TUGboat, Volume 3, No. 2
* % % % % % % ¥ * % =

Software

¥ % % * % X* ¥ * X % *

TEX82 MEMORY STRUCTURE

Editor’s note: The following diagram shows the relative emount of memory required by TEX82
for various tables and work areas. R has been redraum (not using TEX, although that would be
a good problem) from a slide that Don Knuth prepored for the lecture on data structures at the
TEXS2 Short Course held in conjunction with the July TUG meeting.

]
o
3
4 String Pool
Equive K|
lents
Table TaxtOut
%==41 Math Semantics
=L
- = o
pugm-. Dynamic Memory
.n
g::lg; Paragraphs —"i]
]

= 1K bytes

Memory represented in this diagram is approximately 260K bytes, pius (not shown) 100K of
dynsmic memory. On a DEC 20, TEX82 occupies total memory of between 350K and 600K

bytes, excluding Pascal run-time requirements.

* % % * % ® % * *x %x x%

Editor’s note: David Fuchs has provided the following copy deseribing the format of .DVI files,
including some changes made since the July TUG meeting. Aa\mmofﬂ\edmuma
in David's “News from Stanford™ article, which begins on page 20.

14 . TUGboat, Volume 3, No. 2

2 DEVICE-INDEPENDENT FILE FORMAT TRXS2 3051

1. Device-independent file format. The most important output produced by a run of TEX is the
“device independent” (DVI) file that specifies where characters and rules are to appear on printed pages.
The form of these files was designed by David R. Fuchs in 1979. Almost any reasonable device can be
driven by a program that takes DVI files as input, and dozens of such DVI-to-whatever programs have been
written. Thus, it is possible to print the output of TEX on many dilferent kinds of equipment, using TEX as
a device-independent “front end.”)

A DVI file is a stream of 8-bit bytes, which may be regarded as a scries of commands in a machine-like
language. The first byte of each command is the operation code, and this code is followed by zero or
more bytes that provide parameters to the command. The parameters themselves may consist of several
consccutive bytes; for example, the ‘set_rule’ command has two parameters, each of which is four bytes
long. Paramcters are usually regarded as nonnegalive integers; but four-byte-long parameters, and shorter
paramcters that denote distances, can be either positive or negalive. Such parameters arc given in two's
complement notation. For example, a two-byte-long distance parameter has a value between —2'5 and
215 -1. ‘

A DVI file consists of a “prcamble,” followed by a sequence of one or more “pages,” followed by a
“postamble.” The preamble is simply a pre command, with its parameters that define the dirnensions used
in the file; this must come first. Each “page” consists of a bop command, followed by any number of other
commands that tell where characters are to be placed on a physical page, followed by an eop command. The
pages appear in the order that TEX generated them. If we ignore nop commands and fai.def commands
(which are allowed between any two commands in the filc), each cop command is immediately followed by
a bop command, or by a post command; in the latter case, there are no more pages in the file, and the
remaining bytes form the postamble. Further delails about the postamble will be explained later.

Some parameters in DVI commands arc “pointers.” These are four-byte quantities that give the location
number of some other byte in the file; the first byte is number 0, then comes number 1, and so on. For
example, one of the parameters of a bop command points to the previous bop; this makes it feasible to read
the pages in backwards order, in case the results are being directed to a device that stacks its output face
up. Suppose the preamble of a DVI file occupies bytes 0 to 99. Now if the first page occupies byles 100 to
999, say, and if the second page occupies bytes 1000 to 1999, then the hop that starts in byte 1000 points
to 100 and the bop that starts in byte 2000 points to 1000. (The very first bop, i.e., the one that starts in
byte 100, has a pointer of —1.)

2. The DVI format is intended to be both compact and easily interpretcd by a machine. Compactness is
achieved by making most of the information implicit instead of explicit; when a DVI-reading program reads
the commands for a page, it keeps track of several quantities: (a) The current font f is an integer; this
value is changed only by fat and fnt_num commands. (b) The current position on the page is given by two
numbers called the horizontal and vertical coordinates, k and v. Both coordinates are zero at the upper
left corner of the page; moving to the right corresponds to increasing the horizontal coordinate, and moving
down corresponds to increasing the vertical coordinate. Thus, the coordinates are essentially Cartesian,
except that vertical directions are flipped; the Cartesian version of (k,v) would be (&, —v). {c) The current
spacing amounts are given by four numbers w, z, y, and 2, where w and arc uscd for horizontal spacing
and where y and z are used for vertical spacing. (d) There is a stack containing (k, v, w, z,y, 2) values; the
DVI commands push and pop arc used Lo change the current level of operation. Note that the current font f
is not pushed and popped; the stack contains only information about positioning.

