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Abstract

Fractals are attractors -- fixed points of iterated 
function systems.  Bezier curves are polynomials -- linear 
combinations of Bernstein basis functions.  The de 
Casteljau subdivision algorithm is used here to show that 
Bezier curves are also attractors.  Thus, somewhat 
surprisingly, Bezier curves are fractals.  This fractal nature 
of Bezier curves is exploited to derive a new rendering 
algorithm for Bezier curves.

1. Introduction

Fractals are famous both for their strange appearance 
and for their odd geometric properties.  The Sierpinski 
gasket and the Koch snowflake in Figure 1 are two well 
known examples of fractal curves.  The Koch snowflake 
is continuous everywhere, but differentiable nowhere;  the 
Sierpinski gasket has Hausdorff dimension log(3)/log(2) -- 
a fractional dimension greater than one but less than two.

Bezier curves, in contrast, are polynomial curves.  
Polynomial curves are one-dimensional and infinitely 
differentiable almost everywhere.  Typically then, we do 

not think of Bezier curves as fractals, since polynomial 
curves do not appear to possess any of the strange features 
of fractal curves.  Nevertheless, the goal of this paper is to 
show that Bezier curves are also fractals.  We shall exploit 
this fractal nature of Bezier curves to present a new 
algorithm for rendering Bezier curves.

To understand how it is that Bezier curves are fractal 
curves, we need a precise definition of the term fractal.  We 
begin then in Section 2 with one commonly accepted 
definition for fractals as attractors.  The signature of an 
attractor is that convergence to an attractor is independent 
of the starting set.  In Section 3, we apply the de Casteljau 
subdivision algorithm to show that Bezier curves are 
attractors, and we derive a novel rendering algorithm for 
Bezier curves based on the signature property of attractors.  
We close in Section 4 with a few observations on the 
fractal nature of Bezier surfaces and some open questions 
for future research.  An Appendix on the Trivial Fixed 
Point Theorem and its consequences is provided to explain 
in more detail why convergence to an attractor is 
independent of the starting set. 

             
(a)  Sierpinski Triangle (b)  Koch Snowflake (c)  Bezier Curve

  Figure 1:  Fractals:  (a)  a Sierpinski triangle, (b)  a Koch snowflake, and (c) a Bezier curve.



2. Fractals as Fixed Points of Iterated 
Function Systems

Fractals are attractors -- fixed points of iterated 
function systems [1].  The remainder of this section is 
devoted to explaining this definition and to deriving some 
of its consequences.

An iterated function system consists of a collection of 
contractive transformations   

€ 

W = w1,K, wl{ } , where a map 
w is said to be contractive if for every pair of points 

€ 

P,Q

€ 

dist w(P), w(Q)( ) ≤ sdist (P,Q)       0 < s < 1.
We can apply a map 

€ 

w  to a set S by letting

€ 

w(S) = w(x) | x ∈ S{ } .
Similarly, can apply an iterated function system W to a set 
S by letting

  

€ 

W (S) = w1(S)∪L∪wl (S) .
A set S  is said to be a fixed point of an iterated function 
system W if 

€ 

W (S) = S .

              

Figure 2:   The Sierpinski gasket.  The top row is generated starting from an equilateral 
triangle;  the middle row is generated starting from a square instead of a triangle;  the 
bottom row is generated starting from a single point.  In each case, levels 1, 3 and 5 of the 
iteration are illustrated.
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Figure 3:   The Koch snowflake -- upper third.  The top row is generated starting from a 
triangular bump;  the middle row is generated starting from a square bump instead of a 
triangular bump;  the bottom row is generated from a single point.  In each case, levels 0, 2 
and 4 of the iteration are illustrated.

Fractals are fixed points of iterated function systems.  
Thus a fractal is a set S  that is mapped onto itself under 
some collection of contractive maps.

To flesh out these definitions, let us consider once 
again the Sierpinski triangle and the Koch snowflake.  
Both of these fractals are self-similar curves -- curves that 
are generated from scaled down copies of themselves.  The 
Sierpinski triangle is the union of three smaller Sierpinski 
triangles, and each small bump on the Koch snowflake is a 
scaled down version of the larger bumps on the snowflake.  
Self-similarity induces a simple set of affine 
transformations that map a fractal onto itself.  For 
example, for the Sierpinski triangle S, let 

€ 

W = {w1 ,w2 ,w3}  be the three transformations that scale 
distances by 1/2 around each of the vertices of the outer 
triangle.  Then 

€ 

w1(S),w2 (S),w3(S)  are the three small 
Sierpinski triangles located at each of the vertices of the 
large Sierpinski triangle, so 

€ 

W (S) = w1(S)∪w2 (S)∪w3(S) = S .  
Thus the Sierpinski triangle S  is a fixed point of the 
iterated function system W.

