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Automatic and Interactive Evolution of Vector Graphics
Images with Genetic Algorithms

Steven Bergen · Brian J. Ross

Abstract Vector graphics images are composed of lists

of discrete geometric shapes, such as circles, squares,

and lines. Vector graphics is popular in illustration and
graphic design. The generation of vector images by evo-

lutionary computation techniques, however, has been

given little attention. This paper uses genetic algorithms
to evolve vector images. By restricting the numbers

of primitives and colour schemes used, stylized inter-

pretations of target images are produced. Automatic

evolution involves measuring the pixel-by-pixel colour
distance between a candidate and target image. The

JNetic evolutionary vector graphics system is described.

JNetic supports automatic and user-guided evolution,
chromosome editing, and high-detail masks. The user

can paint masks over areas of the target image, which

will be used to reproduce the high-detail features within
those areas. The system has been successfully used by

the authors as a creative tool.
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1 Introduction

Genetic algorithms are widely used for finding good

quality solutions for a diverse variety of difficult prob-

lems in science, engineering and mathematics [16,20].
They have also been used in artistic applications such

as music [7], and visual art and design [3,27]. Their ap-

plication in image generation is well recognized, and it
has resulted in a new genre of art [9,36].

Richard Dawkins is a pioneer in using genetic algo-

rithms for image generation [8]. His original motivation
was to show the great variety of graphical structures

that can arise from evolution. A computer program,

Biomorphs, is described, which lets the user evaluate a
population of 2-dimensional images, and thereby act as

a force of natural selection for breeding new generations

of images from those selected. Although not intended
as an artistic application, it showed the potential power

of artificial evolution as an exploration tool for graphic

design.

A procedural texture is an image generated by pro-

gram code and mathematical formulae [11]. Sims used

a genetic algorithm to manipulate the texture gener-
ating equations [30]. The result was a number of in-

triguing and complex images. These images were math-

ematical and abstract in style, due to their mathemat-
ical origins. Sims work was very influential, and others

have extended his approach by considering new forms of

mathematical expressions and evolutionary processes.

A sample of examples of other approaches includes [17,
28,10,18,1]. All the images in these works abound with

complex highly detailed patterns, noise, and colour gra-

dients (Figure 1). Sometimes they simulate textures
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Fig. 1 Images made from procedural texture expressions.

found in nature, such as minerals, clouds, and wood

grains.

Like the Dawkins system, Sims and many others uti-

lize interactive genetic algorithms, in which a human
user inspects all candidate images in the population,

and manually scores them during the course of evolu-

tion. The main reason for user interactivity is that there

is often not an automated means for the genetic algo-
rithm to evaluate images, based on aesthetic or other

artistic criteria. Hence, such systems can be considered

as semi-automated exploration tools with which a user
can use to navigate a complex universe of computer-

generated images [9].

More recent research has started to consider the au-

tomatic evolution of images. The challenge for auto-
matic image generation is to find appropriate fitness cri-

teria. In some applications, the goal is to have a genetic

algorithm reproduce or closely match some supplied
target image. In such cases, the fitness function can be

a distance measurement in RGB colour space between

candidate images and the target image. Ibrahim[21] and
Wiens and Ross[37] evolve procedurally generated im-

ages that match a target image. Matches are deter-

mined using a set of image analyses tests. Research is

also exploring the use of mathematical models of aes-
thetics in genetic algorithms [19,25,27,32,29,26]. Aes-

thetic modeling is still in its formative stages in this

discipline.

Genetic algorithms have been applied to more rep-

resentational styles of art and design, that are not based

on mathematical textures. For example, Todd and Latham

use evolutionary computation to evolve images of geo-
metric structures with organic characteristics [34]. Lewis

uses an interactive GA for evolving different styles of

cartoon faces [24]. Realistic faces are reconstructed with

genetic algorithms, which might have use in crime inves-

tigations [14]. Mondrian and Escher-style art is gener-

ated with a genetic algorithm [12]. Architectural struc-

tures are evolved with genetic algorithms [22].

