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Abstract

One possible approach to exact real arithmetic is to use linear fractional transfor-
mations to represent real numbers and computations on real numbers. We show
how to determine the digits that can be emitted from a transformation, and present
a criterion which ensures that it is possible to emit a digit. Using these results,
we prove that the obvious algorithm to compute n digits from the application of a
transformation to a real number has complexity O(n?), and present a method to
reduce this complexity to that of multiplying two n bit integers.

1 Introduction

Linear Fractional Transformations (LFT’s) provide an elegant approach to
real number arithmetic [5,14,9,12,10,4]. One-dimensional LFT’s z +— % are
used as digits and to implement basic unary functions, while two-dimensional
LET’s (a,y) — % provide binary operations such as addition and
multiplication, and can be combined to obtain infinite expression trees denot-
ing transcendental functions. In Section 2, we present the LFT approach in
some detail. This provides the background for understanding the results in
the remainder of this paper.

LFT’s can be modelled within linear algebra. If the four parameters of
a one-dimensional LFT are written as a (2,2)-matrix (shortly called matriz),
functional composition becomes matrix multiplication. Likewise, the eight pa-
rameters of a two-dimensional LFT can be written as a (2,4)-matrix (called

tensor). We refer to matrices and tensors collectively as transformers. Basic

* Most of the results in this paper were found during a visiting fellowship of the author
at Imperial College, London. This visit was organised by Abbas Edalat and funded by
EPSRC.
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computational steps such as consuming one digit of the argument(s) (absorp-
tion) or producing one digit of the result (emission) can be realised as variants
of matrix multiplication applied to a transformer and a digit matrix.

Usually, all the transformers employed in real number arithmetic have
integer components. In Section 3, we reiterate the main result of [6]: if the
difference of the column sums of a transformer is not zero, at least one entry
of the transformer has bit size Q(n) after n digits have been emitted (law of
big numbers).

In Section 4, we first show how to check whether any digit can be emitted
from a given transformer, and how to determine this digit. Then, we introduce
attributes of a matrix—shrink factor and contractivity—which are useful for
predicting when emission is possible. Using these results, we are able to show
that in the cases not covered by the law of big numbers, the entries of a matrix
are bounded by a constant (Section 5).

In Section 6, we discuss the impact of these results on the complexity
of real number computation. In particular, we consider the time needed to
compute n digits from the application of an LFT to a real number. The
obvious evaluator that handles each digit individually needs time O(n?) if the
law of big numbers applies, and time O(n) otherwise. To reduce the quadratic
complexity, we propose to combine many digits in a small basis to one digit in
a large basis. By this method, the complexity is reduced to that of multiplying
two n bit integers.

2 Exact Real Arithmetic by Linear Fractional Trans-
formations

In this section, we present the framework of exact real arithmetic via LFT’s
[5,14,9], specialised to the version used by the group of Edalat and Potts at
Imperial College [12,10,11,13.4].

2.1 LFT’s and Matrices

General Linear Fractional Transformations (LFT’s) are functions x +— 2Z£°
from reals to reals, parameterised by real numbers a, b, ¢, and d. In this paper,
we shall only consider LF'T’s with integer parameters, as it is usually done in
practical implementations of exact real arithmetic.

It is useful to present the four parameters of an LFT as a 2-2-matrix A =
(a C) of integers, hereafter matriz. Every matrix denotes an LFT (A), given

b; C<lA>(:1;) = %. LFT’s described by non-singular matrices, i.e., matrices
A with determinant det A = ad — bc # 0, are considered as endofunctions of
R* = R U {oc}, the one-point compactification of the real line. The value oo
arises as /0 with r # 0, and on the other hand, (A)(o0) is defined as a/b. For

LFT’s described by singular matrices, an additional ‘number’ — (undefined)

is needed which arises as 0/0. The value of (A)(—) is defined as —.
2
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The mapping A — (A) is not one-to-one; for, (A) = (kA) holds for all
integers k # 0. We shall write A = B if (A) = (B), or equivalently B = kA
for some k # 0. A matrix is called k-reducible if the integer k is a common
factor of its four components. Division of a k-reducible matrix by k is called
reduction by k. A matrix is in lowest terms if there is no common factor other
than 1 and —1. All matrices different from (8 8) are equivalent to a matrix
in lowest terms.

Composition of LFT’s corresponds to matrix multiplication: (A) o (B) =

(A - B). The equivalence relation ‘=’ is a congruence w.r.t. multiplication.
Because of the equation det(rA) = r? det A, the determinant of a matrix
is not invariant under equivalence ‘=’) but its sign (1, 0, or —1) is, i.e., the

sign of the determinant of A is a well-defined property of the LET (A). LFT’s
with non-zero determinant (non-singular LFT’s) are invertible. To obtain
an integer representation of (A)~', the pseudo-inverse A* can be used. It is

defined by
a c\* d —c
(1) <b d> :<—b a)
Clearly, det(A*) = det A holds. The main property of the pseudo-inverse
operation is
(2) A A=A A=detA-E

where E = (é ?) is the identity matrix, and so, A-A* = A*-A = Eifdet A #£ 0,
whence (A)~! = (A%).

2.2  Representing Reals by LFT’s o0

The set R* can be visualised as a circle. Inter-
vals [u,v] are anti-clockwise arcs from v to v, e.g.,
0,1] ={xeR | 0<a <1}, and [1,0] = {x € R |
I <zora<0}U{cx}. 0

Non-singular LF'T’s map intervals to intervals: if det M > 0, then (M)[u, v]
is [(M)u, (M)v], while for det M < 0, we get (M)[u,v] = [(M)v, (M)u]. For
the interval [0, o0c], these formulae simplify to (M)[0,00] = [5, 7] for M =
(7 9) with det M > 0, and [£, £] for det M < 0.

b d b d
Thus, an infinite stream of non-singular matrices My, My, ... defines the
interval
(3) (Mo - My -...- M,)[0,00] .
n=0

The intersection is filtered (decreasing) if (M,)[0, 0] C [0, 00] holds for all
n > 0. This inclusion property is equivalent to the condition that all entries
of M, are > 0 or all are < 0. Matrices with all entries > 0 are called positive.

