
Low-Cost Microarchitectural Support for Improved
Floating-Point Accuracy

William R. Dieter Akil Kaveti Henry G. Dietz
dieter@engr.uky.edu Akil.Kaveti@uky.edu hankd@engr.uky.edu

Electrical and Computer Engineering Dept., University of Kentucky

Abstract—Some processors designed for consumer applica-
tions, such as Graphics Processing Units (GPUs) and the CELL
processor, promise outstanding floating-point performance for
scientific applications at commodity prices. However, IEEEsingle
precision is the most precise floating-point data type these
processors directly support in hardware. Pairs of native floating-
point numbers can be used to represent a base result and a
residual term to increase accuracy, but the resulting orderof
magnitude slowdown dramatically reduces the price/performance
advantage of these systems.

By adding a few simple microarchitectural features, acceptable
accuracy can be obtained with relatively little performance
penalty. To reduce the cost of native-pair arithmetic, a resid-
ual register is used to hold information that would normally
have been discarded after each floating-point computation.The
residual register dramatically simplifies the code, providing both
lower latency and better instruction-level parallelism.

I. I NTRODUCTION

Many problems solved on computers inherently involve real
numbers, but computer arithmetic in modern processors is lim-
ited to integer and floating-point arithmetic. With integerarith-
metic, the algorithm must be meticulously analyzed to choose
scaling factors that avoid underflow or overflow. Floating-point
arithmetic operates on numbers stored as a sign, exponent,
and magnitude, essentially adjusting the scaling factors au-
tomatically. An IEEE32-bit (single precision) floating-point
number has a wide enough range and large enough mantissa
to accurately represent most physical measurements. However,
long sequences of floating-point computations found in many
scientific and engineering application programs can introduce
roundoff errors, cancellations, and other problems that lead to
loss of accuracy when single precision is used [7]. Thus,64-
bit (double precision) and sometimes higher precision floating-
point is commonly used for scientific computing.

Unfortunately, implementing a64-bit floating-point pipeline
requires significantly more hardware than a32-bit pipeline.
Commodity multimedia processors, like Graphics Processing
Units (GPUs) or the Cell [9] are designed for tasks like
rendering 3D scenes. For that purpose, the16-bit floating point
found in some GPUs often is sufficient, but32-bit floating
point is provided for highly complex models. Increasingly,
researchers are working toward using GPUs to accelerate
non-graphical applications that require greater accuracy, but
the demand is not large enough to justify the extra circuit

Manuscript submitted: February 22, 2007; Manuscript accepted: March 15,
2007; Final manuscript received: March 27, 2007.

complexity required to support64-bit floating point. More
graphics applications will profit from additional low-precision
pipelines, which is what ATI and nVidia build.

The residual register architecture discussed in this paper
provides a low hardware cost way to reduce the performance
penalty of using multiple32-bit floating-point values to extend
the accuracy of intermediate computations when needed. Of
course, it also can be applied to enhance the accuracy of any
other native precision. Our previous work in this area focused
on efficient native-pair algorithms and data layouts for GPUs,
software speculation algorithms to avoid the performance cost
of more accuracy than necessary, and software implementa-
tions of the algorithms optimized for a GPU [6].

Higher than native floating-point precision can be ob-
tained with either integer arithmetic or native floating-point
hardware. Embedded processors without floating-point units
(FPUs) implement IEEE floating-point entirely in software
using integer arithmetic, and the Gnu Bignum Library [1]
implements arbitrary precision floating point using native
integer operations. An alternative, which is the focus of this
paper, is to use multiple floating-point numbers to represent
error residuals. Each higher-accuracy value is spread across
the mantissas of a sequence of native floating-point values in
which the exponents in the lower components serve to align
the mantissas. Sequences of numbers can be used to obtain
arbitrary precision [13], groups of four numbers can be usedto
roughly quadruple the native precision [8], or pairs of numbers
can approximately double precision, commonly referred to as
double-doublewhen used with double precision numbers [3],
[4], [11]. We refer to a generalized notion of double-double
asnative-pairwhen the native precision might not be double.

The primary problem with native-pair arithmetic is that it
usually takes ten or more native operations for each native-
pair operation. The only mechanism for higher accuracy in the
IEEE 754 standard [10], without moving to a higher precision,
is the “fused multiply-add,” orMADD instruction.MADD adds
the2k-bit product of twok-bit numbers to a2k-bit accumula-
tor. If the high bits of the product and the accumulator cancel,
bits from the normally discarded low portion of the product
can be retained. Unfortunately,MADD instructions often are
not implemented as true fused operations, so extra bits are
not used in the addition and accuracy is not improved.