Another important class of computer imagery is vec-

tor graphics. Vector graphics are fundamentally differ-

ent from procedural textures in style and form. Vector

images are geometric in nature, since they are com-
posed of discrete geometric shapes, such as lines, circles,

and polygons. Vector images are commonly used in the

world of graphic design and illustration. Not only are
vector graphics desireable from an aesthetic perspec-

tive, but they are also popular from a pragmatic point

of view. Vector graphics permits straight-forward edit-
ing of images, by manipulating collections of composite

shapes. Examples of vector graphic art can be viewed

at [40].

Unlike procedural textures, vector graphics images
have not been extensively studied in the evolutionary

art field, and few examples of research exists on the

topic. Weller introduced the idea of automatic evolution
of vector graphics images [35]. His goal was to compress

a target image by finding a set of geometric primitives

which, when rendered, result in an approximation of

the original image. The resulting images lose the high-
resolution detail of the originals, and are too coarse of

reproductions to be practical for image compression.

On the other hand, the images have a certain stylistic
appeal.

Wilkens extended Weller’s work, by performing mul-

tiple phases of evolution, in an attempt to capture high-

resolution details from the target image [39]. Each phase
involves reducing the size of geometric primitives, in

order to fine tune the colour distance between the ren-

dered image and the target. Although more detail is
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retained in Wilkens’ results, most high-resolution de-

tail is nevertheless discarded.

This paper re-examines the use of genetic algorithms
to generate vector graphics images. As done by Weller

[35] and Wilkens [39], we use a genetic algorithm to ren-

der an image from geometric primitives. The primitives
may have different sizes, shapes, and colours. The goal

of evolution is to find a set of primitives whose final ren-

dering closely matches a target image, as determined by
pixel-by-pixel colour matching. The intention is not to

reproduce the target image precisely, but rather, use it

as a visual inspiration or metaphor for a new, geomet-

ric approximation of the image. We are interested in
this final, approximate image from an aesthetic, artis-

tic point of view. Therefore, this research differs in in-

tent and design from most evolutionary computation
research in the literature. We are not attempting to find

optimized solutions, since they would simply be exact

reproductions of the target image. Rather, errors and
inexactness are desirable qualities for our solutions, as

they make the resulting images creative and artistically

interesting.

We have a number of motivations and goals for our

research. A problem seen in earlier approaches was the
loss of high-resolution detail in evolved vector images

[35,39]. We address this issue by introducing user-defined

image masks. With masks, areas of an image can be
identified that require more precise details in the final

vector result. For example, features in a face can be

masked for high-resolution processing. Additional evo-

lutionary effort generate more refined vector renderings
for these identified areas.

Another goal is to implement a system which sup-

ports both automatic evolution and user-guided inter-

active evolution. Our system, JNetic, is a user-friendly,
standalone tool for evolutionary vector-based art. JNetic

lets the user freely move between interactive and auto-

matic evolution as desired. This overcomes the weak-
nesses of each. For example, with fully automatic evo-

lution, after the user sets initial parameters, he or she is

afforded no influence during evolution, and is relegated

to a passive role only. The user must either accept or
reject the final result. On the other hand, strictly in-

teractive evo-art systems suffer from user fatigue. The

user must micro-manage every aspect of evolution, by
rating each individual in the population. This does not

usually allow highly refined results.

Our system also presents a complete environment

for vecto graphics evolution. A rich variety of options

are available to choose from, such as a number of primi-
tive shapes, the mixing of different primitives together,

and various colour rendering options. The user may

even edit chromosomes, to correct images as desired.

Final images may be saved in the common “SVG” vec-

tor graphic format, to be edited in other vector graphics
applications.

The paper is organized as follows. Genetic algo-

rithms are briefly reviewed in Section 2. Section 3 dis-
cusses the technical features of JNetic. Some of the in-

terfaces of JNetic are presented in Section 4. A selec-

tion of evolved images is presented in Section 5. The use

of JNetic in a creative context is discussed in Section
6. Section 7 gives concluding remarks and comparisons

with related work.1

2 Genetic Algorithms

A. Initialize random population of N chromosomes.

B. Loop from 1 to final generation:

a. Calculate fitnesses of all chromosomes.

b. Loop until N child chromosomes:

1. Select 2 parent chromosomes from population.

2. Apply crossover, generating two offspring.

3. Apply mutation to both children.

4. Add children to new population.

c. Replace old population with new population.

d. Apply elitism (if enabled).

