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Preface

Floating-point arithmetic is by far the most widely used way of
approximating real-number arithmetic for performing numerical calcu-

lations on modern computers. A rough presentation of floating-point arith-
metic requires only a few words: a number x is represented in radix β
floating-point arithmetic with a sign s, a significand m, and an exponent e,
such that x = s×m×βe. Making such an arithmetic reliable, fast, and portable
is however a very complex task. Although it could be argued that, to some ex-
tent, the concept of floating-point arithmetic (in radix 60) was invented by the
Babylonians, or that it is the underlying arithmetic of the slide rule, its first
modern implementation appeared in Konrad Zuse’s 5.33Hz Z3 computer.

A vast quantity of very diverse arithmetics was implemented between
the 1960s and the early 1980s. The radix (radices 2, 4, 16, and 10 were then
considered), and the sizes of the significand and exponent fields were not
standardized. The approaches for rounding and for handling underflows,
overflows, or “forbidden operations” (such as 5/0 or

√
−3) were significantly

different from one machine to another. This lack of standardization made it
difficult to write reliable and portable numerical software.

Pioneering scientists including Brent, Cody, Kahan, and Kuki high-
lighted the relevant key concepts for designing an arithmetic that could be
both useful for programmers and practical for implementers. These efforts
resulted in the IEEE 754-1985 standard for radix-2 floating-point arithmetic,
and its follower, the IEEE 854-1987 “radix-independent standard.” The stan-
dardization process was expertly orchestrated by William Kahan. The IEEE
754-1985 standard was a key factor in improving the quality of the compu-
tational environment available to programmers. It has been revised during
recent years, and its new version, the IEEE 754-2008 standard, was released
in August 2008.

By carefully specifying the behavior of the arithmetic operators, the 754-
1985 standard allowed researchers to design extremely smart yet portable al-
gorithms; for example, to compute very accurate sums and dot products, and
to formally prove some critical parts of programs. Unfortunately, the sub-
tleties of the standard are hardly known by the nonexpert user. Even more
worrying, they are sometimes overlooked by compiler designers. As a conse-
quence, floating-point arithmetic is sometimes conceptually misunderstood
and is often far from being exploited to its full potential.

xv



xvi Preface

This and the recent revision of the IEEE 754 standard led us to the
decision to compile into a book selected parts of the vast knowledge on
floating-point arithmetic. This book is designed for programmers of numer-
ical applications, compiler designers, programmers of floating-point algo-
rithms, designers of arithmetic operators, and more generally the students
and researchers in numerical analysis who wish to more accurately under-
stand a tool that they manipulate on an everyday basis. During the writing,
we tried, whenever possible, to illustrate by an actual program the described
techniques, in order to allow a more direct practical use for coding and
design.

The first part of the book presents the history and basic concepts of
floating-point arithmetic (formats, exceptions, correct rounding, etc.), and
various aspects of the IEEE 754 and 854 standards and the new revised stan-
dard. The second part shows how the features of the standard can be used
to develop smart and nontrivial algorithms. This includes summation algo-
rithms, and division and square root relying on a fused multiply-add. This
part also discusses issues related to compilers and languages. The third part
then explains how to implement floating-point arithmetic, both in software
(on an integer processor) and in hardware (VLSI or reconfigurable circuits).
The fourth part is devoted to the implementation of elementary functions.
The fifth part presents some extensions: certification of floating-point arith-
metic and extension of the precision. The last part is devoted to perspectives
and the Appendix.
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Chapter 1

Introduction

Representing and manipulating real numbers efficiently is required in
many fields of science, engineering, finance, and more. Since the early

years of electronic computing, many different ways of approximating real
numbers on computers have been introduced. One can cite (this list is
far from being exhaustive): fixed-point arithmetic, logarithmic [220, 400]
and semi-logarithmic [294] number systems, continued fractions [228, 424],
rational numbers [227] and possibly infinite strings of rational numbers [275],
level-index number systems [71, 318], fixed-slash and floating-slash number
systems [273], and 2-adic numbers [425].

And yet, floating-point arithmetic is by far the most widely used way
of representing real numbers in modern computers. Simulating an infinite,
continuous set (the real numbers) with a finite set (the “machine numbers”)
is not a straightforward task: clever compromises must be found between,
e.g., speed, accuracy, dynamic range, ease of use and implementation, and
memory cost. It appears that floating-point arithmetic, with adequately cho-
sen parameters (radix, precision, extremal exponents, etc.), is a very good
compromise for most numerical applications.

We will give a complete, formal definition of floating-point arithmetic in
Chapter 3, but roughly speaking, a radix-β, precision-p, floating-point num-
ber is a number of the form

±m0.m1m2 · · ·mp−1 × βe,

where e, called the exponent, is an integer, and m0.m1m2 · · ·mp−1, called the
significand, is represented in radix β. The major purpose of this book is to
explain how these numbers can be manipulated efficiently and safely.

1.1 Some History

Even if the implementation of floating-point arithmetic on electronic com-
puters is somewhat recent, floating-point arithmetic itself is an old idea.

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_1, 3
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2010
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In The Art of Computer Programming [222], Donald Knuth presents a short
history of floating-point arithmetic. He views the radix-60 number system
of the Babylonians as some kind of early floating-point system. Since the
Babylonians did not invent the zero, if the ratio of two numbers is a power
of 60, then their representation in the Babylonian system is the same. In that
sense, the number represented is the significand of a radix-60 floating-point
representation of w.

A famous tablet from the Yale Babylonian Collection (YBC 7289) gives an
approximation to

√
2 with four sexagesimal places (the digits represented on

the tablet are 1, 24, 51, 10). A photo of that tablet can be found in [434], and a
very interesting analysis of the Babylonian mathematics related to YBC 7289
was done by Fowler and Robson [138].

The arithmetic of the slide rule, invented around 1630 by William
Oughtred [433], can be viewed as another kind of floating-point arithmetic.
Again, as with the Babylonian number system, we only manipulate signifi-
cands of numbers (in that case, radix-10 significands).

The two modern co-inventors of floating-point arithmetic are prob-
ably Quevedo and Zuse. In 1914 Leonardo Torres y Quevedo described
an electro-mechanical implementation of Babbage’s Analytical Engine with
floating-point arithmetic [341]. And yet, the first real, modern implementa-
tion of floating-point arithmetic was in Konrad Zuse’s Z3 computer, built in
1941 [66]. It used a radix-2 floating-point number system, with 14-bit signifi-
cands, 7-bit exponents and 1-bit sign. The Z3 computer had special represen-
tations for infinities and indeterminate results. These characteristics made the
real number arithmetic of the Z3 much ahead of its time.

The Z3 was rebuilt recently [347]. Photographs of Konrad Zuse and
the Z3 can be viewed at http://www.computerhistory.org/projects/zuse_
z23/ and http://www.konrad-zuse.de/.

Readers interested in the history of computing devices should have a
look at the excellent book by Aspray et al. [15].

Radix 10 is what humans use daily for representing numbers and per-
forming paper and pencil calculations. Therefore, to avoid input and output
radix conversions, the first idea that springs to mind for implementing auto-
mated calculations is to use the same radix.

And yet, since most of our computers are based on two-state logic,
radix 2 (and, more generally, radices that are a power of 2) is by far the easiest
to implement. Hence, choosing the right radix for the internal representation
of floating-point numbers was not obvious. Indeed, several different solu-
tions were explored in the early days of automated computing.

Various early machines used a radix-8 floating-point arithmetic: the
PDP-10, and the Burroughs 570 and 6700 for example. The IBM 360
had a radix-16 floating-point arithmetic. Radix 10 has been extensively
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used in financial calculations1 and in pocket calculators, and efficient
implementation of radix-10 floating-point arithmetic is still a very active
domain of research [63, 85, 90, 91, 129, 414, 413, 428, 429]. The computer
algebra system Maple also uses radix 10 for its internal representation of
numbers. It therefore seems that the various radices of floating-point arith-
metic systems that have been implemented so far have almost always been
either 10 or a power of 2.

There has been a very odd exception. The Russian SETUN computer,
built in Moscow University in 1958, represented numbers in radix 3, with dig-
its −1, 0, and 1. This “balanced ternary” system has several advantages. One
of them is the fact that rounding to nearest is equivalent to truncation [222].
Another one [177] is the following. Assume you use a radix-β fixed-point
system, with p-digit numbers. A large value of β makes the implementation
complex: the system must be able to “recognize” and manipulate β different
symbols. A small value of β means that more digits are needed to represent
a given number: if β is small, p has to be large. To find a compromise, we can
try to minimize β × p, while having the largest representable number βp − 1
(almost) constant. The optimal solution2 will almost always be β = 3. See
http://www.computer-museum.ru/english/setun.htm for more information
on the SETUN computer.

Various studies (see references [44, 76, 232] and Chapter 2) have shown
that radix 2 with the implicit leading bit convention (see Chapter 2) gives better
worst-case or average accuracy than all other radices. This and the ease of
implementation explain the current prevalence of radix 2.

The world of numerical computation changed much in 1985, when
the IEEE 754-1985 Standard for Binary Floating-Point Arithmetic was
released [10]. This standard specifies various formats, the behavior of the
basic operations and conversions, and exceptional conditions. As a matter of
fact, the Intel 8087 mathematics co-processor, built a few years before in 1980,
to be paired with the Intel 8088 and 8086 processors, was already extremely
close to what would later become the IEEE 754-1985 standard. Now, most
systems of commercial significance offer compatibility3 with IEEE 754-1985.
This has resulted in significant improvements in terms of accuracy, reliability,
and portability of numerical software. William Kahan played a leading role
in the conception of the IEEE 754-1985 standard and in the development of
smart algorithms for floating-point arithmetic. His web page4 contains much
useful information.

1Financial calculations frequently require special rounding rules that are very tricky to
implement if the underlying arithmetic is binary.

2If p and β were real numbers, the value of β that would minimize β × p while letting βp

be constant would be e = 2.7182818 · · ·
3Even if sometimes you need to dive into the compiler documentation to find the right

options: see Section 3.3.2 and Chapter 7.
4http://www.cs.berkeley.edu/~wkahan/
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IEEE 754-1985 only dealt with radix-2 arithmetic. Another standard,
released in 1987, the IEEE 854-1987 Standard for Radix Independent Floating-
Point Arithmetic [11], is devoted to both binary (radix-2) and decimal
(radix-10) arithmetic.

IEEE 754-1985 and 854-1987 have been under revision since 2001. The
new revised standard, called IEEE 754-2008 in this book, merges the two
old standards and brings significant improvements. It was adopted in June
2008 [187].

1.2 Desirable Properties

Specifying a floating-point arithmetic (formats, behavior of operators, etc.)
requires us to find compromises between requirements that are seldom fully
compatible. Among the various properties that are desirable, one can cite:

• Speed: Tomorrow’s weather must be computed in less than 24 hours;

• Accuracy: Even if speed is important, getting a wrong result right now
is worse than getting the correct one too late;

• Range: We may need to represent large as well as tiny numbers;

• Portability: The programs we write on a given machine must run on
different machines without requiring modifications;

• Ease of implementation and use: If a given arithmetic is too arcane,
almost nobody will use it.

With regard to accuracy, the most accurate current physical measure-
ments allow one to check some predictions of quantum mechanics or general
relativity with a relative accuracy close to 10−15. This of course means that
in some cases, we must be able to represent numerical data with a similar
accuracy (which is easily done, using formats that are implemented on
almost all current platforms). But this also means that we might sometimes be
able to carry out computations that must end up with a relative error less than
or equal to 10−15, which is much more difficult. Sometimes, one will need a
significantly larger floating-point format or smart “tricks” such as those pre-
sented in Chapter 4.

An example of a huge calculation that requires much care was car-
ried out by Laskar’s team at the Paris observatory [243]. They computed
long-term numerical solutions for the insolation quantities of the Earth (very
long-term, ranging from −250 to +250 millions of years from now).

In other domains, such as number theory, some multiple-precision com-
putations are indeed carried out using a very large precision. For instance,
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in 2002, Kanada’s group computed 1241 billion decimal digits of π [19], using
the two formulas

π = 48 arctan
1
49

+ 128 arctan
1
57
− 20 arctan

1
239

+ 48 arctan
1

110443

= 176 arctan
1
57

+ 28 arctan
1

239
− 48 arctan

1
682

+ 96 arctan
1

12943
.

These last examples are extremes. One should never forget that with 50
bits, one can express the distance from the Earth to the Moon with an error
less than the thickness of a bacterium. It is very uncommon to need such
an accuracy on a final result and, actually, very few physical quantities are
defined that accurately.

1.3 Some Strange Behaviors

Designing efficient and reliable hardware or software floating-point systems
is a difficult and somewhat risky task. Some famous bugs have been widely
discussed; we recall some of them below. Also, even when the arithmetic is
not flawed, some strange behaviors can sometimes occur, just because they
correspond to a numerical problem that is intrinsically difficult. All this is
not surprising: mapping the continuous real numbers on a finite structure
(the floating-point numbers) cannot be done without any trouble.

1.3.1 Some famous bugs

• The divider of the first version of the Intel Pentium processor, released
in 1994, was flawed [290, 122]. In extremely rare cases, one would get
three correct decimal digits only. For instance, the computation of

8391667/12582905

would give 0.666869 · · · instead of 0.666910 · · · .

• With release 7.0 of the computer algebra system Maple, when
computing

1001!
1000!

,

we would get 1 instead of 1001.

• With the previous release (6.0) of the same system, when entering

21474836480413647819643794

you would get

413647819643790) +′ −− .(−− .(
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• Kahan [208] mentions some strange behavior of some versions of the
Excel spreadsheet. They seem to be due to an attempt to mimic a deci-
mal arithmetic with an underlying binary one.

An even more striking behavior happens with some early versions of
Excel 2007: When you try to compute

65536− 2−37

the displayed result is 100001. This is an error in the binary-to-
decimal conversion used for displaying that result: the internal
binary value is correct, if you add 1 to that result you get 65537.
An explanation can be found at http://blogs.msdn.com/excel/

archive/2007/09/25/calculation-issue-update.aspx, and a patch is
available from http://blogs.msdn.com/excel/archive/2007/10/09/

calculation-issue-update-fix-available.aspx

• Some bugs do not require any programming error: they are due to poor
specifications. For instance, the Mars Climate Orbiter probe crashed
on Mars in September 1999 because of an astonishing mistake: one
of the teams that designed the numerical software assumed the unit
of distance was the meter, while another team assumed it was the
foot [7, 306].

Very similarly, in June 1985, a space shuttle positioned itself to receive
a laser beamed from the top of a mountain that was supposedly 10,000
miles high, instead of the correct 10,000 feet [7].

Also, in January 2004, a bridge between Germany and Switzerland did
not fit at the border because the two countries use a different definition
of the sea level.5

1.3.2 Difficult problems

Sometimes, even with a correctly implemented floating-point arithmetic, the
result of a computation is far from what could be expected.

A sequence that seems to converge to a wrong limit

Consider the following example, due to one of us [289] and analyzed by
Kahan [208, 291]. Let (un) be the sequence defined as

u0 = 2

u1 = −4

un = 111− 1130
un−1

+
3000

un−1un−2
.

(1.1)

5See http://www.spiegel.de/panorama/0,1518,281837,00.html.
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One can easily show that the limit of this sequence is 6. And yet, on any
system with any precision, the sequence will seem to go to 100.

For example, Table 1.1 gives the results obtained by compiling
Program 1.1 and running it on a Pentium4-based workstation, using the GNU
Compiler Collection (GCC) and the Linux system.

#include <stdio.h>

int main(void)
{
double u, v, w;
int i, max;

printf("n =");
scanf("%d",&max);
printf("u0 = ");
scanf("%lf",&u);
printf("u1 = ");
scanf("%lf",&v);
printf("Computation from 3 to n:\n");
for (i = 3; i <= max; i++)
{
w = 111. - 1130./v + 3000./(v*u);
u = v;
v = w;
printf("u%d = %1.17g\n", i, v);

}
return 0;

}

Program 1.1: A C program that is supposed to compute sequence un using double-
precision arithmetic. The obtained results are given in Table 1.1.

