X-Git-Url: https://git.ucc.asn.au/?p=ipdf%2Fcode.git;a=blobdiff_plain;f=src%2Fbezier.cpp;h=99611dc5d5ba99722e1e1fc05ea652abea703320;hp=f0e1f4d88721a693d25c94a2e2ce982534441fa4;hb=0361b11485ec41d2c2ddeb279abf846f777f5363;hpb=b3c2d3472c3b3d77eae0f66731a32b852dce11f0 diff --git a/src/bezier.cpp b/src/bezier.cpp index f0e1f4d..99611dc 100644 --- a/src/bezier.cpp +++ b/src/bezier.cpp @@ -2,12 +2,103 @@ #include #include +#include using namespace std; namespace IPDF { +vector SolveQuadratic(const Real & a, const Real & b, const Real & c, const Real & min, const Real & max) +{ + vector roots; roots.reserve(2); + if (a == 0 && b != 0) + { + roots.push_back(-c/b); + return roots; + } + Real disc(b*b - Real(4)*a*c); + if (disc < 0) + { + return roots; + } + else if (disc == 0) + { + Real x(-b/Real(2)*a); + if (x >= min && x <= max) + roots.push_back(x); + return roots; + } + + Real x0((-b - Sqrt(b*b - Real(4)*a*c))/(Real(2)*a)); + Real x1((-b + Sqrt(b*b - Real(4)*a*c))/(Real(2)*a)); + if (x0 > x1) + { + Real tmp(x0); + x0 = x1; + x1 = tmp; + } + if (x0 >= min && x0 <= max) + roots.push_back(x0); + if (x1 >= min && x1 <= max) + roots.push_back(x1); + return roots; +} + +/** + * Finds the root (if it exists) in a monotonicly in(de)creasing segment of a Cubic + */ + +static void CubicSolveSegment(vector & roots, const Real & a, const Real & b, const Real & c, const Real & d, Real & tl, Real & tu, const Real & delta) +{ + Real l = a*tl*tl*tl + b*tl*tl + c*tl + d; + Real u = a*tu*tu*tu + b*tu*tu + c*tu + d; + if ((l < 0 && u < 0) || (l > 0 && u > 0)) + return; + + bool negative = (u < l); // lower point > 0, upper point < 0 + while (tu - tl > delta) + { + Real t(tu+tl); + t /= 2; + Real m = a*t*t*t + b*t*t + c*t + d; + if (m > 0) + { + if (negative) + tl = t; + else + tu = t; + } + else if (negative) + { + tu = t; + } + else + { + tl = t; + } + //Debug("Delta is %f (%f - %f -> %f)", tu-tl, tu, tl, t); + } + roots.push_back(tl); +} +vector SolveCubic(const Real & a, const Real & b, const Real & c, const Real & d, const Real & min, const Real & max, const Real & delta) +{ + vector roots; roots.reserve(3); + Real tu(max); + Real tl(min); + vector turns(SolveQuadratic(a*3, b*2, c)); + //Debug("%u turning points", turns.size()); + for (unsigned i = 1; i < turns.size(); ++i) + { + tu = turns[i]; + CubicSolveSegment(roots, a, b, c, d, tl, tu,delta); + tl = turns[i]; + } + tu = max; + CubicSolveSegment(roots, a, b, c, d, tl, tu,delta); + return roots; +} + /** * Factorial * Use dynamic programming / recursion @@ -45,4 +136,287 @@ Real Bernstein(int k, int n, const Real & u) return Real(BinomialCoeff(n, k)) * Power(u, k) * Power(Real(1.0) - u, n-k); } + +/** + * Returns the parametric parameter at the turning point(s) + * In one coordinate direction + */ + +pair BezierTurningPoints(const Real & p0, const Real & p1, const Real & p2, const Real & p3) +{ + // straight line + if (p1 == p2 && p2 == p3) + { + return pair(0, 1); + } + Real a = ((p1-p2)*3 + p3 - p0); + Real b = (p2 - p1*2 + p0)*2; + Real c = (p1-p0); + if (a == 0) + { + if (b == 0) + return pair(0,1); + Real t = -c/b; + if (t > 1) t = 1; + if (t < 0) t = 0; + return pair(t, t); + } + //Debug("a, b, c are %f, %f, %f", Float(a), Float(b), Float(c)); + if (b*b - a*c*4 < 0) + { + //Debug("No real roots"); + return pair(0,1); + } + vector tsols = SolveQuadratic(a, b, c); + if (tsols.size() == 1) + return pair(tsols[0], tsols[0]); + else if (tsols.size() == 0) + return pair(0,1); + + return pair(tsols[0], tsols[1]); + +} + +inline bool CompRealByPtr(const Real * a, const Real * b) +{ + return (*a) < (*b); +} + +/** + * Get top most *point* on Bezier curve + */ +pair Bezier::GetTop() const +{ + pair tsols = BezierTurningPoints(y0,y1,y2,y3); + Real tx0; Real ty0; + Real tx1; Real ty1; + Evaluate(tx0, ty0, tsols.first); + Evaluate(tx1, ty1, tsols.second); + vector v(4); + v[0] = &y0; + v[1] = &y3; + v[2] = &ty0; + v[3] = &ty1; + sort(v.begin(), v.end(), CompRealByPtr); + pair result; + result.second = *v[0]; + if (v[0] == &y0) + { + result.first = x0; + } + else if (v[0] == &y3) + { + result.first = x3; + } + else if (v[0] == &ty0) + { + result.first = tx0; + } + else if (v[0] == &ty1) + { + result.first = tx1; + } + return result; +} + +/** + * Get bottom most *point* on Bezier curve + */ +pair Bezier::GetBottom() const +{ + pair tsols = BezierTurningPoints(y0,y1,y2,y3); + Real tx0; Real ty0; + Real tx1; Real ty1; + Evaluate(tx0, ty0, tsols.first); + Evaluate(tx1, ty1, tsols.second); + vector v(4); + v[0] = &y0; + v[1] = &y3; + v[2] = &ty0; + v[3] = &ty1; + sort(v.begin(), v.end(), CompRealByPtr); + pair result; + result.second = *v[3]; + if (v[3] == &y0) + { + result.first = x0; + } + else if (v[3] == &y3) + { + result.first = x3; + } + else if (v[3] == &ty0) + { + result.first = tx0; + } + else if (v[3] == &ty1) + { + result.first = tx1; + } + return result; +} + +/** + * Get left most *point* on Bezier curve + */ +pair Bezier::GetLeft() const +{ + pair tsols = BezierTurningPoints(x0,x1,x2,x3); + Real tx0; Real ty0; + Real tx1; Real ty1; + Evaluate(tx0, ty0, tsols.first); + Evaluate(tx1, ty1, tsols.second); + vector v(4); + v[0] = &x0; + v[1] = &x3; + v[2] = &tx0; + v[3] = &tx1; + sort(v.begin(), v.end(), CompRealByPtr); + pair result; + result.first = *v[0]; + if (v[0] == &x0) + { + result.second = y0; + } + else if (v[0] == &x3) + { + result.second = y3; + } + else if (v[0] == &tx0) + { + result.second = ty0; + } + else if (v[0] == &tx1) + { + result.second = ty1; + } + return result; +} + + +/** + * Get left most *point* on Bezier curve + */ +pair Bezier::GetRight() const +{ + pair tsols = BezierTurningPoints(x0,x1,x2,x3); + Real tx0; Real ty0; + Real tx1; Real ty1; + Evaluate(tx0, ty0, tsols.first); + Evaluate(tx1, ty1, tsols.second); + vector v(4); + v[0] = &x0; + v[1] = &x3; + v[2] = &tx0; + v[3] = &tx1; + sort(v.begin(), v.end(), CompRealByPtr); + pair result; + result.first = *v[3]; + if (v[3] == &x0) + { + result.second = y0; + } + else if (v[3] == &x3) + { + result.second = y3; + } + else if (v[3] == &tx0) + { + result.second = ty0; + } + else if (v[3] == &tx1) + { + result.second = ty1; + } + return result; +} + +vector Bezier::SolveXParam(const Real & x) const +{ + Real d(x0 - x); + Real c((x1 - x0)*Real(3)); + Real b((x2 - x1)*Real(3) - c); + Real a(x3 -x0 - c - b); + vector results(SolveCubic(a, b, c, d)); + for (unsigned i = 0; i < results.size(); ++i) + { + Vec2 p; + Evaluate(p.x, p.y, results[i]); + } + return results; +} + + +vector Bezier::SolveYParam(const Real & y) const +{ + Real d(y0 - y); + Real c((y1 - y0)*Real(3)); + Real b((y2 - y1)*Real(3) - c); + Real a(y3 -y0 - c - b); + vector results(SolveCubic(a, b, c, d)); + for (unsigned i = 0; i < results.size(); ++i) + { + Vec2 p; + Evaluate(p.x, p.y, results[i]); + } + return results; +} + +vector Bezier::Evaluate(const vector & u) const +{ + vector result(u.size()); + for (unsigned i = 0; i < u.size(); ++i) + { + Evaluate(result[i].x, result[i].y, u[i]); + } + return result; } + +/** + * Get Bounds Rectangle of Bezier + */ +Rect Bezier::SolveBounds() const +{ + Rect result; + pair tsols = BezierTurningPoints(x0, x1, x2, x3); + + Real tp0; Real tp1; Real o; + Evaluate(tp0, o, tsols.first); + Evaluate(tp1, o, tsols.second); + + //Debug("x: tp0 is %f tp1 is %f", Float(tp0), Float(tp1)); + + vector v(4); + v[0] = &x0; + v[1] = &x3; + v[2] = &tp0; + v[3] = &tp1; + + // Not using a lambda to keep this compiling on cabellera + sort(v.begin(), v.end(), CompRealByPtr); + + result.x = *(v[0]); + result.w = *(v[3]) - result.x; + + // Do the same thing for y component (wow this is a mess) + tsols = BezierTurningPoints(y0, y1, y2, y3); + Evaluate(o, tp0, tsols.first); + Evaluate(o, tp1, tsols.second); + + + //Debug("y: tp0 is %f tp1 is %f", Float(tp0), Float(tp1)); + + v[0] = &y0; + v[1] = &y3; + v[2] = &tp0; + v[3] = &tp1; + sort(v.begin(), v.end(), CompRealByPtr); + + result.y = *(v[0]); + result.h = *(v[3]) - result.y; + + //Debug("Solved Bezier %s bounds as %s", Str().c_str(), result.Str().c_str()); + return result; +} + +} // end namespace