To render the Sierpinski triangle, we can start with the 
equilateral triangle T whose vertices are located at the outer 
vertices of the Sierpinski triangle S  and iterate the 

transformation 

€ 

W = {w1 ,w2 ,w3}  on T.  That is, we set

€ 

S0 = T

€ 

S1 = W (S0) = w1(S0)∪w2(S0)∪w3(S0)

   

€ 

M   

€ 

M

€ 

Sn+1 = W (Sn ) = w1(Sn )∪w 2(Sn )∪w3(Sn )
In the limit this sequence converges to the fractal triangle -
- that is, 

€ 

S = Limn→∞Sn  (see Figure 2, top).
Now the key point in this discussion is the following 

fixed point theorem;  we defer the proof of this theorem to 
the Appendix.
Fixed Point Theorem for Iterated Function Systems
1. Every iterated function system   

€ 

W = w1,K, wl{ }  has a 
unique fixed point A.

2. Let B be a compact set, and let

€ 

A0 = B
  

€ 

A1 = W (A0) = w1(A0)∪L∪w l(A0)

   

€ 

M   

€ 

M
  

€ 

An+1 = W (An ) = w1(An )∪L∪wl (An ) .
Then 

€ 

A = Limn→∞An .
3. A is independent of B.

Thus a fractal can be rendered by iterating the 
corresponding iterated function system -- the iterated 
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function system for which the fractal is a fixed point -- 
starting with any compact set.  This convergence is what 
we mean when we say that the fractal is an attractor:  the 
convergence (attraction) is independent of the compact set 
on which the iteration begins.  This independence from the 
initial set is the signature of a fractal.  In Figures 2 and 3, 
we illustrate this behavior for the Sierpinski triangle and 
the Koch snowflake.  Notice that in each case the entire 
fractal can be recovered from a single point.

3. Bezier Subdivision and Iterated Function 
Systems

Bezier curves are segments of polynomial curves.  
Each piece of a polynomial curve is just like any other 
piece of a polynomial curve, so each segment of a Bezier 
curve is itself a Bezier curve.  Thus Bezier curves are self-
similar.  Therefore, even though Bezier curves are 
infinitely differentiable, Bezier curves are also fractal 
curves.

The de Casteljau subdivision algorithm can be used to 
split a Bezier curve into two Bezier segments.  In this 
section we shall explain how Bezier subdivision is related 

to iterated function systems, and we shall then apply this 
fractal interpretation of subdivision to derive a new 
rendering algorithm for Bezier curves.

To begin, recall that a Bezier curve 

€ 

P(t)  of degree n is 
defined by setting

€ 

P(t) = B j
n (t )Pj

j=0

n
∑

€ 

0 ≤ t ≤ 1,

where   

€ 

P0,K, Pn  are the Bezier control points and 

€ 

Bj
n (t) = ( j

n )t j (1− t )n− j
  

€ 

j = 0,K, n
are the Bernstein basis functions of degree n.  
Alternatively, points on a Bezier curve can be evaluated by 
applying the de Casteljau algorithm (Figure 4) to the 
control points   

€ 

P0,K, Pn  [2].
A subdivision algorithm is a technique for finding 

from the original control points   

€ 

P0,K, Pn  new control 
points   

€ 

Q0 (r),K,Q n (r)  and   

€ 

R0(r),K,Rn (r)  that represent 
the original Bezier curve restricted to the parameter 
intervals 

€ 

[0,r ] and 

€ 

[r,1]  (see Figure 4(b)).  The de 
Casteljau evaluation algorithm is also a subdivision 
algorithm, since the points that subdivide the Bezier curve 
emerge along the left and right lateral edges of the de 
Casteljau triangle [2] (see Figure 4(a)).