The explanation of this weird phenomenon is quite simple. The general
solution for the recurrence

un = 111− 1130
un−1

+
3000

un−1un−2

is

un =
α · 100n+1 + β · 6n+1 + γ · 5n+1

α · 100n + β · 6n + γ · 5n
,

where α, β, and γ depend on the initial values u0 and u1. Therefore, if α 6= 0
then the limit of the sequence is 100, otherwise (assuming β 6= 0), it is 6. In
the present example, the starting values u0 = 2 and u1 = −4 were chosen so
that α = 0, β = −3, and γ = 4. Therefore, the “exact” limit of un is 6. And yet,
when computing the values un in floating-point arithmetic using (1.1), due
to the various rounding errors, even the very first computed terms become
slightly different from the exact terms. Hence, the value α corresponding to
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n Computed value Exact value
3 18.5 18.5
4 9.378378378378379 9.3783783783783783784
5 7.8011527377521679 7.8011527377521613833
6 7.1544144809753334 7.1544144809752493535

11 6.2744386627644761 6.2744385982163279138
12 6.2186967691620172 6.2186957398023977883
16 6.1661267427176769 6.0947394393336811283
17 7.2356654170119432 6.0777223048472427363
18 22.069559154531031 6.0639403224998087553
19 78.58489258126825 6.0527217610161521934
20 98.350416551346285 6.0435521101892688678
21 99.898626342184102 6.0360318810818567800
22 99.993874441253126 6.0298473250239018567
23 99.999630595494608 6.0247496523668478987
30 99.999999999998948 6.0067860930312057585
31 99.999999999999943 6.0056486887714202679

Table 1.1: Results obtained by running Program 1.1 on a Pentium4-based worksta-
tion, using GCC and the Linux system, compared to the exact values of sequence un.

these computed terms is very tiny, but nonzero. This suffices to make the
computed sequence “converge” to 100.

The Chaotic Bank Society

Recently, Mr. Gullible went to the Chaotic Bank Society, to learn more about
the new kind of account they offer to their best customers. He was told:

You first deposit $e− 1 on your account, where e = 2.7182818 · · ·
is the base of the natural logarithms. The first year, we take $1
from your account as banking charges. The second year is better
for you: We multiply your capital by 2, and we take $1 of banking
charges. The third year is even better: We multiply your capital
by 3, and we take $1 of banking charges. And so on: The n-th
year, your capital is multiplied by n and we just take $1 of charges.
Interesting, isn’t it?

Mr. Gullible wanted to secure his retirement. So before accepting the
offer, he decided to perform some simulations on his own computer to see
what his capital would be after 25 years. Once back home, he wrote a C pro-
gram (Program 1.2).
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#include <stdio.h>

int main(void)
{
double account = 1.71828182845904523536028747135;
int i;
for (i = 1; i <= 25; i++)
{
account = i*account - 1;

}
printf("You will have $%1.17e on your account.\n", account);

}

Program 1.2: Mr. Gullible’s C program.

On his computer (with an Intel Xeon processor, and GCC on Linux, but
strange things would happen with any other equipment), he got the follow-
ing result:

You will have $1.20180724741044855e+09 on your account.

So he immediately decided to accept the offer. He will certainly be sadly
disappointed, 25 years later, when he realizes that he actually has around
$0.0399 on his account.

What happens in this example is easy to understand. If you call a0 the
amount of the initial deposit and an the capital after the end of the n-th year,
then

an = n!×
(

a0 − 1− 1
2!
− 1

3!
− · · · − 1

n!

)
= n!×

(
a0 − (e− 1) +

1
(n + 1)!

+
1

(n + 2)!
+

1
(n + 3)!

+ · · ·
)

,

so that:

• if a0 < e− 1, then an goes to −∞;

• if a0 = e− 1, then an goes to 0;

• if a0 > e− 1, then an goes to +∞.

In our example, a0 = e − 1, so the exact sequence an goes to zero. This
explains why the exact value of a25 is so small. And yet, even if the arith-
metic operations were errorless (which of course is not the case), since e−1 is
not exactly representable in floating-point arithmetic, the computed sequence
will go to +∞ or −∞, depending on rounding directions.
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Rump’s example

Consider the following function, designed by Siegfried Rump in 1988 [352],
and analyzed by various authors [93, 268],

f(a, b) = 333.75b6 + a2
(
11a2b2 − b6 − 121b4 − 2

)
+ 5.5b8 +

a

2b
,

and try to compute f(a, b) for a = 77617.0 and b = 33096.0. On an IBM 370
computer, the results obtained by Rump were

• 1.172603 in single precision;

• 1.1726039400531 in double precision; and

• 1.172603940053178 in extended precision.

Anybody looking at these figures would feel that the single precision result
is certainly very accurate. And yet, the exact result is −0.8273960599 · · · .
On more recent systems, we do not see the same behavior exactly. For
instance, on a Pentium4-based workstation, using GCC and the Linux
system, the C program (Program 1.3) which uses double-precision compu-
tations, will return 5.960604 × 1020, whereas its single-precision equivalent
will return 2.0317 × 1029 and its double-extended precision equivalent will
return −9.38724 × 10−323. We still get totally wrong results, but at least, the
clear differences between them show that something weird is going on.

#include <stdio.h>
int main(void)
{
double a = 77617.0;
double b = 33096.0;
double b2,b4,b6,b8,a2,firstexpr,f;
b2 = b*b;
b4 = b2*b2;
b6 = b4*b2;
b8 = b4*b4;
a2 = a*a;
firstexpr = 11*a2*b2-b6-121*b4-2;
f = 333.75*b6 + a2 * firstexpr + 5.5*b8 + (a/(2.0*b));
printf("Double precision result: $ %1.17e \n",f);

}

Program 1.3: Rump’s example.



Chapter 2

Definitions and Basic Notions

As said in the Introduction, roughly speaking, a radix-β floating-point
number x is a number of the form

m · βe,

where β is the radix of the floating-point system, m such that |m| < β is the
significand of x, and e is its exponent. And yet, portability, accuracy, and the
ability to prove interesting and useful properties as well as to design smart
algorithms require more rigorous definitions, and much care in the specifi-
cations. This is the first purpose of this chapter. The second one is to deal
with basic problems: rounding, exceptions, properties of real arithmetic that
become wrong in floating-point arithmetic, best choices for the radix, and
radix conversions.

2.1 Floating-Point Numbers

Let us now give a more formal definition of the floating-point numbers.
Although we try to be somewhat general, the definition is largely inspired
from the various IEEE standards for floating-point arithmetic (see Chapter 3).

Main definitions

A floating-point format is (partially)1 characterized by four integers:

• a radix (or base) β ≥ 2;

• a precision p ≥ 2 (roughly speaking, p is the number of “significant
digits” of the representation);

1A full definition of a floating-point format also specifies the binary encoding of the signif-
icands and exponents. It also deals with special values: infinities, results of invalid operations,
etc.

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_2, 13
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2010
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• two extremal exponents emin and emax such that emin < emax. In all
practical cases, emin < 0 < emax.

A finite floating-point number in such a format is a number for which
there exists at least one representation (M, e) such that

x = M · βe−p+1, (2.1)

where

• M is an integer of absolute value less than or equal to βp− 1. It is called
the integral significand of the representation of x;

• e is an integer such that emin ≤ e ≤ emax, called the exponent of the
representation of x.

The representation (M, e) of a floating-point number is not necessarily
unique. For instance, with β = 10 and p = 3, the number 17 can be repre-
sented either by 17× 100 or by 170× 10−1, since both 17 and 170 are less than
βp = 1000. The set of these equivalent representations is called a cohort.

The number
βe−p+1

from Equation (2.1) is called the quantum of the representation of x. We will
call the quantum exponent the number

q = e− p + 1.

The notion of quantum is closely related to the notion of ulp (unit in the last
place); see Section 2.6.1.

Another way to express the same floating-point number x is by using
the triplet (s,m, e), so that

x = (−1)s ·m · βe,

where

• e is the same as before;

• m = |M | · β1−p is called the normal significand (or, more simply, the
significand of the representation). It has one digit before the radix point,
and at most p− 1 digits after (notice that 0 ≤ m < β); and

• s ∈ {0, 1} is the sign of x.

The significand is also frequently (and slightly improperly) called the
mantissa in the literature.2 According to Goldberg [148], the term “signifi-
cand” was coined by Forsythe and Moler in 1967 [136].

2The mantissa of a non-negative number is the fractional part of its logarithm.
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Consider the following “toy system.” We assume radix β = 2, precision
p = 4, emin = −7, and emax = +8. The number3 41610 = 1101000002 is a
floating-point number. It has one representation only, with integral signifi-
cand 1310 and exponent 810, since

416 = 13 · 28−4+1.

The quantum of this representation is 25 = 32. Note that a representation
such as 26 · 27−4+1 is excluded because 26 > 2p − 1 = 15. In the same toy
system, the number 4.2510 = 17 · 2−2 is not a floating-point number, as it
cannot be exactly expressed as M · βe−p+1 with |M | ≤ 24 − 1.

When x is a nonzero arbitrary real number (i.e., x is not necessarily rep-
resentable in a given floating-point format), we will denote infinitely precise
significand of x (in radix β) the number

x

βblogβ |x|c
,

where βblogβ |x|c is the largest integer power of β smaller than |x|.

Normalized representations, normal and subnormal numbers

As explained above, some floating-point numbers may have several repre-
sentations (M, e). Nevertheless, it is frequently desirable to require unique
representations. In order to have a unique representation, one may want to
normalize the finite nonzero floating-point numbers by choosing the represen-
tation for which the exponent is minimum (yet larger than or equal to emin).
The obtained representation will be called a normalized representation. Requir-
ing normalized representations allows for easier expression of error bounds,
it somewhat simplifies the implementation, and it allows for a one-bit saving
in radix 2.4 Two cases may occur.

• In general, such a representation satisfies 1 ≤ |m| < β, or, equivalently,
βp−1 ≤ |M | < βp. In such a case, one says that the corresponding value
x is a normal number. When x is a normal floating-point number, its
infinitely precise significand is equal to its significand.

• Otherwise, one necessarily has e = emin, and the corresponding value
x is said to be a subnormal number (the term denormal number is often
used too). In that case, |m| < 1 or, equivalently, |M | ≤ βp−1 − 1. The
special case of zero will be dealt with later.

3We will frequently write “xxx· · · xxb” to designate the number whose radix-b representa-
tion is xxx· · · xx. To avoid complicated notation, we will tend to omit b each time its value is
obvious from the context.

4We will see in Chapter 3 that the new IEEE 754-2008 standard requires normalized repre-
sentations in radix 2, but not in radix 10.
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With such a normalization, as the representation of a finite nonzero
number x is unique, the values M , q, m, and e only depend on the value of x.
We therefore call e the exponent of x, q its quantum exponent (q = e− p + 1),
M its integer significand, and m its significand.

For instance, in radix-2 normalized floating-point arithmetic, with5

p = 24, emin = −126, and emax = 127, the floating-point number f that is
nearest to 1/3 is a normal number. Its exponent is −2, and its integral signifi-
cand is 11184811. Therefore,

f = 11184811× 2−2−24+1 = 0.333333343267440795898437510

and the quantum of f is 2−2−24+1 ≈ 2.98× 10−8, while its quantum exponent
is −25.

In the same floating-point system, the number 3 × 2−128 is a subnormal
number. Its exponent is emin = −126, its quantum is 2−149, and its integral
significand is

3× 2149−128 = 6291456.

In radix 2, the first digit of the significand of a normal number is a 1,
and the first digit of the significand of a subnormal number is a 0. If we have
a special encoding (in practice, in the exponent) that tells us if a number is
normal or subnormal, there is no need to store the first bit of its significand.
This leading bit convention, or implicit bit convention, or hidden bit convention is
frequently used.

Hence, in radix 2, the significand of a normal number always has the
form

1.m1m2m3 · · ·mp−1,

whereas the significand of a subnormal number always has the form

0.m1m2m3 · · ·mp−1.

In both cases, the digit sequence .m1m2m3 · · ·mp−1 is called the trailing
significand of the number. It is also sometimes called the fraction.

Some “extremal” floating-point numbers are important and will be used
throughout this book:

• the smallest positive normal number is βemin ;

• the largest finite floating-point number is

Ω = (β − β1−p) · βemax ;

5It is the single-precision format of IEEE 754-1985, and the binary32 format of IEEE 754-2008.
See Chapter 3 for details.
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• and the smallest positive subnormal number is

α = βemin−p+1.

For instance, still using the format (β = 2, p = 24, emin = −126, and
emax = +127) of the example given above, the smallest positive normal
number is

2−126 ≈ 1.175× 10−38;

the smallest positive subnormal number is

α = 2−149 ≈ 1.401× 10−45;

and the largest finite floating-point number is

Ω =
(
2− 2−23

)
· 2127 ≈ 3.403× 10+38.

A note on subnormal numbers

Subnormal numbers have probably been the most controversial part of
IEEE 754-1985 [148, 207]. As stated by Schwarz et al. [371], they are the
most difficult type of numbers to implement in floating-point units. As a
consequence, they are sometimes implemented in software rather than in
hardware, which may result in huge execution times when such numbers
appear in a calculation.

One can of course define floating-point systems without subnormal
numbers. And yet, the availability of these numbers allows for what Kahan
calls gradual underflow: the loss of precision is slow instead of being abrupt.
For instance [205, 176], the availability of subnormal numbers implies the
following interesting property: if a 6= b, then the computed value of b − a
is necessarily nonzero.6 This is illustrated by Figure 2.1. Gradual underflow
is also sometimes called graceful underflow. In 1984, Demmel [110] analyzed
various numerical programs, including Gaussian elimination, polynomial
evaluation, and eigenvalue calculation, and concluded that the availabil-
ity of gradual underflow significantly eases the writing of stable numerical
software.

Many properties presented in Chapter 4, such as Sterbenz’s lemma
(Lemma 2, page 122), are true only if subnormal numbers are available
(otherwise, we must add the condition if no underflow occurs then. . . in these
properties). Reference [370] presents techniques for implementing subnormal
numbers in hardware at a reasonable cost.

6Note that this property is also true if a and b are subnormal numbers.
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0 βemin βemin+1 βemin+2

0 βemin βemin+1 βemin+2

ab− a b

ab− a b

Figure 2.1: The positive floating-point numbers in the toy system β = 2 and p = 3.
Above: normal floating-point numbers only. In that set, b− a cannot be represented,
so that the computation of b − a in round-to-nearest mode (see Section 2.2) will
return 0. Below: the subnormal numbers are included in the set of floating-point
numbers.

A note on underflow

The word “underflow”can be ambiguous. For many naive users, it may mean
that the exact result of an arithmetic operation has an absolute value below
the smallest nonzero representable number (that is, when subnormal numbers
are available, α = βemin−p+1). This is not the definition chosen in the context of
floating-point arithmetic. As a matter of fact, there are two slightly different
definitions. Unfortunately, the IEEE 754-1985 and 754-2008 standards did not
make a choice between them (see Chapter 3). As a consequence, for the very
same sequence of calculations, the underflow exception may be signaled on
one “conforming” platform, and not signaled on another one.

Definition 1 (Underflow before rounding). In radix-β arithmetic, an arithmetic
operation or function underflows if the exact result of that operation or function is of
absolute value strictly less than βemin .

Definition 2 (Underflow after rounding). In radix-β, precision-p arithmetic, an
arithmetic operation or function underflows if the result we would compute with
an unbounded exponent range and precision p would be nonzero and of absolute
value strictly less than βemin .

Figure 2.2 illustrates these two definitions by pointing out (assuming
round-to-nearest—see Section 2.2—and radix 2) the tiny domain in which
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they lead to a different conclusion. For instance in radix-2, precision-p
arithmetic, as soon as 2emin < −p − 2 (which holds in all practical cases),
sin(2emin) should underflow according to Definition 1, and should not under-
flow according to Definition 2.

2emin

If we had unbounded exponents,
these would be FP numbers

with unbounded exponents,

Floating-point numbers

numbers in that domain
would round to 2eminwould not round to 2emin

numbers in that domain
with unbounded exponents,

Figure 2.2: In this radix-2 example, if the exact result is in the grey area, then there
is an underflow before rounding (Definition 1), and no underflow after rounding
(Definition 2).

