
The Fractal Nature of Bezier Curves

Ron Goldman
Department of Computer Science
Rice University
6100 Main Street
Houston, Texas 77005-1892
rng@cs.rice.edu

Abstract

Fractals are attractors -- fixed points of iterated
function systems. Bezier curves are polynomials -- linear
combinations of Bernstein basis functions. The de
Casteljau subdivision algorithm is used here to show that
Bezier curves are also attractors. Thus, somewhat
surprisingly, Bezier curves are fractals. This fractal nature
of Bezier curves is exploited to derive a new rendering
algorithm for Bezier curves.

1. Introduction

Fractals are famous both for their strange appearance
and for their odd geometric properties. The Sierpinski
gasket and the Koch snowflake in Figure 1 are two well
known examples of fractal curves. The Koch snowflake
is continuous everywhere, but differentiable nowhere; the
Sierpinski gasket has Hausdorff dimension log(3)/log(2) --
a fractional dimension greater than one but less than two.

Bezier curves, in contrast, are polynomial curves.
Polynomial curves are one-dimensional and infinitely
differentiable almost everywhere. Typically then, we do

not think of Bezier curves as fractals, since polynomial
curves do not appear to possess any of the strange features
of fractal curves. Nevertheless, the goal of this paper is to
show that Bezier curves are also fractals. We shall exploit
this fractal nature of Bezier curves to present a new
algorithm for rendering Bezier curves.

To understand how it is that Bezier curves are fractal
curves, we need a precise definition of the term fractal. We
begin then in Section 2 with one commonly accepted
definition for fractals as attractors. The signature of an
attractor is that convergence to an attractor is independent
of the starting set. In Section 3, we apply the de Casteljau
subdivision algorithm to show that Bezier curves are
attractors, and we derive a novel rendering algorithm for
Bezier curves based on the signature property of attractors.
We close in Section 4 with a few observations on the
fractal nature of Bezier surfaces and some open questions
for future research. An Appendix on the Trivial Fixed
Point Theorem and its consequences is provided to explain
in more detail why convergence to an attractor is
independent of the starting set.

(a) Sierpinski Triangle (b) Koch Snowflake (c) Bezier Curve

 Figure 1: Fractals: (a) a Sierpinski triangle, (b) a Koch snowflake, and (c) a Bezier curve.

2. Fractals as Fixed Points of Iterated
Function Systems

Fractals are attractors -- fixed points of iterated
function systems [1]. The remainder of this section is
devoted to explaining this definition and to deriving some
of its consequences.

An iterated function system consists of a collection of
contractive transformations

€

W = w1,K, wl{ } , where a map
w is said to be contractive if for every pair of points

€

P,Q

€

dist w(P), w(Q)() ≤ sdist (P,Q) 0 < s < 1.
We can apply a map

€

w to a set S by letting

€

w(S) = w(x) | x ∈ S{ } .
Similarly, can apply an iterated function system W to a set
S by letting

€

W (S) = w1(S)∪L∪wl (S) .
A set S is said to be a fixed point of an iterated function
system W if

€

W (S) = S .

Figure 2: The Sierpinski gasket. The top row is generated starting from an equilateral
triangle; the middle row is generated starting from a square instead of a triangle; the
bottom row is generated starting from a single point. In each case, levels 1, 3 and 5 of the
iteration are illustrated.

2

Figure 3: The Koch snowflake -- upper third. The top row is generated starting from a
triangular bump; the middle row is generated starting from a square bump instead of a
triangular bump; the bottom row is generated from a single point. In each case, levels 0, 2
and 4 of the iteration are illustrated.

Fractals are fixed points of iterated function systems.
Thus a fractal is a set S that is mapped onto itself under
some collection of contractive maps.

