Low-Cost Microarchitectural Support for Improved
Floating-Point Accuracy

William R. Dieter Akil Kaveti Henry G. Dietz
di et er @ngr. uky. edu Akil.Kaveti @iky. edu hankd@ngr. uky. edu
Electrical and Computer Engineering Dept., University aucky

Abstract—Some processors designed for consumer applica-complexity required to suppoii4-bit floating point. More

tions, such as Graphics Processing Units (GPUs) and the CELL graphics applications will profit from additional low-pision

processor, promise outstanding floating-point performane for pipelines, which is what ATI and nVidia build.

scientific applications at commodity prices. However, IEEEsingle . . - . . .
precision is the most precise floating-point data type these Th_e residual register architecture discussed in this paper
processors directly support in hardware. Pairs of native flating- Provides a low hardware cost way to reduce the performance

point numbers can be used to represent a base result and apenalty of using multipl&2-bit floating-point values to extend
residual term to increase accuracy, but the resulting orderof the accuracy of intermediate computations when needed. Of
magnitude slowdown dramatically reduces the price/perfomance course, it also can be applied to enhance the accuracy of any

advantage of these systems.
By adding a few simple microarchitectural features, accepble other native precision. Our previous work in this area fecus

accuracy can be obtained with relatively little performanee ON efficient native-pair algorithms and data layouts for GPU
penalty. To reduce the cost of native-pair arithmetic, a regl- Software speculation algorithms to avoid the performarst c

ual register is used to hold information that would normally of more accuracy than necessary, and software implementa-
have been discarded after each floating-point computationThe tigns of the algorithms optimized for a GPU [6]
residual register dramatically simplifies the code, providng both Higher than native floating-point precision.can be ob-

lower latency and better instruction-level parallelism. . .) . . . ; .
tained with either integer arithmetic or native floatingio
hardware. Embedded processors without floating-pointsunit

|. INTRODUCTION (FPUs) implement IEEE floating-point entirely in software

. . ing int ithmetic, and the Gnu Bi Lib 1
Many problems solved on computers inherently involve re#ﬁmg Integer arrhmetic, an e Gnu Bignum Library [1]

numbers, but computer arithmetic in modern processorsis li plements arbitrary precision floating point using native
:) puter : . '€rn proc . integer operations. An alternative, which is the focus a$ th
ited to integer and floating-point arithmetic. With integeith-

.) X aper, is to use multiple floating-point numbers to represen
metic, the algorithm must be meticulously analyzed to cboog P b g-p P

: : S rror residuals. Each higher-accuracy value is spreadssicro
scaling factors that avoid underflow or overflow. Floatirmjrp th? mantissas of a sequence of native floating-point vahues |

arithmetic _operates on _numbe_rs s_tored as a sign, ExpongGiy -, he exponents in the lower components serve to align
and magnitude, essentially adjusting the scaling factars Fhe mantissas. Sequences of numbers can be used to obtain

tomal;ucalrlly. An ”.EdEE?’Q'b't rfsmgle pregllsmn) ﬂoatlngg{pomttarbitrary precision [13], groups of four numbers can be used
number nas a wide enougn range and farge enough man hly quadruple the native precision [8], or pairs of nensb

to accurately represent most physical measurements. Hamvvegan approximately double precision, commonly referredsto a

long sequences of floating-point computations found in MaWuble-doublevhen used with double precision numbers [3]

scientific and engineering application programs can iniced [4], [11]. We refer to a generalized notion of double-double
lround(f)ff errors, car;]cellat_lor:s, and_oj[her_ probl(ejm7s tr_?dmm asnative-pairwhen the native precision might not be double.
0SS of accuracy when Singie precision Is use [] J0ES, The primary problem with native-pair arithmetic is that it
b't.(dO.Uble precision) and somgtmg_s higher premsmmﬁgat usually takes ten or more native operations for each native-
point Is common!y used for. smentnjc computmg. ... pair operation. The only mechanism for higher accuracyén th
Ur?fo”ur?a“?'y’ implementing 84-bit roatmg-pqmt P'p‘?"”e IEEE 754 standard [10], without moving to a higher precision
requires §|gn|f|c§1ntly more hardware_ tharﬁab|_t pipeline. .is the “fused multiply-add,” oMADD instruction.MADD adds
Commodity multimedia processors, like Graphics Processithe oy pit product of twok-bit numbers to &k-bit accumula-

