Floating Point and CPU vs GPU Rendering

Sam Moore, David Gow

July 24, 2014

Abstract

We qualitatively illustrate differences between floating point operations on the x86-64 CPU and several GPUs
by rendering filled ellipses.

1 Introduction

The IEEE Standard for Floating-Point Arithmetic [I] has been widely adopted by hardware manufacturers
of CPUs and programming language standards.

Although it is well known that the behaviour of GPU drivers is inconsistent, there is little formal academic
research into the behaviour of floating point operations using such drivers.

In 2004 Hillesland and Lastra adapted Kahan’s well known program for testing floating point arithmetic on
CPUs during the 1980s “Paranoia” for GPUs and found that many GPUs did not appear to be compliant
with IEEE-754[2].

Given the recent interest in use of the GPU for vector graphics[3] the behaviour of GPUs when performing
floating point operations is worthy of closer investigation.

Using a straight forward filled ellipse rendering algorithm implemented in C/C++ and GLSL we show
inconsistent floating point behaviour when comparing the x86-64 CPU, an nVidia GPUEL an intel GPUEI and
an AMD/ATI GPUP|

2 Algorithm

For each pixel position (z,y) normalised relative to the bounding rectangle, if 2% 4+ y? < 1 then (z,y) should
be filled.

Although x and y may be treated as integers on the CPU, since the OpenGL API requires floating point vertex
coordinates, our CPU implementation also normalises the coordinates relative to the bounding rectangle; this
way we can compare the performance of floating point operations on the CPU and GPU(s).

1227 using the nVidia driver
22?? using the intel driver
3Whistler LE (Radeon HD 6610M/7610M) using the fglrx driver



2.1 GLSL Fragment Shader

#version 140
// Fragment shader (others omitted)

in vec2 objcoords; // Coordinates z, y, relative to bounding rectangle (from other shaders)
out vec4 output_colour;

uniform vec4 colour;

void main()
if ((objcoords.x)*(objcoords.x) + (objcoords.y)#*(objcoords.y) > 1.0)
¢ discard;

}

output_colour = colour;

2.2 CPU Rendering Algorithm (simplified)

// where bounds = {x,y,w,h} gives the bounding rectangle in integer pizel positions
// and centre = {x,y} is the centre of the circle

// and pizels[][] is the display buffer

for (int x = bounds.x; x < bounds.x+bounds.w; ++x)

for (int y = bounds.y; y < bounds.y+bounds.h; ++y)
{
float dx = 2.0*(float)(x - centre.x)/(float) (bounds.w);

float dy = 2.0%(float) (y - centre.y)/(float) (bounds.h);
if (dx*dx + dyxdy <= 1.0)
{

pixels[x] [yl = true;
}

Note: The pixels buffer is uploaded directly to the GPU after CPU rendering is completed.

3 Results

Figure [1] shows the edge of a unit radius circle viewed under a magnification of approximately 5 x 10° as
rendered using the CPU.

4 Conclusion

nVidia looks qualitatively similar to the CPU rendering. Frankly I was just happy fglrx didn’t segfault.
Wierd shit happens with intel. If anyone isn’t obeying IEEE-754 here, it is probably intel.

References

[1] Ieee standard for floating-point arithmetic. IEEE Std 754-2008, pages 1-70, Aug 2008.
[2] Karl E Hillesland and Anselmo Lastra. Gpu floating-point paranoia. Proceedings of GP 2004, 2004.

[3] Mark J Kilgard and Jeff Bolz. GPU-accelerated path rendering. ACM Transactions on Graphics (TOG),
31(6):172, 2012.



lendered frame 1715 Rendered frame 321

CPU] Render took 39.987611 ms (25.807746 FPS) (total 24.62 [CPU] Render took 6.3325306 ms (3007.247466 FPS) (total 0.1496
GPU] Render took 15.258222 ms (65.538436 FPS) (total 15.35[GPU] Render took 6.192192 ms (5263.136203 FPS) (total 6.1
REALTIME] Render+Present+Cruft took 32.521143 ms (30.74922 [REALTIME] Render+Present+Cruft took 16.698184 ms (59.8867
liew bounds: {0.0869386, 0.634194, 2.63295e-07, 2.63295e-07View bounds: {(0.8869386, 0.634194, 2.63295e-07, 2.63

ype of Real == double type of Real == double

loing coordinate transform on the GPU. Doing coordinate transform on the GPU.
loing rendering using CPU. Doing rendering using GPU

lendered frame 5237

CPU] Render took 1.821347 ms (549.044196 FPS) (total (60.311565 FPS) (total 11.0664
GPU] Render took 1.569600 ms (637.3486306 FPS) (total [GPU] Render took 1.9267206 ms (519.616775 FPS) (total 1.32145
REALTIME] Render+Present+Cruft took 1.899 S £ [REALTIME] Render+Present+Cruft took 15.549080 ms (64.312487
'iew bounds: {0.0869386, 0.634194, 2.63295 View bounds: {0.0869386, 0.634194, 2.63295e-07, 2.63295e-07)
ype of Real == double type of Real == double

loing coordinate transform on the GPU. Doing coordinate transform on the GPU.

loing rendering using GPU. Doing rendering using GPU

fglrx shader | intel shader

Figure 1: The edges of a unit circle viewed through bounds (x,y,w,h) = (0.0869386,0.634194,2.63295¢-
07,2.63295e-07)



	Introduction
	Algorithm
	GLSL Fragment Shader
	CPU Rendering Algorithm (simplified)

	Results
	Conclusion

