Automatic commit of irc logs
[ipdf/documents.git] / LiteratureNotes.tex
1 \documentclass[8pt]{extreport}
2 \usepackage{graphicx}
3 \usepackage{caption}
4 \usepackage{amsmath} % needed for math align
5 \usepackage{bm} % needed for maths bold face
6  \usepackage{graphicx}    % needed for including graphics e.g. EPS, PS
7 \usepackage{fancyhdr}   % needed for header
8 %\usepackage{epstopdf} % Converts eps to pdf before including. Do it manually instead.
9 \usepackage{float}
10 \usepackage{hyperref}
11
12  \topmargin -1.5cm        % read Lamport p.163
13  \oddsidemargin -0.04cm   % read Lamport p.163
14  \evensidemargin -0.04cm  % same as oddsidemargin but for left-hand pages
15  \textwidth 16.59cm
16  \textheight 21.94cm 
17  %\pagestyle{empty}       % Uncomment if don't want page numbers
18  \parskip 8.2pt           % sets spacing between paragraphs
19  %\renewcommand{\baselinestretch}{1.5}  % Uncomment for 1.5 spacing between lines
20  \parindent 0pt           % sets leading space for paragraphs
21 \linespread{1}
22
23
24 \newcommand{\vect}[1]{\boldsymbol{#1}} % Draw a vector
25 \newcommand{\divg}[1]{\nabla \cdot #1} % divergence
26 \newcommand{\curl}[1]{\nabla \times #1} % curl
27 \newcommand{\grad}[1]{\nabla #1} %gradient
28 \newcommand{\pd}[3][ ]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} %partial derivative
29 %\newcommand{\d}[3][ ]{\frac{d^{#1} #2}{d #3^{#1}}} %full derivative
30 \newcommand{\phasor}[1]{\tilde{#1}} % make a phasor
31 \newcommand{\laplacian}[1]{\nabla^2 {#1}} % The laplacian operator
32
33 \usepackage{color}
34 \usepackage{listings}
35
36 \definecolor{darkgray}{rgb}{0.95,0.95,0.95}
37 \definecolor{darkred}{rgb}{0.75,0,0}
38 \definecolor{darkblue}{rgb}{0,0,0.75}
39 \definecolor{pink}{rgb}{1,0.5,0.5}
40 \lstset{language=XML}
41 \lstset{backgroundcolor=\color{darkgray}}
42 %\lstset{numbers=left, numberstyle=\tiny, stepnumber=1, numbersep=5pt}
43 %\lstset{keywordstyle=\color{darkred}\bfseries}
44 %\lstset{commentstyle=\color{darkblue}}
45 %\lstset{stringsyle=\color{red}}
46 %\lstset{showstringspaces=false}
47 %\lstset{basicstyle=\small}
48
49 \newcommand{\shell}[1]{\texttt{#1}}
50 \newcommand{\code}[1]{\texttt{#1}}
51
52 \begin{document}
53
54
55 \pagestyle{fancy}
56 \fancyhead{}
57 \fancyfoot{}
58
59 \fancyhead[LO, L]{}
60 \fancyfoot[CO, C]{\thepage}
61
62 \begin{center}
63         B.Eng. Final Year Project \par
64         {\bf \Large Literature Notes} \par
65         Sam Moore, David Gow \\
66         Faculty of Engineering, Computing and Mathematics, University of Western Australia \\
67         March 2014
68 \end{center}
69
70 \tableofcontents
71
72 \chapter{Literature Summaries}
73
74 \section{Postscript Language Reference Manual  \cite{plrm}}
75
76 Adobe's official reference manual for PostScript.
77
78 It is big.
79
80 \begin{itemize}
81         \item First version was published BEFORE the IEEE standard and used smaller floats than binary32
82         \item Now uses binary32 floats.
83 \end{itemize}
84
85 \section{Portable Document Format Reference Manual  \cite{pdfref17}}
86
87 Adobe's official reference for PDF.
88
89 It is also big.
90
91 \begin{itemize}
92         \item Early versions did not use IEEE binary32 but 16-16 exponent/mantissa encodings (Why?)
93         \item Current standard is restricted to binary32
94         \item It specifically says PDF creators must use at most binary32 because higher precision is not supported by Adobe Reader.
95 \end{itemize}
96
97 \section{IEEE Standard for Floating-Point Arithmetic \cite{ieee2008-754}}
98
99 The IEEE (revised) 754 standard.
100
101 It is also big.
102
103 Successes:
104 \begin{itemize}
105         \item Has been adopted by CPUs
106         \item Standardised floats for programmers --- accomplishes goal of allowing non-numerical experts to write reasonably sophisticated platform independent programs that may perform complex numerical operations
107 \end{itemize}
108
109 Failures:
110 \begin{itemize}
111         \item Adoption by GPUs slower\cite{hillesland2004paranoia}
112         \item It specifies the maximum errors for operations using IEEE types but nothing about internal representations
113         \item Many hardware devices (GPUs and CPUs) use non-IEEE representations internally and simply truncate/round the result
114         \begin{itemize}
115                 \item This isn't so much of a problem when the device uses additional bits but it is misleading when GPUs use less than binary32 and act as if they are using binary32 from the programmer's perspective.
116                 \item Devices using {\bf less} bits internally aren't IEEE compliant
117         \end{itemize}
118         \item Thus the same program compiled and run on different architectures may give completely different results\cite{HFP}
119         \begin{itemize}
120                 \item The ultimate goal of allowing people to write numerical programs in total ignorance of the hardware is not entirely realised
121         \end{itemize}
122         \item This is the sort of thing that makes people want to use a virtual machine, and thus Java
123         \begin{itemize}
124                 \item Objectively I probably shouldn't say that using Java is in itself a failure
125         \end{itemize}
126         \item Standards such as PostScript and PDF were slow to adopt IEEE representations
127         \item The OpenVG standard accepts IEEE binary32 in the API but specifically states that hardware may use less than this\cite{rice2008openvg}
128 \end{itemize}
129
130
131
132 \pagebreak
133
134 \section{Portable Document Format (PDF) --- Finally...  \cite{cheng2002portable}}
135
136 This is not spectacularly useful, is basically an advertisement for Adobe software.
137
138 {\bf Intro}
139 \begin{itemize}
140         \item Visual communications has been revolutionised by computing
141         \item BUT there have always been problems in exchanging formats
142         \item Filetypes like text, rich text, IGES, DXF, TIFF, JPEG, GIFF solve problems for particular types of files only
143         \item PDF solves everything for everyone; can include text, images, animation, sound, etc
144 \end{itemize}
145 {\bf PDF Features}
146 \begin{itemize}
147         \item Raster Image Process (RIP) --- For printing (presumably also displaying on screen)
148         \item Originally needed to convert to PS then RIP, with PS 3 can now RIP directly.
