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Heckmanncomputational steps such as consuming one digit of the argument(s) (absorp-tion) or producing one digit of the result (emission) can be realised as variantsof matrix multiplication applied to a transformer and a digit matrix.Usually, all the transformers employed in real number arithmetic haveinteger components. In Section 3, we reiterate the main result of [6]: if thedi�erence of the column sums of a transformer is not zero, at least one entryof the transformer has bit size 
(n) after n digits have been emitted (law ofbig numbers).In Section 4, we �rst show how to check whether any digit can be emittedfrom a given transformer, and how to determine this digit. Then, we introduceattributes of a matrix|shrink factor and contractivity|which are useful forpredicting when emission is possible. Using these results, we are able to showthat in the cases not covered by the law of big numbers, the entries of a matrixare bounded by a constant (Section 5).In Section 6, we discuss the impact of these results on the complexityof real number computation. In particular, we consider the time needed tocompute n digits from the application of an LFT to a real number. Theobvious evaluator that handles each digit individually needs time O(n2) if thelaw of big numbers applies, and time O(n) otherwise. To reduce the quadraticcomplexity, we propose to combine many digits in a small basis to one digit ina large basis. By this method, the complexity is reduced to that of multiplyingtwo n bit integers.2 Exact Real Arithmetic by Linear Fractional Trans-formationsIn this section, we present the framework of exact real arithmetic via LFT's[5,14,9], specialised to the version used by the group of Edalat and Potts atImperial College [12,10,11,13,4].2.1 LFT's and MatricesGeneral Linear Fractional Transformations (LFT's) are functions x 7! ax+cbx+dfrom reals to reals, parameterised by real numbers a, b, c, and d. In this paper,we shall only consider LFT's with integer parameters, as it is usually done inpractical implementations of exact real arithmetic.It is useful to present the four parameters of an LFT as a 2-2-matrix A =�ab cd� of integers, hereafter matrix. Every matrix denotes an LFT hAi, givenby hAi(x) = ax+cbx+d . LFT's described by non-singular matrices, i.e., matricesA with determinant detA = ad � bc 6= 0, are considered as endofunctions ofR? = R[ f1g, the one-point compacti�cation of the real line. The value 1arises as r=0 with r 6= 0, and on the other hand, hAi(1) is de�ned as a=b. ForLFT's described by singular matrices, an additional `number' ? (unde�ned)is needed which arises as 0=0. The value of hAi(?) is de�ned as ?.2



HeckmannThe mapping A 7! hAi is not one-to-one; for, hAi = hkAi holds for allintegers k 6= 0. We shall write A �= B if hAi = hBi, or equivalently B = kAfor some k 6= 0. A matrix is called k-reducible if the integer k is a commonfactor of its four components. Division of a k-reducible matrix by k is calledreduction by k. A matrix is in lowest terms if there is no common factor otherthan 1 and �1. All matrices di�erent from �00 00� are equivalent to a matrixin lowest terms.Composition of LFT's corresponds to matrix multiplication: hAi � hBi =hA �Bi. The equivalence relation `�=' is a congruence w.r.t. multiplication.Because of the equation det(rA) = r2 detA, the determinant of a matrixis not invariant under equivalence `�=', but its sign (1, 0, or �1) is, i.e., thesign of the determinant of A is a well-de�ned property of the LFT hAi. LFT'swith non-zero determinant (non-singular LFT's) are invertible. To obtainan integer representation of hAi�1, the pseudo-inverse A� can be used. It isde�ned by �ab cd�� = � d�b �ca �(1)Clearly, det(A�) = detA holds. The main property of the pseudo-inverseoperation is A �A� = A� �A = detA � E(2)where E = �10 01� is the identity matrix, and so, A�A� = A��A �= E if detA 6= 0,whence hAi�1 = hA�i.2.2 Representing Reals by LFT'sThe set R? can be visualised as a circle. Inter-vals [u; v] are anti-clockwise arcs from u to v, e.g.,[0; 1] = fx 2 R j 0 � x � 1g, and [1; 0] = fx 2 R j1 � x or x � 0g [ f1g. &%'$0 11�1Non-singular LFT's map intervals to intervals: if detM > 0, then hMi[u; v]is [hMiu; hMiv], while for detM < 0, we get hMi[u; v] = [hMiv; hMiu]. Forthe interval [0;1], these formulae simplify to hMi[0;1] = [ cd; ab ] for M =�ab cd� with detM > 0, and [ab ; cd ] for detM < 0.Thus, an in�nite stream of non-singular matrices M0, M1, . . . de�nes theinterval 1\n=0hM0 �M1 � : : : �Mni[0;1] :(3)The intersection is �ltered (decreasing) if hMni[0;1] � [0;1] holds for alln > 0. This inclusion property is equivalent to the condition that all entriesof Mn are � 0 or all are � 0. Matrices with all entries � 0 are called positive.If almost all LFT's hM0i, hM1i, . . . are su�ciently contractive, then theintersection in (3) shrinks to a singleton set. In this case, the stream ofmatrices or LFT's denotes a unique real number (it converges). In [7], some3



