1b [3] BNE P10 Start at 10s digit
c300 8d 28 [6] BSR SKP1 INX & print a space
c302 20 1d [3] BRA P1 Start at 1s digit (default)
c304 a6 00 [4] P10K LDAA 0,X 10,000s digit
c306 bd ff b8 [6] JSR OUTA Print 10,000s digit
c309 08 [3] INX Advance pointer to next digit
c30a a6 00 [4] P1K LDAA 0,X 1,000s digit
c30c bd ff b8 [6] JSR OUTA Print it
c30f 86 2c [2] LDAA #’,’ ASCII comma
c311 bd ff b8 [6] JSR OUTA Print
c314 08 [3] INX Advance pointer to next digit
c315 a6 00 [4] P100 LDAA 0,X 100s digit
c317 bd ff b8 [6] JSR .OUTA Print it
c31a 08 [3] INX Advance pointer to next digit
c31b a6 00 [4] P10 LDAA 0,X 10s digit
c31d bd ff b8 [6] JSR OUTA Print it
c320 08 [3] INX Advance pointer to next digit
c321 a6 00 [4] P1 LDAA 0,X 1s digit
c323 bd ff b8 [6] JSR OUTA Print it
c326 32 [4] PULA Restore registers
c327 33 [4] PULB
c328 38 [5] PULX
c329 39 [5] RTS ** Return from P5DEC **
Reference Manual M68HC11 — Rev. 6

438 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Listing of Timer Examples
Listing - Timer Examples Sheet 14 of 16

*** Local SKP1 subroutine (called from above with BSRS)
c32a 36 [3] SKPI PSHA Save A
c32b 08 [3] INX Advance X
c32c 86 20 [2] LDAA #$20 ASCII <sp>
c32e bd ff b8 [6] JSR OUTA Print the <sp>
c331 32 [4] PULA Restore A
c332 39 [5] RTS ** Return from SKP1 **

 * HTOD - Subroutine to convert a 16-bit hex number to a
 * 5 digit decimal number.
 *
 * Uses 5 byte variable “DBUFR” for decimal ASCII result
 * On entry X points to hex value to be converted &
 * displayed
 * All registers are unchanged upon return

c333 3c [4] HTOD PSHX Save registers
c334 37 [3] PSHB
c335 36 [3] PSHA
c336 ec 00 [5] LDD 0,X D=hex value to be converted
c338 ce 27 10 [3] LDX #10000
c33b 02 [41] IDIV freq+10,000 -> X; r -> D
c33c 8f [3] XGDX Sav r in X 10,000s digit in A:B
c33d cb 30 [2] ADDB #$30 Convert to ASCII
c33f f7 d0 17 [4] STAB DBUFR Store in decimal buffer
c342 8f [3] XGDX r back to D
c343 ce 03 e8 [3] LDX #1000
c346 02 [41] IDIV r+1,000 -> X; r -> D
c347 8f [3] XGDX Sav r in X; 1,000s digit in A:B
c348 cb 30 [2] ADDB #$30 Convert to ASCII
c34a f7 d0 18 [4] STAB DBUFR+1 Store in decimal buffer
c34d 8f [3] XGDX r back to D
c34e ce 00 64 [3] LDX #100
c351 02 [41] IDIV r+100 -> X; r -> D
c352 8f [3] XGDX Save r in X; 100s digit in A:B
c353 cb 30 [2] ADDB #$30 Convert to ASCII
c355 f7 d0 19 [4] STAB DBUFR+2 Store in decimal buffer
c358 8f [3] XGDX r back to D
c359 ce 00 0a [3] LDX #10
c35c 02 [41] IDIV r+10 -> X; r in D (B= 1s digit)
c35d cb 30 [2] ADDB #$30 Convert to ASCII
c35f f7 d0 1b [4] STAB DBUFR+4 Store to units digit
c362 8f [3] XGDX 10s digit to D (A:B)
c363 cb 30 [2] ADDB #$30 Convert to ASCII
c365 f7 d0 1a [4] STAB DBUFR+3 Store in decimal buffer
c368 32 [4] PULA Restore registers
c369 33 [4] PULB
c36a 38 [5] PULX
c36b 39 [5] RTS **Return**

M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 439

Main Timer and Real-Time Interrupt
Listing - Timer Examples Sheet 15 of 16

 * H6TOD8 - Subroutine to convert a 24-bit hex number to
 * an 8 digit decimal number.
 *
 * Uses 3 byte variable "HTEMP" for hex working value
 * Uses 8 byte variable "DBUFR" for decimal ASCII result
 * On entry X points to the hex value to be converted &
 * displayed
 * All registers are unchanged upon return

c36c 18 3c [5] H6TOD8 PSHY Save registers
c36e 3c [4] PSHX
c36f 37 [3] PSHB
c370 36 [3] PSHA
c371 ec 01 [5] LDD 1,X Move hex to HTEMP to convert
c373 fd d0 0b [5] STD HTEMP+1 Two lower bytes moved
c376 a6 00 [4] LDAA 0,X Upper byte
c378 b7 d0 0a [4] STAA HTEMP
c37b 18 ce d0 17 [4] LDY #DBUFR Pnt @ MS digit of decimal buf’r
c37f ce c4 0d [3] LDX #CON10M Point at first 24-bit constant

c382 4f [2] HTDLP CLRA A keeps track of # of subtracts
c383 4c [2] HLPIN INCA Inner loop; once per subtract
c384 f6 d0 0c [4] LDAB HTEMP+2 Start 24-bit subtract
c387 e0 02 [4] SUBB 2,X
c389 f7 d0 0c [4] STAB HTEMP+2 Update low byte
c38c f6 d0 0b [4] LDAB HTEMP+1 Middle byte
c38f e2 01 [4] SBCB 1,X Sub with carry
c391 f7 d0 0b [4] STAB HTEMP+1 Update middle byte
c394 f6 d0 0a [4] LDAB HTEMP High byte
c397 e2 00 [4] SBCB 0,X
c399 f7 d0 0a [4] STAB HTEMP Update high byte
c39c 24 e5 [3] BCC HLPIN If no borrow; subtract again

c39e f6 d0 0c [4] LDAB HTEMP+2 Last subtract too far; add back
c3a1 eb 02 [4] ADDB 2,X
c3a3 f7 d0 0c [4] STAB HTEMP+2 Update low byte
c3a6 f6 d0 0b [4] LDAB HTEMP+1 Middle byte
c3a9 e9 01 [4] ADCB 1,X Sub with carry
c3ab f7 d0 0b [4] STAB HTEMP+1 Update middle byte
c3ae f6 d0 0a [4] LDAB HTEMP High byte
c3b1 e9 00 [4] ADCB 0,X
c3b3 f7 d0 0a [4] STAB HTEMP Update high byte

c3b6 8b 2f [2] ADDA #$2F Convert digit to ASCII
c3b8 18 a7 00 [5] STAA 0,Y Store to decimal buffer
c3bb 18 08 [4] INY Point to next decimal digit
c3bd 08 [3] INX Point to next 24-bit const
c3be 08 [3] INX
c3bf 08 [3] INX
c3c0 8c c4 22 [4] CPX #CONEND See if done yet
c3c3 26 bd [3] BNE HTDLP If not done, do nxt digit
Reference Manual M68HC11 — Rev. 6

440 Main Timer and Real-Time Interrupt MOTOROLA

Main Timer and Real-Time Interrupt
Listing of Timer Examples
Listing - Timer Examples Sheet 16 of 16

c3c5 b6 d0 0c [4] LDAA HTEMP+2 Get 1s digit
c3c8 8b 30 [2] ADDA # $30 Convert to ASCII
c3ca 18 a7 00 [5] STAA 0,Y Store to last decimal digit

c3cd 32 [4] PULA Restore registers
c3ce 33 [4] PULB
c3cf 38 [5] PULX
c3d0 18 38 [6] PULY
c3d2 39 [5] RTS ** Return from H6TOD8 **

*
* Display Messages & Constants
*

c3d3 20 43 79 63 6c MSGCYC FCC ’ Cycles ’
 65 73 20 20 20
 20 20
c3df 04 FCB $04 End-of-message mark
c3e0 20 48 7a MSGHZ FCC ’ Hz’
c3e3 04 FCB $04 End-of-message mark
c3e4 46 72 65 71 2e MSGER1 FCC ’Freq. is too high’
 20 69 73 20 74
 6f 6f 20 68 69
 67 68
c3f5 04 FCB $04 End-of-message mark
c3f6 20 6d 69 63 72 MSGMS FCC ’ microseconds’
 6f 73 65 63 6f
 6e 64 73
c403 04 FCB $04 End-of-message mark
c404 20 53 65 63 6f MSGSEC FCC ’ Seconds’
 6e 64 73
c40c 04 FCB $04 End-of-message mark

c40d 98 96 80 CON10M FCB $98,$96,$80 = 24-bit equiv of 10,000,000
c410 0f 42 40 FCB $0F,$42,$40 = 24-bit equiv of 1,000,000
c413 01 86 a0 FCB $01,$86,$A0 = 24-bit equiv of 100,000
c416 00 27 10 FCB $00,$27,$10 = 24-bit equiv of 10,000
c419 00 03 e8 FCB $00,$03,$E8 = 24-bit equiv of 1,000
c41c 00 00 64 FCB $00,$00,$64 = 24-bit equiv of 100
c41f 00 00 0a FCB $00,$00,$0A = 24-bit equiv of 10
c422 CONEND EQU * Don’t need 1s const

* END OF FILE

0 error(s)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Main Timer and Real-Time Interrupt 441

Main Timer and Real-Time Interrupt
Reference Manual M68HC11 — Rev. 6

442 Main Timer and Real-Time Interrupt MOTOROLA

Reference Manual — M68HC11

Section 11. Pulse Accumulator
11.1 Contents

11.2 Introduction .443

11.3 General Description .444
11.3.1 Pulse Accumulator Block Diagram445
11.3.2 Pulse Accumulator Control and Status Registers 447

11.4 Event Counting Mode .450
11.4.1 Interrupting after N Events .451
11.4.2 Counting More Than 256 Events .451

11.5 Gated Time Accumulation Mode .453
11.5.1 Measuring Times Longer Than the Range

of the 8-Bit Counter .454
11.5.2 Configuring for Interrupt after a Specified Time455

11.6 Other Uses for the PAI Pin .455

11.7 Timing Details for the Pulse Accumulator.455

11.2 Introduction

The pulse accumulator, which is similar to the timers in older M6805
microcontroller units (MCU), is a much simpler system than the main
timer discussed in Section 10. Main Timer and Real-Time Interrupt.
This system is based on an 8-bit counter and can be configured to
operate as a simple event counter or for gated time accumulation. Unlike
the main timer, the 8-bit pulse accumulator counter can be read or
written at any time (the 16-bit counter in the main timer cannot be
written). Control bits allow the user to configure and control the pulse
accumulator subsystem. Two maskable interrupts are associated with
the system, each having its own controls and interrupt vector.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pulse Accumulator 443

Pulse Accumulator
The port A bit 7 I/O pin (PA7/PAI/OC1) associated with the pulse
accumulator can be configured to act as a clock (event counting mode)
or as a gate signal to enable a free-running E divided by 64 clock to the
8-bit counter (gated time accumulation mode). The alternate functions of
the pulse accumulator input (PAI) pin present some interesting
application possibilities.

11.3 General Description

The pulse accumulator is an 8-bit counter/timer system that can be
configured to operate in either of two basic modes. In the event counting
mode, the 8-bit counter is clocked to increasing values at each active
edge of the PAI pin. In the gated time accumulation mode, the 8-bit
counter is clocked by a free-running E divided by 64 clock subject to the
PAI pin being active. Figure 11-1 is a simplified block diagram of the
pulse accumulator in each of these two possible modes.

Figure 11-1. Pulse Accumulator Operating Modes

Table 11-1 summarizes the important timing periods for the pulse
accumulator (when operating in gated time accumulation mode) for
various common crystal rates. The formulas at the bottom of the table
can be used for a different crystal frequency than those shown.

Table 11-1. Pulse Accumulator Timing Periods versus Crystal Rate

E
Crystal

Frequency
E Period

1 Count
(Resolution)

Overflow
(Range)

2.1 MHz 223 Hz 477 ns 30.52 µs 7.81 ms

2 MHz 8 MHz 500 ns 32 µs 8.19 ms

1 MHz 4 MHz 1 µs 64 µs 16.38 ms

Formula: 64 (E period) 16,384 (E period)

PA7/
PAI/
OC1

PIN

8-BIT COUNTER

PACNT
CLOCK

PA7/
PAI/
OC1

PIN

8-BIT COUNTER

PACNT

CLOCK

E ÷ 64 CLOCK
(FROM MAIN TIMER)

PAMOD = 1
GATED-TIME ACCUMULATION MODE

PAMOD = 0
EVENT COUNTING MODE
Reference Manual M68HC11 — Rev. 6

444 Pulse Accumulator MOTOROLA

Pulse Accumulator
General Description
The free-running E ÷ 64 clock is a tap off the main timer clocking chain
(see 10.4.1 Overall Clock Divider Structure and Figure 10-3. Timing
Summary for Oscillator Divider Signals). In general, any signal
applied to the PAI pin is asynchronous to this E ÷ 64 clock; therefore, the
first count could occur anywhere between zero and 64 E clocks after the
PAI pin goes to the chosen active level.

User software can enable the pulse accumulator system, select its
mode, and determine the polarity of signals recognized at the PAI pin.
Two separate interrupts are associated with the pulse accumulator
system: One is generated by detection of a selected edge at the PAI pin;
the other is generated when the 8-bit counter rolls over from $FF to $00
(overflow). Each of these interrupt sources has its own local enable bit
and its own interrupt vector; thus, no software polling is required to
determine the cause of any pulse accumulator interrupts.

11.3.1 Pulse Accumulator Block Diagram

Figure 11-2 is a functional block diagram of the pulse accumulator
subsystem. The central element of this system is an 8-bit up-counter that
can be read or written at any time. The pulse accumulator enable
(PAEN) control bit enables/disables this 8-bit counter. The pulse
accumulator mode (PAMOD) bit selects the clock source to this counter.
In the event counting mode, the clock is the output of the edge detector
of the PAI pin. In the gated time accumulation mode, the clock is a
free-running, internal E ÷ 64 clock ANDed (gated) with the active level of
the PAI pin. The pulse accumulator edge select (PEDGE) bit controls the
polarity of signals on the PAI pin that will be recognized by the pulse
accumulator system.

The pulse accumulator overflow interrupt enable (PAOVI) bit determines
whether a pulse accumulator overflow interrupt flag (PAOVF) will
generate hardware interrupt requests. The pulse accumulator input edge
interrupt enable (PAII) bit determines whether detected edges at the PAI
pin will cause the pulse accumulator input flag (PAIF) to be set
(generating hardware interrupt requests). In addition to the PAII and
PAOVI local interrupt enables, these interrupts are subject to masking by
the I bit in the condition code register in the central processor unit (CPU).
For additional information about interrupts, refer to Section 5. Resets
and Interrupts.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pulse Accumulator 445

Pulse Accumulator
Figure 11-2. Block Diagram of Pulse Accumulator Subsystem

The input buffer on the PAI pin is always connected from the pin to the
pulse accumulator and port A read logic, but the output buffer is enabled
or disabled by the data direction control bit (DDRA7) in the pulse
accumulator control (PACTL) register. Normally, when the pulse
accumulator is being used, the PAI pin is configured as a
high-impedance input (DDRA7 = 0), but it is possible for software or the
main timer (by way of output compare 1) to directly control the pulse
accumulator by setting DDRA7 = 1 (output). A detailed transistor-level
schematic of this pin logic is shown in Section 7. Parallel Input/Output.

PACNT 8-BIT COUNTER

ENABLE

OVERFLOW

1

2

INTERRUPT
REQUESTS

INTERNAL
DATA BUS

PACTL CONTROL

TFLG2 INTERRUPT STATUSTMSK2 INT ENABLES

PA
O

VI

PA
II

DD
R

A7

PA
EN

PA
M

O
D

PE
D

G
E

PA
O

VF

PA
IF

OUTPUT
BUFFER

PAI EDGE

PAEN

E ÷ 64 CLOCK
(FROM MAIN TIMER)

FROM
MAIN TIMER

OC1

DISABLE
FLAG SETTING

PAOVI

PAOVF

PAII

PAIF

INPUT BUFFER
AND

EDGE DETECTOR

PA7/
PAI/
OC1

PIN 2:1
MUX

PAEN

CLOCK

DATA
BUS
Reference Manual M68HC11 — Rev. 6

446 Pulse Accumulator MOTOROLA

Pulse Accumulator
General Description
11.3.2 Pulse Accumulator Control and Status Registers

Figure 11-3 through Figure 11-6 show all control and status registers
related to the pulse accumulator. Each of these registers and bits is
discussed in detail in the following paragraphs.

The 8-bit pulse accumulator counter (PACNT–$1027) is not affected by
reset and can be read or written any time. Counting is synchronized to
the internal PH2 clock so that incrementing and reading occur during
opposite half cycles.

Address: $1024

Bit 7 6 5 4 3 2 1 Bit 0

Read:
TOI RTII PAOVI PAII

0 0
PR1 PR0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 11-3. Timer Interrupt Mask 2 Register (TMSK2)

Address: $1025

Bit 7 6 5 4 3 2 1 Bit 0

Read: TOF RTIF PAOVF PAIF 0 0 0 0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 11-4. Timer Interrupt Flag 2 Register (TFLG2)

Address: $1026

Bit 7 6 5 4 3 2 1 Bit 0

Read:
DDRA7 PAEN PAMOD PEDGE

0 0
RTR1 RTR0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 11-5. Pulse Accumulator Control Register (PACTL)

Address: $1027

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 7 6 5 4 3 2 2 Bit 0

Write:

Reset: Unaffected by reset

Figure 11-6. Pulse Accumulator Count Register (PACNT)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pulse Accumulator 447

Pulse Accumulator
The following paragraphs describe the pulse accumulator-related bits in
the PACTL register (see Figure 11-7). Bits 2 and 3 are not implemented
and always read as 0s. Although bits 0 and 1 are not related to the pulse
accumulator, an awareness of these real-time interrupt (RTI) rate bits is
necessary to prevent inadvertent change while writing to the pulse
accumulator-related bits.

DDRA7 — Data Direction Control for Port A Bit 7
0 = Port A bit 7 configured for input only (output buffer disabled)
1 = Port A bit 7 configured for output

Normally, when the pulse accumulator is used, the PAI pin will be
configured as an input. In unusual cases, the PA7/PAI/OC1 pin can
be configured as an output to allow OC1 or a software output to drive
the pulse accumulator system. Since the input buffer is always
connected to the pin (even when the pin is configured as an output),
any output function that is controlling the PA7 pin will also be driving
the pulse accumulator.

PAEN — Pulse Accumulator Enable Bit
0 = Pulse accumulator disabled
1 = Pulse accumulator enabled

When the pulse accumulator is disabled, the 8-bit counter stops
counting, and pulse accumulator interrupts are inhibited. Though the
flags cannot become set, they will remain set if they were 1s at the
time the pulse accumulator was disabled.

PAMOD — Pulse Accumulator Mode Select Bit
0 = External event counting mode (pin acts as clock)
1 = Gated time accumulation mode (pin acts as clock enable for

E ÷ 64 clock)

Address: $1026

Bit 7 6 5 4 3 2 1 Bit 0

Read:
DDRA7 PAEN PAMOD PEDGE 0 0 RTR1 RTR0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 11-7. Pulse Accumulator-Related Bits in PACTL
Reference Manual M68HC11 — Rev. 6

448 Pulse Accumulator MOTOROLA

Pulse Accumulator
General Description
PEDGE — Pulse Accumulator Edge Select Bit
0 = Pulse accumulator responds to falling edges

(inhibit gate level is 0).
1 = Pulse accumulator responds to rising edges

(inhibit gate level is 1).

In gated time accumulation mode (PAMOD = 1), the PEDGE bit has
added meaning. In addition to specifying the edge polarity that causes
the PAIF bit to be set, PEDGE also controls the inhibit gate level,
which disables the internal, free-running E ÷ 64 clock to the pulse
accumulator counter. The PAIF interrupts occur at the trailing edge of
a gate enable signal; thus, selecting falling edges causes the
free-running E ÷ 64 clock to be disabled while the PAI pin is low.

Figure 11-8, Figure 11-9, and the following paragraphs explain the
pulse accumulator interrupt flags and the pulse accumulator interrupt
enable bits. The other shaded bits in these registers not related to the
pulse accumulator system are discussed in Section 10. Main Timer
and Real-Time Interrupt.

PAOVI — Pulse Accumulator Overflow Interrupt Enable Bit
PAOVF — Pulse Accumulator Overflow Interrupt Flag

The PAOVF status bit is set to 1 automatically each time the pulse
accumulator count rolls over from $FF to $00. This status bit is

Address: $1024

Bit 7 6 5 4 3 2 1 Bit 0

Read:
TOI RTII PAOVI PAII 0 0 PR1 PR0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 11-8. Pulse Accumulator Interrupt Enable Bits

Address: $1025

Bit 7 6 5 4 3 2 1 Bit 0

Read:
TOF RTIF PAOVF PAIF 0 0 0 0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 11-9. Pulse Accumulator Interrupt Flags
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pulse Accumulator 449

Pulse Accumulator
cleared by writing to the TFLG2 register with a 1 in the corresponding
data bit position (bit 4). The PAOVI control bit allows the user to
configure the pulse accumulator overflow for polled or interrupt-driven
operation but does not affect the setting or clearing of PAOVF. When
PAOVI is 0, pulse accumulator overflow interrupts are inhibited, and
the system is operating in a polled mode. In this mode, PAOVF must
be polled (sampled) by user software to determine when an overflow
has occurred. When the PAOVI control bit is 1, a hardware interrupt
request is generated each time PAOVF is set to 1. Before leaving the
interrupt service routine, software must clear PAOVF by writing to the
TFLG2 register. For additional information, refer to 10.4.4 Tips for
Clearing Timer Flags.

PAII — Pulse Accumulator Input Edge Interrupt Enable Bit
PAIF — Pulse Accumulator Input Edge Interrupt Flag

The PAIF status bit is set to 1 automatically each time a selected edge
is detected at the PA7/PAI/OC1 pin. This status bit is cleared by
writing to the TFLG2 register with a 1 in the corresponding data bit
position (bit 5). The PAII control bit allows the user to configure the
pulse accumulator input edge detect for polled or interrupt-driven
operation but does not affect the setting or clearing of the PAIF bit.
When PAII is 0, pulse accumulator input interrupts are inhibited, and
the system is operating in a polled mode. In this mode, the PAIF bit
must be polled (sampled) by user software to determine when an
edge has occurred. When the PAII control bit is 1, a hardware
interrupt request is generated each time PAIF is set to 1. Before
leaving the interrupt service routine, software must clear PAIF by
writing to the TFLG2 register. For additional information, refer to
10.4.4 Tips for Clearing Timer Flags.

11.4 Event Counting Mode

Many MCU applications require "things" to be counted. These things are
called events, but in real applications they might be anything: pieces on
an assembly line, cycles of an incoming signal, or units of time. To be
counted by the pulse accumulator, these things must be translated into
Reference Manual M68HC11 — Rev. 6

450 Pulse Accumulator MOTOROLA

Pulse Accumulator
Event Counting Mode
rising or falling edges on the PAI pin. Either edge will do because
software can pick which edge will be recognized.

A trivial example of event counting might be to count pieces on an
assembly line. A light emitter/detector pair could be placed across the
path of the pieces so that, as each piece passes the sensor, the light
beam is interrupted and a logic-level signal is produced, which can be
connected to the PAI pin.

11.4.1 Interrupting after N Events

By writing to the PACNT, the pulse accumulator can be set up to produce
an interrupt after N events. The trick is to write the twos complement of
the number (N) to PACNT so that the counter will overflow after N
counts. If the following program sequence is used, the PACNT will
overflow after the 100th count:

---- 86 64 [2] LDAA #100 Hex ($64)
---- 40 [2] NEGA Twos complement ($9C)
---- b7 10 27 [4] STAA PACNT Store to pulse accum counter

11.4.2 Counting More Than 256 Events

More than 256 events can be counted by using software to keep track of
how many times the PACNT overflows. Before the first event, calculate
the number of overflows needed and a value corresponding to any
remainder that is left after seeing how many whole times 256 goes into
the intended count. Two cases are used as examples. In the first case,
512 ($0200) events will be counted; in the second case, 515 ($0203)
events will be counted. In both cases, assume the desired count is in the
D register. Since D is the concatenation of the A register (upper 8 bits of
D) and the B register (lower 8 bits of D), division to see how many whole
times 256 can go into the desired count is not necessary (the A register
has this count).

For case 1, two overflows are needed (there is no remainder). Zero is
stored to PACNT. For reasons illustrated in the following paragraphs, the
user may want to negate the B register instead and store the result to
PACNT (negative of $00 is $00). Save A in a RAM variable so software
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pulse Accumulator 451

Pulse Accumulator
can decrement it at each overflow. As the pulse accumulator starts
counting, the first overflow will occur after detecting the 256th event
(counter counts $00–01–02 ... FE–FF–00). The second overflow will
occur after the 512th count. If the RAM variable was decremented at
each overflow (it started at $02), it would become $00 after the second
overflow (for instance, after the desired 512 events).

For case 2, negate the B register and store the result to PACNT
(negative of $03 is $FD). As the pulse accumulator starts counting, the
first overflow will occur after detecting the third event (counter counts
$FD–FE–FF–00). The second overflow will occur after the 259th count,
and the third overflow will occur after the 515th count. A third overflow is
needed because there was an initial remainder that had to be counted
before starting to count whole sets of 256 events.

The user can write a program that will handle either case by checking the
B register to see if it was 0. If it was not 0, the A register is incremented
before storing it to the RAM variable that keeps track of overflows.
Before negating the B register, test B and branch around an increment
A register instruction if the B register was 0. This procedure is
demonstrated in the following partial listing:

---- cc 02 03 [3] LDD #515 Get desired count in A:B
---- 40 [2] TSTB Test for remainder count
---- 27 01 [2] BEQ ARNINC If none; skip the INCA
---- 4c [2] INCA Increment the overflow count
---- 50 [2] ARNINC NEGB Twos complement remainder in B
---- f7 10 27 [4] STAB PACNT Store to pulse accum counter
---- b7 D0 00 [4] STAA OVCNT Store to RAM overflow variable

The test B instruction can be eliminated (saving a byte of program space
and two cycles of execution time) by checking the carry flag that results
after the negate-B operation. Carry is set in all cases except when B is
0). The following partial listing demonstrates this slightly shorter
procedure:

---- cc 02 03 [3] LDD #515 Get desired count in A:B
---- 50 [2] NEGB C-bit only cleared if B was 0
---- 27 01 [2] BCC ARNINC If B was ($00); skip the INCA
---- 4c [2] INCA Increment the overflow count
---- f7 10 27 [4] ARNINC STAB PACNT Store twos comp. remainder

count
---- b7 D0 00 [4] STAA OVCNT Store to RAM overflow variable
Reference Manual M68HC11 — Rev. 6

452 Pulse Accumulator MOTOROLA

Pulse Accumulator
Gated Time Accumulation Mode
This alternate approach illustrates that a sophisticated, careful user can
sometimes find tricks to save memory and execution time, but are they
that important in all MCU applications? The costs of this trick and others
like it are:

1. It often makes the program slightly more difficult to understand
(more risk of a mistake).

2. It takes extra development time. Remember, the savings in this
case is just one byte of program space and two cycles of execution
time.

11.5 Gated Time Accumulation Mode

This mode changes the pulse accumulator from a counter into a timer.
In this mode, the 8-bit PACNT is incremented every 64th E-clock cycle
provided the PAI pin is active. The PEDGE bit controls which level at the
PAI pin inhibits counting. This mode is called gated time accumulation
mode because the PACNT can be used to accumulate the total time the
pin was active over a series of pulses. Each time the PAI pin goes to the
chosen active level, the PACNT continues to count from where it left off
at the end of the previous pulse.

A more common use of gated time accumulation mode is to measure the
duration of single pulses (pulse-width measurement). Since this counter
does not start counting until the input signal becomes active, pulse-width
measurement is done a little differently than it would be with a main timer
input capture. With the pulse accumulator, the counter is set to 0 before
the pulse starts, and the resulting pulse time is directly read when the
pulse is finished; whereas, with input capture, it is necessary to capture
a starting count and an ending count and subtract.

Separate maskable interrupts are generated at counter overflow and at
the trailing edge of the counter enable signal on the PAI pin. The
overflow interrupt is useful for generating interrupts after a specific time
delay from when the pin became active or for measuring signals longer
than the range of the 8-bit counter. The PAI pin-related interrupt is useful
for signaling the end of a timing period; software can then be used to see
how long the input was active. These two interrupts can be used together
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pulse Accumulator 453

Pulse Accumulator
to create a pulse-width discriminator — for example, write the counter to
a value that would cause an overflow interrupt half way between the time
of the shorter pulse width and the longer pulse width. If the overflow
triggers before the PAI pin interrupt, the pulse is the longer size. If the
pin interrupt triggers before the overflow interrupt, the pulse is the
shorter size. If the pulse widths are longer than the range of the 8-bit
counter, incorporate a software overflow counter into the overflow
service routine and use the timeout of this software count, instead of the
first PAOVF interrupt, to discriminate between pulse durations.

11.5.1 Measuring Times Longer Than the Range of the 8-Bit Counter

Extending the timing range is done in much the same way as it is for
input captures. Because the pulse accumulator is 8 bits rather than
16 bits, overflows happen more often. As long as the input signal is
active, the user would count overflows. The PAI pin interrupt indicates
when the pulse ends (by setting the PAIF status bit and optionally
generating an interrupt). The period of the pulse will be:

(256 N + PACNT) × (64 E periods/count)

where:

N equals the number of overflows

PACNT equals the final count in the 8-bit pulse accumulator counter

The problems associated with overflows, which occur near input capture
edges in the main timer, are not present in the pulse accumulator. Since
the PACNT is not running before the leading edge of the pulse, there is
no potential confusion about an overflow near this edge. At the trailing
edge of the pulse, the PACNT also stops so any pending overflow will
count in the total. The PAOVF interrupt is higher priority than the PAIF
interrupt; therefore, a just-in-time overflow will always be serviced before
servicing the trailing edge of a pulse so the PAIF service routine does not
have to check for an overflow.
Reference Manual M68HC11 — Rev. 6

454 Pulse Accumulator MOTOROLA

Pulse Accumulator
Other Uses for the PAI Pin
11.5.2 Configuring for Interrupt after a Specified Time

This concept is the time equivalent of setting up an interrupt after
N events, which was previously discussed. First, calculate the number of
E ÷ 64 counts, which would be equivalent to the time period the user
wants to specify. For example, if a delay of 5 ms is desired, divide 5 ms
by the time for one E ÷ 64 count (from Table 11-1, one count equals 32
µs for E = 2 MHz). Since 5 ms divided by 32 µs equals 156.25, truncate
to 156. The resolution of the counter causes a tolerance of ± 32 µs (64
E periods; E = 2 MHz). Next, take the twos complement of this value and
store the result in the PACNT. When the input goes to its chosen active
level, the counter will start incrementing every 64 E cycles. An overflow
will occur after the 156th count.

11.6 Other Uses for the PAI Pin

At any time, software can read the logic level on the PA7/PAI/OC1 pin
even if one or more of the other functions associated with this pin is also
enabled. This pin can also be used as an extra edge-triggered interrupt
input pin when the pulse accumulator functions are not needed. (In fact,
examples have been presented in this chapter where this pin is being
used as an edge-triggered interrupt even while the pulse accumulator is
being used.) This pin has some advantages over the IRQ pin. The
PEDGE control bit allows the user to select either rising or falling edges.
(IRQ cannot be configured to detect rising edges.) The PAII control bit
allows the user to locally enable or disable this interrupt; in addition, the
I bit in the CPU condition code register acts as a global enable for all
I-bit-related interrupts. Finally, the PAIF status flag allows software to
detect a pending PAI pin interrupt and to clear the pending interrupt if
necessary (with IRQ this function is not possible).

11.7 Timing Details for the Pulse Accumulator

The timing information presented in the following paragraphs is much
more detailed than most users will ever need. This information is not
intended to replace guaranteed data sheet timing information.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pulse Accumulator 455

Pulse Accumulator
Figure 11-10 shows the timing related to edge detection at the
PA7/PAI/OC1 pin. Primarily, this timing concerns the event counting
mode, but the setting of the PAIF status flag applies to gated time
accumulation mode as well. PAI signals are synchronized to the internal
phase 2 (PH2) clock to prevent any interference between clocking and
reading the PACNT. This synchronization process limits the maximum
counting rate for the pulse accumulator to one-half the E-clock
frequency.

Any incoming edge [1] presented after the rising edge of E but before the
next rising edge of E is recognized during PH2 high and causes the PAIF
status flag [2] to be set at the falling edge of that PH2. In event counting
mode, the PACNT counter is incremented at that same PH2 falling edge.
The soonest another edge can be detected is two cycles later [3].

Figure 11-10. PAI Pin Edge-Detection Timing

In gated time accumulation mode, an internal, free-running E ÷ 64 clock
drives the PACNT whenever the PAI pin is at its chosen active level.
Figure 11-11 shows the timing relationship between the counter enable
signal at the PAI pin [1] and the start of counting. In general, the signal
at the PAI pin is asynchronous to the free-running E ÷ 64 clock; thus,
there would be an uncertainty about the delay between the active level
at the PAI pin and the first increment of the PACNT. The first increment
could come as early as [2], as late as [5], or at any PH2 falling edge
between (such as [3], [4], etc.).

PH2

PAIF

E

PACNT COUNT N + 1N

PAI PIN [1]

[2]
[3]
Reference Manual M68HC11 — Rev. 6

456 Pulse Accumulator MOTOROLA

Pulse Accumulator
Timing Details for the Pulse Accumulator
Knowing the relationship between software and the free-running E ÷ 64
clock is not normally useful, but it is theoretically possible to determine
this relationship. From Figure 10-3. Timing Summary for Oscillator
Divider Signals and the prescale control bit values (PR1–PR0), it can
be determined where the E ÷ 64 clock is tapped off the main timer.
Software can then read the low-order half of the 16-bit main timer
counter to see when the next edge will appear at the tap point. Because
this procedure can be involved, it is not worth pursuing unless there is a
very good reason.

Figure 11-11. Pin Enable versus Counting (Gated Accumulation Mode)

Figure 11-12 shows timing details for a pulse accumulator counter
overflow. At the PH2 falling edge where the PACNT count changes from
$FF to $00 [1], the PAOVF bit also is set [2].

Figure 11-12. Timing Details for Pulse Accumulator Counter Overflow

PH2

E

PACNT COUNT

PAI PIN [1]

[2] [3] [4] [5]

63 CYCLES

PH2

E

PACNT COUNT

PAOVF

[1]

[2]

00FF
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Pulse Accumulator 457

Pulse Accumulator
Reading or writing to the PACNT occurs in a portion of the PH2 cycle that
eliminates conflicts between accesses to PACNT and counting.

1. Figure 11-13(a) shows the detailed timing for a read of PACNT.

2. Figure 11-13(b) shows a write.

The address and data buses shown in Figure 11-13 are the internal
buses that have different timing than the external buses.