149         \item Reduced filesize due to compression
150         \item Four major applications - Stoy 1999\cite{stoy1999}
151                 \begin{enumerate}
152                         \item Download files from internet
153                         \item Files on CDs
154                         \item Files for outputing to printers
155                         \item Conventional [commercial scale?] printing
156                 \end{enumerate}
157         \item List of various (Adobe) PDF related software
158         \begin{itemize}
159                 \item Includes software for PS that converts to/from PDF 
160                 \item So PS was obviously pretty popular before PDF
161         \end{itemize}
162         \item Can Optimize for screen/printer [not clear how]
163         \item Can compress for size
164 \end{itemize}
165
166 \pagebreak
167 \section{Pixels or Perish  \cite{hayes2012pixels}}
168
169 ``The art of scientific illustration will have to adapt to the new age of online publishing''
170 And therefore, JavaScript libraries ($\text{D}^3$) are the future.
171
172 The point is that we need to change from thinking about documents as paper to thinking of them as pixels.
173 This kind of makes it related to our paper, because it is the same way we are justifying our project. It does mention precision, but doesn't say we need to get more of it.
174
175 I get the feeling from this that Web based documents are a whole bunch of completely different design philosophies hacked together
176 with JavaScript.
177
178 This paper uses Metaphors a lot. I never met a phor that didn't over extend itself.
179
180
181 {\bf Intro}
182 \begin{itemize}
183         \item Drawings/Pictures are ornaments in science but they are not just ornamental
184         \item Processes have changed a lot; eg: photographic plates $\to$ digital images
185         \item ``we are about to turn the page --- if not close the book --- on yet another chapter in publishing history.'' (HO HO HO)
186         \item It would be cool to have animated figures in documents (eg: Population pyramid; changes with time); not just as ``supplements''
187         \item In the beginning, there was PostScript, 1970s and 1980s, John Warnock and Charles Geschke, Adobe Systems
188         \item PS is a language for vector graphics; objects are constructed from geometric primitives rather than a discrete array of pixels
189         \item PS is a complete programming language; an image is also a program; can exploit this to control how images are created based on data (eg: Faces)
190         \item PDF is ``flattened'' PS. No longer programable. Aspires to be ``virtual paper''.
191         \item But why are we using such powerful computing machines just to emulate sheets paper? (the author asks)
192 \end{itemize}
193
194 {\bf Web based Documents}
195 \begin{itemize}
196         \item HTML, CSS, JavaScript - The Axis of Web Documents
197         \begin{itemize}
198                 \item HTML - Defines document structure
199                 \item CSS - Defines presentation of elements in document
200                 \item JavaScript - Encodes actions, allows dynamic content (change the HTML/CSS)
201         \end{itemize}
202         \item \texttt{<canvas>} will let you draw anything (So in principle don't even need all of HTML/CSS)
203         \begin{itemize}
204                 \item Not device independent
205                 \item ``Coordinates can be specified with precision finer than pixel resolution'' {\bf (TODO: Investigate this?)}
206                 \item JavaScript operators to draw things on canvas are very similar to the PostScript model
207         \end{itemize}
208         \item SVG --- Same structure (Document Object Model (DOM)) as HTML
209         \begin{itemize}
210                 \item ``Noun language''
211                 \item Nouns define lines/curves etc, rather than paragraphs/lists
212                 \item Also borrows things from PostScript (eg: line caps and joints)
213                 \item IS device independent, ``very high precision'' {\bf (TODO: Investigate)}
214                 \item JavaScript can be used to interact with SVG too
215         \end{itemize}
216         \item $\text{D}^{3}$ (Data Driven Documents) - A JavaScript library
217         \begin{itemize}
218                 \item Idea is to create or modify elements of a DOM document using supplied data
219                 \item \url{https://github.com/mbostock/d3/wiki}
220         \end{itemize}
221         \item We are in a new Golden Age of data visualisation
222         \item Why do we still use PDFs?
223         \begin{itemize}
224                 \item PDFs are ``owned'' by the author/reader; you download it, store it, you can print it, etc
225                 \item HTML documents are normally on websites. They are not self contained. They often rely on remote content from other websites (annoying to download the whole document).
226         \end{itemize}
227         \item {\bf Conclusion} Someone should open up PDF to accept things like $\text{D}^{3}$ and other graphics formats (links nicely with \cite{barnes2013embedding})
228         \item Also, Harry Potter reference
229
230 \end{itemize}
231
232 \section{Embedding and Publishing Interactive, 3D Figures in PDF Files  \cite{barnes2013embedding}}
233
234 \begin{itemize}
235         \item Linkes well with \cite{hayes2012pixels}; I heard you liked figures so I put a figure in your PDF
236         \item Title pretty much summarises it; similar to \cite{hayes2012pixels} except these guys actually did something practical
237 \end{itemize}
238
239 \section{27 Bits are not enough for 8 digit accuracy  \cite{goldberg1967twentyseven}}
240
241 Proves with maths, that rounding errors mean that you need at least $q$ bits for $p$ decimal digits. $10^p < 2^{q-1}$
242
243 \begin{itemize}
244         \item Eg: For 8 decimal digits, since $10^8 < 2^{27}$ would expect to be able to represent with 27 binary digits
245         \item But: Integer part requires digits bits (regardless of fixed or floating point represenetation)
246         \item Trade-off between precision and range
247         \begin{itemize}
248                 \item 9000000.0 $\to$ 9999999.9 needs 24 digits for the integer part $2^{23} = 83886008$
249         \end{itemize}
250         \item Floating point zero = smallest possible machine exponent
251         \item Floating point representation:
252         \begin{align*}
253                 y &= 0.y_1 y_2 \text{...} y_q \times 2^{n}
254         \end{align*}
255         \item Can eliminate a bit by considering whether $n = -e$ for $-e$ the smallest machine exponent (???)