The values of h, v, w, z, y, and z are signcd inlegers having up to 32 bils; including the sign. Since
they represent physical distances, there is a small unit of measurement such that increasing A by 1 means
moving a certain tiny distance to the right. The actual unit of measurement is variable, as explained below;
TEX sets things up so that its DYI output is in sp units, i.e., scaled points, in agreement with all the scaled
dimensions in TEX’s data structures,

TUGboat, Volume 3, No. 2 15

3083 TEXss DEVICE-INDEPENDENT FiLE FORMAT 3

8. Here is list of all the commands that may appear in a DVI file. With each command we give its symbolic
name (e.g., bop), its opcode byte (e.g., 129), and its paramcters (if any). The parameters are followed by a
bracketed number telling how many bytes they occupy; for example, ‘p[1]’ means that parameter p is four
bytes long. '
set_char_0 0. Typeset character number 0 from font f such that the reference point of the character is
at (h,v). Then increasc k by the width of that character. Note that a character may have sero or
. negative width, so one cannot be sure that A will advance after this command; but A usually does
increase. '
set_char.1 through set.char.127 (opcodes 1 to 127). Do the operations of set_char_.0, but use the
appropriate character number instead of character 0. :
setl 128 ¢[1]. Same as set_char_0, except that character number ¢ is typeset. TEX82 uses this command
for characters in the range 128 < ¢ < 256.
set? 129 c[2]. Same as setl, except that ¢ is two bytes long, so it is in the range 0 < ¢ < 85536. TEX82
never uses this command, biit it should come in handy for extensions of TX that dcal with oriental
languages.
set? 130 ¢|3]. Same as sctl, except that c is three bytes long, so it can be as large as 22 — 1. Not even
the Chinese language has this many characters, but this command might prove useful in some yet
unforescen extension.
setd 181 ¢[4]. Same as seil, except that c is four bytes long. Imagine that.
set rule 132 al4] b4]. Typeset a solid black rectangle of height a and width b, with its bottom left corner
al (h,v). Then set b «— h +b. If either a < 0 or b < 0, nothing should be typeset. Note that if
b < 0, the value of h will decrease even though nothing clse happens. See below for details about
how to typeset rules so that consistency with METRAFONT is guaranteed.
putl 133 c[1]. Typeset character number ¢ from font f such that the reference point of the character is
at (h,v). (The ‘put’ commands are exactly like the ‘set’ commands, except that they simply put out
a character or a rule without moving the reference point afterwards.)
put? 134 c[2]. Same as set2, except that h is not changed.
putd 135 c[3]. Same as set?, except that h is not changed.
put{ 136 c[4]. Samnc as setf, except that A is not changed.
pui_rule 137 a[4] b[4]. Same as sei_rule, except that h is not changed.

nop 138. No operation, do nothing. Any number of nop’s may occur between DVI commands, but a nop
cannot be inserted between 2 command and its parameters or between two parameters.

bop 139 col4] c1[4] ... co[4] p[4]. Beginning of a page: Set (h,v,w,z,y,2) — (0,0,0,0,0,0) and set the
stack empty. Set the currcnt font f to an undefined value. The ten ¢; parameters hold the values
of \count0 ... \count9 in TEX at the time \shipout was invoked for this page; they can be used to
identify pages, if a uscr wants to print only part of a DVI file. The parameter p points to the previous
bop command in the file, where the first bop has p = —1.

eop 140. End of page: Print what you have read since the previous bop. Al this point the stack should
be empty. (The DVI-reading programs that drive most output devices will have kept a bulfer of the
material that appears on the page that has just ended. This material is largely, but not cntirely, in
order by v coordinate and (for fixed v) by h coordinate; so it usually necds to be sorted into some
order that is appropriate for the device in question.)

push 141. Push the current values of (h,v,w, 2,9, z) onto the top of the stack; do not change any of these
valucs. Note that f is not pushed. '

pop 142. Pop the top six values off of the stack and assign them respectively to (&,v,w,2,y,2). The
number of pops should never exceed the number of pushes, since it would be highly embarrassing if
the stack were empty at the time of a pop command.

right! 143 b{1]. Set h «— h + b, i.c., move right b units. The parameter is a signed number in two’s
complement notation, —128 < b < 128; if & < 0, the reference point actually moves left.