Uni;[js (GP;S) or thche"h [9] are de]s;ﬁ?g?‘]ﬂl for_ task§ IiI(?or. If the high bits of the product and the accumulator cgnce
rendering 3D scenes. For that purpose, Itfloating point o from the normally discarded low portion of the product

fOl'.mtd.m som_g SI?Ush(_)ftﬁln IS suf|f|C|ent, (?B?'b'lt roatlr_19 Ican be retained. UnfortunateljADD instructions often are
point 1S provided for highly complex models. Increasingly, implemented as true fused operations, so extra bits are

researchers are working toward using GPUs to accelerﬂr& used in the addition and accuracy is not improved.
non-graphical applications that require greater accurbay

the demand is not large enough to justify the extra circuif| M |crRoARCHITECTURAL SUPPORTFOR NATIVE-PAIR

Manuscript submitted: February 22, 2007; Manuscript aemegMarch 15, MUCh. of the overhead of native-pair a”thme_t'c comes fr(_)m
2007; Final manuscript received: March 27, 2007. computing the residual, or error term, resulting from rativ

floating-point arithmetic operations. For addition, sabtion, A. Native-Pair Addition and Subtraction

and multiplication part or all of the residual term is disbeal When two floating-point numbers and b are added, the

?hyeg;e dfsf:gr d\é\ge bpitrsp'(;f]g ?:sdi:jnL?arIe? (ladlijgatle:egls;efrltc())at?r?ve Oaddend with the smaller magnitude is shifted to align itsxad
) 9 gtp point with the radix point of the larger-magnitude adderid. |

register with a sign bitp,. gxponent bitsy.,,, +2 mantissa bits, 15| is larger thanlal, @ andb can be swapped, so we assume
and a complement flag bit, wherg andn,,, are the number of L . .
gﬂ > |b| to simplify the discussion.

exponent and mgntissg bits in a n(_a\tive roat?n_g-point numb Figure 1 shows a high-level schematic example of a floating-
irrisr;ieet(:jtl\t/)eI)i,hr;oltéré%uggnf f?r?nlztaﬁllg? %Tg k;g rlr? St?he a:r?)mn cﬁ’loint adder with a residual register. The logic that perform
usg the reysidual register will get the u.sual r?esult definethb € functions inside the dashed lines is representativeg |

9 g y t}épically present in a floating-point adder. Whether theeadsl

IEEE standard. Results stored in the residual register ean : i .
i structured much like the one shown here, is a two-path design

used to speed up extended-precision floating-point alyost . . ! AR

or some other design, we assume the residual registertcjrcui

by replacing sequences of instructions that compute elgunt/a . . SR
y replacing seq . : P is able to use these signals. The logic inside the area ldbele
results with a single residual register access.

To simplify the hardware, the residual register stores u Residual Register” is added to the basic floating-pointeadd

; . oo . {6 support the residual register.
normalized results. The residual register is normalizeédgus The adder has three logical st p lizationi-Add
the normalization unit already present for floating-poidtia . € adder nas three logical stages. Fre-hormalizationi-

or multiply, as it is moved to an architectural register. onfen and Post-normalization, though the actual implerion

way to implement this operation with minimal impact on thahay have more or fewer plpelln_e stggeg Pre-normgllzat|on
instruction set architecture (ISA) is to add BMOVRR r eg” shifts the manussa Of.thé. to "’.‘l'gn .'t ‘.N.'th the mantissa
instruction that normalizes the residual register ancestarin ©F ¢- The mantissa bits irb with significance less than