256         \begin{itemize}
257                 \item Get very small numbers with the same precision    
258                 \item Get large numbers with the extra bit of precision
259         \end{itemize}
260 \end{itemize}
261
262 \section{What every computer scientist should know about floating-point arithmetic  \cite{goldberg1991whatevery}}
263
264 \begin{itemize}
265         \item Book: \emph{Floating Point Computation} by Pat Sterbenz (out of print... in 1991)
266     \item IEEE floating point standard becoming popular (introduced in 1987, this is 1991)
267     \begin{itemize}
268                 \item As well as structure, defines the algorithms for addition, multiplication, division and square root
269                 \item Makes things portable because results of operations are the same on all machines (following the standard)
270                 \item Alternatives to floating point: Floating slasi and Signed Logarithm (TODO: Look at these, although they will probably not be useful)
271
272         \end{itemize}
273         \item Base $\beta$ and precision $p$ (number of digits to represent with) - powers of the base can be represented exactly.
274         \item Largest and smallest exponents $e_{min}$ and $e_{max}$
275         \item Need bits for exponent and fraction, plus one for sign
276         \item ``Floating point number'' is one that can be represented exactly.
277         \item Representations are not unique! $0.01 \times 10^1 = 1.00 \times 10^{-1}$ Leading digit of one $\implies$ ``normalised''
278         \item Requiring the representation to be normalised makes it unique, {\bf but means it is impossible to represent zero}.
279         \begin{itemize}
280                 \item Represent zero as $1 \times \beta^{e_{min}-1}$ - requires extra bit in the exponent
281         \end{itemize}
282         \item {\bf Rounding Error}
283         \begin{itemize}
284                 \item ``Units in the last place'' eg: 0.0314159 compared to 0.0314 has ulp error of 0.159
285                 \item If calculation is the nearest floating point number to the result, it will still be as much as 1/2 ulp in error
286                 \item Relative error corresponding to 1/2 ulp can vary by a factor of $\beta$ ``wobble''. Written in terms of $\epsilon$
287                 \item Maths $\implies$ {\bf Relative error is always bounded by $\epsilon = (\beta/2)\beta^{-p}$}
288                 \item Fixed relative error $\implies$ ulp can vary by a factor of $\beta$ . Vice versa
289                 \item Larger $\beta \implies$ larger errors
290         \end{itemize}
291         \item {\bf Guard Digits}
292         \begin{itemize}
293                 \item In subtraction: Could compute exact difference and then round; this is expensive
294                 \item Keep fixed number of digits but shift operand right; discard precision. Lead to relative error up to $\beta - 1$
295                 \item Guard digit: Add extra digits before truncating. Leads to relative error of less than $2\epsilon$. This also applies to addition
296         \end{itemize}
297         \item {\bf Catastrophic Cancellation} - Operands are subject to rounding errors - multiplication
298         \item {\bf Benign Cancellation} - Subtractions. Error $< 2\epsilon$
299         \item Rearrange formula to avoid catastrophic cancellation
300         \item Historical interest only - speculation on why IBM used $\beta = 16$ for the system/370 - increased range? Avoids shifting
301         \item Precision: IEEE defines extended precision (a lower bound only)
302         \item Discussion of the IEEE standard for operations (TODO: Go over in more detail)
303         \item NaN allow continuing with underflow and Infinity with overflow
304         \item ``Incidentally, some people think that the solution to such anomalies is never to compare floating-point numbers for equality but instead to consider them equal if they are within some error bound E. This is hardly a cure all, because it raises as many questions as it answers.'' - On equality of floating point numbers
305
306 \end{itemize}
307
308
309 %%%%
310 % David's Stuff
311 %%%%
312 \section{Compositing Digital Images  \cite{porter1984compositing}}
313
314
315
316 Perter and Duff's classic paper "Compositing Digital Images" lays the
317 foundation for digital compositing today. By providing an "alpha channel,"
318 images of arbitrary shapes — and images with soft edges or sub-pixel coverage
319 information — can be overlayed digitally, allowing separate objects to be
320 rasterized separately without a loss in quality.
321
322 Pixels in digital images are usually represented as 3-tuples containing
323 (red component, green component, blue component). Nominally these values are in
324 the [0-1] range. In the Porter-Duff paper, pixels are stored as $(R,G,B,\alpha)$
325 4-tuples, where alpha is the fractional coverage of each pixel. If the image
326 only covers half of a given pixel, for example, its alpha value would be 0.5.
327
328 To improve compositing performance, albeit at a possible loss of precision in
329 some implementations, the red, green and blue channels are premultiplied by the
330 alpha channel. This also simplifies the resulting arithmetic by having the
331 colour channels and alpha channels use the same compositing equations.
332
333 Several binary compositing operations are defined:
334 \begin{itemize}
335 \item over
336 \item in
337 \item out
338 \item atop
339 \item xor
340 \item plus
341 \end{itemize}
342
343 The paper further provides some additional operations for implementing fades and
344 dissolves, as well as for changing the opacity of individual elements in a
345 scene.
346
347 The method outlined in this paper is still the standard system for compositing
348 and is implemented almost exactly by modern graphics APIs such as \texttt{OpenGL}. It is
349 all but guaranteed that this is the method we will be using for compositing
350 document elements in our project.
351
352 \section{Bresenham's Algorithm: Algorithm for computer control of a digital plotter  \cite{bresenham1965algorithm}}
353 Bresenham's line drawing algorithm is a fast, high quality line rasterization
354 algorithm which is still the basis for most (aliased) line drawing today. The
355 paper, while originally written to describe how to control a particular plotter,
356 is uniquely suited to rasterizing lines for display on a pixel grid.
357
358 Lines drawn with Bresenham's algorithm must begin and end at integer pixel
359 coordinates, though one can round or truncate the fractional part. In order to
360 avoid multiplication or division in the algorithm's inner loop, 
361
362 The algorithm works by scanning along the long axis of the line, moving along
363 the short axis when the error along that axis exceeds 0.5px. Because error
364 accumulates linearly, this can be achieved by simply adding the per-pixel
365 error (equal to (short axis/long axis)) until it exceeds 0.5, then incrementing
366 the position along the short axis and subtracting 1 from the error accumulator.
