From: Sam Moore Date: Thu, 1 May 2014 10:55:28 +0000 (+0800) Subject: Tester from some lecture notes by Kahan X-Git-Url: https://git.ucc.asn.au/?a=commitdiff_plain;h=e6e138e8baad2dda39cecbb35557710f2a550398;p=ipdf%2Fcode.git Tester from some lecture notes by Kahan Supposedly this is a benchmark for determining the worst accuracy of a CPU using roots to a quadratic I think something wierd is going on; a result of infinity means there is no rounding errors but I'm not sure what results of -nan mean and that's what I get. The article is referenced as kahan1996ieee754 in the literature notes --- diff --git a/src/tests/qtest.cpp b/src/tests/qtest.cpp new file mode 100644 index 0000000..00e309b --- /dev/null +++ b/src/tests/qtest.cpp @@ -0,0 +1,97 @@ +#include +#include +#include +#include "main.h" + +#include "real.h" + +using namespace IPDF; + +/** + * This is a C version of Kahan's proposed benchmark for determining the worst accuracy of a CPU + * Taken from kahan1996iee754 - Lecture notes on the status of IEEE 754 + */ + + +/** + * Quadradic of the form p*x^2 - 2 q*x + r == 0 + * This function computes the roots x1 and x2 as accuractely as they are determined by {p, q, r} + */ +void Qdrtc(Real p, Real q, Real r, Real * x1, Real * x2) +{ + Real s = sqrt(q*q - p*r); + Real S = q + copysignf(s, q); + if (S == 0.f) + { + *x1 = r/p; + *x2 = r/p; + return; + } + *x1 = r/S; + *x2 = S/p; +} + +/** + * Kahan's magic Qtrial test thing + * Calculate roots using Qdrtc and compare to known results + * Return the smallest (?) of the errors + */ +Real Qtrial(Real r) +{ + Real p = r-Real(2); + Real q = r-Real(1); + Real result = Real(0); + Debug("Qdrtc for r = %.30lf", Float(r)); + if (p <= Real(0)) + Fatal("Expect r > 2"); + else if (!((r-q)== Real(1) && (q-p) == Real(1))) + Fatal("r too big for Qtrial %.30lf", Float(r)); + + Real x1; Real x2; + Qdrtc(p, q, r, &x1, &x2); + Real e1 = -log2f(x1 - Real(1)); + Real e2 = -log2f((x2 - Real(1)) - Real(2)/p); + + result = min(e1, e2); + Debug("gets %.30lf and %.30lf sig bits", Float(e1), Float(e2)); + if (x1 < Real(1)) + Debug(" and root %.30lf isn't at least 1", Float(x1)); + return result; +} + +int main(int argc, char ** argv) +{ + Real x1; Real x2; + Qdrtc(2,5,12,&x1,&x2); + if (x1 != Real(2) || x2 != Real(3)) + { + Fatal("Qdrtc(2, 5, 12) failed sanity check; x1 %.30lf x2 %.30lf", Float(x1), Float(x2)); + } + + size_t n = 12; + Real r[n]; + r[0] = (1 << 12) + 2.0; + r[1] = (1 << 12) + 2.25; + r[2] = (16 << 8) + 1.0 + 1.0/(16<<4); + r[3] = (1<<24) + 2.0; + r[4] = (1<<24) + 3.0; + r[5] = 94906267.0; + r[6] = 94906267 + 0.25; + r[7] = (1<<28) - 5.5; + r[8] = (1<<28) - 4.5; + r[9] = (1<<28) + 2.0; + r[10] = (1<<28) + 2.25; + r[11] = (16<<24) + 1 + 1.0/(16<<20); +// r[12] = (1<<32) + 2.0; +// r[13] = (1<<32) + 2.25; + + Real e = +INFINITY; + Real t; + for (size_t j = 0; j < n; ++j) + { + t = Qtrial(r[j]); + if (t < e || t != t) e = t; + } + Debug("Worst accuracy is %.30lf sig. bits", Float(e)); + return 0; +}