Fig. 2 Genetic Algorithm

A genetic algorithm is a search procedure inspired

by Darwinian evolution [16,20]. The idea is that a pop-

ulation of individuals (chromosomes, candidate solu-

tions) is continually processed and refined, until eventu-
ally an acceptable solution is obtained. The refinement

process is motivated by ideas from natural evolution.

Figure 2 outlines a basic genetic algorithm. The pro-
cess begins in step (A) by creating a population of

size N of random individuals or chromosomes. Each

chromosome represents a complete candidate solution

for the problem at hand. For example, in the case of
JNetic, a chromosome represents a complete image. For

most non-trivial problems, this random population will

not contain anything resembling an acceptable solution.
The genetic algorithm will proceed to refine this pop-

ulation in the loop at step (B). Each iteration through

loop (B) results in a new population or generation of
individuals. First, each chromosome in the population

is evaluated and scored, either via an algorithmic for-

mula, or via a human user assigning a score interac-

tively. Next, a new population is creating in loop (b).
Step (i) uses a fitness-based scheme to select two chro-

mosomes from the population. Fitness-based selection

1 The JNetic system, and a gallery of images, are available
online at http://www.cosc.brocku.ca/ bross/JNetic/.
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implies that the previously assigned fitness scores in

step (a) are used to determine strong individual indi-
viduals to use for subsequent reproduction. This paral-

lels Darwinian survival and reproduction of the fittest

in nature. Once two parent chromosomes are selected,
a crossover or recombination operation is applied to the

chromosomes (described below). This results in two off-

spring with features that are inherited from each par-
ent. A mutation operator is then applied, which involves

changing a chromosome value at random. The offspring

are then inserted into the next population, which will

eventually replace the current population in step (c). Fi-
nally, an optional elitism. step can be performed (step

d), which takes the strongest chromosome(s) in the cur-

rent population, and adds it to the new population.
This step ensures that the strongest individual will not

be lost between generations. This entire process con-

tinues until the final generation specified by the user
is reached in the B loop. The fittest chromosomes in

the population are considered solutions as found by the

genetic algorithm during this session.

Fitness-based selection involves using a procedure

for choosing chromosomes for reproduction based on

their strength or quality, as reflected by their fitness
scores. As in natural evolution, fitter individuals are

more likely to survive and reproduce. However, it is

beneficial for genetic diversity - and overall solution

quality in the long term - to not simply select the ab-
solute strongest chromosomes in the population, but to

also give weaker individuals a chance at reproduction.

One means of implementing fitness-based selection is
tournament selection. A tournament size K is specified,

with K typically ranging between 2 and 7. Then K indi-

viduals are randomly chosen from the population. The
individual with the strongest fitness from this set is

designated the tournament winner, and is selected for

reproduction. For crossover, a separate tournament is

performed for each parent. When K is lower (for ex-
ample,2), then there is a higher probability of select-

ing weaker individuals. Conversely, a high K value will

mean that stronger individuals are usually selected, and
we say that there is a higher selection pressure.

Crossover is the most important reproduction oper-

ator used by the genetic algorithm. First, two parent
chromosomes are selected for crossover. For one-point

crossover, a single random splice point is determined,

and each parent contributes one portion of its chro-
mosome during reproduction. The spliced chromosomes

are designated the offspring, and inherit genes (charac-

teristics) from each parent.

The other reproduction operator is mutation. It in-

volves randomly altering a gene value. If the chromo-

some is comprised of a list of numbers, then a mutation

operation may involve selecting one gene and replac-

ing it with a new random value. In this way, mutation
permits new gene values to arise in chromosomes that

might be lost if only crossover were used.

Note that there is a high degree of randomness in-
volved in the genetic algorithm. The initial popula-

tion is generated randomly. Parent chromosomes are se-

lected for reproduction using randomized selection pro-
cedures. Crossover points and mutations occur at ran-

dom positions. The effect is that different executions

of a genetic algorithm usually result in quite varied re-
sults. Therefore, it is worth running a genetic algorithm

multiple times on a problem, and examining the results

obtained from each, to determine the most appropriate

solution.