If almost all LFT’s (My), (My), ... are sufficiently contractive, then the
intersection in (3) shrinks to a singleton set. In this case, the stream of
matrices or LFT’s denotes a unique real number (it converges). In [7], some

3
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sufficient criteria for convergence are presented.
Because of the usage of matrix multiplication in (3), we consider a stream
of matrices converging to a real number z as a (formal) infinite product,

and write = [[_, M,. Many real numbers can be elegantly represented
by such infinite products, e.g., v2 = [[°, (1 f) or e = [[, @Zﬁ 27;?).

To control the information flow in computations with reals, it turned out to
be useful to convert these representations into a kind of standard form. The
group of Edalat and Potts at Imperial College [11,4] proposed such a standard
form, where the first matrix My must be one of four sign matrices, while the
remaining ones are taken from a finite set of digit matrices. Digit matrices
are positive and contracting, so that the intersection in (3) is decreasing and
converges to a real number.

The four possible sign matrices correspond to rotations of the unit circle
by 0°, 90°, 180°, and 270°. They can be explicitly described as follows:

Se=(59) (S [0,00] =[0,00]

Se=(_11)  (Sw)[0,00] =[1,~1]
S-=(1 ) (52)[0.00) = [00,0]
Soo=(; 1) (So) [0,00] =[-11]

Sp and S, are pseudo-inverse to each other; Sy - S., = S - 5o = 2E holds.

There are many possible sets of digit matrices, one for every base r > 1.
The implementation of Edalat and Potts [4] uses base » = 2. In this paper,
we consider integer bases r > 2.

Fix an integer r > 2. Every real number in the interval [—1,1] has a
representation as > k,r~" with integer digits &, satisfying |k,| < r. (Digits
may be negative [1].) These digits correspond to affine maps x — l’le that
are LFT’s (A}) with A} = (é f,), mapping the interval [—1,1] into [kT;l, k%l]
These image intervals have length 2/r and cover [—1,1]. The image intervals
coming from successive values of k£ overlap in a common interval of length 1/r.
This provides the redundancy needed in exact real arithmetic.

Since the base interval in (3) is [0, co] and not [—1, 1], the maps (A}) have
to be transformed into that interval. This can be done by composition with
the maps (S5 ) and (Sp), which are mutually inverse bijections between [—1, 1]

and [0, 00]. Thus, the actual digit matrices are

- . B r4+k+1 r4+k—1
) Dk_SOO.Ak.SO_(r—k—l r—k—l—l)

and their pseudo-inverses are given by
l—k+r 1—Fk-—r
DIy =
) (D3) <1+k—r 1+k+r>

Since the two entries in the top row of D}, differ by 2, these matrices are either
in lowest terms or 2-reducible. The latter case occurs iff the parities of r and

4
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Table 1
Digit matrices for base 2

k A D} lowest terms (D)([0, 00])
-1 G G (i 2) [0,1]

0 Gy () (5 ) (53]

LoGe) G3) (5 1) [1, 0]

k are different. In base r = 2 for instance, the digit matrices with k& # 0 are
2-reducible, while that with & = 0 is not (see Table 1).

2.3  Compressing Digits

It is a familiar property of number systems used to represent integers that n
digits in base r can be combined to one digit in base ™. A similar result holds
for the digit matrices presented above. Multiplying two digit matrices yields:
(6) Dy Dy = So A} SoSeo Ay Sy = 25, AL AL Sy = 2Dy
Here, the second equality is due to Sy So = 2E, and the third due to

/ 1 k 1 K 1 K+ kr
AT AT = . —
(7) k k (0 r) (0 r’) (0 ry! )

together with the estimation |kr' + &| < (r — )r' + (' — 1) = rr' — 1.
[terating (6) leads to

(8) Dy -...-D, = 2"1D" where k= Z kir™ ™t
=1
Hence, we obtain:

(i) The product of n digit matrices in base r is always 2"~ !-reducible.

(ii) After 2"~ '-reduction, the result is a digit matrix in base r".

2.4 Computation by LFT’s

LEFT’s can be used not only to represent real numbers, but also to perform
computations with real numbers. For the sake of simplicity, we only present
computations within the interval [0, oo] where real numbers can be represented
by a stream of digit matrices without a leading sign matrix.

Using suitable LFT’s © +— Z;"_’;, basic functions such as  — 41, z — 2z,
1

= can be easily expressed. Recall that an LF'T maps [0, oo] into itself
iff it can be represented by a positive matrix (all components > 0).

and x —

Given a positive matrix M, the actual computation of (M) () is performed
by a sequence of absorptions and emissions. Absorption means that M con-
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sumes the first digit Dy of x, thereby becoming M - Dy, which is positive again.
It corresponds to the equality

(9) M-(Dy-Dy-..) = (M-Dy)-(Dy-...) .

Emission means that M produces one further digit D of the result, thereby
becoming D* - M. It corresponds to the equivalence

(10) (Dy-...-D,)-M = (Dy-...-D,-D)-(D*- M) .

Emission of a digit D is allowed only if D*- M is positive. For small bases such
as r = 2, it is possible to check for each digit matrix D} individually whether
it may be emitted. Of course, this method is unsuitable for large bases. We
will return to this issue in Section 4.1.

Because of the built-in redundancy, there are often two, sometimes even
three different candidates for emission. In this case, it does not matter which
one is chosen.

A possible strategy for the computation of (M)(x) is as follows: emit digits
until no further emission is possible, then absorb one digit of x, again emit
digits until no longer possible, etc. Later, we shall see that O(n) absorptions
are sufficient to obtain n emitted digits (Theorem 4.5).