To flesh out these definitions, let us consider once
again the Sierpinski triangle and the Koch snowflake.
Both of these fractals are self-similar curves -- curves that
are generated from scaled down copies of themselves. The
Sierpinski triangle is the union of three smaller Sierpinski
triangles, and each small bump on the Koch snowflake is a
scaled down version of the larger bumps on the snowflake.
Self-similarity induces a simple set of affine
transformations that map a fractal onto itself. For
example, for the Sierpinski triangle S, let

€

W = {w1 ,w2 ,w3} be the three transformations that scale
distances by 1/2 around each of the vertices of the outer
triangle. Then

€

w1(S),w2 (S),w3(S) are the three small
Sierpinski triangles located at each of the vertices of the
large Sierpinski triangle, so

€

W (S) = w1(S)∪w2 (S)∪w3(S) = S .
Thus the Sierpinski triangle S is a fixed point of the
iterated function system W.

To render the Sierpinski triangle, we can start with the
equilateral triangle T whose vertices are located at the outer
vertices of the Sierpinski triangle S and iterate the

transformation

€

W = {w1 ,w2 ,w3} on T. That is, we set

€

S0 = T

€

S1 = W (S0) = w1(S0)∪w2(S0)∪w3(S0)

€

M

€

M

€

Sn+1 = W (Sn) = w1(Sn)∪w 2(Sn)∪w3(Sn)
In the limit this sequence converges to the fractal triangle -
- that is,

€

S = Limn→∞Sn (see Figure 2, top).
Now the key point in this discussion is the following

fixed point theorem; we defer the proof of this theorem to
the Appendix.
Fixed Point Theorem for Iterated Function Systems
1. Every iterated function system

€

W = w1,K, wl{ } has a
unique fixed point A.

2. Let B be a compact set, and let

€

A0 = B

€

A1 = W (A0) = w1(A0)∪L∪w l(A0)

€

M

€

M

€

An+1 = W (An) = w1(An)∪L∪wl (An) .
Then

€

A = Limn→∞An .
3. A is independent of B.

Thus a fractal can be rendered by iterating the
corresponding iterated function system -- the iterated

3

function system for which the fractal is a fixed point --
starting with any compact set. This convergence is what
we mean when we say that the fractal is an attractor: the
convergence (attraction) is independent of the compact set
on which the iteration begins. This independence from the
initial set is the signature of a fractal. In Figures 2 and 3,
we illustrate this behavior for the Sierpinski triangle and
the Koch snowflake. Notice that in each case the entire
fractal can be recovered from a single point.

3. Bezier Subdivision and Iterated Function
Systems

Bezier curves are segments of polynomial curves.
Each piece of a polynomial curve is just like any other
piece of a polynomial curve, so each segment of a Bezier
curve is itself a Bezier curve. Thus Bezier curves are self-
similar. Therefore, even though Bezier curves are
infinitely differentiable, Bezier curves are also fractal
curves.

The de Casteljau subdivision algorithm can be used to
split a Bezier curve into two Bezier segments. In this
section we shall explain how Bezier subdivision is related

to iterated function systems, and we shall then apply this
fractal interpretation of subdivision to derive a new
rendering algorithm for Bezier curves.

To begin, recall that a Bezier curve

€

P(t) of degree n is
defined by setting

€

P(t) = B j
n (t)Pj

j=0

n
∑

€

0 ≤ t ≤ 1,

where

€

P0,K, Pn are the Bezier control points and

€

Bj
n (t) = (j

n)t j (1− t)n− j

€

j = 0,K, n
are the Bernstein basis functions of degree n.
Alternatively, points on a Bezier curve can be evaluated by
applying the de Casteljau algorithm (Figure 4) to the
control points

€

P0,K, Pn [2].
A subdivision algorithm is a technique for finding

from the original control points

€

P0,K, Pn new control
points

€

Q0 (r),K,Q n (r) and

€

R0(r),K,Rn (r) that represent
the original Bezier curve restricted to the parameter
intervals

€

[0,r] and

€

[r,1] (see Figure 4(b)). The de
Casteljau evaluation algorithm is also a subdivision
algorithm, since the points that subdivide the Bezier curve
emerge along the left and right lateral edges of the de
Casteljau triangle [2] (see Figure 4(a)).