Heckmannsu�cient criteria for convergence are presented.Because of the usage of matrix multiplication in (3), we consider a streamof matrices converging to a real number x as a (formal) in�nite product,and write x = Q1n=0Mn. Many real numbers can be elegantly representedby such in�nite products, e.g., p2 = Q1n=0 �11 21� or e = Q1n=0 �2n+22n+1 2n+12n �.To control the information 
ow in computations with reals, it turned out tobe useful to convert these representations into a kind of standard form. Thegroup of Edalat and Potts at Imperial College [11,4] proposed such a standardform, where the �rst matrix M0 must be one of four sign matrices, while theremaining ones are taken from a �nite set of digit matrices. Digit matricesare positive and contracting, so that the intersection in (3) is decreasing andconverges to a real number.The four possible sign matrices correspond to rotations of the unit circleby 0�, 90�, 180�, and 270�. They can be explicitly described as follows:S+ = �10 01� hS+i [0;1] = [0;1]S1 = � 1�1 11� hS1i[0;1] = [1;�1]S� = �01 �10� hS�i [0;1] = [1; 0]S0 = �11 �11� hS0i [0;1] = [�1; 1]S0 and S1 are pseudo-inverse to each other; S0 � S1 = S1 � S0 = 2E holds.There are many possible sets of digit matrices, one for every base r > 1.The implementation of Edalat and Potts [4] uses base r = 2. In this paper,we consider integer bases r � 2.Fix an integer r � 2. Every real number in the interval [�1; 1] has arepresentation asP1n=1 knr�n with integer digits kn satisfying jknj < r. (Digitsmay be negative [1].) These digits correspond to a�ne maps x 7! x+kr thatare LFT's hArki with Ark = �10 kr �, mapping the interval [�1; 1] into [k�1r ; k+1r ].These image intervals have length 2=r and cover [�1; 1]. The image intervalscoming from successive values of k overlap in a common interval of length 1=r.This provides the redundancy needed in exact real arithmetic.Since the base interval in (3) is [0;1] and not [�1; 1], the maps hArki haveto be transformed into that interval. This can be done by composition withthe maps hS1i and hS0i, which are mutually inverse bijections between [�1; 1]and [0;1]. Thus, the actual digit matrices areDrk = S1 �Ark � S0 = �r + k + 1r � k � 1 r + k � 1r � k + 1�(4)and their pseudo-inverses are given by(Drk)� = �1� k + r1 + k � r 1 � k � r1 + k + r� :(5)Since the two entries in the top row of Drk di�er by 2, these matrices are eitherin lowest terms or 2-reducible. The latter case occurs i� the parities of r and4



HeckmannTable 1Digit matrices for base 2k A2k D2k lowest terms hD2ki([0;1])�1 �10 �12� �22 04� �11 02� [0; 1]0 �10 02� �31 13� �31 13� [13; 3]1 �10 12� �40 22� �20 11� [1;1]k are di�erent. In base r = 2 for instance, the digit matrices with k 6= 0 are2-reducible, while that with k = 0 is not (see Table 1).2.3 Compressing DigitsIt is a familiar property of number systems used to represent integers that ndigits in base r can be combined to one digit in base rn. A similar result holdsfor the digit matrices presented above. Multiplying two digit matrices yields:DrkDr0k0 = S1Ark S0 S1Ar0k0 S0 = 2S1 ArkAr0k0 S0 = 2Drr0kr0+k0(6)Here, the second equality is due to S0 S1 = 2E, and the third due toArk �Ar0k0 = �10 kr� ��10 k0r0� = �10 k0 + kr0rr0 �(7)together with the estimation jkr0 + k0j � (r � 1)r0 + (r0 � 1) = rr0 � 1.Iterating (6) leads toDrk1 � : : : �Drkn = 2n�1Drnk where k = nXi=1 kirn�i :(8)Hence, we obtain:(i) The product of n digit matrices in base r is always 2n�1-reducible.(ii) After 2n�1-reduction, the result is a digit matrix in base rn.2.4 Computation by LFT'sLFT's can be used not only to represent real numbers, but also to performcomputations with real numbers. For the sake of simplicity, we only presentcomputations within the interval [0;1] where real numbers can be representedby a stream of digit matrices without a leading sign matrix.Using suitable LFT's x 7! ax+cbx+d , basic functions such as x 7! x+1, x 7! 2x,and x 7! 1x can be easily expressed. Recall that an LFT maps [0;1] into itselfi� it can be represented by a positive matrix (all components � 0).Given a positive matrixM , the actual computation of hMi(x) is performedby a sequence of absorptions and emissions. Absorption means that M con-5



Heckmannsumes the �rst digit D1 of x, thereby becomingM �D1, which is positive again.It corresponds to the equalityM � (D1 �D2 � : : :) = (M �D1) � (D2 � : : :) :(9)Emission means that M produces one further digit D of the result, therebybecoming D� �M . It corresponds to the equivalence(D1 � : : : �Dn) �M �= (D1 � : : : �Dn �D) � (D� �M) :(10)Emission of a digit D is allowed only if D� �M is positive. For small bases suchas r = 2, it is possible to check for each digit matrix Drk individually whetherit may be emitted. Of course, this method is unsuitable for large bases. Wewill return to this issue in Section 4.1.Because of the built-in redundancy, there are often two, sometimes eventhree di�erent candidates for emission. In this case, it does not matter whichone is chosen.A possible strategy for the computation of hMi(x) is as follows: emit digitsuntil no further emission is possible, then absorb one digit of x, again emitdigits until no longer possible, etc. Later, we shall see that O(n) absorptionsare su�cient to obtain n emitted digits (Theorem 4.5).2.5 TensorsTo compute sums, products, etc., two-dimensional LFT's are employed. Theyare characterised by 8 integer parameters, and thus can be represented by 2-4-matrices of integers, called tensors. A tensor T = �ab cd ef gh� denotes thefunction hT i : R?? � R?? ! R?? given by hT i(x; y) = axy+cx+ey+gbxy+dx+fy+h . Fortensors, the notions of reducible, reduction, and lowest terms can be de�nedanalogous to the case of matrices. Likewise for positivity: a two-dimensionalLFT maps [0;1]2 to [0;1]? i� it can be represented by a positive tensor,i.e., a tensor with components � 0. Because of these analogies, we refer tomatrices and tensors collectively as transformers.It is easy to represent addition, subtraction, multiplication, and divisionby suitable tensors [5,14,12,10,11]. Tensors may also be used to representtranscendental functions, e.g., arctan x = hT0i(x; hT1i(x; hT2i(x; : : :))) whereTn = � 0(n+1)2 10 00 02n+1�. It remains to show how to actually compute hT i(x; y)for a given positive integer tensor T [10,11].Emissions can be done as in the one-dimensional case: in emitting a digitD, tensor T is replaced by D� � T , which is a tensor again. Emission of D isallowed only if D� � T is positive.Since digits can be absorbed from both arguments, there are two kindsof absorptions: absorption of a digit D from the left argument transforms Tinto T L
 D, while absorption from the right argument yields T R
 D. Rightabsorption can be de�ned by writing a tensor T as a row (T L; TR) of two6