II. M ICROARCHITECTURAL SUPPORTFOR NATIVE -PAIR

Much of the overhead of native-pair arithmetic comes from
computing the residual, or error term, resulting from native

floating-point arithmetic operations. For addition, subtraction,
and multiplication part or all of the residual term is discarded
by the FPU. We propose adding aresidual registerto save
these discarded bits. The residual register is a floating-point
register with a sign bit,ne exponent bits,nm+2 mantissa bits,
and a complement flag bit, wherene andnm are the number of
exponent and mantissa bits in a native floating-point number,
respectively, not including the leading one bit in the mantissa
implied by the IEEE 754 format [10]. Programs that do not
use the residual register will get the usual result defined bythe
IEEE standard. Results stored in the residual register can be
used to speed up extended-precision floating-point algorithms
by replacing sequences of instructions that compute equivalent
results with a single residual register access.

To simplify the hardware, the residual register stores un-
normalized results. The residual register is normalized using
the normalization unit already present for floating-point add
or multiply, as it is moved to an architectural register. One
way to implement this operation with minimal impact on the
instruction set architecture (ISA) is to add a ”MOVRR reg”
instruction that normalizes the residual register and stores it in
an architectural register. In this case, we assume each floating-
point operation overwrites the previous value of the residual
register with the current residual value.

In out-of-order or superscalar processors a single physical
residual register will become a structural hazard when multiple
instructions produce residual results. To remove this hazard
and allow the compiler more flexible scheduling, residuals
from the lastq operations can be stored in a logical queue, and
thekth most recent residual accessed with a ”MOVRR reg,k”
instruction. In a processor using register renaming, residuals
can be assigned to physical floating-point registers using logic
similar to that used for assigning primary results to physical
registers. A physical register assigned a residual can be freed
as soon asq + 1 subsequent operations not accessing that
register have been issued. Thus, code not using the residual
register would have the same number of physical registers
available if onlyq new physical registers are added.

Alternatively, if the residual register(s) are made accessible
as operand sources for the basic floating-point operations,there
would be no need forMOVRR instructions. The ISA would
have to be modified either to reserve existing register namesor
to change the instruction encoding to specify a floating-point
register in which to store the residual. This approach requires
more hardware to obtain the maximum benefit, however. An
additional normalization unit dedicated to the residual results
would be needed to make residuals immediately available as
operands to later instructions.

In the following discussion, the sign, exponent, and mantissa
of the floating-point numberx are denoted assign(x), exp(x),
and mant(x), respectively. The primary result of a floating-
point operation is denotedfl(x◦y), and the residual isres(x◦
y). Where◦ may be ‘+’, ‘ −’, or ‘×’. In the IEEE 754 round-
to-nearest-even mode, the residual register can guaranteex ◦
y = fl(x ◦ y) + res(x ◦ y), becausex ◦ y is never more than
1/2 unit in the last place fromfl(x ◦ y). Other IEEE 754
rounding modes allow larger errors, and therefore residuals
cannot always be represented precisely.

A. Native-Pair Addition and Subtraction

When two floating-point numbersa and b are added, the
addend with the smaller magnitude is shifted to align its radix
point with the radix point of the larger-magnitude addend. If
|b| is larger than|a|, a and b can be swapped, so we assume
|a| > |b| to simplify the discussion.

Figure 1 shows a high-level schematic example of a floating-
point adder with a residual register. The logic that performs
the functions inside the dashed lines is representative of logic
typically present in a floating-point adder. Whether the adder is
structured much like the one shown here, is a two-path design,
or some other design, we assume the residual register circuitry
is able to use these signals. The logic inside the area labeled
“Residual Register” is added to the basic floating-point adder
to support the residual register.

The adder has three logical stages: Pre-normalization, Addi-
tion, and Post-normalization, though the actual implementation
may have more or fewer pipeline stages. Pre-normalization
shifts the mantissa of theb to align it with the mantissa
of a. The mantissa bits inb with significance less than
2exp(a)−(nm+1) are stored in the residual register with the least
significant bit always in the rightmost position, withSMASK
masking off any bits inb that were added toa. The exponent
is set toexp(b) in pre-normalization. After rounding occurs
during addition, the complement flag,c, is set if the primary
result was rounded to a higher magnitude, and the residual
would have the same sign as the primary result. The logic for
settingc can be expressed asc = rnd ⊕ sign(a) ⊕ sign(b),
wherernd is true if and only if rounding occurred regardless
of the current rounding mode.