0 1
2

1− r

€

Q1(r)

€

∗

€

Q0(r) = P0 P1 P2

€

R3(r) = P3

1− r

1− r

1− r

1− r1− r
r

r

r

r

rr

€

Q2(r)€

Q3(r) = R0(r)

€

R1(r)

€

R2(r)

(a) Schematic Diagram (b) Geometric Interpretation

Figure 4: The de Casteljau algorithm for cubic Bezier curves. (a) A schematic diagram
illustrating data flow. The control points are placed at the base of the diagram and the point
on the Bezier curve at parameter value r emerges at the apex of the triangle. Each interior
node in the diagram is computed by multiplying the values on the arrows that point into the
node by the values on the nodes from which the arrows emerge and adding the results. For
example,

€

Q1 (r) = (1 − r)P0 + r P1 . The values

€

{Qk (r)} that emerge along the left lateral edge of
the diagram are the control points for the segment of the original Bezier curve in the interval

€

[0 ,r] and the values

€

{Rk (r)} that emerge along the right lateral edge of the diagram are the
control points for the segment of the original Bezier curve in the interval

€

[r ,1] . (b) A
geometric interpretation of the de Casteljau algorithm. The points

€

P0 ,K,P3 are the control
points for the original Bezier curve (dark). The points

€

Q0 (r),K ,Q3 (r) are the control points
for the same Bezier curve restricted to the interval

€

[0 , r] , and the points

€

R0 (r),K,R 3 (r) are
the control points for the same Bezier curve restricted to the interval

€

[r ,1] .

4

By construction, each node in the de Casteljau diagram
also represents a Bezier curve, albeit of lower degree.
Therefore the points that subdivide the original Bezier
curve can be computed explicitly from the formulas

€

Qk (r) = Bj
k (r)P j

j=0

k
∑

€

k = 0,K, n

€

Rk (r) = Bn− j
n−k (r)Pk+n − j

j=k

n
∑

€

k = 0,K, n .

Typically we take

€

r = 1 /2, and we write

€

Q0 ,K,Qn and

€

R0 ,K,Rn in place of

€

Q0 (r),K,Q n (r) and

€

R0(r),K,Rn (r) .
The explicit formulas for

€

Q0 ,K,Qn and

€

R0 ,K,Rn
can be represented in matrix form. Let

€

L =

B0
0(1 /2) 0 L 0

B0
1(1/ 2) B1

1(1 /2) L 0
M M M M

B0
n (1 /2) B1

n (1 /2) L Bn
n (1 /2)








 








 

 =

1 0 L 0
1
2

1
2

L 0
M M M M
1

2n
n

2n L
1

2n





















=
k
j()

2 j
















.

Similarly, let

€

M =

B0
n (1 /2) B1

n (1 /2) L Bn
n (1 /2)

0 B0
n−1(1 /2) L Bn−1

n−1 (1 /2)
M M M M

0 0 L B0
0 (1/ 2)








 








 

 =

1
2n

n
2n L

1
2n

0 1
2n−1 L

1
2n−1

M M M M

0 0 L 1























=
n−k
n− j()

2n− j
















.

If

€

P = P0 ,K, Pn()T , then

€

L∗ P =

B0
0(1 /2) 0 L 0

B0
1(1/ 2) B1

1(1 /2) L 0
M M M M

B0
n (1 /2) B1

n (1 /2) L Bn
n (1 /2)








 








 

P0
M

Pn

















 =

Q0
M

Qn

















and

€

M ∗ P =

B0
n (1 /2) B1

n (1 /2) L Bn
n (1 /2)

0 B0
n−1(1 /2) L Bn−1

n−1 (1 /2)
M M M M

0 0 L B0
0 (1/ 2)








 








 

P0
M

Pn

















 =

R0
M

Rn
















.

Thus the matrices

€

L,M represent left and right
subdivision for Bezier curves.