2.5 Tensors

To compute sums, products, etc., two-dimensional LEFT’s are employed. They
are characterised by 8 integer parameters, and thus can be represented by 2-

4-matrices of integers, called tensors. A tensor T = <Z y ; Z) denotes the
function (T) : R*_ x R*_ — R*_ given by (T')(z,y) = %. For

tensors, the notions of reducible, reduction, and lowest terms can be defined
analogous to the case of matrices. Likewise for positivity: a two-dimensional
LFT maps [0,00]* to [0,00]_ iff it can be represented by a positive tensor,
i.e., a tensor with components > 0. Because of these analogies, we refer to
matrices and tensors collectively as transformers.

It is easy to represent addition, subtraction, multiplication, and division
by suitable tensors [5,14,12,10,11]. Tensors may also be used to represent
transcendental functions, e.g., arctanx = (To)(x, (T1)(x, (T3)(x,...))) where

T, = <(nf1)2 (1) 8 27&1). [t remains to show how to actually compute (T')(x, y)

for a given positive integer tensor T' [10,11].

Emissions can be done as in the one-dimensional case: in emitting a digit
D, tensor T' is replaced by D* - T, which is a tensor again. Emission of D is
allowed only if D* - T is positive.

Since digits can be absorbed from both arguments, there are two kinds
of absorptions: absorption of a digit D from the left argument transforms T
into T'®© D, while absorption from the right argument yields T'® D. Right
absorption can be defined by writing a tensor T' as a row (T%, T%) of two

6
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matrices, and specifying
(11) (T, T™ye M = (T"M, T"M) .

To define left absorption, let T be T" with the two middle columns exchanged.
Then let T® M = (T* ® M)™, and so

(12) (ToM)*=T*®eM and (TOM)"=T"0OM .

Later, we shall see that D-emissions and D-absorptions have many proper-
ties in common. Thus, we introduce a common name: a D-transaction at a
transformer is either a D-emission or a D-absorption.

3 The Appearance of Big Integers

Naively, one may think that the entries of a transformer become bigger by
absorptions, and become smaller again by emissions if common factors are
cancelled out (reduction). However, practical experiments have shown that
the size of the biggest entry usually increases with the number of transactions.
This impression was confirmed by a formal analysis in [6]. For the sake of
completeness, we repeat a shortened version of the proof of this important
result in this section.

3.1  Big Numbers in Matrices

In this subsection, we derive lower bounds for the entries of a matrix after n
transactions and all possible reductions. This is done by observing how the
determinant and the so-called column difference are changed by transactions
and reductions, and by deriving a reduction invariant from this.

Determinants are easy because of det(A - B) = det A - det B, which im-
plies det(M - D}) = det((D})* - M) = det D}, - det M. How big is det D}?
Since det 5o = det So, = 2 and det A}, = det (é f) = r, we have det D] =
det( S A}So) = 4r.

In the following list, let M be a matrix, and let M’ be the result of applying
a transaction or reduction to M.

o Transaction with D}: det M’ = 4r det M,
* Reduction by k: det M' = k% det M.

The column difference of a matrix is cd (Z ;) = (a 4+ b) — (¢ + d). Digit
matrices and their inverses have column difference 0. Consider the product of

(D7)* (5) with a vector (:j)

o (e ) O (e

which implies

(14) (1) = (Z) — W = 2wt o)
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From this, cd((D})*- M) = 2cd M follows. It is straightforward to verify that
cd(M - D;) = 2cd M holds as well. Thus, we obtain:

o Transaction with D} cd M’ =2cd M,
* Reduction by k: cdM' = %cd M.

Hence, the properties of having zero or non-zero column difference are trans-
action invariants.

For a matrix M with cd M # 0, the quotient qcd M = (21;%2 is a well-

defined rational number. By a transaction with Dj, this quotient is multiplied

by 3—; = r; and a k-reduction yields a factor of % = 1. Thus, the quotient
qcd is invariant under reductions, and is multip%ie by r in every transaction.
Therefore, if My is some initial matrix with c¢d My # 0, and M, the result
of applying n transactions in base r to My, and all possible reductions, then
qed M,, = r™ qecd My. This equation can be turned into an integer equation by

multiplying by the denominators:
(15) det M,, - (cd My)* = r" - det My - (cd M,,)?
If cd My # 0, then c¢d M,, # 0, too. As an integer, (cd M,,)* is at least 1. This

gives a lower bound for the determinant:
| det M0|

1 det M,| > ———— -r" .
(16) | de | 2 (cd My)? '

The determinant does not directly give information about the sizes of the
entries of a matrix. A better measure is the maximum of their absolute values:
‘ (¢5) ‘ = max(|al, |b], |¢|, |d|). A lower bound for the determinant of a matrix
M can be turned into a lower bound for the norm ||M|| using the inequality

|M]| > /3| det M|, which follows from the definition of the determinant as
det (Z ;) = ad — be. Thus, we obtain from (16):

|det M0|

(17) I 2 reae (V)"

Thus, if in addition det My # 0, even if all possible reductions are performed,
the entries of the matriz are bound to grow exponentially in the number of
transactions.

It is more useful to consider the bit sizes of the entries instead of the entries
themselves. The bit size of a number m is log m.

Theorem 3.1 (Law of big numbers) Let M be a matriz with non-zero de-
terminant and non-zero column difference. After n transactions at M, at least
one entry of the resull has bit size Q(n), even if all possible reductions are per-
formed.

The law of big numbers means that the usage of big integers is unavoidable
in exact real arithmetic, in the signed digit approach of Edalat’s group. It
applies even in the simplest cases. For instance, doubling of an unsigned real
is effected by the matrix (3 ?) that has determinant 2 and column difference 1,
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halving by (é g) with determinant 2 and column difference —1, and addition
of 1 by the matrix (é i) with determinant 1 and column difference —1.