367
368 As this requires nothing but addition, it is very fast, particularly on the
369 older CPUs used in Bresenham's time. Modern graphics systems will often use Wu's
370 line-drawing algorithm instead, as it produces antialiased lines, taking
371 sub-pixel coverage into account. Bresenham himself extended this algorithm to
372 produce Bresenham's circle algorithm. The principles behind the algorithm have
373 also been used to rasterize other shapes, including B\'{e}zier curves.
374
375 \section{Quad Trees: A Data Structure for Retrieval on Composite Keys  \cite{finkel1974quad}}
376
377 This paper introduces the ``quadtree'' spatial data structure. The quadtree structure is
378 a search tree in which every node has four children representing the north-east, north-west,
379 south-east and south-west quadrants of its space.
380
381 \section{Xr: Cross-device Rendering for Vector Graphics  \cite{worth2003xr}}
382
383 Xr (now known as Cairo) is an implementation of the PDF v1.4 rendering model,
384 independent of the PDF or PostScript file formats, and is now widely used
385 as a rendering API. In this paper, Worth and Packard describe the PDF v1.4 rendering
386 model, and their PostScript-derived API for it.
387
388 The PDF v1.4 rendering model is based on the original PostScript model, based around
389 a set of \emph{paths} (and other objects, such as raster images) each made up of lines
390 and B\'{e}zier curves, which are transformed by the ``Current Transformation Matrix.''
391 Paths can be \emph{filled} in a number of ways, allowing for different handling of self-intersecting
392 paths, or can have their outlines \emph{stroked}.
393 Furthermore, paths can be painted with RGB colours and/or patterns derived from either
394 previously rendered objects or external raster images.
395 PDF v1.4 extends this to provide, amongst other features, support for layering paths and
396 objects using Porter-Duff compositing\cite{porter1984compositing}, giving each painted path
397 the option of having an $\alpha$ value and a choice of any of the Porter-Duff compositing
398 methods.
399
400 The Cairo library approximates the rendering of some objects (particularly curved objects
401 such as splines) with a set of polygons. An \texttt{XrSetTolerance} function allows the user
402 of the library to set an upper bound on the approximation error in fractions of device pixels,
403 providing a trade-off between rendering quality and performance. The library developers found
404 that setting the tolerance to greater than $0.1$ device pixels resulted in errors visible to the
405 user.
406
407 \section{Glitz: Hardware Accelerated Image Compositing using OpenGL  \cite{nilsson2004glitz}}
408
409 This paper describes the implementation of an \texttt{OpenGL} based rendering backend for
410 the \texttt{Cairo} library. 
411
412 The paper describes how OpenGL's Porter-Duff compositing is easily suited to the Cairo/PDF v1.4
413 rendering model. Similarly, traditional OpenGL (pre-version 3.0 core) support a matrix stack
414 of the same form as Cairo.
415
416 The ``Glitz'' backend will emulate support for tiled, non-power-of-two patterns/textures if
417 the hardware does not support it.
418
419 Glitz can render both triangles and trapezoids (which are formed from pairs of triangles).
420 However, it cannot guarantee that the rasterization is pixel-precise, as OpenGL does not proveide
421 this consistently.
422
423 Glitz also supports multi-sample anti-aliasing, convolution filters for raster image reads (implemented
424 with shaders).
425
426 Performance was much improved over the software rasterization and over XRender accellerated rendering
427 on all except nVidia hardware. However, nVidia's XRender implementation did slow down significantly when
428 some transformations were applied.
429
430 In \cite{kilgard2012gpu}, Kilgard mentions that Glitz has been abandoned. He describes it as ''GPU assisted'' rather than GPU accelerated, since it used the XRender (??) extension.
431
432 %% Sam again
433
434 \section{Boost Multiprecision Library  \cite{boost_multiprecision}}
435
436 \begin{itemize}
437         \item ``The Multiprecision Library provides integer, rational and floating-point types in C++ that have more range and precision than C++'s ordinary built-in types.''
438         \item Specify number of digits for precision as a template argument.
439         \item Precision is fixed... {\bf possible approach to project:} Use \verb/boost::mpf_float<N>/ and increase \verb/N/ as more precision is required?
440 \end{itemize}
441
442
443 % Some hardware related sounding stuff...
444
445 \section{A CMOS Floating Point Unit  \cite{kelley1997acmos}}
446
447 The paper describes the implentation of a FPU for PowerPC using a particular Hewlett Packard process (HP14B 0.5$\mu$m, 3M, 3.3V).
448 It implements a ``subset of the most commonly used double precision floating point instructions''. The unimplemented operations are compiled for the CPU.
449
450 The paper gives a description of the architecture and design methods.
451 This appears to be an entry to a student design competition.
452
453 Standard is IEEE 754, but the multiplier tree is a 64-bit tree instead of a 54 bit tree.
454 `` The primary reason for implementing a larger tree is for future additions of SIMD [Single Instruction Multiple Data (?)] instructions similar to Intel's MMX and Sun's VIS instructions''.
455
456 HSPICE simulations used to determine transistor sizing.
457
458 Paper has a block diagram that sort of vaguely makes sense to me.
459 The rest requires more background knowledge.
460
461 \section{Simply FPU\cite{filiatreault2003simply}}
462
463 This is a webpage at one degree of seperation from wikipedia.
464
465 It talks about FPU internals, but mostly focuses on the instruction sets.
466 It includes FPU assembly code examples (!)
467
468 It is probably not that useful, I don't think we'll end up writing FPU assembly?
469
470 FPU's typically have 80 bit registers so they can support REAL4, REAL8 and REAL10 (single, double, extended precision).
471
472 Note: Presumably this is referring to the x86 80 bit floats that David was talking about?
473
474
475 \section{Floating Point Package User's Guide  \cite{bishop2008floating}}
476
477 This is a technical report describing floating point VHDL packages \url{http://www.vhdl.org/fphdl/vhdl.html}
478
479 In theory I know VHDL (cough) so I am interested in looking at this further to see how FPU hardware works.
480 It might be getting a bit sidetracked from the ``document formats'' scope though.
481
482 The report does talk briefly about the IEEE standard and normalised / denormalised numbers as well.
483
484 See also: Java Optimized Processor\cite{jop} (it has a VHDL implementation of a FPU).
485
486 \section{Low-Cost Microarchitectural Support for Improved Floating-Point Accuracy\cite{dieter2007lowcost}}
487
488 Mentions how GPUs offer very good floating point performance but only for single precision floats. (NOTE: This statement seems to contradict \cite{hillesland2004paranoia}.