: . K exp(a)—(nm+1) : . . .
an architectural register. In this case, we assume eacinfjeat 2. . are stor_ed in th.e residual regis ter W'.th the least
significant bit always in the rightmost position, wiBMASK

point operation overwrites the previous value of the reslidu . T
register with the current residual value. masking off any bits irb that were added ta. The exponent

In out-of-order or superscalar processors a single pHysi&é?i set toexp(b) in pre-normalization. After rounding occurs
residual register will become a structural hazard whenipialt urlr:tg addition, ;h?j (iomplhe_mr;ent flag, I'St Sdet i thde tﬁ)]”maryd |
instructions produce residual results. To remove this rfuhzéesuld \r/]vas rt%un edto a hig tehr magnriuae, alr: Thelre$l fua
and allow the compiler more flexible scheduling, residualdu'd NAve the same sign as the primary resuit. The fogic for

from the lasiy operations can be stored in a logical queue, ar?(%tt'ngc can be expressed as= rnd & sign(a) @ sign(b),
the k" most recent residual accessed withOVRR eg, k” wherernd is true if and only if rounding occurred regardless

instruction. In a processor using register renaming, tedsd of the current rom_mdmg mgde.) .

can be assigned to physical floating-point registers usiggl ~ "When the residual register is moved to an architectural
similar to that used for assigning primary results to phylsicreQ'Ster' the r§5|dual mantissa is complem_ented if the com-
registers. A physical register assigned a residual candgmifr Plement flag is set, and the alignment unit already present

as soon ag + 1 subsequent operations not accessing thif the post-normalization stage aligns the residual msatis

register have been issued. Thus, code not using the residlfaf residual sign is set tond & sign(a), and the exponent
computed from theexp(d), exp(a) — exp(b), and the

register would have the same number of physical registéts : _ .
available if onlyq new physical registers are added. complement flag. More details about how the residual registe

Alternatively, if the residual register(s) are made acibdss 2nd complement flag are set and how to update the native-pair
as operand sources for the basic floating-point operatibage software algorithms proposed by others are given in a recent

would be no need foMOVRR instructions. The ISA would technical r(_eport [5_]'_) - o
have to be modified either to reserve existing register names Subtraction is trivially different from addition. The signit
to change the instruction encoding to specify a floating?poiOf the subtrahend is toggled and the two numbers are added.
register in which to store the residual. This approach megui
more hardware to obtain the maximum benefit, however.
additional normalization unit dedicated to the residuahits
would be needed to make residuals immediately available asSetting the multiplication residual register is simplearth
operands to later instructions. setting the addition residual register. Multiplication tefo n

In the following discussion, the sign, exponent, and maatishit numbers produces a result with up2e bits. The mantissa,
of the floating-point number are denoted asign(z), exp(z), mant(rr) stores the low: bits of the product after a multiply,
and mant(x), respectively. The primary result of a floating-andexp(rr) is set toexp(p) — (n., + 1) to align the residual
point operation is denotefl (zoy), and the residual ises(xo mantissa withp. When the result is rounded to a smaller
y). Whereo may be +', * —’, or * x’. In the IEEE 754 round- magnitude,sign(rr) is set tosign(p) and the complement
to-nearest-even mode, the residual register can guaranteeflag is cleared. Ifp is rounded to a larger magnitude then
y = fl(z oy) 4 res(z o y), becauser oy is never more than a-b = p+r = p — 26PP)="m L pp o = 262P(P)="m _ e,
1/2 unit in the last place fromfi(x o y). Other IEEE 754 That is, sign(rr) = sign(p) and the complement flag is set.
rounding modes allow larger errors, and therefore resgdu#l high-level schematic of a multiplier with a residual regis
cannot always be represented precisely. is shown in Figure 2.