The law of big numbers does not apply to matrices with zero column
difference. The simplest example is the identity matrix E = (é ?) According
to (2), after a D-absorption, a subsequent D-emission, and a reduction by
det D, the identity matrix is recovered. Repeating this cycle, we see that
there are arbitrarily long sequences of transactions at the identity matrix
which do not lead to entries bigger than 4r. In [6], it was an open problem
whether such a fixed bound can be found for any matrix with column difference
0. Meanwhile, this question was settled positively; we present a proof in

Section 5.

3.2  Big Numbers in Tensors

In this subsection, we derive analogues of the results of the previous section
for tensors. The proceeding is similar, but a major obstacle is that tensors do
not have determinants. Fortunately there is a suitable substitute.

We start by introducing an analogue to the column difference of a matrix.
Writing a tensor T as a row (T", TR) of two matrices, its column difference
cd T is defined from the column differences of the two matrices: cd(T%, TR) =
cdTh —cd TR, ie.,

cd(Z 0 ; Z):(a—l—b)—(c—l—d)—(e—l-f)—l-(g—l—h).

From (11) and the properties of c¢d, we obtain for all digit matrices D
cd((TH, T"Y® D) = cd(T" - D) — cd(T® - D) = 2cd(T", TH) .

By (T'® D)* =T*® D (12) and c¢d(T*) = c¢d T, we obtain the corresponding

formula cd(T©D) =2c¢dT. From (14), cd(D*-T') = 2cd T follows for all digit

matrices [). Therefore, ‘cd’ for tensors behaves exactly as ‘cd’ for matrices:

o Transaction with D}:  cdT"=2cdT,

* Reduction by k: cdT’ = FedT.

Again, the properties of having zero or non-zero column difference are trans-
action invariants.

A suitable substitute for the determinant of a matrix is the column deter-
minant cdet T of a tensor T', defined by

(18) cdet(Z fl ; Z) = (a+b)(g+h)—(ct+d)etf) .

Because of (14), all four column sums are doubled by an emission, and so,
cdet(D* - T) = 4cdet T holds for all tensors T' and digit matrices D. Note
that in contrast to the determinant of matrices, the factor is not det D* = 4r,
but only 4. On the other side, the column determinant is multiplicative w.r.t.
absorptions; for any tensor 17" and matrix M,

(19) cdet(T'© M) = cdet(T ® M) = cdet T - det M
9
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holds. Here, the first equality follows from (12) and cdet(T*) = cdet T, while
the proof of the second equality is a straightforward, but tedious exercise in

algebraic manipulations.

Summarising and specialising to the case of digit matrices, we obtain:

» Emission of Dj:
» Absorption of Dj:
* Reduction by k:

cdet T = 4 cdet T,
cdet T" = 4r cdet T,
cdet T" = ]3—2 cdet T

In contrast to matrices, emissions and absorptions behave differently.

For a tensor T" with c¢dT # 0, we consider the quotient qcdT = (Cifg;.
This quotient is invariant under reductions and emissions. Every absorption
yields a factor of r. Therefore, if Ty is some initial tensor with cd Ty # 0,
and T, the result of applying n absorptions, any number of emissions, and all
possible reductions to T, then qed T, = " qcd Th. As in the case of matrices,
a lower bound for the column determinant follows:

| cdet To|

(cd Tp)?

For tensors T, we define a norm ||T'|| as the maximum of the absolute values

of the eight entries. Because of ||T'|| > /x| cdet T'|, we obtain

n

(20) |cdet T,,| >

q
| cdet To|

(21) 8(cd Tp)?

T, > (V)"

Formulating this in terms of bit sizes yields:

Theorem 3.2 (Law of big numbers for tensors) Let T' be a tensor with
non-zero column determinant and non-zero column difference. After n ab-
sorptions and any number of emissions at T', at least one entry of the result
has bit size Q(n), even if all possible reductions are performed.

The tensors that realise the four basic arithmetic operations satisfy the
hypotheses of the law of big numbers:

Addition: (8 (1) (1) ?) cdet = —1 cd =—1
Subtraction: (8 (1) _01 ?) cdet =1 cd=1
Multiplication: (é 8 8 ?) cdet =1 cd =2
Division: (8 (1) (1) 8) cdet = —1 cd = -2
Yet the tensor for the mean value operation is different:
Mean value: (8 (1) (1) g) cdet = —1 cd=0

Does this mean that

<10
0 2

), can be computed as

L2, which leads to big numbers when computed with

2
O+

% avoiding big numbers? The answer is no, at

least in the case r = 2. Let T® be the matrix on the right hand side of the
tensor T'. The equations (D* - T)R = D*- TR and (T ® D)R = TR . D hold

10
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for all tensors T' and digit matrices . This means that the right half of
(8 (1) é g) behaves exactly as the halving matrix (é g) during emissions and

absorptions from the right. Since the number 0 is represented by the infinite

product (D?%,)¥ or (1 g)w, and (T@ (1 g))R = 27" the correspondence is
only changed by a common factor during absorptions from the left. Hence,
after any number of transactions, the right half of the resulting tensor is a
multiple of the matrix resulting from (é g) by the corresponding sequence of
transactions. Thus, it has entries which are at least as big as the entries of

the matrix, which are big by Theorem 3.1.

3.3 Discussion

The laws of big numbers as derived above apply to unsigned reals only. For
instance, halving in the zero interval [—1, 1] with base r = 2 means putting Dj
in front of the unsigned part of the argument, an operation possible without
employing big integers.