489
490 Has a diagram of a Floating Point adder.
491
492 Talks about some magical technique called "Native-pair Arithmetic" that somehow makes 32-bit floating point accuracy ``competitive'' with 64-bit floating point numbers.
493
494 \section{Accurate Floating Point Arithmetic through Hardware Error-Free Transformations  \cite{kadric2013accurate}}
495
496 From the abstract: ``This paper presents a hardware approach to performing ac-
497 curate floating point addition and multiplication using the idea of error-
498 free transformations. Specialized iterative algorithms are implemented
499 for computing arbitrarily accurate sums and dot products.''
500
501 The references for this look useful.
502
503 It also mentions VHDL.
504
505 So whenever hardware papers come up, VHDL gets involved...
506 I guess it's time to try and work out how to use the Opensource VHDL implementations.
507
508 This is about reduction of error in hardware operations rather than the precision or range of floats.
509 But it is probably still relevant.
510
511 This has the Fast2Sum algorithm but for the love of god I cannot see how you can compute anything other than $a + b = 0 \forall a,b$ using the algorithm as written in their paper. It references Dekker\cite{dekker1971afloating} and Kahn; will look at them instead.
512
513 \section{Floating Point Unit from JOP  \cite{jop}}
514
515 This is a 32 bit floating point unit developed for JOP in VHDL.
516 I have been able to successfully compile it and the test program using GHDL\cite{ghdl}. 
517
518 Whilst there are constants (eg: \verb/FP_WIDTH = 32, EXP_WIDTH = 8, FRAC_WIDTH = 23/) defined, the actual implementation mostly uses magic numbers, so 
519 some investigation is needed into what, for example, the "52" bits used in the sqrt units are for.
520
521 \section{GHDL  \cite{ghdl}}
522
523 GHDL is an open source GPL licensed VHDL compiler written in Ada. It had packages in debian up until wheezy when it was removed. However the sourceforge site still provides a \shell{deb} file for wheezy.
524
525 This reference explains how to use the \shell{ghdl} compiler, but not the VHDL language itself.
526
527 GHDL is capable of compiling a ``testbench'' - essentially an executable which simulates the design and ensures it meets test conditions.
528 A common technique is using a text file to provide the inputs/outputs of the test. The testbench executable can be supplied an argument to save a \shell{vcd} file which can be viewed in \shell{gtkwave} to see timing diagrams.
529
530 Sam has successfully compiled the VHDL design for an FPU in JOP\cite{jop} into a ``testbench'' executable which uses standard i/o instead of a regular file.
531 Using unix domain sockets we can execute the FPU as a child process and communicate with it from our document viewing test software. This means we can potentially simulate alternate hardware designs for FPUs and witness the effect they will have on precision in the document viewer.
532
533 Using \shell{ghdl} the testbench can also be linked as part a C/C++ program and run using a function; however there is still no way to communicate with it other than forking a child process and using a unix domain socket anyway. Also, compiling the VHDL FPU as part of our document viewer would clutter the code repository and probably be highly unportable. The VHDL FPU has been given a seperate repository.
534
535 \section{On the design of fast IEEE floating-point adders  \cite{seidel2001onthe}}
536
537 This paper gives an overview of the ``Naive'' floating point addition/subtraction algorithm and gives several optimisation techniques:
538
539 TODO: Actually understand these...
540
541 \begin{itemize}
542         \item Use parallel paths (based on exponent)
543         \item Unification of significand result ranges
544         \item Reduction of IEEE rounding modes
545         \item Sign-magnitude computation of a difference
546         \item Compound Addition
547         \item Approximate counting of leading zeroes
548         \item Pre-computation of post-normalization shift
549 \end{itemize}
550
551 They then give an implementation that uses these optimisation techniques including very scary looking block diagrams.
552
553 They simulated the FPU. Does not mention what simulation method was used directly, but cites another paper (TODO: Look at this. I bet it was VHDL).
554
555 The paper concludes by summarising the optimisation techniques used by various adders in production (in 2001).
556
557 This paper does not specifically mention the precision of the operations, but may be useful because a faster adder design might mean you can increase the precision.
558
559 \section{Re: round32 ( round64 ( X ) ) ?= round32 ( X )  \cite{beebe2011round32}}
560
561 I included this just for the quote by Nelson H. F. Beebe:
562
563 ``It is too late now to repair the mistakes of the past that are present
564 in millions of installed systems, but it is good to know that careful
565 research before designing hardware can be helpful.''
566
567 This is in regards to the problem of double rounding. It provides a reference for a paper that discusses a rounding mode that eliminates the problem, and a software implementation.
568
569 It shows that the IEEE standard can be fallible!
570
571 Not sure how to work this into our literature review though.
572
573 % Back to software
574 \section{Basic Issues in Floating Point Arithmetic and Error Analysis  \cite{demmel1996basic}}
575
576 These are lecture notes from U.C Berkelye CS267 in 1996.
577
578
579 \section{Charles Babbage  \cite{dodge_babbage, nature1871babbage}}
580
581 Tributes to Charles Babbage. Might be interesting for historical background. Don't mention anything about floating point numbers though.
582
583 \section{GPU Floating-Point Paranoia  \cite{hillesland2004paranoia}}
584
585 This paper discusses floating point representations on GPUs. They have reproduced the program \emph{Paranoia} by William Kahan for characterising floating point behaviour of computers (pre IEEE) for GPUs.
586
587
588 There are a few remarks about GPU vendors not being very open about what they do or do not do with 
589
590
591 Unfortunately we only have the extended abstract, but a pretty good summary of the paper (written by the authors) is at: \url{www.cs.unc.edu/~ibr/projects/paranoia/}
592
593 From the abstract:
594
595 ``... [GPUs are often similar to IEEE] However, we have found
596 that GPUs do not adhere to IEEE standards for floating-point op-
597 erations, nor do they give the information necessary to establish
598 bounds on error for these operations ... ''
599
600 and ``...Our goal is to determine the error bounds on floating-point op-
601 eration results for quickly evolving graphics systems. We have cre-
602 ated a tool to measure the error for four basic floating-point opera-
603 tions: addition, subtraction, multiplication and division.''