0 1
2

1− r

€ 

Q1(r)

€ 

∗

€ 

Q0(r) = P0 P1 P2

€ 

R3(r) = P3

1− r

1− r

1− r

1− r1− r
r

r

r

r

rr

€ 

Q2(r)€ 

Q3(r) = R0(r)

€ 

R1(r )

€ 

R2(r )

 
(a)  Schematic Diagram (b)  Geometric Interpretation

Figure 4:  The de Casteljau algorithm for cubic Bezier curves.  (a) A schematic diagram 
illustrating data flow.  The control points are placed at the base of the diagram and the point 
on the Bezier curve at parameter value r emerges at the apex of the triangle.  Each interior 
node in the diagram is computed by multiplying the values on the arrows that point into the 
node by the values on the nodes from which the arrows emerge and adding the results.  For 
example, 

€ 

Q1 (r ) = (1 − r )P0 + r P1 .  The values 

€ 

{Qk (r )}  that emerge along the left lateral edge of 
the diagram are the control points for the segment of the original Bezier curve in the interval 

€ 

[0 ,r ]  and the values 

€ 

{Rk (r )}  that emerge along the right lateral edge of the diagram are the 
control points for the segment of the original Bezier curve in the interval 

€ 

[r ,1] .  (b)  A 
geometric interpretation of the de Casteljau algorithm.  The points   

€ 

P0 ,K,P3  are the control 
points for the original Bezier curve (dark).  The points   

€ 

Q0 (r ),K ,Q3 (r)  are the control points 
for the same Bezier curve restricted to the interval 

€ 

[0 , r ] , and the  points   

€ 

R0 (r),K,R 3 (r)  are 
the control points for the same Bezier curve restricted to the interval 

€ 

[r ,1] .
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By construction, each node in the de Casteljau diagram 
also represents a Bezier curve, albeit of lower degree.  
Therefore the points that subdivide the original Bezier 
curve can be computed explicitly from the formulas

€ 

Qk (r) = Bj
k (r)P j

j=0

k
∑   

€ 

k = 0,K, n              

€ 

Rk (r) = Bn− j
n−k (r)Pk+n − j

j=k

n
∑   

€ 

k = 0,K, n .

Typically we take 

€ 

r = 1 /2, and we write   

€ 

Q0 ,K,Qn  and 
  

€ 

R0 ,K,Rn  in place of   

€ 

Q0 (r),K,Q n (r)  and 
  

€ 

R0(r),K,Rn (r) .
The explicit formulas for   

€ 

Q0 ,K,Qn  and   

€ 

R0 ,K,Rn  
can be represented in matrix form.  Let

  

€ 

L =

B0
0(1 /2) 0 L 0

B0
1(1/ 2) B1

1(1 /2) L 0
M M M M

B0
n (1 /2) B1

n (1 /2) L Bn
n (1 /2)

 

 

 
 
 
  

 

 

 
 
 
  

  =

1 0 L 0
1
2

1
2

L 0
M M M M
1

2n
n

2n L
1

2n

 

 

 
 
 
 
 

 

 

 
 
 
 
 

=
k
j( )

2 j

 

 

 
 
 

 

 

 
 
 
.

Similarly, let

  

€ 

M =

B0
n (1 /2) B1

n (1 /2) L Bn
n (1 /2)

0 B0
n−1(1 /2) L Bn−1

n−1 (1 /2)
M M M M

0 0 L B0
0 (1/ 2)

 

 

 
 
 
  

 

 

 
 
 
  

   =

1
2n

n
2n L

1
2n

0 1
2n−1 L

1
2n−1

M M M M

0 0 L 1

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

=
n−k
n− j( )

2n− j

 

 

 
 
 

 

 

 
 
 
.

If   

€ 

P = P0 ,K, Pn( )T , then

  

€ 

L∗ P =

B0
0(1 /2) 0 L 0

B0
1(1/ 2) B1

1(1 /2) L 0
M M M M

B0
n (1 /2) B1

n (1 /2) L Bn
n (1 /2)

 

 

 
 
 
  

 

 

 
 
 
  

P0
M

Pn

 

 

 
 
 

 

 

 
 
 

        =

Q0
M

Qn

 

 

 
 
 

 

 

 
 
 

and

  

€ 

M ∗ P =

B0
n (1 /2) B1

n (1 /2) L Bn
n (1 /2)

0 B0
n−1(1 /2) L Bn−1

n−1 (1 /2)
M M M M

0 0 L B0
0 (1/ 2)

 

 

 
 
 
  

 

 

 
 
 
  

P0
M

Pn

 

 

 
 
 

 

 

 
 
 

          =

R0
M

Rn

 

 

 
 
 

 

 

 
 
 
.

Thus the matrices 

€ 

L,M  represent left and right 
subdivision for Bezier curves.