18

TUGboat, Volume 3, No. 2

4 DEVICE-INDEPENDENT FILE FORMAT TrX82 3083

right? 144 b{2]. Same as rightl, cxcept that b is a two-byte quantity in the range —32768 < b < 32768.

right? 145 b[3]. Samc as right{, exccpl that b is a three-byte quantity in the range —2% < b < 223,

right{ 116 b[4). Same as right!, cxcept that b is a four-byte quantity in the range —23! < b < 23,

w0 147. Set h «— h + w; i.c., move right w units. With luck, this paramelerless command will usually
suffice, because the same kind of motion will occur several times in succession; the following commands
explain how w gets particular values.

w! 148 b{1}. Set w «— b and h «— h +b. The value of b is a signed quantity in two’s complement notation,
~128 < b < 128. This command changes the current w spacing and moves right by b.

w2 149 b[2]. Samc as w!, but b is two bytes long, —32768 < b < 32768.

wd 150 b[3]. Same as wi, but b is three bytes long, —223 < b < 223,

wf 151 b[4]. Same as wi, but b is four bytes long, —23! < b < 23,

z0 152. Set h «— h -+ z; i.e., move right = units. The ‘a2’ commands are like the ‘w’ commands except that
they involve z instead of w.

21 153 b[1). Set z « band h « h +b. The value of b is a signed quantily in two’s complement notation,
—128 < b < 128. This command changes the currcut = spacing and moves right by b.

22 154 b[2]. Same as z1, but b is two bytes long, —32768 < b < 32768.
28 155 b3). Same as 21, but b is three bytes long, —2%% < b < 2%.
z{ 156 b[4]. Same as z1, but b is four bytes long, —2%! < b < 231,

doum! 157 a[l]. Set v «— v + a, i.c., move down a units. The parameter is a signed number in two'’s
complerment notation, —128 < a < 128; if a < 0, the refercnce point actually moves up.

down?2 158 a[2]. Same as downl!, except that a is a two-byte quantity in the range —32768 < a <-32768.

downd 159 a[3]. Same as downl, except that a is a three-byte quantity in the range —2%3 < a < 2%,

downj 160 a[4]. Same as down!, except that a is a four-byte quantity in the range —23! < o < 231,

y0 181. Set v «— v + y; i.e., move down y units. With luck, this parameterless command will usually
sullice, because the same kind of motion will occur several times in succession; the following commands
explain how y gets pacticular values.

y1 162 «{l]. Set y « a and v — v + a. The valuc of a is a signed quantity in two’s complement notation,
—128 < a < 128. This command changes the current y spacing and moves down by a.

y2 163 a[2]. Same as y!, but a is two bytes long, —32768 < a < 32768.

y8 164 a[3]. Same as yI, but a is three bytes long, —22* < a < 223,

¥4 165 a[4]. Same as y1, but a is four bytes long, —23! < a < 23!,

" 20 168. Set v « v + z; i.e., move down z units. The ‘z’ commands are like the ‘y’ commands except that

they involve z instead of y.

z1 167 a[l]. Set z + a and v « v + a. The value of a is a signed quantity in two’s complement notation,
~128 < a < 128. This command changes the current z spacing and moves down by a.

22 168 a[2]. Same as z1, but a is two bytes long, —32768 < a < 32768.

28 169 a[3]. Same as 21, but a is three bytes long, —223 < a < 223,

24 170 a[4]. Same as 21, but a is four bytes long, —23! < a < 231,

nt.num_0 171. Set f « 0. Font 0 must previously have been defined by a fni_def instruction, as explained
below.

Jat.num_1 through fat.num_63 (opcodes 172 to 234). Set f +— 1, ..., f «— 63, respectively.

Jnt1 235 k[1). Sct f + k. T5X82 uscs this command for font numbers in the range 84 < k < 256.

/nt2 236 k{2). Same as fntl, cxcept that & is two byles long, so it is in the range 0 < k < 66536, TyX82
never generates this command, but large font numbers may prove usclul for specifications of color
or texture, or they may be used for special fonts that have fixed nutmbers in some external coding
scheme,

TUGboat, Volume 3, No. 2 17

3053 1pXss2 DEVICE-INDEPENDENT FILE FORMAT 5

fnt8 237 k[3]. Same as fnil, except that k is three bytes long, 8o it can be as large as 23 — 1.