3 JNetic

3.1 Image Representation

A chromosome is a list of numbers which represent ge-

ometric primitives comprising a vectorized image. A

rendering procedure will traverse the chromosome, and
translate fields of genes on the chromosome into cor-

responding geometric shapes on a canvas. Therefore,

each chromosome contains the information required to

render a complete image, and a population of 100 chro-
mosomes represents 100 individual images.

Figure 3 shows how a chromosome is rendered to

a graphics image. Three circles are represented in the
chromosome. Each circle has a 2D coordinate for its

center, as well as a radius dimension. If RGB colour

mode is used, then the colour (red, green, blue) is en-
coded. Each circle is then rendered in the order given in

the chromosome, from left to right. This ordering will

affect how circles obstruct each other, as later objects
are drawn on top of previously rendered ones.

JNetic primitives include circles, rectangles, N-point

polygons, lines, and spline (curved) paint strokes. Each
geometric shape can be constrained with respect to its

size. For example, circles can have minimum and max-

imum radii specified, rectangles can have height and

width restrictions, lines have width ranges, and N-point
polygons and splines can have a maximum N (number

of vertices). The maximum number of shapes allowed in

the chromosome is specified by the user. Combinations
of different shapes are also possible.

3.2 Colour Representation

JNetic supports two kinds of colour schemes: RGB mode

and colour palette mode. RGB mode is shown in Fig-
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Fig. 3 Chromosome representation

ure 3. Each primitive has its RGB colour directly en-

coded within it. An advantage of this scheme is that

it permits the maximum range of colours to be se-
lectable within an image. A disadvantage is that it takes

additional effort for the genetic algorithm to discover

the RGB colours that match with the target image.

Colour palette mode uses a limited number of colours,
predefined by the user. For example, primary, tertiary

colours, and grey scale shades might be chosen. Note

that limiting the colour palette is one way to generate
colour-constrained abstractions of the target image.

A feature possible in colour palette mode is colour
quantization [6]. This automatically generates palette

colours, based on the colours resident in the target im-

age. This helps the genetic algorithm, as the search
for matching colours becomes greatly simplified. JNetic

uses octree quantization [15]. This algorithm generates

K approximations to the most frequent colours, and
colours that are not used are merged with other less-

frequent colours close to them in colour space.

Alpha transparency is also supported. When used,

colours will mix with previously rendered colours on

the canvas. This extends the range of colours used in

the colour palette, by permitting additional shades to
arise during rendering. It also results in a transparency

effect, in which objects can appear translucent.

3.3 Image evaluation

During automatic evaluation, JNetic compares each ren-

dered vector image to the target image. The idealized
goal is to render an exact pixel-by-pixel replica of the

target image. Given that the vector image is composed

of a limited number of geometric shapes, possibly ren-

dered in a finite colour palette, this will be impossible
to realize. Of course, exactly reproducing the target im-

age is not actually desirable when stylized images are

wanted.

Let (Rp, Gp, Bp) be the red, green, and blue chan-

nels of a pixel p. The formula for measuring similarity

between vector images and the target image is:

Distance

=
∑

i

√

(Rvi
− Rti

)2 + (Gvi
− Gti

)2 + (Bvi
− Bti

)2

where i ranges over all pixels in the vector image (vi)

and target image (ti). An exact match yields a distance

of zero, and higher values represent images further away
from the target. This is used by the genetic algorithm

to score images in the population.

The colour distance calculation is the most time

consuming computation occurring in the genetic algo-
rithm. Larger images incur a heavy time penalty during

this calculation. Consequently, the user can specify an

optional gap or number of pixels to skip when comput-

ing colour distances. For example, a gap of 2 means
that every other pixel is used, which reduces the total

calculation by a half. Small gaps have a negligible effect

on final results. Larger gaps may result in less accurate
results.

3.4 High-detail Masks

The distance formula in Section 3.3 evaluates all por-

tions of an image equally. This results in an area-based

evaluation, in which larger areas contribute proportion-
ally more to fitness than smaller areas. We may want to

see details in images, however, such as facial features in

portraits. Unfortunately, if the facial features represent
a small area of the image, their contribution to the dis-

tance calculation will be inconsequential. Such features

will be lost in final results.