AI”:?. Native-Pair Multiplication

Register File

lASl AE | AM] lle BE | BM
——— 11l
1|
suB AS AE AM BS BE BM
Compare & Swap AE - BE
LS LE LM SS SE SM
¢
) I
- 1 Complement
Pre-normalization ‘
chﬂ
out grs
Addition Qm:

Exp. Compare
EXP__ SHIFT
\ 0 1 \ 0 1

MOVRR

]
v
0 1
S
. l
EXP_ADJ NorTAahze ROUND %ﬂ lED'FFI l RE | R‘M l

[

Y/ — L comperen |
Postnormalg_‘ l ‘

‘ Residual Register

lCSl CE | CM

Figure 1. High-level schematic of a floating-point addertwmat residual register

As with the addition residual register, this design addastruction because the multiply-add requires an addecetwi
multiplexers in the critical path. The delay added by thetimul as wide as the native floating-point size.
plexers may affect the clock cycle time. The implementaiion
Figure 2 assumes that &h product bits are available. Some [1l. RESIDUAL REGISTERRESULTS
multiplier architectures only compute the carries for lowl@r Both the add and multiply residual register algorithms have
bits in the product. For these multipliers, additional veade peen tested with a C program simulating operations on péirs o
is required to compute the bottom bits of the product. numbers in the “Gaussian” and “Heavy Cancellation” pseudo-
Adding support for the low order bits adds complexity to theandom sequences described by McNamee [12]. The results
multiplier, but no more hardware is required than is needed ¢f the native-pair operations implemented using the saftwa

implement a fused/ADD instruction. only algorithm were compared with results using the sinadat
. .))) residual register. For each test sequence and operation, no
C. Other Native-Pair Floating-Point Operations errors were found in the simulation of one billion operaion

Compared to addition, subtraction, and multiplication, A VHDL model of the add and multiply residual registers
floating-point divide and square root instructions tydical and a FPU [2] were synthesized for a Xilinx Virtex4 FPGA
have a high latency. Moreover, current divide and squaré rdo evaluate hardware complexity and speed of the design.
algorithms do not produce a directly usable residual. Thougable | compares 32-bit FPUs without residual registerpB2-
it may be possible to implement a residual register for agividFPUs with residual register, and 64-bit FPUs. All perceesag
and square root, the savings in execution time is not sufficieare relative to the 32-bit design without a residual registe
to justify the added circuit complexity. Even so, the softsva For both addition and multiplication, the increase in sind a
native-pair divide and square root operations both useexati minimum clock period for the 32-bit residual register is muc
pair multiplication [5] and get a modest speedup from themaller than the increase for the 64-bit FPU. Even if the
multiply residual register. increased clock cycle time for the 64-bit FPUs is partially

A fused multiply-add instruction uses an adder with theidden by pipelining, 64-bit floating point operations vtill
full 2n,,-bits of precision in the product to minimize thehave higher latency than their 32-bit counterparts.
loss of accuracy. If the hardware does not support fusedThe complexity cited in Table | assumes the 64-bit FPUs
multiply-add, the residual register can be used to comgheée treplace the 32-bit FPUs. In that case, all floating-point add
fused multiply-add in only a few instructions [5]. The rasgd and multiply operations have the higher latency of 64-bit op
register hardware is simpler than that for a fused multgdgl erations, even though 32-bit floating-point may be sufficien

Register File

[as] 2 |

—] EXP_OFFSET

| PROD[2n, -1:0]
2n,
+
PROD[2n,-1:n_] | PROD[n_-1:0]
MOVRR
Normalize
EXP_ADJ M ROUND
RM
N F S o
B —
Normalization lCSl CE | cM l Residual Register
Figure 2. High-level schematic for the multiply residuagjister
Table |