One should not worry too much about this ambiguity, as the two defini-
tions disagree extremely rarely. What really matters is that when the returned
result is a subnormal number, an underflow is signaled. This is useful since
it warns the user that the arithmetic operation that returned that result might
be less accurate (in terms of relative error) than usual. Indeed, we will see
throughout this book that many algorithms and properties hold “provided
that no underflow occurs.”

Special floating-point data

Some data cannot be expressed as normal or subnormal numbers. An obvious
example is the number zero, which will require a special encoding. There are
also other examples that are not fully “numeric.”

• It is in general highly desirable to have a closed system so that any
machine operation can be well specified (without generating any
trap7), even if it is an invalid operation over the real numbers

7A trap is a transfer of control to a special handler routine.
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(e.g.,
√
−5 or 0/0). A special datum, called NaN (Not a Number) in IEEE

754-1985 and its successors, can be introduced for this purpose. Any
invalid operation will return a NaN.8

• Moreover, due to the limited exponent range, one needs to introduce
more special values. To cope with values whose magnitude is larger
than the maximum representable one, either an unsigned infinity (∞)
or two signed infinities (+∞ and −∞) can be added to the floating–
point system. If signed infinities are chosen, one may want signed
zeros (denoted +0 and −0) too, for symmetry. The IEEE standards for
floating-point arithmetic have signed zeros and infinities. As noticed
by Kahan [204], signed zeros also help greatly in dealing with branch
cuts of complex elementary functions. However, unless at least a third,
unsigned zero is introduced, this choice also yields an asymmetry for
the exact zero and the result of (+0) + (−0). As an example, the system
of the Texas Instruments pocket calculators has 3 zeros and 3 infinities:
positive, negative, and with indeterminate sign.9

Konrad Zuse’s Z3 computer, built in 1941, already had mechanisms
for dealing with floating-point exceptions [346]. The current choices will be
detailed in Chapter 3.

2.2 Rounding

2.2.1 Rounding modes

In general, the result of an operation (or function) on floating-point num-
bers is not exactly representable in the floating-point system being used, so
it has to be rounded. In the first floating-point systems, the way results were
rounded was not always fully specified. One of the most interesting ideas
brought out by IEEE 754-1985 is the concept of rounding mode: how a numer-
ical value is rounded to a finite (or, possibly, infinite) floating-point number
is specified by a rounding mode (or rounding direction attribute), that defines a
rounding function ◦. For example, when computing a + b, where a and b are
floating-point numbers, the returned result is ◦(a + b). One can define many
possible rounding modes. For instance, the four rounding modes that appear
in the IEEE 754-2008 standard are:

• round toward−∞: RD(x) is the largest floating-point number (possibly
−∞) less than or equal to x;

• round toward +∞: RU(x) is the smallest floating-point number (possi-
bly +∞) greater than or equal to x;

8The IEEE 754-1985 standard actually defines two kinds of NaN: quiet and signaling NaNs.
See Section 3.1.6 page 69 for an explanation.

9http://tigcc.ticalc.org/doc/timath.html
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• round toward zero: RZ(x) is the closest floating-point number to x that
is no greater in magnitude than x (it is equal to RD(x) if x ≥ 0, and to
RU(x) if x ≤ 0);

• round to nearest: RN(x) is the floating-point number that is the closest
to x. A tie-breaking rule must be chosen when x falls exactly halfway
between two consecutive floating-point numbers. A frequently chosen
tie-breaking rule is called round to nearest even: x is rounded to the only
one of these two consecutive floating-point numbers whose integral sig-
nificand is even. This is the default mode in the IEEE 754-2008 Standard
(see Chapter 3). The IEEE 754-2008 Standard also defines another tie-
breaking rule: called round ties to away (see Section 3.4.6). In general,
properties one might expect from a tie-breaking rule are sign symme-
try10 RN(−x) = −RN(x), lack of statistical bias, ease of implementa-
tion, and reproducibility.

Figure 2.3 illustrates these four rounding modes.

...

0

x y

RD(x)
RZ(x)
RN(x)

RD(y)
RZ(y)

RU(y)RU(x)
RN(y)

Figure 2.3: The four rounding modes. Here we assume that x and y are positive
numbers.

When the exact result of a function is rounded according to a given
rounding mode (as if the result were computed with infinite precision and
unlimited range, then rounded), one says that the function is correctly rounded.
The term exactly rounded is sometimes used [148].

In radix 2 and precision p, how a positive real value x, whose infinitely
precise significand is 1.m1m2m3 . . ., is rounded can be expressed as a function
of the bit round = mp (round bit) and the bit sticky = mp+1 ∨mp+2 ∨ . . . (sticky
bit), as summarized in Table 2.1 (see Chapter 8).

In the following, we will call a rounding breakpoint a value where the
rounding function changes. In round-to-nearest mode, the rounding break-
points are the exact middles of consecutive floating-point numbers. In the

10This is the only property required by the LIA-2 Standard, see Section 3.7.1, page 109.
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round / sticky RD RU RN

0 / 0 − − −
0 / 1 − + −
1 / 0 − + − / +

1 / 1 − + +

Table 2.1: Rounding a radix-2 infinitely precise significand, depending on the
“round” and “sticky” bits. Let ◦ ∈ {RN, RD,RU} be the rounding mode we
wish to implement. A “−” in the table means that the significand of ◦(x) is
1.m1m2m3 . . .mp−1, i.e., the truncated exact significand. A “+” in the table means
that one needs to add 2−p+1 to the truncated significand (possibly leading to an expo-
nent change if all the mi’s up to mp−1 are 1). The “− / +” corresponds to the halfway
cases for the round-to-nearest (RN) mode (the rounded result depends on the chosen
convention).

other rounding modes, called directed rounding modes, they are the floating-
point numbers themselves.

Returning a correctly rounded result is fairly easily done for the
arithmetic functions (addition/subtraction, multiplication, division) and the
square root, as Chapters 8, 9 and 10 will show. This is why the IEEE
754-1985 standard for floating-point arithmetic requires that these functions
be correctly rounded (see Chapter 3). And yet, it may be extremely difficult
for some functions.11 In such a case, if for any exact result y, one always
returns either RD(y) or RU(y), one says that the returned value is a faithful
result and that the arithmetic is faithful. Beware: sometimes, this is called a
“faithful rounding” in the literature, but this is not a rounding mode as defined
above, since the obtained result is not a fully specified function of the input
value.

2.2.2 Useful properties

As shown later (especially in Chapters 4, 5, and 6), correct rounding is useful
to design and prove algorithms and to find tight and certified error bounds.

An important and helpful property is that for any of the four rounding
modes presented above, the rounding function ◦ is a nondecreasing function;
i.e., if x ≤ y, then ◦(x) ≤ ◦(y). Moreover, if y is a floating-point number,
then ◦(y) = y, which means that when the exact result of a correctly rounded
function is a floating-point number, we get that result exactly.

Also, if the rounding mode is symmetric (i.e., it is RZ or RN with a sym-
metrical choice in case of a tie), then a correctly rounded implementation

11If the exact value of the function is very close to a rounding breakpoint, the function
must be approximated with great accuracy to make it possible to decide which value must be
returned. This problem, called the Table Maker’s Dilemma, is addressed in Chapter 12.
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preserves the symmetries of a function. With the other rounding modes,
properties such as

RU(a + b) = −RD(−a− b)

or
RD(a× b) = −RU((−a)× b)

can sometimes be used for saving a change of rounding mode if it is a com-
plicated or costly operation.

Finally, we note that in the case of tiny or huge values, the rounding
modes of the IEEE standards behave as shown by the following property.
This property is useful in particular when optimizing the implementation of
correctly rounded arithmetic operators (see Chapters 8, 9, and 10).

Property 1. With α = βemin−p+1 (smallest positive subnormal number) and
Ω = (β − β1−p) · βemax (largest finite floating-point number), one has the following
values when rounding the real x:

• RN(x) =

{
+0 if 0 < x ≤ α/2,
+∞ if x ≥ (β − β1−p/2) · βemax ;

• RD(x) =

{
+0 if 0 < x < α,
+∞ if x ≥ βemax+1;

• RU(x) =

{
α if 0 < x ≤ α,
+∞ if x > Ω.

2.2.3 Relative error due to rounding

In the following, we call the normal range the set of the real numbers of abso-
lute value between βemin and Ω = (β − β1−p) · βemax , and the subnormal range
the set of the numbers less than βemin . When approximating a nonzero real
number x by ◦(x) (where ◦ is the active rounding mode), a relative error

ε(x) =
∣∣∣∣x− ◦(x)

x

∣∣∣∣
happens. That relative error is plotted in Figure 2.4 in a simple case. When
◦(x) = x = 0, we consider that the relative error is 0.

If x is in the normal range, the relative error ε(x) is less than or equal to

1
2
β1−p

in round-to-nearest mode, and less than

β1−p
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Figure 2.4: Relative error |x−RN(x)|/|x| that occurs when representing a real num-
ber x in the normal range by its nearest floating-point approximation RN(x), in the
toy floating-point format β = 2, p = 3.

in the “directed” rounding modes. If x is in the subnormal range (thus,
assuming subnormal numbers are available), the relative error can become
very large (it can be close to 1). In that case, we have a bound on the absolute
error due to rounding:

|x− RN(x)| ≤ 1
2
βemin−p+1

in round-to nearest mode, and

|x− ◦(x)| < βemin−p+1

if ◦ is one of the directed rounding modes. More generally, by combining
these relative and absolute error bounds, we find that if z is the result of the
correctly rounded operation a>b (that is, if z = ◦(a>b)), and if no overflow
occurs, then

z = (a>b)(1 + ε) + ε′,

with

• |ε| ≤ 1
2β1−p and |ε′| ≤ 1

2βemin−p+1 in round-to-nearest mode, and

• |ε| < β1−p and |ε′| < βemin−p+1 in directed rounding modes.

Moreover, ε and ε′ cannot both be nonzero [205]. One should notice that

• if z is in the normal range (i.e., if no underflow occurred) then ε′ = 0;
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• if z is in the subnormal range, then ε = 0. Moreover, in that case, if the
arithmetic operation being performed is addition or subtraction (> is +
or −), then we will see (Chapter 4, Theorem 3, page 124) that the result
is exact, so that z = a>b (i.e., ε′ = 0).

The bound on ε (namely 1
2β1−p of β1−p, depending on the rounding

mode) is frequently called the unit roundoff (see Definition 6). The bounds
given here on the errors due to rounding will be used in particular in
Chapter 6.

2.3 Exceptions

In IEEE 754-1985 arithmetic (but also in other standards), an exception can be
signaled along with the result of an operation. This can take the form of a
status flag (which must be “sticky,” so that the user does not need to check
it immediately, but after some sequence of operations, for instance at the end
of a function) and/or some trap mechanism.

Invalid: This exception is signaled when an input is invalid for the function.
The result is a NaN (when supported). Examples: (+∞) − (+∞), 0/0,√
−1.

DivideByZero, a.k.a. infinitary (in the LIA-2 standard): This exception is
signaled when an exact infinite result is defined for a function on finite
inputs, e.g., at a pole. Examples: 1/0, log(+0).

Overflow: This exception is signaled when the rounded result with an
unbounded exponent range would have an exponent larger than emax.

Underflow: This exception is signaled when a tiny (less than βemin) nonzero
result is detected. This can be according to Definition 1 (i.e., before
rounding), or according to Definition 2 (i.e., after rounding).

Underflow handling can be different whether the exact result is exactly
representable or not, which makes sense: the major interest in signaling
the underflow exception is to warn the user that the obtained result
might not be very accurate (in terms of relative error). Of course, this
is not the case when the obtained result is exact. This is why, in the
IEEE 754-2008 standard, if the result of an operation is exact, then the
underflow flag is not raised (see Chapter 3).

Inexact: This exception is signaled when the exact result y is not exactly
representable (◦(y) 6= y, y not being a NaN).

Unlike the IEEE standards, the LIA-2 standard [191] does not regard an
inexact value as an exception. It also defines an additional exception: abso-
lute_precision_underflow, which is used when the angle argument of a trigono-
metric function is larger than some threshold (which can be changed by the
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implementation). The reason for that choice is that even if a large input argu-
ment to a sine, cosine, or tangent is accurate to 1/2 ulp (see Section 2.6.1 for
the definition of ulp), the result could be very inaccurate or even meaning-
less.12 Moreover, the underflow exception is not signaled in some particular
cases where such an exception would not really be useful, e.g., for the sine of
a subnormal number.

In general, the values of emin and emax are chosen to be almost symmet-
rical: emin ≈ −emax. One of the reasons for that is that we expect an accept-
able behavior of the reciprocal function 1/x. The minimum positive normal
number is βemin . Its reciprocal is β−emin , which is below the maximum nor-
mal number threshold as long as −emin ≤ emax, i.e., emin ≥ −emax. So, if one
chooses emin = −emax or emin = 1 − emax (which is the choice in IEEE 754-
2008, probably for parity reasons: the number of different exponents that can
be represented in a given binary integer format is an even number, whereas
if emin were exactly equal to −emax, we would have an odd number of expo-
nents), one has the following properties.

• If x is a normal number, 1/x never produces an overflow.

• If x is a finite floating-point number, 1/x can underflow, but the
rounded result is not zero (for common values of p), as soon as sub-
normal numbers are available.

As explained, by Hauser [176], among others, it is often easier and
cheaper to deal with an exception after the fact than to prevent it from
occurring in the first place. When exception handling is not available, avoid-
ing exceptional cases in programs requires artful numerical tricks that make
programs slower and much less clear. Hauser gives the example of the calcu-
lation of the norm

N =

√√√√ N∑
i=1

x2
i ,

where the xi’s are floating-point numbers. Consider computing N using a
straightforward algorithm (Algorithm 2.1).

Algorithm 2.1 Straightforward calculation of
√∑N

i=1 x2
i [176].

S ← 0.0
for i = 1 to N do

S ← RN(S + RN(xi × xi))
end for
return RN(

√
S)

12This is a debatable choice, since in some cases, the input argument might well be exact.
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Even when the exact value of N lies in the normal range of the
floating-point format being used, Algorithm 2.1 may fail, due to underflow
or overflow when evaluating the square of one or several of the xi’s, or when
evaluating their sum. There are many solutions for avoiding that. We may for
instance emulate an extended range arithmetic or scale the operands (i.e., first
examine the input operands, then multiply them by an adequate factor K, so
that Algorithm 2.1 can be used with the scaled operands13 without underflow
or overflow, and finally divide the obtained result by K).

These solutions would lead to programs that would be reliable, yet the
extended range arithmetic as well as the scaling would significantly slow
down the calculations. This is unfortunate since, in the vast majority of
practical cases, Algorithm 2.1 would have behaved in a satisfactory way. A
possibly better solution, when exception handling is available, is to first use
Algorithm 2.1, and then to resort to an extended range arithmetic or a scaling
technique only when overflows or underflows occurred during that prelimi-
nary computation.

2.4 Lost or Preserved Properties of the Arithmetic on
the Real Numbers

The arithmetic on real numbers has several well-known properties. Among
them:

• addition and multiplication are commutative operations: a + b = b + a
and a× b = b× a for all a and b;

• addition and multiplication are associative operations: a + (b + c) =
(a + b) + c and a× (b× c) = (a× b)× c for all a, b, and c;

• distributivity applies: a× (b + c) = a× b + a× c.

When the arithmetic operations are correctly rounded, in any of the four
rounding modes presented in Section 2.2, floating-point addition and mul-
tiplication remain commutative:14 if ◦ is the active rounding mode then, of
course, ◦(a + b) = ◦(b + a) and ◦(a × b) = ◦(b × a) for all floating-point
numbers a and b. However, associativity and distributivity are lost. More pre-
cisely, concerning associativity, the following can occur.

13Notice that Hammarling’s algorithm for routine xNRM2 in LAPACK goes only once
through the xi’s but nevertheless avoids overflow. This is done by computing the scaling
factor K on the fly while computing the norm.