Of course, our results crucially depend on the choice of the digit matrices.
All digit matrices for all bases have zero column difference, and this fact
is implicitly used in the derivations of the formulae for the cd values after
transactions. A completely different choice of digit matrices, with non-zero
column difference, may change everything. Also, the results may look different
if irrational bases are used such as the golden ratio. However, we believe that
big numbers cannot be avoided even in these cases, although we do not have
a proof.

4 Emission from Matrices and Tensors

Let r be a fixed basis, i.e., an integer greater than 1. In order to perform
emissions, we need to know for a given positive transformer A whether there
is an integer k with |k| < r such that (D})*- A > 0. As already mentioned,
this question can be answered by examining all possible values of k. Of course,
this method is only efficient if r is small.

In this section, we present a direct method to find a suitable value of % if it
exists. After this, we introduce two attributes of a matrix M, the shrink factor
shr M and the contractivity con M that allow the prediction of the existence
of suitable values of k. Thus, we obtain an algorithm suitable for large bases
r, and moreover, valuable theoretical insights for a closer analysis of the basic
computational processes in the LFT framework.

4.1 Computing Digits that can be Emitted

To study (Dj},)* - A for matrices or tensors A, it suffices to consider the simpler
case where A is replaced by a column vector of the original transformer. From

11
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(13), we know that

@ (5= () - (Grnein i)

Assuming that (Z) is positive, i.e., u,v > 0, and different from (8), we want
to ensure that u/,v" > 0 or v/,v" < 0. From (22), v’ 4 v' = 2(u 4 v) follows,
and so, the case u/;v" < 0 need not be considered. Condition u' > 0 or
(1 —k)(u+v)+r(u—v) > 0is equivalent to k& < TZ_T_Z + 1, while v’ > 0 iff
k> rﬁ — 1. Together, this means ‘k — rﬁ‘ < 1.

Let ¢ = ri7t. We want to compute the emission set of ¢, i.e., the set
of all integers k satisfying |k — ¢| < 1 and also the general digit condition

|k| <r—1. If ¢ happens to be an integer, there are three integers k satisfying
|k — ¢| <1, namely q itself, ¢ — 1, and ¢ + 1. If ¢ is not an integer, there are
merely two such integers, namely |¢| and [¢]|. Determining these candidates
is possible by integer operations (including the division (r(u — v))/(u + v)).
Since u,v > 0, |¢q| = r% < r holds. Thus, the digit condition |k < r —1
can never rule out all integer solutions of |k — ¢| < 1, and so, every ¢ arising
in the situation considered here has a non-empty emission set.

Applying these results to the case of a positive non-singular matrix M =

(a C), we see that (D})*- M > 0 iff

b d
a—b c—d
23 k — <1 d k — <1
(23) ra—l—b‘_ an ‘ rc—l—d‘_
Hence, we look for the intersection of the emission sets of ¢ = TZ_T_Z and

G2 = ri_l__—i. If ¢; and ¢y are too far apart, this intersection is empty, and no

digit can be emitted. If ¢; and ¢, are close together, the intersection may have
more than one element. In this case, it does not matter which one is chosen
for the emission.

For a tensor T = <Z y ; Z), the set of digits that may be emitted is the

intersection of four emission sets, belonging to numbers ¢q, ..., ¢4 derived
from the four columns.

4.2 Guaranteed Fmission

If a digit & can be emitted from a matrix, then |¢3 —q2| < |1 —k|+ |k —q¢2| < 2.
Thus, emission is impossible if |¢1 — ¢2| > 2. On the other hand, emission is
surely possible if |¢; — ¢2| < 1. For a proof of this claim, several cases have to
be distinguished. Recall |¢1[, |q2| < r. Hence, if ¢; > r—1, then ¢; € [r—1,7],
whence g3 € [r — 2,7], and thus, k = r — 1 is a solution. The cases ¢3 > r — 1,
g1 < —r+1 and ¢ < —r 4+ 1 can be handled similarly. The remaining case is
1], [qz] < v —1. Then also |¢| < r —1 holds for ¢ = $(q1 + ¢2). Let k be an
integer with [k| < r —1 and |k — ¢| < 3; such an integer always exists. Then
we have [k — 1| < [k — ¢+ |¢ — q1] < 1+ 12 — 1| < 1, and analogously
k=g < 1.

12



HECKMANN

Lemma 4.1 For a positive non-singular matriz M = (a C) let g1 = r? and

G2 = rc_l_d If |g1 — q2| < 1, then a digit in base r can be emitted. Conversely,
if an r-digit can be emztted, then |¢1 — q2| < 2 must hold.

4.3 The Shrink Factor of a Matriz

Because of its importance, we shall analyse the value of |¢; — ¢2| in more detail.

0= al=r ZJ‘LZ‘
B (ac+ ad — be — bd) — (ac — ad + be — bd)
B (a +b)(c+d)
(24) g lad=bd

(a +b)(c+d)

Let us introduce a name for the fraction in (24).

Definition 4.2 The shrink factor shr M of a positive non-singular matrix
M= (5 3) s
| det M|

(a+b)(c+d)

The motivation for choosing the name shrink factor is as follows: A positive
non-singular matrix M = ({ ;) induces an LFT (M) : [0,00] — [0,00]. By
composition with the bijections (Sp) and (S..) between [0, 00] and [—1, 1], we

shr M =

obtain a function fy = (SoMSs) : [-1,1] — [=1,1]. Note that fy(—1) =
(SoM)(0) = (So)(c/d) = (j;l;_: = C_T_d, and mmll&rly, fu(l) = “_T_Z Thus,

—b

the length of the interval fy[—1,1]is |22 — c—I—d = 2shr M by a computation
as in the beginning of this subsectlon Therefore, fys lets the interval [—1, 1]
shrink by a factor of shr M, namely from length 2 to length 2shr M.

From Lemma 4.1 and (24), we immediately obtain:

Proposition 4.3 Let M be a positive non-singular matriz. If shr M < L

2
then a digit in base r can be emitted. Conversely, if an r-digit can be emitted,

then shr M < % must hold.