(a) PACNT Read

(b) PACNT Write

Figure 11-13. PACNT Read and Write

PH2

ADDRESS BUS
(INTERNAL)

E

PACNT COUNT

LDAA PACNT READ PULSE ACCUMULATOR COUNT (EXTENDED)

NN

OPCODE ADDR OPERAND (LO)OPERAND (HI) NEXT OPCODE

DATA BUS
(INTERNAL)

NN$0E$10OPCODE

$1027 PACNT

FETCH OPCODE FETCH 16-BIT OPERAND ADDRESS READ PACNT

PH2

ADDRESS BUS
(INTERNAL)

E

PACNT COUNT

STAA PACNT WRITE TO PULSE ACCUMULATOR (EXTENDED)

NN

OPCODE ADDR OPERAND (LO)OPERAND (HI) NEXT OPCODE

DATA BUS
(INTERNAL)

NN$27$10OPCODE

$1027 PACNT

FETCH OPCODE FETCH 16-BIT OPERAND ADDRESS WRITE PACNT

OLD COUNT
Reference Manual M68HC11 — Rev. 6

458 Pulse Accumulator MOTOROLA

Reference Manual — M68HC11

Section 12. Analog-to-Digital Converter System
12.1 Contents

12.2 Introduction .459

12.3 Charge-Redistribution A/D .460

12.4 A/D Converter Implementation on MC68HC11A8 471
12.4.1 MC68HC11A8 Successive-Approximation

A/D Converter .471
12.4.2 A/D Charge Pump and Resistor-Capacitor (RC)

Oscillator .472
12.4.3 MC68HC11A8 A/D System Control Logic 474
12.4.4 A/D Control/Status Register (ADCTL) 476
12.4.5 A/D Result Registers (ADR4–AD1) 478

12.5 A/D Pin Connection Considerations .478

12.2 Introduction

The MC68HC11A8 analog-to-digital (A/D) converter system uses an
all-capacitive charge-redistribution technique for conversions. The A/D
system is an 8-channel, 8-bit, successive approximation converter with
±1/2 least significant bit (LSB) accuracy over the complete operating
temperature range. Because of the charge-redistribution technique, no
external sample and hold circuits are required.

This section first discusses the charge-redistribution technique, which is
useful in understanding subtle details concerning the application of the
MC68HC11A8 A/D system. The second part of this section includes a
detailed description of the MC68HC11A8 A/D system and features. The
section concludes with a discussion of how external circuitry can
influence A/D accuracy.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Analog-to-Digital Converter System 459

Analog-to-Digital Converter System
12.3 Charge-Redistribution A/D

Figure 12-1 shows a simplified circuit to perform a 4-bit, successive-
approximation A/D conversion using charge redistribution. The actual
circuit used in the MC68HC11A8 includes several additions to this
simple circuit to improve quality and simplify manufacturing. After an
initial introduction to the charge-redistribution technique, some of these
additions are discussed. Since the capacitive charge redistribution
technique depends upon capacitance ratios rather than absolute
capacitance values, the capacitors in Figure 12-1 are marked in units.

During the sample time (Figure 12-1(a)), the top plate of all capacitors
is switched to VL (0.0 V), and the bottom plates are connected to the

unknown analog input, VX. Using the simple relationship QS = CV, the

total charge may be calculated by:

QS = 16(VX – VL)

Unless otherwise stated, it is assumed VL equals 0.0 V; therefore,

QS = 16 VX

Next, the circuit is changed to the hold state by logically controlled
analog switches (Figure 12-1(b)). In this state, the top plates are
disconnected from VL, and the bottom plates are switched from VX to VL.

The charge is now written as:

QH = (VL – Vi) 16

Since VL = 0

QH = – 16 Vi

Since charge is conserved, QS equals QH; therefore,

16 VX = –16 Vi

VX = –Vi

Vi = –VX

which is the initial voltage at the input of the comparator.
Reference Manual M68HC11 — Rev. 6

460 Analog-to-Digital Converter System MOTOROLA

Analog-to-Digital Converter System
Charge-Redistribution A/D
(a) Sample Mode

(b) Hold Mode

(c) Approximation Mode

Figure 12-1. Basic Charge-Redistribution A/D

+

–

1248 1

Vi

VL

VX

VL

+

–

1248 1

VL

Vi

VL

+

–

MSB

1

10

LSB

SUCCESSIVE-APPROXIMATION REGISTER
(SAR)

101010

248 1

VL

VL

VH

Vi

VL
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Analog-to-Digital Converter System 461

Analog-to-Digital Converter System
Finally, in the conversion portion of the A/D process, each capacitor,
beginning with the largest one, which corresponds to the most significant
bit (MSB) of the digital result, is switched from VL (0.0 V) to VH. The
output of the comparator, after each capacitor is switched, determines
whether the bottom plate of that capacitor will remain at VH or be
returned to VL before the next capacitor is switched.

To understand how the process works, a conversion sequence is
presented for an analog input, (VX equals 21/32 (VH)).

During the sample time, the capacitors attain a total charge

QS = 16 VX = (16) 21/32 (VH) = 21/2 VH

During hold, the minus input to the comparator (VI) goes to –VX or
–21/32 VH.

Next, the 8-unit capacitor is switched from VL to VH resulting in the
following circuit:

The charge is written as follows:

Q = 8 (VH – Vi) + 8 (VL – Vi)

but VL = 0; thus,

Q = 8 VH – 8 Vi – 8 Vi

Q = 8 VH – 16 Vi

VH

+
–

124

8

1

VL

VL

Vi
Reference Manual M68HC11 — Rev. 6

462 Analog-to-Digital Converter System MOTOROLA

Analog-to-Digital Converter System
Charge-Redistribution A/D
By charge conservation, this charge is set equal to the original charge
obtained during the sample time:

21/2 VH = 8 VH – 16 Vi

Solving for Vi yields the following results:

16 Vi = 8 VH – 21/2 VH

Vi = 1/2 VH – 21/32 VH

Vi = – 5/32 VH

which is negative.

Since the output of the comparator is a logic 1, the 8-unit capacitor
remains connected to VH for the next step. Also, bit 3 of the
successive-approximation register (SAR) is set to a logic 1. After the
conversion sequence, the SAR contains the digital equivalent of the
original analog input.

Next, the 4-unit capacitor will be switched from VL to VH resulting in the
following circuit:

VH

+

–

12

48

1

VL

Vi

VL
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Analog-to-Digital Converter System 463

Analog-to-Digital Converter System
The charge is written as follows:

Q = 8 (VH – Vi) + 4(VH – Vi) – 4 Vi

Q = 8 VH – 8 Vi + 4 VH – 4 Vi – 4 Vi

Q = 12 VH – 16 Vi

By charge conservation, this charge is set equal to the original charge:

21/2 VH = 12 VH – 16 Vi

Solving for Vi yields the following results:

16 Vi = 12 VH – 21/2 VH

16 Vi = 3/2 VH

Vi = 3/32 VH

which is positive.

The output of the comparator is a logic 0; therefore, the 4-unit capacitor
returns to VL before proceeding to the next step. Also, bit 2 of the SAR
is cleared to 0.

Next, the 2-unit capacitor will be switched from VL to VH resulting in the
following circuit:

VH

+

–

1

2

4

8

1

VL

Vi

VL
Reference Manual M68HC11 — Rev. 6

464 Analog-to-Digital Converter System MOTOROLA

Analog-to-Digital Converter System
Charge-Redistribution A/D
The charge is written as follows:

Q = 8 (VH – Vi) + 2 (VH – Vi) – 6 Vi

Q = 8 VH – 8 Vi + 2 VH – 2 Vi – 6 Vi

Q = 10 VH – 16 Vi

Setting this charge equal to the original charge by charge conservation
yields the following results:

21/2 VH = 10 VH – 16 Vi

16 Vi = 10 VH – 21/2 VH

16 Vi = – 1/2 VH

Vi = – 1/32 VH

which is negative.

Since the output of the comparator is now a logic 1, the two-unit
capacitor remains connected to VH for the next step, and bit 1 of the SAR
is set to 1.

As the last step in the conversion sequence, the 1-unit capacitor will be
switched from VL to VH. The second 1-unit capacitor remains connected
to VL throughout the conversion sequence. The following circuit is for the
last conversion step:

VH

+

–

12

4

8

1

VL

Vi

VL
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Analog-to-Digital Converter System 465

Analog-to-Digital Converter System
The charge is now written as follows:

Q = 8(VH – Vi) + 2(VH – Vi) + 1 (VH – Vi) – 5 Vi

Q = 8 VH + 2 VH + 1 VH – 8 Vi – 2 Vi – 1 Vi – 5 Vi

Q = 11 VH – 16 Vi

Charge conservation yields the following results:

21/2 VH = 11 VH – 16 Vi

16 Vi = 11 VH – 21/2 VH

16 Vi = 1/2 VH

Vi = 1/32 VH

which is positive.

Since the output of the comparator is now a logic 0, the LSB of the SAR
is cleared to 0. Because the conversion is complete, it is not necessary
to switch the 1-unit capacitor back to VL. The digital result of this
example conversion is 10102.

In the previous example, an analog input voltage of 21/32 VH yields a
digital result of 10102 or 10/16 VH. An error occurred even though ideal
components and conditions were assumed. A closer look at an even
simpler 2-bit A/D explains the reason. If the second 1-unit capacitor is
omitted, the following circuit results:

+
–

12

VL

VL
Reference Manual M68HC11 — Rev. 6

466 Analog-to-Digital Converter System MOTOROLA

Analog-to-Digital Converter System
Charge-Redistribution A/D
The transfer characteristic of the circuit is as follows:

Without the extra 1-unit capacitor, each unit of capacitance corresponds
to one-third the total rather than corresponding to the desired one-fourth.
When the second 1-unit capacitor is added, the following circuit and
transfer characteristics result:

An analog input of 1/4 VH produces a digital result of 012 or 1/4 VH, but
an analog input of 1/8 VH yields a digital result of 002 or 0.0 V, which is
in error by 1/8 VH or 1/2 LSB. This quantization error is an unavoidable
consequence of any A/D converter. This particular 2-bit A/D has a
quantization error of –0/+1 LSB. A more desirable specification is ±1/2
LSB quantization error, as is the case on the MC68HC11A8.
Quantization error is always a total of 1 LSB, and many manufacturers
do not include this error in specifications of A/D accuracy.

In an all-capacitive charge-redistribution converter, a simple method
exists for shifting the transfer characteristic down by 1/2 LSB to center
the quantization error. A half-unit capacitor is connected to VH during the
sample time and is switched to VL for the remainder of the conversion
sequence. Figure 12-2 demonstrates how this technique is applied to
the previously described 2-bit converter.

VH VHVH

11

10

01

00

ANALOG INPUT

BI
N

AR
Y

R
ES

UL
T

1
3

2
3

VL

+

–

12

VL

1

VH VHVL

11

10

01

00

ANALOG INPUT

BI
N

AR
Y

R
ES

U
LT

3
4

VH
1
2

VH
1
4

VL
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Analog-to-Digital Converter System 467

Analog-to-Digital Converter System
(a) Sample Mode

(b) Hold Mode

(c) Approximation Mode

Figure 12-2. Charge-Redistribution A/D
with ±1/2 LSB Quantization Error

VX

+

–

12 1

1
2

VH

VL

Vi

VL

+

–

12
1
21

VL

Vi

VL

+

–

VH

BIT 1

1

BIT 0

SAR

1010

2 1 1
2

VL

Vi

VL

VL
Reference Manual M68HC11 — Rev. 6

468 Analog-to-Digital Converter System MOTOROLA

Analog-to-Digital Converter System
Charge-Redistribution A/D
The charge obtained during the sample time is:

QS = 4 (VX – VL) + 1/2 (VH – VL)

Assuming VL = 0 simplifies the equation to:

QS = 4 VX + 1/2 VH

The effect of the half-unit capacitor becomes apparent when Vi is
calculated for the circuit corresponding to a digital result of 012. The
equivalent circuit is:

The charge is now written as follows:

• Q = 1 (VH – Vi) – 3-1/2 Vi

• Q = VH – 4-1/2 Vi

Charge conservation yields the following results:

4 VX + 1/2 VH = VH – 4-1/2 Vi

4-1/2 Vi = VH – 1/2 VH – 4 VX

4-1/2 Vi = 1/2 VH – 4 VX

9 Vi = 1 VH – 8 VX

9/8 Vi = 1/8 VH – VX

The comparator only outputs a logic 1 when Vi is less than 0, which is
when VX is greater than 1/8 VH.

+

–

1

2 1 1
2

VH

Vi

VL

VL
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Analog-to-Digital Converter System 469

Analog-to-Digital Converter System
Next, Vi is calculated for the circuit corresponding to a digital result of
102. The equivalent circuit is:

The charge is written as follows:

Q = 2 (VH – Vi) – 2-1/2 Vi

Q = 2 VH – 4-1/2 Vi

Change conservation yields the following results:

4 VX + 1/2 VH = 2 VH – 4-1/2 Vi

4-1/2 Vi = 2 VH – 1/2 VH – 4 VX

4-1/2 Vi = 3/2 VH – 4 VX

9 Vi = 3 VH – 8 VX

9/8 Vi = 3/8 VH – VX

The comparator only outputs a logic 1 when VI is less than 0, which is
when VX is greater than 3/8 VH. The complete transfer characteristic for
the 2-bit A/D with the new half-unit capacitor is:

The user should note that there is no 2-bit digital code for 4/4 VH (full
scale).

+
–

1

2

1 1
2

VH

Vi

VL

VL

VH VHVL

11

10

01

00

ANALOG INPUT

BI
NA

R
Y

R
ES

U
LT

3
4

VH
1
2

VH
1
4

Reference Manual M68HC11 — Rev. 6

470 Analog-to-Digital Converter System MOTOROLA

Analog-to-Digital Converter System
A/D Converter Implementation on MC68HC11A8
12.4 A/D Converter Implementation on MC68HC11A8

The A/D converter in the MC68HC11A8 is composed of a single
successive-approximation charge-redistribution A/D converter and
digital control circuitry. The analog section is somewhat more complex
than the circuits previously described but identical charge-redistribution
principles are used. The digital section consists of the logic that makes
the A/D work as a system with the rest of the microcontroller unit (MCU).

12.4.1 MC68HC11A8 Successive-Approximation A/D Converter

A discussion of the actual converter in the MC68HC11A8 is presented in
the following paragraphs. Figure 12-3 shows the successive-
approximation converter of the MC68HC11A8 A/D in sample mode.

Unlike earlier examples, the weighted capacitor array has a series
capacitor (CS) separating the low-order half of the array from the
high-order half. This capacitor effectively divides the value of the
low-order capacitors to the left by 16, which simplifies the layout of the
weighted capacitor array and ensures better matching of capacitance
sizes.

Figure 12-3. MC68HC11A8 A/D in Sample Mode

VX

+

–
Vi

211

VL

VH

1
2

8421 84

1.1

CS

16

VTRIP
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Analog-to-Digital Converter System 471

Analog-to-Digital Converter System
Except the half-unit and 1.1-unit elements, all capacitors are composed
of connected groups of 1-unit capacitors, which minimizes errors caused
by sizing and processing. In the MC68HC11A8, these capacitors consist
of polysilicon plates separated by an inter-level oxide; the lower plates
are isolated from the substrate by a second layer of oxide. The
capacitance of this structure is not subject to variation due to voltages on
the plates relative to the substrate.

In the MC68HC11A8 A/D, both inputs and the output of the comparator
are shorted together during the sample time, which causes all three
points to stabilize at the trip voltage of the comparator. Thus, comparator
offsets are effectively cancelled out of the calculations. After the sample
period, the shorting paths are disconnected, and the conversion
sequence proceeds as in the earlier examples. The 16-unit capacitor
from the plus input of the comparator to VL is not critical in terms of size
because it is only used to hold the plus input at VTrip during the short
conversion time.

12.4.2 A/D Charge Pump and Resistor-Capacitor (RC) Oscillator

A charge pump on the chip develops about 7 or 8 V, and this high voltage
is used to drive the gates of the analog switches in the input multiplexer
and capacitor array. This high gate voltage ensures low source to drain
impedance for analog signals up to and including VDD. In fact, VRH can
be somewhat higher than VDD (approximately 6 V), and the converter will
still yield good ratiometric results.

The A/D charge pump is disabled coming out of reset and is turned on
by setting the A/D power-up (ADPU) control bit in the OPTION control
register before the A/D system can be used. A delay is required after
turning on ADPU to allow the charge pump and comparator circuits to
stabilize before using the converter system.

The charge-redistribution A/D process is a dynamic process in that the
charge on the capacitor array will eventually leak off. This capacitor
array is part of an internal digital-to-analog converter (DAC), which
means the conversion process must be completed within a reasonable
time after the sample time ends. The other circuitry on the MCU is static
to allow very low clock frequencies, thus saving power. At bus
Reference Manual M68HC11 — Rev. 6

472 Analog-to-Digital Converter System MOTOROLA

Analog-to-Digital Converter System
A/D Converter Implementation on MC68HC11A8
frequencies (E clock) below 750 kHz, the E clock should not normally be
used as the A/D conversion clock because there is a risk of error due to
charge leakage at temperature extremes. Laboratory characterization
has indicated good performance at E-clock rates as low as 10 kHz, but
the specification has been guard banded against process variations.

An on-chip RC oscillator provides an alternate clocking source for the
A/D system when the E clock is running too slow to ensure good
conversions. This clock source is selected by writing a 1 to the clock
select (CSEL) control bit in the OPTION control register. The A/D clock
(E clock or RC oscillator depending on CSEL) drives the SAR sequencer
and the A/D charge pump. Some delay may be required after switching
clock sources, depending on their frequencies. The RC oscillator
frequency varies with processing but is typically about 2 MHz.

When the E clock is used as the A/D clock source, the conversion
sequence is inherently synchronized to the main MCU clocks. Using the
E clock has two advantages over using the RC oscillator, which is
asynchronous to system clocks. First, the comparator output is sampled
at relatively quiet times in the system clock cycle, thus reducing the
effects of internal MCU noise. When the RC oscillator is used, more error
is attributable to internal system clock noise. Second, result-register
updates automatically occur during a portion of the system clock cycle
where reads do not occur; thus, an update cannot interfere with a read.
When the RC oscillator is used, there is no conflict between updates and
reads, but there is an additional synchronization delay imposed at the
end of each channel conversion to allow for synchronization to the
system E clock.

Figure 12-4 shows the OPTION control register for reference since the
ADPU and CSEL control bits affect the A/D converter system.

Address: $1039

BIt 7 6 5 4 3 2 1 Bit 0

Read:
ADPU CSEL IRQE DLY CME — CR1 CR0

Write:

Reset: 0 0 0 1 0 0 0 0

Figure 12-4. System Configuration Options Register (OPTION)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Analog-to-Digital Converter System 473

Analog-to-Digital Converter System
The CSEL control bit also selects an alternate clock source for the
on-chip EEPROM charge pump. This charge pump is separate from the
A/D charge pump, but both pumps are selected with the CSEL control
bit. In the case of the A/D charge pump, CSEL needs to be 1 when the
E clock is too slow to ensure that the successive-approximation
sequence will finish before any significant charge loss. In the case of the
EEPROM, the efficiency of the charge pump is at issue. More details on
EEPROM charge-pump efficiency are presented in Section 4. On-Chip
Memory. When the E clock is at or above 2 MHz, CSEL should always
be 0; when the E clock is below 750 kHz, CSEL should almost always
be 1.

At E-clock frequencies between 750 kHz and 2 MHz, CSEL should be
set to 1 for EEPROM programming and erase operations so the
EEPROM charge pump works more efficiently; however, CSEL should
be set to 0 for A/D conversions to ensure highest A/D accuracy by
reducing the effects of on-chip noise.

In most applications, switching CSEL on and off is not necessary.
Instead, a trade-off can usually be made on the basis of application
requirements. For example, the additional A/D error attributable to
internal noise when CSEL equals 1 is on the order of ±1/2 LSB, which is
acceptable in many applications.

12.4.3 MC68HC11A8 A/D System Control Logic

The A/D system on the MC68HC11A8 consists of a single
successive-approximation A/D converter, an input multiplexer to select
one of 16 channels (including eight channels associated with pins on the
MCU), and sophisticated control circuitry to configure and control
conversion activities. Four separate result registers are included with
control logic that implements automatic conversion sequences on a
selected channel four times or on four channels (once each). Conversion
sequences are configured to repeat continuously or to stop after one set
of four conversions. An on-chip RC oscillator is selected to allow normal
operation of the A/D when very low MCU clock frequencies are being
used.
Reference Manual M68HC11 — Rev. 6

474 Analog-to-Digital Converter System MOTOROLA

Analog-to-Digital Converter System
A/D Converter Implementation on MC68HC11A8
Figure 12-5 shows the timing for a sequence of four A/D conversions;
the system E clock is used as the conversion clock, which is the normal
case. The A/D converter is dynamic in that the charge attained during the
sample period will eventually leak off the DAC capacitors. If the system
E clock is slower than 750 kHz, an on-chip RC oscillator should be
selected as the A/D conversion clock source. The RC clock source is
selected by setting the CSEL control bit in the OPTION register. Since
the RC clock source is asynchronous to the MCU E clock, a
synchronization delay is required at the end of each conversion in the
sequence to prevent result-register updates in the same part of the
E-clock cycle where a read is taking place. A/D result registers should
not normally be used before the conversion complete flag (CCF) is set
at the end of the fourth conversion in a sequence because of uncertainty
in the exact frequency of the on-chip RC oscillator and because of
synchronization delays. When the E clock is used as the conversion
clock, Figure 12-5 can be used to determine the earliest availability of
valid data in result registers 3-1. For example, ADR1 has valid
conversion results 34 E-clock cycles after the A/D control/status register
is written.

Figure 12-5. Timing Diagram for a Sequence of Four A/D Conversions

0 32 64 96 128

SAMPLE ANALOG INPUT SUCCESSIVE APPROXIMATION SEQUENCE

MSB
4

CYCLES

BIT 6
2

CYC

BIT 5
2

CYC

BIT 4
2

CYC

BIT 3
2

CYC

BIT 2
2

CYC

BIT 1
2

CYC

LSB
2

CYC

2
CYC

END

R
EP

EA
T

SE
Q

U
EN

C
E,

 S
C

AN
 =

 1

SE
T

CC
F

FL
AG

CONVERT FIRST
CHANNEL

CONVERT SECOND
CHANNEL

CONVERT THIRD
CHANNEL

CONVERT FOURTH
CHANNEL

12 E CYCLES

W
RI

TE
 T

O
 A

D
C

TL

E CLOCK

AND UPDATE ADR1 AND UPDATE ADR2 AND UPDATE ADR3 AND UPDATE ADR4
E

CYCLES
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Analog-to-Digital Converter System 475

Analog-to-Digital Converter System
12.4.4 A/D Control/Status Register (ADCTL)

All bits in this register may be read or written except bit 7, which is a
read-only status indicator, and bit 6, which always reads 0. Bit 7 is
cleared by reset, but the other bits are not affected by reset. The
following register and paragraphs describe the function of each bit.

CCF — Conversions Complete Flag

This read-only status indicator is set when all four A/D result registers
contain valid conversion results. Each time the ADCTL register is
written, this bit is automatically cleared, and a new conversion
sequence is started immediately. In the continuous scan modes,
conversions continue in round-robin fashion, and the result registers
are updated with current data even though the CCF bit remains set.

NOTE: The user must write to the ADCTL register to initiate conversion
operations. To abort a conversion operation in progress, write to the
ADCTL register, and a new conversion operation is initiated
immediately.

Bit 6 — Not implemented; always reads 0

SCAN — Continuous Scan Control Bit

When this bit is 0, the four requested conversions are performed,
once each, to fill the four result registers. When this bit is 1,
conversions continue in a round-robin fashion with the result registers
being updated as new data becomes available.

MULT — Multiple-Channel/Single-Channel Control Bit

When this bit is 0, the A/D system is configured to perform four
consecutive conversions on the single channel specified by the four

Address: $1030

BIt 7 6 5 4 3 2 1 Bit 0

Read: CCF 0
SCAN MULT CD CC CB CA

Write:

Reset: 0 0 U U U U U U

U = Unaffected

Figure 12-6. A/D Control/Status Register (ADCTL)
Reference Manual M68HC11 — Rev. 6

476 Analog-to-Digital Converter System MOTOROLA

Analog-to-Digital Converter System
A/D Converter Implementation on MC68HC11A8
channel-select bits (CD:CA of the ADCTL register). When this control
bit is 1, the A/D system is configured to perform conversions on each
channel in the group of four channels specified by the CD and CC
channel-select bits. In this multiple-channel mode, each channel is
associated with a specific result register.

CD, CC, CB, and CA — Channel Select Bits

These four channel-select bits are used to specify the channel(s) to
be operated on for an A/D conversion operation. Table 12-1 shows
the relationship between the CD–CA bits and the channel(s) to be
operated on. When a multiple-channel mode is selected (MULT = 1),
the CB and CA selects have no effect, and the group of four channels
affected is selected by CD and CC.

Table 12-1. A/D Channel Assignments

CD CC CB CA
Channel
Signal

Result in ADRx
if MULT = 1

0 0 0 0 PE0 ADR1

0 0 0 1 PE1 ADR2

0 0 1 0 PE2 ADR3

0 0 1 1 PE3 ADR4

0 1 0 0 PE4* ADR1

0 1 0 1 PE5* ADR2

0 1 1 0 PE6* ADR3

0 1 1 1 PE7* ADR4

1 0 0 0 Reserved ADR1

1 0 0 1 Reserved ADR2

1 0 1 0 Reserved ADR3

1 0 1 1 Reserved ADR4

1 1 0 0 VH** ADR1

1 1 0 1 VL** ADR2

1 1 1 0 1/2 VH** ADR3

1 1 1 1 Reserved** ADR4

*Not available in 48-pin package versions
**These channels intended for factory testing
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Analog-to-Digital Converter System 477

Analog-to-Digital Converter System
The last group of four analog channels is used during factory testing of
the MCU. The 1/2 VRH channel is misleading in that there is no internal
voltage divider actually dividing the reference supply. Rather, a result of
1/2 VRH is artificially produced by special control logic, which forces
unusual connections of the DAC capacitors during sample time. Thus,
the charge attained will be identical to that obtained by sampling an
analog level of 1/2 VRH on one of the eight analog input pins.

12.4.5 A/D Result Registers (ADR4–AD1)

The A/D result registers are read-only registers used to hold an 8-bit
conversion result. After all four result registers have been filled with valid
data in a conversion sequence, the CCF status bit is set to indicate the
results are valid. New conversion results are calculated in the A/D logic
and are transferred into the result registers in a part of the clock cycle
where reads do not take place; therefore, no interference occurs
between software reads and result updates.

12.5 A/D Pin Connection Considerations

Since there are no P-channel devices directly connected to the A/D input
or reference pins, voltages above VDD do not pose a latchup threat. If an
A/D input rises above the threshold of the protection device, an input
protection device avalanches, and current into this device should be
limited. Because of an inherent diode to VSS, A/D inputs must not go
below VSS or the input can be permanently damaged. A series resistor
of 1 kΩ will prevent damage, but avoid a series resistor of more than
10 kΩ because input leakage acting through this impedance will
degrade A/D accuracy. External clamping diodes on A/D inputs should
be avoided because the leakage through these devices is greater than
the input pin leakage current and could significantly degrade accuracy if
significant resistance exists in series with the analog source.
Figure 12-7 shows a model of an A/D input pin, which is useful in
planning external circuitry and connections.
Reference Manual M68HC11 — Rev. 6

478 Analog-to-Digital Converter System MOTOROLA

Analog-to-Digital Converter System
A/D Pin Connection Considerations
Figure 12-7. Electrical Model of an A/D Input Pin (Sample Mode)

Capacitors from A/D inputs to VRL help prevent errors due to system

noise, but it is important to size these capacitors properly for the way the
A/D converter is being used in a particular system. Factors affecting the
size of these capacitors are:

• Source impedance of the analog signal

• Rate of change of the analog signal

• Electrical model of the A/D inputs

• Frequency of A/D conversion requests to the particular channel

• Analog level on the previously converted channel (in some cases)

The first three factors are straightforward, but the last two factors are
subtle. Figure 12-5 and Figure 12-7 should be used in conjunction with
the following discussion.

The maximum external source impedance of an analog signal is limited
by the leakage into the pin (see Figure 12-7). When VRH – VRL = 5.12 V,
one LSB corresponds to 20 mV of input voltage. The worst-case input
leakage of 400 nA acting through 10 kΩ of external series resistance will
result in about 0.2 LSBs of offset. Although the specification states the
maximum-allowable external series resistance is 10 kΩ, a higher source
impedance can be used, but it may cause additional errors in the results.
The leakage current arises from N-channel junction leakages that are
worse at high temperatures. Since only N-channel devices contribute to
this current, it is unidirectional toward VSS and will only cause errors,
lowering A/D results below the expected value.

DIFFUSION AND

< 2 pF

POLY COUPLER

400 nA
JUNCTION
LEAKAGE

+ ~20 V
– ~0.7 V

*

* This analog switch is closed only during the 12-cycle sample time.
VRL

≤ 4 KΩ

~ 20 pF

DAC
CAPACITANCE

INPUT
PROTECTION

DEVICEANALOG
INPUT

PIN
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Analog-to-Digital Converter System 479

Analog-to-Digital Converter System
The minimum-desirable source impedance for an analog input signal
should ensure the current at the A/D pin never gets high enough to
cause CMOS latchup. The HCMOS process used on the MC68HC11A8
is much more robust than older 14xxx-style CMOS, but the current at a
pin should still be limited to 25 mA or less. Although the pins can
withstand much more, 25 mA is considered a good design target. The
source impedance that meets this limitation will depend on the total
system. For example, suppose the worst-case scenario for a particular
system results in an analog source accidentally shorting to –12 V. The
inherent internal diodes to VSS will clamp the voltage at the pin to about
–0.7 V. This clamped voltage means a maximum current of 25 mA must
cause 11.3 V to be dropped across a series-limiting resistance, which
calculates to 452 Ω. However, some guard band should be allowed for
tolerances on the clamped voltage, the source voltages, the resistor, etc.

NOTE: Two of the most common A/D application errors have been either too
much source impedance, resulting in higher-than-expected errors, or too
little source impedance, resulting in permanent damage to A/D inputs.
The most common cause of damage to A/D inputs is a very low source
impedance to a negative voltage, which is more than 1 V below VSS.

The rate of change of the analog input signal is important if an external
low-pass filter is used to increase noise immunity. If too large an RC time
constant is chosen for the external filter, meaningful transitions may be
filtered out of an analog signal source. An external lowpass filter also
introduces a delay between the analog source and the A/D input pin. If
the A/D system is used to locate a timing reference to a peak level on an
analog input signal, this delay must be considered. If the input to a
channel changes drastically between successive samples in a sequence
of conversions, a charge-share mechanism can affect the accuracy of
the result as described in the following paragraphs. Normally, this
charge-share mechanism is visible only in multiple-channel,
continuous-scan conversion sequences where two adjacent channels
are connected to grossly different analog levels.

A subtle aspect of Figure 12-7 is that the DAC capacitance is shared by
all conversions. This aspect results in the initial voltage on the DAC
capacitance, just before a sample period, being approximately equal to
the voltage on the last channel converted. For individual conversions,
this result usually does not produce any observable effect because the
Reference Manual M68HC11 — Rev. 6

480 Analog-to-Digital Converter System MOTOROLA

Analog-to-Digital Converter System
A/D Pin Connection Considerations
charge stored in the internal DAC capacitance is so small. Consider
what happens when a multiple-channel, continuous-scan conversion
operation is occurring (MULT and SCAN = 1). For an E-clock rate of
2 MHz, a particular channel is sampled once every 64 µs. Each time, the
initial voltage on the DAC capacitance just before the sample is equal to
the voltage on the previously sampled channel. Over 15,000 times a
second a small amount of charge is removed from or added to the
external capacitance on the pin. The charge is restored by charging or
discharging through the external source impedance. For some values of
external R and C, the charge added during the sample time cannot be
fully bled off through the external RC before the next sample time occurs.
This problem causes a stair-step building of charge in the external
capacitance that builds until an equilibrium is reached, in which the
amount of charge added during a sample time is exactly offset by the
charge bled off during the period between samples. This condition is a
secondary effect, which seldom results in more than an LSB of error
(even in the most extreme case). After studying the mechanism, it
should be fairly easy to avoid problems from this effect by careful choice
of the external R and C values, by avoiding channel assignments
resulting in grossly different levels on adjacent critical channels, and/or
by avoiding the multiple-channel, continuous-scan conversion modes
when a high-frequency E clock is used.

Three types of cases must be considered, which result from the
interaction of an external RC filter and the internal model of an A/D input
pin. The method of determining the error expected from a particular
choice of external component values depends on which of the three
cases applies. Errors arise from leakage current acting through the
external series resistance or from system noise. If a very large external
series impedance is used, a problem can arise where the internal DAC
capacitance cannot be properly charged within the 12-cycle sample
time; however, errors due to simple leakage through the external
resistance usually do not allow using a large enough external resistance
to cause this effect. The following paragraphs describe the cases of
interaction of an external filter to the input model.

The first case arises when the external time constant is small compared
to the length of the 12-cycle sample period. In this case, all residual
charge on the internal DAC capacitance is dissipated, and the pin settles
at the expected voltage before the end of the sample time. The problem
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Analog-to-Digital Converter System 481

Analog-to-Digital Converter System
with this case is that a filter with such a short time constant provides very
little filtering. In this case no errors result; thus, no calculations are
needed.

The second case arises when the external time constant is long
compared to the sample period but is relatively short compared to the
period between samples. In this case, the residual charge on the internal
DAC capacitance is redistributed to the external capacitance during the
sample, but this charge is not dissipated through the external resistance
before the end of the sample time. This condition results in a small error
in the sample, but this charge is dissipated before the next sample of this
channel. Thus, no accumulated error occurs. In cases of this second
type, the primary governing factor is the redistribution of the residual
charge from the internal DAC capacitance. Usually, the external
capacitance is so much larger than the internal DAC capacitance that
the voltage change due to charge redistribution reduces to the difference
between the previous channel voltage and the current channel voltage
times the ratio of the internal DAC capacitance to the external
capacitance. Some of this charge is dissipated before the end of the
sample period by the external RC time constant. Figure 12-8 is a graphic
estimation of the amount of error resulting in such a case. Errors of this
type are present even in single-pass conversion sequences but rarely
cause noticeable errors.

Figure 12-8. Graphic Estimation of Analog Sample Level (Case 2)

[1]

[2]

[3] [4]

[5]

t1t0

0.0 V

PI
N

 V
O

LT
AG

E

TIME
Reference Manual M68HC11 — Rev. 6

482 Analog-to-Digital Converter System MOTOROLA

Analog-to-Digital Converter System
A/D Pin Connection Considerations
In Figure 12-8, the solid waveform [4] is the graphic estimation of the
analog level at an A/D input. This waveform results from the
simultaneous operation of charge redistribution of the residual charge on
the internal DAC capacitance just before the sample period began at t0
and from the dissipation of this charge through the external RC network.
Waveform [2] has a time constant, τ ≥ 80 ns, based on the model of an
A/D input. The peak level [1] is:

(VA – VB) × (Ci ÷ (CX + CI))

where

VA = the analog level driving the previously sampled channel

VB = the level driving the currently sampled channel

Ci = the internal DAC capacitance

CX = the external capacitance

Waveform [3] is the familiar RC exponential decay through the external
network, and it is assumed that the external capacitance is very large
compared to the 20-pF DAC capacitance. The time, t1, marks the end of
the 12-cycle sample period, and level [5] is the level that will be captured,
held, and converted even though the pin voltage continues to decay
through the external network.