14However, in a programming language, swapping the terms may yield a different result in
practice. This can be noticed in the expression a * b + c * d when a Fused multiply-add is
used; see, e.g., Section 7.2.3.
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• In some extreme cases, ◦(a + ◦(b + c)) can be drastically different from
◦(◦(a+b)+c). A simple example, in radix-β, precision-p arithmetic with
round-to-nearest mode is a = βp+1, b = −βp+1, and c = 1, since

RN(a + RN(b + c)) = RN(βp+1 − βp+1) = 0,

whereas
RN(RN(a + b) + c) = RN(0 + 1) = 1.

Many studies have been devoted to the finding of good ways of
reordering the operands when one wants to evaluate the sum of sev-
eral floating-point numbers. See Chapter 6 for more details.

• If no overflow or underflow occurs, P1 = ◦(◦(a× b)× c) can be slightly
different from P2 = ◦(a×◦(b×c)). More precisely, in radix-β, precision-p
arithmetic with round-to-nearest mode:

RN(a× b) = a× b× (1 + ε1),

with |ε1| ≤ 1
2β1−p, so that

P1 = RN(RN(a× b)× c) = a× b× c× (1 + ε1)(1 + ε2),

with |ε2| ≤ 1
2β1−p. Similarly,

P2 = RN(a× RN(b× c)) = a× b× c× (1 + ε3)(1 + ε4),

with |ε3|, |ε4| ≤ 1
2β1−p. Therefore,(

1− 1
2β1−p

1 + 1
2β1−p

)2

≤ P1

P2
≤

(
1 + 1

2β1−p

1− 1
2β1−p

)2

,

which gives
P1

P2
= 1 + ε,

with
|ε| ≤ 2 β1−p + 2

(
β1−p

)2 + 3/2
(
β1−p

)3 + · · · . (2.2)

One should notice that this bound is rather tight. For instance, in the
binary32 arithmetic of the IEEE 754-2008 standard (β = 2, p = 24,
emin = −126, emax = 127; see Section 3.4, page 79), the bound on ε given
by (2.2) is 4.00000048×2−24, whereas, if a = 8622645, b = 16404663, and
c = 8647279, then

P1
P2

= 3.86 · · · × 2−24.

• In case of overflow or underflow, ◦(a×◦(b× c)) can be drastically differ-
ent from ◦(◦(a × b) × c). For instance, in binary64 arithmetic (β = 2,
p = 53, emin = −1022, emax = 1023; see Section 3.4 page 79), with
a = b = 2513 and c = 2−1022, RN(RN(a × b) × c) will be +∞, whereas
RN(a× RN(b× c)) will be 16.
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2.5 Note on the Choice of the Radix

2.5.1 Representation errors

As stated in Chapter 1, various different radices were chosen in the early
days of electronic computing, and several studies [56, 44, 76, 232] have been
devoted to the best radix choice, in terms of maximal or average representa-
tion error. These studies have shown that radix 2 with the implicit leading bit
convention gives better worst-case or average accuracy than all other radices.

Cody [76] studied static and dynamic characteristics of various floating-
point formats. Let us present his explanations in what is called the static case.
Assume that floating-point numbers are represented in radix β, where β is a
power of 2, and that their significands and exponents are stored on ws and we

bits, respectively. As explained in Section 2.2.3, when a nonzero number x in
the normal range is represented by the nearest floating-point number RN(x),
a relative representation error ∣∣∣∣x− RN(x)

x

∣∣∣∣
is committed. We want to evaluate the maximum and average values of this
relative error, for all x between the smallest positive normal floating-point
number βemin and the largest one Ω = βemax · (β − β1−p).

First, notice that for any given integer k, if βkx remains between βemin

and Ω, (βkx − RN(βkx))/(βkx) is equal to (x − RN(x))/x, so that it suffices
to compute the maximum and average values for x between two consecutive
powers of β, say, 1/β and 1.

Second, for evaluating average values, one must choose a probability
distribution for the significands of floating-point numbers. For various rea-
sons [161, 222], the most sensible choice is the logarithmic distribution, also
called Benford’s law [24]:

P (s) =
1

s lnβ
.

We easily get the following results.

• If β > 2, or if β = 2 and we do not use the hidden bit convention (that
is, the first “1” of the significand is actually stored), then the maximum
relative representation error is

MRRE(ws, β) = 2−ws−1β.

• If β = 2 and we use the hidden bit convention, we have

MRRE(ws, 2) = 2−ws−1.
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• If β > 2, or if β = 2 and we do not use the hidden bit convention, then
the average relative representation error is

ARRE(ws, β) ≈
∫ 1

1/β

(
1

s lnβ

)
2−wsds

4s
=

β − 1
4 ln β

2−ws .

• If β = 2 and we use the hidden bit convention, that value is halved and
we get

ARRE(ws, 2) ≈ 1
8 ln 2

2−ws .

These values seem much in favor of small radices, and yet, we must take
into account the following. To achieve the same dynamic range (i.e., to have
a similar order of magnitude of the extremal values) as in binary, in radix
2k, we need around log2(k) fewer bits for representing the exponent. These
saved bits can, however, be used for the significands. Hence, for a similar
total number of bits (sign, exponent, and significand) for the representation
of floating-point numbers, a fair comparison between radices 2, 4, and 16
is obtained by taking a value of ws larger by one unit for radix 4, and two
units for radix 16, so that we compare number systems with similar dynamic
ranges, and the same value of ws + we.

Table 2.2 gives some values of MRRE and ARRE for various formats.
From that table, one can infer that radix 2 with implicit bit convention is the
best choice from the point of view of the relative representation error. Since
radix-2 floating-point arithmetic is also the easiest to implement using digital
logic, this explains why it is predominant on current systems.

2.5.2 A case for radix 10

Representation error, however, is not the only issue to consider. A strong
argument in favor of radix 10 is that we humans are working, reading, and
writing in that radix. The following section will show how to implement the
best possible conversions between radices 2 and 10, but such conversions
may sometimes entail errors that, in some applications, are unacceptable. A
typical example is banking. An interest rate is written on a contract in dec-
imal, and the computer at the bank is legally mandated to conduct interest
computations using the exact decimal value of this rate, not a binary approx-
imation to it.

As another example, when some European countries abandoned their
local currencies in favor of the euro, the conversion rate was defined by law
as a decimal number (e.g., 1 euro = 6.55957 French francs), and the way this
conversion had to be implemented was also defined by law. Using any other
conversion value, such as 6.559569835662841796875, the binary32 number
nearest to the legal value, was simply illegal.



2.5. Note on the Choice of the Radix 31

Format MRRE ARRE

β = 2, ws = 64

first bit stored
5.421010862× 10−20 1.955216373× 10−20

β = 2, ws = 64

first bit hidden
2.710505431× 10−20 9.776081860× 10−21

β = 4, ws = 65 5.421010862× 10−20 1.466412280× 10−20

β = 8, ws = 65 1.084202172× 10−19 2.281085767× 10−20

β = 8, ws = 66 5.421010862× 10−20 1.140542884× 10−20

β = 16, ws = 66 1.084202172× 10−19 1.833015349× 10−20

Table 2.2: ARRE and MRRE of various formats of comparable dynamic range. The
cases β = 2, 4, and 16 can be directly compared. In the case β = 8, one cannot get
the same dynamic range exactly.

Colishaw [90] gives other examples and also shows how pervasive
decimal computing is in business applications.

As the current technology is fundamentally binary, radix 10 will
intrinsically be less efficient than radix 2, and indeed even hardware imple-
mentations of decimal floating-point are much slower than their binary coun-
terparts (see Table 3.26, page 108 for an example).

However, this is at least partially compensated by other specificities of
the financial application domain. In particular, in accounting applications,
the floating point in most of the additions and subtractions is actually fixed.
Indeed, one adds cents to cents. The good news is that this common case of
addition is much easier to implement than the general case:

• first, the significands need not be shifted as in the general case [90] (see
Chapters 8 and 9);

• second, such fixed-point additions and subtractions will be exact
(entailing no rounding error).

Rounding does occur in financial applications; for instance, when
applying a sales tax or an interest rate. However, from an accounting point of
view, it is best managed in such a way that one eventually adds only numbers
which have already been rounded to the nearest cent.

The reader should have in mind these peculiarities when reading about
decimal formats and operations in this book. Most of the intricacies of the
decimal part of the IEEE 754-2008 floating-point standard are directly moti-
vated by the needs of accounting applications.
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2.6 Tools for Manipulating Floating-Point Errors

2.6.1 The ulp function

In numerical analysis, errors are very often expressed in terms of relative
errors. And yet, when we want to express the errors of “nearly atomic” func-
tions (arithmetic operations, elementary functions, small polynomials, sums,
and dots products, etc.), it is more adequate (and frequently more accurate!)
to express errors in terms of what we would intuitively define as the “weight
of the last bit of the significand.” Let us define that notion more precisely. The
term ulp (acronym for unit in the last place) was coined by William Kahan in
1960. The original definition was as follows [209]:

ulp(x) is the gap between the two floating-point numbers nearest
to x, even if x is one of them.

When x is a floating-point number (except, possibly, when x is a power of the
radix; see below), we would like ulp(x) to be equal to the quantum of x. And
yet, it is frequently useful to define that function for other numbers too.

Several slightly different definitions of ulp(x) appear in the litera-
ture [148, 168, 270, 191, 320, 209]. They all coincide as soon as x is not
extremely close to a power of the radix. They have properties that differ to
a small degree. A good knowledge of these properties may be important, for
instance, for anyone who wants to prove sure yet tight bounds on the errors
of atomic computations. For instance, we frequently hear or read that cor-
rectly rounding to nearest is equivalent to having an error less than 0.5 ulp.
This might be true, depending on the radix, on what we define as an ulp
(especially near the powers of the radix), and depending on whether we con-
sider function ulp to be taken at the real value being approximated, or at the
floating-point value that approximates it.

Consider first the following definition of the ulp function, due to John
Harrison [168, 171].

Definition 3 (Harrison). ulp(x) is the distance between the closest straddling
floating-point numbers a and b (i.e., those with a ≤ x ≤ b and a 6= b), assum-
ing that the exponent range is not upper-bounded.

Figure 2.5 shows the values of Harrison’s ulp near 1. One can easily find
that, in radix β floating-point arithmetic, if x is a floating-point number then
Harrison’s ulp of x and the quantum of x have the same value, except if x is an
integer power of β. Goldberg [148] gives another definition of function ulp.

Definition 4 (Goldberg). If the FP number d0.d1d2d3d4 . . . dp−1β
e is used to rep-

resent x, it is in error by ∣∣∣∣d0.d1d2d3d4 . . . dp−1 −
x

βe

∣∣∣∣
units in the last place.
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1

ulp = 2−p

ulp = 2−p+1

Figure 2.5: The values of ulp(x) near 1, assuming a binary floating-point system
with precision p, according to Harrison’s definition.

1

ulp = 2−p

ulp = 2−p+1

Figure 2.6: The values of ulp(x) near 1, assuming a binary floating-point system
with precision p, according to Definition 5 (Goldberg’s definition extended to the
reals). Notice that this definition and Harrison’s definition only differ when x is a
power of the radix.

This definition does not define ulp as a function of x, since the value
depends on which floating-point number approximates x. However, it clearly
defines a function ulp(X), for a floating-point number X ∈ [βe, βe+1), as
βe−p+1 (or, more precisely, as βmax(e,emin)−p+1, if we want to handle the sub-
normal numbers properly). Hence, a natural generalization to real numbers
is the following, which is equivalent to the one given by Cornea, Golliver,
and Markstein15 [86, 270].

Definition 5 (Goldberg’s definition, extended to reals). If x ∈ [βe, βe+1), then
ulp(x) = βmax(e,emin)−p+1.

When x is a floating-point number, this definition coincides with
the quantum of x. Figure 2.6 shows the values of ulp near 1 according to
Definition 5.

Let us now examine some properties of these definitions (see [292] for
comments and some proofs). In the following, x is a real number and X is a
radix-β, precision-p, floating-point number, HarrisonUlp(x) is ulp(x) accord-
ing to Harrison’s definition, and GenGoldbergUlp(x) is ulp(x) according to

15They gave it in radix 2, but generalization to radix β is straightforward.
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Goldberg’s definition extended to the reals. We assume that |x| is less than
the largest representable number, Ω = (β − β1−p) · βemax .

Property 2. In radix 2,

|X − x| < 1
2

HarrisonUlp(x)⇒ X = RN(x).

It is important to notice that Property 2 is not true in radices greater than
or equal to 3. Figure 2.7 gives a counterexample in radix 3.

1+ = 1 + 3−p+1

1 + 3−p/2

x

1

X = 1− = 1− 3−p

Figure 2.7: This example shows that Property 2 is not true in radix 3. Here, x satisfies
1 < x < 1 + 1

23−p and X = 1− = 1 − 3−p (if v is a floating-point number, v−

denotes its predecessor, namely, the largest floating-point number less than v, and v+

denotes its successor). We have HarrisonUlp(x) = 3−p+1, and |x−X| < 3−p+1/2,
so that |x−X| < 1

2 HarrisonUlp(x). However, X 6= RN(x).

If, instead of considering ulps of the “exact” value x, we consider ulps
of the floating-point value X , we have a property that is very similar to Prop-
erty 2, with the interesting difference that now it holds for any value of the
radix.

Property 3. For any value of the radix β,

|X − x| < 1
2

HarrisonUlp(X)⇒ X = RN(x).

Now, still with Harrison’s definition, we might be interested in knowing
if the converse property holds; that is, if having X = RN(x) implies that X is
within 1

2 HarrisonUlp(x) or 1
2 HarrisonUlp(X). For the first case, we have the

following.
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Property 4. For any radix,

X = RN(x)⇒ |X − x| ≤ 1
2

HarrisonUlp(x).

On the other hand, there is no similar property for the second case:
X = RN(x) does not imply |X−x| ≤ 1

2 HarrisonUlp(X). For example, assume
radix 2. Any number x strictly between 1 + 2−p−1 and 1 + 2−p will round to
1, but it will be at a distance from 1 larger than 1

2 HarrisonUlp(1) = 2−p−1.
Concerning Goldberg’s definition extended to the reals, we have very

similar properties.

Property 5. In radix 2,

|X − x| < 1
2

GenGoldbergUlp(x)⇒ X = RN(x).

Property 5 is not true in higher radices: The example of Figure 2.7,
designed as a counterexample to Property 2, is also a counterexample to
Property 5.

Also, Property 5 does not hold if we replace GenGoldbergUlp(x) by
GenGoldbergUlp(X). Indeed, |X − x| < 1

2 GenGoldbergUlp(X) does not
imply X = RN(x) (it suffices to consider x very slightly above 1− = 1− β−p,
the floating-point predecessor of 1: x will be within 1

2 GenGoldbergUlp(1)
from 1, and yet RN(x) = 1−). In a way, this kind of counterexample is the
only one; see Property 6.

Property 6. For any radix, if X is not an integer power of β,

|X − x| < 1
2

GenGoldbergUlp(X)⇒ X = RN(x).

We also have the following.

Property 7. For any radix,

X = RN(x)⇒ |X − x| ≤ 1
2

GenGoldbergUlp(x).

Property 8. For any radix,

X = RN(x)⇒ |X − x| ≤ 1
2

GenGoldbergUlp(X).

After having considered properties linked to the round-to-nearest mode,
we can try to consider properties linked to the directed rounding modes
(i.e., rounding toward ±∞ and rounding toward zero). One can show the
following properties (still assuming |x| is less than the largest representable
number).
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Property 9. For any value of the radix β,

X ∈ {RD(x),RU(x)} ⇒ |X − x| < HarrisonUlp(x).

Note that the converse is not true. There are values X and x for which
|X − x| < HarrisonUlp(x), and X is not in {RD(x),RU(x)}. It suffices to con-
sider the case x slightly above 1 and X equal to 1− = 1 − β−p, the floating-
point predecessor of 1.

Property 10. For any value of the radix β,

|X − x| < HarrisonUlp(X)⇒ X ∈ {RD(x),RU(x)}.