604
605 The implementation is only for windows and uses glut and glew and things.
606 Implement our own version?
607
608 \section{A floating-point technique for extending the available precision  \cite{dekker1971afloating}}
609
610 This is Dekker's formalisation of the Fast2Sum algorithm originally implemented by Kahn.
611
612 \begin{align*}
613         z &= \text{RN}(x + y) \\
614         w &= \text{RN}(z - x) \\
615         zz &= \text{RN}(y - w) \\
616         \implies z + zz &= x + y
617 \end{align*}
618
619 There is a version for multiplication.
620
621 I'm still not quite sure when this is useful. I haven't been able to find an example for $x$ and $y$ where $x + y \neq \text{Fast2Sum}(x, y)$.
622
623 \section{Handbook of Floating-Point Arithmetic \cite{HFP}}
624
625 This book is amazingly useful and pretty much says everything there is to know about Floating Point numbers.
626 It is much easier to read than Goldberg or Priest's papers.
627
628 I'm going to start working through it and compile their test programs.
629
630 \subsection{A sequence that seems to converge to a wrong limit  - pgs 9-10, \cite{HFP}}
631
632 \begin{align*}
633         u_n &= \left\{ \begin{array}{c} u_0 = 2 \\ u_1 = -4 \\ u_n = 111 - \frac{1130}{u_{n-1}} + \frac{3000}{u_{n-1}u_{n-2}}\end{array}\right.
634 \end{align*}
635
636 The limit of the series should be $6$ but when calculated with IEEE floats it is actually $100$
637 The authors show that the limit is actually $100$ for different starting values, and the error in floating point arithmetic causes the series to go to that limit instead.
638
639 \begin{figure}[H]
640         \centering
641         \includegraphics[width=0.8\textwidth]{figures/handbook1-1.pdf}
642         \caption{Output of Program 1.1 from \emph{Handbook of Floating-Point Arithmetic}\cite{HFP} for various IEEE types}
643         \label{HFP-1-1}
644 \end{figure}
645
646 \subsection{Mr Gullible and the Chaotic Bank Society pgs 10-11 \cite{HFP}}
647
648 This is an example of a sequence involving $e$. Since $e$ cannot be represented exactly with FP, even though the sequence should go to $0$ for $a_0 = e - 1$, the representation of $a_0 \neq e - 1$ so the sequence goes to $\pm \infty$.
649
650 To eliminate these types of problems we'd need an \emph{exact} representation of all real numbers.
651 For \emph{any} FP representation, regardless of precision (a finite number of digits) there will be numbers that can't be represented exactly hence you could find a similar sequence that would explode.
652
653 IE: The more precise the representation, the slower things go wrong, but they still go wrong, {\bf even with errorless operations}.
654
655
656 \subsection{Rump's example pg 12 \cite {HFP}}
657
658 This is an example where the calculation of a function $f(a,b)$ is not only totally wrong, it gives completely different results depending on the CPU. Despite the CPU conforming to IEEE.
659
660 \section{Scalable Vector Graphics (SVG) 1.1 (Second Edition) \cite{svg2011-1.1}}
661
662 Scalable Vector Graphics (SVG) is a XML language for describing two dimensional graphics. This document is \url{http://www.w3.org/TR/2011/REC-SVG11-20110816/}, the latest version of the standard at the time of writing.
663
664 \subsubsection{Three types of object}
665 \begin{enumerate}
666         \item Vector graphics shapes (paths)
667         \item Images (embedded bitmaps)
668         \item Text
669 \end{enumerate}
670
671 \subsubsection{Rendering Model and Precision}
672
673 SVG uses the ``painter's model''. Paint is applied to regions of the page in an order, covering the paint below it according to rules for alpha blending.
674
675 ``Implementations of SVG are expected to behave as though they implement a rendering (or imaging) model cor-
676 responding to the one described in this chapter. A real implementation is not required to implement the model in
677 this way, but the result on any device supported by the implementation shall match that described by this model.''
678
679 SVG uses {\bf single precision floats}. Unlike PDF and PostScript, the standard specifies this as a {\bf minimum} range from \verb/-3.4e+38F/ to \verb/+3.4e+38F/
680
681 ``It is recommended that higher precision floating point storage and computation be performed on operations
682 such as coordinate system transformations to provide the best possible precision and to prevent round-off errors.''
683
684 There is also a ``High Quality SVG Viewers'' requirement to use at least {\bf double} precision floats.
685
686 \section{OpenVG Specification 1.1 \cite{rice2008openvg}}
687 ``OpenVG is an application programming interface (API) for hardware-accelerated two-
688 dimensional vector and raster graphics developed under the auspices of the Khronos
689 Group \url{www.khronos.org}.''
690
691 Specifically, provides the same drawing functionality required by a high-performance SVG document viewer (SVG Tiny 1.2)
692 TODO: Look at that $\neq$ SVG 1.1
693
694 It is designed to be similar to OpenGL.
695
696 \subsubsection{Precision}
697 ``All floating-point values are specified in standard IEEE 754 format. However,
698 implementations may clamp extremely large or small values to a restricted
699 range, and internal processing may be performed with lesser precision. At least
700 16 bits of mantissa, 6 bits of exponent, and a sign bit must be present, allowing
701 values from $\pm 2^{-30}$ to $\pm2^{31}$ to be represented with a fractional precision of at least 1
702 in $2^{16}$.''
703
704 IEEE but with a non standard number of bits.
705
706 Presumably the decreased precision is for increased efficiency the standard states that example applications are for ebooks.
707
708
709 \section{Document Object Model --- pugixml 1.4 manual \cite{pugixmlDOM}}
710
711 Pugixml is a C++ library for parsing XML documents\cite{kapoulkine2014pugixml}. XML is based on the Document Object Model (DOM); this is explained pretty well by the pugixml manual.
712
713 The document is the root node of the tree. Each child node has a type. These may
714 \begin{itemize}
715         \item Have attributes
716         \item Have child nodes of their own
717         \item Contain data 
718 \end{itemize}
719
720 In the case of HTML/SVG an XML parser within the browser/viewer creates the DOM tree from the XML (plain text) and then interprets that tree to produce the objects that will be rendered.