Heckmannmatrices, and specifying(T L; TR) R
M = (T LM; TRM) :(11)To de�ne left absorption, let T� be T with the two middle columns exchanged.Then let T L
M = (T� R
M)�, and so(T L
M)� = T� R
M and (T R
M)� = T� L
M :(12)Later, we shall see that D-emissions and D-absorptions have many proper-ties in common. Thus, we introduce a common name: a D-transaction at atransformer is either a D-emission or a D-absorption.3 The Appearance of Big IntegersNaively, one may think that the entries of a transformer become bigger byabsorptions, and become smaller again by emissions if common factors arecancelled out (reduction). However, practical experiments have shown thatthe size of the biggest entry usually increases with the number of transactions.This impression was con�rmed by a formal analysis in [6]. For the sake ofcompleteness, we repeat a shortened version of the proof of this importantresult in this section.3.1 Big Numbers in MatricesIn this subsection, we derive lower bounds for the entries of a matrix after ntransactions and all possible reductions. This is done by observing how thedeterminant and the so-called column di�erence are changed by transactionsand reductions, and by deriving a reduction invariant from this.Determinants are easy because of det(A � B) = detA � detB, which im-plies det(M � Drk) = det((Drk)� �M) = detDrk � detM . How big is detDrk?Since detS0 = detS1 = 2 and detArk = det �10 kr � = r, we have detDrk =det(S1ArkS0) = 4r.In the following list, letM be a matrix, and letM 0 be the result of applyinga transaction or reduction to M .� Transaction with Drk: detM 0 = 4r detM ,� Reduction by k: detM 0 = 1k2 detM .The column di�erence of a matrix is cd �ab cd� = (a + b) � (c + d). Digitmatrices and their inverses have column di�erence 0. Consider the product of(Drk)� (5) with a vector �uv �:�1� k + r1 + k � r 1� k � r1 + k + r��uv� = �(1� k)(u+ v) + r(u� v)(1 + k)(u+ v)� r(u� v)�(13)which implies (Drk)� �uv� = �u0v0� =) u0 + v0 = 2(u+ v) :(14) 7



HeckmannFrom this, cd((Drk)� �M) = 2 cdM follows. It is straightforward to verify thatcd(M �Drk) = 2 cdM holds as well. Thus, we obtain:� Transaction with Drk: cdM 0 = 2 cdM ,� Reduction by k: cdM 0 = 1k cdM .Hence, the properties of having zero or non-zero column di�erence are trans-action invariants.For a matrix M with cdM 6= 0, the quotient qcdM = detM(cdM)2 is a well-de�ned rational number. By a transaction with Drk, this quotient is multipliedby 4r22 = r; and a k-reduction yields a factor of 1=k2(1=k)2 = 1. Thus, the quotientqcd is invariant under reductions, and is multiplied by r in every transaction.Therefore, if M0 is some initial matrix with cdM0 6= 0, and Mn the resultof applying n transactions in base r to M0, and all possible reductions, thenqcdMn = rn qcdM0. This equation can be turned into an integer equation bymultiplying by the denominators:detMn � (cdM0)2 = rn � detM0 � (cdMn)2(15)If cdM0 6= 0, then cdMn 6= 0, too. As an integer, (cdMn)2 is at least 1. Thisgives a lower bound for the determinant:jdetMnj � jdetM0j(cdM0)2 � rn :(16)The determinant does not directly give information about the sizes of theentries of a matrix. A better measure is the maximum of their absolute values:

(ab cd)

 = max(jaj; jbj; jcj; jdj). A lower bound for the determinant of a matrixM can be turned into a lower bound for the norm kMk using the inequalitykMk � q12jdetM j, which follows from the de�nition of the determinant asdet �ab cd� = ad� bc. Thus, we obtain from (16):kMnk � s jdetM0j2(cdM0)2 � �pr�n :(17)Thus, if in addition detM0 6= 0, even if all possible reductions are performed,the entries of the matrix are bound to grow exponentially in the number oftransactions.It is more useful to consider the bit sizes of the entries instead of the entriesthemselves. The bit size of a number m is logm.Theorem 3.1 (Law of big numbers) Let M be a matrix with non-zero de-terminant and non-zero column di�erence. After n transactions at M , at leastone entry of the result has bit size 
(n), even if all possible reductions are per-formed.The law of big numbers means that the usage of big integers is unavoidablein exact real arithmetic, in the signed digit approach of Edalat's group. Itapplies even in the simplest cases. For instance, doubling of an unsigned realis e�ected by the matrix �20 01� that has determinant 2 and column di�erence 1,8