Starting with the original Bezier control points and 
applying these matrices repeatedly generates a sequence of 
control polygons that converge to the original Bezier curve 
[2,4].  Notice how closely this recursive subdivision 
algorithm for rendering Bezier curves resembles the 
iterative rendering algorithm for generating fractals from 
iterated function systems.  Nevertheless, there is one 
important difference between these two rendering 
procedures.  For fractals we observed that we could start 
the iteration with any compact set;  for Bezier curves we 
are constrained to start with the Bezier control polygon.  
This restriction for Bezier curves seems unavoidable 
because the matrices 

€ 

L,M  are independent of the control 
points   

€ 

P0,K, Pn .
Suppose, however, that the matrix   

€ 

P = P0 ,K, Pn( )T  is 
invertible.  Let

€ 

LP = P−1 ∗ L∗ P

€ 

MP = P−1 ∗ R ∗ P .
Then

€ 

P ∗ LP = P ∗ (P−1 ∗ L∗ P) = L ∗ P

€ 

P ∗MP = P ∗ (P−1 ∗M ∗ P) = M ∗ P .
Moreover, iterating the transformations 

€ 

LP ,M P  -- 
multiplying now on the right instead of on the left -- 
generates the same sequence of control polygons as 
iterating the matrices 

€ 

L,M  on the control polygon P.  
But, and this is the key point, it is easy to show that the 
matrices 

€ 

LP ,M P  represent contractive maps.  Therefore 

€ 

{LP , M P}  is an iterated function system, so we can start 
with any compact set and the iteration will still converge 
to the Bezier curve with control points   

€ 

P0,K, Pn .  We 
illustrate this convergence in Figure 5.  

For Bezier curves of degree n, the subdivision matrices 

€ 

L,M  are 

€ 

(n +1) × (n + 1)  matrices.  To form the matrices 

€ 

LP ,M P , the coordinates of the control points 

  

€ 

P = P0 ,K, Pn( )T  must constitute an invertible 

€ 

(n +1) × (n + 1)  matrix.  If the points   

€ 

P0,K.Pn  lie in an n-
dimensional affine space, then we can use homogeneous 
coordinates to form an 

€ 

(n +1) × (n + 1)  matrix
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Figure 5:   A quadratic Bezier curve generated from an iterated function system.  The top 
row is generated in the usual manner starting from the control polygon;  the middle row is 
generated starting from the chord joining the first and last control points instead of the 
control polygon;  the bottom row is generated from a single point.  In each case, levels 0, 2 
and 4 of the iteration are illustrated.

  

€ 

P =
P0 L Pn
1 L 1
 

 
 

 

 
 
T

.  

The matrix P is then invertible precisely when the points 
  

€ 

P0,K, Pn  are affinely independent.  We used this approach  
to render the quadratic Bezier curve illustrated in Figure 5.

Typically, however, the degree n of the Bezier curve is 
larger than the dimension d of the ambient space of the 
control points.  For example, for planar cubic curves, 

€ 

n = 3 but 

€ 

d = 2.  Nevertheless, in general, we can still 
form the matrices 

€ 

LP ,M P  by lifting the control points 

  

€ 

P = P0 ,K, Pn( )T  to higher dimensions.
For planar curves, we can proceed in the following 

fashion.  Let 

€ 

(xk , yk )  be the rectangular coordinates of 

€ 

Pk,    

€ 

k = 0,K, n .  Then we can lift P to higher dimensions 
by introducing homogeneous coordinates and lifting each 

control point 

€ 

Pk  to dimension k, 

€ 

3≤ k ≤ n , by annexing 
zeroes and ones to the coordinates of 

€ 

Pk  as illustrated 
below:
Quadratics

€ 

P =

P0
P1
P2

 
1
1
1

 

 

 
  

 

 

 
  
=

x0 y0 1
x1 y1 1
x2 y2 1

 

 

 
  

 

 

 
  

Cubics

€ 

P =

P0
P1
P2
P3

  

1
1
1
1

  

0
0
0
1

 

 

 
 
 
 

 

 

 
 
 
 

=

x0 y0 1 0
x1 y1 1 0
x2 y2 1 0
x3 y3 1 1

 

 

 
 
 
 

 

 

 
 
 
 
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Quartics

€ 

P =

P0 1 0 0
P1 1 0 0
P2 1 0 0
P3 1 1 0
P4 1 1 1

 

 

 
 
 
 
  

 

 

 
 
 
 
  

=

x0 y0 1 0 0
x1 y1 1 0 0
x2 y2 1 0 0
x3 y3 1 1 0
x4 y4 1 1 1

 

 

 
 
 
 
  

 

 

 
 
 
 
  

and so on.  Notice that in each case, the matrix P is 
invertible if 

€ 

Det
P0
P1
P2

 
1
1
1

 

 

 
  

 

 

 
  
≠ 0.

