## MCTX3420 Team 4: Progress Report #7

Sam Moore, Rowan Heinrich, Callum Schofield, James Rosher, Justin Kruger, Jeremy Tan

## Work Done:

- 1. Added warning and error thresholds to sensor sanity check function
  - a. Not yet handled in GUI
- 2. Refactored server code to abstract data operations from sensor/actuator control
  - a. Files data.c and data.h contain functions for saving, loading, displaying data
  - b. DataFile structure wraps around access to binary files
  - c. Sensor and Actuators can both use this functionality
    - . Actuator settings are saved in the same format (time, value) as Sensor readings
- 3. Refactored server code to simplify user parameter parsing
  - a. FCGI module now has dedicated function to parse user parameters based on expected key/value pairs and the expected type of the value
- 4. Distinguish between individual experiments and allow for stop/start/pause/resume control
  - a. Sensor/Actuator control threads get stopped and started as necessary
  - b. DataFile(s) closed/opened as necessary
- 5. Wrote program to generate and process test interferometer images
  - a. Uses OpenCV image processing library in C (compatible with main server code)
  - b. Takes image with actual camera, adds a sinusoidal pattern similar to interferometer pattern
  - c. Identifies nodes in the sinusoidal pattern and uses these to calculate change in phase between images
  - d. Integrate changes in phase to get total change in phase, proportional to expansion of can
- 6. Streamed of images through server directly to client instead of saving on disk
- 7. Set up debian on BeagleBone in G19
  - a. Base image: From <a href="http://www.armhf.com">http://www.armhf.com</a>
  - b. Packages: nginx, spawn-fcgi, gcc, libssl-dev, libfastcgi-dev, git, make, libopencv-dev, valgrind
  - c. Remote access through address mctx-g19.us.to (HTTP, SSH)
  - d. Network connection is intermittent, possibly due to insufficient power through laptop USB
    - . Connectivity was improved using a desktop USB
- 8. Work on reading/writing using real pins on BeagleBone
  - a. Can control a LED using server API
  - b. GPIO / ADC currently separate from main server code; needs testing

## Work Todo:

- 1. Reading/writing using real pins on BeagleBone
  - a. Test and integrate with main server code
- 2. GUI Design needs a lot of work
  - a. Periodically check log file for errors to display to user
  - b. Input boxes for actuator control settings
  - c. Add graphs of actuator values vs sensor values
  - d. Page to control experiment (start, stop, pause, resume, set experiment name)
- 2. Test image related code (OpenCV) on BeagleBone
- 3. Minor improvements to server code as necessary
  - a. eg: Save log to file which is accessible to GUI (for point 2a)

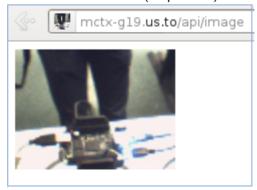



Figure 1: Image from Logitech webcam transferred through BeagleBone server

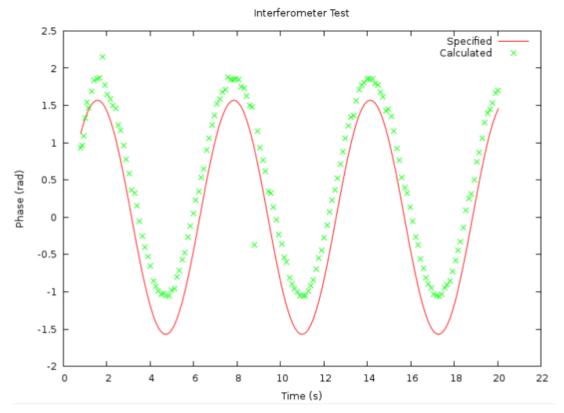



Figure 2: Sample output from interferometer test program

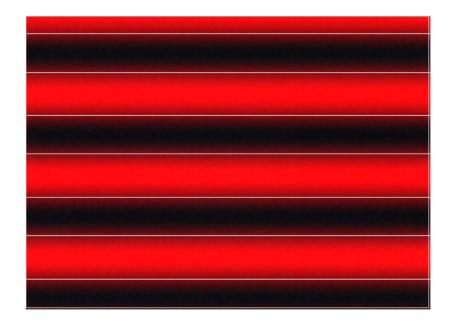



Figure 3: Image generated by interferometer test program. Nodes are identified with white lines.