Jnt4 238 k[4]. Same as fnil, except that k is four bytes long; this is for the rcally big font numbers (and
for the negative ones).

221 239 k[3] z[k]. This command is undcfined in general; it functions as a (k+2)-byte nop unless speclal
DVI-reading programs arc being used. TEX82 generates zzz! when a normal \xsend appears, setting
k to the number of bytes being sent. It is recommended that z be a string having the form of a
keyword followed by possible parameters relevant to that keyword.

zzzf 240 k(2] #[k]. Like zzz1, but 0 < k < 65538.

zzz8 241 k(3] z[k]. Like zzz1, but 0 < k < 2%,

zzzj 242 k[4] z[k]: Like zzz1, but k can be ridiculously large. TEX82 uses zzz{ when sending a string of
length 256 or more.

Jat_deft 243 k{1] c[4] s[4] d[4] af1] {[1] nla +{]. Define font k, where 0 < k < 83; font definitions will be
explained shortly.

Jnt_def2 244 k2] c[4] s[4] d[4] a[1] {[1] nla + I]. Define font k, where 0 < k < 85536.

Int_def3 245 k[3] c[4] s[4] d[4] al] I1] n[a + !]. Define font k, where 0 < k < 2%4.

Int_def} 240 k4] c[4] o[4] d[4] a[1] I[1] nfa +{]. Define font k, where —23! < k-< 2%.

pre 247 i[1] num(4] den[4] mag[4] k[l] z[k]. Beginning of the preamble; this must come at the very
beginning of the file. Parameters ¢, num, den, mag, &, and z are explained below.

post 248. Beginning of the postamble, see below.

post_post 249, Ending of the postamble, sce below.

Commands 250-255 are undefined at the present time.

4. The preamble contains basic information abouf the file as a whole. As stated above, there are six

parameters;
i[1] num[4] den[4] mag[4] k(1] z{k].

The i byte jdentifies DVI format; currently this byte is always set to 2. (Some day we will set i = 3, when
DVI format makes another incompatible change—perhaps in 1992.)

The nexi two parameters, num and dcn, are positive integers that define the units of measurement; they
are the numerator and denominator of a fraction by which all dimensions in the DVI file could be multiplied
in order te get lengths in units of 10~7 meters. Since there are 72.27 points per inch and 2.54 centimeters
per inch, and since TEX82 works with scaled points where there are 2!® sp in a point, TEX82 sets num =
25400000 and den = 7227 - 216 = 473628672.

The mag parameter is what T}iX calls \mag, i.e., 1000 times the desired magnification. The actual fraction
by which dimensions are multiplied is therefore mag - num /1000den. Note that if a TEX source docuraent
does not call for any ‘true’ dimensions, and if you change it only by specifying a different \mag setting, the
DVI filg that TjX creates will be completely unchanged except for the value of mag in the preamble and
postamble. (Fancy DVI-reading programs allow uscrs to override the mag sctting when a DVI file is being
printed.)

Finally, k& and z allow the DVI writer to include a comment, which is not interpreted further. The length
of comment z is k, where 0 < & < 258.

define id_byte = 2 {identifies the kind of DVI files déscribed here}

18 "~ TUGbosat, Volume 3, No. 2

6 DEVICE-INDEPENDENT FILE FORMAT TEX82 3055

5. Font definitions foi' a given font number k contain further parameters
¢[4] s[4] d[4] a[1] {[1] n[a +1).

The four-byte value ¢ is the check sum that TiiX found in the TFM file (or this font; ¢ should match the
check sum of the font found by programs that read this DVI file.

Parameler. 5 contains a fixed-point scale factor that is applied to the character widths in font k; font
dimensions in TFM filcs and other font files are relative to this quantity, which is called Lhe “at size” elsewhere
in this documentation. The value of s is always positive and less than 227, It is given in the same units as
the other DVI dimensions, i.e., in sp when ‘I}X82 has made the file. Parameter d is similar to s; ib is the
“design size,” and it is given in DVI unils that have not been corrected for the magnification mag found in
the preamble. Thus, font & is to be used at mag - 3/1000d times its normal size.