Heckmannhalving by �10 02� with determinant 2 and column di�erence �1, and additionof 1 by the matrix �10 11� with determinant 1 and column di�erence �1.The law of big numbers does not apply to matrices with zero columndi�erence. The simplest example is the identity matrix E = �10 01�. Accordingto (2), after a D-absorption, a subsequent D-emission, and a reduction bydetD, the identity matrix is recovered. Repeating this cycle, we see thatthere are arbitrarily long sequences of transactions at the identity matrixwhich do not lead to entries bigger than 4r. In [6], it was an open problemwhether such a �xed bound can be found for any matrix with column di�erence0. Meanwhile, this question was settled positively; we present a proof inSection 5.3.2 Big Numbers in TensorsIn this subsection, we derive analogues of the results of the previous sectionfor tensors. The proceeding is similar, but a major obstacle is that tensors donot have determinants. Fortunately there is a suitable substitute.We start by introducing an analogue to the column di�erence of a matrix.Writing a tensor T as a row (T L; TR) of two matrices, its column di�erencecdT is de�ned from the column di�erences of the two matrices: cd(T L; TR) =cdT L � cdTR, i.e.,cd�ab cd ef gh� = (a+ b)� (c+ d)� (e+ f) + (g + h) :From (11) and the properties of cd, we obtain for all digit matrices Dcd((T L; TR) R
D) = cd(T L �D) � cd(TR �D) = 2 cd(T L; TR) :By (T R
 D)� = T� L
D (12) and cd(T�) = cdT , we obtain the correspondingformula cd(T L
D) = 2 cd T . From (14), cd(D� �T ) = 2 cd T follows for all digitmatrices D. Therefore, `cd' for tensors behaves exactly as `cd' for matrices:� Transaction with Drk: cdT 0 = 2 cd T ,� Reduction by k: cdT 0 = 1k cdT .Again, the properties of having zero or non-zero column di�erence are trans-action invariants.A suitable substitute for the determinant of a matrix is the column deter-minant cdetT of a tensor T , de�ned bycdet�ab cd ef gh� = (a+ b)(g + h)� (c+ d)(e+ f) :(18)Because of (14), all four column sums are doubled by an emission, and so,cdet(D� � T ) = 4 cdetT holds for all tensors T and digit matrices D. Notethat in contrast to the determinant of matrices, the factor is not detD� = 4r,but only 4. On the other side, the column determinant is multiplicative w.r.t.absorptions; for any tensor T and matrix M ,cdet(T L
M) = cdet(T R
M) = cdetT � detM(19) 9



Heckmannholds. Here, the �rst equality follows from (12) and cdet(T�) = cdetT , whilethe proof of the second equality is a straightforward, but tedious exercise inalgebraic manipulations.Summarising and specialising to the case of digit matrices, we obtain:� Emission of Drk: cdetT 0 = 4 cdetT ,� Absorption of Drk: cdetT 0 = 4r cdetT ,� Reduction by k: cdetT 0 = 1k2 cdetT .In contrast to matrices, emissions and absorptions behave di�erently.For a tensor T with cdT 6= 0, we consider the quotient qcdT = cdetT(cdT )2 .This quotient is invariant under reductions and emissions. Every absorptionyields a factor of r. Therefore, if T0 is some initial tensor with cdT0 6= 0,and Tn the result of applying n absorptions, any number of emissions, and allpossible reductions to T0, then qcdTn = rn qcdT0. As in the case of matrices,a lower bound for the column determinant follows:j cdetTnj � j cdetT0j(cdT0)2 � rn :(20)For tensors T , we de�ne a norm kTk as the maximum of the absolute valuesof the eight entries. Because of kTk �q18 j cdetT j, we obtainkTnk � s j cdetT0j8(cdT0)2 � �pr�n :(21)Formulating this in terms of bit sizes yields:Theorem 3.2 (Law of big numbers for tensors) Let T be a tensor withnon-zero column determinant and non-zero column di�erence. After n ab-sorptions and any number of emissions at T , at least one entry of the resulthas bit size 
(n), even if all possible reductions are performed.The tensors that realise the four basic arithmetic operations satisfy thehypotheses of the law of big numbers:Addition: �00 10 10 01� cdet = �1 cd = �1Subtraction: �00 10 �10 01� cdet = 1 cd = 1Multiplication: �10 00 00 01� cdet = 1 cd = 2Division: �00 10 01 00� cdet = �1 cd = �2Yet the tensor for the mean value operation is di�erent:Mean value: �00 10 10 02� cdet = �1 cd = 0Does this mean that 12x, which leads to big numbers when computed with�10 02�, can be computed as 0+x2 avoiding big numbers? The answer is no, atleast in the case r = 2. Let TR be the matrix on the right hand side of thetensor T . The equations (D� � T )R = D� � TR and (T R
 D)R = TR � D hold10