To promote the rendering of high-detailed areas of

an image, the user can paint a mask over high-detail
areas (Figure 4). The entire image is then called the

base image, and the masked portion is the mask image.

Likewise, the chromosome is split into base and mask
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Fig. 4 Mask processing

portions. Both chromosome sections use the same rep-

resentation as described in Section 3.1. They can be set

to use different primitives and colour models, as they
are never combined with each other during reproduc-

tion. Before fitness evaluation, the base image is first

rendered, and then the mask image is rendered on top
of it. The mask primitives are rendered within the mask

area only; portions of primitives outside the mask area

are erased. The entire image is then evaluated for colour
distance as usual. Therefore, the mask chromosome en-

sures that its encoded primitives are dedicated to ren-

dering the mask portion of an image. The mask is ef-

fective for capturing high-detail portions of an image if
the mask area is not too large, and a sufficient number

of primitives are allocated to the mask chromosome.

3.5 Genetic Algorithm

As is usually the case with all applications of evolu-

tionary computation, setting JNetic’s genetic algorithm
parameters is more of an art than a science. The user

can set the usual GA parameters, such as population

size, maximum generation limit, reproduction opera-
tion probabilities, and tournament size, among others.

Either one-point, two-point, or N-point crossover oper-

ators can be used. Mutation is also included, and can
be controlled with a mutation range value, to prevent

extreme changes in gene values. Elitism – the preserva-

tion of the best performer in each generation – is also

possible.

It is likely that trial runs will be desired, to see how

well GA parameters work with the chosen chromosome

representation, colour palette, and target image. Deci-
sions are ultimately based upon the artistic sensibilities

of the user, and what she or he desires as an outcome

of the evolutionary process. Since JNetic is intended

to be used as an exploratory tool, the user is recom-

mended to experiment freely with parameters, and to

be unconcerned about finding a mythical “ideal” com-
bination of settings. Unlike the kinds of optimization

problems in which GA’s are typically used, it is desir-

able for the generated solution to be approximate, to
have omissions, and to show errors. This makes images

interesting. Spending too much effort fine-tuning GA

parameters is ultimately counterproductive to the cre-
ative process.

Of course, a run can be interrupted at any time.
Many parameters can be altered mid-course in a run,

and then the run can be resumed. The user might decide

to use the system interactively, and manually evaluate
members of the population. The ability to move back

and forth between automatic and interactive evolution

makes JNetic a practical tool for artistic expression.

3.6 Implementation

JNetic is implemented in Java. The name “JNetic” pays
homage to Java-based libraries and systems. Java is se-

lected due to its transportability among different com-

puters and operating systems, its programmer-friendly

environment, its relatively good performance, and the
availability of high-level libraries. JNetic renders im-

ages with the Java2D rendering library [23]. Most of

the geometric primitives, as well as colour models, are
implemented with this library. Elements of the user in-

terface (Section 4), such as windows, text, graphics, and

other requirements, are implemented in Java Swing [13].
Finally, Netbeans is used to implement graphical user

interface elements [5].

Actual performance statistics depend upon the com-

plexity and size of an image being processed, the size

of the population, and the power of the computer hard-
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ware. We find that completely automatic runs typically

take anywhere between one to six hours, and sometimes
longer, depending on the level of precision desired in the

final result.

4 User Interface

An important motivation behind the design of JNetic

is that it should be a tool that encourages the arbitrary

switching between total automated search by the ge-

netic algorithm and interactive evolution with the user
in control. Figure 5 shows JNetic’s primary interface.

Basic genetic algorithm parameters such as total num-

ber of generations, population size, reproduction rates,
and tournament size, are set in this window. The ge-

netic algorithm can be started, paused, resumed, and

halted. Other controls create dialogues that allow the
setting of primitives, colour models, mask images, and

other parameters. Thumbnails of the top scoring in-

dividuals are displayed. The entire population can be

inspected if desired.

When in interactive evolution mode, the user over-
rides the automated fitness assignments by manually

selecting images for further reproduction. When doing

so, selected images are assigned a perfect score, which
makes it likely they will be used by the tournament

selection. If automatic evolution is resumed, the auto-

mated fitness assignments will be used.