The third case arises when the external time constant is very long
compared to the time between samples. In this case, the residual charge
redistributed during the first sample is not completely dissipated before
the next sample; thus, there is an accumulation of charge. This
accumulation causes increasing errors on successive samples until
equilibrium is reached between the charge added during a sample and
the charge dissipated between samples. Errors caused by cases of this
third type are often misinterpreted as leakage between adjacent
channels. The magnitude of this type error is estimated by developing
equations for voltage change caused by charge added during a sample
time and voltage change caused by the action of the external RC
between successive samples. These two equations are set equal to
each other, and the equilibrium voltage can then be resolved.

The voltage change during the sample is controlled by the ratio of the
internal DAC capacitance to the external capacitance (as in the previous
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Analog-to-Digital Converter System 483

Analog-to-Digital Converter System
case), but the external RC is assumed to be so long that it produces no
significant effect until after the sample time ends. The voltage change
between samples results from a simple RC exponential decay.

To illustrate the estimation of errors resulting from a case-three situation,
consider this example. The E-clock rate equals 2 MHz, VRH equals
5.12 V, VRL equals 0.0 V, channel 1 is connected to a 5.12-V analog
level, and channel 2 is connected to a 0-V analog level. The external
series resistance is 10 kΩ, and the external capacitance is 0.01 µF. The
value $30 is written to the ADCTL register to initiate continuous
round-robin conversion of channels 0, 1, 2, and 3. The following circuit
is a model of the circuitry under investigation.

RX and CX are the external components, Ci is the internal DAC
capacitance, and Ri is the internal series resistance (includes N-channel
couplers and polysilicon interconnections). From Figure 12-7, Ci is
20 pF and Ri is ≤ 4 kΩ. The switch represents an analog switch closed
only during the sample time. For the chosen E-clock rate, the sample
time is 6 µs, and the period from one sample to the next sample of the
same channel is 64 µs.

The voltage change due to redistribution of the residual charge on the
DAC capacitance, which is left from conversion of the previous channel,
is written as:

∆VSAMP = (V1 – V2) [Ci ÷ (CX + Ci)]

where V1 = 5.12 V and V2 = 0.0 V

∆VSAMP ≈ 5.12 (20 pF ÷ 0.01 µF) V

∆VSAMP ≈ 10 mV

DAC
CAPACITANCE

ANALOG
INPUT

(PE2 PIN)
~ 20 pF

0.01 µF

DIFFUSION AND
POLY COUPLER

10 kΩ ≤ 4 kΩ

VRL

RX

CX

Ri

Ci

ANALOG
LEVEL
(0.0 V)

COMPONENTS
WITHIN MCU

VRL
Reference Manual M68HC11 — Rev. 6

484 Analog-to-Digital Converter System MOTOROLA

Analog-to-Digital Converter System
A/D Pin Connection Considerations
Not all of this voltage decays before the second sample; thus, there is an
accumulation of error until an equilibrium is reached. Since this
equilibrium voltage is very small relative to the (V1 – V2) term of this
equation, the ∆VSAMP value does not change significantly between the
first sample and a sample time when equilibrium is reached. Since CX is
so large relative to Ci, Ci is ignored in the (CX + Ci) term.

The voltage change between samples of channel 2 is a simple
exponential decay through the external RC, which is written as:

∆VHold = (VEQ – V2)(1 – e – t/RxCx)

where VEQ is the equilibrium voltage

∆VHold = VEQ(1 – e – 64 µs/10K × 0.01 µF)

∆VHold = VEQ(1 – e – 0.64)

∆VHold = 0.473 VEQ

When equilibrium is reached, the voltage gained during a sample is
equal to the voltage lost between samples. Therefore, set ∆VHold equals

∆VSAMP and solve for VEQ:

0.473 VEQ = 10 mV

VEQ = 10 mV/0.473 ≈ 21 mV

This value amounts to almost one LSB of error. If the external
capacitance is changed to 0.1 µF, the error attributable to this effect
becomes approximately 1 mV. As the external capacitance is changed,
two changes occur: First, the time constant of the external RC changes;
second, the ratio of the external capacitance to the DAC capacitance
changes. Because these two changes influence the result at different
rates, it is not practical to make a general statement about the amount of
influence versus the change in the external capacitance.

For external series resistances not exceeding the recommended limit of
10 kΩ, the errors attributable to this effect are very small. However, if the
external series resistance is increased to 100 kΩ and small capacitance
values are used, the errors can become serious. For example, an
external RC of 100 kΩ and 0.001 µF would cause errors of about 200 mV
in the previous example (about 10 LSBs). The extra leakage effects are
also as much as 40 mV.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Analog-to-Digital Converter System 485

Analog-to-Digital Converter System
Reference Manual M68HC11 — Rev. 6

486 Analog-to-Digital Converter System MOTOROLA

Reference Manual — M68HC11

Appendix A. Instruction Set Details
A.1 Contents

A.2 Introduction .487

A.3 Nomenclature .488

A.4 M68HC11 Instruction Set .491

A.2 Introduction

This appendix contains complete detailed information for all M68HC11
instructions.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 487

Instruction Set Details
A.3 Nomenclature

The following nomenclature is used in the subsequent definitions.

1. Operators:
() = Contents of register shown inside parentheses
⇐ = Is transferred to
⇑ = Is pulled from stack
⇓ = Is pushed onto stack
• = Boolean AND
+ = Arithmetic addition symbol except where used as

inclusive-OR symbol in Boolean formula
⊕ = Exclusive OR
× = Multiply
: = Concatenation
− = Arithmetic subtraction symbol or negation symbol

(twos complement)

2. Registers in the CPU:
ACCA = Accumulator A
ACCB = Accumulator B
ACCX = Accumulator ACCA or ACCB
ACCD = Double accumulator — Accumulator A concatenated

with accumulator B where A is the most significant
byte

CCR = Condition code register
IX = Index register X, 16 bits
IXH = Index register X, high order 8 bits
IXL = Index register X, low order 8 bits
PC = Program counter, 16 bits
PCH = Program counter, high order (most significant) 8 bits
PC = Program counter, low order (least significant) 8 bits
SP = Stack pointer, 16 bits
SPH = Stack pointer, high order 8 bits
SPL = Stack pointer, low order 8 bits
Reference Manual M68HC11 — Rev. 6

488 Instruction Set Details MOTOROLA

Instruction Set Details
Nomenclature
3. Memory and addressing:
M = A memory location (one byte)
M+1 = The byte of memory at $0001 plus the address of the

memory location indicated by “M”
Rel = Relative offset (that is, the twos complement number

stored in the last byte of machine code correspond-
ing to a branch instruction)

(opr) = Operand
(msk) = Mask used in bit manipulation instructions
(rel) = Relative offset used in branch instructions

4. Bits [7:0] of the condition code register:
S = Stop disable, bit 7
X = X interrupt mask, bit 6
H = Half carry, bit 5
I = I interrupt mask, bit 4
N = Negative indicator, bit 3
Z = Zero indicator, bit 2
V = Two’s complement overflow indicator, bit 1
C = Carry/borrow, bit 0

5. Status of individual bit before execution of an instruction:
An = Bit n of ACCA (n = 7, 6, 5... 0)
Bn = Bit n of ACCB (n = 7, 6, 5... 0)
Dn = Bit n of ACCD (n = 15, 14, 13... 0) where bits [15:8]

refer to ACCA and bits [7:0] refer to ACCB
IXn = Bit n of IX (n = 15, 14, 13... 0)
IXHn = Bit n of IXH (n = 7, 6, 5... 0)
IXLn = Bit n of IXL (n = 7, 6, 5... 0)
IYn = Bit n of IY (n = 15, 14, 13... 0)
IYHn = Bit n of IYH (n = 7, 6, 5... 0)
IYLn = Bit n of IYL (n = 7, 6, 5... 0)
Mn = Bit n of M (n = 7, 6, 5... 0)
SPHn = Bit n of SPH (n = 7, 6, 5... 0)
SPLn = Bit n of SPL (n = 7, 6, 5... 0)
Xn = Bit n of ACCX (n = 7, 6, 5... 0)
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 489

Instruction Set Details
6. Status of individual bits of result of execution of an instruction:

For 8-bit results:

Rn = Bit n of the result (n = 7, 6, 5... 0). This applies to in-
structions which provide a result contained in a single
byte of memory or in an 8-bit register.

For 16-bit results:

RHn = Bit n of the most significant byte of the result
(n = 7, 6, 5... 0)

RLn = Bit n of the least significant byte of the result
(n = 7, 6, 5... 0). This applies to instructions which
provide a result contained in two consecutive bytes
of memory or in a 16-bit register.

Rn = Bit n of the result (n = 15, 14, 13... 0)

7. Notation used in CCR activity summary figures:
— = Bit not affected
0 = Bit forced to 0
1 = Bit forced to 1
Ú = Bit set or cleared according to results of operation
⇓ = Bit may change from 1 to 0, remain 0, or remain 1

as a result of this operation, but cannot change from
0 to 1.

8. Notation used in cycle-by-cycle execution tables:
— = Irrelevant data
ii = One byte of immediate data
jj = High-order byte of 16-bit immediate data
kk = Low-order byte of 16-bit immediate data
hh = High-order byte of 16-bit extended address
ll = Low-order byte of 16-bit extended address
dd = Low-order eight bits of direct address $0000–$00FF

(high byte assumed to be $00)
mm = 8-bit mask (set bits correspond to operand bits which

will be affected)
ff = 8-bit forward offset $00 (0) to $FF (255) (is added to

index)
Reference Manual M68HC11 — Rev. 6

490 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
rr = Signed relative offset $80 (–128) to $7F (+127)
(offset relative to address following machine code
offset byte)

OP = Address of opcode byte

OP+n = Address of nth location after opcode byte
SP = Address pointed to by stack pointer value (at the start

of an instruction)

SP+n = Address of nth higher address past that pointed to by
stack pointer

SP–n = Address of nth lower address before that pointed to
by stack pointer

Sub = Address of called subroutine
Nxt op = Opcode of next instruction
Rtn hi = High-order byte of return address
Rtn lo = Low-order byte of return address
Svc hi = High-order byte of address for service routine
Svc lo = Low-order byte of address for service routine
Vec hi = High-order byte of interrupt vector
Vec lo = Low-order byte of interrupt vector

A.4 M68HC11 Instruction Set

The instructions are arranged in alphabetical order with the instruction
mnemonic set in larger type for easy reference.
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 491

Instruction Set Details
ABA Add Accumulator B to Accumulator A ABA
Operation: ACCA ⇐ (ACCA) + (ACCB)

Description: Adds the contents of accumulator B to the contents of accumulator A and
places the result in accumulator A. Accumulator B is not changed. This
instruction affects the H condition code bit so it is suitable for use in BCD
arithmetic operations (see DAA instruction for additional information).

Condition Codes
and Boolean

Formulae:

H A3 • B3 + B3 • R3 + R3 • A3
Set if there was a carry from bit 3; cleared otherwise.

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V A7 • B7 • R7 + A7 • B7 • R7
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C A7 • B7 + B7 • R7 + R7 • A7
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Form: ABA

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — Ú — Ú Ú Ú Ú

Cycle
ABA (INH)

Addr Data R/W

1 OP 1B 1

2 OP + 1 — 1
Reference Manual M68HC11 — Rev. 6

492 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
ABX Add Accumulator B to Index Register X ABX
Operation: IX ⇐ (IX) + (ACCB)

Description: Adds the 8-bit unsigned contents of accumulator B to the contents of
index register X (IX) considering the possible carry out of the low-order
byte of the index register X; places the result in index register X (IX).
Accumulator B is not changed. There is no equivalent instruction to add
accumulator A to an index register.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: ABX

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
ABX (INH)

Addr Data R/W

1 OP 3A 1

2 OP + 1 — 1

3 FFFF — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 493

Instruction Set Details
ABY Add Accumulator B to Index Register Y ABY
Operation: IY ⇐ (IY) + (ACCB)

Description: Adds the 8-bit unsigned contents of accumulator B to the contents of
index register Y (IY) considering the possible carry out of the low-order
byte of the index register Y; places the result in index register Y (IY).
Accumulator B is not changed. There is no equivalent instruction to add
accumulator A to an index register.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: ABY

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
ABY (INH)

Addr Data R/W

1 OP 18 1

2 OP + 1 3A 1

3 OP + 2 — 1

4 FFFF — 1
Reference Manual M68HC11 — Rev. 6

494 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
ADC Add with Carry ADC
Operation: ACCX ⇐ (ACCX) + (M) + (C)

Description: Adds the contents of the C bit to the sum of the contents of ACCX and
M and places the result in ACCX. This instruction affects the H condition
code bit so it is suitable for use in BCD arithmetic operations (see DAA
instruction for additional information).

Condition Codes
and Boolean

Formulae:

H X3 • M3 + M3 • R3 + R3 • X3
Set if there was a carry from bit 3; cleared otherwise.

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V X7 • M7 • R7 + X7 • M7 • R7
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C X7 • M7 + M7 • R7 + R7 • X7
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Forms: ADCA (opr); ADCB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — Ú — Ú Ú Ú Ú

Cycle
ADCA (IMM) ADCA (DIR) ADCA (EXT) ADCA (IND,X) ADCA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 89 1 OP 99 1 OP B9 1 OP A9 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 A9 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X+ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Cycle
ADCB (IMM) ADCB (DIR) ADCB (EXT) ADCB (IND,X) ADCB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP C9 1 OP D9 1 OP F9 1 OP E9 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 E9 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 495

Instruction Set Details
ADD Add without Carry ADD
Operation: ACCX ⇐ (ACCX) + (M)

Description: Adds the contents of M to the contents of ACCX and places the result in
ACCX. This instruction affects the H condition code bit so it is suitable
for use in BCD arithmetic operations (see DAA instruction for additional
information).

Condition Codes
and Boolean

Formulae:

H X3 • M3 + M3 • R3 + R3 • X3
Set if there was a carry from bit 3; cleared otherwise.

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V X7 • M7 • R7 + X7 • M7 • R7
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C X7 • M7 + M7 • R7 + R7 • X7
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Forms: ADDA (opr); ADDB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — Ú — Ú Ú Ú Ú

Cycle
ADDA (IMM) ADDA (DIR) ADDA (EXT) ADDA (IND,X) ADDA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 8B 1 OP 9B 1 OP BB 1 OP AB 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 AB 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Cycle
ADDB (IMM) ADDB (DIR) ADDB (EXT) ADDB (IND,X) ADDB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP CB 1 OP DB 1 OP FB 1 OP EB 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 EB 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1
Reference Manual M68HC11 — Rev. 6

496 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
ADDD Add Double Accumulator ADDD
Operation: ACCD ⇐ (ACCD) + (M : M + 1)

Description: Adds the contents of M concatenated with M + 1 to the contents of ACCD
and places the result in ACCD. Accumulator A corresponds to the
high-order half of the 16-bit double accumulator D.

Condition Codes
and Boolean

Formulae:

N R15
Set if MSB of result is set; cleared otherwise.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V D15 • M15 • R15 + D15 • M15 • R15
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C D15 • M15 + M15 • R15 + R15 • D15
Set if there was a carry from the MSB of the result; cleared otherwise.

Source Form: ADDD (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú Ú Ú

Cycle
ADDD (IMM) ADDD (DIR) ADDD (EXT) ADDD (IND,X) ADDD (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W

1 OP C3 1 OP D3 1 OP F3 1 OP E3 1 OP 18 1

2 OP + 1 jj 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 E3 1

3 OP + 2 kk 1 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 FFFF — 1 00dd + 1 (00dd + 1) 1 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1

5 FFFF — 1 hhll + 1 (hhll + 1) 1 X + ff + 1 (X + ff + 1) 1 Y + ff (Y + ff) 1

6 FFFF — 1 FFFF — 1 Y + ff + 1 (Y + ff + 1) 1

7 FFFF — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 497

Instruction Set Details
AND Logical AND AND
Operation: ACCX ⇐ (ACCX) • (M)

Description: Performs the logical AND between the contents of ACCX and the
contents of M and places the result in ACCX. (Each bit of ACCX after the
operation will be the logical AND of the corresponding bits of M and of
ACCX before the operation.)

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V 0
Cleared

Source Forms: ANDA (opr); ANDB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú 0 —

Cycle
ANDA (IMM) ANDA (DIR) ANDA (EXT) ANDA (IND,X) ANDA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W

1 OP 84 1 OP 94 1 OP B4 1 OP A4 1 OP 18 1

2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 A4 1

3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1

5 Y + ff (Y + ff) 1

Cycle
ANDB (IMM) ANDB (DIR) ANDB (EXT) ANDB (IND,X) ANDB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W

1 OP C4 1 OP D4 1 OP F4 1 OP E4 1 OP 18 1

2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 E4 1

3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1

5 Y + ff (Y + ff) 1
Reference Manual M68HC11 — Rev. 6

498 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
ASL Arithmetic Shift Left ASL
(Same as LSL)

Operation:

Description: Shifts all bits of the ACCX or M one place to the left. Bit 0 is loaded with
a 0. The C bit in the CCR is loaded from the most significant bit of ACCX
or M.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is clear) or (N is clear and C is set); cleared
otherwise (for values of N and C after the shift).

C M7
Set if, before the shift, the MSB of ACCX or M was set; cleared
otherwise.

Source Forms: ASLA; ASLB; ASL (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

C b7 – – – – – – b0 0

S X H I N Z V C

— — — — Ú Ú Ú Ú

Cycle
ASLA (INH) ASLB (INH) ASL (EXT) ASL (IND,X) ASL (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W

1 OP 48 1 OP 58 1 OP 78 1 OP 68 1 OP 18 1

2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 68 1

3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1

5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1

6 hhll result 0 X + ff result 0 FFFF — 1

7 Y + ff result 0
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 499

Instruction Set Details
ASLD Arithmetic Shift Left Double Accumulator ASLD
(Same as LSLD)

Operation:

Description: Shifts all bits of ACCD one place to the left. Bit 0 is loaded with a 0. The
C bit in the CCR is loaded from the most significant bit of ACCD.

Condition Codes
and Boolean

Formulae:

N R15
Set if MSB of result is set; cleared otherwise.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is clear) or (N is clear and C is set); cleared
otherwise (for values of N and C after the shift).

C D15
Set if, before the shift, the MSB of ACCD was set; cleared otherwise.

Source Form: ASLD

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

C b7 – – – – – – b0 b7 – – – – – – b0 0

ACCA ACCB

S X H I N Z V C

— — — — Ú Ú Ú Ú

Cycle
ASLD (INH)

Addr Data R/W

1 OP 05 1

2 OP + 1 — 1

3 FFFF — 1
Reference Manual M68HC11 — Rev. 6

500 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
ASR Arithmetic Shift Right ASR
Operation:

Description: Shifts all bits of the ACCX or M one place to the right. Bit 7 is held
constant. Bit 0 is loaded into the C bit of the CCR. This operation
effectively divides a twos complement value by two without changing its
sign. The carry bit can be used to round the result.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is clear) or (N is clear and C is set); cleared
otherwise (for values of N and C after the shift).

C M0
Set if, before the shift, the LSB of ACCX or M was set; cleared
otherwise.

Source Forms: ASRA; ASRB; ASR (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

Cb7 – – – – – – b0

S X H I N Z V C

— — — — Ú Ú Ú Ú

Cycle
ASRA (INH) ASRB (INH) ASR (EXT) ASR (IND,X) ASR (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W

1 OP 47 1 OP 57 1 OP 77 1 OP 67 1 OP 18 1

2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 67 1

3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1

5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1

6 hhll result 0 X + ff result 0 FFFF — 1

7 Y + ff result 0
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 501

Instruction Set Details
BCC Branch if Carry Clear BCC
(Same as BHS)

Operation: PC ⇐ (PC) + $0002 + Rel if (C) = 0

Description: Tests the state of the C bit in the CCR and causes a branch if C is clear.
See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BCC (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BCC (REL)

Addr Data R/W

1 OP 24 1

2 OP + 1 rr 1

3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed

r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed

r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed

r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Always — BRA 20 Never BRN 21 Unconditional
Reference Manual M68HC11 — Rev. 6

502 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
BCLR Clear Bit(s) in Memory BCLR
Operation: M ⇐ (M) • (PC + 2)

M ⇐ (M) • (PC + 3) (for IND, Y address mode only)

Description: Clear multiple bits in location M. The bit(s) to be cleared are specified by
1s in the mask byte. All other bits in M are rewritten to their current state.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V 0
Cleared

Source Form: BCLR (opr) (msk)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú 0 —

Cycle
BCLR (DIR) BCLR (IND,X) BCLR (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W

1 OP 15 1 OP 1D 1 OP 18 1

2 OP + 1 dd 1 OP + 1 ff 1 OP + 1 1D 1

3 00dd (00dd) 1 FFFF — 1 OP + 2 ff 1

4 OP + 2 mm 1 X + ff (X + ff) 1 FFFF — 1

5 FFFF — 1 OP + 2 mm 1 (IY) + ff (Y + ff) 1

6 00dd result 0 FFFF — 1 OP + 3 mm 1

7 X + ff result 0 FFFF — 1

8 Y + ff result 0
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 503

Instruction Set Details
BCS Branch if Carry Set BCS
(Same as BLO)

Operation: PC ⇐ (PC) + $0002 + Rel if (C) = 1

Description: Tests the state of the C bit in the CCR and causes a branch if C is set.
See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BCS (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BCS (REL)

Addr Data R/W

1 OP 25 1

2 OP + 1 rr 1

3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed

r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed

r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed

r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Always — BRA 20 Never BRN 21 Unconditional
Reference Manual M68HC11 — Rev. 6

504 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
BEQ Branch if Equal BEQ
Operation: PC ⇐ (PC) + $0002 + Rel if (Z) = 1

Description: Tests the state of the Z bit in the CCR and causes a branch if Z is set.
See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BEQ (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BEQ (REL)

Addr Data R/W

1 OP 27 1

2 OP + 1 rr 1

3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed

r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed

r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed

r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Always — BRA 20 Never BRN 21 Unconditional
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 505

Instruction Set Details
BGE Branch if Greater than or Equal to Zero BGE
Operation: PC ⇐ (PC) + $0002 + Rel if (N) ⊕ (V) = 0

i.e., if (ACCX) ≥ (M) (twos-complement signed numbers)

Description: If the BGE instruction is executed immediately after execution of any
of the instructions, CBA, CMP(A, B, or D), CP(X or Y), SBA, SUB(A, B,
or D), the branch will occur if and only if the twos complement number
represented by ACCX was greater than or equal to the twos complement
number represented by M.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BGE (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BGE (REL)

Addr Data R/W
1 OP 2C 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional
Reference Manual M68HC11 — Rev. 6

506 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
BGT Branch if Greater than Zero BGT
Operation: PC ⇐ (PC) + $0002 + Rel if (Z) + [(N) ⊕ (V)] = 0

i.e., if (ACCX) > (M) (twos-complement signed numbers)

Description: If the BGT instruction is executed immediately after execution of any
of the instructions, CBA, CMP(A, B, or D), CP(X or Y), SBA, SUB(A, B,
or D), the branch will occur if and only if the twos complement number
represented by ACCX was greater than the twos complement number
represented by M.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:
None affected

Source Form: BGT (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BGT (REL)

Addr Data R/W
1 OP 2E 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 507

Instruction Set Details
BHI Branch if Higher BHI
Operation: PC ⇐ (PC) + $0002 + Rel if (C) + (Z) = 0

i.e., if (ACCX) > (M) (unsigned binary numbers)

Description: If the BHI instruction is executed immediately after execution of any
of the instructions, CBA, CMP(A, B, or D), CP(X or Y), SBA, SUB(A, B,
or D), the branch will occur if and only if the unsigned binary number
represented by ACCX was greater than unsigned binary number
represented by M. Generally not useful after INC/DEC, LD/ST,
TST/CLR/COM because these instructions do not affect the C bit in the
CCR.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:
None affected

Source Form: BHI (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C
— — — — — — — —

Cycle
BHI (REL)

Addr Data R/W
1 OP 22 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional
Reference Manual M68HC11 — Rev. 6

508 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
BHS Branch if Higher or Same (Same as BCC) BHS
Operation: PC ⇐ (PC) + $0002 + Rel if (C) = 0

i.e., if (ACCX) ≥ (M) (unsigned binary numbers)

Description: If the BHS instruction is executed immediately after execution of any
of the instructions, CBA, CMP(A, B, or D), CP(X or Y), SBA, SUB(A, B,
or D), the branch will occur if and only if the unsigned binary number
represented by ACCX was greater than or equal to the unsigned binary
number represented by M. Generally not useful after INC/DEC, LD/ST,
TST/CLR/COM because these instructions do not affect the C bit in the
CCR.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:
None affected

Source Form: BHS (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C
— — — — — — — —

Cycle
BHS (REL)

Addr Data R/W
1 OP 24 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 509

Instruction Set Details
BIT Bit Test BIT
Operation: (ACCX) • (M)

Description: Performs the logical AND between the contents of ACCX and the
contents of M and modifies the condition codes accordingly. Neither the
contents of ACCX nor M operands are affected. (Each bit of the result of
the AND would be the logical AND of the corresponding bits of ACCX
and M.)

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V 0
Cleared

Source Forms: BITA (opr); BITB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú 0 —

Cycle
BITA (IMM) BITA (DIR) BITA (EXT) BITA (IND,X) BITA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W

1 OP 85 1 OP 95 1 OP B5 1 OP A5 1 OP 18 1

2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 A5 1

3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1

5 Y + ff (Y + ff) 1

Cycle
BITB (IMM) BITB (DIR) BITB (EXT) BITB (IND,X) BITB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W

1 OP C5 1 OP D5 1 OP F5 1 OP E5 1 OP 18 1

2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 E5 1

3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1

5 Y + ff (Y + ff) 1
Reference Manual M68HC11 — Rev. 6

510 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
BLE Branch if Less than or Equal to Zero BLE
Operation: PC ⇐ (PC) + $0002 + Rel if (Z) + [(N) ⊕ (V)] = 1

i.e., if (ACCX) ≤ (M) (twos complement signed numbers)

Description: If the BLE instruction is executed immediately after execution of any of
the instructions, CBA, CMP(A, B, or D), CP(X or Y), SBA, SUB(A, B, or
D), the branch will occur if and only if the twos complement signed
number represented by ACCX was less than or equal to the twos
complement signed number represented by M.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:
None affected

Source Form: BLE (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C
— — — — — — — —

Cycle
BLE (REL)

Addr Data R/W
1 OP 2F 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 511

Instruction Set Details
BLO Branch if Lower (Same as BCS) BLO
Operation: PC ⇐ (PC) + $0002 + Rel if (C) = 1

i.e., if (ACCX) < (M) (unsigned binary numbers)

Description: If the BLO instruction is executed immediately after execution of any
of the instructions, CBA, CMP(A, B, or D), CP(X or Y), SBA, SUB(A, B,
or D), the branch will occur if and only if the unsigned binary number
represented by ACCX was less than the unsigned binary number
represented by M. Generally not useful after INC/DEC, LD/ST,
TST/CLR/COM because these instructions do not affect the C bit in the
CCR.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:
None affected

Source Form: BLO (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C
— — — — — — — —

Cycle
BLO (REL)

Addr Data R/W
1 OP 25 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional
Reference Manual M68HC11 — Rev. 6

512 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
BLS Branch if Lower or Same BLS
Operation: PC ⇐ (PC) + $0002 + Rel if (C) + (Z) = 1

i.e., if (ACCX) ≤ (M) (unsigned binary numbers)

Description: If the BLS instruction is executed immediately after execution of any
of the instructions, CBA, CMP(A, B, or D), CP(X or Y), SBA, SUB(A, B,
or D), the branch will occur if and only if the unsigned binary number
represented by ACCX was less than or equal to the unsigned binary
number represented by M. Generally not useful after INC/DEC, LD/ST,
TST/CLR/COM because these instructions do not affect the C bit in the
CCR.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:
None affected

Source Form: BLS (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BLS (REL)

Addr Data R/W
1 OP 23 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 513

Instruction Set Details
BLT Branch if Less than Zero BLT
Operation: PC ⇐ (PC) + $0002 + Rel if (N) ⊕ (V)= 1

i.e., if (ACCX) < (M) (twos complement signed numbers)

Description: If the BLT instruction is executed immediately after execution of any
of the instructions, CBA, CMP(A, B, or D), CP(X or Y), SBA, SUB(A, B,
or D), the branch will occur if and only if the twos-complement number
represented by ACCX was less than the twos-complement number
represented by M.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BLT (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BLT (REL)

Addr Data R/W
1 OP 2D 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional
Reference Manual M68HC11 — Rev. 6

514 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
BMI Branch if Minus BMI
Operation: PC ⇐ (PC) + $0002 + Rel if (N) = 1

Description: Tests the state of the N bit in the CCR and causes a branch if N is set.
See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BMI (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BMI (REL)

Addr Data R/W
1 OP 2B 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed

r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed

r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed

r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Always — BRA 20 Never BRN 21 Unconditional
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 515

Instruction Set Details
BNE Branch if Not Equal to Zero BNE
Operation: PC ⇐ (PC) + $0002 + Rel if (Z) = 0

Description: Tests the state of the Z bit in the CCR and causes a branch if Z is clear.
See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BNE (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BNE (REL)

Addr Data R/W
1 OP 26 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed

r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed

r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed

r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Always — BRA 20 Never BRN 21 Unconditional
Reference Manual M68HC11 — Rev. 6

516 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
BPL Branch if Plus BPL
Operation: PC ⇐ (PC) + $0002 + Rel if (N) = 0

Description: Tests the state of the N bit in the CCR and causes a branch if N is clear.
See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BPL (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BPL (REL)

Addr Data R/W
1 OP 2A 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment

r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed

r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed

r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed

r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed

r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned

r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned

r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned

r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned

r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned

Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple

Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple

Always — BRA 20 Never BRN 21 Unconditional
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 517

Instruction Set Details
BRA Branch Always BRA
Operation: PC ⇐ (PC) + $0002 + Rel

Description: Unconditional branch to the address given by the foregoing formula, in
which Rel is the relative offset stored as a twos-complement number in
the second byte of machine code corresponding to the branch
instruction.

The source program specifies the destination of any branch instruction
by its absolute address, either as a numerical value or as a symbol or
expression, that can be numerically evaluated by the assembler. The
assembler obtains the relative address, Rel, from the absolute address
and the current value of the location counter.

Condition Codes
and Boolean

Formulae:
None affected
BRA

Source Form: BRA (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C
— — — — — — — —

Cycle
BRA (REL)

Addr Data R/W
1 OP 20 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional
Reference Manual M68HC11 — Rev. 6

518 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
BRCLR Branch if Bit(s) Clear BRCLR
Operation: PC ⇐ (PC)+ $0004 + Rel if (M) • (PC + 2) = 0

PC ⇐ (PC)+ $0005 + Rel if (M) • (PC + 3) = 0
(for IND,Y address mode only)

Description: Performs the logical AND of location M and the mask supplied with the
instruction, then branches if the result is 0 (only if all bits corresponding
to 1s in the mask byte are 0s in the tested byte).

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BRCLR (opr) (msk) (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
BRCLR (DIR) BRCLR (IND,X) BRCLR (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 13 1 OP 1F 1 OP 18 1
2 OP + 1 dd 1 OP + 1 ff 1 OP + 1 1F 1
3 00dd (00dd) 1 FFFF — 1 OP + 2 ff 1
4 OP + 2 mm 1 X + ff (X + ff) 1 FFFF — 1
5 OP + 3 rr 1 OP + 2 mm 1 (IY) + ff (Y + ff) 1
6 FFFF — 1 OP + 3 rr 1 OP + 3 mm 1
7 FFFF — 1 OP + 4 rr 1
8 FFFF — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 519

Instruction Set Details
BRN Branch Never BRN
Operation: PC ⇐ (PC) + $0002

Description: Never branches. In effect, this instruction can be considered as a 2-byte
NOP (no operation) requiring three cycles for execution. Its inclusion in
the instruction set is to provide a complement for the BRA instruction.
This instruction is useful during program debug to negate the effect of
another branch instruction without disturbing the offset byte. Having a
complement for BRA is also useful in compiler implementations.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BRN (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C
— — — — — — — —

Cycle
BRN (REL)

Addr Data R/W
1 OP 21 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional
Reference Manual M68HC11 — Rev. 6

520 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
BRSET Branch if Bit(s) Set BRSET
Operation: PC ⇐ (PC) + $0004 + Rel if (M) • (PC + 2) = 0

PC ⇐ (PC) + $0005 + Rel if (M) • (PC + 3) = 0 (for IND,Y
address mode only)

Description: Performs the logical AND of location M and the mask supplied with the
instruction, then branches if the result is 0 (only if all bits corresponding
to 1s in the mask byte are 1s in the tested byte).

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BRSET (opr) (msk) (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
BRSET (DIR) BRSET (IND,X) BRSET (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 12 1 OP 1E 1 OP 18 1
2 OP + 1 dd 1 OP + 1 ff 1 OP + 1 1E 1
3 00dd (00dd) 1 FFFF — 1 OP + 2 ff 1
4 OP + 2 mm 1 X + ff (X + ff) 1 FFFF — 1
5 OP + 3 rr 1 OP + 2 mm 1 (IY) + ff (Y + ff) 1
6 FFFF — 1 OP + 3 rr 1 OP + 3 mm 1
7 FFFF — 1 OP + 4 rr 1
8 FFFF — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 521

Instruction Set Details
BSET Set Bit(s) in Memory BSET
Operation: M ⇐ (M) + (PC + 2)

M ⇐ (M) + (PC + 3) (for IND,Y address mode only)

Description: Set multiple bits in location M. The bit(s) to be set are specified by 1s in
the mask byte (last machine code byte of the instruction). All other bits
in M are unaffected.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V 0
Cleared

Source Form: BSET (opr) (msk)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú 0 —

Cycle
BSET (DIR) BSET (IND,X) BSET (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 14 1 OP 1C 1 OP 18 1
2 OP + 1 dd 1 OP + 1 ff 1 OP + 1 1C 1
3 00dd (00dd) 1 FFFF — 1 OP + 2 ff 1
4 OP + 2 mm 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 OP + 2 mm 1 (IY) + ff (Y + ff) 1
6 00dd result 0 FFFF — 1 OP + 3 mm 1
7 X + ff result 0 FFFF — 1
8 Y + ff result 0
Reference Manual M68HC11 — Rev. 6

522 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
BSR Branch to Subroutine BSR
Operation: PC ⇐ (PC) + $0002 Advance PC to return address

⇓ (PCL) Push low-order return onto stack
SP ⇐ (SP) – $0001
⇓ (PCH) Push high-order return onto stack
SP ⇐ (SP) – $0001
PC ⇐ (PC) + Rel Load start address of requested subroutine

Description: The program counter is incremented by two (this will be the return
address). The least significant byte of the contents of the program
counter (low-order return address) is pushed onto the stack. The stack
pointer is then decremented by one. The most significant byte of the
contents of the program counter (high-order return address) is pushed
onto the stack. The stack pointer is then decremented by one. A branch
then occurs to the location specified by the branch offset.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BSR (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
BSR (REL)

Addr Data R/W
1 OP 8D 1
2 OP + 1 rr 1
3 FFFF — 1
4 Sub Nxt op 1
5 SP Rtn lo 0
6 SP–1 Rtn hi 0
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 523

Instruction Set Details
BVC Branch if Overflow Clear BVC
Operation: PC ⇐ (PC) + $0002 + Rel if (V) = 0

Description: Tests the state of the V bit in the CCR and causes a branch if V is clear.
Used after an operation on twos-complement binary values, this
instruction will cause a branch if there was NO overflow. That is, branch
if the twos-complement result was valid.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BVC (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BVC (REL)

Addr Data R/W
1 OP 28 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional
Reference Manual M68HC11 — Rev. 6

524 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
BVS Branch if Overflow Set BVS
Operation: PC ⇐ (PC) + $0002 + Rel if (V) = 1

Description: Tests the state of the V bit in the CCR and causes a branch if V is set.
Used after an operation on twos-complement binary values, this
instruction will cause a branch if there was an overflow. That is, branch
if the twos-complement result was invalid.