But the converse is not true: X ∈ {RD(x),RU(x)} does not imply
|X − x| ≤ HarrisonUlp(X).

Property 11.

X ∈ {RD(x),RU(x)} ⇒ |X − x| ≤ GenGoldbergUlp(x).

The converse is not true: |X − x| < GenGoldbergUlp(x) does not imply
X ∈ {RD(x),RU(x)}. It suffices to consider X = 1− = 1 − β−p, the floating-
point predecessor of 1, and x slightly above 1.

Property 12.

X ∈ {RD(x),RU(x)} ⇒ |X − x| ≤ GenGoldbergUlp(X).

Again, the converse is not true: |X − x| < GenGoldbergUlp(X) does not
imply X ∈ {RD(x),RU(x)}.

After this examination of the properties of these two definitions of the
ulp function, which one is to be chosen? A good definition of function ulp:

• should (of course) agree with the “intuitive” notion when x is not in an
“ambiguous area” (i.e., x is not very near a power of the radix);

• should be useful: after all, for a binary format with precision p, defining
ulp(1) as 2−p (i.e., 1 − 1−) or 2−p+1 (i.e., 1+ − 1) are equally legitimate
from a theoretical point of view. What matters is which choice is helpful
(i.e., which choice will preserve in “ambiguous areas” properties that
are true when we are far enough from them).

From that point of view, it is still not very easy to decide between Defi-
nitions 3 and 5. Both preserve interesting properties, yet also set some traps
(e.g., the fact that X = RN(x) does not imply |X − x| ≤ 1

2 HarrisonUlp(X),
or the fact that |X − x| < GenGoldbergUlp(x) does not imply X ∈
{RD(x),RU(x)}). These traps sometimes make the task of proving proper-
ties of arithmetic algorithms a difficult job when some operand can be very
near a power of the radix.

In the remainder of this book, ulp(x) will be GenGoldbergUlp(x). That is,
we will follow Definition 5, not because it is the best (as we have seen, it is
difficult to tell which one is the best), but because it is the most used.
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2.6.2 Errors in ulps and relative errors

It is important to be able to establish links between errors expressed in ulps,
and relative errors. Inequalities 2.3 and 2.5 exhibit such links when X is a
normal floating-point number and x is a real number of the same sign.

Converting from errors in ulps to relative errors

First, let us convert from errors in ulps to relative errors. Assume that
|x−X| = α ulp(x). Assuming no underflow, we easily get∣∣∣∣x−X

x

∣∣∣∣ ≤ α× β−p+1. (2.3)

Converting from relative errors to errors in ulps

Now, let us convert from relative errors to errors in ulps. A relative error

εr =
∣∣∣∣x−X

x

∣∣∣∣ (2.4)

implies an error in ulps bounded by

|x−X| ≤ εrβ
p ulp(x). (2.5)

Hence, one can easily switch from an error in ulps to a relative error,
and conversely. This is convenient, since for the correctly rounded arithmetic
operations and functions, we have an error in ulps, whereas it is generally
much easier to deal with relative errors for performing error calculations.

2.6.3 An example: iterated products

A typical example is iterated multiplications. Assume that we compute the
product of the floating-point numbers x1, x2, . . . , xn in binary, precision-p,
rounded to nearest floating-point arithmetic. That is, we perform

P ← x1

for i = 2 to n do
P ← RN(P × xi)

end for
return P

Each multiplication is correctly rounded, leading to an error less than or equal
to 0.5 ulp. And yet, reasoning in terms of ulps will lead to calculations that are
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1 2 4

2−p

bound on |X − x|

x
1
2

Figure 2.8: Conversion from ulps to relative errors. Assume we know that an oper-
ation is correctly rounded: the computed result X is within 0.5 ulp from the exact
result x. This implies that |x − X| is below the bold (noncontinuous) curve. Con-
verted in terms of relative errors, this information becomes X = x(1 + ε), with
|ε| ≤ 2−p, i.e., |x−X| is below the dashed curve. This last property is less accurate.

much too complex. Whereas, if we assume that no underflows occur, a simple
reasoning with relative errors shows that the final value of P satisfies

P = x1x2x3 . . . xn ×K,

where (
1− 2−p

)n−1 ≤ K ≤
(
1 + 2−p

)n−1
,

which means that the relative error of the result is upper-bounded by(
1 + 2−p

)n−1 − 1,

which is close to (n− 1)× 2−p as long as n� 2p.
And yet, one must keep in mind that each time we switch from one form

of error to the other one, we lose some information. For instance, a correctly
rounded to nearest operation returns a result X within 0.5 ulp from the exact
value x. This implies a relative error bounded by 2−p. Figure 2.8 shows, in
the interval [−1/2, 8], the bound on distance between x and X one can infer
from the information in terms of ulps and the information in terms of rela-
tive errors. We immediately see that we have lost some information in the
conversion.

When converting from relative errors to errors in ulps, some information
is lost too. This is illustrated by Figure 2.9.
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1 2 4

bound on |X − x|

x
1
2

Figure 2.9: Conversion from relative errors to ulps. Assume we have a bound on the
relative error between an exact value x and a floating-point approximation X (dashed
curve). From it, we can infer an error in ulps that implies that X is below the bold
curve. This last property is less accurate.

2.6.4 Unit roundoff

A useful notion, closely related to the notion of ulp, is the notion of unit round-
off, also sometimes called machine epsilon:

Definition 6 (Unit roundoff). The unit roundoff u of a radix-β, precision-p,
floating-point system is defined as

u =


1
2

ulp(1) =
1
2
β1−p in round-to-nearest mode,

ulp(1) = β1−p in directed rounding modes.

That notion is widespread in the analysis of numerical algorithms. See
for instance the excellent book by Higham [182]. For any arithmetic operation
T ∈ {+,−,×,÷}, for any rounding mode ◦ ∈ {RN,RD,RU, RZ}, and for all
floating-point numbers a, b such that aTb does not underflow or overflow, we
have

◦(aTb) = (aTb)(1 + ε1) = (aTb)/(1 + ε2),

with |ε1|, |ε2| ≤ u. This property eases the computation of error bounds [182,
266]. See Section 2.2.3, and Chapter 6.
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2.7 Note on Radix Conversion

2.7.1 Conditions on the formats

When the radix of the floating-point system is 2,16 conversions from and to
radix 10 must be provided, since humans read and write numbers in deci-
mal. Early works on radix conversion were done by Goldberg [149] and by
Matula [272]. Accurate algorithms for input and output radix conversion can
be found in the literature [62, 72, 73, 349, 386], and are now implemented in
most compilers. It is important to understand that radix conversion is not a
fully innocuous operation.

• Some numbers that have a finite radix-10 representation do not have
a finite binary one. A simple example is 0.110 = 1/10, whose binary
representation is

0.0001100110011001100110011001100110011001100110011001100110 · · · .

• Although all numbers with a finite radix-2 representation also have a
finite decimal representation,17 the number of digits of that decimal rep-
resentation might sometimes be too large to be convenient. Consider for
instance the following floating-point binary number:

0.111111111111111111111112 × 2−126 = 2−126 − 2−149.

That number is a single-precision number of the IEEE 754-1985 stan-
dard (see Chapter 3), or a binary32 number of IEEE 754-2008. Its exact
decimal representation

1.1754942106924410754870294448492873488270524287458933338571
74530571588870475618904265502351336181163787841796875× 10−38

is too large to be convenient for all applications. This is the worst case
in single precision. If the two extremal exponents emin and emax of the
binary format satisfy emin ≈ −emax (which holds for all usual formats)
and if p2 is its precision, then the largest width of a decimal significand
we can obtain by exact conversion is18

−emin + p2 +
⌊
(emin + 1) log10(2)− log10

(
1− 2−p2

)⌋
digits.

16A very similar study can be done when it is a power of 2.
17A necessary and sufficient condition for all numbers representable in radix β with a finite

number of digits to be representable in radix γ with a finite number of digits is that β should
divide an integer power of γ.

18That formula is valid for all possible values of p2 and emin (provided emin ≈ −emax). And
yet, for all usual formats, it can be simplified: a simple continued fraction argument (see Sec-
tion 16.1, page 521) shows that for p2 ≥ 16 and emin ≥ −28000, it is equal to

−emin + p2 + b(emin + 1) log10(2)c .
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For instance, for the various basic binary formats of the new IEEE
754-2008 standard (see Table 3.13, page 81), this gives 112 digits for
binary32, 767 digits for binary64, and 11563 digits for binary128.

Hence, during radix conversions, numbers must be rounded. We assume
here that we want to minimize the corresponding rounding errors (i.e., to
round numbers to the nearest value in the target format whenever possible).

Other methods should be used when directed rounding modes are at
stake, since an experienced user will choose these rounding modes to get
sure lower or upper bounds on a numerical value. Therefore, it would be
clumsy to carefully design a numerical program so that the finally obtained
binary value is a certain lower bound on the exact result, and then to have
that binary value rounded up during the radix conversion.

A question that naturally arises is: for a given binary format, which dec-
imal format is preferable if the user does not specify something?

Assuming an internal binary format of precision p2, the first idea that
springs to mind would be to have an input/output decimal format whose
precision would be the integer that is nearest to

p2
log(2)
log(10)

.

This would for instance give a decimal precision equal to 16 for the double-
precision binary format (p = 53).

And yet, this is not the best idea, for the following reason. It is common
practice to write a floating-point value in a file, and to read it later, or (equiva-
lently) to re-enter on the keyboard the result of a previous computation. One
would like this operation (let us call it a “write-read cycle”) to be error-free:
when converting a binary floating-point number x to the external decimal
format, and back-converting the obtained result to binary, one would like to
find x again, without any error. Of course, this is always possible by perform-
ing an “exact” conversion to decimal, using for the decimal representation of
x a large number of digits, but we are going to see that an exact conversion
is not required. Furthermore, there is an important psychological point: as
pointed out by Steele and White [386], if a system prints too many decimal
digits, the excess digits will seem to reflect more information than the number
actually contains.

Matula [272] shows the following result.

Theorem 1 (Base conversion). Assume we convert a radix-β, precision-p floating-
point number to the nearest number in a radix-γ, precision-q format, and then
convert back the obtained value to the nearest number in the initial radix-β,
precision-p format. If there are no positive integers i and j such that βi = γj , then
a necessary and sufficient condition for this operation to be the identity (provided no
underflow/overflow occurs) is

γq−1 > βp.
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Let us explain Matula’s result in the case of a write-read cycle (that is, the
values β and γ of Theorem 1 are 2 and 10, respectively). Let p2 be the preci-
sion of the “internal” binary format and p10 be the precision of the “external”
radix-10 format. We will assume in the following that the conversions will be
correctly rounded, in round-to-nearest mode. Hence, our problem is to find
conditions on p10 to make sure that a write-read cycle is error-free.

Figure 2.10 shows that if p10 is not large enough, then after a write-read
cycle we may end up with a binary number slightly different from the initial
one.

b2 b1

d

decimal floating-point numbers

binary floating-point numbers

Figure 2.10: In this example, the binary number b1 will be converted to the decimal
number d, and d will be converted to the binary number b2.

In the neighborhood of the binary floating-point number x to be con-
verted, let us call ε2 the distance between two consecutive binary numbers
(that is, ε2 = ulp(x)), and ε10 the distance between two consecutive decimal
floating-point numbers of the “external” format.

• When x is converted to a decimal floating-point number x′, since we
assume round-to-nearest mode, this implies that |x − x′| is less than or
equal to ε10/2.

• When x′ is back-converted to a binary floating-point number x′′, this
implies that |x′ − x′′| is less than or equal to ε2/2.

To always have x′′ = x therefore requires that

ε10 < ε2. (2.6)
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Now, let us see what this constraint means in terms of p2 and p10.
Consider numbers that are between two consecutive powers of 10, say, 10r

and 10r+1 (see Figure 2.11). In that domain,

ε10 = 10r−p10+1,

also, that domain contains at most four consecutive powers of 2, say, 2q, 2q+1,
2q+2, and 2q+3, so that the binary ulp ε2 varies from 2q−p2 to 2q−p2+4. There-
fore, condition (2.6) becomes

10r · 10−p10+1 < 2q · 2−p2 . (2.7)

2q+3

ulp is 2q−p2+4

10r

2q

10r+1

2q+1 2q+2

ulp is 2q−p2

Figure 2.11: Various possible values of the (binary) ulp function between two con-
secutive powers of 10. One can easily show that between two consecutive powers of
10 there are at most four consecutive powers of 2.

Now, since 2q is larger than 10r (yet, it can be quite close to 10r), condi-
tion (2.7) will be satisfied if

2p2 ≤ 10p10−1. (2.8)

Notice that this condition is equivalent to 2p2 < 10p10−1, since 2p2 = 10p10−1

is impossible.
Therefore, the most convenient choice for p10 is the smallest integer for

which (2.8) holds, namely,

p10 = 1 + dp2 log10(2)e . (2.9)

Table 2.3 gives such values p10 for various frequently used values of p2.

2.7.2 Conversion algorithms

Output conversion: from radix 2 to radix 10

The results given in the previous section correspond to worst cases. For many
binary floating-point numbers x, the number of radix-10 digits that should be
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p2 24 53 64 113
p10 9 17 21 36

Table 2.3: For various values of the precision p2 of the internal binary format, minimal
values of the external decimal precision p10 such that a write-read cycle is error-free,
when the conversions are correctly rounded to nearest.

used to guarantee error-free write-read cycles will be less than what is given
in Table 2.3. Consider for instance the number

x = 5033165× 2−24 = 0.300000011920928955078125.

It is exactly representable in the single-precision format of the IEEE 754-1985
standard (p = 24). Hence, we know from the study of the previous sec-
tion and from Table 2.3 that if we convert x to the 9-digit decimal number
x(1) = 0.300000012, and convert back that decimal number to single-precision
binary arithmetic, we will find x again. And yet, once converted to single-
precision arithmetic, the 1-digit decimal number x(2) = 0.3 also gives x.
Hence, in that particular case, an error-free write-read cycle is possible with
precision p10 = 1. One could object that x(1) is as legitimate as x(2) to “rep-
resent” x, but there is an important psychological aspect here, that should
not be neglected. Someone entering 0.3 on a keyboard (hence, getting x after
conversion) will not like to see it displayed as 0.300000012.

This leads to a strategy suggested by Steele and White [385, 386]: when
the output format is not specified, use for each binary floating-point number
x the smallest number of radix-10 significand digits that allows for an error-
free write-read cycle. Steele and White designed an algorithm for that. Their
algorithm was later improved by Burger and Dybvig [62] , and by Gay [145].
Gay’s code is available for anyone to use, and is very robust.19 In the follow-
ing, we present Burger and Dybvig’s version of the algorithm.

We assume that the internal floating-point system is binary20 and of
precision p. If x is a binary floating-point number, we denote x− and x+

its floating-point predecessor and successor, respectively. In the following,
we assume that the internal binary number to be converted is positive.
The algorithm uses exact rational arithmetic (Burger and Dybvig also
give a more complex yet more efficient algorithm that only uses high-
precision integer arithmetic and an efficient scale-factor estimator; see [62] for
details). The basic principle of Algorithm 2.2 for converting the binary num-
ber x = X × 2e−p+1 is quite simple:

• we scale x until it is between 1/10 and 1, i.e., until it can be written
0.d1d2d3d4 · · · in decimal;

19As we are writing this book, it can be obtained at http://www.netlib.org/fp/ (file
dtoa.c).

20The algorithm works for other radices. See [62] for details.
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• the first digit d1 is obtained by multiplying the scaled value by 10 and
taking the integer part. The fractional part is used to compute the sub-
sequent digits in a similar fashion.

Algorithm 2.2 Conversion from radix 2 to radix 10 [62]. The input value is a
precision-p binary floating-point number x, and the output value is a decimal
number V = 0.d1d2 · · · dn × 10k, where n is the smallest integer such that 1)
(x− + x)/2 < V < (x + x+)/2, i.e., the floating-point number nearest to V
is x, regardless of how the input rounding algorithm breaks ties (x− is the
floating-point predecessor of x, and x+ is its floating-point successor); and
2) |V − x| ≤ 10k−n/2, i.e., V is correctly rounded in the precision-n output
decimal format. Here {t} denotes the fractional part of t.