Starting with the original Bezier control points and
applying these matrices repeatedly generates a sequence of
control polygons that converge to the original Bezier curve
[2,4]. Notice how closely this recursive subdivision
algorithm for rendering Bezier curves resembles the
iterative rendering algorithm for generating fractals from
iterated function systems. Nevertheless, there is one
important difference between these two rendering
procedures. For fractals we observed that we could start
the iteration with any compact set; for Bezier curves we
are constrained to start with the Bezier control polygon.
This restriction for Bezier curves seems unavoidable
because the matrices

€

L,M are independent of the control
points

€

P0,K, Pn .
Suppose, however, that the matrix

€

P = P0 ,K, Pn()T is
invertible. Let

€

LP = P−1 ∗ L∗ P

€

MP = P−1 ∗ R ∗ P .
Then

€

P ∗ LP = P ∗ (P−1 ∗ L∗ P) = L ∗ P

€

P ∗MP = P ∗ (P−1 ∗M ∗ P) = M ∗ P .
Moreover, iterating the transformations

€

LP ,M P --
multiplying now on the right instead of on the left --
generates the same sequence of control polygons as
iterating the matrices

€

L,M on the control polygon P.
But, and this is the key point, it is easy to show that the
matrices

€

LP ,M P represent contractive maps. Therefore

€

{LP , M P} is an iterated function system, so we can start
with any compact set and the iteration will still converge
to the Bezier curve with control points

€

P0,K, Pn . We
illustrate this convergence in Figure 5.

For Bezier curves of degree n, the subdivision matrices

€

L,M are

€

(n +1) × (n + 1) matrices. To form the matrices

€

LP ,M P , the coordinates of the control points

€

P = P0 ,K, Pn()T must constitute an invertible

€

(n +1) × (n + 1) matrix. If the points

€

P0,K.Pn lie in an n-
dimensional affine space, then we can use homogeneous
coordinates to form an

€

(n +1) × (n + 1) matrix
5

Figure 5: A quadratic Bezier curve generated from an iterated function system. The top
row is generated in the usual manner starting from the control polygon; the middle row is
generated starting from the chord joining the first and last control points instead of the
control polygon; the bottom row is generated from a single point. In each case, levels 0, 2
and 4 of the iteration are illustrated.

€

P =
P0 L Pn
1 L 1









T

.

The matrix P is then invertible precisely when the points

€

P0,K, Pn are affinely independent. We used this approach
to render the quadratic Bezier curve illustrated in Figure 5.

Typically, however, the degree n of the Bezier curve is
larger than the dimension d of the ambient space of the
control points. For example, for planar cubic curves,

€

n = 3 but

€

d = 2. Nevertheless, in general, we can still
form the matrices

€

LP ,M P by lifting the control points

€

P = P0 ,K, Pn()T to higher dimensions.
For planar curves, we can proceed in the following

fashion. Let

€

(xk , yk) be the rectangular coordinates of

€

Pk,

€

k = 0,K, n . Then we can lift P to higher dimensions
by introducing homogeneous coordinates and lifting each

control point

€

Pk to dimension k,

€

3≤ k ≤ n , by annexing
zeroes and ones to the coordinates of

€

Pk as illustrated
below:
Quadratics

€

P =

P0
P1
P2

1
1
1






 






 
=

x0 y0 1
x1 y1 1
x2 y2 1






 






 

Cubics

€

P =

P0
P1
P2
P3

1
1
1
1

0
0
0
1



















=

x0 y0 1 0
x1 y1 1 0
x2 y2 1 0
x3 y3 1 1



















6

Quartics

€

P =

P0 1 0 0
P1 1 0 0
P2 1 0 0
P3 1 1 0
P4 1 1 1









 









 

=

x0 y0 1 0 0
x1 y1 1 0 0
x2 y2 1 0 0
x3 y3 1 1 0
x4 y4 1 1 1









 









 

and so on. Notice that in each case, the matrix P is
invertible if

€

Det
P0
P1
P2

1
1
1






 






 
≠ 0.

Thus P is invertible if the points

€

P0, P1 ,P2 are affinely
independent -- that is, if the points

€

P0, P1 ,P2 are not

collinear. Of course, we could choose any other three non
collinear control points and this lifting technique would
work equally well.