When the residual register is moved to an architectural
register, the residual mantissa is complemented if the com-
plement flag is set, and the alignment unit already present
in the post-normalization stage aligns the residual mantissa.
The residual sign is set tornd ⊕ sign(a), and the exponent
is computed from theexp(b), exp(a) − exp(b), and the
complement flag. More details about how the residual register
and complement flag are set and how to update the native-pair
software algorithms proposed by others are given in a recent
technical report [5].

Subtraction is trivially different from addition. The signbit
of the subtrahend is toggled and the two numbers are added.

B. Native-Pair Multiplication

Setting the multiplication residual register is simpler than
setting the addition residual register. Multiplication oftwo n
bit numbers produces a result with up to2n bits. The mantissa,
mant(rr) stores the lown bits of the product after a multiply,
andexp(rr) is set toexp(p)− (nm + 1) to align the residual
mantissa withp. When the result is rounded to a smaller
magnitude,sign(rr) is set tosign(p) and the complement
flag is cleared. Ifp is rounded to a larger magnitude then
a · b = p + r = p− 2exp(p)−nm + rr, so r = 2exp(p)−nm − rr.
That is,sign(rr) = sign(p) and the complement flag is set.
A high-level schematic of a multiplier with a residual register
is shown in Figure 2.

AS AE AM

CS CE CM

BS BE BM

EDIFFRSCF

Register File

Residual Register

Pre-normalization

Addition

Post-normalization

AE - BE

Shift

LMLELS SMSESS

BMBEBSAMAEAS

SMASK

SETG

RE RM

grs

grs+

Complement

Complement

SUB

+

-

Normalize

ROUNDEXP_ADJ

0 1

M

Cout

nm

0 1

MOVRR

0 10 1

Exp. Compare
EXP SHIFT

Compare & Swap

Figure 1. High-level schematic of a floating-point adder with a residual register

As with the addition residual register, this design adds
multiplexers in the critical path. The delay added by the multi-
plexers may affect the clock cycle time. The implementationin
Figure 2 assumes that all2n product bits are available. Some
multiplier architectures only compute the carries for low order
bits in the product. For these multipliers, additional hardware
is required to compute the bottomn bits of the product.
Adding support for the low order bits adds complexity to the
multiplier, but no more hardware is required than is needed to
implement a fusedMADD instruction.

C. Other Native-Pair Floating-Point Operations

Compared to addition, subtraction, and multiplication,
floating-point divide and square root instructions typically
have a high latency. Moreover, current divide and square root
algorithms do not produce a directly usable residual. Though
it may be possible to implement a residual register for divide
and square root, the savings in execution time is not sufficient
to justify the added circuit complexity. Even so, the software
native-pair divide and square root operations both use native-
pair multiplication [5] and get a modest speedup from the
multiply residual register.

A fused multiply-add instruction uses an adder with the
full 2nm-bits of precision in the product to minimize the
loss of accuracy. If the hardware does not support fused
multiply-add, the residual register can be used to compute the
fused multiply-add in only a few instructions [5]. The residual
register hardware is simpler than that for a fused multiply-add

instruction because the multiply-add requires an adder twice
as wide as the native floating-point size.

III. R ESIDUAL REGISTERRESULTS

Both the add and multiply residual register algorithms have
been tested with a C program simulating operations on pairs of
numbers in the “Gaussian” and “Heavy Cancellation” pseudo-
random sequences described by McNamee [12]. The results
of the native-pair operations implemented using the software-
only algorithm were compared with results using the simulated
residual register. For each test sequence and operation, no
errors were found in the simulation of one billion operations.

A VHDL model of the add and multiply residual registers
and a FPU [2] were synthesized for a Xilinx Virtex4 FPGA
to evaluate hardware complexity and speed of the design.
Table I compares 32-bit FPUs without residual register, 32-bit
FPUs with residual register, and 64-bit FPUs. All percentages
are relative to the 32-bit design without a residual register.
For both addition and multiplication, the increase in size and
minimum clock period for the 32-bit residual register is much
smaller than the increase for the 64-bit FPU. Even if the
increased clock cycle time for the 64-bit FPUs is partially
hidden by pipelining, 64-bit floating point operations willstill
have higher latency than their 32-bit counterparts.

