
Arbitrary Sized Integers

Sam Moore, David Gow

July 24, 2014

Abstract

We have implemented arbitrary sized integers which sometimes don’t segfault, using a combination
of the C++ standard library and stand alone x86-64 assembly. Performance tests reveal that we
would have been better off just using the GNU Multiprecision Library (GMP).

1 Integer Representation

A positive integer (natural number) can be written as the sum of smaller integers “digits” multiplied
by powers of a base.

z =
∞∑
i=0

diβ
i (1)

Where each digit di < β the base. A set of β unique symbols are used to represent values of
di. A fixed size representation truncates the sum at some i = N , which can represent all values
0 ≤ z ≤ βn+1 − 1.

A seperate sign symbol (eg: ’-’) can be used to represent negative integers using the same digit sum.

Example in base 10 (decimal):

568210 = 5× 103 + 6× 102 + 8× 101 + 2× 100 (2)

In base 2 (binary) the same integer is:

10110001100102 = 1× 212 + 0× 211 + ... + 0× 20 (3)

1.1 Representation on computer hardware

Computer hardware implements operations for fixed size integers. The base is β = 2 and the digits
are {0, 1}. The most significant bit can be reserved for the sign instead of a digit.

We can construct larger size integers by considering some sequence of fixed size integers to be
individual digits. In practice we will still be limited by the memory and processing time required

1



for “big” integers.

For example, we can represent 568210 as a single 16 bit digit or as the sum of two 8 bit digits. Each
digit is being written in base 2 or 10 because there is not a universal base with ≥ 28 unique symbols.

568210 = 00010110001100102 = 101102 × 28 + 1100102 × 20 (4)

= 2210 × 28 + 5010 × 20 (5)

2 Addition Algorithms

Addition s = a+ b is done by adding digits from least to most significant.

s =

∞∑
i=0

(ai + bi)β
i

Considering the contributions to the sum of the ith and (i+ 1)th digits:

siβ
i + si+1β

i+1 = (ai + bi)β
i + (ai + bi)β

i+1 (6)

=⇒ si + si+1β = (ai + bi) + (ai+1 + bi+1)β (7)

(8)

If the sum ai + bi ≥ β, ie: It cannot be represented in base β, then we can rewrite this as:

si + si+1β = β + (ai + bi − β) + (ai+1 + bi+1)β (9)

= (ai + bi − β) + (ai+1 + bi+1 + 1)β (10)

So we can use the digits si = (ai + bi − β) < β and si+1 = (ai+1 + bi+1 + 1). This operation is the
carry1.

The x64 instruction set includes an add with carry instruction adc which will add fixed sized digits
and set a flag to indicate a carry. This allows for easy adding of an array of digits representing an
arbitrary sized integer.

3 Subtraction Algorithms

Similarly, subtraction s = a−b is done from least to most significant digit. If the result of ai−bi < 0
then we borrow from a higher digit.

si + si+1β = β + (ai − bi + β) + (ai+1 − bi+1 − 1)β

1I’m pretty sure that is not a rigorous definition but close enough

2



The x64 instruction set also includes a subtract with borrow instruction sbb which will set a borrow
flag.

4 Multiplication Algorithms

In general, the result of multiplying two n digit numbers may require up to 2n digits.

5 Division Algorithms

5.1 Naive Algorithm

5.2 Shifting Algorithm

6 Base conversion

Since humans are not very good at understanding binary, it is convenient to convert integer repre-
sentations from one base to another.

7 Performance Comparison of IPDF::Arbint and GMP Integers

We repeated 1000 trials of the four basic operations on arbitrary integers initialised from rand(3)

Here are the average IR costs per operation collected using the callgrind tool with the memory
analysis program valgrind.

Operation IR Cost Arbint IR Cost Gmpint Arbint/Gmpint

*= 3957 255 15.6

/= 395008 388 1018.1

+= 252 98 2.5

-= 458 102 4.5

Figure 1: GMP wins

Clearly we are not as good at implementing arbitrary integer arithmetic as the GMP project. We are
particularly bad at division. This is probably because we used the second algorithm on wikipedia.

Examining the GMP source code shows that the library is mostly implemented using highly opti-
mised assembly which is selected based on the build target. We’ve used C++ classes with all their
overhead. We also used a shittier division algorithm although our addition and subtraction are
pretty similar.

8 Conclusion

Just use GMP.

3


	Integer Representation
	Representation on computer hardware

	Addition Algorithms
	Subtraction Algorithms
	Multiplication Algorithms
	Division Algorithms
	Naive Algorithm
	Shifting Algorithm

	Base conversion
	Performance Comparison of IPDF::Arbint and GMP Integers