By pausing the genetic algorithm, and selecting a

thumbnail image, the chromosome editing dialog in Fig-
ure 6 appears. This interface lets the user select any

primitive in the base or mask chromosome. A selected

primitive is highlighted, and any of its characteristics
(size, location, and colour) can be modified. In this way,

undesirable portions of an image can be manually cor-

rected as desired. The image under revision can also be

saved, for external editing.

A useful feature of the chromosome editor is the hill

climber. This does a local search optimization on a chro-

mosome, by performing repeated mutations on it. Every

time a mutation results in an improved fitness, that mu-
tation is retained. Otherwise, the mutation is ignored.

This repeats until the user stops the hill climber. This

utility can be useful for refining an image at the end

of a run. Alternatively, if evolution is having problems
creating a good result during some point in a session,

hill climbing can be used to boost the fitness of selected

individuals.

5 Examples

Figure 7 shows the effect of using masks and colour

quantization. The target image is shown in (a). The

result in (c) is from a run using circles, and with di-

rect RGB colour encoding with alpha transparency. In
comparison, the result in (d) arises when a fixed-size

colour palette of quantized colours (with transparency)

is used. Note how this run was able to more accurately
render the image. Next, a mask in (b) was painted on

the facial features. The result in (e) shows that the fa-

cial features are more visible than without the mask.
The last image in (f) illustrates a creative use of mask-

ing. The background behind Mona Lisa has a mask de-

fined over it. The base chromosome uses lines, while the

mask uses circles. The result is the use of two distinct
primitives for Mona Lisa and the background.

Figure 8 compares how high-resolution details are

retained in both Wilkens [39] and JNetic. The Wilkens

and JNetic runs share many of the same parameters,
for example, population size of 200, 90% crossover rate,

2.5% mutation rate, tournament size 3, and RGB-mode

colour. Wilkens attempts to capture high-resolution de-
tail by using 3 separate phases of evolution. The so-

lutions from phase 1 and 3 are shown. Phase 1 uses

30 size-constrained triangles. The resulting image from

phase 1 becomes the background image in phase 2, upon
which 30 new half-size triangles are rendered. Phase 3

repeats this with 30 even smaller triangles. The JNetic

run uses 60 triangles for the base (non-masked) image,
and 60 for the masked portion on Mona Lisa’s face. In

a single GA run, JNetic renders more high-resolution

facial details than Wilkens’ final result.

The fitness performance of the JNetic run in Figure
8 is shown in Figure 9. Most progress occurs during the

first 200 generations, and the majority of image refine-

ment has occurred by generation 500. The close proxim-

ity of the best, worst, and average fitness curves shows
that the population has tightly converged throughout

the run. It is possible that an increase of the mutation

rate could help diversify the population.

Figure 10 illustrates the progress of evolution dur-
ing a single run. The images show how improvements

are more pronounced in earlier generations of a run,

while later generations see more incremental changes
that hone into the target image more precisely.

Figure 11 shows some of the stylistic variations pos-

sible with different chromosome specifications. Lines are

used in (b), circles and rectangles in (e), and dispersed

small circles in (f). The images in (c) and (d) are the
results of applying a Gaussian blur (radius 6 pixels)

to the images in (a) and (b) respectively. The blurring

approximates the information “seen” by the genetic al-
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Fig. 5 Main JNetic interface

gorithm, as denoted by the fitness scores. These repre-

sent the main colour similarities of the images, when
high-resolution detail is lost.

The two images in Figure 12 show the diverse styles
of results possible with JNetic, depending on the prim-

itives and colour palette used. Painting uses curved

(spline) paint strokes and opaque colours with alpha-
blending turned off. This results in an image that ap-

pears as if painted in thick acrylic paint. This is still a

vector-graphics image, however. Portrait is made with a

set of rectangles and circles, with alpha-blending turned
on. A selected option on the final output is “primitive

stroking”, which outlines the primitives in black. This

gives the final image a futuristic, cybernetic feel.