See BRA instruction for further details of the execution of the branch.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: BVS (rel)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

The following table is a summary of all branch instructions.

S X H I N Z V C

— — — — — — — —

Cycle
BVS (REL)

Addr Data R/W
1 OP 29 1
2 OP + 1 rr 1
3 FFFF — 1

Test Boolean Mnemonic Opcode Complementary Branch Comment
r > m Z + (N ⊕ V) = 0 BGT 2E r ≤ m BLE 2F Signed
r ≥ m N ⊕ V = 0 BGE 2C r < m BLT 2D Signed
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Signed
r ≤ m Z + (N ⊕ V) = 1 BLE 2F r > m BGT 2E Signed
r < m N ⊕ V = 1 BLT 2D r ≥ m BGE 2C Signed
r > m C + Z = 0 BHI 22 r ≤ m BLS 23 Unsigned
r ≥ m C = 0 BHS/BCC 24 r < m BLO/BCS 25 Unsigned
r = m Z = 1 BEQ 27 r ≠ m BNE 26 Unsigned
r ≤ m C + Z = 1 BLS 23 r > m BHI 22 Unsigned
r < m C = 1 BLO/BCS 25 r ≥ m BHS/BCC 24 Unsigned
Carry C = 1 BCS 25 No Carry BCC 24 Simple

Negative N = 1 BMI 2B Plus BPL 2A Simple
Overflow V = 1 BVS 29 No Overflow BVC 28 Simple

r = 0 Z = 1 BEQ 27 r ≠ 0 BNE 26 Simple
Always — BRA 20 Never BRN 21 Unconditional
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 525

Instruction Set Details
CBA Compare Accumulators CBA
Operation: (ACCA) – (ACCB)

Description: Compares the contents of ACCA to the contents of ACCB and sets the
condition codes, which may be used for arithmetic and logical
conditional branches. Both operands are unaffected.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V A7 • B7 • R7 + A7 • B7 • R7
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C A7 • B7 + B7 • R7 + R7 • A7
Set if there was a borrow from the MSB of the result; cleared
otherwise.

Source Form: CBA

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú Ú Ú

Cycle
CBA (INH)

Addr Data R/W
1 OP 11 1
2 OP + 1 — 1
Reference Manual M68HC11 — Rev. 6

526 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
CLC Clear Carry CLC
Operation: C bit ⇐ 0

Description: Clears the C bit in the CCR.

CLC may be used to set up the C bit prior to a shift or rotate instruction
involving the C bit.

Condition Codes
and Boolean

Formulae:

C 0
Cleared

Source Form: CLC

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — 0

Cycle
CLC (INH)

Addr Data R/W
1 OP 0C 1
2 OP + 1 — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 527

Instruction Set Details
CLI Clear Interrupt Mask CLI
Operation: I bit ⇐ 0

Description: Clears the interrupt mask bit in the CCR. When the I bit is clear,
interrupts are enabled. There is one E-clock cycle delay in the clearing
mechanism for the I bit so that, if interrupts were previously disabled, the
next instruction after a CLI will always be executed, even if there was an
interrupt pending prior to execution of the CLI instruction.

Condition Codes
and Boolean

Formulae:

I 0
Cleared

Source Form: CLI

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — 0 — — — —

Cycle
CLI (INH)

Addr Data R/W
1 OP 0E 1
2 OP + 1 — 1
Reference Manual M68HC11 — Rev. 6

528 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
CLR Clear CLR
Operation: ACCX ⇐ 0 or: M ⇐ 0

Description: The contents of ACCX or M are replaced with 0s.

Condition Codes
and Boolean

Formulae:

N 0
Cleared

Z 1
Set

V 0
Cleared

C 0
Cleared

Source Forms: CLRA; CLRB; CLR (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — 0 1 0 0

Cycle
CLRA (INH) CLRB (INH) CLR (EXT) CLR (IND,X) CLR (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W

1 OP 4F 1 OP 5F 1 OP 7F 1 OP 6F 1 OP 18 1

2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 6F 1

3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1

5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1

6 hhll 00 0 X + ff 00 0 FFFF — 1

7 Y + ff 00 0
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 529

Instruction Set Details
CLV Clear Twos Complement Overflow Bit CLV
Operation: V bit ⇐ 0

Description: Clears the twos complement overflow bit in the CCR

Condition Codes
and Boolean

Formulae:

V 0
Cleared

Source Form: CLV

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — 0 —

Cycle
CLV (INH)

Addr Data R/W
1 OP 0A 1
2 OP + 1 — 1
Reference Manual M68HC11 — Rev. 6

530 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
CMP Compare CMP
Operation: (ACCX) – (M)

Description: Compares the contents of ACCX to the contents of M and sets the
condition codes, which may be used for arithmetic and logical
conditional branching. Both operands are unaffected.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V X7 • M7 • R7 + X7 • M7 • R7
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C X7 • M7 + M7 • R7 + R7 • X7
Set if there was a borrow from the MSB of the result; cleared
otherwise.

Source Forms: CMPA (opr); CMPB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú Ú Ú

Cycle
CMPA (IMM) CMPA (DIR) CMPA (EXT) CMPA (IND,X) CMPA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 81 1 OP 91 1 OP B1 1 OP A1 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 A1 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Cycle
CMPB (IMM) CMPB (DIR) CMPB (EXT) CMPB (IND,X) CMPB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP C1 1 OP D1 1 OP F1 1 OP E1 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 E1 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 531

Instruction Set Details
COM Complement COM
Operation: ACCX ⇐ (ACCX) = $FF – (ACCX) or: M ⇐ (M) = $FF – (M)

Description: Replaces the contents of ACCX or M with its one’s complement. (Each
bit of the contents of ACCX or M is replaced with the complement of that
bit.) To complement a value without affecting the C bit, EXclusive-OR
the value with $FF.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V 0
Cleared

C 1
Set (For compatibility with M6800)

Source Forms: COMA; COMB; COM (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú 0 1

Cycle
COMA (INH) COMB (INH) COM (EXT) COM (IND,X) COM (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 43 1 OP 53 1 OP 73 1 OP 63 1 OP 18 1
2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 63 1
3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1
6 hhll result 0 X + ff result 0 FFFF — 1
7 Y + ff result 0
Reference Manual M68HC11 — Rev. 6

532 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
CPD Compare Double Accumulator CPD
Operation: (ACCD) – (M : M + 1)

Description: Compares the contents of accumulator D with a 16-bit value at the
address specified and sets the condition codes accordingly. The
compare is accomplished internally by doing a 16-bit subtract of
(M : M + 1) from accumulator D without modifying either accumulator D
or (M : M + 1).

Condition Codes
and Boolean

Formulae:

N R15
Set if MSB of result is set; cleared otherwise.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V D15 • M15 • R15 + D15 • M15 • R15
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C D15 • M15 + M15 • R15 + R15 • D15
Set if the absolute value of the contents of memory is larger than the
absolute value of the accumulator; cleared otherwise.

Source Form: CPD (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú Ú Ú

Cycle
CPD (IMM) CPD (DIR) CPD (EXT) CPD (IND,X) CPD (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 1A 1 OP 1A 1 OP 1A 1 OP 1A 1 OP CD 1
2 OP + 1 83 1 OP + 1 93 1 OP + 1 B3 1 OP + 1 A3 1 OP + 1 A3 1
3 OP + 2 jj 1 OP + 2 dd 1 OP + 2 hh 1 OP + 2 ff 1 OP + 2 ff 1
4 OP + 3 kk 1 00dd (00dd) 1 OP + 3 ll 1 FFFF — 1 FFFF — 1
5 FFFF — 1 00dd + 1 (00dd + 1) 1 hhll (hhll) 1 X + ff (X + ff) 1 Y + ff (Y + ff) 1
6 FFFF — 1 hhll + 1 (hhll + 1) 1 X + ff + 1 (X + ff + 1) 1 Y + ff + 1 (Y + ff + 1) 1
7 FFFF — 1 FFFF — 1 FFFF — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 533

Instruction Set Details
CPX Compare Index Register X CPX
Operation: (IX) – (M : M + 1)

Description: Compares the contents of index register X with a 16-bit value at the
address specified and sets the condition codes accordingly. The
compare is accomplished internally by doing a 16-bit subtract of
(M : M + 1) from index register X without modifying either index register
X or (M : M + 1).

Condition Codes
and Boolean

Formulae:

N R15
Set if MSB of result is set; cleared otherwise.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V IX15 • M15 • R15 + IX15 • M15 • R15
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C IX15 • M15 + M15 • R15 + R15 • IX15
Set if the absolute value of the contents of memory is larger than the
absolute value of the index register; cleared otherwise.

Source Form: CPX (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú Ú Ú

Cycle
CPX (IMM) CPX (DIR) CPX (EXT) CPX (IND,X) CPX (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 8C 1 OP 9C 1 OP BC 1 OP AC 1 OP CD 1
2 OP + 1 jj 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 AC 1
3 OP + 2 kk 1 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 FFFF — 1 00dd + 1 (00dd + 1) 1 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 hhll + 1 (hhll + 1) 1 X + ff + 1 (X + ff + 1) 1 Y + ff (Y + ff) 1
6 FFFF — 1 FFFF — 1 Y + ff + 1 (Y + ff + 1) 1
7 FFFF — 1
Reference Manual M68HC11 — Rev. 6

534 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
CPY Compare Index Register Y CPY
Operation: (IY) – (M : M + 1)

Description: Compares the contents of index register Y with a 16-bit value at the
address specified and sets the condition codes accordingly. The
compare is accomplished internally by doing a 16-bit subtract of
(M : M + 1) from index register Y without modifying either index register
Y or (M : M + 1).

Condition Codes
and Boolean

Formulae:

N R15
Set if MSB of result is set; cleared otherwise.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V IY15 • M15 • R15 + IY15 • M15 • R15
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C IY15 • M15 + M15 • R15 + R15 • IY15
Set if the absolute value of the contents of memory is larger than the
absolute value of the index register; cleared otherwise.

Source Form: CPY (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú Ú Ú

Cycle
CPY (IMM) CPY (DIR) CPY (EXT) CPY (IND,X) CPY (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 18 1 OP 18 1 OP 18 1 OP 1A 1 OP 18 1
2 OP + 1 8C 1 OP + 1 9C 1 OP + 1 BC 1 OP + 1 AC 1 OP + 1 AC 1
3 OP + 2 jj 1 OP + 2 dd 1 OP + 2 hh 1 OP + 2 ff 1 OP + 2 ff 1
4 OP + 3 kk 1 00dd (00dd) 1 OP + 3 ll 1 FFFF — 1 FFFF — 1
5 FFFF — 1 00dd + 1 (00dd + 1) 1 hhll (hhll) 1 X + ff (X + ff) 1 Y + ff (Y + ff) 1
6 FFFF — 1 hhll + 1 (hhll + 1) 1 X + ff + 1 (X + ff + 1) 1 Y + ff + 1 (Y + ff + 1) 1
7 FFFF — 1 FFFF — 1 FFFF — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 535

Instruction Set Details
DAA Decimal Adjust Accumulator A DAA
Operation: The following table summarizes the operation of the DAA instruction for

all legal combinations of input operands. A correction factor (column 5 in
the following table) is added to ACCA to restore the result of an addition
of two BCD operands to a valid BCD value and set or clear the carry bit.

NOTE: Columns (1) through (4) of the above table represent all possible cases
which can result from any of the operations ABA, ADD, or ADC, with
initial carry either set or clear, applied to two binary-coded-decimal
operands. The table shows hexadecimal values.

Description: If the contents of ACCA and the state of the carry/borrow bit C and the
state of the half-carry bit H are all the result of applying any of the
operations ABA, ADD, or ADC to binary-coded-decimal operands, with
or without an initial carry, the DAA operation will adjust the contents of
ACCA and the carry bit C in the CCR to represent the correct
binary-coded-decimal sum and the correct state of the C bit.

DAA

State of C Bit
Before DAA
(Column 1)

Upper Half-Byte
of ACCA

(Bits [7:4])
(Column 2)

Initial Half-Carry
H Bit

from CCR
(Column 3)

Lower Half-Byte
of ACCA

(Bits [3:0])
(Column 4)

Number Added
to ACCA
by DAA

(Column 5)

State of C Bit
After DAA
(Column 6)

0 0-9 0 0-9 00 0

0 0-8 0 A-F 06 0

0 0-9 1 0-3 06 0

0 A-F 0 0-9 60 1

0 9-F 0 A-F 66 1

0 A-F 1 0-3 66 1

1 0-2 0 0-9 60 1

1 0-2 0 A-F 66 1

1 0-3 1 0-3 66 1
Reference Manual M68HC11 — Rev. 6

536 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
DAA Decimal Adjust Accumulator A DAA
(Continued)

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V ?
Not defined

C See table above

Source Form: DAA

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

For the purpose of illustration, consider the case where the BCD value
$99 was just added to the BCD value $22. The add instruction is a binary
operation, which yields the result $BB with no carry (C) or half carry (H).
This corresponds to the fifth row of the table on the previous page. The
DAA instruction, therefore, will add the correction factor $66 to the result
of the addition, giving a result of $21 with the carry bit set. This result
corresponds to the BCD value $121, which is the expected BCD result.

S X H I N Z V C

— — — — Ú Ú ? Ú

Cycle
DAA (INH)

Addr Data R/W
1 OP 19 1
2 OP + 1 — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 537

Instruction Set Details
DEC Decrement DEC
Operation: ACCX ⇐ (ACCX) – $01 or: M ⇐ (M) – $01

Description: Subtract one from the contents of ACCX or M.

The N, Z, and V bits in the CCR are set or cleared according to the
results of the operation. The C bit in the CCR is not affected by the
operation, thus allowing the DEC instruction to be used as a loop counter
in multiple-precision computations.

When operating on unsigned values, only BEQ and BNE branches can
be expected to perform consistently. When operating on twos
complement values, all signed branches are available.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V X7 • X6 • X5 • X4 • X3 • X2 • X1 • X0 = R7 • R6 • R5 • R4 • R3 • R2 •
R1 • R0
Set if a twos complement overflow resulted from the operation;
cleared otherwise. Twos complement overflow occurs if and only if
(ACCX) or (M) was $80 before the operation.

Source Form: DECA; DECB; DEC (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú Ú —

Cycle
DECA (INH) DECB (INH) DEC (EXT) DEC (IND,X) DEC (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 4A 1 OP 5A 1 OP 7A 1 OP 6A 1 OP 18 1
2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 6A 1
3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1
6 hhll result 0 X + ff result 0 FFFF — 1
7 Y + ff result 0
Reference Manual M68HC11 — Rev. 6

538 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
DES Decrement Stack Pointer DES
Operation: SP ⇐ (SP) – $0001

Description: Subtract one from the stack pointer.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: DES

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
DES (INH)

Addr Data R/W
1 OP 34 1
2 OP + 1 — 1
3 SP — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 539

Instruction Set Details
DEX Decrement Index Register X DEX
Operation: IX ⇐ (IX) – $0001

Description: Subtract one from index register X

Only the Z bit is set or cleared according to the result of this operation.

Condition Codes
and Boolean

Formulae:

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

Source Form: DEX

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — Ú — —

Cycle
DEX (INH)

Addr Data R/W
1 OP 09 1
2 OP + 1 — 1
3 FFFF — 1
Reference Manual M68HC11 — Rev. 6

540 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
DEY Decrement Index Register Y DEY
Operation: IY ⇐ (IY) – $0001

Description: Subtract one from index register Y.

Only the Z bit is set or cleared according to the result of this operation.

Condition Codes
and Boolean

Formulae:

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

Source Form: DEY

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — Ú — —

Cycle
DEY (INH)

Addr Data R/W
1 OP 18 1
2 OP + 1 09 1
3 OP + 2 — 1
4 FFFF — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 541

Instruction Set Details
EOR Exclusive OR EOR
Operation: ACCX ⇐ (ACCX) ⊕ (M)

Description: Performs the logical exclusive-OR between the contents of ACCX and
the contents of M and places the result in ACCX. (Each bit of ACCX after
the operation will be the logical exclusive-OR of the corresponding bits
of M and ACCX before the operation.)

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V 0
Cleared

Source Forms: EORA (opr); EORB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú 0 —

Cycle
EORA (IMM) EORA (DIR) EORA (EXT) EORA (IND,X) EORA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 88 1 OP 98 1 OP B8 1 OP A8 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 A8 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Cycle
EORB (IMM) EORB (DIR) EORB (EXT) EORB (IND,X) EORB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP C8 1 OP D8 1 OP F8 1 OP E8 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 E8 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1
Reference Manual M68HC11 — Rev. 6

542 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
FDIV Fractional Divide FDIV
Operation: (ACCD)/(IX); IX ⇐ Quotient, ACCD ⇐ Remainder

Description: Performs an unsigned fractional divide of the 16-bit numerator in the D
accumulator by the 16-bit denominator in the index register X and sets
the condition codes accordingly. The quotient is placed in the index
register X, and the remainder is placed in the D accumulator. The radix
point is assumed to be in the same place for both the numerator and the
denominator. The radix point is to the left of bit 15 for the quotient. The
numerator is assumed to be less than the denominator. In the case of
overflow (the denominator is less than or equal to the numerator) or
divide by zero, the quotient is set to $FFFF, and the remainder is
indeterminate.

FDIV is equivalent to multiplying the numerator by 216 and then
performing a 32-bit by 16-bit integer divide. The result is interpreted as
a binary-weighted fraction, which resulted from the division of a 16-bit
integer by a larger 16-bit integer. A result of $0001 corresponds to
0.000015, and $FFFF corresponds to 0.99998. The remainder of an
IDIV instruction can be resolved into a binary-weighted fraction by an
FDIV instruction. The remainder of an FDIV instruction can be resolved
into the next 16 bits of binary-weighted fraction by another FDIV
instruction.

Condition Codes
and Boolean

Formulae:

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if quotient is $0000; cleared otherwise.

V 1 if IX ≤ D
Set if denominator was less than or equal to the numerator; cleared
otherwise.

Z IX15 • IX14 • IX13 • IX12 • IX11 • IX10 • IX9 • IX8 • IX7 • IX6 • IX5 •
IX4 • IX3 • IX2 • IX1 • IX0
Set if denominator was $0000; cleared otherwise.

Source Form: FDIV

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C
— — — — — Ú Ú Ú

Cycle
FDIV (INH)

Addr Data R/W
1 OP 03 1
2 OP + 1 — 1

3–41 FFFF — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 543

Instruction Set Details
IDIV Integer Divide IDIV
Operation: (ACCD)/(IX); IX ⇐ Quotient, ACCD ⇐ Remainder

Description: Performs an unsigned integer divide of the 16-bit numerator in D
accumulator by the 16-bit denominator in index register X and sets the
condition codes accordingly. The quotient is placed in index register X,
and the remainder is placed in the D accumulator. The radix point is
assumed to be in the same place for both the numerator and the
denominator. The radix point is to the right of bit 0 for the quotient. In the
case of divide by zero, the quotient is set to $FFFF, and the remainder
is indeterminate.

Condition Codes
and Boolean

Formulae:

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V 0
Cleared

C IX15 • IX14 • IX13 • IX12 • IX11 • IX10 • IX9 • IX8 • IX7 • IX6 • IX5 •
IX4 • IX3 • IX2 • IX1 • IX0
Set if denominator was $0000; cleared otherwise.

Source Form: IDIV

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — Ú 0 Ú

Cycle
IDIV (INH)

Addr Data R/W
1 OP 02 1
2 OP + 1 — 1

3–41 FFFF — 1
Reference Manual M68HC11 — Rev. 6

544 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
INC Increment INC
Operation: ACCX ⇐ (ACCX) + $01 or: M ⇐ (M) + $01

Description: Add one to the contents of ACCX or M.

The N, Z, and V bits in the CCR are set or cleared according to the
results of the operation. The C bit in the CCR is not affected by the
operation, thus allowing the INC instruction to be used as a loop counter
in multiple-precision computations.

When operating on unsigned values, only BEQ and BNE branches can
be expected to perform consistently. When operating on
twos-complement values, all signed branches are available.

Condition Codes
and Boolean

Formulae:

N R7
Set is MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V X7 • X6 • X5 • X4 • X3 • X2 • X1 • X0
Set if there is a twos complement overflow as a result of the
operation; cleared otherwise. Two’s complement overflow occurs if
and only if (ACCX) or (M) was $7F before the operation.

Source Forms: INCA; INCB; INC (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú Ú —

Cycle
INCA (INH) INCB (INH) INC (EXT) INC (IND,X) INC (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 4C 1 OP 5C 1 OP 7C 1 OP 6C 1 OP 18 1
2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 6C 1
3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1
6 hhll result 0 X + ff result 0 FFFF — 1
7 Y + ff result 0
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 545

Instruction Set Details
INS Increment Stack Pointer INS
Operation: SP ⇐ (SP) + $0001

Description: Adds one to the stack pointer

Condition Codes
and Boolean

Formulae:

None affected

Source Form: INS

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
INS (INH)

Addr Data R/W
1 OP 31 1
2 OP + 1 — 1
3 SP — 1
Reference Manual M68HC11 — Rev. 6

546 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
INX Increment Index Register X INX
Operation: IX ⇐ (IX) + $0001

Description: Adds one to index register X

Only the Z bit is set or cleared according to the result of this operation.

Condition Codes
and Boolean

Formulae:

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

Source Form: INX

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — Ú — —

Cycle
INX (INH)

Addr Data R/W
1 OP 08 1
2 OP + 1 — 1
3 FFFF — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 547

Instruction Set Details
INY Increment Index Register Y INY
Operation: IY ⇐ (IY) + $0001

Description: Adds one to index register Y

Only the Z bit is set or cleared according to the result of this operation.

Condition Codes
and Boolean

Formulae:

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

Source Form: INY

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — Ú — —

Cycle
INY (INH)

Addr Data R/W
1 OP 18 1
2 OP + 1 08 1
3 OP + 2 — 1
4 FFFF — 1
Reference Manual M68HC11 — Rev. 6

548 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
JMP Jump JMP
Operation: PC ⇐ Effective Address

Description: A jump occurs to the instruction stored at the effective address. The
effective address is obtained according to the rules for EXTended or
INDexed addressing.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: JMP (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
JMP (EXT) JMP (IND,X) JMP (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 7E 1 OP 6E 1 OP 18 1
2 OP + 1 hh 1 OP + 1 ff 1 OP + 1 6E 1
3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 FFFF — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 549

Instruction Set Details
JSR Jump to Subroutine JSR
Operation: PC ⇐ (PC) + $0003 (for EXTended or INDexed, Y addressing)

or:
PC ⇐ (PC) + $0002 (for DIRect or INDexed, X addressing)
⇓ (PCL) Push low-order return address onto stack
SP ⇐ (SP) – $0001
⇓ (PCH) Push high-order return address onto stack
SP ⇐ (SP) – $0001
PC ⇐ Effective Addr Load start address or requested subroutine

Description: The program counter is incremented by three or by two, depending on
the addressing mode, and is then pushed onto the stack, eight bits at a
time, least significant byte first. The stack pointer points to the next
empty location in the stack. A jump occurs to the instruction stored at the
effective address. The effective address is obtained according to the
rules for EXTended, DIRect, or INDexed addressing.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: JSR (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
JSR (DIR) JSR (EXT) JSR (IND,X) JSR (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 9D 1 OP BD 1 OP AD 1 OP 18 1
2 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 AD 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 SP Rtn lo 0 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 SP – 1 Rtn hi 0 SP Rtn lo 0 SP Rtn lo 0 Y + ff (Y + ff) 1
6 SP – 1 Rtn hi 0 SP – 1 Rtn hi 0 SP Rtn lo 0
7 SP – 1 Rtn hi 0
Reference Manual M68HC11 — Rev. 6

550 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
LDA Load Accumulator LDA
Operation: ACCX ⇐ (M)

Description: Loads the contents of memory into the 8-bit accumulator. The condition
codes are set according to the data.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V 0
Cleared

Source Forms: LDAA (opr); LDAB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú 0 —

Cycle
LDAA (IMM) LDAA (DIR) LDAA (EXT) LDAA (IND,X) LDAA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 86 1 OP 96 1 OP B6 1 OP A6 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 A6 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Cycle
LDAB (IMM) LDAB (DIR) LDAB (EXT) LDAB (IND,X) LDAB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP C6 1 OP D6 1 OP F6 1 OP E6 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 E6 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 551

Instruction Set Details
LDD Load Double Accumulator LDD
Operation: ACCX ⇐ (M : M + 1); ACCA ⇐ (M), ACCB ⇐ (M + 1)

Description: Loads the contents of memory locations M and M + 1 into the double
accumulator D. The condition codes are set according to the data. The
information from location M is loaded into accumulator A, and the
information from location M + 1 is loaded into accumulator B.

Condition Codes
and Boolean

Formulae:

N R15
Set if MSB of result is set; cleared otherwise.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V 0
Cleared

Source Form: LDD (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú 0 —

Cycle
LDD (IMM) LDD (DIR) LDD (EXT) LDD (IND,X) LDD (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP CC 1 OP DC 1 OP FC 1 OP EC 1 OP 18 1
2 OP + 1 jj 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 EC 1
3 OP + 2 kk 1 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 00dd + 1 (00dd + 1) 1 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 hhll + 1 (hhll + 1) 1 X + ff + 1 (X + ff + 1) 1 Y + ff (Y + ff) 1
6 Y + ff + 1 (Y + ff + 1) 1
Reference Manual M68HC11 — Rev. 6

552 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
LDS Load Stack Pointer LDS
Operation: SPH ⇐ (M), SPL ⇐ (M + 1)

Description: Loads the most significant byte of the stack pointer from the byte of
memory at the address specified by the program, and loads the least
significant byte of the stack pointer from the next byte of memory at one
plus the address specified by the program.

Condition Codes
and Boolean

Formulae:

N R15
Set if MSB of result is set; cleared otherwise.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V 0
Cleared

Source Form: LDS (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú 0 —

Cycle
LDS (IMM) LDS (DIR) LDS (EXT) LDS (IND,X) LDS (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 8E 1 OP 9E 1 OP BE 1 OP AE 1 OP 18 1
2 OP + 1 jj 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 AE 1
3 OP + 2 kk 1 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 00dd + 1 (00dd + 1) 1 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 hhll + 1 (hhll + 1) 1 X + ff + 1 (X + ff + 1) 1 Y + ff (Y + ff) 1
6 Y + ff + 1 (Y + ff + 1) 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 553

Instruction Set Details
LDX Load Index Register X LDX
Operation: IXH ⇐ (M), IXL ⇐ (M + 1)

Description: Loads the most significant byte of index register X from the byte of
memory at the address specified by the program, and loads the least
significant byte of index register X from the next byte of memory at one
plus the address specified by the program.

Condition Codes
and Boolean

Formulae:

N R15
Set if MSB of result is set; cleared otherwise.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V 0
Cleared

Source Form: LDX (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú 0 —

Cycle
LDX (IMM) LDX (DIR) LDX (EXT) LDX (IND,X) LDX (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP CE 1 OP DE 1 OP FE 1 OP EE 1 OP CD 1
2 OP + 1 jj 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 EE 1
3 OP + 2 kk 1 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 00dd + 1 (00dd + 1) 1 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 hhll + 1 (hhll + 1) 1 X + ff + 1 (X + ff + 1) 1 Y + ff (Y + ff) 1
6 Y + ff + 1 (Y + ff + 1) 1
Reference Manual M68HC11 — Rev. 6

554 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
LDY Load Index Register Y LDY
Operation: IYH ⇐ (M), IYL ⇐ (M + 1)

Description: Loads the most significant byte of index register Y from the byte of
memory at the address specified by the program, and loads the least
significant byte of index register Y from the next byte of memory at one
plus the address specified by the program.

Condition Codes
and Boolean

Formulae:

N R15
Set if MSB of result is set; cleared otherwise.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V 0
Cleared

Source Form: LDY (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú 0 —

Cycle
LDY (IMM) LDY (DIR) LDY (EXT) LDY (IND,X) LDY (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 18 1 OP 18 1 OP 18 1 OP 1A 1 OP 18 1
2 OP + 1 CE 1 OP + 1 DE 1 OP + 1 FE 1 OP + 1 EE 1 OP + 1 EE 1
3 OP + 2 jj 1 OP + 2 dd 1 OP + 2 hh 1 OP + 2 ff 1 OP + 2 ff 1

4 OP + 3 kk 1 00dd (00dd) 1 OP + 3 ll 1 FFFF — 1 FFFF — 1
5 00dd + 1 (00dd + 1) 1 hhll (hhll) 1 X + ff (X + ff) 1 Y + ff (Y + ff) 1
6 hhll + 1 (hhll + 1) 1 X + ff + 1 (X + ff + 1) 1 Y + ff + 1 (Y + ff + 1) 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 555

Instruction Set Details
LSL Logical Shift Left LSL
(Same as ASL)

Operation:

Description: Shifts all bits of the ACCX or M one place to the left. Bit 0 is loaded with
a 0. The C bit in the CCR is loaded from the most significant bit of ACCX
or M.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is clear) or (N is clear and C is set); cleared
otherwise (for values of N and C after the shift).

C M7
Set if, before the shift, the MSB of ACCX or M was set; cleared
otherwise.

Source Forms: LSLA; LSLB; LSL (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

C b7 – – – – – – b0 0

S X H I N Z V C

— — — — Ú Ú Ú Ú

Cycle
LSLA (INH) LSLB (INH) LSL (EXT) LSL (IND,X) LSL (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 48 1 OP 58 1 OP 78 1 OP 68 1 OP 18 1
2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 68 1
3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1
6 hhll result 0 X + ff result 0 FFFF — 1
7 Y + ff result 0
Reference Manual M68HC11 — Rev. 6

556 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
LSLD Logical Shift Left Double LSLD
(Same as ASLD)

Operation:

Description: Shifts all bits of ACCD one place to the left. Bit 0 is loaded with a 0. The
C bit in the CCR is loaded from the most significant bit of ACCD.

Condition Codes
and Boolean

Formulae:

N R15
Set if MSB of result is set; cleared otherwise.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is clear) or (N is clear and C is set); cleared
otherwise (for values of N and C after the shift).

C D15
Set if, before the shift, the MSB of ACCD was set; cleared otherwise.

Source Form: LSLD

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

C b7 – – – – – – b0 b7 – – – – – – b0 0

ACCA ACCB

S X H I N Z V C

— — — — Ú Ú Ú Ú

Cycle
LSLD (INH)

Addr Data R/W
1 OP 05 1
2 OP + 1 — 1
3 FFFF — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 557

Instruction Set Details
LSR Logical Shift Right LSR
Operation:

Description: Shifts all bits of the ACCX or M one place to the right. Bit 7 is loaded
with 0. The C bit is loaded from the least significant bit of ACCX or M.

Condition Codes
and Boolean

Formulae:

N 0
Cleared.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Since N = 0, this simplifies to C (after the shift).

C M0
Set if, before the shift, the LSB of ACCX or M was set; cleared
otherwise.

Source Forms: LSRA; LSRB; LSR (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

Cb7 – – – – – – b00

S X H I N Z V C

— — — — 0 Ú Ú Ú

Cycle
LSRA (INH) LSRB (INH) LSR (EXT) LSR (IND,X) LSR (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 44 1 OP 54 1 OP 74 1 OP 64 1 OP 18 1
2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 64 1
3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1
6 hhll result 0 X + ff result 0 FFFF — 1
7 Y + ff result 0
Reference Manual M68HC11 — Rev. 6

558 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
LSRD Logical Shift Right Double Accumulator LSRD
Operation:

Description: Shifts all bits of ACCD one place to the right. Bit 15 (MSB of ACCA) is
loaded with 0. The C bit is loaded from the least significant bit of ACCD
(LSB of ACCB).

Condition Codes
and Boolean

Formulae:

N 0
Cleared.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V D0
Set if, after the shift operation, C is set; cleared otherwise.

C D0
Set if, before the shift, the least significant bit of ACCD was set;
cleared otherwise.

Source Form: LSRD

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

Cb7 – – – – – – b0 b7 – – – – – – b0

ACCA ACCB

0

S X H I N Z V C

— — — — 0 Ú Ú Ú

Cycle
LSRD (INH)

Addr Data R/W
1 OP 04 1
2 OP + 1 — 1
3 FFFF — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 559

Instruction Set Details
MUL Multiply Unsigned MUL
Operation: ACCD ⇐ (ACCA) × (ACCB)

Description: Multiplies the 8-bit unsigned binary value in accumulator A by the 8-bit
unsigned binary value in accumulator B to obtain a 16-bit unsigned result
in the double accumulator D. Unsigned multiply allows multiple-precision
operations. The carry flag allows rounding the most significant byte of
the result through the sequence MUL, ADCA #0.

Condition Codes
and Boolean

Formulae:

C R7
Set if bit 7 of the result (ACCB bit 7) is set; cleared otherwise.

Source Form: MUL

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — Ú

Cycle
MUL (INH)

Addr Data R/W
1 OP 3D 1
2 OP + 1 — 1

3–10 FFFF — 1
Reference Manual M68HC11 — Rev. 6

560 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
NEG Negate NEG
Operation: ACCX ⇐ – (ACCX) = $00 – (ACCX) or: M ⇐ – (M) = $00 – (M)

Description: Replaces the contents of ACCX or M with its twos complement; the value
$80 is left unchanged

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if there is a twos complement overflow from the implied
subtraction from zero; cleared otherwise. A twos complement
overflow will occur if and only if the contents of ACCX or M is $80.

C R7 + R6 + R5 + R4 + R3 + R2 + R1 + R0
Set if there is a borrow in the implied subtraction from zero; cleared
otherwise. The C bit will be set in all cases except when the contents
of ACCX or M is $00.