`← (x− + x)/2
u← (x + x+)/2
find the smallest k such that u ≤ 10k

W ← x/10k−1

d1 ← bW c
W ← {W}
n← 1
while 0.d1d2d3 · · · dn × 10k ≤ ` and

(
0.d1d2d3 · · · dn + 1

10n

)
× 10k ≥ u do

n← n + 1
dn ← b10×W c
W ← {10×W}

end while
if 0.d1d2d3 · · · dn × 10k > ` and

(
0.d1d2d3 · · · dn + 1

10n

)
× 10k ≥ u then

return 0.d1d2d3 · · · dn × 10k

else if 0.d1d2d3 · · · dn × 10k ≤ ` and
(
0.d1d2d3 · · · dn + 1

10n

)
× 10k < u then

return
(
0.d1d2d3 · · · dn + 1

10n

)
× 10k

else
return the value closest to x among 0.d1d2d3 · · · dn × 10k and(
0.d1d2d3 · · · dn + 1

10n

)
× 10k

end if

Input conversion: from radix 10 to radix 2

The input conversion problem is very different from the previous one, pri-
marily because the input decimal numbers may not have a predefined,
bounded size. The number of input digits that need to be examined to
decide which is the binary floating-point number nearest to the input dec-
imal number may be arbitrarily large. Consider the following example.
Assume that the internal format is the IEEE 754-1985 single-precision format
(also called binary32 format in IEEE 754-2008, see Chapter 3), and that the
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rounding mode is round to nearest even. If the input number is

1.000000059604644775390625000000000000000000000000000000000000
= 1 + 2−24,

then the conversion algorithm should return 1, whereas if the input number
is

1.000000059604644775390625000000000000000000000000000000000001
= 1 + 2−24 + 10−60,

the conversion algorithm should return the floating-point successor of 1,
namely 1 + 2−23.

The first efficient and accurate input conversion algorithms were
introduced by Rump [349] and Clinger [72, 73]. Later on, Gay suggested
improvements [145]. As for output conversion, Gay’s code is available for
anyone to use, and is very robust.21 Let us describe Gay’s version of Clinger’s
algorithm.

We assume that the floating-point number system being used is a binary
system of precision p. When converting an input decimal number x to binary,
the best result we can provide is a correctly rounded result: in that case, the
obtained value v is ◦(x), where ◦ is the chosen rounding mode. Notice that
what the IEEE 754-1985 standard for floating-point arithmetic requires is not
that strong.22 Here, we assume that we want to correctly round to nearest
(similar work can be done with the other rounding modes).

The input value d is an n-digit decimal number:

d = 10k × [d0.d1d2 · · · dn−1]10

=
n−1∑
i=0

di10k−i.

We want to return a precision-p binary floating-point number b = RN(d),
where RN stands for “round to nearest even” (i.e., we return the floating-
point number nearest to d, and if there are two such numbers, we return the
one whose integral significand is an even number. See Section 3.1.3, page 61,
for explanations). For simplicity, we assume that d > 0, and that no under-
flow or overflow will occur, that is:

2emin ≤ d ≤ 2emax
(
2− 21−p

)
,

21As we are writing this book, it can be obtained at http://www.netlib.org/fp/ (file
dtoa.c).

22In round-to-nearest modes, it requires that the error introduced by the conversion should
be at most 0.97 ulps (see what this notation means in Section 2.6.1). The major reason for
this somewhat weak requirement is that the conversion algorithms presented here were not
known at the time the standard was designed.
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lies in this area

b = 2eb− = b− 2e−p b+ = b + 2e−p+1

2e = RN(d) means that d

Figure 2.12: Illustration of the conditions (2.10) in the case b = 2e.

where emin and emax are the extremal exponents of the binary floating-point
format. Our problem consists in finding an exponent e and a significand
b0.b1b2 · · · bp−1, with b0 6= 0, such that the number

b = 2e × [b0.b1b2 · · · bp−1]2

=
p−1∑
i=0

bi2e−i

satisfies{
if b = 2e exactly then − 2e−p−1 ≤ d− b ≤ 2e−p

otherwise |b− d| ≤ 2e−p, and |b− d| = 2e−p ⇒ bp−1 = 0.
(2.10)

Figure 2.12 helps us to understand these conditions in the case b = 2e.
First, notice that some cases (in practice, those that occur most often!) are

very easily handled. Denote

D =
d

10k−n+1
,

that is, D is the integer whose decimal representation is

d0d1d2 · · · dn−1.

1. If 10n ≤ 2p and 10|k−n+1| ≤ 2p, then the integers D and 10|k−n+1| are
exactly representable in the binary floating-point system. In that case, it
suffices to compute D exactly as23

(· · · (((d0 × 10 + d1)× 10 + d2)× 10 + d3) · · · )× 10 + dn−1,

23Another solution consists in using a precomputed table of powers of 10 in the binary
format.
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and to compute K = 10|k−n+1| by iterative multiplications. We then get
b by performing one floating-point multiplication or division:

b =

{
RN(D ×K) if k − n + 1 ≥ 0
RN(D/K) otherwise.

2. Even if the above conditions are not satisfied, if there exists an integer
j, 1 ≤ j < k, such that the integers 10k−j and 10n+j [d0.d1d2 · · · dn−1]10
are less than or equal to 2p − 1, then 10k−j and 10n+j [d0.d1d2 · · · dn−1]10
are exactly representable and easily computed, and their floating-point
product is b.

Now, if we are not in these “easy cases,” we build a series of “guesses”

b(1), b(2), b(3) . . .

and stop at the first guess b(m) such that b(m) = b. Let us now show how these
guesses are built, and how we can check if b(j) = b.

1. The first guess is built using standard floating-point arithmetic in the
target format.24 One can find b(1) such that∣∣∣d− b(1)

∣∣∣ < c · 2eb−p+1,

where c is a small constant and eb is an integer. Let us give a possible
solution to do that. We assume d0 6= 0. Let j be the smallest integer such
that 10j ≥ 2p. Define

D∗ = d0d1 · · · dmin{n−1,j}.dmin{n−1,j}+1 · · · dn−1

=
n−1∑
m=0

dm10min{n−1,j}−m.

Also define
D̂ = bD∗c = d0d1 · · · dmin{n−1,j}.

If we compute in standard floating-point arithmetic an approximation
to D̂ using the sequence of operations

(· · · ((d0 × 10 + d1)× 10 + d2) · · · )× 10 + dmin{n−1,j},

then all operations except possibly the last multiplication and addi-
tion are performed exactly. A simple analysis shows that the computed
result, say D̃, satisfies

D̃ = D̂(1 + ε1),
24If a wider internal format is available, one can use it and possibly save one step.
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with |ε1| ≤ 2−p+1 + 2−2p. This gives

D̃ = D∗(1 + ε1)(1 + ε2),

where |ε2| ≤ 10−j ≤ 2−p.25 Now, we want to get a binary floating-point
approximation to

d = D∗ × 10k−min{n−1,j}.

To approximate K∗ = 10k−min{n−1,j}, several solutions are possible. We
can assume that the best floating-point approximations to the powers of
10 are precomputed and stored in a table. An alternative solution [145]
is to compute K∗ on the fly (assuming we have stored the first powers
of 10, and powers of the form 10(2i), to save time and accuracy). For sim-
plicity, let us assume here that we get from a table the best floating-point
approximation to K∗, i.e., that we get a binary floating-point number K̃
that satisfies

K̃ = K∗(1 + ε3),

where |ε3| ≤ 2−p. We finally compute

b(1) = RN(K̃D̃) = K̃D̃(1 + ε4),

with |ε4| ≤ 2−p. Therefore, we get

b(1) = d× (1 + ε1)(1 + ε2)(1 + ε3)(1 + ε4)

= d× (1 + ε),

with
|ε| ≤ 5 · 2−p + 10 · 2−2p + 10 · 2−3p + 5 · 2−4p + 2−5p,

which gives |ε| ≤ 5.0000006× 2−p as soon as p ≥ 24.

From this we deduce

|b(1) − d| ≤ 5.0000006× 2eb−p+1.

2. Once we have an approximation b(j) of exponent ej , as said above, for
b(j) to be equal to b, it is necessary that

|d− b(j)| ≤ 2ej−p. (2.11)

Furthermore, if b(j) = 2ej exactly, it is also necessary that

d− b(j) ≥ −1
2
2ej−p. (2.12)

25A straightforward analysis of the error induced by the truncation of the digit chain D∗

would give |ε2| ≤ 10−min{n−1,j}, but when j ≥ (n − 1), D∗ = D̂ and there is no truncation
error at all.
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We will focus on condition (2.11) and show how Gay handles it. Define

M = max
{
1, 2p−ej−1

}
×max

{
1, 10n−k−1

}
.

Condition (2.11) is equivalent to

|2M(d− b(j))| ≤M × 2ej−p, (2.13)

but since 2Md, 2Mb(j), and M × 2ej−p are integers, condition (2.13) can
easily be checked using multiple-precision integer arithmetic.

If
|2M(d− b(j))| < M × 2ej−p,

then b(j) is equal to RN(d).

If
|2M(d− b(j))| = M × 2ej−p,

then RN(d) is b(j) if the integral significand of b(j) is even (i.e., if the last
bit of the significand of b(j) is a zero), and the floating-point number
adjacent to b(j) in the direction of d otherwise.

If
|2M(d− b(j))| > M × 2ej−p,

we must find a closer floating-point approximation, b(j+1), to d.

3. b(j+1) can be built as follows. Define

δ(j) =
(d− b(j))
2ej−p+1 .

That value will be computed as the ratio of the multiple-precision inte-
gers used in the previous test, as

δ(j) =
1
2
× 2M × (d− b(j))

M × 2ej−p+1 .

We have d = b(j)+δ(j)2ej−p+1: this means that δ(j) is the number of units
in the last place (ulps, see Section 2.6.1) that should be added to b(j) to
get d. In most cases, b will be obtained by adding to b(j), in floating-
point arithmetic, a floating-point approximation to that correcting term
δ(j). Hence, once floating-point approximations to M(d − b(j)) and
M × 2ej−p+1 are computed (from the integers computed for checking
b(j)), we compute δ̃j as the quotient of these approximations, and we
compute

b(j+1) = RN(b(j) + δ̃j2ej−p+1).

Some care is necessary to avoid loops (if b(j+1) = b(j)), see [145] for
details on how to handle these cases. Gay [145] shows that the number
of steps needed to have b(m) = b is at most 3. In most cases, b is b(1)

or b(2). Indeed, the only cases for which m = 3 are those for which
|b(2) − b| = 2e−p+1.
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2.8 The Fused Multiply-Add (FMA) Instruction

The FMA instruction was introduced in 1990 on the IBM RS/6000 processor
to facilitate correctly rounded software division and to make some calcula-
tions (especially dot products and polynomial evaluations) faster and more
accurate.

Definition 7 (FMA instruction). Assume that the rounding mode is ◦, and that a,
b, and c are floating-point numbers. FMA(a, b, c) is ◦(a · b + c).

Some algorithms facilitated by the availability of that instruction are pre-
sented in Chapter 5. A brief discussion on current implementations is given
in Section 3.5.2, page 104.

The new IEEE 754-2008 standard for floating-point arithmetic specifies
the FMA instruction.

2.9 Interval Arithmetic

Interval arithmetic [284, 285, 300, 216, 165, 286, 352], in its simplest form, is a
means for computing guaranteed enclosures of real-valued expressions. This
arithmetic manipulates connected closed subsets of the real numbers and its
operations are defined in such a way that they satisfy the inclusion property.
Given two intervals U and V and a mathematical operation on real numbers
� ∈ {+,−,×,÷, · · · }, the interval result U � V shall satisfy

∀u ∈ U, ∀v ∈ V, u � v ∈ U � V.

If the expressions u and v are enclosed in the intervals [u, u] and [v, v],
then the following properties can be deduced from the monotonicity proper-
ties of the arithmetic operations on real numbers:

−u ∈ [−u,−u]
√

u ∈ [
√

u,
√

u] if u ≥ 0

u−1 ∈ [u−1, u−1] if both bounds have the same sign

u + v ∈ [u + v, u + v]

u× v ∈ [min(u× v, u× v, u× v, u× v),

max(u× v, u× v, u× v, u× v)]

(2.14)

These properties show that guaranteed enclosures can be obtained easily, by
computing on interval bounds.

Note that, while the bounds computed by naive interval arithmetic are
guaranteed, they are not necessarily tight. Consider an expression x enclosed
in the interval [0, 1]. By interval arithmetic, the expression x − x is known to
be contained in [0, 1] − [0, 1] = [0 − 1, 1 − 0] = [−1, 1], which is much wider
than the tightest enclosure x− x ∈ [0, 0]. This explains why the development
of algorithms computing tight interval enclosures is an active research field.
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2.9.1 Intervals with floating-point bounds

Formulas (2.14) depend on the arithmetic on real numbers. However, it is pos-
sible to design formulas that use floating-point numbers, and still satisfy the
inclusion property. Indeed, directed rounding modes in floating-point arith-
metic provide an efficient implementation of interval arithmetic. For instance,√

[u, u] := [RD(
√

u),RU(
√

u)] if u ≥ 0
[u, u] + [v, v] := [RD(u + v),RU(u + v)]
[u, u]− [v, v] := [RD(u− v),RU(u− v)]

Thanks to the properties of RD and RU (see Section 2.2), if the input
intervals have finite bounds, the interval result is guaranteed to contain the
exact, mathematical value, even if the operations on the bounds are inexact.

Moreover, the lower bound can be replaced by −∞ in order to represent
an interval unbounded on the negative numbers. Similarly, +∞ can be used
for the upper bound.26 Then, thanks to the properties of the IEEE 754 arith-
metic with respect to infinite values, the inclusion property is still valid on
the final result even when overflows to infinities occur during intermediate
computations. Notice that the operations∞−∞ can never happen in these
formulas, as long as the inputs are valid.

Floating-point arithmetic also makes it possible to handle the empty set.
For instance, it can be represented by the pair [NaN, NaN], which will prop-
erly propagate when given to the preceding formulas.

For multiplication, the situation is slightly more complicated. Consider
the product of the intervals [0, 7] and [10,+∞]. (The +∞ bound may have
been obtained by overflow, if the real bound happens to be too large to be
representable by a finite floating-point number.) Assume that, as in the case
with real bounds, the lower bound is computed by taking the minimum of
the four products RD(0 × 10) = 0, RD(7 × 10) = 70, RD(0 × ∞) = NaN,
and RD(7×∞) = +∞. A NaN datum is obtained for a product whose result
would be zero if there had been no overflow. Therefore, when the underly-
ing floating-point arithmetic is compliant to IEEE 754, some special care is
needed to prevent propagating incorrect bounds [179].

2.9.2 Optimized rounding

On some floating-point environments, performing computations with vari-
ous rounding modes can be much costlier than performing all the floating-
point computations with the same rounding mode. In that case, relying on
the symmetry property of the rounding modes can be of help. Indeed, the

26An interval with floating-point bounds [x, +∞] contains all of the real numbers greater
than or equal to x. In the basic interval model, intervals are just sets of reals; infinite bounds
are not part of them.
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identity ∀x RD(−x) = −RU(x) makes it possible to use one single rounding
direction for most of the arithmetic operations.

For instance, let us assume that interval operations should only use RU.
Addition and subtraction can be rewritten as

[u, u] + [v, v] := [−RU((−u)− v),RU(u + v)]
[u, u]− [v, v] := [−RU(v − u),RU(u− v)]

The computation of the upper bound is left unchanged, but the lower
bound now requires some (cheap) sign flipping. In order to avoid these extra
operations, we can store the lower bound with its sign bit already flipped. Let
us denote X∗ an interval stored using this convention; addition and subtrac-
tion then become

[u, u]∗ + [v, v]∗ := [RU(u + v),RU(u + v)]∗

[u, u]∗ − [v, v]∗ := [RU(u + v),RU(u + v)]∗

Notice that, if intervals are now considered as length-2 floating-point
vectors, interval addition is just a vector addition with rounding toward
+∞. Interval subtraction is also a vector addition, but the components of
the second interval have to be exchanged first. Similar optimizations can be
applied to other arithmetic operations; they lead to efficient implementations
of floating-point interval arithmetic on SIMD architectures [237, 154].