4.4 Properties of the Shrink Factor

For any positive non-singular matrix M,
(25) shrM <1

holds. For, (a + b)(c+ d) > ad + bc > |ad — be| holds for a,b,e,d> 0.

Digit matrices D}, (4) . Though they are
not positive, inverse digit matrices (D})* (5) can be asmgned a formal shrink
factor of 2% =r.

Now, let us consider emission. By (14), the column sums of (D} )* - M are
twice the column sums of M. Furthermore, det ((D})* - M) is det M times

13
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det (D%)* = 4r. Thus, shr ((D})* - M) is shr M times 2% = r, and we obtain

2.2
(26) shr (D) - M) = r-shr M .
From this result, one may conjecture that shr (A - B) = shr A - shr B holds,
“proved” by the argument that if fg shrinks [—1,1] by shr B and f4 shrinks
[—1,1] by shr A, then fap = fa o fp shrinks [—1,1] by shr A - shr B. Yet
this argument fails because in fa.g[—1,1] = fa(fs[—1,1]), function f4 is not
applied to [—1,1], but to some subinterval, and shr A does not provide any
information about the shrink factor of that subinterval.

In fact, there is no relationship between shr(A - B) and shr A - shr B in
general; the former value may be smaller or larger than the latter. The only
general property for positive non-singular matrices is
(27) shr(A- B) <shrA
because fg[—1,1] C [—1,1] and therefore fap[—1,1] = fa(fe]—1,1]) C
fa[—-1,1].

Even if B is a digit matrix, there is no better information about shr (A- B).
Consider for instance B = (3 1), which is the digit matrix D? in lowest terms.
For A = (a 0), we have shr A = Z—le = 1 and shr(A - B) = shr <2a a) =

0 d 0 d

2a(2:11j—d) = ajl_id, which by suitable choices of integers a,d > 0 may yield any

rational number between 0 and 1.

4.5 The Contractivity of a Matrix

By (27), we know that the shrink factor after an absorption is not larger
than before, but as the example above shows, we cannot claim any substan-
tial decrease of the shrink factor, and so cannot conclude that after many
absorptions, an emission will eventually be possible. To obtain such a result,
the shrink factor has to be replaced by another property of a matrix, the
contractivily.

Let M be a positive non-singular matrix. Recall shr M = %,
where the denominator 2 is written in a particular complex way. The disad-
vantage of this definition is that it does not provide any information about the
shrinking of subintervals of [—1,1]. To obtain such information, we consider
the supremum of the shrink factors of all such subintervals and call it the

contractivity con M of M:

|fM(3|2 = ﬁﬂy” zy € [—1,1], = #y }

This notion (in fact, its reciprocal) was introduced in [7] to obtain convergence
criteria for infinite matrix and tensor expressions. In that paper, a direct
formula for the contractivity is derived:

(28) con M = sup{

a c | det M|

b d (min(a + b,c 4+ d))?
From both formulae, it is obvious that shr M < con M holds. By combining
this with Prop. 4.3, we see that an r-digit can be emitted if con M < L.

2r
14

(29) M:< > — conM =
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However, a necessary condition for emission in the sense of the last part of
Prop. 4.3 is not possible using contractivities, and the sufficient condition with
con is much weaker than that with shr. Consider for instance the matrices

M, = (é 1;”) with v,v > 1. We have shr M,,, = 1(1;;7_%) = ﬁ, and so,
r-emission is guaranteed for any r if v is sufficiently big. On the other hand,
con My, = {5 = u is arbitrarily large and never satisfies con M,, § - for any
r > 2.

Nevertheless, the contractivity is useful since it satisfies
(30) con(A-B)<conA-conB .

For a proof, use (28), and note that for all , y in [—1,1],

[fap(x) = fap(W)l _ |falfB(x)) = fall8W)  |fB(z) = fB(y)]
|z =y |[fB(2) = [B(y)] |z =y
Thus, we obtain con(M - D}) < con Dj - con M = —conM For emission,
con((D})* - M) = r-con M holds; the proof is analogous to that of the corre-
sponding property of shr (26).

Let us summarise the results about the contractivity:

Proposition 4.4 For every positive non-singular matriz M holds:

(i) 0 < con M < o0,
(ii) con(M - Dy) < fcon M,
(iii) con((D})* M) =r-conM,
(iv) If con M < 5=, then an r-digit can be emitted.

Given such a matrix M, a fixed number of absorptions suffices to obtain a
matrix M’ with con M’ < % After the next absorption, we have a matrix M"
with con M" < 21_7« Then, an r-emission is possible, giving a matrix M"” with
con M" < 1. Repeating this, we see that from now on, at least one emission
is possible after each absorption.

Theorem 4.5 For every positive non-singular matriz M, there is a constant
k such that at most n + k digits must be absorbed to allow the emission of n
digits.

5 No Big Numbers in case of Zero Column Difference

The law of big numbers for matrices (Theorem 3.1) states that for non-singular
matrices with non-zero column difference, the result after n transactions has at
least one entry of bit size 2(n), even if all possible reductions are performed. In
this section, we prove a complementary result: for every positive non-singular
matrix M with column difference zero and every argument z in [0, 0o], the
result of applying (M) to  can be computed with a bounded subset of the
integers.

Consider a positive non-singular matrix My = <Z§ CE) with c¢d My = 0,

15
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i.e., ap+by = co+dy. Comparing (29) and Definition 4.2, we see that con My =
shr My holds. By (25), con My < 1 follows. For the following, recall Prop. 4.4.
After one absorption, we get a matrix M; with con M; < % < % The next
absorption yields a matrix M, with con My < 21_7« Then, an r-digit can be
emitted, yielding M5 with con M3 < % After the next absorption, we have M,
with con M, < 21_7« etc. Thus, the computation sequence A, A, K, A, E, A E, ...
is possible, where A means absorption and £ emission. From the results in
Section 3.1, we know that all the matrices M; satisfy cd M; = 0. In the
sequel, we assume that all matrices M; are reduced to lowest terms. These
reductions do not affect the arguments above since contractivity and zero
column difference are invariant under reductions.