Source Forms: NEGA; NEGB; NEG (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú Ú Ú

Cycle
NEGA (INH) NEGB (INH) NEG (EXT) NEG (IND,X) NEG (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 40 1 OP 50 1 OP 70 1 OP 60 1 OP 18 1
2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 60 1
3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1
6 hhll result 0 X + ff result 0 FFFF — 1
7 Y + ff result 0
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 561

Instruction Set Details
NOP No Operation NOP
Description: This is a single-byte instruction that causes only the program counter to

be incremented. No other registers are affected. This instruction is
typically used to produce a time delay although some software
disciplines discourage CPU frequency-based time delays. During
debug, NOP instructions are sometimes used to temporarily replace
other machine code instructions, thus disabling the replaced
instructions.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: NOP

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
NOP (INH)

Addr Data R/W
1 OP 01 1
2 OP + 1 — 1
Reference Manual M68HC11 — Rev. 6

562 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
ORA Inclusive OR ORA
Operation: ACCX ⇐ (ACCX) + (M)

Description: Performs the logical inclusive-OR between the contents of ACCX and
the contents of M and places the result in ACCX. (Each bit of ACCX after
the operation will be the logical inclusive-OR of the corresponding bits of
M and ACCX before the operation.)

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V 0
Cleared

Source Forms: ORAA (opr); ORAB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú 0 —

Cycle
ORAA (IMM) ORAA (DIR) ORAA (EXT) ORAA (IND,X) ORAA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 8A 1 OP 9A 1 OP BA 1 OP AA 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 AA 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Cycle
ORAB (IMM) ORAB (DIR) ORAB (EXT) ORAB (IND,X) ORAB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP CA 1 OP DA 1 OP FA 1 OP EA 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 EA 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 563

Instruction Set Details
PSH Push Data onto Stack PSH
Operation: ⇓ ACCX, SP ⇐ (SP) – $0001

Description: The contents of ACCX are stored on the stack at the address contained
in the stack pointer. The stack pointer is then decremented.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Just before returning
from the subroutine, corresponding pull instructions are used to restore
the saved CPU registers so the subroutine will appear not to have
affected these registers.

Condition Codes
and Boolean

Formulae:

None affected

Source Forms: PSHA; PSHB

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
PSHA (INH) PSHB (INH)

Addr Data R/W Addr Data R/W
1 OP 36 1 OP 37 1
2 OP + 1 — 1 OP + 1 — 1
3 SP (A) 0 SP (B) 0
Reference Manual M68HC11 — Rev. 6

564 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
PSHX Push Index Register X onto Stack PSHX
Operation: ⇓ (IXL), SP ⇐ (SP) – $0001

⇓ (IXH), SP ⇐ (SP) – $0001

Description: The contents of index register X are pushed onto the stack (low-order
byte first) at the address contained in the stack pointer. The stack pointer
is then decremented by two.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Just before returning
from the subroutine, corresponding pull instructions are used to restore
the saved CPU registers so the subroutine will appear not to have
affected these registers.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: PSHX

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
PSHX (INH)

Addr Data R/W
1 OP 3C 1
2 OP + 1 — 1
3 SP (IXL) 0
4 SP – 1 (IXH) 0
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 565

Instruction Set Details
PSHY Push Index Register Y onto Stack PSHY
Operation: ⇓ (IYL), SP ⇐ (SP) – $0001

⇓ (IYH), SP ⇐ (SP) – $0001

Description: The contents of index register Y are pushed onto the stack (low-order
byte first) at the address contained in the stack pointer. The stack pointer
is then decremented by two.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Just before returning
from the subroutine, corresponding pull instructions are used to restore
the saved CPU registers so the subroutine will appear not to have
affected these registers.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: PSHY

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
PSHY (INH)

Addr Data R/W
1 OP 18 1
2 OP + 1 3C 1
3 OP + 2 — 1
4 SP (IYL) 0
5 SP – 1 (IYH) 0
Reference Manual M68HC11 — Rev. 6

566 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
PUL Pull Data from Stack PUL
Operation: SP ⇐ (SP) + $0001, ⇑ (ACCX)

Description: The stack pointer is incremented. The ACCX is then loaded from the
stack at the address contained in the stack pointer.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Just before returning
from the subroutine, corresponding pull instructions are used to restore
the saved CPU registers so the subroutine will appear not to have
affected these registers.

Condition Codes
and Boolean

Formulae:

None affected

Source Forms: PULA; PULB

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
PULA (INH) PULB (INH)

Addr Data R/W Addr Data R/W
1 OP 32 1 OP 33 1
2 OP + 1 — 1 OP + 1 — 1
3 SP — 1 SP — 1
4 SP + 1 get A 1 SP + 1 get B 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 567

Instruction Set Details
PULX Pull Index Register X from Stack PULX
Operation: SP ⇐ (SP) + $0001; ⇑ (IXH)

SP ⇐ (SP) + $0001; ⇑ (IXL)

Description: Index register X is pulled from the stack (high-order byte first) beginning
at the address contained in the stack pointer plus one. The stack pointer
is incremented by two in total.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Just before returning
from the subroutine, corresponding pull instructions are used to restore
the saved CPU registers so the subroutine will appear not to have
affected these registers.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: PULX

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
PULX (INH)

Addr Data R/W
1 OP 38 1
2 OP + 1 — 1
3 SP — 1
4 SP + 1 get IXH 1
5 SP + 2 get IXL 1
Reference Manual M68HC11 — Rev. 6

568 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
PULY Pull Index Register Y from Stack PULY
Operation: SP ⇐ (SP) + $0001; ⇑ (IYH)

SP ⇐ (SP) + $0001; ⇑ (IYL)

Description: Index register Y is pulled from the stack (high-order byte first) beginning
at the address contained in the stack pointer plus one. The stack pointer
is incremented by two in total.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Just before returning
from the subroutine, corresponding pull instructions are used to restore
the saved CPU registers so the subroutine will appear not to have
affected these registers.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: PULY

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
PULY (INH)

Addr Data R/W
1 OP 18 1
2 OP + 1 38 1
3 OP + 2 — 1
4 SP — 1
5 SP + 1 get IYH 1
6 SP + 2 get IYL 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 569

Instruction Set Details
ROL Rotate Left ROL
Operation:

Description: Shifts all bits of the ACCX or M one place to the left. Bit 0 is loaded from
the C bit. The C bit in the CCR is loaded from the most significant bit of
ACCX or M. The rotate operations include the carry bit to allow extension
of the shift and rotate operations to multiple bytes. For example, to shift
a 24-bit value left one bit, the sequence ASL LOW, ROL MID, ROL HIGH
could be used where LOW, MID, and HIGH refer to the low-order,
middle, and high-order bytes of the 24-bit value, respectively.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V N ⊕ C = [N • C] + [N • C] (for N and C after the rotate)
Set if (N is set and C is clear) or (N is clear and C is set); cleared
otherwise (for values of N and C after the rotate).

C M7
Set if, before the rotate, the MSB of ACCX or M was set; cleared
otherwise.

Source Forms: ROLA; ROLB; ROL (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

C b7 – – – – – – b0 C

S X H I N Z V C

— — — — Ú Ú Ú Ú

Cycle
ROLA (INH) ROLB (INH) ROL (EXT) ROL (IND,X) ROL (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 49 1 OP 59 1 OP 79 1 OP 69 1 OP 18 1
2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 69 1
3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1
6 hhll result 0 X + ff result 0 FFFF — 1
7 Y + ff result 0
Reference Manual M68HC11 — Rev. 6

570 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
ROR Rotate Right ROR
Operation:

Description: Shifts all bits of the ACCX or M one place to the right. Bit 7 is loaded from
the C bit. The C bit in the CCR is loaded from the least significant bit of
ACCX or M. The rotate operations include the carry bit to allow extension
of the shift and rotate operations to multiple bytes. For example, to shift
a 24-bit value right one bit, the sequence LSR HIGH, ROR MID, ROR
LOW could be used where LOW, MID, and HIGH refer to the low-order,
middle, and high-order bytes of the 24-bit value, respectively. The first
LSR could be replaced by ASR to maintain the original value of the sign
bit (MSB of high-order byte) of the 24-bit value.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V N ⊕ C = [N • C] + [N • C] (for N and C after the rotate)
Set if (N is set and C is clear) or (N is clear and C is set); cleared
otherwise (for values of N and C after the rotate).

C M0
Set if, before the rotate, the LSB of ACCX or M was set; cleared
otherwise.

Source Forms: RORA; RORB; ROR (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

C b7 – – – – – – b0 C

S X H I N Z V C

— — — — Ú Ú Ú Ú

Cycle
RORA (INH) RORB (INH) ROR (EXT) ROR (IND,X) ROR (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 46 1 OP 56 1 OP 76 1 OP 66 1 OP 18 1
2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 66 1
3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1
6 hhll result 0 X + ff result 0 FFFF — 1
7 Y + ff result 0
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 571

Instruction Set Details
RTI Return from Interrupt RTI
Operation: SP ⇐ (SP) + $0001, ⇑ (CCR)

SP ⇐ (SP) + $0001, ⇑ (ACCB)
SP ⇐ (SP) + $0001, ⇑ (ACCA)
SP ⇐ (SP) + $0001, ⇑ (IXH)
SP ⇐ (SP) + $0001, ⇑ (IXL)
SP ⇐ (SP) + $0001, ⇑ (IYH)
SP ⇐ (SP) + $0001, ⇑ (IYL)
SP ⇐ (SP) + $0001, ⇑ (PCH)
SP ⇐ (SP) + $0001, ⇑ (PCL)

Description: The condition code, accumulators B and A, index registers X and Y, and
the program counter will be restored to a state pulled from the stack. The
X bit in the CCR may be cleared as a result of an RTI instruction but may
not be set if it was cleared prior to execution of the RTI instruction.

Condition Codes
and Boolean

Formulae:

Condition code bits take on the value of the corresponding bit of the
unstacked CCR except that the X bit may not change from a 0 to a 1.
Software can leave X set, leave X clear, or change X from 1 to 0.
The XIRQ interrupt mask can become set only as a result of a reset or
recognition of an XIRQ interrupt.

Source Form: RTI

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

Ú ⇓ Ú Ú Ú Ú Ú Ú

Cycle
RTI (INH)

Addr Data R/W
1 OP 3B 1
2 OP + 1 — 1
3 SP — 1
4 SP + 1 get CC 1
5 SP + 2 get B 1
6 SP + 3 get A 1
7 SP + 4 get IXH 1
8 SP + 5 get IXL 1
9 SP + 6 get IYH 1
10 SP + 7 get IYL 1
11 SP + 8 Rtn hi 1
12 SP + 9 Rtn lo 1
Reference Manual M68HC11 — Rev. 6

572 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
RTS Return from Subroutine RTS
Operation: SP ⇐ (SP) + $0001, ⇑ (PCH)

SP ⇐ (SP) + $0001, ⇑ (PCL)

Description: The stack pointer is incremented by one. The contents of the byte of
memory, at the address now contained in the stack pointer, are loaded
into the high-order eight bits of the program counter. The stack pointer is
again incremented by one. The contents of the byte of memory, at the
address now contained in the stack pointer, are loaded into the low-order
eight bits of the program counter.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: RTS

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
RTS (INH)

Addr Data R/W
1 OP 39 1
2 OP + 1 — 1
3 SP — 1
4 SP + 1 Rtn hi 1
5 SP + 2 Rtn lo 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 573

Instruction Set Details
SBA Subtract Accumulators SBA
Operation: ACCA ⇐ (ACCA) – (ACCB)

Description: Subtracts the contents of ACCB from the contents of ACCA and places
the result in ACCA. The contents of ACCB are not affected. For subtract
instructions, the C bit in the CCR represents a borrow.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V A7 • B7 • R7 + A7 • B7 • R7
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C A7 • B7 + B7 • R7 + R7 • A7
Set if the absolute value of ACCB is larger than the absolute value of
ACCA; cleared otherwise.

Source Form: SBA

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú Ú Ú

Cycle
SBA (INH)

Addr Data R/W
1 OP 10 1
2 OP + 1 — 1
Reference Manual M68HC11 — Rev. 6

574 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
SBC Subtract with Carry SBC
Operation: ACCX ⇐ (ACCX) – (M) – (C)

Description: Subtracts the contents of M and the contents of C from the contents of
ACCX and places the result in ACCX. For subtract instructions, the C bit
in the CCR represents a borrow.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V X7 • M7 • R7 + X7 • M7 • R7
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C X7 • M7 + M7 • R7 + R7 • X7
Set if the absolute value of the contents of memory plus previous
carry is larger than the absolute value of the accumulator; cleared
otherwise.

Source Forms: SBCA (opr); SBCB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú Ú Ú

Cycle
SBCA (IMM) SBCA (DIR) SBCA (EXT) SBCA (IND,X) SBCA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 82 1 OP 92 1 OP B2 1 OP A2 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 A2 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Cycle
SBCB (IMM) SBCB (DIR) SBCB (EXT) SBCB (IND,X) SBCB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP C2 1 OP D2 1 OP F2 1 OP E2 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 E2 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 575

Instruction Set Details
SEC Set Carry SEC
Operation: C bit ⇐ 1

Description: Sets the C bit in the CCR.

Condition Codes
and Boolean

Formulae:

C 1
Set

Source Form: SEC

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — 1

Cycle
SEC (INH)

Addr Data R/W
1 OP 0D 1
2 OP + 1 — 1
Reference Manual M68HC11 — Rev. 6

576 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
SEI Set Interrupt Mask SEI
Operation: I bit ⇐ 1

Description: Sets the interrupt mask bit in the CCR. When the I bet is set, all
maskable interrupts are inhibited, and the MPU will recognize only
non-maskable interrupt sources or an SWI.

Condition Codes
and Boolean

Formulae:

I 1
Set

Source Form: SEI

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — 1 — — — —

Cycle
SEI (INH)

Addr Data R/W
1 OP 0F 1
2 OP + 1 — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 577

Instruction Set Details
SEV Set Two’s Complement Overflow Bit SEV
Operation: V bit ⇐ 1

Description: Sets the twos complement overflow bit in the CCR.

Condition Codes
and Boolean

Formulae:

V 1
Set

Source Form: SEV

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — 1 —

Cycle
SEV (INH)

Addr Data R/W
1 OP 0B 1
2 OP + 1 — 1
Reference Manual M68HC11 — Rev. 6

578 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
STA Store Accumulator STA
Operation: M ⇐ (ACCX)

Description: Stores the contents of ACCX in memory. The contents of ACCX remain
the same.

Condition Codes
and Boolean

Formulae:

N X7
Set if MSB of result is set; cleared otherwise.

Z X7 • X6 • X5 • X4 • X3 • X2 • X1 • X0
Set if result is $00; cleared otherwise.

V 0
Cleared

Source Forms: STAA (opr); STAB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú 0 —

Cycle
STAA (DIR) STAA (EXT) STAA (IND,X) STAA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 97 1 OP B7 1 OP A7 1 OP 18 1
2 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 A7 1
3 00dd (A) 0 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (A) 0 X + ff (A) 0 FFFF — 1
5 Y + ff (A) 0

Cycle
STAB (DIR) STAB (EXT) STAB (IND,X) STAB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP D7 1 OP F7 1 OP E7 1 OP 18 1
2 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 E7 1
3 00dd (B) 0 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (B) 0 X + ff (B) 0 FFFF — 1
5 Y + ff (B) 0
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 579

Instruction Set Details
STD Store Double Accumulator STD
Operation: M : M + 1 ⇐ (ACCD); M ⇐ (ACCA), M + 1 ⇐ (ACCB)

Description: Stores the contents of double accumulator ACCD in memory. The
contents of ACCD remain unchanged.

Condition Codes
and Boolean

Formulae:

N D15
Set if MSB of result is set; cleared otherwise.

Z D15 • D14 • D13 • D12 • D11 • D10 • D9 • D8 • D7 • D6 • D5 • D4 •
D3 • D2 • D1 • D0
Set if result is $0000; cleared otherwise.

V 0
Cleared

Source Form: STD (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú 0 —

Cycle
STD (DIR) STD (EXT) STD (IND,X) STD (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP DD 1 OP FD 1 OP ED 1 OP 18 1
2 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 ED 1
3 00dd (A) 0 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 00dd + 1 (B) 0 hhll (A) 0 X + ff (A) 0 FFFF — 1
5 hhll + 1 (B) 0 X + ff + 1 (B) 0 Y + ff (A) 0
6 Y + ff + 1 (B) 0
Reference Manual M68HC11 — Rev. 6

580 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
STOP Stop Processing STOP
Description: If the S bit in the CCR is set, then the STOP instruction is disabled and

operates like the NOP instruction. If the S bit in the CCR is clear, the
STOP instruction causes all system clocks to halt, and the system is
placed in a minimum-power standby mode. All CPU registers remain
unchanged. I/O pins also remain unaffected.

Recovery from STOP may be accomplished by RESET, XIRQ, or an
unmasked IRQ. When recovering from STOP with XIRQ, if the X bit in
the CCR is clear, execution will resume with the stacking operations for
the XIRQ interrupt. If the X bit in the CCR is set, masking XIRQ
interrupts, execution will resume with the opcode fetch for the instruction
which follows the STOP instruction (continue).

An error in some mask sets of the M68HC11 caused incorrect recover
from STOP under very specific unusual conditions. If the opcode of the
instruction before the STOP instruction came from column 4 or 5 of the
opcode map, the STOP instruction was incorrectly interpreted as a
2-byte instruction. A simple way to avoid this potential problem is to put
a NOP instruction (which is a column 0 opcode) immediately before any
STOP instruction.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: STOP

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
STOP (INH)

Addr Data R/W

1 OP CF 1

2 OP + 1 — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 581

Instruction Set Details
STS Store Stack Pointer STS
Operation: M ⇐ (SPH), M + 1 ⇐ (SPL)

Description: Stores the most significant byte of the stack pointer in memory at the
address specified by the program and stores the least significant byte of
the stack pointer at the next location in memory, at one plus the address
specified by the program.

Condition Codes
and Boolean

Formulae:

N SP15
Set if MSB of result is set; cleared otherwise.

Z SP15 • SP14 • SP13 • SP12 • SP11 • SP10 • SP9 • SP8 • SP7 •
SP6 • SP5 • SP4 • SP3 • SP2 • SP1 • SP0
Set if result is $0000; cleared otherwise.

V 0
Cleared

Source Form: STS (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú 0 —

Cycle
STS (DIR) STS (EXT) STS (IND,X) STS (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 9F 1 OP BF 1 OP AF 1 OP 18 1
2 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 AF 1
3 00dd (SPH) 0 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 00dd + 1 (SPL) 0 hhll (SPH) 0 X + ff (SPH) 0 FFFF — 1
5 hhll + 1 (SPL) 0 X + ff + 1 (SPL) 0 Y + ff (SPH) 0
6 Y + ff + 1 (SPL) 0
Reference Manual M68HC11 — Rev. 6

582 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
STX Store Index Register X STX
Operation: M ⇐ (IXH), M + 1 ⇐ (IXL)

Description: Stores the most significant byte of index register X in memory at the
address specified by the program, and stores the least significant byte of
index register X at the next location in memory, at one plus the address
specified by the program.

Condition Codes
and Boolean

Formulae:

N IX15
Set if MSB of result is set; cleared otherwise.

Z IX15 • IX14 • IX13 • IX12 • IX11 • IX10 • IX9 • IX8 • IX7 • IX6 • IX5 •
IX4 • IX3 • IX2 • IX1 • IX0
Set if result is $0000; cleared otherwise.

V 0
Cleared

Source Form: STX (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú 0 —

Cycle
STX (DIR) STX (EXT) STX (IND,X) STX (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP DF 1 OP FF 1 OP EF 1 OP CD 1
2 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 EF 1
3 00dd (IXH) 0 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 00dd + 1 (IXL) 0 hhll (IXH) 0 X + ff (IXH) 0 FFFF — 1
5 hhll + 1 (IXL) 0 X + ff + 1 (IXL) 0 Y + ff (IXH) 0
6 Y + ff + 1 (IXL) 0
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 583

Instruction Set Details
STY Store Index Register Y STY
Operation: M ⇐ (IYH), M + 1 ⇐ (IYL)

Description: Stores the most significant byte of index register Y in memory at the
address specified by the program, and stores the least significant byte of
index register Y at the next location in memory, at one plus the address
specified by the program.

Condition Codes
and Boolean

Formulae:

N IY15
Set if MSB of result is set; cleared otherwise.

Z IY15 • IY14 • IY13 • IY12 • IY11 • IY10 • IY9 • IY8 • IY7 • IY6 • IY5 •
IY4 • IY3 • IY2 • IY1 • IY0
Set if result is $0000; cleared otherwise.

V 0
Cleared

Source Form: STY (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú 0 —

Cycle
STY (DIR) STY (EXT) STY (IND,X) STY (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 18 1 OP 18 1 OP 1A 1 OP 18 1
2 OP + 1 DF 1 OP + 1 FF 1 OP + 1 EF 1 OP + 1 EF 1
3 OP + 2 dd 1 OP + 2 hh 1 OP + 2 ff 1 OP + 2 ff 1
4 00dd (IYH) 0 OP + 3 ll 1 FFFF – 1 FFFF — 1
5 00dd + 1 (IYL) 0 hhll (IYH) 0 X + ff (IYH) 0 Y + ff (IYH) 0
6 hhll + 1 (IHL) 0 X + ff + 1 (IYL) 0 Y + ff + 1 (IYL) 0
Reference Manual M68HC11 — Rev. 6

584 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
SUB Subtract SUB
Operation: ACCX ⇐ (ACCX) – (M)

Description: Subtracts the contents of M from the contents of ACCX and places the
result in ACCX. For subtract instructions, the C bit in the CCR represents
a borrow.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V X7 • M7 • R7 + X7 • M7 • R7
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C X7 • M7 + M7 • R7 + R7 • X7
Set if the absolute value of the contents of memory plus previous
carry is larger than the absolute value of the accumulator; cleared
otherwise.

Source Forms: SUBA (opr); SUBB (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú Ú Ú

Cycle
SUBA (IMM) SUBA (DIR) SUBA (EXT) SUBA (IND,X) SUBA (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 80 1 OP 90 1 OP B0 1 OP A0 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 A0 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1

Cycle
SUBB (IMM) SUBB (DIR) SUBB (EXT) SUBB (IND,X) SUBB (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP C0 1 OP D0 1 OP F0 1 OP E0 1 OP 18 1
2 OP + 1 ii 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 E0 1
3 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 Y + ff (Y + ff) 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 585

Instruction Set Details
SUBD Subtract Double Accumulator SUBD
Operation: ACCD ⇐ (ACCD) – (M : M + 1)

Description: Subtracts the contents of M : M + 1 from the contents of double
accumulator D and places the result in ACCD. For subtract instructions,
the C bit in the CCR represents a borrow.

Condition Codes
and Boolean

Formulae:

N R15
Set if MSB of result is set; cleared otherwise.

Z R15 • R14 • R13 • R12 • R11 • R10 • R9 • R8 • R7 • R6 • R5 • R4 •
R3 • R2 • R1 • R0
Set if result is $0000; cleared otherwise.

V D15 • M15 • R15 + D15 • M15 • R15
Set if a twos complement overflow resulted from the operation;
cleared otherwise.

C D15 • M15 + M15 • R15 + R15 • D15
Set if the absolute value of the contents of memory is larger than the
absolute value of the accumulator; cleared otherwise.

Source Form: SUBD (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú Ú Ú

Cycle
SUBD (IMM) SUBD (DIR) SUBD (EXT) SUBD (IND,X) SUBD (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 83 1 OP 93 1 OP B3 1 OP A3 1 OP 18 1
2 OP + 1 jj 1 OP + 1 dd 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 A3 1
3 OP + 2 kk 1 00dd (00dd) 1 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1

4 FFFF — 1 00dd + 1 (00dd + 1) 1 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 hhll + 1 (hhll + 1) 1 X + ff + 1 (X + ff + 1) 1 Y + ff (Y + ff) 1
6 FFFF — 1 FFFF — 1 Y + ff + 1 (Y + ff + 1) 1
7 FFFF — 1
Reference Manual M68HC11 — Rev. 6

586 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
SWI Software Interrupt SWI
Operation: PC ⇐ (PC) + $0001

⇓ (PCL), SP ⇐ (SP) – $0001
⇓ (PCH), SP ⇐ (SP) – $0001
⇓ (IYL), SP ⇐ (SP) – $0001
⇓ (IYH), SP ⇐ (SP) – $0001
⇓ (IXL), SP ⇐ (SP) – $0001
⇓ (IXH), SP ⇐ (SP) – $0001
⇓ (ACCA), SP ⇐ (SP) – $0001
⇓ (ACCB), SP ⇐ (SP) – $0001
⇓ (CCR), SP ⇐ (SP) – $0001
I ⇐ 1, PC ⇐ (SWI vector)

Description: The program counter is incremented by one. The program counter,
index registers Y and X, and accumulators A and B are pushed onto the
stack. The CCR is then pushed onto the stack. The stack pointer is
decremented by one after each byte of data is stored on the stack. The
I bit in the CCR is then set. The program counter is loaded with the
address stored at the SWI vector, and instruction execution resumes at
this location. This instruction is not maskable by the I bit.

Condition Codes
and Boolean

Formulae:
I 1

Set

Source Form: SWI

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C
— — — 1 — — — —

Cycle
SWI (INH)

Addr Data R/W
1 OP 3F 1
2 OP + 1 — 1
3 SP Rtn lo 0
4 SP – 1 Rtn hi 0
5 SP – 2 (IYL) 0
6 SP – 3 (IYH) 0
7 SP – 4 (IXL) 0
8 SP – 5 (IXH) 0
9 SP – 6 (A) 0

10 SP – 7 (B) 0
11 SP – 8 (CCR) 0
12 SP – 8 (CCR) 1
13 Vec hi Svc hi 1
14 Vec lo Svc lo 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 587

Instruction Set Details
TAB Transfer from Accumulator A to B TAB
Operation: ACCB ⇐ (ACCA)

Description: Moves the contents of ACCA to ACCB. The former contents of ACCB
are lost; the contents of ACCA are not affected.

Condition Codes and Boolean Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V 0
Cleared.

Source Form: TAB

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú 0 —

Cycle
TAB (INH)

Addr Data R/W
1 OP 16 1
2 OP + 1 — 1
Reference Manual M68HC11 — Rev. 6

588 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
TAP Transfer from Accumulator A to CCR TAP
Operation: CCR ⇐ (ACCA)

Description: Transfers the contents of bit positions 7–0 of accumulator A to the
corresponding bit positions of the CCR. The contents of accumulator A
remain unchanged. The X bit in the CCR may be cleared as a result of
a TAP instruction but may not be set if it was clear prior to execution of
the TAP instruction.

Condition Codes
and Boolean

Formulae:

Condition code bits take on the value of the corresponding bit of
accumulator A except that the X bit may not change from a 0 to a 1.
Software can leave X set, leave X clear, or change X from 1 to 0. The
XIRQ interrupt mask can become set only as a result of a reset or
recognition of an XIRQ interrupt.

Source Form: TAP

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

7 6 5 4 3 2 1 0

ACCA

CCR

Carry/Borrow
Overflow (Two’s Complement)
Zero
Negative
I Interrupt Mask
Half Carry
X Interrupt Mask
Stop Disable

Bit Positions

S X H I N Z V C

S X H I N Z V C

Ú ⇓ Ú Ú Ú Ú Ú Ú

Cycle
TAP (INH)

Addr Data R/W
1 OP 06 1
2 OP + 1 — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 589

Instruction Set Details
TBA Transfer from Accumulator B to A TBA
Operation: ACCA ⇐ (ACCB)

Description: Moves the contents of ACCB to ACCA. The former contents of ACCA
are lost; the contents of ACCB are not affected.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if result is $00; cleared otherwise.

V 0
Cleared.

Source Form: TBA

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú 0 —

Cycle
TBA (INH)

Addr Data R/W
1 OP 17 1
2 OP + 1 — 1
Reference Manual M68HC11 — Rev. 6

590 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
TEST Test Operation (Test Mode Only) TEST
Description: This is a single-byte instruction that causes the program counter to be

continuously incremented. It can be executed only while in the test
mode. The MCU must be reset to exit this instruction. Code execution is
suspended during this instruction. This is an illegal opcode when not in
test mode.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: TEST

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
TEST (INH)

Addr Data R/W
1 OP 00 1
2 OP + 1 — 1
3 OP + 2 — 1
4 OP + 3 — 1

5–n PREV–1 (PREV–1) 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 591

Instruction Set Details
TPA Transfer from CCR to Accumulator A TPA
Operation: ACCA ⇐ (CCR)

Description: Transfers the contents of the CCR to corresponding bit positions of
accumulator A. The CCR remains unchanged.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: TPA

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

7 6 5 4 3 2 1 0

ACCA

CCR

Carry/Borrow
Overflow (Two’s Complement)
Zero
Negative
I Interrupt Mask
Half Carry
X Interrupt Mask
Stop Disable

Bit Positions

S X H I N Z V C

S X H I N Z V C

— — — — — — — —

Cycle
TPA (INH)

Addr Data R/W
1 OP 07 1
2 OP + 1 — 1
Reference Manual M68HC11 — Rev. 6

592 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
TST Test TST
Operation: (ACCX) – $00 or: (M) – $00

Description: Subtracts $00 from the contents of ACCX or M and sets the condition
codes accordingly.

The subtraction is accomplished internally without modifying either
ACCX or M.

The TST instruction provides only minimum information when testing
unsigned values. Since no unsigned value is less than zero, BLO and
BLS have no utility. While BHI could be used after TST, it provides
exactly the same control as BNE, which is preferred. After testing signed
values, all signed branches are available.

Condition Codes
and Boolean

Formulae:

N R7
Set if MSB of result is set; cleared otherwise.

Z M7 • M6 • M5 • M4 • M3 • M2 • M1 • M0
Set if result is $00; cleared otherwise.

V 0
Cleared

C 0
Cleared

Source Forms: TSTA; TSTB; TST (opr)

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — Ú Ú 0 0

Cycle
TSTA (INH) TSTB (INH) TST (EXT) TST (IND,X) TST (IND,Y)

Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W Addr Data R/W
1 OP 4D 1 OP 5D 1 OP 7D 1 OP 6D 1 OP 18 1
2 OP + 1 — 1 OP + 1 — 1 OP + 1 hh 1 OP + 1 ff 1 OP + 1 6D 1
3 OP + 2 ll 1 FFFF — 1 OP + 2 ff 1
4 hhll (hhll) 1 X + ff (X + ff) 1 FFFF — 1
5 FFFF — 1 FFFF — 1 Y + ff (Y + ff) 1
6 FFFF — 1 FFFF — 1 FFFF — 1
7 FFFF — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 593

Instruction Set Details
TSX Transfer from SP to Index Register X TSX
Operation: IX ⇐ (SP) + $0001

Description: Loads the index register X with one plus the contents of the stack
pointer. The contents of the stack pointer remain unchanged. After a
TSX instruction, the index register X points at the last value that was
stored on the stack.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: TSX

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
TSX (INH)

Addr Data R/W
1 OP 30 1
2 OP + 1 — 1
3 SP — 1
Reference Manual M68HC11 — Rev. 6

594 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
TSY Transfer from SP to Index Register Y TSY
Operation: IY ⇐ (SP) + $0001

Description: Loads the index register Y with one plus the contents of the stack
pointer. The contents of the stack pointer remain unchanged. After a
TSY instruction, the index register Y points at the last value that was
stored on the stack.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: TSY

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
TSY (INH)

Addr Data R/W
1 OP 18 1
2 OP + 1 30 1
3 OP + 2 — 1
4 SP — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 595

Instruction Set Details
TXS Transfer from Index Register X to SP TXS
Operation: SP ⇐ (IX) – $0001

Description: Loads the stack pointer with the contents of index register X minus one.
The contents of index register X remain unchanged.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: TXS

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
TXS (INH)

Addr Data R/W
1 OP 35 1
2 OP + 1 — 1
3 FFFF — 1
Reference Manual M68HC11 — Rev. 6

596 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
TYS Transfer from Index Register Y to SP TYS
Operation: SP ⇐ (IY) – $0001

Description: Loads the stack pointer with the contents of index register Y minus one.
The contents of index register Y remain unchanged.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: TYS

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
TYS (INH)

Addr Data R/W
1 OP 18 1
2 OP + 1 35 1
3 OP + 2 — 1
4 FFFF — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 597

Instruction Set Details
WAI Wait for Interrupt WAI
Operation: PC ⇐ (PC) + $0001

⇓ (PCL), SP ⇐ (SP) – $0001
⇓ (PCH), SP ⇐ (SP) – $0001
⇓ (IYL), SP ⇐ (SP) – $0001
⇓ (IYH), SP ⇐ (SP) – $0001
⇓ (IXL), SP ⇐ (SP) – $0001
⇓ (IXH), SP ⇐ (SP) – $0001
⇓ (ACCA), SP ⇐ (SP) – $0001
⇓ (ACCB), SP ⇐ (SP) – $0001
⇓ (CCR), SP ⇐ (SP) – $0001

Description: The program counter is incremented by one. The program counter,
index registers Y and X, and accumulators A and B are pushed onto the
stack. The CCR is then pushed onto the stack. The stack pointer is
decremented by one after each byte of data is stored on the stack.

The MPU then enters a wait state for an integer number of MCU E-clock
cycles. While in the wait state, the address/data bus repeatedly runs
read bus cycles to the address where the CCR contents were stacked.
The MCU leaves the wait state when it senses any interrupt that has not
been masked.

Upon leaving the wait state, the MCU sets the I bit in the CCR, fetches
the vector (address) corresponding to the interrupt sensed, and
instruction execution is resumed at this location.

Condition Codes
and Boolean

Formulae:

Although the WAI instruction itself does not alter the condition code bits,
the interrupt which causes the MCU to resume processing causes the
I bit (and the X bit if the interrupt was XIRQ) to be set as the interrupt
vector is being fetched.

S X H I N Z V C

— — — — — — — —
Reference Manual M68HC11 — Rev. 6

598 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
WAI Wait for Interrupt WAI
(Continued)

Source Form: WAI

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

Cycle
WAI (INH)

Addr Data R/W
1 OP 3E 1
2 OP + 1 — 1
3 SP Rtn lo 0
4 SP – 1 Rtn hi 0
5 SP – 2 (IYL) 0
6 SP – 3 (IYH) 0
7 SP – 4 (IXL) 0
8 SP – 5 (IXH) 0
9 SP – 6 (A) 0

10 SP – 7 (B) 0
11 SP – 8 (CCR) 0

12 to 12 + n SP – 8 (CCR) 1
13 + n Vec hi Svc hi 1
14 + n Vec lo Svc lo 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 599

Instruction Set Details
XGDX Exchange Double Accumulator and XGDX
Index Register X

Operation: (IX) ⇔ (ACCD)

Description: Exchanges the contents of double accumulator ACCD and the contents
of index register X. A common use for XGDX is to move an index value
into the double accumulator to allow 16-bit arithmetic calculations on the
index value before exchanging the updated index value back into the X
index register.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: XGDX

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
XGDX (INH)

Addr Data R/W
1 OP 8F 1
2 OP + 1 — 1
3 FFFF — 1
Reference Manual M68HC11 — Rev. 6

600 Instruction Set Details MOTOROLA

Instruction Set Details
M68HC11 Instruction Set
XGDY Exchange Double Accumulator and XGDY
Index Register Y

Operation: (IY) ⇔ (ACCD)

Description: Exchanges the contents of double accumulator ACCD and the contents
of index register Y. A common use for XGDY is to move an index value
into the double accumulator to allow 16-bit arithmetic calculations on the
index value before exchanging the updated index value back into the Y
index register.