COMPARISON OF IMPLEMENTATION COST AND DELAY OF ADDERS

Add

Multiply

Implementation Cost
(slices) | % Increase

Minimum Period
(ns) | % Increase

Implementation Cost
(slices) | % Increase

Minimum Period
(ns) | % Increase

32-Bit without Residual Registef 1461 0.0 | 18.2 0.0 2154 0.0 38.8 0.0
32-Bit with Residual Register 1620 109 | 18.9 3.8 2265 5.2 39.5 1.8
64-Bit without Residual Registef 2272 55.4 | 59.4 226.4 6142 185.1 | 1145 195.1

many cases. If the 32-bit FPUs are kept for higher performang3] D. H. Bailey, Y. Hida, K. Jeyabalan, X. S. Li, and B. Thonops

on 32-bit operations, then the implementation cost in@gas _ Multiprecision software directonyhttp://crd.lbl.gov/"dhbailey/mpdist/
include both 32-bit and 64-bit FPUs [4] T. J. Dekker. A floating-point technique for extendingethvailable
to include bo ! ' : precision. Numer. Math, 18:224-242, 1971.
(5]

W. R. Dieter and H. G. Dietz. Low-cost microarchitectuisupport
for improved floating-point accuracy. Technical Report EZIO6-
10-14, University of Kentucky, ECE Dept., Lexington, KY 4%
0046, http://www.engr.uky.edu/ dieter/pub/TR-ECE-@dD-14, Octo-
ber 2006.

] H. G. Dietz, W. R. Dieter, R. Fisher, and K. Chang. Flogtpoint
computation with just enough accuracy.ecture Notes in Computer
Science 3991:226 — 233, Apr 2006.

D. Goldberg. What every computer scientist should knbwua floating-
point arithmetic. ACM Computing Survey®3(1):5-48, 1991.

Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for quad-dble
precision floating point arithmetic. IfProc. IEEE Symp. on Comp.
Arith., page 0155, 2001.

[9] O. Hwa-Joon, S. M. Mueller, C. Jacobi, K. D. Tran, S. R. @&t B. W.
Michael, H. Nishikawa, Y. Totsuka, T. Namatame, N. Yano, hd{ida,
and S. H. Dhong. A fully-pipelined single-precision flogtipoint unit
in the synergistic processor element of a cell procesSpmposium on
VLSI Circuits June 2005.

8] IEEE. IEEE Standard for Binary Floating Point Arithmetic Std 754-
1985 1985.

S. Linnainmaa. Software for doubled-precision flogi¢point computa-
tions. ACM Trans. Math. Softw7(3):272—283, 1981.

J. M. McNamee. A comparison of methods for accurate satiam.
SIGSAM Bull. 38(1):1-7, 2004.

D. M. Priest. Algorithms for arbitrary precision floagj point arithmetic.
In Proc. IEEE Symp. on Comp. Ariflpages 132—-143. IEEE Computer
Society, June 1991.

IV. CONCLUSION

Although 32-bit floating-point hardware is now widely
available at low cost, a significant number of applications
require higher accuracy results tha®-bit intermediate cal-
culations directly provide. Because the applications etad
by these processors do not need higher precision arithmetig]
it is not economically justifiable to ad@4-bit floating-point (8]
hardware support. Native-pair arithmetic can increase the
accuracy of32-bit floating point to be competitive with that of
64-bit floating point. However, native-pair arithmetic casian
order of magnitude performance penalty, mainly to compute
residual terms using standard floating-point instructions

Several low-cost microarchitectural changes reduce t
overhead of computing these residuals for native-pair aem
tations. The primary change is the augmentation of additidm1]
subtraction, and multiplication hardware with residualise

: 12]
ters: a modest hardware enhancement, changing the ISA o[nFy
in that a new instruction is added to access the residuaéval(13]

REFERENCES

[1] The GNU MP bignum library. http://www.swox.com/gmp/.

[2] J. Al-Eryani. Fpu. OpenCores Arithmetic Core & Coproces
sor, http://www.opencores.org/projects.cgi/web/fpid@erview, Jan-
uary 2007.