721
722 Example of XML $\to$ DOM tree given at\cite{pugixmlDOM}.
723 Example of XML parsing using pugixml is in \shell{code/src/tests/xml.cpp}
724
725
726 \begin{figure}[H]
727         \centering
728 \begin{lstlisting}[language=XML,basicstyle=\ttfamily]
729 <?xml version="1.0"?>
730 <mesh name="mesh_root">
731     <!-- here is a mesh node -->
732     some text
733     <![CDATA[someothertext]]>
734     some more text
735     <node attr1="value1" attr2="value2" />
736     <node attr1="value2">
737         <innernode/>
738     </node>
739 </mesh>
740 <?include somedata?>
741 \end{lstlisting}
742
743         \includegraphics[width=0.6\textwidth]{references/pugixmlDOM-dom_tree.png}
744         \caption{Tree representation of the above listing \cite{pugixmlDOM}}
745 \end{figure}
746
747 \section{An Algorithm For Shading of Regions on Vector Display Devices \cite{brassel1979analgorithm}}
748
749 All modern display devices are raster based and therefore this paper is mainly of historical interest. It provides some references for shading on a raster display.
750
751 The algorithm described will shade an arbitrary simply-connected polygon using one or two sets of parallel lines.
752
753 The ``traditional'' method is:
754 \begin{enumerate}
755         \item Start with a $N$ vertex polygon, rotate coords by the shading angle
756         \item Determine a bounding rectangle
757         \item For $M$ equally spaced parallel lines, compute the intersections with the boundaries of the polygon
758         \item Rotate coordinates back
759         \item Render the $M$ lines
760 \end{enumerate}
761
762 This is pretty much exactly how an artist would shade a pencil drawing. It is $O(M\times N)$.
763
764 The algorithm in this paper does:
765 \begin{enumerate}
766         \item Rotate polygon coords by shading angle
767         \item Subdivide the polygon into trapezoids (special case triangle)
768         \item Shade the trapezoids independently
769         \item Rotate it all back
770 \end{enumerate}
771 It is more complicated than it seems. The subdivision requires a sort to be performed on the vertices of the polygon based on their rotated $x$ and $y$ coordinates.
772
773 \section{An Algorithm For Filling Regions on Graphics Display Devices \cite{lane1983analgorithm}}
774
775 This gives an algorithm for for polygons (which may have ``holes'').
776 It requires the ability to ``subtract'' fill from a region; this is (as far as I can tell) difficult for vector graphics devices but simple on raster graphics devices, so the paper claims it is oriented to the raster graphics devices.
777
778 If the polygon is defined by $(x_i, y_i)$ then this algorithm iterates from $i = 2$ and alternates between filling and erasing the triangles $[(x_i, y_i), (x_{i+1}, y_{i+1}), (x_1, y_1)]$. It requires no sorting of the points.
779
780 The paper provides a proof that the algorithm is correct and is ``optimal in the number of pixel updates required for convex polygons''.
781 In the conclusion it is noted that trapezoids could be used from a fixed line and edge of the polygon, but this is not pixel optimal.
782
783 This paper doesn't have a very high citation count but it is cited by the NVIDIA article \cite{kilgard2012gpu}.
784 Apparently someone else adapted this algorithm for use with the stencil buffer.
785
786 \section{GPU-accelerated path rendering \cite{kilgard2012gpu, kilgard300programming}}
787
788 Vector graphics on the GPU; an NVIDIA extension. \cite{kilgard300programming} is the API.
789
790 Motivations:
791 \begin{itemize}
792         \item The focus has been on 3D acceleration in GPUs; most path rendering is done by the CPU.
793         \item Touch devices allow the screen to be transformed rapidly; CPU rastering of the path becomes inefficient
794         \begin{itemize}
795                 \item The source of the ugly pixelated effects on a smartphone when scaling?
796         \end{itemize}
797         \item Especially when combined with increased resolution of these devices
798         \item Standards such as HTML5, SVG, etc, expose path rendering
799         \item Javascript is getting fast enough that we can't blame it anymore (the path rendering is the bottleneck not the JS)
800         \item GPU is more power efficient than the CPU
801 \end{itemize}
802
803 Results show the extension is faster than almost every renderer it was compared with for almost every test image.
804
805 Comparisons to other attempts:
806 \begin{itemize}
807         \item Cairo and Glitz \cite{nilsson2004glitz} (abandoned)
808 \       \item Direct2D from Microsoft uses CPU to tesselate trapezoids and then renders these on the GPU
809         \item Skia in Android/Chrome uses CPU but now has Ganesh which is also hybrid CPU/GPU
810         \item Khronos Group created OpenVG\cite{rice2008openvg} with several companies creating hardware units to implement the standard. Performance is not as good as ``what we report''
811 \end{itemize}
812
813
814 \section{A Multiple Precision Binary Floating Point Library With Correct Rounding \cite{fousse2007mpfr}}
815
816 This is what is now the GNU MPFR C library; it has packages in debian wheezy.
817
818 The library was motivated by the lack of existing arbitrary precision libraries which conformed to IEEE rounding standards.
819 Examples include Mathematica, GNU MP (which this library is actually built upon), Maple (which is an exception but buggy).
820
821 TODO: Read up on IEEE rounding to better understand the first section
822
823 Data:
824 \begin{itemize}
825         \item $(s, m, e)$ where $e$ is signed
826         \item Precision $p$ is number of bits in $m$
827         \item $\frac{1}{2} \leq m < 1$
828         \item The leading bit of the mantissa is always $1$ but it is not implied
829         \item There are no denormalised numbers
830         \item Mantissa is stored as an array of ``limbs'' (unsigned integers) as in GMP
831 \end{itemize}
832
833 The paper includes performance comparisons with several other libraries, and a list of literature using the MPFR (the dates indicating that the library has been used reasonably widely before this paper was published).
834
835 \section{Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic \cite{kahan1996ieee754}}
836
837 11 years after the IEEE 754 standard becomes official, Kahan discusses various misunderstood features of the standard and laments at the failure of compilers and microprocessors to conform to some of these.
838
839 I am not sure how relevant these complaints are today, but it makes for interesting reading as Kahan is clearly very passionate about the need to conform \emph{exactly} to IEEE 754.