Thus P is invertible if the points 

€ 

P0, P1 ,P2  are affinely 
independent -- that is, if the points 

€ 

P0, P1 ,P2  are not 

collinear.  Of course, we could choose any other three non 
collinear control points and this lifting technique would 
work equally well.

To generate an arbitrary degree n Bezier curve using 
the iterated function system 

€ 

{LP , M P} , we can now 
proceed in the following fashion:  (i) lift the control points 
P from the ambient affine space of dimension d to the 
ambient affine space of dimension n; (ii) generate the 
corresponding higher dimensional Bezier curve using the 
iterated function system 

€ 

{LP , M P} ; (iii) project the 
resulting n-dimensional Bezier curve orthogonally back 
down to the original dimension d.  An example of a planar 
cubic curve generated in this manner is presented in Figure 
6.

  

                                              
Figure 6:   A planar cubic Bezier curve generated from an iterated function system by lifting 
the control points to 3-dimensions and then projecting the resulting curve back into the 
plane.  The top row is generated in the usual manner starting from the control polygon;  the 
middle row is generated starting from the chord joining the first and last control points 
instead of the control polygon;  the bottom row is generated from a single point.  In each 
case, levels 0, 3 and 6 of the iteration are illustrated.
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4 . Conclusions

Bezier curves are attractors -- fixed points of iterated 
function systems derived from the de Casteljau subdivision 
algorithm.  Since both triangular and tensor product Bezier 
surfaces also have well known subdivision algorithms [2], 
these Bezier surfaces are also attractors.  Therefore three 
sided and four sided Bezier surfaces are fractal surfaces 
which can be generated from iterated function systems.

Multisided Bezier patches, such as S-patches [2,5] and 
toric Bezier patches [2,3] are also studied in Geometric 
Modeling.  It seems reasonable to expect that these 
multisided surfaces are also attractors, but the details of 
how to generate the corresponding iterated function 
systems are still an open question.
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Appendix:  The Trivial Fixed Point Theorem 
and its Consequences

The signature property of attractors -- that convergence 
is independent of the starting set -- is a consequence of the 
following theorem.
The Trivial Fixed Point Theorem:
Suppose that

i. T is a contractive map on a complete metric 
space;

ii.

€ 

Pn+1 = T (Pn )  for all 

€ 

n ≥ 0 .  

Then 

€ 

Limn→∞Pn  exists and is the unique fixed point of T 
for any choice of 

€ 

P0 !
The purpose of this Appendix is to derive this fixed 

point theorem and then use this theorem to establish the 
signature property of attractors.  We begin with a series of 
simple lemmas.  For further details and additional proofs, 
see [1].
Lemma 1:  Suppose that

i. T is a contractive map;
ii.

€ 

Pn+1 = T (Pn )  for all 

€ 

n ≥ 0 .  
If

€ 

P = Limn→∞Pn , then P is a fixed point of T.
Proof:  Since T is contractive, T is continuous.  Therefore,

€ 

T (P) = T Limn→∞Pn( ) = Limn→∞T (Pn )
        = Limn→∞Pn+1 = P .

.

Lemma 2:   Suppose that T is a contractive map.  Then 
T has at most one fixed point.
Proof:  If P and Q are both fixed points of T , then 

€ 

T (P) = P  and 

€ 

T (Q) = Q .  Therefore,

€ 

Dist T (P),T (Q)( ) = Dist (P,Q) .
Hence, contrary to assumption, T is not contractive.  
Therefore T can have at most one fixed point.

Before we can state our next lemma, we need to recall 
the notion of a cauchy sequence.  A sequence 

€ 

Pn{ }  is 
cauchy if for every 

€ 

ε > 0 there is an integer N such that  

€ 

Dist(Pn+m , Pn ) < ε  for all 

€ 

n > N .  Intuitively, a sequence 
of points 

€ 

Pn{ }  is cauchy if the points get closer and closer 
as n gets larger and larger.
Lemma 3:  Suppose that

i. T is a contractive map;
ii.