Heckmannfor all tensors T and digit matrices D. This means that the right half of�00 10 10 02� behaves exactly as the halving matrix �10 02� during emissions andabsorptions from the right. Since the number 0 is represented by the in�niteproduct (D2�1)! or �11 02�!, and �T L
 �11 02��R = 2TR, the correspondence isonly changed by a common factor during absorptions from the left. Hence,after any number of transactions, the right half of the resulting tensor is amultiple of the matrix resulting from �10 02� by the corresponding sequence oftransactions. Thus, it has entries which are at least as big as the entries ofthe matrix, which are big by Theorem 3.1.3.3 DiscussionThe laws of big numbers as derived above apply to unsigned reals only. Forinstance, halving in the zero interval [�1; 1] with base r = 2 means putting D20in front of the unsigned part of the argument, an operation possible withoutemploying big integers.Of course, our results crucially depend on the choice of the digit matrices.All digit matrices for all bases have zero column di�erence, and this factis implicitly used in the derivations of the formulae for the cd values aftertransactions. A completely di�erent choice of digit matrices, with non-zerocolumn di�erence, may change everything. Also, the results may look di�erentif irrational bases are used such as the golden ratio. However, we believe thatbig numbers cannot be avoided even in these cases, although we do not havea proof.4 Emission from Matrices and TensorsLet r be a �xed basis, i.e., an integer greater than 1. In order to performemissions, we need to know for a given positive transformer A whether thereis an integer k with jkj < r such that (Drk)� � A � 0. As already mentioned,this question can be answered by examining all possible values of k. Of course,this method is only e�cient if r is small.In this section, we present a direct method to �nd a suitable value of k if itexists. After this, we introduce two attributes of a matrixM , the shrink factorshrM and the contractivity conM that allow the prediction of the existenceof suitable values of k. Thus, we obtain an algorithm suitable for large basesr, and moreover, valuable theoretical insights for a closer analysis of the basiccomputational processes in the LFT framework.4.1 Computing Digits that can be EmittedTo study (Drk)� �A for matrices or tensors A, it su�ces to consider the simplercase where A is replaced by a column vector of the original transformer. From11



Heckmann(13), we know that�u0v0� = (Drk)� �uv� = �(1� k)(u+ v) + r(u� v)(1 + k)(u+ v)� r(u� v)� :(22)Assuming that �uv � is positive, i.e., u; v � 0, and di�erent from �00�, we wantto ensure that u0; v0 � 0 or u0; v0 � 0. From (22), u0 + v0 = 2(u + v) follows,and so, the case u0; v0 � 0 need not be considered. Condition u0 � 0 or(1 � k)(u + v) + r(u � v) � 0 is equivalent to k � r u�vu+v + 1, while v0 � 0 i�k � r u�vu+v � 1. Together, this means ��k � r u�vu+v �� � 1.Let q = r u�vu+v . We want to compute the emission set of q, i.e., the setof all integers k satisfying jk � qj � 1 and also the general digit conditionjkj � r� 1. If q happens to be an integer, there are three integers k satisfyingjk � qj � 1, namely q itself, q � 1, and q + 1. If q is not an integer, there aremerely two such integers, namely bqc and dqe. Determining these candidatesis possible by integer operations (including the division (r(u � v))=(u + v)).Since u; v � 0, jqj = r ju�vju+v � r holds. Thus, the digit condition jkj � r � 1can never rule out all integer solutions of jk � qj � 1, and so, every q arisingin the situation considered here has a non-empty emission set.Applying these results to the case of a positive non-singular matrix M =�ab cd�, we see that (Drk)� �M � 0 i�����k � ra� ba+ b ���� � 1 and ����k � rc� dc+ d ���� � 1 :(23)Hence, we look for the intersection of the emission sets of q1 = r a�ba+b andq2 = r c�dc+d . If q1 and q2 are too far apart, this intersection is empty, and nodigit can be emitted. If q1 and q2 are close together, the intersection may havemore than one element. In this case, it does not matter which one is chosenfor the emission.For a tensor T = �ab cd ef gh�, the set of digits that may be emitted is theintersection of four emission sets, belonging to numbers q1, . . . , q4 derivedfrom the four columns.4.2 Guaranteed EmissionIf a digit k can be emitted from a matrix, then jq1�q2j � jq1�kj+jk�q2j � 2.Thus, emission is impossible if jq1 � q2j > 2. On the other hand, emission issurely possible if jq1� q2j � 1. For a proof of this claim, several cases have tobe distinguished. Recall jq1j; jq2j � r. Hence, if q1 > r�1, then q1 2 [r�1; r],whence q2 2 [r� 2; r], and thus, k = r� 1 is a solution. The cases q2 > r� 1,q1 < �r+ 1 and q2 < �r+ 1 can be handled similarly. The remaining case isjq1j; jq2j � r � 1. Then also jqj � r � 1 holds for q = 12(q1 + q2). Let k be aninteger with jkj � r � 1 and jk � qj � 12; such an integer always exists. Thenwe have jk � q1j � jk � qj + jq � q1j � 12 + 12jq2 � q1j � 1, and analogouslyjk � q2j � 1. 12