6 JNetic as a Tool for Creativity and

Expression

6.1 General Observations

Whitelaw addresses the relationship between evolution-

ary art and artistic creativity [36]. He makes the point
that “evolved artwork itself functions in an unconven-

tional way”. The evolutionary process is not highly man-

ageable by an artist, as it is profoundly directed by
forces outside the artist’s direct influence. As is ap-

parent in the review of genetic algorithms in Section

2, evolution relies on probability and randomness, and
controlling such forces of nature is difficult. More im-

portantly, evolution breeds solutions based on criteria

external to an artist’s normal thought processes. This is

the main strength of evolutionary art: the ability to gen-
erate unexpected and innovative images selected from

a virtually infinite number of possibilities, using crite-

ria outside the artist’s mindset. This being said, the
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Fig. 6 Chromosome editor

artist should not surrender to evolution, and relinquish

complete creative control. Rather, one must consider

evolution to be a force that is to be tamed, directed
and partnered with.

The motivation behind the design of JNetic is to

nurture and promote the relationship between the artist
and evolutionary discovery. Our experience is that cre-

ativity is well-served in evolutionary art by exploiting

the free interplay of automated and interactive evo-
lution. Consider the extreme cases. Purely interactive

genetic algorithms depend upon the user at all stages

of evolution, which usually results in user exhaustion
or boredom after manually inspecting and rating hun-

dreds of images. On the other hand, as we found in

earlier research relying solely on automated evolution

can sometimes be discouraging, as one must either ac-
cept or reject the end result, possibly after many hours

or days of processing [29,26]. By permitting the user to

interrupt evolution at any time, and interactively influ-

ence evolution, the user is afforded the ability to engage

in with the evolutionary process. JNetic even permits

the user to edit images (chromosomes) during evolu-
tion, and in a sense, genetically engineer evolved art at

its molecular level.

When a user decides to engage in interactive evolu-
tion with JNetic, the problem of user-fatigue can arise,

as with other interactive evo-art applications. Should

the user decide to manually rate the entire population
(which might be in the hundreds or thousands), user

fatigue will be guaranteed. Our experience is that auto-

matic evolution is used as the main evolutionary process
during the vast majority of time, while interactive evo-

lution may be taken one or two times at most during a

run. When interactivity occurs, it usually involves mak-

ing some fast and simple changes to the run: assigning
a few chromosomes very high or very low scores; edit-

ing a particular geometric shape, by resizing or moving

it, or even deleting it; or setting a new GA parameter,
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(a) Source (b) Mask (c) RGB

(a) Quantized (b) Quantized mask (c) Quantized mask v.2

Fig. 7 Examples of source, mask, and results.

such as increasing the mutation rate. The local-search

“hill climber” is also useful during the latter-stages of

a run, to help refine a particular chromosome.

The recommended approach to take with JNetic is
one of experimentation. An artist should try variations

of genetic algorithm parameters, colour palettes, and

chromosome definitions, to see what might arise. It is
important to realize that separate runs using the iden-

tical parameters, can produce quite different outcomes,

due to the randomness inherent in genetic algorithms.

We treat JNetic as a tool akin to a complex paint brush.
Just as an artist cannot control where every single bris-

tle of a paint brush applies paint on a canvas, we do

not presume that we should control all aspects of the

results of evolution. Features of an image will arise from

forces outside our purview. By exploiting the interactive

features of JNetic, the artist can work with evolution
to discover a creation that is more likely to fulfill his

or her artistic goals. This reinforces the point of view

that there is not a single best solution one is trying to
find, but rather, innumerable possibilities from which

to choose [9].

Creative opportunities may arise if the target image

is considered an inspirational prototype or archetype

for evolution, as opposed to being treated literally as
an absolute goal. For example, a photograph can be

retouched, edited, and painted before being given to

JNetic, in an attempt to coerce and tease new colours
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(a) Wilkens phase 1 (b) Wilkens phase 3 (c) JNetic

Fig. 8 Comparison of high resolution detail retention between Wilkens and JNetic. JNetic uses a mask over the face.

Fig. 9 Fitness performance of JNetic run in Fig. 8 (c).

and structures in the evolved images. Since generated
results are geometric approximations of the target, this

approach can result in innovative outcomes.