To generate an arbitrary degree n Bezier curve using
the iterated function system

€

{LP , M P} , we can now
proceed in the following fashion: (i) lift the control points
P from the ambient affine space of dimension d to the
ambient affine space of dimension n; (ii) generate the
corresponding higher dimensional Bezier curve using the
iterated function system

€

{LP , M P} ; (iii) project the
resulting n-dimensional Bezier curve orthogonally back
down to the original dimension d. An example of a planar
cubic curve generated in this manner is presented in Figure
6.

Figure 6: A planar cubic Bezier curve generated from an iterated function system by lifting
the control points to 3-dimensions and then projecting the resulting curve back into the
plane. The top row is generated in the usual manner starting from the control polygon; the
middle row is generated starting from the chord joining the first and last control points
instead of the control polygon; the bottom row is generated from a single point. In each
case, levels 0, 3 and 6 of the iteration are illustrated.

7

4 . Conclusions

Bezier curves are attractors -- fixed points of iterated
function systems derived from the de Casteljau subdivision
algorithm. Since both triangular and tensor product Bezier
surfaces also have well known subdivision algorithms [2],
these Bezier surfaces are also attractors. Therefore three
sided and four sided Bezier surfaces are fractal surfaces
which can be generated from iterated function systems.

Multisided Bezier patches, such as S-patches [2,5] and
toric Bezier patches [2,3] are also studied in Geometric
Modeling. It seems reasonable to expect that these
multisided surfaces are also attractors, but the details of
how to generate the corresponding iterated function
systems are still an open question.

Acknowledgment

I would like to thank Joe Warren for first pointing out
to me the connection between Bezier subdivision and
iterated function systems.

References

[1] Barnsley, M. (1993), Fractals Everywhere, (Second
Edition), Academic Press, Boston, Mass.
[2] Goldman, R. (2002), Pyramid Algorithms: A
Dynamic Programming Approach to Curves and Surfaces
for Geometric Modeling, Morgan Kaufmann, San
Francisco.
[3] Krasauskas, R. (2000), Toric surface patches,
Advances in Computational Mathematics, Vol. 21, pp. 1-
25.
[4] Lane, J. and Riesenfeld, R (1980), A theoretical
development for the computer generation and display of
piecewise polynomial surfaces, IEEE Trans. on Pattern
Anal. and Mach. Intell., Vol. 2, pp. 35-46.
[5] Loop, C.T. and DeRose, T.D. (1989), A multisided
generalization of Bezier surfaces, TOG, Vol. 8, pp. 204-
234.

Appendix: The Trivial Fixed Point Theorem
and its Consequences

The signature property of attractors -- that convergence
is independent of the starting set -- is a consequence of the
following theorem.
The Trivial Fixed Point Theorem:
Suppose that

i. T is a contractive map on a complete metric
space;

ii.

€

Pn+1 = T (Pn) for all

€

n ≥ 0 .

Then

€

Limn→∞Pn exists and is the unique fixed point of T
for any choice of

€

P0 !
The purpose of this Appendix is to derive this fixed

point theorem and then use this theorem to establish the
signature property of attractors. We begin with a series of
simple lemmas. For further details and additional proofs,
see [1].
Lemma 1: Suppose that

i. T is a contractive map;
ii.

€

Pn+1 = T (Pn) for all

€

n ≥ 0 .
If

€

P = Limn→∞Pn , then P is a fixed point of T.
Proof: Since T is contractive, T is continuous. Therefore,

€

T (P) = T Limn→∞Pn() = Limn→∞T (Pn)
 = Limn→∞Pn+1 = P .

.

Lemma 2: Suppose that T is a contractive map. Then
T has at most one fixed point.
Proof: If P and Q are both fixed points of T , then

€

T (P) = P and

€

T (Q) = Q . Therefore,

€

Dist T (P),T (Q)() = Dist (P,Q) .
Hence, contrary to assumption, T is not contractive.
Therefore T can have at most one fixed point.

Before we can state our next lemma, we need to recall
the notion of a cauchy sequence. A sequence

€

Pn{ } is
cauchy if for every

€

ε > 0 there is an integer N such that

€

Dist(Pn+m , Pn) < ε for all

€

n > N . Intuitively, a sequence
of points

€

Pn{ } is cauchy if the points get closer and closer
as n gets larger and larger.
Lemma 3: Suppose that

i. T is a contractive map;
ii.

