
Research Project Proposal

David Gow
20513684

March 12, 2014

Title: Infinite-precision document formats
Supervisor A/Prof. Tim French
Project Group: David Gow, Samuel Moore

1 Background

Traditional document formats such as PDF and Postscript were designed for
documents to be printed. They therefore are optimised to rasterize an entire
page at a given resolution, often on the embedded processor found in (older)
printers. This, however, does not fit well with interactive display on screens,
particularly on mobile devices such as telephones and tablets.

In particular, when displaying a document on a screen, the user has several
additional ways of interacting with the document, such as viewing a subset of
the document in high resolution using the “zoom” option.

Existing vector file formats do support rasterization at different resolutions,
but are limited by the precision of coordinates and other intermediate values.
PostScript and PDF, for example, store many values in a real type with a limit
of approximately 8 decimal digits of precision (PostScript[3]) or 5 decimal digits
of precision (PDF[4]). These floating-point data types, while they provide both
range (allowing for large documents) and precision (allowing for fine detail),
cannot combine the two[2]. It follows that objects placed further from the
origin must have less detail. Furthermore, these numerical datatypes have a
limited range and therefore have an absolute limit on the size or precision of
any document.

Documents with high — or at least consistent — levels of precision have
many applications. The building industry uses tools such as Computer-Aided
Drafting (CAD) and Building Information Modelling (BIM) systems for man-
aging schematics which require precision. At the moment, this requires special
tools, and it is not possible to export these as a single view without loss of preci-
sion. Similarly, infinite precision document formats would allow maps covering
large areas to be stored contiguously (without requiring plates at different zoom
levels) without any loss of precision.

2 Aim

We aim to prototype a simple document system which does not have these
restrictions on zoom, and which can store data precisely at a given level of

1



zoom. While the primary goal is to ensure the objects within documents retain
the precision at which they were created (typically being the resolution of the
display used during document editing), an ideal approach would also ensure
stability of the object when magnified beyond its original size.

Should this be successful, we will prototype different methods of implement-
ing this system, using different data structures, to compare their relative merits
in terms of — amongst other things — performance. In particular, we hope to
avoid some of the performance issues resulting from traditional use of arbitrary-
precision data types, particularly on the Graphics Processing Unit (GPU)[1].

As this is a group project each group member will develop and prototype a
different method of retaining precision. For this individual part of the project,
quadtrees will be investigated to provide a form of coordinate system renormal-
isation as the document view is scaled.

These systems will be compared in terms of their performance, with the
aim to identify in which situations each implementation is most performant,
consistent and correct.

3 Method

In order to make the most efficient use of our time, much of the early implemen-
tation work will be done as a collaboration with Samuel Moore. In particular,
the work to implement the basic document system will be done jointly, which
we will then use as a base to implement our (individual) data structures and
algorithms for infinite-precision.

Initially, this document system will support documents consisting only of
basic shapes (such as polygons, circles and Bézier curves), but, should time
allow, this can be extended to include font glyphs, embedded raster images and
other objects.

We will be comparing these methods primarily in terms of performance using
a number of metrics:

• Performance per document object.

As objects are the basis of these documents, we will test against a set of
“standardised” documents with to determine how performance scales with
the number of objects. We will test this with each of the different types (or
shapes) of objects, as they may have different performance characteristics.
Measured in ms/object

• Performance per visible object.

As above, but measuring performance against the number of objects visible
in a given view. For example, when zoomed in, fewer objects will be
onscreen, and so — in some implementations — may not contribute as
heavily to the computational load.

Similarly measured in ms/object.

• Performance per zoom level.

Time taken to render frames with the same number of visible objects will
be compared at different zoom levels to determine if there is a relationship
between performance and zoom. We will perform this test both with views

2



centred at the origin and centred at a random coordinate to see which, if
any, implementations are affected by this. Measured in ms/length, where
length is the length of one edge of the view in global document coordinates.

• Stability of performance under translation and scaling.

We will measure performance during the process of a steady zoom or trans-
lation at a predetermined rate. This should allow us to identify “spikes”
of low performance on implementations which require a calculation (such
as renormalisation) periodically. Measured in ms/frame.

To accompany this, we will also be comparing the generated output from
each implementation to find any discrepancies or artefacts introduced by the
implementation, as well as to demonstrate the improvement in precision com-
pared to the basic implementation. Should time permit, we would also like
to demonstrate stability of the document under transformations (zooms and
translations).

We intend to rasterize objects on the GPU in order to take advantage of the
extra performance this provides. There is copious existing research on rendering
gemetric shapes such as Bézier curves[6] on the GPU, and indeed entire imple-
mentations of the postscript rendering model[7][5]. We therefore believe that
this will allow us to better focus on the performance of the infinite-precision
document structures, whose calculations will likely largely reside on the Central
Processing Unit (CPU).

4 Timeline

Date Milestone
17th April Draft Literature Review due.
1st May A simple document format should be designed and

implemented, upon which to base further develop-
ment and experiments.

22nd May Literature Review and Revised Proposal due.
9th June Demonstrated and documented artefacts and insta-

bility caused by floating point imprecision in the ba-
sic implementation.

1st July Have one or more algorithms/data structures for
handling infinite-precision documents implemented.

1st August Initial performance measurements complete. Identi-
fied areas for further optimisation and experimenta-
tion.

1st September Adjustments to existing systems and experiments
with additional techniques performed, and perfor-
mance measured. Work underway on dissertation.

18th September Draft dissertation due.
23rd October Final dissertation due.
27th – 31st October Seminar presentation.

3



5 Software & Hardware Requirements

We intend to develop this system on a common x86 compatible Personal Com-
puter running the Linux R© operating system, using the C++ programming lan-
guage and making use of the OpenGL graphics library. However, the techniques
we develop will likely also be applicable — or be easily extended — to other
desktop and mobile systems. We also hope that the prototype developed will
be portable to other systems.

References

[1] Niall Emmart and Charles Weems. High precision integer multiplication
with a graphics processing unit. In 2010 IEEE International Symposium on
Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW),
pages 1–6. IEEE, 2010.

[2] David Goldberg. What every computer scientist should know about floating-
point arithmetic. ACM Comput. Surv., 23(1):5–48, March 1991.

[3] Adobe Systems Incorporated. PostScript Language Reference. Addison-
Wesley Publishing Company, 3rd edition, 1985 - 1999.

[4] Adobe Systems Incorporated. PDF Reference. Adobe Systems Incorporated,
6th edition, 2006.

[5] Mark J Kilgard and Jeff Bolz. Gpu-accelerated path rendering. ACM Trans-
actions on Graphics (TOG), 31(6):172, 2012.

[6] Charles Loop and Jim Blinn. Resolution independent curve rendering using
programmable graphics hardware. ACM Transactions on Graphics (TOG),
24(3):1000–1009, 2005.

[7] Peter Nilsson and David Reveman. Glitz: Hardware accelerated image
compositing using OpenGL. In USENIX Annual Technical Conference,
FREENIX Track, pages 29–40, 2004.

4


	Background
	Aim
	Method
	Timeline
	Software & Hardware Requirements