Consider the matrix M,, 1 after n emissions, i.e., n 4+ 1 digits have been
absorbed and n digits have been emitted. According to (8) in Section 2.3, we
may summarise all but the first absorbed r-digits into one r"-digit A" and all
emitted r-digits into one r"-digit K’. With R = r", the resulting matrix is
(DE)* - M, - DE after the factor 2! from (8) has been cancelled. Let us
compute M’ = M, - DE first:

a1 ¢ R+ K+1 R+ K -1
G Gelnt k)
B (R(al—l—cl)—l—([&’—l—l)(al —¢) Rl +a)+ (K —1)(ay —cl)>
O\ R(by+dy) + (K +1)(by —dy)  R(by+dy)+ (K —1)(by —dy)

a
= (i )
, we compute M” = (DE,)*- M":
l1-K'+R 1—-K —R a
1+ K'—R 1+K'+R b d
(=K' +V)+ R —=0b) (1-K)+d)+R(Cc—d)
SN +KY @+ V)= R =) (1+K)(d+d)— R —d)

Now

Note that a14b; —ci—d; = 0implies '+ = R(a1+bi+e1+dy) = 2R(a1+b1),
and same with ¢ + d’. Modulo 2, the expressions a; — by + ¢ — d; and
a; — by — ¢+ dy are equal to aq+ by + ¢ +dy = 2(a1+ by ), and therefore, a’ — ¥/
and ¢ — d are even. Thus, M" is 2R-reducible. After reduction, we obtain

((1 — K')ay 4+ by) 4 (@' — )2 (1= K')(ay + b)) + (¢ — d’)/2>
(14 KN (ay +by) — (@ —b)/2 (14K (ay+by) — (& — d')/2

Note that the sum of the four entries of this matrix is 4(ay + b1). Since the
matrix is positive, this provides an upper bound for the entries. From this
bound for the entries of My, 11, we easily get a bound for the entries of M;,, 42,
and hence for the entries of all matrices.

16



HECKMANN

6 The Complexity of LFT Application

The appearance of big integers affects the complexity of real number arith-
metic. In this section, we study the time needed to compute n digits from the
application of a matrix to a real number. Because of the law of big numbers,
this time is O(n?) for matrices with non-zero column difference if the indi-
vidual digits are handled one by one. By combining many digits in a small
basis to one digit in a large basis, this quadratic complexity can be reduced to
that of big integer multiplication. This kind of digit compression was already
proposed by Peter Potts for absorptions, but not for emissions. Potts did not
provide a complexity analysis.

6.1 Basic Assumptions

In computing a real number y, we are interested in the time T'(n) needed to
compute the first n digits of y. By digits, we mean digit matrices, plus possibly
a sign matrix in front. If y is not a constant, but depends on some input value
z, i.e.,y = f(x), we consider a fixed argument x and assume that all digits
of x are already computed and freely available. This assumption means that
we do not directly take into account the difference between two algorithms
for f, one of which computes n digits of y from n digits of x, while the other
one needs n? digits of x. Yet this difference has an indirect impact on the
complexity; for, the second algorithm presumably needs additional time to
digest the additional digits.

By the law of big numbers, big integers cannot be avoided except in some
exceptional cases. Hence, we need to consider the complexity of big integer
operations.

» Addition, subtraction, and comparison of two integers of bit size n take
time O(n).

o Multiplication of an integer of bit size n with a ‘small” integer such as 2 or
3 takes time O(n), too.

» Multiplication of two integers of bit size n requires more than O(n) basic
arithmetical operations. Any straightforward algorithm takes time O(n?).
However, there are several faster algorithms in [8], including one which
needs only O(n logn loglogn) basic arithmetical operations, and one that
simulates the multiplication in O(n) operations on a pointer machine.

In the sequel, let us assume a fixed algorithm for multiplication with
complexity C'(n) better than O(n?).

o Integer division of a 2n bit integer by an n bit integer, yielding an n bit
integer, is as complex as n bit multiplication times a constant [8]. Thus, we
assume a complexity of C'(n) for integer division, too.
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6.2 Digit by Digit Evaluation

For a matrix M, we want to estimate the complexity T'(n) of computing the
first n digits of (M)(x). The straightforward method to compute this result
is digit by digit evaluation: emit digits as long as possible, then absorb one
digit of z, again emit digits as long as possible etc.

Assume that after some of these transactions, we have obtained the matrix
M’ with bit size s in its entries. To compute the next transaction, one has to
check whether emission is possible which involves the computation of (D})*- M’
for all possible k, and if no emission is possible, an absorption has to be done
by computing M’ - Dj, for some digit matrix D}. Since we assumed a small
basis r, all the entries of D} are small, and so, all calculations can be done in
time O(s).

Assume that the start matrix M has non-zero column difference. From
Theorem 4.5, we know that O(n) digits have to be absorbed to emit n digits.
By Theorem 3.1, the matrix resulting after O(n) absorptions and n emissions
has an entry of bit size O(n). Hence, the next transaction needs time O(n),
and so, the overall time for the absorption and emission of n digits is O(n?).

The situation is different for matrices with column difference zero. In
Section 5, we have seen that the entries of all matrices occurring during the
computation can be bounded by a fixed upper bound, i.e., have bit size O(1).
Hence, every transaction needs time O(1) in this case, and so, the overall time
for the computation of n digits is merely O(n).

6.3 Mass Absorption

The quadratic complexity of digit by digit evaluation can be reduced by han-
dling many digits at once. For the following, assume the basis r = 2.