HeckmannLemma 4.1 For a positive non-singular matrix M = �ab cd�, let q1 = r a�ba+b andq2 = r c�dc+d . If jq1 � q2j � 1, then a digit in base r can be emitted. Conversely,if an r-digit can be emitted, then jq1 � q2j � 2 must hold.4.3 The Shrink Factor of a MatrixBecause of its importance, we shall analyse the value of jq1�q2j in more detail.jq1 � q2j= r ����a� ba+ b � c� dc+ d ����= r ����(ac+ ad � bc� bd)� (ac� ad+ bc� bd)(a+ b)(c+ d) ����=2r jad� bcj(a+ b)(c+ d)(24)Let us introduce a name for the fraction in (24).De�nition 4.2 The shrink factor shrM of a positive non-singular matrixM = �ab cd� is shrM = jdetM j(a+ b)(c+ d) :The motivation for choosing the name shrink factor is as follows: A positivenon-singular matrix M = �ab cd� induces an LFT hMi : [0;1] ! [0;1]. Bycomposition with the bijections hS0i and hS1i between [0;1] and [�1; 1], weobtain a function fM = hS0MS1i : [�1; 1] ! [�1; 1]. Note that fM(�1) =hS0Mi(0) = hS0i(c=d) = (c=d)�1(c=d)+1 = c�dc+d , and similarly, fM(1) = a�ba+b . Thus,the length of the interval fM [�1; 1] is ��a�ba+b � c�dc+d�� = 2 shrM by a computationas in the beginning of this subsection. Therefore, fM lets the interval [�1; 1]shrink by a factor of shrM , namely from length 2 to length 2 shrM .From Lemma 4.1 and (24), we immediately obtain:Proposition 4.3 Let M be a positive non-singular matrix. If shrM � 12r ,then a digit in base r can be emitted. Conversely, if an r-digit can be emitted,then shrM � 1r must hold.4.4 Properties of the Shrink FactorFor any positive non-singular matrix M ,shrM � 1(25)holds. For, (a+ b)(c+ d) � ad+ bc � jad� bcj holds for a; b; c; d � 0.Digit matrices Drk (4) have a shrink factor of 4r2r�2r = 1r . Though they arenot positive, inverse digit matrices (Drk)� (5) can be assigned a formal shrinkfactor of 4r2�2 = r.Now, let us consider emission. By (14), the column sums of (Drk)� �M aretwice the column sums of M . Furthermore, det ((Drk)� �M) is detM times13



Heckmanndet (Drk)� = 4r. Thus, shr ((Drk)� �M) is shrM times 4r2�2 = r, and we obtainshr ((Drk)� �M) = r � shrM :(26)From this result, one may conjecture that shr (A � B) = shrA � shrB holds,\proved" by the argument that if fB shrinks [�1; 1] by shrB and fA shrinks[�1; 1] by shrA, then fA�B = fA � fB shrinks [�1; 1] by shrA � shrB. Yetthis argument fails because in fA�B[�1; 1] = fA(fB[�1; 1]), function fA is notapplied to [�1; 1], but to some subinterval, and shrA does not provide anyinformation about the shrink factor of that subinterval.In fact, there is no relationship between shr(A � B) and shrA � shrB ingeneral; the former value may be smaller or larger than the latter. The onlygeneral property for positive non-singular matrices isshr (A �B) � shrA(27)because fB[�1; 1] � [�1; 1] and therefore fA�B[�1; 1] = fA(fB[�1; 1]) �fA[�1; 1].Even if B is a digit matrix, there is no better information about shr (A�B).Consider for instance B = �20 11�, which is the digit matrixD21 in lowest terms.For A = �a0 0d�, we have shrA = adad = 1 and shr (A � B) = shr �2a0 ad� =2ad2a(a+d) = da+d , which by suitable choices of integers a; d > 0 may yield anyrational number between 0 and 1.4.5 The Contractivity of a MatrixBy (27), we know that the shrink factor after an absorption is not largerthan before, but as the example above shows, we cannot claim any substan-tial decrease of the shrink factor, and so cannot conclude that after manyabsorptions, an emission will eventually be possible. To obtain such a result,the shrink factor has to be replaced by another property of a matrix, thecontractivity.Let M be a positive non-singular matrix. Recall shrM = jfM(1)�fM(�1)jj1�(�1)j ,where the denominator 2 is written in a particular complex way. The disad-vantage of this de�nition is that it does not provide any information about theshrinking of subintervals of [�1; 1]. To obtain such information, we considerthe supremum of the shrink factors of all such subintervals and call it thecontractivity conM of M :conM = sup � jfM(x)� fM (y)jjx� yj ���� x; y 2 [�1; 1]; x 6= y � :(28)This notion (in fact, its reciprocal) was introduced in [7] to obtain convergencecriteria for in�nite matrix and tensor expressions. In that paper, a directformula for the contractivity is derived:M = �ab cd� =) conM = jdetM j(min(a+ b; c+ d))2 :(29)From both formulae, it is obvious that shrM � conM holds. By combiningthis with Prop. 4.3, we see that an r-digit can be emitted if conM � 12r .14



HeckmannHowever, a necessary condition for emission in the sense of the last part ofProp. 4.3 is not possible using contractivities, and the su�cient condition withcon is much weaker than that with shr. Consider for instance the matricesMuv = �10 uvu � with u; v � 1. We have shrMuv = u1�(uv+u) = 1v+1 , and so,r-emission is guaranteed for any r if v is su�ciently big. On the other hand,conMuv = u12 = u is arbitrarily large and never satis�es conMuv � 12r for anyr � 2.Nevertheless, the contractivity is useful since it satis�escon (A �B) � conA � conB :(30)For a proof, use (28), and note that for all x, y in [�1; 1],jfAB(x)� fAB(y)jjx� yj = jfA(fB(x))� fA(fB(y))jjfB(x)� fB(y)j � jfB(x)� fB(y)jjx� yjThus, we obtain con(M � Drk) � conDrk � conM = 1r conM . For emission,con((Drk)� �M) = r � conM holds; the proof is analogous to that of the corre-sponding property of shr (26).Let us summarise the results about the contractivity:Proposition 4.4 For every positive non-singular matrix M holds:(i) 0 � conM <1,(ii) con(M �Drk) � 1r conM ,(iii) con((Drk)� �M) = r � conM ,(iv) If conM � 12r , then an r-digit can be emitted.Given such a matrixM , a �xed number of absorptions su�ces to obtain amatrix M 0 with conM 0 � 12 . After the next absorption, we have a matrix M 00with conM 00 � 12r . Then, an r-emission is possible, giving a matrix M 000 withconM 000 � 12. Repeating this, we see that from now on, at least one emissionis possible after each absorption.Theorem 4.5 For every positive non-singular matrix M , there is a constantk such that at most n + k digits must be absorbed to allow the emission of ndigits.5 No Big Numbers in case of Zero Column Di�erenceThe law of big numbers for matrices (Theorem 3.1) states that for non-singularmatrices with non-zero column di�erence, the result after n transactions has atleast one entry of bit size 
(n), even if all possible reductions are performed. Inthis section, we prove a complementary result: for every positive non-singularmatrix M with column di�erence zero and every argument x in [0;1], theresult of applying hMi to x can be computed with a bounded subset of theintegers.Consider a positive non-singular matrix M0 = �a0b0 c0d0� with cdM0 = 0,15