Some floating-point environments may also have issues with subnor-
mal results (see Section 2.1). The hardware may not support them directly;
gradual underflow is then handled either by microcode or by software trap,
which may incur some slowdowns. Abrupt underflow alleviates this issue at
the expense of some properties mandated by IEEE 754. As long as this abrupt
underflow is not implemented by a flush to zero,27 the inclusion property is
still satisfied. Therefore, even though abrupt underflow may cause the enclo-
sures to be a bit wider, they are still guaranteed.

27That is, a positive subnormal result is rounded to the smallest positive normal floating-
point when rounding toward +∞, and to zero when rounding toward −∞.



Chapter 3

Floating-Point Formats and
Environment

Our main focus in this chapter is the IEEE1 754-1985 Standard for
Floating-Point Arithmetic [10], and its recent revision [187]. A paper

written in 1981 by Kahan, Why Do We Need a Floating-Point Standard? [202],
depicts the rather messy situation of floating-point arithmetic before the
1980s. Anybody who estimates that the current standards are too constrain-
ing and that circuit and system manufacturers could build much more effi-
cient machines without them should read that paper and think about it. Even
if there were at that time a few reasonably good environments, the various
systems available then were so different that writing portable yet reasonably
efficient numerical software was extremely difficult.

The IEEE 754-1985 Standard for Binary Floating-Point Arithmetic
(ANSI/IEEE Std 754-1985) was released in 1985, but the first meetings of the
working group started more than eight years before [207]. William Kahan, a
professor at the University of California at Berkeley, played a leading role in
the development of the standard. We encourage the reader to look at Kahan’s
Lecture Notes on the Status of IEEE-754 [205].

IEEE 754-1985 drastically changed the world of numerical computing.
Two years later, another standard, the IEEE 854-1987 Standard for “Radix-
Independent” (in fact, radix 2 or 10) Floating-Point Arithmetic was released.
It generalized to radix 10 the main ideas of IEEE 754-1985. IEEE 754-1985 is
also known as IEC 60559:1989 (or IEC 559), Binary floating-point arithmetic for
microprocessor systems [188].

Some languages, such as Java and ECMAScript, are based on IEEE 754-
1985. The ISO C99 standard (released in 1999) for the C language has optional
support for IEEE 754-1985 in its normative annex F. Details will be given in
Chapter 7.

1IEEE is an acronym for the Institute of Electrical and Electronics Engineers. For more
details, see http://www.ieee.org/web/aboutus/home/index.html.

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_3, 55
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2010
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IEEE 754-1985 had been under revision since 2000. The working group
recommended a draft to the IEEE Microprocessor Standards Committee in
September 2006. After some tuning of the draft, the new standard was
adopted in June 2008. In the following, it will be called IEEE 754-2008. In
the literature, IEEE 754-1985 and its new revision are frequently called IEEE
754 and IEEE 754-R, respectively.

The description of the IEEE standards given in this chapter is not
exhaustive: the standards are big documents that contain many details. Any-
one who wants to implement a floating-point arithmetic function compliant
to IEEE 754-2008 must carefully read that standard.

3.1 The IEEE 754-1985 Standard

3.1.1 Formats specified by IEEE 754-1985

The IEEE 754-1985 standard specifies binary floating-point arithmetic only: in
this section, the radix β will always be equal to 2.

As explained in Chapter 2, in radix 2, the first, leftmost bit of the signifi-
cand of a finite, nonzero floating-point number is always a “1” if it is a normal
number, and a “0” if it is a subnormal number. Hence, provided we have a
special encoding that tells us if a number is normal or subnormal, there is
no need to store the first bit of its significand. This hidden bit convention is
required for most formats specified by the IEEE 754-1985 standard, and what
is actually stored is the trailing significand, also called fraction, namely the least
p− 1 significant bits of the significand.

The standard defines two basic formats: single precision and double preci-
sion. The availability of single precision is mandatory. To each basic format is
associated an extended format. Table 3.1 gives the main parameters of the for-
mats specified by the IEEE 754-1985 standard. The major motivation for the
extended formats is that, when implementing some function, they could be
used to carry out intermediate computations in order to return a final result
in the associated basic formats:

• the wider precision makes it possible to get a result that will almost
always be significantly more accurate than that obtained with the basic
formats only;

• and the wider range will drastically limit the occurrences of “apparent
under/overflow” (that is, cases where there is an underflow or over-
flow in an intermediate result, whereas the final value would have been
in the range of the basic format).

The standard recommends an extended format for the widest basic for-
mat supported only. Hence, in practice, the single-extended precision is not
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implemented: when double precision is available, it fulfills all the purposes
of a single-extended format.

Format Hidden bit? p emin emax

Single precision yes 24 −126 127
Double precision yes 53 −1022 1023
Single-extended optional ≥ 32 ≤ −1022 ≥ 1023
Double-extended optional ≥ 64 ≤ −16382 ≥ 16383
Double-extended (IA32) no 64 −16382 16383

Table 3.1: Main parameters of the formats specified by the IEEE 754-1985 stan-
dard [10] ( c©IEEE, 1985, with permission). The single-extended format is not
implemented in practice. The last line describes the double-extended format intro-
duced by Intel in the 387 FPU, and available in subsequent IA32 compatible proces-
sors by Intel, Cyrix, AMD and others.

Table 3.2 gives the widths of the various fields (whole representation,
significand, exponent) of these formats. The ordering of bits in the encodings
is as follows. The most significant bit is the sign (0 for positive values, 1 for
negative ones), followed by the exponent (represented as explained below),
followed by the significand (with the hidden bit convention for the single-
and double-precision formats: what is actually stored is the trailing signifi-
cand). This ordering allows one to compare floating-point numbers as if they
were sign-magnitude integers.

Format
word
size

sign exponent significand
exponent

bias b

Single
precision

32 1 8 23 127

Double
precision

64 1 11 52 1023

Double-
extended
(IA32)

80 1 15 64 16383

Table 3.2: Sizes of the various fields in the formats specified by the IEEE 754-1985
standard, and values of the exponent bias. Note that for the single- and double-
precision formats, the size of the significand field is equal to p − 1, where p is the
precision. This is due to the hidden bit convention.

The exponents are represented using a bias. Assume the exponent is
stored with WE bits, and regard these bits as the binary representation of
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an unsigned integer Ne. Unless Ne = 0 (which corresponds to subnormal
numbers and the two signed zeros, see below), the (real) exponent of the
floating-point representation is Ne − b, where b = 2WE−1 − 1 is the bias. The
value of that bias b is given in Table 3.2. Ne is called the biased exponent. This
means (see Tables 3.1 and 3.2) that all actual exponents from emin to emax are
represented by Ne between 1 and 2WE − 2 = 1111 · · · 1102. With WE bits, one
could represent integers from 0 to 2WE − 1 = 1111 · · · 1112. The two extremal
values 0 and 2WE − 1, not needed for representing normal numbers, are used
as follows.

• The extremal value 0 is reserved for subnormal numbers and ±0 (the
motivation for subnormal numbers and signed zeros was discussed in
Section 2.1, pages 15 and 19 respectively). The bit encoding for a zero
is the appropriate sign (0 for +0 and 1 for −0), followed by a string of
zeros in the exponent field as well as in the significand field.

• The extremal value 2WE − 1 is reserved for infinities and NaNs:2

– The bit encoding for infinities is the appropriate sign, followed by
Ne = 2WE − 1 (i.e., a string of ones) in the exponent field, followed
by a string of zeros in the significand field.

– The bit encoding for NaNs is an arbitrary sign, followed by 2WE−1
(i.e., a string of ones) in the exponent field, followed by any bit
string different from 000 · · · 00 in the significand field. Hence, there
are several possible encodings for NaNs. This allows the imple-
menter to distinguish between quiet and signaling NaNs (see Sec-
tion 3.1.6 for an explanation of the difference between these two
kinds of NaNs) and to put possible diagnosis information in the
significand field. In IEEE 754-2008, that information is called the
payload of the NaN.

That choice of using biased representations for the exponents makes it possi-
ble to represent positive as well as negative exponents. Other solutions would
have been possible, e.g., to represent exponents using two’s complement or
sign-magnitude representations [224, 126], but this would have made com-
parison of floating-point numbers slightly harder. Also, it has a nice property
that is useful for implementers: One obtains the floating-point successor of a
floating-point number by considering its binary representation as the binary
representation of an integer, and adding one to that integer (see Section 8.2.1,
page 241). From another point of view, positive floating-point numbers
(including +0 and +∞) are ordered like their binary representation, the latter
considered as an integer.

Table 3.3 gives examples of the binary encoding of various floating-point
values in single precision. Let us now detail two examples.

2NaN means Not a Number. See Section 2.3 page 25 and Section 3.1.5.
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Datum Sign Biased exponent Trailing significand
−0 1 00000000 00000000000000000000000
+0 0 00000000 00000000000000000000000
−∞ 1 11111111 00000000000000000000000
+∞ 0 11111111 00000000000000000000000

NaN 0 11111111 nonzero string
5 0 10000001 01000000000000000000000

Table 3.3: Binary encoding of various floating-point data in single precision.

Example 1 (Binary encoding of a normal number). Consider the single-precision
number x whose binary encoding is

0 01101011 01010101010101010101010

sign exponent trailing significand

• the bit sign of x is a zero, which indicates that x ≥ 0;

• the biased exponent is neither 00000000 nor 11111111, which indicates that x
is a normal number. It is 011010112 = 10710, hence, since the bias in single
precision is 127, the real exponent of x is 107− 127 = −20;

• by placing the hidden bit (which is a 1, since x is not subnormal) at the left of
the trailing significand, we get the significand of x:

1.010101010101010101010102 =
5592405
4194304

;

• hence, x is equal to

5592405
4194304

× 2−20 =
5592405

4398046511104
= 0.000001271565679417108185589313507080078125.

Example 2 (Binary encoding of a subnormal number). Consider the single-
precision number x whose binary encoding is

1 00000000 01100000000000000000000

sign exponent trailing significand

• the bit sign of x is a one, which indicates that x ≤ 0;
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• the biased exponent is 00000000, which indicates that x is a subnormal
number. It is not a zero, since the significand field is not a string of zeros.
Hence, the real exponent of x is emin = −126;

• by placing the hidden bit (which is a 0, since x is subnormal) at the left of the
trailing significand, we get the significand of x:

0.011000000000000000000002 =
3
8
;

• hence, x is equal to

−3
8
× 2−126 = − 3

680564733841876926926749214863536422912

= −4.408103815583578154882762014583421291819995837895
328205657818898544064722955226898193359375× 10−39.

Biased exponent Ne

Trailing
significand
t1t2 . . . tp−1

Value represented

111 · · · 1 6= 000 · · · 0 NaN
111 · · · 1 000 · · · 0 (−1)s ×∞
000 · · · 0 000 · · · 0 (−1)s × 0
000 · · · 0 6= 000 · · · 0 (−1)s × 0.t1t2 . . . tp−1 × 2emin

0 < Ne < 2WE − 1 any (−1)s × 1.t1t2 . . . tp−1 × 2Ne−b

Table 3.4: How to interpret the binary encoding (sign s, biased exponent, trailing
significand) of an IEEE 754-1985 floating-point number [10]. In single precision,
emin = −126, WE = 8, and b = 127, and in double precision, emin = −1022,
WE = 11, and b = 1023.

Table 3.4 sums up the way floating-point data are encoded in the IEEE
754-1985 standard, and Table 3.5 presents some extremal values (smallest
subnormal, smallest normal, largest finite) in the various formats of the stan-
dard.

3.1.2 Little-endian, big-endian

The IEEE 754-1985 standard specifies how floating-point data are encoded,
but only as a sequence of bits. How such a sequence of bits is ordered in the
memory depends on the platform. In general, the bits are grouped into bytes,
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Smallest subnormal Smallest normal Largest finite
Format 2emin+1−p 2emin 2emax(2− 21−p)

single 2−126−23 2−126 (2− 2−23)× 2127

precision ≈ 1.401× 10−45 ≈ 1.175× 10−38 ≈ 3.403× 1038

double 2−1022−52 2−1022 (2− 2−52)× 21023

precision ≈ 4.941× 10−324 ≈ 2.225× 10−308 ≈ 1.798× 10308

IA32 double 2−16382−63 2−16382 (2− 2−63)× 216383

extended ≈ 3.645× 10−4951 ≈ 3.362× 10−4932 ≈ 1.190× 104932

Table 3.5: Extremal values in the IEEE 754-1985 standard.

and these bytes are ordered according to what is called the endianness3 of the
platform.

For instance, the double-precision number that is closest to
−7.0868766365730135 × 10−268 is encoded by the sequence of bytes
11 22 33 44 55 66 77 88 in memory (from the lowest address to the highest
one) on x86 and Linux/IA-64 platforms (they are said to be little-endian)
and by 88 77 66 55 44 33 22 11 on most PowerPC platforms (they are said to
be big-endian). Some architectures, such as IA-64, ARM, and PowerPC are
bi-endian, i.e., they may be either little-endian or big-endian depending on
their configuration.

There exists an exception: some ARM-based platforms. ARM processors
have traditionally used the floating-point accelerator (FPA) architecture, where
the double-precision numbers are decomposed into two 32-bit words in the
big-endian order and stored according to the endianness of the machine,
i.e., little-endian in general, which means that the above number is encoded
by the sequence 55 66 77 88 11 22 33 44. ARM has recently introduced a new
architecture for floating-point arithmetic: vector floating-point (VFP), where
the words are stored in the processor’s native byte order.

3.1.3 Rounding modes specified by IEEE 754-1985

The IEEE 754-1985 standard defines four rounding modes. Basically, they
are the same as those described in Chapter 2, Section 2.2, page 20: round
toward −∞ (RD), round toward +∞ (RU), round toward zero (RZ), and
round to nearest (RN). And yet, for the round-to-nearest mode, two special
rules are worth mentioning: the way numbers larger than the largest finite
floating-point number are handled, and the way numbers exactly halfway

3According to Wikipedia [432], endianness is the convention that two parties that wish to
exchange information will use to send and receive this information when they need to cut the
information down to pieces. The term big-endian comes from Jonathan Swift’s book Gulliver’s
Travels.
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between two consecutive floating-point numbers are rounded. More
precisely, in round-to-nearest mode:

• a number of absolute value larger than or equal to 2emax(2 − 2−p) will
be rounded to infinity (with the appropriate sign). This of course is
not what one would infer from a naive understanding of the words
round to nearest, but the advantage is clear: when the result of an arith-
metic operation is a normal number (including the largest one, Ω =
2emax(2− 21−p)), we know that the relative error induced by that opera-
tion is small. If huge numbers were rounded to the floating-point value
that is really closest to them (namely, ±Ω), we would have no bound
on the relative error induced by an arithmetic operation whose result is
±Ω;

• other numbers will be rounded to the nearest floating-point number of
the format under consideration. In case of a tie (that is, when the exact
result is exactly halfway between two consecutive floating-point num-
bers), the floating-point value whose last significand bit is a zero will be
returned. Because of this, that rounding mode is frequently called round
to nearest even.

The three directed rounding modes (toward +∞, toward −∞, and
toward 0) behave as described in Section 2.2.

The special rule for round to nearest in case of a tie has several
advantages:

• it is rather easily implementable;

• it has no statistical bias;

• Knuth ([222], Theorem D page 237) shows that using round to nearest
even, we always have

RN(RN(RN(RN(a + b)− b) + b)− b) = RN(RN(a + b)− b),

which means that there is no “drift” when repeatedly adding and sub-
tracting the same value.

3.1.4 Operations specified by IEEE 754-1985

Arithmetic operations and square root

The IEEE 754-1985 standard requires that addition, subtraction, multipli-
cation, and division of operands of the same format be provided, for all
supported formats, with correct rounding (with the four rounding modes
presented above). It is also recommended that these operations be provided
(still with correct rounding) for operands of different formats (in such a
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case, the destination format must be at least as wide as the wider operand’s
format). Notice that when the sum or difference of two numbers is exactly
zero, then the returned result is zero, with a “+” sign in the round-to-nearest,
round-toward-zero, and round-toward +∞ modes, and with a “−” in the
round-toward −∞ mode, except for x + x and x − (−x) with x being ±0, in
which case the result has the same sign as x.