The products of JNetic may be the final results. Al-

ternatively, they may be intermediate phases of larger

projects. Images can be exported in the scalable vector

graphics (SVG) format, which can be edited in graph-

ics applications such as Adobe Illustrator. This lets an

artist completely edit the geometry and appearance of

a JNetic image. The SVG format allows images to be
scaled to an arbitrary resolution with no loss of qual-

ity, perhaps for high-quality printing. This is a bene-

fit of vector-based graphics that is not possible with

evolutionary art applications that evolve bitmaps from
texture expressions.

7 Conclusions

Vector graphics has not been studied in detail in the

evolutionary art world, and so this paper fills a need for

addressing this important class of image. Our work is

motivated by the work of Weller [35] and Wilkens [39],
and contributes a number of technical advancements.

A significant contribution is the use of image masks for

evolving high-detail areas of an image, should they be
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(a) generation 1 (b) generation 150 (c) generation 300

(a) generation 600 (b) generation 900 (c) source

Fig. 10 Progress during evolution.

desired. The Weller and Wilkens systems will usually
result in images that have lost high-resolution details.

Our system, JNetic, is distinguished by an interface

that promotes user interaction with the evolutionary
process, which elevates the role of an artist from passive

viewer to active participant. JNetic is a self-contained

artistic tool, that supports a variety of geometric prim-

itives, colour models, and chromosome editing.

JNetic results share similarities with photo-mosaic

tiling [38] and painting [2] applications that use genetic

algorithms. As with JNetic, both applications generate

images whose colour distance is in proximity with a tar-
get image. By animating the best image from each gen-

eration, an animated photo-mosaic or non-photorealistic

painting effect is produced. JNetic permits the best im-
age from each generation to be saved, which can be

animated to give a similar effect. Our evolved images

may have superficial similarities to some filter effects

used in commercial applications, for example, Adobe
Photoshop’s mosaic filter. However, JNetic images are

always composed of solid-coloured opaque or translu-

cent geometric objects, while the mosaic tile effect can
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(a) source (b) lines

(c) source blurred (d) lines blurred

(e) circles and rectangles (f) dispersed circles

Fig. 11 More examples. Images (c) and (d) are the results of blurring images (a) and (b) respectively.
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(a) Painting by S. Bergen.

(b)Portrait by B.J. Ross.

Fig. 12 Two final examples.

render bitmap textures onto the tiles. Furthermore, un-

like most determinstic filter effects, JNetic results can
be more variable and unpredictable in final appearance.

Research in computer graphics has explored the au-

tomatic vectorization of images. Our evolved vector im-
ages, however, are stylistically distinctive from most

of that work. For example, Swaminarayan and Prasad

[33] generates vector images that are somewhat graphic
design oriented in appearance. Image analysis is first

done to determine the construction of polygons, and

their colours are assigned using colour sampling tech-

niques. The results are akin to the “trace” functions
found in some commercial vector graphics applications.

Their ability to define complex polygons that directly

map to internal details within images means that their
results are more faithful renditions of the source im-

age than is possible with our simpler geometries. A

genetic algorithm might produce comparable results if
enhanced spline-based polygons were included as geo-

metric primitive. (Although we implement paint brush

strokes residing on spline paths, they are intended to

be non-photorealistic in appearance.) In addition, most
vectorization algorithm such as theirs are deterministic,

and multiple executions produce identical results. This

is in contrast to genetic algorithms, whose stochastic
nature means that separate executions may result in

very different outcomes – some more preferable to oth-

ers. The user is also able to influence evolved results
with our system, by engaging in interactive evolution.

Other automatic vectorization work such as [31,41] is

motivated in creating exact reproductions of the source

image. Therefore, their results are not comparable in
either intent nor appearance to our stylized output.

Other enhancements to JNetic are being considered.

Strategies for promoting population diversity would im-
prove performance. Convergence is a universal issue

with genetic algorithms, and runs often converge quickly

to a suboptimal solution. Recently, we have developed
an evo-art application called JNetic Textures, which

combines vector graphics and procedural textures to-

gether, in an attempt to combine the strengths of both

[4]. We see exciting prospects when mathematical mod-
els of aesthetics are considered [26,27]. We have also

been investigating the idea of vector-based animations,

and initial results are promising.
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