€ 

Pn+1 = T (Pn )  for all 

€ 

n ≥ 0 .  
Then 

€ 

Pn{ }  is a cauchy sequence for any choice of 

€ 

P0 .
Proof:  Since T is a contractive map,

   

  

€ 

Dist Pn+1,Pn( ) = Dist T (Pn ),T (Pn−1)( )
                ≤ sDist Pn , Pn−1( ) = sDist T (Pn−1),T (Pn−2)( )

                                M
                ≤ snDist P1, P0( ) .

Therefore, for n sufficiently large,

  

€ 

Dist Pn+m , Pn( ) ≤ Dist Pn+m , Pn+m −1( ) + L+ Dist Pn+1,Pn( )
                        ≤ (sn+m −1 + L+ sn )Dist P1 ,P0( )

                        ≤ sn Dist P1, P0( )
1− s

                        < ε.
With these results in hand, we are almost ready to 

prove the trivial fixed point theorem.  But before we 
proceed, we need to explain what we mean by a complete 
metric space.

A metric space 

€ 

(X, d)  is a space X  together with a 
8



function d that measures the distance between any two 
elements in the space X .  The function d must satisfy the 
usual properties of distance;  in particular, d must satisfy 
the triangular inequality:

€ 

d (x,z) ≤ d (x,y) + d (y,z) .
A metric space is said to be complete if every cauchy 
sequence converges.  The metric space 

€ 

(Rn , dist) , where 

€ 

dist  is the standard Euclidean metric on 

€ 

Rn , is a complete 
metric space.
The Trivial Fixed Point Theorem:
Suppose that

i. T is a contractive map on a complete metric 
space;

ii.

€ 

Pn+1 = T (Pn )  for all 

€ 

n ≥ 0 .  
Then 

€ 

Limn→∞Pn  exists and is the unique fixed point of T 
for any choice of 

€ 

P0 !
Proof: This result is a consequence of the following 
observations:
i. the sequence 

€ 

Pn{ }  is cauchy -- Lemma 3;
ii.  

€ 

Limn→∞Pn  exists -- since, by assumption,  the 
metric space is complete, so every cauchy sequence 
converges;

iii. 

€ 

Limn→∞Pn  is a fixed point of T --  Lemma 1;
iv. the fixed point of T is unique -- Lemma 2.

The trivial fixed point theorem can be used to 
establish the signature property of attractors -- that 
convergence is independent of the starting set -- by 
introducing a new metric space consisting of the compact 
subsets of 

€ 

Rn .
Let 

€ 

H(Rn )  denote the space of compact subsets of 

€ 

Rn .  (A subset of 

€ 

Rn  is compact if it lies within a sphere 
of finite radius and contains its own boundary.)  We can 
measure the distance between any two compact sets 

€ 

R,S  
in 

€ 

H(Rn )  by adopting the Hausdorff metric 

€ 

h(R,S ) .

To construct the Hausdorff metric, let x be an arbitrary 
point in 

€ 

Rn , and define      

€ 

Dist(x ,S) = Miny∈ S dist(x, y){ }

€ 

Dist(R, S) = Maxx∈R Dist (x,S){ }

€ 

h(R,S ) = Max Dist (R,S),Dist(S,R){ } .
Then h is a metric on 

€ 

H(Rn ) .  Moreover, the following 
results are established in [1].
Theorem 1:  The space 

€ 

(H (Rn ),h)  is a complete metric 
space.
Theorem 2: Let   

€ 

W = w1,K, wl{ }  be an iterated 
function system -- i.e. W consists of a finite collection of 
contractive maps   

€ 

w1,K, wl .  Then W is a contractive map 
on 

€ 

H(Rn ) .  That is, if the maps   

€ 

w1,K, wl  all shrink the 
distance between points, then the map W shrinks the 
distance between compact sets.

Now the trivial fixed point theorem combined with 
Theorems 1 and 2 immediately implies the following 
signature property of attractors.
Fixed Point Theorem for Iterated Function 
Systems
1. Every iterated function system   

€ 

W = w1,K, wl{ }  has a 
unique fixed point A.

2. Let B be a compact set, and let

€ 

A0 = B
  

€ 

A1 = W (A0) = w1(A0)∪L∪w l(A0)

  

€ 

M   

€ 

M
  

€ 

An+1 = W (An ) = w1(An )∪L∪wl (An ).
Then 

€ 

A = Limn→∞An .
3. A is independent of B.
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