Condition Codes
and Boolean

Formulae:

None affected

Source Form: XGDY

Addressing Modes, Machine Code, and Cycle-by-Cycle Execution:

S X H I N Z V C

— — — — — — — —

Cycle
XGDY (INH)

Addr Data R/W
1 OP 18 1
2 OP + 1 8F 1
3 OP + 2 — 1
4 FFFF — 1
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Instruction Set Details 601

Instruction Set Details
Reference Manual M68HC11 — Rev. 6

602 Instruction Set Details MOTOROLA

Reference Manual — M68HC11

Appendix B. Bootloader Listings
This appendix contains source code listings of the internal bootloader
read-only memories (ROMs) for several members of the M68HC11
Family.

Listings of other M68HC11 Family bootloader ROMs can be found in the
application note entitled M68HC11 Bootstrap Mode (Motorola document
number AN1060) which is available from the Motorola Literature
Distribution Center, as well as the Worldwide Web at
http://www.motorola.com/semiconductors/.

Family Security Option Page

MC68HC11A8 No 604

MC68HC11A8 Yes 607

MC68HC811E2 No 611

MC68HC811E2 Yes 614

MC68HC11E9 No 619

MC68HC11E9 Yes 622

MC68HC11F1 No 627
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Bootloader Listings 603

Bootloader Listings
Listing MC68HC11A8 Bootloader (No Security) Sheet 1 of 3

* BOOTLOADER FIRMWARE FOR MC68HC11A8 W/O SECURITY

* Thu Dec 11 18:46:19 CST 1986

* EQUATES FOR USE WITH INDEX OFFSET = $1000

0008 PORTD EQU $08
0009 DDRD EQU $09
0028 SPCR EQU $28 (FOR DWOM BIT)
002b BAUD EQU $2B
002c SCCR1 EQU $2C
002d SCCR2 EQU $2D
002e SCSR EQU $2E
002f SCDAT EQU $2F
003b PPROG EQU $3B
003e TEST1 EQU $3E
003f CONFIG EQU $3F

* MORE EQUATES
*

b600 EEPSTR EQU $B600 START OF EEPROM
b7ff EEPEND EQU $B7FF END OF EEPROM

* THIS BOOTSTRAP PROGRAM ALLOWS THE USER TO
* DOWNLOAD A PROGRAM OF EXACTLY 256 BYTES.
* THE PROGRAM MUST START AT $0000.
* EACH BYTE OF THE PROGRAM IS RECEIVED BY THE
* SCI, STARTING WITH THE $0000 BYTE AND WORKING
* UP TO THE $00FF BYTE.
*
* THE TRANSMITTER WILL BE USED FOR THE PURPOSE
* OF COMMUNICATION TO THE OUTSIDE WORLD.

bf40 ORG $BF40
bf40 BEGIN EQU *

* INIT STACK
bf40 8e 00 ff LDS #$00FF

* INIT X REG FOR INDEXED ACCESS TO REGISTERS
bf43 ce 10 00 LDX #$1000

* PUT PORT D IN WIRE OR MODE
bf46 1c 28 20 BSET SPCR,X $20

* INIT SCI AND RESTART BAUD DIVIDER CHAIN
bf49 86 a2 LDAA #$A2 DIV BY 16
bf4b a7 2b STAA BAUD,X

* RECEIVER & TRANSMITTER ENABLED
bf4d 86 0c LDAA #$0C
bf4f a7 2d STAA SCCR2,X
Reference Manual M68HC11 — Rev. 6

604 Bootloader Listings MOTOROLA

Bootloader Listings
Listing - MC68HC11A8 Bootloader (No Security) Sheet 2 of 3

* SECURITY CODE IS REMOVED

* SEND BREAK TO SIGNAL START OF DOWNLOAD
bf51 1c 2d 01 BSET SCCR2,X $01

* CLEAR BREAK AS SOON AS START BIT IS DETECTED
bf54 1e 08 01 fc BRSET PORTD,X $01 *
bf58 1d 2d 01 BCLR SCCR2,X $01 CLEAR BREAK

* WAIT FOR FIRST CHARACTER (USERS SEND $FF)
bf5b 1f 2e 20 fc BRCLR SCSR,X $20 * WAIT FOR RDRF
bf5f a6 2f LDAA SCDAT,X READ DATA

* IF DATA = $00 (BREAK OR $00), THEN JUMP TO EEPROM
bf61 26 03 BNE NOTZERO
bf63 7e b6 00 JMP $B600
bf66 NOTZERO EQU *

* IF DATA = $55, THEN SKIP DOWNLOAD (TEST MODE)
bf66 81 55 CMPA #$55
bf68 27 1e BEQ STAR

* IF DATA = $FF, THEN /16 IS CORRECT BAUD
bf6a 81 ff CMPA #$FF
bf6c 27 03 BEQ BAUDOK

* ELSE CHANGE TO /104 (/13 & /8) 1200 @ 2MHZ
bf6e 1c 2b 33 BSET BAUD,X $33

* THEN DOWNLOAD 256 BYTE PROGRAM
bf71 BAUDOK EQU *
bf71 18 ce 00 00 LDY #$0000 INIT POINTER

* READ IN PROGRAM AND PUT INTO RAM
bf75 BK2 EQU *
bf75 1f 2e 20 fc BRCLR SCSR,X $20 * WAIT FOR RDRF
bf79 a6 2f LDAA SCDAT,X
bf7b 18 a7 00 STAA $00,Y
bf7e a7 2f STAA SCDAT,X HANDSHAKE
bf80 18 08 INY

* UNTIL THE END IS REACHED
bf82 18 8c 01 00 CPY #$0100
bf86 26 ed BNE BK2

* ALL START USER’S PROGRAM
*

bf88 STAR EQU *
bf88 7e 00 00 JMP $0000
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Bootloader Listings 605

Bootloader Listings
Listing - MC68HC11A8 Bootloader (No Security) Sheet 3 of 3

bfd4 ORG $BFD4 NEEDED IF BOOTROM < MAX

* MASK I. D. BYTE
bfd4 00 00 FDB $0000

* VECTORS
*

bfd6 00 c4 FDB $100-60 SCI
bfd8 00 c7 FDB $100-57 SPI
bfda 00 ca FDB $100-54 PULSE ACCUM INPUT EDGE
bfdc 00 cd FDB $100-51 PULSE ACCUM OVERFLOW
bfde 00 d0 FDB $100-48 TIMER OVERFLOW
bfe0 00 d3 FDB $100-45 TIMER OUTPUT COMPARE 5
bfe2 00 d6 FDB $100-42 TIMER OUTPUT COMPARE 4
bfe4 00 d9 FDB $100-39 TIMER OUTPUT COMPARE 3
bfe6 00 dc FDB $100-36 TIMER OUTPUT COMPARE 2
bfe8 00 df FDB $100-33 TIMER OUTPUT COMPARE 1
bfea 00 e2 FDB $100-30 TIMER INPUT CAPTURE 3
bfec 00 e5 FDB $100-27 TIMER INPUT CAPTURE 2
bfee 00 e8 FDB $100-24 TIMER INPUT CAPTURE 1
bff0 00 eb FDB $100-21 REAL TIME INT
bff2 00 ee FDB $100-18 IRQ
bff4 00 f1 FDB $100-15 XIRQ
bff6 00 f4 FDB $100-12 SWI
bff8 00 f7 FDB $100-9 ILLEGAL OP-CODE
bffa 00 fa FDB $100-6 COP FAIL
bffc 00 fd FDB $100-3 CLOCK MONITOR
bffe bf 40 FDB #BEGIN RESET

* END

Reference Manual M68HC11 — Rev. 6

606 Bootloader Listings MOTOROLA

Bootloader Listings
Listing MC68HC11A8 Bootloader (With Security) Sheet 1 of 4

* BOOTLOADER FIRMWARE FOR MC68HC11A8 (with Security)

* Wed Dec 5 16:14:54 CST 1984

* EQUATES FOR USE WITH INDEX OFFSET = $1000

0008 PORTD EQU $08
0009 DDRD EQU $09
0028 SPCR EQU $28 (FOR DWOM BIT)
002b BAUD EQU $2B
002c SCCR1 EQU $2C
002d SCCR2 EQU $2D
002e SCSR EQU $2E
002f SCDAT EQU $2F
003b PPROG EQU $3B
003e TEST1 EQU $3E
003f CONFIG EQU $3F

* MORE EQUATES
*

b600 EEPSTR EQU $B600 START OF EEPROM
b7ff EEPEND EQU $B7FF END OF EEPROM

* THIS BOOTSTRAP PROGRAM ALLOWS THE USER TO
* DOWNLOAD A PROGRAM OF EXACTLY 256 BYTES.
* THE PROGRAM MUST START AT $0000.
* EACH BYTE OF THE PROGRAM IS RECEIVED BY THE
* SCI, STARTING WITH THE $0000 BYTE AND WORKING
* UP TO THE $00FF BYTE.
*
* THE TRANSMITTER WILL BE USED FOR THE PURPOSE
* OF COMMUNICATION TO THE OUTSIDE WORLD.

bf40 ORG $BF40

bf40 BEGIN EQU *
* INIT STACK

bf40 8e 00 ff LDS #$00FF
* INIT X REG FOR INDEXED ACCESS TO REGISTERS

bf43 ce 10 00 LDX #$1000
* PUT PORT D IN WIRE OR MODE

bf46 1c 28 20 BSET SPCR,X $20
* INIT SCI AND RESTART BAUD DIVIDER CHAIN

bf49 86 a2 LDAA #$A2 DIV BY 16
bf4b a7 2b STAA BAUD,X

* RECEIVER & TRANSMITTER ENABLED
bf4d 86 0c LDAA #$0C
bf4f a7 2d STAA SCCR2,X
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Bootloader Listings 607

Bootloader Listings
Listing - MC68HC11A8 Bootloader (With Security) Sheet 2 of 4

* TEST THE SECURITY BIT
bf51 1e 3f 08 34 BRSET CONFIG,X $08 NOSEC

* WE ARE IN SECURITY MODE

* OUTPUT $FF ON TRANSMITTER
bf55 AGAIN EQU *
bf55 a6 2e LDAA SCSR,X
bf57 86 ff LDAA #$FF
bf59 a7 2f STAA SCDAT,X

* ERASE EEPROM:
* SET ERASE AND EELAT BITS BEFORE USING "ERASE"

bf5b c6 06 LDAB #$06
bf5d e7 3b STAB PPROG,X
bf5f f7 b6 00 STAB EEPSTR WRITE ANY EEPROM LOCATION
bf62 8d 5f BSR ERASE

* ACCB IS NOW SET FOR $06

* ERASE CYCLE IS COMPLETE

* IF THE EE IS DISABLED (EEON=0), SKIP EE CHK
* WE CAN’T CHECK THAT THE EEPROM IS ERASED

bf64 1f 3f 01 11 BRCLR CONFIG,X $01 NOEE
* EEPROM IS ENABLED (EEON=1),
* NOW CHECK THAT THE EEPROM IS ERASED

bf68 18 ce b6 00 LDY #EEPSTR
bf6c LOOP EQU *
bf6c 18 a1 00 CMPA 0,Y (A=$FF)

* ANY UNERASED BYTE SENDS US BACK TO ERASE AGAIN
bf6f 26 e4 BNE AGAIN
bf71 18 08 INY
bf73 18 8c bB 00 CPY #EEPEND+1
bf77 26 f3 BNE LOOP

bf79 NOEE EQU *

* WRITE $FF TO ENTIRE RAM (EXCEPT LAST TWO BYTES
* WHICH ARE USED BY THE STACK)

bf79 ERAM EQU *
bf79 3c PSHX
bf7a ce ff 02 LDX #$FF02
bf7d LOP1 EQU *
bf7d a7 fe STAA $FE,X
bf7f 08 INX
bf80 26 fb BNE LOP1
bf82 38 PULX
Reference Manual M68HC11 — Rev. 6

608 Bootloader Listings MOTOROLA

Bootloader Listings
Listing - MC68HC11A8 Bootloader (With Security) Sheet 3 of 4

* NOW ERASE CONFIG REGISTER

bf83 ECONFG EQU *
* SET ERASE AND EELAT BITS

bf83 e7 3b STAB PPROG,X (B STILL = $06)
* WRITE CONFIG REGISTER, LATCH ADDR FOR ERASURE

bf85 e7 3f STAB CONFIG,X
bf87 8d 3a BSR ERASE

* ERASE CYCLE IS COMPLETE

* NON-SECURITY AND SECURITY MODES MEET HERE

bf89 NOSEC EQU *
* SEND BREAK TO SIGNAL START OF DOWNLOAD

bf89 1c 2d 01 BSET SCCR2,X $01
* CLEAR BREAK AS SOON AS START BIT IS DETECTED

bf8c 1e 08 01 fc BRSET PORTD,X $01 *
bf90 1d 2d 01 BCLR SCCR2,X $01 CLEAR BREAK

* WAIT FOR FIRST CHARACTER (USERS SEND $FF)
bf93 1f 2e 20 fc BRCLR SCSR,X $20 * WAIT FOR RDRF
bf97 a6 2f LDAA SCDAT,X READ DATA

* IF DATA = $00 (BREAK OR $00), THEN JUMP TO EEPROM
bf99 26 03 BNE NOTZERO
bf9b 7e b6 00 JMP $B600
bf9e NOTZERO EQU *

* IF DATA = $55, THEN SKIP DOWNLOAD (TEST MODE)
bf9e 81 55 CMPA #$55
bfa0 27 1e BEQ STAR

* IF DATA = $FF, THEN /16 IS CORRECT BAUD
bfa2 81 ff CMPA #$FF
bfa4 27 03 BEQ BAUDOK

* ELSE CHANGE TO /104 (/13 & /8) 1200 @ 2MHZ
bfa6 1c 2b 33 BSET BAUD,X $33

* THEN DOWNLOAD 256 BYTE PROGRAM
bfa9 BAUDOK EQU *
bfa9 18 ce 00 00 LDY #$0000 INIT POINTER

* READ IN PROGRAM AND PUT INTO RAM
bfad BK2 EQU *
bfad 1f 2e 20 fc BRCLR SCSR,X $20 * WAIT FOR RDRF
bfb1 a6 2f LDAA SCDAT,X
bfb3 18 a7 00 STAA $00,Y
bfb6 a7 2f STAA SCDAT,X HANDSHAKE
bfb8 18 08 INY
bfba 18 8c 01 00 CPY #$0100 UNTIL THE END IS REACHED
bfbe 26 ed BNE BK2

* ALL START USER’S PROGRAM

bfc0 STAR EQU *
bfc0 7e 00 00 JMP $0000
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Bootloader Listings 609

Bootloader Listings
Listing - MC68HC11A8 Bootloader (With Security) Sheet 4 of 4

* EEPROM ERASE SUBROUTINE
*
* ASSUMES CALLING ROUTINE HAS ALREADY SET ERASE
* AND EELAT BITS, AS WELL AS ACCESSED CONFIG REG
* IF THAT IS TO BE ERASED
*
* ENTRY X = $1000
* EXIT X = $1000, Y = $0000

bfc3 ERASE EQU *
* SET EEPGM BIT

bfc3 1c 3b 01 BSET PPROG,X $01
* 10 MILLISEC DELAY @ 2.1 MHZ

bfc6 18 ce 0b bB LDY #3000
bfca 18 09 BK1 DEY
bfcc 26 fc BNE BK1

* TURN OFF EEPGM BIT; THEN "ERASE & EELAT" BITS
bfce 1d 3b 01 BCLR PPROG,X $01
bfd1 6f 3b CLR PPROG,X
bfd3 39 RTS

* MASK I. D. BYTE
bfd4 00 00 FDB $0000

* VECTORS

* ORG $BFD6 NEEDED IF BOOTROM < MAX
bfd6 00 c4 FDB $100-60 SCI
bfd8 00 c7 FDB $100-57 SPI
bfda 00 ca FDB $100-54 PULSE ACCUM INPUT EDGE
bfdc 00 cd FDB $100-51 PULSE ACCUM OVERFLOW
bfde 00 d0 FDB $100-48 TIMER OVERFLOW
bfe0 00 d3 FDB $100-45 TIMER OUTPUT COMPARE 5
bfe2 00 d6 FDB $100-42 TIMER OUTPUT COMPARE 4
bfe4 00 d9 FDB $100-39 TIMER OUTPUT COMPARE 3
bfe6 00 dc FDB $100-36 TIMER OUTPUT COMPARE 2
bfe8 00 df FDB $100-33 TIMER OUTPUT COMPARE 1
bfea 00 e2 FDB $100-30 TIMER INPUT CAPTURE 3
bfec 00 e5 FDB $100-27 TIMER INPUT CAPTURE 2
bfee 00 e8 FDB $100-24 TIMER INPUT CAPTURE 1
bff0 00 eb FDB $100-21 REAL TIME INT
bff2 00 ee FDB $100-18 IRQ
bff4 00 f1 FDB $100-15 XIRQ
bff6 00 f4 FDB $100-12 SWI
bff8 00 f7 FDB $100-9 ILLEGAL OP-CODE
bffa 00 fa FDB $100-6 COP FAIL
bffc 00 fd FDB $100-3 CLOCK MONITOR
bffe bf 40 FDB #BEGIN RESET

* END
Reference Manual M68HC11 — Rev. 6

610 Bootloader Listings MOTOROLA

Bootloader Listings
Listing MC68HC811E2 Bootloader (No Security) Sheet 1 of 3

* BOOTLOADER FIRMWARE FOR 68HC11E2

* Mon Jan 11 16:06:00 CST 1988

* EQUATES FOR USE WITH INDEX OFFSET = $1000
0008 PORTD EQU $08
0009 DDRD EQU $09
0028 SPCR EQU $28 (FOR DWOM BIT)
002b BAUD EQU $2B
002c SCCR1 EQU $2C
002d SCCR2 EQU $2D
002e SCSR EQU $2E
002f SCDAT EQU $2F
003b PPROG EQU $3B
003e TEST1 EQU $3E
003f CONFIG EQU $3F

* MORE EQUATES
*

f800 EEPSTR EQU $F800 START OF EEPROM
ffff EEPEND EQU $FFFF END OF EEPROM

* THIS BOOTSTRAP PROGRAM ALLOWS THE USER TO
* DOWNLOAD A PROGRAM OF EXACTLY 256 BYTES.
* THE PROGRAM MUST START AT $0000.
* EACH BYTE OF THE PROGRAM IS RECEIVED BY THE
* SCI, STARTING WITH THE $0000 BYTE AND WORKING
* UP TO THE $00FF BYTE.
*
* THE TRANSMITTER WILL BE USED FOR THE PURPOSE
* OF COMMUNICATION TO THE OUTSIDE WORLD.

* THIS PROGRAM WAS KEPT AS MUCH THE SAME AS
* THE 68HC11A8 BOOTLOADER AS POSSIBLE.

bf40 ORG $BF40

bf40 BEGIN EQU *
* INIT STACK

bf40 8e 00 ff LDS #$00FF
* INIT X REG FOR INDEXED ACCESS TO REGISTERS

bf43 ce 10 00 LDX #$1000

* PUT PORT D IN WIRE OR MODE

bf46 1c 28 20 BSET SPCR,X $20
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Bootloader Listings 611

Bootloader Listings
Listing - MC68HC811E2 Bootloader (No Security) Sheet 2 of 3

* INIT SCI AND RESTART BAUD DIVIDER CHAIN
bf49 86 a2 LDAA #$A2 DIV BY 16
bf4b a7 2b STAA BAUD,X

* RECEIVER & TRANSMITTER ENABLED
bf4d 86 0c LDAA #$0C
bf4f a7 2d STAA SCCR2,X

* SEND BREAK TO SIGNAL START OF DOWNLOAD

bf51 1c 2d 01 BSET SCCR2,X $01
* CLEAR BREAK AS SOON AS START BIT IS DETECTED

bf54 1e 08 01 fc BRSET PORTD,X $01 *
bf58 1d 2d 01 BCLR SCCR2,X $01 CLEAR BREAK

* WAIT FOR FIRST CHARACTER (USERS SEND $FF)
bf5b 1f 2e 20 fc BRCLR SCSR,X $20 * WAIT FOR RDRF
bf5f a6 2f LDAA SCDAT,X READ DATA

* IF DATA = $00 (BREAK OR $00), THEN JUMP TO EEPROM
bf61 26 03 BNE NOTZERO
bf63 7e f8 00 JMP EEPSTR
bf66 NOTZERO EQU *

* IF DATA = $55, THEN SKIP DOWNLOAD (TEST MODE)
bf66 81 55 CMPA #$55
bf68 27 1e BEQ STAR

* IF DATA = $FF, THEN /16 IS CORRECT BAUD
bf6a 81 ff CMPA #$FF
bf6c 27 03 BEQ BAUDOK

* ELSE CHANGE TO /104 (/13 & /8) 1200 @ 2MHZ
bf6e 1c 2b 33 BSET BAUD,X $33

* THEN DOWNLOAD 256 BYTE PROGRAM
bf71 BAUDOK EQU *
bf71 18 ce 00 00 LDY #$0000 INIT POINTER

* READ IN PROGRAM AND PUT INTO RAM
bf75 BK2 EQU *
bf75 1f 2e 20 fc BRCLR SCSR,X $20 * WAIT FOR RDRF
bf79 a6 2f LDAA SCDAT,X
bf7b 18 a7 00 STAA $00,Y
bf7e a7 2f STAA SCDAT,X HANDSHAKE
bf80 18 08 INY

* UNTIL THE END IS REACHED
bf82 18 8c 01 00 CPY #$0100
bf86 26 ed BNE BK2

* ALL START USER’S PROGRAM

bf88 STAR EQU *
bf88 7e 00 00 JMP $0000
Reference Manual M68HC11 — Rev. 6

612 Bootloader Listings MOTOROLA

Bootloader Listings
Listing - MC68HC811E2 Bootloader (No Security) Sheet 3 of 3

bfd4 ORG $BFD4 NEEDED IF BOOTROM < MAX

* MASK I.D. FOR ’811E2 WITH NO SECURITY

bfd4 e2 e2 FDB $E2E2

* VECTORS
*

bfd6 00 c4 FDB $100-60 SCI
bfd8 00 c7 FDB $100-57 SPI
bfda 00 ca FDB $100-54 PULSE ACCUM INPUT EDGE
bfdc 00 cd FDB $100-51 PULSE ACCUM OVERFLOW
bfde 00 d0 FDB $100-48 TIMER OVERFLOW
bfe0 00 d3 FDB $100-45 TIMER OUTPUT COMPARE 5
bfe2 00 d6 FDB $100-42 TIMER OUTPUT COMPARE 4
bfe4 00 d9 FDB $100-39 TIMER OUTPUT COMPARE 3
bfe6 00 dc FDB $100-36 TIMER OUTPUT COMPARE 2
bfe8 00 df FDB $100-33 TIMER OUTPUT COMPARE 1
bfea 00 e2 FDB $100-30 TIMER INPUT CAPTURE 3
bfec 00 e5 FDB $100-27 TIMER INPUT CAPTURE 2
bfee 00 e8 FDB $100-24 TIMER INPUT CAPTURE 1
bff0 00 eb FDB $100-21 REAL TIME INT
bff2 00 ee FDB $100-18 IRQ
bff4 00 f1 FDB $100-15 XIRQ
bff6 00 f4 FDB $100-12 SWI
bff8 00 f7 FDB $100-9 ILLEGAL OP-CODE
bffa 00 fa FDB $100-6 COP FAIL
bffc 00 fd FDB $100-3 CLOCK MONITOR
bffe bf 40 FDB $BF40 RESET

* END
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Bootloader Listings 613

Bootloader Listings
Listing MC68HC811E2 Bootloader (With Security) Sheet 1 of 5

* BOOTLOADER FIRMWARE FOR 68HC11E2 - SECURED VERSION

* Tue Oct 25 11:38:07 CDT 1988

* EQUATES FOR USE WITH INDEX OFFSET = $1000
0008 PORTD EQU $08
0009 DDRD EQU $09
0028 SPCR EQU $28 (FOR DWOM BIT)
002b BAUD EQU $2B
002c SCCR1 EQU $2C
002d SCCR2 EQU $2D
002e SCSR EQU $2E
002f SCDAT EQU $2F
0035 BPROT EQU $35
003b PPROG EQU $3B
003e TEST1 EQU $3E
003f CONFIG EQU $3F

* MORE EQUATES
*

f800 EEPSTR EQU $F800 START OF EEPROM
ffff EEPEND EQU $FFFF END OF EEPROM

* THIS BOOTSTRAP PROGRAM ALLOWS THE USER TO
* DOWNLOAD A PROGRAM OF EXACTLY 256 BYTES.
* THE PROGRAM MUST START AT $0000.
* EACH BYTE OF THE PROGRAM IS RECEIVED BY THE
* SCI, STARTING WITH THE $0000 BYTE AND WORKING
* UP TO THE $00FF BYTE.
*
* THE TRANSMITTER WILL BE USED FOR THE PURPOSE
* OF COMMUNICATION TO THE OUTSIDE WORLD.

* THIS PROGRAM WAS KEPT AS MUCH THE SAME AS
* THE 68HC11A8 BOOTLOADER AS POSSIBLE.

bf40 ORG $BF40

bf40 BEGIN EQU *
* INIT STACK

bf40 8e 00 ff LDS #$00FF
* INIT X REG FOR INDEXED ACCESS TO REGISTERS

bf43 ce 10 00 LDX #$1000

* PUT PORT D IN WIRE OR MODE
bf46 1c 28 20 BSET SPCR,X $20
Reference Manual M68HC11 — Rev. 6

614 Bootloader Listings MOTOROLA

Bootloader Listings
Listing - MC68HC811E2 Bootloader (With Security) Sheet 2 of 5

* INIT SCI AND RESTART BAUD DIVIDER CHAIN
bf49 86 a2 LDAA #$A2 DIV BY 16
bf4b a7 2b STAA BAUD,X

* RECEIVER & TRANSMITTER ENABLED
bf4d 86 0c LDAA #$0C
bf4f a7 2d STAA SCCR2,X

* TEST THE SECURITY BIT
bf51 1e 3f 08 36 BRSET CONFIG,X $08 NOSEC

* WE ARE IN SECURITY MODE
* OUTPUT $FF ON TRANSMITTER

bf55 AGAIN EQU *
bf55 a6 2e LDAA SCSR,X
bf57 86 ff LDAA #$FF
bf59 a7 2f STAA SCDAT,X

* ERASE EEPROM:
* TURN OFF BLOCK PROTECT

bf5b 6f 35 CLR BPROT,X
* SET ERASE AND EELAT BITS BEFORE USING "ERASE"

bf5d c6 06 LDAB #$06
bf5f e7 3b STAB PPROG,X
bf61 f7 f8 00 STAB EEPSTR WRITE EEPROM LOCATION
bf64 8d 5f BSR ERASE

* ACCB IS NOW SET FOR $06

* ERASE CYCLE IS COMPLETE
*
* IF THE EEPROM IS NOT ENABLED
* WE CAN’T CHECK THAT THE EEPROM IS ERASED

bf66 1f 3f 01 11 BRCLR CONFIG,X $01 NOEE
* EEPROM IS ON,
* NOW CHECK THAT THE EEPROM IS ERASED

bf6a 18 ce f8 00 LDY #EEPSTR
bf6e LOOP EQU *
bf6e 18 a1 00 CMPA 0,Y (A = $FF)

* ANY UNERASED BYTE SENDS US BACK TO ERASE AGAIN
bf71 26 e2 BNE AGAIN
bf73 18 08 INY
bf75 18 8c 00 00 CPY #EEPEND+1
bf79 26 f3 BNE LOOP
bf7b NOEE EQU *
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Bootloader Listings 615

Bootloader Listings
Listing - MC68HC811E2 Bootloader (With Security) Sheet 3 of 5

* WRITE $FF TO ENTIRE RAM (EXCEPT LAST TWO BYTES
* WHICH ARE USED BY THE STACK)

bf7b ERAM EQU *
bf7b 3c PSHX
bf7c ce ff 02 LDX #$FF02
bf7f LOP1 EQU *
bf7f a7 fe STAA $FE,X
bf81 08 INX
bf82 26 fb BNE LOP1
bf84 38 PULX

* NOW ERASE CONFIG REGISTER

bf85 ECONFG EQU *
* SET ERASE AND EELAT BITS

bf85 e7 3b STAB PPROG,X (B STILL = $06)
* WRITE CONFIG REGISTER LATCH IT FOR ERASURE

bf87 e7 3f STAB CONFIG,X
bf89 8d 3a BSR ERASE

* ERASE CYCLE IS COMPLETE

* NON-SECURITY AND SECURITY MODES MEET HERE
*

bf8b NOSEC EQU *
* SEND BREAK TO SIGNAL START OF DOWNLOAD

bf8b 1c 2d 01 BSET SCCR2,X $01
* CLEAR BREAK AS SOON AS START BIT IS DETECTED

bf8e 1e 08 01 fc BRSET PORTD,X $01 *
bf92 1d 2d 01 BCLR SCCR2,X $01 CLEAR BREAK

* WAIT FOR FIRST CHARACTER (USERS SEND $FF)
bf95 1f 2e 20 fc BRCLR SCSR,X $20 * WAIT FOR RDRF
bf99 a6 2f LDAA SCDAT,X READ DATA

* IF DATA = $00 (BREAK OR $00), THEN JUMP TO EEPROM
bf9b 26 03 BNE NOTZERO
bf9d 7e f8 00 JMP EEPSTR
bfa0 NOTZERO EQU *

* IF DATA = $55, THEN SKIP DOWNLOAD (TEST MODE)
bfa0 81 55 CMPA #$55
bfa2 27 1e BEQ STAR
Reference Manual M68HC11 — Rev. 6

616 Bootloader Listings MOTOROLA

Bootloader Listings
Listing - MC68HC811E2 Bootloader (With Security) Sheet 4 of 5

* IF DATA = $FF, THEN /16 IS CORRECT BAUD
bfa4 81 ff CMPA #$FF
bfa6 27 03 BEQ BAUDOK

* ELSE CHANGE TO /104 (/13 &/8) 1200 @ 2MHZ
bfa8 1c 2b 33 BSET BAUD,X $33

* THEN DOWNLOAD 256 BYTE PROGRAM
bfab BAUDOK EQU *
bfab 18 ce 00 00 LDY #$0000 INIT POINTER

* READ IN PROGRAM AND PUT INTO RAM
bfaf BK2 EQU *
bfaf 1f 2e 20 fc BRCLR SCSR,X $20 * WAIT FOR RDRF
bfb3 a6 2f LDAA SCDAT,X
bfb5 18 a7 00 STAA $00,Y
bfb8 a7 2f STAA SCDAT,X HANDSHAKE
bfba 18 08 INY

* UNTIL THE END IS REACHED
bfbc 18 8c 01 00 CPY #$0100
bfc0 26 ed BNE BK2

* ALL START USER’S PROGRAM

bfc2 STAR EQU *
bfc2 7e 00 00 JMP $0000

* EEPROM ERASE SUBROUTINE
*
* ASSUMES CALLING ROUTINE HAS ALREADY SET ERASE
* AND EELAT BITS, AS WELL AS ACCESSED CONFIG REG
* IF THAT IS TO BE ERASED
*
* ENTRY X = $1000
* EXIT X = $1000, Y = $0000

bfc5 ERASE EQU *
* SET EEPGM BIT

bfc5 1c 3b 01 BSET PPROG,X $01
* 10 MILLISEC DELAY @ 2.1 MHZ

bfc8 18 ce 0b b8 LDY #3000
bfcc 18 09 BK1 DEY
bfce 26 fc BNE BK1

* TURN OFF EEPGM, ERASE AND EELAT BITS
bfd0 6f 3b CLR PPROG,X
bfd2 39 RTS
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Bootloader Listings 617

Bootloader Listings
Listing - MC68HC811E2 Bootloader (With Security) Sheet 5 of 5

bfd4 ORG $BFD4 NEEDED IF BOOTROM < MAX

* MASK I.D. FOR ’811E2 WITH SECURITY

bfd4 e2 5c FDB $E25C (5C=SC FOR SECURITY)

* VECTORS

bfd6 00 c4 FDB $100-60 SCI
bfd8 00 c7 FDB $100-57 SPI
bfda 00 ca FDB $100-54 PULSE ACCUM INPUT EDGE
bfdc 00 cd FDB $100-51 PULSE ACCUM OVERFLOW
bfde 00 d0 FDB $100-48 TIMER OVERFLOW
bfe0 00 d3 FDB $100-45 TIMER OUTPUT COMPARE 5
bfe2 00 d6 FDB $100-42 TIMER OUTPUT COMPARE 4
bfe4 00 d9 FDB $100-39 TIMER OUTPUT COMPARE 3
bfe6 00 dc FDB $100-36 TIMER OUTPUT COMPARE 2
bfe8 00 df FDB $100-33 TIMER OUTPUT COMPARE 1
bfea 00 e2 FDB $100-30 TIMER INPUT CAPTURE 3
bfec 00 e5 FDB $100-27 TIMER INPUT CAPTURE 2
bfee 00 e8 FDB $100-24 TIMER INPUT CAPTURE 1
bff0 00 eb FDB $100-21 REAL TIME INT
bff2 00 ee FDB $100-18 IRQ
bff4 00 f1 FDB $100-15 XIRQ
bff6 00 f4 FDB $100-12 SWI
bff8 00 f7 FDB $100-9 ILLEGAL OP-CODE
bffa 00 fa FDB $100-6 COP FAIL
bffc 00 fd FDB $100-3 CLOCK MONITOR
bffe bf 40 FDB $BF40 RESET

* END
Reference Manual M68HC11 — Rev. 6

618 Bootloader Listings MOTOROLA

Bootloader Listings
Listing MC68HC11E9 Bootloader (No Security) Sheet 1 of 3

* BOOTLOADER FIRMWARE FOR 68HC11E9 - NO SECURITY

* Tue Jan 12 17:08:00 CST 1988

* THIS NEW VERSION ALLOWS VARIABLE LENGTH DOWNLOAD
* BY QUITTING RECEPTION OF CHARACTERS WHEN AN IDLE
* OF AT LEAST FOUR WORD TIMES OCCURS

* EQUATES FOR USE WITH INDEX OFFSET = $1000

0008 PORTD EQU $08
0009 DDRD EQU $09
0016 TOC1 EQU $16 [EXTRA STORAGE (POOR STYLE)]
0028 SPCR EQU $28 (FOR DWOM BIT)
002b BAUD EQU $2B
002c SCCR1 EQU $2C
002d SCCR2 EQU $2D
002e SCSR EQU $2E
002f SCDAT EQU $2F
003b PPROG EQU $3B
003e TEST1 EQU $3E
003f CONFIG EQU $3F

* MORE EQUATES
*

b600 EEPSTR EQU $B600 START OF EEPROM
b7ff EEPEND EQU $B7FF END OF EEPROM
0000 RAMSTR EQU $0000
01ff RAMEND EQU $01FF
0db0 DELAYS EQU 3504 DELAY AT SLOW BAUD
021b DELAYF EQU 539 DELAY AT FAST BAUD

* THIS BOOTSTRAP PROGRAM ALLOWS THE USER TO
* DOWNLOAD A PROGRAM OF 0 - 512 BYTES.
* THE PROGRAM MUST START AT $0000.
* EACH BYTE OF THE PROGRAM IS RECEIVED BY THE SCI.
* THE FIRST BYTE ESTABLISHES BAUD RATE.
* THEN THE PROGRAM IS DOWNLOADED STARTING WITH
* THE $0000 BYTE AND WORKING UP TOWARD THE $01FF
* A DELAY OF FOUR WORD TIMES (AT EITHER BAUD RATE)
* CAUSES THE RECEPTION OF CHARACTERS TO STOP AND
* A JUMP TO $0000.
*
* THE TRANSMITTER WILL BE USED FOR THE PURPOSE
* OF COMMUNICATION TO THE OUTSIDE WORLD.