The remaining part of a font definition gives the external name of the font, which is an ascii string of
length a + {. The number a is the length of the “arca” or directory, and { is the length of the font name
itsell; the standard local system font arch is supposed to be used when @ = 0. The n ficld contains the area
in its first a bytes.

Font definitions must appear before the first use of a particular font number. Once font k is defined, it
must not be defined again; however, we shall sce below that font definitions appear in the postamble as well
as in the pages, so in this sense each fonl number is defined cexactly twice, if at all. Like nop cornmands,
font definitions can appear before the first bop, or between an eop and a bop.

8. Sometimes it is desirable to make horizontal or vertical rules line up precisely with certain features in
characters of a font. It is possible to guarantec the correet matching between DVI output and the characters
generated by METRFONT by adhering to the following principles: (1) The METAFONT characters should
be positioned so that a bottom edge or left edge that is supposed to line up with the bottom or left edge of
a rule appears at the reference point, i.e., in row 0 and column 0 of the METAFONT raster. This cnsures
that the position of the rule will not be rounded differently when the pixel size is not a perfect multiple
of the unils of measurement in the DVI file. (2) A typesct rule of height a > 0 and width & > 0 should
be equivalent to a METAFONT-generated character having black pixels in precisely those raster positions
whosc METAFONT coordinates satisfy 0 < z < ab and 0 < y < aa, where a is the number of pixels per
DVI unit. :

7. The last page in a DVI fle is followed by ‘post’; this command introduces the postamble, which
summarizes important facts that TEX has accumulated about the file, making it possible to print subsects of
the data with reasonable efficiency. The postamble has the form

post p[d] num[4] denld] mag{4] I[4] ul4] s{2] ¢[2]
{ font dcfinitions)
post_post g[1] i[1] 223’s[> 4]

Here p is a pointer to the final bop in the file. The next three parameters, num, den, and mag, are duplicates
of the quantilics that appcaced in the precamble.

Paramciers { and u give respectively the height-plus-depth of the tallest page and the width of the widest
page, in the same units as other dimensions of the file. These numbers mighi- be used by a DVI-reading
program to position individual “pages” on large sheets of film or paper.

Parameler s is the maximum stack depth (i.e., the largest excess of push commands over pop commands)
needed to proccss this file. Then comes 2, the total number of pages (bop commands) prescnt.

The postamble continues wilh font definitions, which are any number of fnt_def commands as described
above, possibly intersperscd with nop commands. fach font number that is used in Lhe DVI file must be
defined exactly twice: Once before it is first sclected by a fnt ecommand, and once in the postamble.

TUGboet, Volume 3, No, 2 ' 19

3088 TEX82 DEVICRE-INDEPENDENT FILE FORMAT 7

8. The last part of the postamble, following the post.post byte that signifies the end of the font definitions,
contains ¢, a pointer to the post command that started the postamble. An identilication byte, ¢, comes nest;
this currently equals 2, as in the preamble.

The £ byte is followed by four or more bytes that are all equal to the decimal number 223 (i.e., “337 in
octal). TEX puts out four to seven of these trailing bytes, until the total length of the file is a multiple of
four bytes, since this works out best on machines that pack four bytes per word; but any number of 223’s
is allowed, as long as there are at least four of them. In effect, 223 is a sort of signature that is added at
the very end.

This curious way to finish off a DVI file makes it feasiblc for DVI-reading programs to find ‘the postamble
first, on most computers, even though I1XX wants to write the postamble last. Most operating systems
permit random access to individual words or bytes of a file, so the DVI reader can start at the end and skip
backwards over the 223’s until finding the identification byle. Then it can back up four bytes, read ¢, and
move to hyte ¢ of the file. This byte should, of course, contain the value 248 (post); now the postamble can
be read, so the DVI reader discovers all the information nceded for typesetting the pages. Note that it is
also poasible to skip through the DVI file at reasonably high speed to locate a particular page, if that proves
desirable. This saves a lot of time, since DVI files used in production jobs tend to be large.

Unfortunately, however, standard PASCAL does not include the ability to access a random position in a

_ file, or oven to determine the length of a file. Almost all systems nowadays provide the necessary capabilities,

8o DVI format has been designed to work most efficiently with modern operating systems. But if DVI files
have to be processed under the restrictions of standasd PASCAL, onc can simply read them from front to
back, since the necessary header information is present in the preamble and in the font definitions. (The
! and y and s and ¢ parameters, which appear only in the postamblt., are “Irills” that are handy but not
absolutely necessary.)