€

Pn+1 = T (Pn) for all

€

n ≥ 0 .
Then

€

Pn{ } is a cauchy sequence for any choice of

€

P0 .
Proof: Since T is a contractive map,

€

Dist Pn+1,Pn() = Dist T (Pn),T (Pn−1)()
 ≤ sDist Pn , Pn−1() = sDist T (Pn−1),T (Pn−2)()

 M
 ≤ snDist P1, P0() .

Therefore, for n sufficiently large,

€

Dist Pn+m , Pn() ≤ Dist Pn+m , Pn+m −1() + L+ Dist Pn+1,Pn()
 ≤ (sn+m −1 + L+ sn)Dist P1 ,P0()

 ≤ sn Dist P1, P0()
1− s

 < ε.
With these results in hand, we are almost ready to

prove the trivial fixed point theorem. But before we
proceed, we need to explain what we mean by a complete
metric space.

A metric space

€

(X, d) is a space X together with a
8

function d that measures the distance between any two
elements in the space X . The function d must satisfy the
usual properties of distance; in particular, d must satisfy
the triangular inequality:

€

d (x,z) ≤ d (x,y) + d (y,z) .
A metric space is said to be complete if every cauchy
sequence converges. The metric space

€

(Rn , dist) , where

€

dist is the standard Euclidean metric on

€

Rn , is a complete
metric space.
The Trivial Fixed Point Theorem:
Suppose that

i. T is a contractive map on a complete metric
space;

ii.

€

Pn+1 = T (Pn) for all

€

n ≥ 0 .
Then

€

Limn→∞Pn exists and is the unique fixed point of T
for any choice of

€

P0 !
Proof: This result is a consequence of the following
observations:
i. the sequence

€

Pn{ } is cauchy -- Lemma 3;
ii.

€

Limn→∞Pn exists -- since, by assumption, the
metric space is complete, so every cauchy sequence
converges;

iii.

€

Limn→∞Pn is a fixed point of T -- Lemma 1;
iv. the fixed point of T is unique -- Lemma 2.

The trivial fixed point theorem can be used to
establish the signature property of attractors -- that
convergence is independent of the starting set -- by
introducing a new metric space consisting of the compact
subsets of

€

Rn .
Let

€

H(Rn) denote the space of compact subsets of

€

Rn . (A subset of

€

Rn is compact if it lies within a sphere
of finite radius and contains its own boundary.) We can
measure the distance between any two compact sets

€

R,S
in

€

H(Rn) by adopting the Hausdorff metric

€

h(R,S) .

To construct the Hausdorff metric, let x be an arbitrary
point in

€

Rn , and define

€

Dist(x ,S) = Miny∈ S dist(x, y){ }

€

Dist(R, S) = Maxx∈R Dist (x,S){ }

€

h(R,S) = Max Dist (R,S),Dist(S,R){ } .
Then h is a metric on

€

H(Rn) . Moreover, the following
results are established in [1].
Theorem 1: The space

€

(H (Rn),h) is a complete metric
space.
Theorem 2: Let

€

W = w1,K, wl{ } be an iterated
function system -- i.e. W consists of a finite collection of
contractive maps

€

w1,K, wl . Then W is a contractive map
on

€

H(Rn) . That is, if the maps

€

w1,K, wl all shrink the
distance between points, then the map W shrinks the
distance between compact sets.

Now the trivial fixed point theorem combined with
Theorems 1 and 2 immediately implies the following
signature property of attractors.
Fixed Point Theorem for Iterated Function
Systems
1. Every iterated function system

€

W = w1,K, wl{ } has a
unique fixed point A.

2. Let B be a compact set, and let

€

A0 = B

€

A1 = W (A0) = w1(A0)∪L∪w l(A0)

€

M

€

M

€

An+1 = W (An) = w1(An)∪L∪wl (An).
Then

€

A = Limn→∞An .
3. A is independent of B.

9