M68HC11 — Rev. 6 Reference Manual

MOTOROLA Bootloader Listings 619

Bootloader Listings
Listing - MC68HC11E9 Bootloader (No Security) Sheet 2 of 3

bf40 ORG $BF40

bf40 BEGIN EQU *
* INIT STACK

bf40 8e 01 ff LDS #RAMEND
* INIT X REG FOR INDEXED ACCESS TO REGISTERS

bf43 ce 10 00 LDX #$1000
* PUT PORT D IN WIRE OR MODE

bf46 1c 28 20 BSET SPCR,X $20
* INIT SCI AND RESTART BAUD DIVIDER CHAIN

bf49 cc a2 0c LDD #$A20C DIV BY 16
bf4c a7 2b STAA BAUD,X

* RECEIVER & TRANSMITTER ENABLED
bf4e e7 2d STAB SCCR2,X

* SET UP DELAY FOR FASTEST BAUD RATE
bf50 cc 02 1b LDD #DELAYF
bf53 ed 16 STD TOC1,X

* SEND BREAK TO SIGNAL START OF DOWNLOAD
bf55 1c 2d 01 BSET SCCR2,X $01

* CLEAR BREAK AS SOON AS START BIT IS DETECTED
bf58 1e 08 01 fc BRSET PORTD,X $01 *
bf5c 1d 2d 01 BCLR SCCR2,X $01 CLEAR BREAK

* WAIT FOR FIRST CHARACTER (USERS SEND $FF)
bf5f 1f 2e 20 fc BRCLR SCSR,X $20 * WAIT FOR RDRF
bf63 a6 2f LDAA SCDAT,X READ DATA

* IF DATA = $00 (BREAK OR $00), THEN JUMP TO EEPROM
bf65 26 03 BNE NOTZERO
bf67 7e b6 00 JMP EEPSTR
bf6a NOTZERO EQU *

* IF DATA = $FF, THEN /16 IS CORRECT BAUD
bf6a 81 ff CMPA #$FF
bf6c 27 08 BEQ BAUDOK

* ELSE CHANGE TO /104 (/13 & /8) 1200 @ 2MHz
bf6e 1c 2b 33 BSET BAUD,X $33

* SET UP DELAY FOR SLOWER BAUD RATE
bf71 cc 0d b0 LDD #DELAYS
bf74 ed 16 STD TOC1,X

bf76 BAUDOK EQU *
bf76 18 ce 00 00 LDY #RAMSTR POINTER TO START OF RAM
Reference Manual M68HC11 — Rev. 6

620 Bootloader Listings MOTOROLA

Bootloader Listings
Listing - MC68HC11E9 Bootloader (No Security) Sheet 3 of 3

* TIME EACH BYTE
bf7a ec 16 WAIT LDD TOC1,X PUT DELAY TIME IN ACCD
bf7c 1e 2e 20 07 WTLOOP BRSET SCSR,X $20 NEWONE
bfB0 Bf XGDX DELAY INTO X
bf81 09 DEX DECREMENT DELAY
bf82 8f XGDX RETURN DELAY TO ACCD
bf83 26 f7 BNE WTLOOP
bf85 20 0f BRA STAR DID NOT TIME OUT

* READ IN BYTE AND PUT INTO RAM
bf87 a6 2f NEWONE LDAA SCDAT,X
bf89 18 a7 00 STAA $00,Y
bf8c a7 2f STAA SCDAT,X HANDSHAKE
bf8e 18 08 INY
bf90 18 8c 02 00 CPY #RAMEND+1
bf94 26 e4 BNE WAIT

* ALL START USER’S PROGRAM

bf96 STAR EQU *
bf96 7e 00 00 JMP RAMSTR

bfd2 ORG $BFD2

* MASK I.D. #

bfd2 00 00 FDB $0000
bfd4 e9 e9 FDB $E9E9 E9 I.D.

* VECTORS
*

bfd6 00 c4 FDB $100-60 SCI
bfd8 00 c7 FDB $100-57 SPI
bfda 00 ca FDB $100-54 PULSE ACCUM INPUT EDGE
bfdc 00 cd FDB $100-51 PULSE ACCUM OVERFLOW
bfde 00 d0 FDB $100-48 TIMER OVERFLOW
bfe0 00 d3 FDB $100-45 TIMER OUTPUT COMPARE 5
bfe2 00 d6 FDB $100-42 TIMER OUTPUT COMPARE 4
bfe4 00 d9 FDB $100-39 TIMER OUTPUT COMPARE 3
bfe6 00 dc FDB $100-36 TIMER OUTPUT COMPARE 2
bfe8 00 df FDB $100-33 TIMER OUTPUT COMPARE 1
bfea 00 e2 FDB $100-30 TIMER INPUT CAPTURE 3
bfec 00 e5 FDB $100-27 TIMER INPUT CAPTURE 2
bfee 00 e8 FDB $100-24 TIMER INPUT CAPTURE 1
bff0 00 eb FDB $100-21 REAL TIME INT
bff2 00 ee FDB $100-18 IRQ
bff4 00 f1 FDB $100-15 XIRQ
bff6 00 f4 FDB $100-12 SWI
bff8 00 f7 FDB $100-9 ILLEGAL OP-CODE
bffa 00 fa FDB $100-6 COP FAIL
bffc 00 fd FDB $100-3 CLOCK MONITOR
bffe bf 40 FDB #BEGIN RESET

* END
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Bootloader Listings 621

Bootloader Listings
Listing MC68HC11E9 Bootloader (With Security) Sheet 1 of 5

* BOOTLOADER FIRMWARE FOR 68HC11E9 - SECURED VERSION

* Tue Oct 25 16:38:50 CDT 1988

* THIS NEW VERSION ALLOWS VARIABLE LENGTH DOWNLOAD
* BY QUITTING RECEPTION OF CHARACTERS WHEN AN IDLE
* OF AT LEAST FOUR WORD TIMES OCCURS

* EQUATES FOR USE WITH INDEX OFFSET = $1000

0008 PORTD EQU $08
0009 DDRD EQU $09
0016 TOC1 EQU $16 (EXTRA STORAGE (POOR STYLE)]
0028 SPCR EQU $28 (FOR DWOM BIT)
002b BAUD EQU $2B
002c SCCR1 EQU $2C
002d SCCR2 EQU $2D
002e SCSR EQU $2E
002f SCDAT EQU $2F
0035 BPROT EQU $35
003b PPROG EQU $3B
003e TEST1 EQU $3E
003f CONFIG EQU $3F

* MORE EQUATES
*

b600 EEPSTR EQU $B600 START OF EEPROM
b7ff EEPEND EQU $B7FF END OF EEPROM
0000 RAMSTR EQU $0000
01ff RAMEND EQU $01FF
0db0 DELAYS EQU 3504 DELAY AT SLOW BAUD
021b DELAYF EQU 539 DELAY AT FAST BAUD

* THIS BOOTSTRAP PROGRAM ALLOWS THE USER TO
* DOWNLOAD A PROGRAM OF 0 - 512 BYTES.
* THE PROGRAM MUST START AT $0000.
* EACH BYTE OF THE PROGRAM IS RECEIVED BY THE SCI.
* THE FIRST BYTE ESTABLISHES BAUD RATE.
* THEN THE PROGRAM IS DOWNLOADED STARTING WITH
* THE $0000 BYTE AND WORKING UP TOWARD THE $01FF
* A DELAY OF FOUR WORD TIMES (AT EITHER BAUD RATE)
* CAUSES THE RECEPTION OF CHARACTERS TO STOP AND
* A JUMP TO $0000.
*
* SCI TRANSMITTER USED TO ECHO TO OUTSIDE WORLD

Reference Manual M68HC11 — Rev. 6

622 Bootloader Listings MOTOROLA

Bootloader Listings
Listing - MC68HC11E9 Bootloader (With Security) Sheet 2 of 5

bf40 ORG $BF40

bf40 BEGIN EQU *
* INIT STACK

bf40 8e 01 ff LDS #$01FF
* INIT X REG FOR INDEXED ACCESS TO REGISTERS

bf43 ce 10 00 LDX #$1000
* PUT PORT D IN WIRE OR MODE

bf46 1c 28 20 BSET SPCR,X$20
* INIT SCI AND RESTART BAUD DIVIDER CHAIN

bf49 cc a2 0c LDD #$A20C DIV BY 16
bf4c a7 2b STAA BAUD,X

* RECEIVER & TRANSMITTER ENABLED
bf4e e7 2d STAB SCCR2,X

* TEST THE SECURITY BIT
bf50 1e 3f 08 35 BRSET CONFIG,X $08 NOSEC

* WE ARE IN SECURITY MODE
* OUTPUT $FF ON TRANSMITTER

bf54 AGAIN EQU *
bf54 a6 2e LDAA SCSR,X
bf56 86 ff LDAA #$FF
bf58 a7 2f STAA SCDAT,X

* ACCA NOW IS SET FOR $FF

* ERASE EEPROM:
* TURN OFF BLOCK PROTECT

bf5a 6f 35 CLR BPROT,X
* SET ERASE AND EELAT BITS BEFORE USING "ERASE"

bf5c 54 LSRB CHANGE $0C TO $06
bf5d e7 3b STAB PPROG,X
bf5f f7 b6 00 STAB EEPSTR WRITE EEPROM LOCATION
bf62 8d 72 BSR ERASE

* ACCB IS NOW SET FOR $06
* ERASE CYCLE IS COMPLETE

* IF THE EEPROM IS NOT ENABLED,
* WE CAN’T CHECK THAT THE EEPROM IS ERASED

bf64 1f 3f 01 11 BRCLR CONFIG,X $01 NOEE
* EEPROM IS ON,
* NOW CHECK THAT THE EEPROM IS ERASED

bf68 18 ce b6 00 LDY #EEPSTR
bf6c LOOP EQU *
bf6c 18 a1 00 CMPA 0,Y (A = $FF)

* ANY UNERASED BYTE SENDS US BACK TO ERASE AGAIN
bf6f 26 e3 BNE AGAIN
bf71 18 08 INY
bf73 18 8c b8 00 CPY #EEPEND+1
bf77 26 f3 BNE LOOP
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Bootloader Listings 623

Bootloader Listings
Listing - MC68HC11E9 Bootloader (With Security) Sheet 3 of 5

bf79 NOEE EQU *

* WRITE OVER ENTIRE RAM, EXCEPT LAST TWO BYTES WHICH
* ARE USED BY THE STACK & $0000 WHICH IS LEFT INTACT

bf79 ERAM EQU *
bf79 3c PSHX
bf7a ce 01 fd LDX #RAMEND-2
bf7d LOP1 EQU *
bf7d a7 00 STAA $00,X
bf7f 09 DEX
bf80 26 fb BNE LOP1
bf82 38 PULX

* NOW ERASE CONFIG REGISTER

bf83 ECONFG EQU *
* SET ERASE AND EELAT BITS

bf83 e7 3b STAB PPROG,X (B STILL = $06)
* WRITE CONFIG REGISTER LATCH IT FOR ERASURE

bf85 e7 3f STAB CONFIG,X
bf87 Bd 4d BSR ERASE

* ERASE CYCLE IS COMPLETE

* NON-SECURITY AND SECURITY MODES MEET HERE
*

bf89 NOSEC EQU *
* SET UP DELAY FOR FASTEST BAUD RATE

bf89 cc 02 1b LDD #DELAYF
bf8c ed 16 STD TOC1,X

* SEND BREAK TO SIGNAL START OF DOWNLOAD
bf8e 1c 2d 01 BSET SCCR2,X $01

* CLEAR BREAK AS SOON AS START BIT IS DETECTED
bf91 1e 08 01 fc BRSET PORTD,X $01 *
bf95 1d 2d 01 BCLR SCCR2,X $01 CLEAR BREAK

* WAIT FOR FIRST CHARACTER (USERS SEND $FF)
bf98 1f 2e 20 fc BRCLR SCSR,X $20 * WAIT FOR RDRF
bf9c a6 2f LDAA SCDAT,X READ DATA

* IF DATA = $00 (BREAK OR $00), THEN JUMP TO EEPROM
bf9e 26 03 BNE NOTZERO
bfa0 7e b6 00 JMP EEPSTR
bfa3 NOTZERO EQU *

* IF DATA - $FF, THEN /16 IS CORRECT BAUD
bfa3 81 ff CMPA #$FF
bfa5 27 08 BEQ BAUDOK
Reference Manual M68HC11 — Rev. 6

624 Bootloader Listings MOTOROLA

Bootloader Listings
Listing - MC68HC11E9 Bootloader (with Security) Sheet 4 of 5

* ELSE CHANGE TO /104 (/13 &/8) 1200 @ 2MHZ
bfa7 1c 2b 33 BSET BAUD,X$33

* SET UP DELAY FOR SLOWER BAUD RATE
bfaa cc 0d b0 LDD #DELAYS
bfad ed 16 STD TOC1,X
bfaf BAUDOK EQU *
bfaf 18 ce 00 00 LDY #RAMSTR POINTER TO START OF RAM

* TIME EACH BYTE
bfb3 ec 16 WAIT LDD TOC1,X PUT DELAY TIME IN ACCD
bfb5 1e 2e 20 07 WTLOOP BRSET SCSR,X $20 NEWONE
bfb9 8f XGDX DELAY INTO X
bfba 09 DEX DECREMENT DELAY
bfbb 8f XGDX RETURN DELAY TO ACCD
bfbc 26 f7 BNE WTLOOP
bfbe 20 0f BRA STAR
bfc0 NEWONE EQU *

* DID NOT TIME OUT SO READ IN BYTE AND PUT INTO RAM
bfc0 a6 2f LDAA SCDAT,X
bfc2 18 a7 00 STAA $00,Y
bfc5 a7 2f STAA SCDAT,X HANDSHAKE
bfc7 18 08 INY
bfc9 18 8c 02 00 CPY #RAMEND+1
bfcd 26 e4 BNE WAIT

* ALL START USER’S PROGRAM

bfcf STAR EQU *
bfcf 7e 00 00 JMP RAMSTR

bfd2 ORG $BFD2

* MASK I.D. #

bfd2 00 00 FDB $0000
bfd4 e9 5c FDB $E95C E9 I.D.(5C=SC FOR SECURITY)

* EEPROM ERASE SUBROUTINE
*
* ASSUMES CALLING ROUTINE HAS ALREADY SET ERASE AND
* EELAT BITS AND HAS ACCESSED WHATEVER IS TO BE ERASED
*
* ENTRY X=$1000
* EXIT X=$1000, Y=$0000

bfd6 ERASE EQU*
bfd6 1c 3b 01 BSET PPROG,X $01 SET EEPGM BIT

* 10 MILLISEC DELAY @ 2.1 MHZ
bfd9 18 ce 0b b8 LDY #3000
bfdd 18 09 BK1 DEY
bfdf 26 fc BNE BK1
bfe1 6f 3b CLR PPROG,X CLEAR ERASE & EELAT BITS
bfe3 39 RTS
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Bootloader Listings 625

Bootloader Listings
Listing - MC68HC11E9 Bootloader (With Security) Sheet 5 of 5

*VECTORS (FIRST SEVEN DON’T POINT TO RAM)
*
* FDB $100-60 SCI
* FDB $100-57 SPI
* FDB $100-54 PULSE ACCUM INPUT EDGE
* FDB $100-51 PULSE ACCUM OVERFLOW
* FDB $100-48 TIMER OVERFLOW
* FDB $100-45 TIMER OUTPUT COMPARE 5
* FDB $100-42 TIMER OUTPUT COMPARE 4

bfe4 00 d9 FDB $100-39 TIMER OUTPUT COMPARE 3
bfe6 00 dc FDB $100-36 TIMER OUTPUT COMPARE 2
bfeb 00 df FDB $100-33 TIMER OUTPUT COMPARE 1
bfea 00 e2 FDB $100-30 TIMER INPUT CAPTURE 3
bfec 00 e5 FDB $100-27 TIMER INPUT CAPTURE 2
bfee 00 e8 FDB $100-24 TIMER INPUT CAPTURE 1
bff0 00 eb FDB $100-21 REAL TIME INT
bff2 00 ee FDB $100-18 IRQ
bff4 00 f1 FDB $100-15 XIRQ
bff6 00 f4 FDB $100-12 SWI
bff8 00 f7 FDB $100-9 ILLEGAL OP-CODE
bffa 00 fa FDB $100-6 COP FAIL
bffc 00 fd FDB $100-3 CLOCK MONITOR
bffe bf 40 FDB #$BF40 RESET

* END
Reference Manual M68HC11 — Rev. 6

626 Bootloader Listings MOTOROLA

Bootloader Listings
Listing - MC68HC11F1 Bootloader Sheet 1 of 3

* BOOTLOADER FIRMWARE FOR 68HC11F1 - NO SECURITY

* Thr Mar 10 08:49:00 CST 1988

* THIS NEW VERSION ALLOWS VARIABLE LENGTH DOWNLOAD
* BY QUITTING RECEPTION OF CHARACTERS WHEN AN IDLE
* OF AT LEAST FOUR WORD TIMES OCCURS

* EQUATES FOR USE WITH INDEX OFFSET = $1000

0008 PORTD EQU $08
0009 DDRD EQU $09
0016 TOC1 EQU $16 (EXTRA STORAGE (POOR STYLE)]
0028 SPCR EQU $28 (FOR DWOM BIT)
002b BAUD EQU $2B
002c SCCR1 EQU $2C
002d SCCR2 EQU $2D
002e SCSR EQU $2E
002f SCDAT EQU $2F
003b PPROG EQU $3B
003e TEST1 EQU $3E
003f CONFIG EQU $3F

* MORE EQUATES
*

fe00 EEPSTR EQU $FE00 START OF EEPROM
ffff EEPEND EQU $FFFF END OF EEPROM
0000 RAMSTR EQU $0000
03ff RAMEND EQU $03FF
0db0 DELAYS EQU 3504 DELAY AT SLOW BAUD
021b DELAYF EQU 539 DELAY AT FAST BAUD

* THIS BOOTSTRAP PROGRAM ALLOWS THE USER TO
* DOWNLOAD A PROGRAM OF 0 - 1024 BYTES.
* THE PROGRAM MUST START AT $0000.
* EACH BYTE OF THE PROGRAM IS RECEIVED BY THE SCI.
* THE FIRST BYTE ESTABLISHES BAUD RATE.
* THEN THE PROGRAM IS DOWNLOADED STARTING WITH
* THE $0000 BYTE AND WORKING UP TOWARD THE $03FF
* A DELAY OF FOUR WORD TIMES (AT EITHER BAUD RATE)
* CAUSES THE RECEPTION OF CHARACTERS TO STOP AND
* A JUMP TO $0000.
*
* THE TRANSMITTER WILL BE USED FOR THE PURPOSE
* OF COMMUNICATION TO THE OUTSIDE WORLD.

M68HC11 — Rev. 6 Reference Manual

MOTOROLA Bootloader Listings 627

Bootloader Listings
Listing - MC68HC11F1 Bootloader Sheet 2 of 3

bf00 ORG $BF00

bf00 BEGIN EQU *
* INIT STACK

bf00 8e 03 ff LDS #RAMEND
* INIT X REG FOR INDEXED ACCESS TO REGISTERS

bf03 ce 10 00 LDX #$1000

* PUT PORT D IN WIRE OR MODE
bf06 1c 28 20 BSET SPCR,X $20

* INIT SCI AND RESTART BAUD DIVIDER CHAIN
bf09 cc a2 0c LDD #$A20C DIV BY 16
bf0c a7 2b STAA BAUD,X

* RECEIVER & TRANSMITTER ENABLED
bf0e e7 2d STAB SCCR2,X

* SET UP DELAY FOR FASTEST BAUD RATE
bf10 cc 02 1b LDD #DELAYF
bf13 ed 16 STD TOC1,X

* SEND BREAK TO SIGNAL START OF DOWNLOAD
bf15 1c 2d 01 BSET SCCR2,X $01

* CLEAR BREAK AS SOON AS START BIT IS DETECTED
bf18 1e 08 01 fc BRSET PORTD,X $01 *
bf1c 1d 2d 01 BCLR SCCR2,X $01 CLEAR BREAK

* WAIT FOR FIRST CHARACTER (USERS SEND $FF)
bf1f 1f 2e 20 fc BRCLR SCSR,X $20 * WAIT FOR RDRF
bf23 a6 2f LDAA SCDAT,X READ DATA

* IF DATA = $00 (BREAK OR $00), THEN JUMP TO EEPROM
bf25 26 03 BNE NOTZERO
bf27 7e fe 00 JMP EEPSTR
bf2a NOTZERO EQU *

* IF DATA = $FF, THEN /16 IS CORRECT BAUD
bf2a 81 ff CMPA #$FF
bf2c 27 08 BEQ BAUDOK

* ELSE CHANGE TO /104 (/13 & /8) 1200 @ 2MHZ
bf2e 1c 2b 33 BSET BAUD,X $33

* SET UP DELAY FOR SLOWER BAUD RATE
bf31 cc 0d b0 LDD #DELAYS
bf34 ed 16 STD TOC1,X

*
bf36 BAUDOK EQU *
bf36 18 ce 00 00 LDY #RAMSTR POINTER TO START OF RAM
Reference Manual M68HC11 — Rev. 6

628 Bootloader Listings MOTOROLA

Bootloader Listings
Listing - MC68HC11F1 Bootloader Sheet 3 of 3

* TIME EACH BYTE
bf3a ec 16 WAIT LDD TOC1,X PUT DELAY TIME IN ACCD
bf3c 1e 2e 20 07 WTLOOP BRSET SCSR,X$20 NEWONE
bf40 8f XGDX DELAY INTO X
bf41 09 DEX DECREMENT DELAY
bf42 8f XGDX RETURN DELAY TO ACCD
bf43 26 f7 BNE WTLOOP
bf45 20 0f BRA STAR

* DID NOT TIME OUT SO READ IN BYTE AND PUT INTO RAM
bf47 a6 2f NEWONE LDAA SCDAT,X
bf49 18 a7 00 STAA $00,Y
bf4c a7 2f STAA SCDAT,X HANDSHAKE
bf4e 18 08 INY
bf50 18 8c 04 00 CPY #RAMEND+1
bf54 26 e4 BNE WAIT

* ALL START USER’S PROGRAM

bf56 STAR EQU *
bf56 7e 00 00 JMP RAMSTR

bfd4 ORG $BFD4

* F1 MASK I.D.

bfd4 f1 f1 FDB $F1F1

* VECTORS
*

bfd6 00 c4 FDB $100-60 SCI
bfd8 00 c7 FDB $100-57 SPI
bfda 00 ca FDB $100-54 PULSE ACCUM INPUT EDGE
bfdc 00 cd FDB $100-51 PULSE ACCUM OVERFLOW
bfde 00 d0 FDB $100-48 TIMER OVERFLOW
bfe0 00 d3 FDB $100-45 TIMER OUTPUT COMPARE 5
bfe2 00 d6 FDB $100-42 TIMER OUTPUT COMPARE 4
bfe4 00 d9 FDB $100-39 TIMER OUTPUTC OMPARE 3
bfe6 00 dc FDB $100-36 TIMER OUTPUT COMPARE 2
bfe8 00 df FDB $100-33 TIMER OUTPUT COMPARE 1
bfea 00 e2 FDB $100-30 TIMER INPUT CAPTURE 3
bfec 00 e5 FDB $100-27 TIMER INPUT CAPTURE 2
bfee 00 e8 FDB $100-24 TIMER INPUT CAPTURE 1
bff0 00 eb FDB $100-21 REAL TIME INT
bff2 00 ee FDB $100-18 IRQ
bff4 00 f1 FDB $100-15 XIRQ
bff6 00 f4 FDB $100-12 SWI
bff8 00 f7 FDB $100-9 ILLEGAL OP-CODE
bffa 00 fa FDB $100-6 COP FAIL
bffc 00 fd FDB $100-3 CLOCK MONITOR
bffe bf 00 FDB #BEGIN RESET

* END
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Bootloader Listings 629

Bootloader Listings
Reference Manual M68HC11 — Rev. 6

630 Bootloader Listings MOTOROLA

Reference Manual — M68HC11

Index
A
A/D Accuracy . 59, 147, 466, 472–474, 478

A/D Pins . 59, 70, 278, 478

A15-A8 Pins . 62–63, 77–79, 245–247

Accumulator . 200, 214

Adaptive Algorithm . 149

ADCTL Register . 476

Address Strobe 62–63, 78, 116, 141, 254, 259–261, 376

Addressing Modes . 206
Direct . 96, 208
Extended . 208
Immediate . 206
Indexed . 210
Inherent . 211
Relative . 212

Address-Mark Wakeup . 357

ADPU (Bit in OPTION) . 99, 472

ADR1-ADR4 Registers . 478

ADx Pins . 62–63, 77–79, 251

AN7-AN0 Pins. 59, 70, 278, 478

Analog Multiplexer . 70, 71, 278, 472, 474, 479

AS Pin . 62, 72, 78, 254, 259

Asynchronous Serial I/O . 318

AT-Cut Crystal . 51, 55, 56

Automatic Clearing Mechanism . 196
MODF Bit . 302
SCI Status Bits . 333
STAF Bit . 287
WCOL Bit .302
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Index 631

Index
B
Baud Rate Generator . 358–360, 376

Baud Rate Tolerance. 353

BAUD Register . 107, 327

BCD . 200, 203, 216, 224, 536

Binary-Coded Decimal . 200, 203, 216, 224, 536

Bit Manipulation . 206, 212, 219, 387

Bootloader ROM. 88, 102, 110–114, 123, 603

Bootstrap Mode . 87, 102–114

Bootstrap ROM . 88, 102, 110–114, 123, 603

BPROT Register. 135

Branch Instructions . 225, 502–525

Branch Offset . 212

Break . 341

Bulk Erase . 138

Bus Timing . 252–254, 376

Bypass Counter . 105, 377, 382

Bypass Power Supply . 46, 77

BYTE (Bit in PPROG) . 136

Byte Erase . 129, 139

C
CBYP (Bit in TEST1) . 105, 377, 382

CCF (Bit in ADCTL) . 476

CCR . 105, 203, 223

CD-CA (Bits in ADCTL) . 477

CFORC Register . 242–244, 420, 421

Chains (Clock Divider). 375–379

Charge Conservation. 460–470

Charge Pump . 76, 130, 134, 472

Charge Redistribution . 460

Charge Sharing . 480–485

Charge Trapping . 150

Cheater Latch . 240
Reference Manual M68HC11 — Rev. 6

632 Index MOTOROLA

Index
Clock Divider Chains . 375–379

Clock Monitor . 172, 182

CME (Bit in OPTION) . 99, 173

Condition Code Register . 105, 203, 223

CONFIG Mechanism . 90, 104

CONFIG Register 57, 77, 90, 106, 108, 115, 139, 141, 145, 152

Configuration. 90, 106

Conversion Sequence . 460–466, 475

COP Watchdog. 170, 377, 386
Timeout Tolerance . 172, 386

COPRST Register . 172

Counter Bypass . 105, 377, 382

CPHA (Bit in SPCR) . 294, 301

CPOL (Bit in SPCR). 294, 301

CPU . 197, 487
Memory-Mapped I/O . 198
Programmer’s Model . 199
Status Flags in CCR . 203, 225, 502–525

CR1, CR0 (Bits in OPTION) . 100, 172, 386

Crystal Oscillator . 50, 55, 99, 161, 169–174

CSEL (Bit in OPTION) . 99, 134, 473

CWOM (Bit in PIOC) . 73, 253–255, 288

D
Data Direction . 236, 263–264

DDRA7 (Bit in PACTL) . 242–245, 416, 448

DDRC Register . 253–256

DDRD Register . 263–264, 298, 325

Derivatives. 32

Direct Page Addressing . 96, 124, 208

Disable Resets . 171, 173

DISR (Bit in TEST1). 105, 171, 173

Divide . 177, 217, 543, 544

DLY (Bit in OPTION) . 99, 376
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Index 633

Index
Double Accumulator . 200

Double-Byte Read . 234, 374, 391

Double-Byte Write . 234, 410

DWOM (Bit in SPCR) 61, 111, 263–276, 298, 326

E
E . 50, 74, 254, 375–376

Edge Sensitive . 99, 193, 194

EDGxB, EDGxA (Bits in TCTL2) . 392

EELAT (Bit in PPROG) . 137

EEON (Bit in CONFIG) . 93

EEPGM (Bit in PPROG) . 137

EEPROM . 57, 76, 91, 127
Cell . 130
Charge Pump . 76, 130, 134, 472, 474
Configuration Register. 57, 77, 91, 106, 108, 115,

139, 141, 145, 152
Erasure . 130, 138–139, 145
Mapping . 41, 93, 128
Programming . 58, 76, 131, 138, 144, 145
Security . 92, 140

EGA (Bit in PIOC) . 260, 289

ERASE (Bit in PPROG). 137

Erase Before Write. 152

EVEN (Bit in PPROG) . 136

Expanded Mode . 62, 77, 252

EXTAL Pin . 50, 68, 161

Extended Addressing . 208

Extending Pulse Accumulator Range . 451, 454

Extending Timer Range . 401

External Reset . 174

F
FCM (Bit in TEST1) . 106

FCOP (Bit in TEST1) . 106
Reference Manual M68HC11 — Rev. 6

634 Index MOTOROLA

Index
FE (Bit in SCSR) . 337, 355–356

Flag Clearing. 195, 387

Floating Gate . 130–133

Floating Input . 64, 70

FOC5-FOC1 (Bits in CFORC) . 242, 421

Forced Output Compares . 242, 420

Fractional Divide. 177, 217, 543

Free-Running Counter. 373, 421, 423

G
Gated Time Accumulation . 444, 453, 456

H
Half Flip-Flops. 238

Handshake I/O . 63, 281

Highest Priority Interrupt . 178–184

HNDS (Bit in PIOC) . 249, 288

HPRIO Register . 88, 178

Hysteresis Input Buffer . 238

I
I Bit . 176–183, 190, 205, 223

IC3-IC1 Pins . 61, 68, 193, 238

ICxF (Bits in TFLG1) . 392

ICxI (Bits in TMSK1) . 392

IDLE (Bit in SCSR). 186, 331, 335

Idle Line Wakeup . 342, 356

ILIE (Bit in SCCR2) . 186, 331

Illegal Opcode . 104, 188

Immediate Addressing. 206

Index Register. 200, 210, 221

Indexed Addressing . 210

Indexed Offset . 200, 210

Inherent Addressing. 211
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Index 635

Index
INIT Register . 95, 124, 209, 235

Input Capture . 371, 389, 423

Input Handshake . 283

Instruction Set . 213, 487

Integer Divide . 177, 217, 544

Interlocked . 284, 288

Interrupt Driven . 393

Interrupts
Bootstrap . 112
Flag Clearing. 195, 387
Global Inhibit Masks . 176, 190, 205, 223
Interrupt Process . 175
Local Enables . 177
Non-Maskable. 186
Pins. 58, 193, 290, 406, 455
Priority Selection . 178
Vector . 160, 178, 182

INVB (Bit in PIOC) . 249, 289, 290

IRQ . 58, 76, 99

IRQE (Bit in OPTION) . 99, 193

IRV (Bit in HPRIO) . 81, 82, 89, 109, 179

IX (CPU Index Register X) . 200

IY (CPU Index Register Y) . 200

L
Latched Inputs at Port C . 236, 255–258, 281

Latchup . 67, 70, 478

Level Sensitive . 99, 193, 194

Life Expectancy (EEPROM) . 150

LIR (Debug Aid) . 82, 104

LIR Pin . 46, 73

Logic (see Pin Logic Diagrams)

Listing of Timer Examples . 425

LVI (Low-Voltage Inhibit). 175
Reference Manual M68HC11 — Rev. 6

636 Index MOTOROLA

Index
M
M (Bit in SCCR1) . 330, 339

Mapping
EEPROM . 41, 93, 128
External Conflicts . 81, 83, 96, 116
RAM and Registers . 84, 95, 124
Resolving Priority . 96

Mark (SCI Data High Level) . 357

Maskable Interrupts . 190

MC68HC11A8 Block Diagram . 29

MDA (Bit in HPRIO) . 89, 109, 179

Measuring Long Time Periods . 401, 454

Measuring Short Time Periods . 401

Memory Addressing Modes . 206

MISO Pin . 61, 72, 266, 297, 300

MODA Pin . 46, 73, 87

MODB Pin . 46, 74, 87

Mode Fault . 303

Mode Selection . 46, 86, 166

Modem Control . 335

MODF (Bit in SPSR) . 302

MOSI Pin . 61, 72, 269, 297, 299

MSTR (Bit in SPCR) . 301

MULT (Bit in ADCTL). 476

Multiplexed Bus . 62, 78–79, 251

Multiplexer (On A-to-D Inputs) 70, 71, 278, 472, 474

Multiply (MUL) Instruction . 177, 560

N
NF (Bit in SCSR) . 336, 349–352, 355

NOCOP (Bit in CONFIG) . 92, 106, 171

Non-Maskable Interrupts. 181

Normal Expanded Mode . 77, 101

Normal Modes . 101
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Index 637