Let M be a positive non-singular matrix with non-zero column difference
and small entries, and consider the task of computing n digits of (M)(u) for
an unsigned real u (a stream of digit matrices). By Theorem 4.5, we know
that m = n + k digits of u have to be absorbed into M in order to compute
the desired number of digits of the result. Let these m digits be Df --- D}

We have already pointed out that the computation of the result takes time
O(n?) if the digits are absorbed and emitted one by one. Now assume that we
first perform all m absorptions and start emitting the n digits of the result only
afterwards. Thus, the first subtask is to compute M - Dzl - D} efficiently.
To be more precise, let My = M and for 0 < 7 < m, let M; be either M;_4 -Dzi
directly, or the result which is obtained after all possible reductions have been
performed on this matrix. In any case, the entries of M;_; have bit size O(),
and so it takes time O(7) to compute M;_; - Dzi. Therefore, the overall time
to compute My, My, ..., M,, is quadratic.
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There is another way to obtain M,,. By (8),

"4+ K+1 2"+ K —1
2m — K —1 2m—K—|—1>
where K = Y7 ko' The factor 2™~! can be cancelled immediately. The
number K can be computed in time O(m) as follows: collect the positive digits
k; into a number K+, the negative digits into K, and compute K = KT —K~.

Since K has bit size O(m), the computation of D%" from K takes time O(m),
and so does the multiplication M - D%" since the entries of M are small.

Dzl D} = om=1prt = gm~! (

o m digits can be absorbed into a matrix in time O(m).

So far, we have not made any assumption about the concrete representation
of big integers. A particularly fascinating approach is a representation in a
redundant binary way, i.e., as > .-, k;2', with & € {—1,0,1}. Then the
digit sequence Dzl -+~ D} s in some sense identical with K (up to a possible
reversal). Or put the other way round: instead of storing Dzl, .., D} as list
of matrices or as list [kq,..., k] of digits, store it as the number K together
with the length m. This brings the digit matrix approach in close relationship
with Boehm and Cartwright’s functional approach [2,3].

6.4 Mass Emission

Mass absorption may bring down the cost of real number computation, but for
a real gain, also mass emission is needed. For, no matter how quick M = M -
D}, --- D} can be computed, the result has entries of bit size Q(m) = Q(n),
and so it takes time (n?) to emit n digits from M’ if the digits are emitted
one by one.

The solution is of course to emit one digit D% in base 2", and then split

K into 2-digits ky, ..., k,. As we have seen in Section 4.1, the emission of a
"(a—b) 2"(c—d)
. . o5 21 o

by integer divisions. Since these are divisions of a n 4+ O(n) bit integer by an
O(n) bit integer, they can be performed in time C'(n). If required at all, the

number K can be split into ky, ... k, by simply reading off the bits of K.

2"-digit from a matrix (Z ;) involves the approximation of 2

* By mass absorption and mass emission, the time needed to compute n
digits of (M)(u) can be reduced from O(n?) to C'(n), the time needed for
the multiplication of two integers of bit size n.

References

[1] A. Avizienis. Signed-digit number representations for fast parallel arithmetic.
IRFE Transactions on Electronic Computers, 10:389-400, 1961.

[2] H.J. Boehm, R. Cartwright, M. Riggle, and M.J. O’Donell. Exact real
arithmetic: A case study in higher order programming. In ACM Symposium
on Lisp and Functional Programming, pages 162-173, 1986.

19



HECKMANN

[3] H.J. Boehm and R. Cartwright. FExact real arithmetic: Formulating real
numbers as functions. In D. Turner, editor, Research Topics in Functional
Programming, pages 43-64. Addison-Wesley, 1990.

[4] A. Edalat and P. Potts. A new representation for exact real numbers. In
S. Brookes and M. Mislove, editors, MFPS 97, volume 6 of Electronic Notes
in Theoretical Computer Science, 1997. URL: http://www.elsevier.nl/
locate/entcs/volume6.html.

[6] W. Gosper. Continued fraction arithmetic. Technical Report HAKMEM Item
101B, MIT Artificial Intelligence Memo 239, MIT, 1972.

[6] R. Heckmann. The appearance of big integers in exact real arithmetic based on
linear fractional transformations. In Proc. Foundations of Software Science and
Computation Structures (FoSSaCS '98), volume 1378 of LNCS, pages 172-188.
Springer-Verlag, 1998.

[7] R. Heckmann. Contractivity of linear fractional transformations. In J.-M.
Chesneaux, F. Jézéquel, J.-I.. Lamotte, and J. Vignes, editors, Third Real
Numbers and Computers Conference (RNC3), pages 45-59, April 1998.

[8] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer
Programming. Addison-Wesley, 2nd edition, 1981.

[9] A. Nielsen and P. Kornerup. MSB-first digit serial arithmetic. J. of Univ.
Comp. Scien., 1(7):523-543, 1995.

[10] P. J. Potts and A. Edalat. Exact real arithmetic based on linear
fractional transformations. Draft, Imperial College, available from http://
www-tfm.doc.ic.ac.uk/"pjp, December 1996.

[11] P. J. Potts and A. Edalat. Exact real computer arithmetic. Draft, Imperial
College, available from http://www-tfm.doc.ic.ac.uk/"pjp, March 1997.

[12] P. J. Potts. Computable real arithmetic using linear fractional
transformations. Draft PhD Thesis, Imperial College, available from http:
//wwu-tfm.doc.ic.ac.uk/"pjp, June 1996.

[13] P. Potts, A. Edalat, and M. Escard6. Semantics of exact real arithmetic. In
Proc. Twelfth Annual IEEFE Symposium on Logic in Computer Science, pages
248-257. IEEE, 1997.

[14] J. E. Vuillemin. Exact real computer arithmetic with continued fractions. IEEFE
Transactions on Computers, 39(8):1087-1105, 1990.

20