Heckmanni.e., a0+b0 = c0+d0. Comparing (29) and De�nition 4.2, we see that conM0 =shrM0 holds. By (25), conM0 � 1 follows. For the following, recall Prop. 4.4.After one absorption, we get a matrix M1 with conM1 � 1r � 12. The nextabsorption yields a matrix M2 with conM2 � 12r . Then, an r-digit can beemitted, yieldingM3 with conM3 � 12 . After the next absorption, we haveM4with conM4 � 12r etc. Thus, the computation sequence A;A;E;A;E;A;E; : : :is possible, where A means absorption and E emission. From the results inSection 3.1, we know that all the matrices Mi satisfy cdMi = 0. In thesequel, we assume that all matrices Mi are reduced to lowest terms. Thesereductions do not a�ect the arguments above since contractivity and zerocolumn di�erence are invariant under reductions.Consider the matrix M2n+1 after n emissions, i.e., n + 1 digits have beenabsorbed and n digits have been emitted. According to (8) in Section 2.3, wemay summarise all but the �rst absorbed r-digits into one rn-digit K and allemitted r-digits into one rn-digit K 0. With R = rn, the resulting matrix is(DRK0)� �M1 � DRK after the factor 2n�1 from (8) has been cancelled. Let uscompute M 0 = M1 �DRK �rst:�a1b1 c1d1��R+K + 1R�K � 1 R+K � 1R�K + 1�= �R(a1 + c1) + (K + 1)(a1 � c1)R(b1 + d1) + (K + 1)(b1 � d1) R(a1 + c1) + (K � 1)(a1 � c1)R(b1 + d1) + (K � 1)(b1 � d1)�=: �a0b0 c0d0� :Now, we compute M 00 = (DRK0)� �M 0:�1 �K 0 +R1 +K 0 �R 1�K 0 �R1 +K 0 +R��a0b0 c0d0�= �(1�K 0)(a0 + b0) +R(a0 � b0)(1 +K 0)(a0 + b0)�R(a0 � b0) (1 �K 0)(c0 + d0) +R(c0 � d0)(1 +K 0)(c0 + d0)�R(c0 � d0)� :Note that a1+b1�c1�d1 = 0 implies a0+b0 = R(a1+b1+c1+d1) = 2R(a1+b1),and same with c0 + d0. Modulo 2, the expressions a1 � b1 + c1 � d1 anda1�b1�c1+d1 are equal to a1+b1+c1+d1 = 2(a1+b1), and therefore, a0�b0and c0 � d0 are even. Thus, M 00 is 2R-reducible. After reduction, we obtain�(1 �K 0)(a1 + b1) + (a0 � b0)=2(1 +K 0)(a1 + b1)� (a0 � b0)=2 (1 �K 0)(a1 + b1) + (c0 � d0)=2(1 +K 0)(a1 + b1)� (c0 � d0)=2� :Note that the sum of the four entries of this matrix is 4(a1 + b1). Since thematrix is positive, this provides an upper bound for the entries. From thisbound for the entries of M2n+1, we easily get a bound for the entries of M2n+2,and hence for the entries of all matrices.16



Heckmann6 The Complexity of LFT ApplicationThe appearance of big integers a�ects the complexity of real number arith-metic. In this section, we study the time needed to compute n digits from theapplication of a matrix to a real number. Because of the law of big numbers,this time is O(n2) for matrices with non-zero column di�erence if the indi-vidual digits are handled one by one. By combining many digits in a smallbasis to one digit in a large basis, this quadratic complexity can be reduced tothat of big integer multiplication. This kind of digit compression was alreadyproposed by Peter Potts for absorptions, but not for emissions. Potts did notprovide a complexity analysis.6.1 Basic AssumptionsIn computing a real number y, we are interested in the time T (n) needed tocompute the �rst n digits of y. By digits, we mean digit matrices, plus possiblya sign matrix in front. If y is not a constant, but depends on some input valuex, i.e., y = f(x), we consider a �xed argument x and assume that all digitsof x are already computed and freely available. This assumption means thatwe do not directly take into account the di�erence between two algorithmsfor f , one of which computes n digits of y from n digits of x, while the otherone needs n2 digits of x. Yet this di�erence has an indirect impact on thecomplexity; for, the second algorithm presumably needs additional time todigest the additional digits.By the law of big numbers, big integers cannot be avoided except in someexceptional cases. Hence, we need to consider the complexity of big integeroperations.� Addition, subtraction, and comparison of two integers of bit size n taketime O(n).� Multiplication of an integer of bit size n with a `small' integer such as 2 or3 takes time O(n), too.� Multiplication of two integers of bit size n requires more than O(n) basicarithmetical operations. Any straightforward algorithm takes time O(n2).However, there are several faster algorithms in [8], including one whichneeds only O(n log n log log n) basic arithmetical operations, and one thatsimulates the multiplication in O(n) operations on a pointer machine.In the sequel, let us assume a �xed algorithm for multiplication withcomplexity C(n) better than O(n2).� Integer division of a 2n bit integer by an n bit integer, yielding an n bitinteger, is as complex as n bit multiplication times a constant [8]. Thus, weassume a complexity of C(n) for integer division, too.17