The complexity cited in Table I assumes the 64-bit FPUs
replace the 32-bit FPUs. In that case, all floating-point add
and multiply operations have the higher latency of 64-bit op-
erations, even though 32-bit floating-point may be sufficient in

PROD[2nm-1:0]

AS AE AM BS BE BM

Register File

X

nm

2nm

nm

CS CE CM

RSCF

Residual RegisterNormalization

RE RM

Complement

+

-

Normalize

ROUNDEXP_ADJ M

nm0 1

MOVRR

0 10 1

+

+

EXP_OFFSET

PROD[nm-1:0]PROD[2nm-1:nm]

Figure 2. High-level schematic for the multiply residual register

Table I
COMPARISON OF IMPLEMENTATION COST AND DELAY OF ADDERS

Add Multiply
Implementation Cost Minimum Period Implementation Cost Minimum Period
(slices) % Increase (ns) % Increase (slices) % Increase (ns) % Increase

32-Bit without Residual Register 1461 0.0 18.2 0.0 2154 0.0 38.8 0.0
32-Bit with Residual Register 1620 10.9 18.9 3.8 2265 5.2 39.5 1.8
64-Bit without Residual Register 2272 55.4 59.4 226.4 6142 185.1 114.5 195.1

many cases. If the 32-bit FPUs are kept for higher performance
on 32-bit operations, then the implementation cost increases
to include both 32-bit and 64-bit FPUs.

IV. CONCLUSION

Although 32-bit floating-point hardware is now widely
available at low cost, a significant number of applications
require higher accuracy results than32-bit intermediate cal-
culations directly provide. Because the applications targeted
by these processors do not need higher precision arithmetic,
it is not economically justifiable to add64-bit floating-point
hardware support. Native-pair arithmetic can increase the
accuracy of32-bit floating point to be competitive with that of
64-bit floating point. However, native-pair arithmetic carries an
order of magnitude performance penalty, mainly to compute
residual terms using standard floating-point instructions.

Several low-cost microarchitectural changes reduce the
overhead of computing these residuals for native-pair compu-
tations. The primary change is the augmentation of addition,
subtraction, and multiplication hardware with residual regis-
ters: a modest hardware enhancement, changing the ISA only
in that a new instruction is added to access the residual value.

REFERENCES

[1] The GNU MP bignum library. http://www.swox.com/gmp/.
[2] J. Al-Eryani. Fpu. OpenCores Arithmetic Core & Coproces-

sor, http://www.opencores.org/projects.cgi/web/fpu100/overview, Jan-
uary 2007.

[3] D. H. Bailey, Y. Hida, K. Jeyabalan, X. S. Li, and B. Thompson.
Multiprecision software directory.http://crd.lbl.gov/˜dhbailey/mpdist/.

[4] T. J. Dekker. A floating-point technique for extending the available
precision. Numer. Math., 18:224–242, 1971.

[5] W. R. Dieter and H. G. Dietz. Low-cost microarchitectural support
for improved floating-point accuracy. Technical Report ECE-2006-
10-14, University of Kentucky, ECE Dept., Lexington, KY 40506-
0046, http://www.engr.uky.edu/˜dieter/pub/TR-ECE-2006-10-14, Octo-
ber 2006.

[6] H. G. Dietz, W. R. Dieter, R. Fisher, and K. Chang. Floating-point
computation with just enough accuracy.Lecture Notes in Computer
Science, 3991:226 – 233, Apr 2006.

[7] D. Goldberg. What every computer scientist should know about floating-
point arithmetic.ACM Computing Surveys, 23(1):5–48, 1991.

[8] Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for quad-double
precision floating point arithmetic. InProc. IEEE Symp. on Comp.
Arith., page 0155, 2001.

[9] O. Hwa-Joon, S. M. Mueller, C. Jacobi, K. D. Tran, S. R. Cottier, B. W.
Michael, H. Nishikawa, Y. Totsuka, T. Namatame, N. Yano, T. Machida,
and S. H. Dhong. A fully-pipelined single-precision floating point unit
in the synergistic processor element of a cell processor.Symposium on
VLSI Circuits, June 2005.

[10] IEEE. IEEE Standard for Binary Floating Point Arithmetic Std 754-
1985, 1985.

[11] S. Linnainmaa. Software for doubled-precision floating-point computa-
tions. ACM Trans. Math. Softw., 7(3):272–283, 1981.

[12] J. M. McNamee. A comparison of methods for accurate summation.
SIGSAM Bull., 38(1):1–7, 2004.

[13] D. M. Priest. Algorithms for arbitrary precision floating point arithmetic.
In Proc. IEEE Symp. on Comp. Arith., pages 132–143. IEEE Computer
Society, June 1991.