Index
Normal Single-Chip Mode. 81, 101

NOSEC (Bit in CONFIG) . 92, 141

NRZ . 318

O
OC1D Register . 407, 415

OC1D7-OC1D3 (Bits in OC1D) . 242, 416

OC1M Register . 407, 415

OC1M7-OC1M3 (Bits in OC1M) . 240, 416

OC2/OC1 Pin . 61, 74, 240, 407

OC3/OC1 Pin . 61, 74, 240, 407

OC4/OC1 Pin . 61, 74, 240, 407

OC5/OC1 Pin . 61, 74, 240, 407

OCCR (Bit in TEST1) . 105

OCxF (Bits in TFLG1) . 411

OCxI (Bits in TMSK1) . 411

ODD (Bit in PPROG) . 136

Offset (Branch) . 212

Offset (Indexed) . 200, 210

OIN (Bit in PIOC) . 289

OL5-OL2 (Bits in TCTL1) . 242, 413

OM5-OM2 (Bits in TCTL1) . 242, 413

Open-Drain Output (see CWOM, DWOM, RESET, and LIR) . . . 73, 253

OPTION Register . 99, 386, 472–474

OR (Bit in SCSR) . 186, 336, 355

Oscillator . 161, 169
Crystal . 50, 55, 99

Output Compare . 372, 406, 424

Output Handshake . 285

P
PA2-PA0 Pins . 61, 68, 238

PA6-PA3 Pins . 61, 74, 240

PA7 Pin . 61, 72, 242
Reference Manual M68HC11 — Rev. 6

638 Index MOTOROLA

Index
PACNT Register . 447, 458

PACTL Register . 385, 448

PAEN (Bit in PACTL) . 448

PAI Pin . 61, 72, 242, 450

PAIF (Bit in TFLG2) . 450

PAII (Bit in TMSK2) . 450

PAMOD (Bit in PACTL) . 444, 448

PAOVF (Bit in TFLG2). 449

PAOVI (Bit in TMSK2) . 449

PB7-PB0 Pins . 62, 74, 245

PC7-PC0 Pins. 62, 72, 251

PD5-PD0 Pins. 61, 73, 111, 261, 344

PE7-PE0 Pins . 59, 70, 278, 478

PEDGE (Bit in PACTL) . 449

Period of a Signal . 393

Periodic Interrupt . 382

PH2 (Internal Clock Signal) . 254, 376

Phase 2 (PH2) . 254, 376

Pin Assignments. 37
MC68HC11A8. 38
MC68HC11D3/711D3 . 39
MC68HC11E9/711E9 . 41
MC68HC11F1 . 43
MC68HC24 . 44
MC68HC811E2 . 42

Pin Logic Diagrams . 238
AS . 260
Port A . 239, 241, 243
Port B . 246
Port C . 252, 255
Port D . 262, 264, 267, 270, 272, 275
Port E . 279
R/W. 249
STRA . 260
STRB . 249
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Index 639

Index
Pin Protection . 66
Analog Input . 70, 478
Digital I/O . 72
Digital Input Only . 68
Digital Input/Open-Drain . 73
Digital Output Only . 74
IRQ/VPPBULK . 76
MODB/VSTBY . 74

Pins
A15-A8 . 62, 77–79, 245
AD7-AD0 . 62, 77–79, 251
AN7-AN0 . 59, 70, 278, 478
AS . 62, 72, 78, 254, 259
E . 50, 74, 254
EXTAL . 50, 68, 161
ICx . 61, 68, 193, 238
IRQ . 58, 76
LIR . 46, 73
MISO . 61, 72, 266, 297, 300
MODA . 46, 73, 87
MODB . 46, 74, 87
MOSI . 61, 72, 269, 297, 299
OCx/OC1 . 61, 74, 240, 407
PA2-PA0 . 61, 68, 238
PA6-PA3 . 61, 74, 240
PA7 . 61, 72, 242
PAI/OC1. 61, 72, 242, 450
PB7-PB0 . 62, 74, 245
PC7-PC0 . 62, 72, 251
PD5-PD0 . 61, 73, 111, 261, 344
PE7-PE0 . 59, 70, 278, 478
R/W. 62, 74, 83, 248
RESET . 56, 73, 161, 167
RxD. 61, 73, 262
SCK . 61, 73, 272, 297, 299
SS . 61, 73, 274, 297, 299
STRA . 62, 72, 259, 290
STRB . 62, 74, 248, 290
Reference Manual M68HC11 — Rev. 6

640 Index MOTOROLA

Index
TxD . 61, 73, 107, 264, 344
VDD . 45
VPP (VPPBULK) . 58, 76
VREFH, VREFL . 59, 65, 70, 472
VSS . 45, 66
VSTBY . 46, 57, 74, 125
XIRQ. 58, 68, 186, 205
XTAL . 50, 72

PIOC Register. 97, 234, 286

PLCC . 38

PLS (Bit in PIOC) . 289

Polled Interrupts . 384, 393

POR . 169

Port A Pins . 61, 68, 72, 238

Port B Pins . 62, 74, 245

Port C Pins . 72, 251, 255

Port D Pins . 61, 73, 111, 261, 344

Port E Pins . 59, 70, 278, 478

Port Replacement Unit (MC68HC24) 37, 44, 83, 97, 102,

231, 248, 250, 259, 261, 282

PORTA Register. 231, 234, 238

PORTB Register. 232, 234, 245

PORTC Register . 232, 234, 251

PORTCL Register . 234, 236, 255, 283, 290

PORTD Register . 234, 261, 325

PORTE Register. 234, 278

Postscaler . 375, 377

Power Consumption . 64, 227, 228, 378, 581, 598

Power-On Reset . 169, 175

PR1, PR0 (Bits in TMSK2) . 98, 379

Prebyte. 206

Prescaler (Baud Rate) . 327, 358

Prescaler (Main Timer) . 98, 378

PROG Register. 134

Program More Zeros . 144, 151
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Index 641

Index
Programmable Prescaler . 98, 378

Programming . 58, 76, 131, 138, 144, 145

Protected Registers . 94, 135

Protection Device . 68, 238

PRU 37, 44, 83, 97, 102, 231, 248, 250, 259, 261, 282

PSEL3-PSEL0 (Bits in HPRIO) . 180

Pseudo Vector . 112, 414

Pulse Accumulator . 443
Block Diagram . 445
Event Counting . 444, 450
Overflows. 445, 449, 451, 453, 457
Resolution . 444
Time Accumulation . 444, 453, 456

Pulse Width . 396, 453

Pulsed Operation . 284, 289

Pulse-Width Modulation . 417

PWM. 417

Q
Quantizing Error . 466–470

Queued Break. 341

Queued Idle. 341

R
R/W Pin . 62, 74, 83, 248

R8 (Bit in SCCR1) . 330

RAM . 124

RAM Standby . 46, 48, 74, 125

RAM3-RAM0 (Bits in INIT) . 95, 125

RBOOT (Bit in HPRIO) . 88, 109, 179

RC Oscillator . 134, 473

RCKB (Bit in BAUD) . 107, 328

RDR Register . 196, 337

RDRF (Bit in SCSR) . 186, 196, 335, 363

RE (Bit in SCCR2) . 186, 263, 326, 332
Reference Manual M68HC11 — Rev. 6

642 Index MOTOROLA

Index
Real-Time Interrupt . 377, 382

Receiver Wakeup . 330, 332, 339, 342, 356

REG3-REG0 (Bits in INIT) . 95, 235

Relative Addressing . 212

Reset
Clock Monitor . 106, 172, 174
CONFIG Settings . 91, 164, 165
COP Watchdog. 106, 170
Determining Source of Reset . 167, 174
External Circuits . 57, 117, 175
External Reset . 174
Initial Conditions . 161
Power-On Reset . 169, 376
Vector . 115, 162, 167, 168

RESET Pin . 56, 73, 161, 167, 174, 175

Return-from-Interrupt (RTI) Instruction 177, 181, 205, 414, 572

RIE (Bit in SCCR2) . 186, 331

ROM . 93, 122

ROM (Bootloader) . 88, 102, 110–114, 123, 603

ROMON (Bit in CONFIG) . 93, 105

ROW (Bit in PPROG) . 136

Row Erase . 139

RTIF (Bit in TFLG2) . 384

RTII (Bit in TMSK2) . 384

RTR1, RTR0 (Bits in PACTL). 385

RWU (Bit in SCCR2) . 332, 339, 342, 357

RxD Pin . 61, 73, 262

S
Sample and Hold . 459, 460

SAR . 461–466

SBK (Bit in SCCR2) . 333, 341

SCAN (Bit in ADCTL) . 476

SCCR1 Register . 329

SCCR2 Register . 331
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Index 643

Index
SCDR Register . 337

SCI (Serial Communications Interface) . 317
8- and 9-Bit Data Mode . 339
Baud Rate . 357
Data Sampling . 346
Double-Buffered Receive . 355
Double-Buffered Transmit. 334, 338
Extra Stop Bit . 339
Framing Error . 336, 337
Idle Line . 335
Noise Flag . 336, 347
Parity . 339
Preamble . 331, 342
Receiver. 346
Receiver Block Diagram . 321
Transmitter . 338
Transmitter Block Diagram . 319

SCK Pin . 61, 73, 272, 297, 299

SCP1, SCP0 (Bits in BAUD) . 327, 358–360

SCR2-SCR0 (Bits in BAUD) . 328, 358–360

SCSR Register . 333

Security . 92, 116, 141

Selective Write . 144, 150

Send Break . 341

Service Routine . 176, 396–401

Single-Chip Mode. 81, 101

SMOD (Bit in HPRIO) . 89, 103–107, 179

Software Interrupt. 183, 189, 227, 587

SPCR Register . 300

SPDR Register . 295, 298, 304, 310

SPE (Bit in SPCR) . 267–276, 301

Special Bootstrap Mode . 87, 102–114

Special Modes . 87, 102

Special Test Mode . 77, 82, 83, 87, 89, 102
Reference Manual M68HC11 — Rev. 6

644 Index MOTOROLA

Index
SPI (Serial Peripheral Interface) . 291
Block Diagram . 295
Double Buffered Receive . 295
Error Conditions . 303
Pin Direction Controls . 295
Software Equivalent of . 311, 315–316
SS Between Successive Transfers . 295
Transfer End Details . 306
Transfer Formats . 293
Transfer Start Details. 305

SPIE (Bit in SPCR) . 300

SPIF (Bit in SPSR) . 302, 308

SPR1, SPR0 (Bits in SPCR) . 301, 377

SPSR Register . 302

SS Pin . 61, 73, 274, 297, 299

Stack Pointer. 201, 222

Stacking CPU Registers . 177

STAF (Bit in PIOC). 287

STAI (Bit in PIOC) . 288

Start Bit (SCI) . 346–352

Stop Bit . 319, 337

Stop Disable . 173, 203, 205, 223

STOP Instruction . 173, 188, 228, 581

Stop Mode . 86, 99, 188

STRA Pin . 62, 72, 290

STRB Pin . 62, 74, 248, 290

Strobed I/O . 281

Successive Approximation . 461–466

SWI . 183, 189, 227, 587

Synchronous Serial I/O . 291

T
T8 (Bit in SCCR1) . 330, 339

TC (Bit in SCSR) . 186, 334, 363

TCIE (Bit in SCCR2) . 186, 331
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Index 645

Index
TCLR (Bit in BAUD) . 107, 327

TCNT Register . 374, 421–423

TCON (Bit in TEST1) . 106

TCTL1 Register . 412

TCTL2 Register . 392

TDR Register . 196, 337

TDRE (Bit in SCSR). 186, 334, 363

TE (Bit in SCCR2) . 186, 265, 326, 331, 344, 361

Termination of Unused Pins . 64

Test Control Bits . 88, 89, 104, 327

TEST Instruction. 189, 228, 591

Test Mode . 77, 87, 102, 115

TEST1 Register . 104

TFLG1 Register . 387, 391, 410

TFLG2 Register . 381, 384, 387, 449

Thick-Field Device . 68, 238

Three-State Handshake . 286

TIC1 Register . 390

TIC2 Register . 390

TIC3 Register . 390

TIE (Bit in SCCR2) . 186, 331

TILOP (Bit in TEST1). 104

Timer . 367
Block Diagram . 370
Capture Inhibit . 392, 424
Compare Inhibit . 409, 425
Counter . 373, 421–423
Double-Byte Read . 374, 423
Input Capture . 371, 389, 423
Output Compare . 372, 406, 424
Output Toggle . 407, 413, 420
Overflow. 379, 380, 401
Prescaler . 378
Range. 378
Resolution . 378
Reference Manual M68HC11 — Rev. 6

646 Index MOTOROLA

Index
TMSK1 Register . 391, 410

TMSK2 Register . 98, 379, 381, 384, 449

TOC1 Register . 407

TOC2 Register . 407

TOC3 Register . 407

TOC4 Register . 407

TOC5 Register . 407

TOF (Bit in TMSK2) . 381

TOI (Bit in TMSK2). 381

Transfer Characteristic . 467–470

Transmission Gate . 239, 472

Trapped Charge . 150

TxD Pin . 61, 73, 107, 264, 344

U
UART (see SCI) . 317

V
VDD Pin . 45

Vector (Interrupt) . 160, 178, 182

Vector (Reset). 115, 160, 162, 167

Visibility of Internal Reads . 81, 82, 89, 109, 179

VPP Pin (VPPBULK Pin). 58, 76, 130, 134

VREFH, VREFL Pins . 59, 65, 70

VSS . 45, 52, 66

VSTBY Pin. 46, 57, 74, 125

W
WAI Instruction . 227, 598

Wait for Interrupt. 227, 598

Wait Mode . 86, 227, 598

WAKE (Bit in SCCR1) . 330, 356

Watchdog . 170, 377, 386

WCOL (Bit in SPSR) . 302
M68HC11 — Rev. 6 Reference Manual

MOTOROLA Index 647

Index
Wired-OR I/O . 61, 73, 288, 298

Write Collision . 304, 309

Write-Erase Cycles . 143, 150

X
X Bit . 176, 177, 187, 223

XIRQ Pin . 58, 68, 186, 205

XTAL Pin . 50, 72

Z
Zap . 67

Zero-Page Addressing . 96, 124, 208
Reference Manual M68HC11 — Rev. 6

648 Index MOTOROLA

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.;
Silicon Harbour Centre, 2 Dai King Street,
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software

implementers to use Motorola products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits or

integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products

herein. Motorola makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Motorola assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters which may be provided in Motorola data sheets

and/or specifications can and do vary in different applications and actual

performance may vary over time. All operating parameters, including “Typicals”

must be validated for each customer application by customer’s technical experts.

Motorola does not convey any license under its patent rights nor the rights of

others. Motorola products are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other

applications intended to support or sustain life, or for any other application in which

the failure of the Motorola product could create a situation where personal injury or

death may occur. Should Buyer purchase or use Motorola products for any such

unintended or unauthorized application, Buyer shall indemnify and hold Motorola

and its officers, employees, subsidiaries, affiliates, and distributors harmless

against all claims, costs, damages, and expenses, and reasonable attorney fees

arising out of, directly or indirectly, any claim of personal injury or death associated

with such unintended or unauthorized use, even if such claim alleges that Motorola

was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark
Office. digital dna is a trademark of Motorola, Inc. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2002

M68HC11RM/D

	Revision History
	List of Sections
	Table of Contents
	List of Figures
	List of Tables
	Section 1. General Description
	1.1 Contents
	1.2 Introduction
	1.3 General Description of the MC68HC11A8
	1.4 Programmer’s Model
	1.5 Product Derivatives

	Section 2. Pins and Connections
	2.1 Contents
	2.2 Introduction
	2.3 Packages and Pin Names
	2.3.1 MC68HC11A8
	2.3.2 MC68HC11D3/MC68HC711D3
	2.3.3 MC68HC11E9/MC68HC711E9
	2.3.4 MC68HC811E2
	2.3.5 MC68HC11F1
	2.3.6 MC68HC24 Port Replacement Unit

	2.4 Pin Descriptions
	2.4.1 Power-Supply Pins (VDD and VSS)
	2.4.2 Mode Select Pins (MODB/VSTBY and MODA/LIR)
	2.4.3 Crystal Oscillator and Clock Pins (EXTAL, XTAL, and E)
	2.4.4 Crystal Oscillator Application Information
	2.4.4.1 Crystals for Parallel Resonance
	2.4.4.2 Using Crystal Oscillator Outputs
	2.4.4.3 Using External Oscillator
	2.4.4.4 AT-Strip versus AT-Cut Crystals

	2.4.5 Reset Pin (RESET)
	2.4.6 Interrupt Pins (XIRQ and IRQ)
	2.4.7 A/D Reference and Port E Pins (VREFL, VREFH, and PE7–PE0)
	2.4.8 Timer Port A Pins
	2.4.9 Serial Port D Pins
	2.4.10 Ports B and C and STRA and STRB Pins

	2.5 Termination of Unused Pins
	2.6 Avoidance of Pin Damage
	2.6.1 Zap and Latchup
	2.6.2 Protective Interface Circuits
	2.6.3 Internal Circuitry — Digital Input-Only Pin
	2.6.4 Internal Circuitry — Analog Input-Only Pin
	2.6.5 Internal Circuitry — Digital I/O Pin
	2.6.6 Internal Circuitry — Input/Open-Drain-Output Pin
	2.6.7 Internal Circuitry — Digital Output-Only Pin
	2.6.8 Internal Circuitry — MODB/VSTBY Pin
	2.6.9 Internal Circuitry — IRQ/VPPBULK Pin

	2.7 Typical Expanded Mode System Connections
	2.8 Typical Single-Chip Mode System Connections
	2.9 System Development and Debug Features
	2.9.1 Load Instruction Register (LIR)
	2.9.2 Internal Read Visibility (IRV)
	2.9.3 MC68HC24 Port Replacement Unit (PRU)

	Section 3. Configuration and Modes of Operation
	3.1 Contents
	3.2 Introduction
	3.3 Hardware Mode Selection
	3.3.1 Hardware Mode Select Pins
	3.3.2 Mode Control Bits in the HPRIO Register

	3.4 EEPROM-Based Configuration (CONFIG) Register
	3.4.1 Operation of CONFIG Mechanism
	3.4.2 CONFIG Register

	3.5 Protected Control Register Bits
	3.5.1 RAM and I/O Mapping Register (INIT)
	3.5.2 Protected Control Bits in the TMSK2 Register
	3.5.3 Protected Control Bits in the OPTION Register

	3.6 Normal MCU Operating Modes
	3.6.1 Normal Single-Chip Mode
	3.6.2 Normal Expanded Mode

	3.7 Special MCU Operating Modes
	3.7.1 Testing Functions Control Register (TEST1)
	3.7.2 Test-Related Control Bits in the BAUD Register
	3.7.3 Special Test Mode
	3.7.4 Special Bootstrap Mode
	3.7.4.1 Loading Programs in Bootstrap Mode
	3.7.4.2 Executing User Programs in Bootstrap Mode
	3.7.4.3 Using Interrupts in Bootstrap Mode
	3.7.4.4 Bootloader Firmware Options

	3.8 Test and Bootstrap Mode Applications
	3.9 Example 3-1: Programming CONFIG (Uses Special Test Mode)

	Section 4. On-Chip Memory
	4.1 Contents
	4.2 Introduction
	4.3 Read-Only Memory (ROM)
	4.4 Random-Access Memory (RAM)
	4.4.1 Remapping Using the INIT Register
	4.4.2 RAM Standby

	4.5 Electrically Erasable Programmable ROM (EEPROM)
	4.5.1 Logical and Physical Organization
	4.5.2 Basic Operation of the EEPROM
	4.5.3 Systems Operating Below 2-MHz Bus Speed (E Clock)
	4.5.4 EEPROM Programming Register (PPROG)
	4.5.5 Programming/Erasing Procedures
	4.5.5.1 Programming
	4.5.5.2 Bulk Erase
	4.5.5.3 Row Erase
	4.5.5.4 Byte Erase
	4.5.5.5 CONFIG Register

	4.5.6 Optional EEPROM Security Mode

	4.6 EEPROM Application Information
	4.6.1 Conditions and Practices to Avoid
	4.6.2 Using EEPROM to Select Product Options
	4.6.3 Using EEPROM for Setpoint and Calibration Information
	4.6.4 Using EEPROM during Product Development
	4.6.5 Logging Data
	4.6.6 Self-Adjusting Systems Using EEPROM
	4.6.7 Software Methods to Extend Life Expectancy

	Section 5. Resets and Interrupts
	5.1 Contents
	5.2 Introduction
	5.3 Initial Conditions Established During Reset
	5.3.1 System Initial Conditions
	5.3.1.1 Central Processor Unit (CPU)
	5.3.1.2 Memory Map
	5.3.1.3 Parallel Input/Output (I/O)
	5.3.1.4 Timer
	5.3.1.5 Real-Time Interrupt
	5.3.1.6 Pulse Accumulator
	5.3.1.7 Computer Operating Properly (COP) Watchdog
	5.3.1.8 Serial Communications Interface (SCI)
	5.3.1.9 Serial Peripheral Interface (SPI)
	5.3.1.10 Analog-to-Digital (A/D) Converter
	5.3.1.11 Other System Controls

	5.3.2 CONFIG Register Allows Flexible Configuration
	5.3.3 Mode of Operation Established
	5.3.4 Program Counter Loaded with Reset Vector

	5.4 Causes of Reset
	5.4.1 Power-On Reset (POR)
	5.4.2 COP Watchdog Timer Reset
	5.4.3 Clock Monitor Reset
	5.4.4 External Reset

	5.5 Interrupt Process
	5.5.1 Interrupt Recognition and Stacking Registers
	5.5.2 Selecting Interrupt Vectors
	5.5.3 Return from Interrupt

	5.6 Non-Maskable Interrupts
	5.6.1 Non-Maskable Interrupt Request (XIRQ)
	5.6.2 Illegal Opcode Fetch
	5.6.3 Software Interrupt

	5.7 Maskable Interrupts
	5.7.1 I Bit in the Condition Code Register
	5.7.2 Special Considerations for I-Bit-Related Instructions

	5.8 Interrupt Request
	5.8.1 Selecting Edge Triggering or Level Triggering
	5.8.2 Sharing Vector with Handshake I/O Interrupts

	5.9 Interrupts from Internal Peripheral Subsystems
	5.9.1 Inhibiting Individual Sources
	5.9.2 Clearing Interrupt Status Flag Bits
	5.9.3 Automatic Clearing Mechanisms on Some Flags

	Section 6. Central Processor Unit (CPU)
	6.1 Contents
	6.2 Introduction
	6.3 Programmer’s Model
	6.3.1 Accumulators (A, B, and D)
	6.3.2 Index Registers (X and Y)
	6.3.3 Stack Pointer (SP)
	6.3.4 Program Counter (PC)
	6.3.5 Condition Code Register (CCR)

	6.4 Addressing Modes
	6.4.1 Immediate (IMM)
	6.4.2 Extended (EXT)
	6.4.3 Direct (DIR)
	6.4.4 Indexed (INDX and INDY)
	6.4.5 Inherent (INH)
	6.4.6 Relative (REL)

	6.5 M68HC11 Instruction Set
	6.5.1 Accumulator and Memory Instructions
	6.5.1.1 Loads, Stores, and Transfers
	6.5.1.2 Arithmetic Operations
	6.5.1.3 Multiply and Divide
	6.5.1.4 Logical Operations
	6.5.1.5 Data Testing and Bit Manipulation
	6.5.1.6 Shifts and Rotates

	6.5.2 Stack and Index Register Instructions
	6.5.3 Condition Code Register Instructions
	6.5.4 Program Control Instructions
	6.5.4.1 Branches
	6.5.4.2 Jumps
	6.5.4.3 Subroutine Calls and Returns (BSR, JSR, and RTS)
	6.5.4.4 Interrupt Handling (RTI, SWI, and WAI)
	6.5.4.5 Miscellaneous (NOP, STOP, and TEST)

	Section 7. Parallel Input/Output
	7.1 Contents
	7.2 Introduction
	7.3 Parallel I/O Overview
	7.4 Parallel I/O Register and Control Bit Explanations
	7.4.1 Port Registers
	7.4.2 Data Direction Registers

	7.5 Detailed I/O Pin Descriptions
	7.5.1 Port A
	7.5.1.1 PA2–PA0 (IC3–IC1) Pin Logic
	7.5.1.2 PA6–PA3 (OC5–OC2) Pin Logic
	7.5.1.3 PA7 (OC1 and PAI) Pin Logic
	7.5.1.4 Port A Idealized Timing

	7.5.2 Port B
	7.5.2.1 Port B Pin Logic
	7.5.2.2 Port B Idealized Timing
	7.5.2.3 Special Considerations for Port B on MC68HC24 PRU

	7.5.3 R/W (STRB) Pin
	7.5.3.1 R/W (STRB) Pin Logic
	7.5.3.2 Special Considerations for STRB on MC68HC24 PRU

	7.5.4 Port C
	7.5.4.1 Port C Pin Logic for Expanded Modes
	7.5.4.2 Summary of Port C Idealized Expanded Mode Timing
	7.5.4.3 Port C Single-Chip Mode Pin Logic
	7.5.4.4 Port C Idealized Single-Chip Mode Timing
	7.5.4.5 Special Considerations for Port C on MC68HC24 PRU

	7.5.5 AS (STRA) Pin
	7.5.5.1 AS (STRA) Pin Logic
	7.5.5.2 Special Considerations for STRA on MC68HC24 PRU

	7.5.6 Port D
	7.5.6.1 PD0 (RxD) Pin Logic
	7.5.6.2 PD1 (TxD) Pin Logic
	7.5.6.3 PD2 (MISO) Pin Logic
	7.5.6.4 PD3 (MOSI) Pin Logic
	7.5.6.5 PD4 (SCK) Pin Logic
	7.5.6.6 PD5 (SS) Pin Logic
	7.5.6.7 Idealized Port D Timing

	7.5.7 Port E
	7.5.7.1 Port E Pin Logic
	7.5.7.2 Idealized Port E Timing

	7.6 Handshake I/O Subsystem
	7.6.1 Simple Strobe Mode
	7.6.1.1 Port B Strobe Output
	7.6.1.2 Port C Simple Latching Input

	7.6.2 Full-Input Handshake Mode
	7.6.3 Full-Output Handshake Mode
	7.6.3.1 Normal Output Handshake
	7.6.3.2 Three-State Variation of Output Handshake

	7.6.4 Parallel I/O Control Register (PIOC)
	7.6.5 Non-Handshake Uses of STRA and STRB Pins

	Section 8. Synchronous Serial Peripheral Interface
	8.1 Contents
	8.2 Introduction
	8.3 SPI Transfer Formats
	8.3.1 SPI Clock Phase and Polarity Controls
	8.3.2 CPHA Equals Zero Transfer Format
	8.3.3 CPHA Equals One Transfer Format

	8.4 SPI Block Diagram
	8.5 SPI Pin Signals
	8.6 SPI Registers
	8.6.1 Port D Data Direction Control Register (DDRD)
	8.6.2 SPI Control Register (SPCR)
	8.6.3 SPI Status Register (SPSR)

	8.7 SPI System Errors
	8.7.1 SPI Mode-Fault Error
	8.7.2 SPI Write-Collision Errors

	8.8 Beginning and Ending SPI Transfers
	8.8.1 Transfer Beginning Period (Initiation Delay)
	8.8.2 Transfer Ending Period

	8.9 Transfers to Peripherals with Odd Word Lengths
	8.9.1 Example 8-1: On-Chip SPI Driving an MC144110 D/A
	8.9.2 Example 8-2: Software SPI Driving an MC144110 D/A

	Section 9. Asynchronous Serial Communications Interface
	9.1 Contents
	9.2 Introduction
	9.3 General Description
	9.3.1 Transmitter Block Diagram
	9.3.2 Receiver Block Diagram

	9.4 SCI Registers and Control Bits
	9.4.1 Port D Related Registers and Control Bits (PORTD, DDRD, and SPCR)
	9.4.2 Baud-Rate Control Register (BAUD)
	9.4.3 SCI Control Register 1 (SCCR1)
	9.4.4 SCI Control Register 2 (SCCR2)
	9.4.5 SCI Status Register (SCSR)
	9.4.6 SCI Data Register (SCDR)

	9.5 SCI Transmitter
	9.5.1 8- and 9-Bit Data Modes
	9.5.2 Interrupts and Status Flags
	9.5.3 Send Break
	9.5.4 Queued Idle Character
	9.5.5 Disabling the SCI Transmitter
	9.5.6 TxD Pin Buffer Logic

	9.6 SCI Receiver
	9.6.1 Data Sampling Technique
	9.6.2 Worst-Case Baud-Rate Mismatch
	9.6.3 Double-Buffered Operation
	9.6.4 Receive Status Flags and Interrupts
	9.6.5 Receiver Wakeup Operation
	9.6.5.1 Idle-Line Wakeup
	9.6.5.2 Address-Mark Wakeup

	9.7 Baud-Rate Generator
	9.7.1 Timing Chain Block Diagram
	9.7.2 Baud Rates versus Crystal Frequency

	9.8 SCI Timing Details
	9.8.1 Operation as Transmitter Is Enabled
	9.8.2 TDRE and Transfers from SCDR to Transmit Shift Register
	9.8.3 TC versus Character Completion
	9.8.4 RDRF Flag Setting versus End of a Received Character

	Section 10. Main Timer and Real-Time Interrupt
	10.1 Contents
	10.2 Introduction
	10.3 General Description
	10.3.1 Overall Timer Block Diagram
	10.3.2 Input-Capture Concept
	10.3.3 Output-Compare Concept

	10.4 Free-Running Counter and Prescaler
	10.4.1 Overall Clock Divider Structure
	10.4.1.1 Prescaler
	10.4.1.2 Overflow
	10.4.1.3 Counter Bypass (Test Mode)

	10.4.2 Real-Time Interrupt (RTI) Function
	10.4.3 Computer Operating Properly (COP) Watchdog Function
	10.4.4 Tips for Clearing Timer Flags

	10.5 Input-Capture Functions
	10.5.1 Programmable Options
	10.5.2 Using Input Capture to Measure Period and Frequency
	10.5.3 Using Input Capture to Measure Pulse Width
	10.5.4 Measuring Very Short Time Periods
	10.5.5 Measuring Long Time Periods with Input Capture and Overflow
	10.5.6 Establishing a Relationship between Software and an Event
	10.5.7 Other Uses for Input-Capture Pins

	10.6 Output-Compare Functions
	10.6.1 Normal Input/Output Pin Control Using OC5–OC2
	10.6.2 Advanced Input/Output Pin Control Using OC1
	10.6.2.1 One Output Compare Controlling up to Five Pins
	10.6.2.2 Two Output Compares Controlling One Pin

	10.6.3 Forced Output Compares

	10.7 Timing Details for the Main Timer System
	10.8 Listing of Timer Examples

	Section 11. Pulse Accumulator
	11.1 Contents
	11.2 Introduction
	11.3 General Description
	11.3.1 Pulse Accumulator Block Diagram
	11.3.2 Pulse Accumulator Control and Status Registers

	11.4 Event Counting Mode
	11.4.1 Interrupting after N Events
	11.4.2 Counting More Than 256 Events

	11.5 Gated Time Accumulation Mode
	11.5.1 Measuring Times Longer Than the Range of the 8-Bit Counter
	11.5.2 Configuring for Interrupt after a Specified Time

	11.6 Other Uses for the PAI Pin
	11.7 Timing Details for the Pulse Accumulator

	Section 12. Analog-to-Digital Converter System
	12.1 Contents
	12.2 Introduction
	12.3 Charge-Redistribution A/D
	12.4 A/D Converter Implementation on MC68HC11A8
	12.4.1 MC68HC11A8 Successive-Approximation A/D Converter
	12.4.2 A/D Charge Pump and Resistor-Capacitor (RC) Oscillator
	12.4.3 MC68HC11A8 A/D System Control Logic
	12.4.4 A/D Control/Status Register (ADCTL)
	12.4.5 A/D Result Registers (ADR4–AD1)

	12.5 A/D Pin Connection Considerations

	Appendix A. Instruction Set Details
	A.1 Contents
	A.2 Introduction
	A.3 Nomenclature
	A.4 M68HC11 Instruction Set
	ABA - Add Accumulator B to Accumulator A
	ABX - Add Accumulator B to Index Register X
	ABY - Add Accumulator B to Index Register Y
	ADC - Add with Carry
	ADD - Add without Carry
	ADDD - Add Double Accumulator
	AND - Logical AND
	ASL - Arithmetic Shift Left
	ASLD - Arithmetic Shift Left Double Accumulator
	ASR - Arithmetic Shift Right
	BCC - Branch if Carry Clear
	BCLR - Clear Bit(s) in Memory
	BCS - Branch if Carry Set
	BEQ - Branch if Equal
	BGE - Branch if Greater than or Equal to Zero
	BGT - Branch if Greater than Zero
	BHI - Branch if Higher
	BHS - Branch if Higher or Same
	BIT - Bit Test
	BLE - Branch if Less than or Equal to Zero
	BLO - Branch if Lower (Same as BCS)
	BLS - Branch if Lower or Same
	BLT - Branch if Less than Zero
	BMI - Branch if Minus
	BNE - Branch if Not Equal to Zero
	BPL - Branch if Plus
	BRA - Branch Always
	BRCLR - Branch if Bit(s) Clear
	BRN - Branch Never
	BRSET - Branch if Bit(s) Set
	BSET - Set Bit(s) in Memory
	BSR - Branch to Subroutine
	BVC - Branch if Overflow Clear
	BVS - Branch if Overflow Set
	CBA - Compare Accumulators
	CLC - Clear Carry
	CLI - Clear Interrupt Mask
	CLR - Clear
	CLV - Clear Twos Complement Overflow Bit
	CMP - Compare
	COM - Complement
	CPD - Compare Double Accumulator
	CPX - Compare Index Register X
	CPY - Compare Index Register Y
	DAA - Decimal Adjust Accumulator A
	DEC - Decrement
	DES - Decrement Stack Pointer
	DEX - Decrement Index Register X
	DEY - Decrement Index Register Y
	EOR - Exclusive OR
	FDIV - Fractional Divide
	IDIV - Integer Divide
	INC - Increment
	INS - Increment Stack Pointer
	INX - Increment Index Register X
	INY - Increment Index Register Y
	JMP - Jump
	JSR - Jump to Subroutine
	LDA - Load Accumulator
	LDD - Load Double Accumulator
	LDS - Load Stack Pointer
	LDX - Load Index Register X
	LDY - Load Index Register Y
	LSL - Logical Shift Left
	LSLD - Logical Shift Left Double
	LSR - Logical Shift Right
	LSRD - Logical Shift Right Double Accumulator
	MUL - Multiply Unsigned
	NEG - Negate
	NOP - No Operation
	ORA - Inclusive OR
	PSH - Push Data onto Stack
	PSHX - Push Index Register X onto Stack
	PSHY - Push Index Register Y onto Stack
	PUL - Pull Data from Stack
	PULX - Pull Index Register X from Stack
	PULY - Pull Index Register Y from Stack
	ROL - Rotate Left
	ROR - Rotate Right
	RTI - Return from Interrupt
	RTS - Return from Subroutine
	SBA - Subtract Accumulators
	SBC - Subtract with Carry
	SEC - Set Carry
	SEI - Set Interrupt Mask
	SEV - Set Two’s Complement Overflow Bit
	STA - Store Accumulator
	STD - Store Double Accumulator
	STOP - Stop Processing
	STS - Store Stack Pointer
	STX - Store Index Register X
	STY - Store Index Register Y
	SUB - Subtract
	SUBD - Subtract Double Accumulator
	SWI - Software Interrupt
	TAB - Transfer from Accumulator A to B
	TAP - Transfer from Accumulator A to CCR
	TBA - Transfer from Accumulator B to A
	TEST - Test Operation (Test Mode Only)
	TPA - Transfer from CCR to Accumulator A
	TST - Test
	TSX - Transfer from SP to Index Register X
	TSY - Transfer from SP to Index Register Y
	TXS - Transfer from Index Register X to SP
	TYS - Transfer from Index Register Y to SP
	WAI - Wait for Interrupt
	XGDX - Exchange Double Accumulator and Index Register X
	XGDY - Exchange Double Accumulator and Index Register Y

	Appendix B. Bootloader Listings
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