Heckmann6.2 Digit by Digit EvaluationFor a matrix M , we want to estimate the complexity T (n) of computing the�rst n digits of hMi(x). The straightforward method to compute this resultis digit by digit evaluation: emit digits as long as possible, then absorb onedigit of x, again emit digits as long as possible etc.Assume that after some of these transactions, we have obtained the matrixM 0 with bit size s in its entries. To compute the next transaction, one has tocheck whether emission is possible which involves the computation of (Drk)��M 0for all possible k, and if no emission is possible, an absorption has to be doneby computing M 0 � Drk for some digit matrix Drk. Since we assumed a smallbasis r, all the entries of Drk are small, and so, all calculations can be done intime O(s).Assume that the start matrix M has non-zero column di�erence. FromTheorem 4.5, we know that O(n) digits have to be absorbed to emit n digits.By Theorem 3.1, the matrix resulting after O(n) absorptions and n emissionshas an entry of bit size O(n). Hence, the next transaction needs time O(n),and so, the overall time for the absorption and emission of n digits is O(n2).The situation is di�erent for matrices with column di�erence zero. InSection 5, we have seen that the entries of all matrices occurring during thecomputation can be bounded by a �xed upper bound, i.e., have bit size O(1).Hence, every transaction needs timeO(1) in this case, and so, the overall timefor the computation of n digits is merely O(n).6.3 Mass AbsorptionThe quadratic complexity of digit by digit evaluation can be reduced by han-dling many digits at once. For the following, assume the basis r = 2.Let M be a positive non-singular matrix with non-zero column di�erenceand small entries, and consider the task of computing n digits of hMi(u) foran unsigned real u (a stream of digit matrices). By Theorem 4.5, we knowthat m = n + k digits of u have to be absorbed into M in order to computethe desired number of digits of the result. Let these m digits be D2k1 � � �D2kmwith jkij � 1.We have already pointed out that the computation of the result takes timeO(n2) if the digits are absorbed and emitted one by one. Now assume that we�rst perform allm absorptions and start emitting the n digits of the result onlyafterwards. Thus, the �rst subtask is to compute M �D2k1 � � �D2km e�ciently.To be more precise, letM0 = M and for 0 < i � m, letMi be eitherMi�1 �D2kidirectly, or the result which is obtained after all possible reductions have beenperformed on this matrix. In any case, the entries of Mi�1 have bit size O(i),and so it takes time O(i) to compute Mi�1 �D2ki . Therefore, the overall timeto compute M1, M2, . . . , Mm is quadratic.18



HeckmannThere is another way to obtain Mm. By (8),D2k1 � � �D2km = 2m�1D2mK = 2m�1�2m +K + 12m �K � 1 2m +K � 12m �K + 1�where K =Pmi=1 kirn�i. The factor 2m�1 can be cancelled immediately. ThenumberK can be computed in timeO(m) as follows: collect the positive digitski into a numberK+, the negative digits intoK�, and computeK = K+�K�.Since K has bit size O(m), the computation of D2mK from K takes time O(m),and so does the multiplication M �D2mK since the entries of M are small.� m digits can be absorbed into a matrix in time O(m).So far, we have not made any assumption about the concrete representationof big integers. A particularly fascinating approach is a representation in aredundant binary way, i.e., as Pmi=1 ki2i, with ki 2 f�1; 0; 1g. Then thedigit sequence D2k1 � � �D2km is in some sense identical with K (up to a possiblereversal). Or put the other way round: instead of storing D2k1 , . . . , D2km as listof matrices or as list [k1; : : : ; km] of digits, store it as the number K togetherwith the length m. This brings the digit matrix approach in close relationshipwith Boehm and Cartwright's functional approach [2,3].6.4 Mass EmissionMass absorption may bring down the cost of real number computation, but fora real gain, also mass emission is needed. For, no matter how quickM 0 = M �D2k1 � � �D2km can be computed, the result has entries of bit size 
(m) = 
(n),and so it takes time 
(n2) to emit n digits from M 0 if the digits are emittedone by one.The solution is of course to emit one digit D2nK in base 2n, and then splitK into 2-digits k1, . . . , kn. As we have seen in Section 4.1, the emission of a2n-digit from a matrix �ab cd� involves the approximation of 2n(a�b)a+b and 2n(c�d)c+dby integer divisions. Since these are divisions of a n+O(n) bit integer by anO(n) bit integer, they can be performed in time C(n). If required at all, thenumber K can be split into k1, . . . kn by simply reading o� the bits of K.� By mass absorption and mass emission, the time needed to compute ndigits of hMi(u) can be reduced from O(n2) to C(n), the time needed forthe multiplication of two integers of bit size n.References[1] A. Avizienis. Signed-digit number representations for fast parallel arithmetic.IRE Transactions on Electronic Computers, 10:389{400, 1961.[2] H.J. Boehm, R. Cartwright, M. Riggle, and M.J. O'Donell. Exact realarithmetic: A case study in higher order programming. In ACM Symposiumon Lisp and Functional Programming, pages 162{173, 1986.19
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