840
841 Issues considered are: Rounding rules, Exception handling and NaNs (eg: The payload of NaNs is not used in any software Kahan is aware of), Bugs in compilers (mostly Fortran) where an expression contains floats of different precisions (the compiler may attempt to optimise an expression resulting in a failure to round a double to a single), Infinity (which is unsupported by many compilers though it is supported in hardware)...
842
843
844 An example is this Fortran compiler ``nasty bug'' where the compiler replaces $s$ with $x$ in line 4 and thus a rounding operation is lost.
845 \begin{lstlisting}[language=Fortran, basicstyle=\ttfamily]
846         real(8) :: x, y % double precision (or extended as real(12))
847         real(4) :: s, t % single precision
848         s = x % s should be rounded
849         t = (s - y) / (...) % Compiler incorrectly replaces s with x in this line
850 \end{lstlisting}
851
852 \subsection{The Baleful Influence of Benchmarks \cite{kahan1996ieee754} pg 20}
853
854 This section discusses the tendency to rate hardware (or software) on their speed performance and neglect accuracy.
855
856 Is this complaint still relevant now when we consider the eagerness to perform calculations on the GPU?
857 ie: Doing the coordinate transforms on the GPU is faster, but less accurate (see our program).
858
859 Benchmarks need to be well designed when considering accuracy; how do we know an inaccurate computer hasn't gotten the right answer for a benchmark by accident?
860
861 A proposed benchmark for determining the worst case rounding error is given. This is based around computing the roots to a quadratic equation.
862 A quick scan of the source code for paranoia does not reveal such a test.
863
864 As we needed benchmarks for CPUs perhaps we need benchmarks for GPUs. The GPU Paranoia paper\cite{hillesland2004paranoia} is the only one I have found so far.
865
866 \section{Prof W. Kahan's Web Pages \cite{kahanweb}}
867
868 William Kahan, architect of the IEEE 754-1985 standard, creator of the program ``paranoia'', the ``Kahan Summation Algorithm'' and contributor to the revised standard. 
869
870 Kahan's web page has more examples of errors in floating point arithmetic (and places where things have not conformed to the IEEE 754 standard) than you can poke a stick at.
871
872 Wikipedia's description is pretty accurate: ``He is an outspoken advocate of better education of the general computing population about floating-point issues, and regularly denounces decisions in the design of computers and programming languages that may impair good floating-point computations.''
873
874 Kahan's articles are written with almost religious zeal but they are backed up by examples and results, a couple of which I have confirmed.\footnote{One that doesn't work is an example of wierd arithmetic in Excel 2000 when repeated in LibreOffice Calc 4.1.5.3} This is the unpublished work. I haven't read any of the published papers yet. 
875
876 The articles are filled sporadically with lamentation for the decline of experts in numerical analysis (and error) which is somewhat ironic; if there were no IEEE 754 standard meaning any man/woman and his/her dog could write floating point arithmetic and expect it to produce platform independent results\footnote{Even if, as Kahan's articles often point out, platforms aren't actually following IEEE 754} this decline would probably not have happened.
877
878 These examples would be of real value if the topic of the project were on accuracy of numerical operations. They also explain some of the more bizarre features of IEEE 754 (in a manner attacking those who dismiss these features as being too bizarre to care about of course).
879
880 It's somewhat surprising he hasn't written anything (that I could see from scanning the list) about the lack of IEEE in PDF/PostScript (until Adobe Reader 6) and further that the precision is only binary32.
881
882 I kind of feel really guilty saying this, but since our aim is to obtain arbitrary scaling, it will be inevitable that we break from the IEEE 754 standard. Or at least, I (Sam) will. Probably. Also there is no way I will have time to read and understand the thousands of pages that Kahan has written.
883
884 Therefore we might end up doing some things Kahan would not approve of.
885
886 Still this is a very valuable reference to go in the overview of floating point arithmetic section.
887
888 \chapter{General Notes}
889
890 \section{The DOM Model}
891
892 A document is modelled as a tree. The root of the tree is the document. This has nodes of varying types. Some nodes may have children, attributes, and data.
893
894 \section{Floating-Point Numbers\cite{HFP,goldberg1991whatevery,goldberg1992thedesign,priest1991algorithms}}
895
896 A set of FP numbers is characterised by:
897 \begin{enumerate}
898         \item Radix (base) $\beta \geq 2$
899         \item Precision %$p \req 2$ ``number of sig digits'' 
900         \item Two ``extremal`` exponents $e_min < 0 < e_max$ (generally, don't have to have the $0$ in there) 
901 \end{enumerate}
902
903 Numbers are represented by {\bf integers}: $(M, e)$ such that $x = M \times \beta^{e - p + 1}$
904
905 Require: $|M| \leq \beta^{p}-1$ and $e_min \leq e \leq e_max$.
906
907 Representations are not unique; set of equivelant representations is a cohort.
908
909 $\beta^{e-p+1}$ is the quantum, $e-p+1$ is the quantum exponent.
910
911 Alternate represetnation: $(s, m, e)$ such that $x = (-1)^s \times m \times \beta^{e}$
912 $m$ is the significand, mantissa, or fractional part. Depending on what you read.
913
914
915
916
917
918 \section{Rounding Errors}
919
920
921 They happen. There is ULP and I don't mean a political party.
922
923 TODO: Probably say something more insightful. Other than "here is a graph that shows errors and we blame rounding".
924
925 \subsection{Results of calculatepi}
926
927 We can calculate pi by numerically solving the integral:
928 \begin{align*}
929         \int_0^1 \left(\frac{4}{1+x^2}\right) dx &= \pi
930 \end{align*}
931
932 Results with Simpson Method:
933 \begin{figure}[H]
934         \centering
935         \includegraphics[width=0.8\textwidth]{figures/calculatepi.pdf}
936         \caption{Example of accumulated rounding errors in a numerical calculation}
937 \end{figure}
938
939 Tests with \verb/calculatepi/ show it's not quite as simple as just blindly replacing all your additions with Fast2Sum from Dekker\cite{dekker1971afloating}.
940 ie: The graph looks exactly the same for single precision. \verb/calculatepi/ obviously also has multiplication ops in it which I didn't change. Will look at after sleep maybe.
941
942
943 \pagebreak
944 \bibliographystyle{unsrt}
945 \bibliography{papers}
946
947 \end{document}
948

UCC git Repository :: git.ucc.asn.au