The standard also requires a correctly rounded square root in all sup-
ported formats. The result is defined and has a positive sign for all input
values greater than or equal to zero, with the exception4 that

√
−0 = −0.

Remainders

Remainders must also be provided. There are several different definitions
of remainders [42]; here is the one chosen for the standard. If x is a finite
floating-point number and y is a finite, nonzero floating-point number, then
the remainder r = x REM y is defined as

1. r = x− y × n, where n is the integer nearest to the exact value x/y;

2. if x/y is an odd multiple of 1/2 (i.e., there are two integers nearest to
x/y), then n is even;

3. if r = 0, its sign is that of x.

A consequence of this definition is that remainders are always exactly rep-
resentable, which implies that the returned result does not depend on the
rounding mode.

Conversions to and from integer formats

It must be possible to convert between all supported integer formats and
all supported floating-point formats. Conversion from floating-point formats
to integers must be correctly rounded, and must follow the active rounding
mode.

Conversions to and from decimal strings

Conversions to and from decimal strings are used very often; for instance,
for reading numbers from a file, writing them in a file, or displaying them on
screen. We have discussed some issues linked with conversions in Section 2.7.
Note that at the time the IEEE 754-1985 standard was released, some of the

4This rule (that may help to implement complex functions [204]) may seem strange, but the
most important point is that any sequence of exact computations on real numbers will give
the correct result, even when

√
−0 is involved. Also let us recall that −0 is regarded as a null

value, not as a negative number.
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algorithms presented in Section 2.7 were not known.5 This explains why the
requirements of the standard might appear somehow below what one could
now expect.

The requirements of the standard are:

• conversions must be provided between decimal strings in at least one
format and binary floating-point numbers in all basic floating-point for-
mats, for numbers of the form

±M10 × 10±E10

with E10 ≥ 0. On input, trailing zeros are appended to or stripped from
M10 up to the limits specified in Table 3.6 in order to minimize E10;

• conversions must be correctly rounded for operands in the ranges spec-
ified in Table 3.7;

• when the operands are not in the ranges specified in Table 3.7:

– in round-to-nearest mode, the conversion error cannot exceed
0.97 ulp of the target format;

– in the directed rounding modes, the “direction” of the rounding
must be followed (e.g., for round-toward −∞ mode, the deliv-
ered result must be less than or equal to the initial value), and the
rounding error cannot exceed 1.47 ulp of the target format;

• conversions must be monotonic (if x ≤ y before conversion, then x ≤ y
after conversion);

• when rounding to nearest, as long as the decimal strings have at least
9 digits for single precision and 17 digits for double precision, conver-
sion from binary to decimal and back to binary must produce the initial
value exactly. This allows one to store intermediate results in files, and
to read them later on, without losing any information, as explained in
Chapter 2, Section 2.7.

Comparisons

It must be possible to compare two floating-point numbers, in all formats
specified by the IEEE 754-1985 standard, even if their formats differ. This can
be done either by means of a condition code identifying one of the four fol-
lowing conditions: less than, equal, greater than, and unordered; or as a Boolean

5We should mention that, at that time, Rump had already suggested algorithms for cor-
rectly rounded conversion [349].
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Decimal to binary Binary to decimal

M
(1)
10,max E

(1)
10,max M

(2)
10,max E

(2)
10,max

Single precision 109 − 1 99 109 − 1 53

Double precision 1017 − 1 999 1017 − 1 340

Table 3.6: The thresholds for conversion from and to a decimal string, as specified by
the IEEE 754-1985 standard [10] ( c©IEEE, 1985, with permission).

Decimal to binary Binary to decimal

M
(1)
10,max E

(1)
10,corr M

(2)
10,max E

(2)
10,corr

Single precision 109 − 1 13 109 − 1 13

Double precision 1017 − 1 27 1017 − 1 27

Table 3.7: Correctly rounded decimal conversion range, as specified by the IEEE
754-1985 standard [10] ( c©IEEE, 1985, with permission).

response to a predicate that gives the desired comparison. The unordered con-
dition arises when at least one of its operands is a NaN: a NaN compares
unordered with everything including itself. A consequence of this is that the
test

x 6= x

returns true when x is a NaN. As pointed out by Kahan [205], this provides a
way of checking if a floating-point datum is a NaN in languages that lack an
instruction for doing that (assuming the test is not optimized out). The other
tests involving a NaN will return false. Hence, the test

x ≤ y

is not always equivalent to the test

not(x > y).

If at least one of the two operands is a NaN, the first test will return false
whereas the second one will return true.

Also, the test +0 = −0 must return true.
Users and especially compiler designers should be aware of these

subtleties.
When implementations provide predicates, it is requested that the first

six predicates of Table 3.8 (namely, =, 6=, >, <, ≥, ≤) be provided, and it is
recommended that the seventh one (namely, unordered) be provided.
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Relations

Predicates
greater

than
less
than

equal unordered
Invalid if

unordered ?
= false false true false no
6= true true false true no
> true false false false yes
≥ true false true false yes
< false true false false yes
≤ false true true false yes
unordered false false false true no

Table 3.8: Comparison predicates and the four relations [10] ( c©IEEE, 1985, with
permission).

3.1.5 Exceptions specified by IEEE 754-1985

The five exceptions listed in Section 2.3 (invalid, division by zero, overflow,
underflow, inexact) must be signaled when detected. This can be done by
taking a trap (see below) or by setting a status flag. The default mode is not to
use traps.

For each type of exception, a status flag must be provided: that status flag
is set each time the corresponding exception occurs and no corresponding
trap occurs. The status flags are “sticky,” so that the user does not need to
check them immediately, but after some sequence of operations, such as at the
end of a function. A system that is compliant with the standard must provide
the user with ways of resetting, testing, and altering the flags individually.
The standard also recommends (yet does not request) that the user should be
able to save and restore all the flags simultaneously.

Traps

The IEEE 754-1985 standard allows the user to choose what should be done
when one of the five exceptions occurs by specifying a trap handler for that
exception. He can choose to disable, save, or restore an existing trap.

• When a trap is disabled, the corresponding exception is handled
according to the default mode.

• When an exception is signaled and the corresponding trap handler is
enabled, the trap handler is activated. In some cases (see below), a result
is delivered to the trap handler.

Now, we discuss the various cases that lead to an exception in the IEEE
standard.
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Invalid operation

The invalid operation exception is signaled:

• when one of the operands is a signaling NaN;

• when performing one of the following additions/subtractions: (−∞)−
(−∞), (+∞)− (+∞), (−∞) + (+∞), (+∞) + (−∞);

• when performing multiplications of the form (±0)× (±∞);

• when performing divisions of the form (±0)/(±0) or (±∞)/(±∞);

• when computing remainder(x, y), where y = ±0 or x = ±∞;

• when computing
√

x with x < 0;

• when converting a floating-point number to an integer or a decimal
format when there is no satisfactory way of representing it in the target
format. This can happen in case of overflow, or for converting infinity
or NaN if the target format does not have representations for such data;

• when performing comparisons of unordered operands using predicates
that are listed as invalid if unordered in Table 3.8.

If the exception occurs without a trap, the returned result will be a quiet NaN.

Division by zero

When computing x/y, if x is a nonzero finite number and y is zero, the divi-
sion by zero exception is signaled. If no trap occurs, the result is infinity, with
the correct sign.

Overflow

Let us call an intermediate result what would have been the rounded result
if the exponent range were unbounded. The overflow exception is signaled
when the absolute value of the intermediate result is strictly larger than the
largest finite number,

Ω = (2− 21−p)× 2emax ,

or, equivalently, when the exponent of the intermediate result is strictly larger
than emax.

When there is an overflow and no trap occurs, the returned result
depends on the rounding mode:

• it will be ±∞ with the round-to-nearest mode, with the sign of the
intermediate result;
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• it will be ±Ω with the round-toward-zero mode, with the sign of the
intermediate result;

• it will be +Ω for a positive intermediate result and −∞ for a negative
one with the round-toward −∞mode;

• it will be −Ω for a negative intermediate result and +∞ for a positive
one with the round-toward +∞mode.

For instance, in round-to-nearest mode, there is an overflow when the
absolute value of the exact result of an operation is larger than or equal to

(
2− 2−p

)
× 2emax = Ω +

1
2

ulp(Ω).

Let us now present what is done if a trap occurs.
If m is the width of the exponent field of the destination format, define

K = 23×2m−2
.

For instance, K equals 2192 in single-precision, 21536 in double-precision, and
224576 in IA32 double-extended precision formats. In case of a trapped over-
flow, the result that must be delivered to the trap handler is what we would
obtain by first dividing the exact result by K, and then rounding it according
to the active rounding mode.

For instance, this mechanism allows us to evaluate an expression of the
form

√
x2 + y2 + z2 using the straightforward algorithm, without worrying

much about possible overflows. If an overflow occurs, the trap handler will
be able to perform scaled arithmetic.

The value suggested for that number K may seem strange. As pointed
out by the standard [10], that scaling factor is chosen so that we obtain values
around the middle of the exponent range, to limit the risk of having further
exceptions.

Underflow

When a nonzero result of absolute value less than 2emin is obtained (i.e., it
is in the subnormal range), a significant loss of accuracy may occur. And
yet, sometimes, such a result is exact (this is a frequent case: see Theorem 3,
page 124). To warn the user when an inaccurate very small result is com-
puted, the standard defines two events: tininess (a nonzero result of absolute
value less than 2emin is obtained), and loss of accuracy.

Concerning the detection of tininess, there is some ambiguity in the stan-
dard6 (see the Note on underflow, in Section 2.1, page 18):

6And unfortunately, this ambiguity remains in the revised standard, see Section 3.4.10.
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• tininess can be signaled either before rounding, that is, when the absolute
value of the exact result is nonzero and strictly less than 2emin ;

• or it can be signaled after rounding, that is, when the absolute value of
the nonzero result rounded as if the exponent range were unbounded
is strictly less than 2emin .

Also, loss of accuracy may be detected either when the result differs from
what would have been obtained were exponent range unbounded, or when
it differs from what would have been obtained were exponent range and pre-
cision unbounded.

If an underflow trap is not implemented or is not enabled (which is the
default), the result is always correctly rounded and underflow is signaled
only when both tininess and loss of accuracy have been detected.

When a trap has been implemented and is enabled, underflow is sig-
naled when tininess is detected.

Very much like the overflow case, in case of a trapped underflow, the
result that must be delivered to the trap handler is what we would obtain by
first multiplying the exact result by K, and then rounding it according to the
active rounding mode, where K is the same scaling factor

23×2m−2

as for overflow.

Inexact

If the result of an operation (after rounding) is not exact, or if it overflows
without an overflow trap, then the inexact exception is signaled. The correctly
rounded or overflowed result is returned (to the destination or to the trap
handler, depending on whether an inexact trap in enabled or not).

3.1.6 Special values

NaN: Not a Number

The standard defines two types of NaNs:

• signaling NaNs (sNaNs) do not appear, in default mode, as the result
of arithmetic operations. They signal the invalid operation exception
whenever they appear as operands. For instance, they can be used for
uninitialized variables;

• quiet NaNs (qNaNs) propagate through almost all operations without
signaling exceptions. They can be used for debugging and diagnostic
purposes. As stated above, a quiet NaN is returned whenever an invalid
operation exception occurs with the corresponding trap disabled.
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For example, qNaN×8 = qNaN, and when the trap for invalid opera-
tions has not been enabled, sNaN+5 = qNaN and

√
−2 = qNaN.

Arithmetic of infinities and zeros

The arithmetic of infinities and zeros follows the intuitive rules. For instance,
−1/(−0) = +∞, −5/(+∞) = −0,

√
+∞ = +∞ (the only somewhat counter

intuitive property is
√
−0 = −0). This very frequently allows one to get sen-

sible results even when an underflow or an overflow has occurred. And yet,
one should be cautious. Consider for instance, in round-to-nearest mode, the
computation of

f(x) =
x√

1 + x2
,

for
√

Ω < x ≤ Ω, where Ω is the largest finite floating-point number. The
computation of x2 will return an infinite result; hence, the computed value of√

1 + x2 will be +∞. Since x is finite, by dividing it by an infinite value we
will get +0. Therefore, the computed value of f(x), for x large enough, will
be +0, whereas the exact value of f(x) is extremely close to 1.

3.2 The IEEE 854-1987 Standard

The IEEE 854-1987 standard [11] covers “radix-independent” floating-point
arithmetic. This does not mean that all possible radices are considered: actu-
ally, that standard only focuses on radices 2 and 10. We will just present it
briefly (it is now superseded by IEEE 754-2008 [187]).

Unlike IEEE 754-1985, the IEEE 854-1987 standard does not fully spec-
ify formats or internal encodings. It merely expresses constraints between
the parameters β, emin, emax, and p of the various precisions provided by an
implementation. It also says that for each available precision we must have
two infinities, at least one signaling NaN and at least one quiet NaN (as in
the IEEE 754-1985 standard). In the remainder of this section, β is equal to
2 or 10. The same radix must be used for all available precisions: an arith-
metic system is either binary or decimal, but it cannot mix up the two kinds
of representations.

3.2.1 Constraints internal to a format

A balance must be found between the precision p and the value of the
extremal exponents emin and emax. If p is too large compared to |emin| and
emax, then underflows or overflows may occur too often. Also, there must
be some balance between emin and emax: to avoid underflows or overflows
when computing reciprocals of normalized floating-point numbers as much
as possible, one might want emin ≈ −emax. Since underflow (more precisely,
gradual underflow, with subnormal numbers available) is less harmful than
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overflow, it is preferable to have emin very slightly above7 −emax. Here are
the constraints specified by the IEEE 854-1987 standard.

• We must have
emax − emin

p
> 5,

and it is recommended that

emax − emin

p
> 10.

• We must have βp−1 ≥ 105.

• βemax+emin+1 should be the smallest power of β greater than or equal to 4
(which is a very complicated way of saying that emin should be 1− emax

in radix 2 and −emax in radix 10).

For instance, the single-precision format of IEEE 754-1985 satisfies these
requirements: with β = 2, p = 24, emin = −126, and emax = 127, we have

emax − emin

p
= 10.54 · · · > 10;

βp−1 = 223 ≥ 105;

βemax+emin+1 = 22 = 4.

3.2.2 Various formats and the constraints between them

The narrowest supported format is called single-precision. When a second,
wider basic format is supported, it is called double-precision. The required con-
straints between their respective parameters emins, emaxs, ps and emind, emaxd,
pd are:

• βpd ≥ 10β2ps ;

• emaxd ≥ 8emaxs + 7;

• emind ≤ 8emins.

Extended precisions are also possible. For obvious reasons, the only
extended precision that is recommended is the one associated to the widest
supported basic precision. If emin, emax, and p are the extremal exponents and
precision of that widest basic precision, the parameters emine, emaxe, and pe of
the corresponding extended precision must satisfy:

7We will see in the following pages that the revised standard IEEE 754-2008 will require
emin = 1− emax for all formats.
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• emaxe ≥ 8emax + 7;

• emine ≤ 8emin;

• if β = 2,
pe ≥ p + dlog2 (emax − emin)e ; (3.1)

• for all β, pe ≥ 1.2p.

It is also recommended that

pe > 1 + p +
log [3 log(β) (emax + 1)]

log(β)
. (3.2)

The purpose of constraint (3.1) was to facilitate the support of conversion to
and from decimal strings for the basic formats, using algorithms that were
available at that time. The purpose of (3.2) was to make accurate implemen-
tation, in the basic formats, of the power function xy simpler. Again, the
rationale behind the existence of the extended formats is to allow for effi-
cient implementations of various functions of basic format variables without
having to worry too much about roundoff error propagation and possible
over/underflow in the intermediate calculations.

3.2.3 Conversions between floating-point numbers and decimal
strings

Very much as in IEEE 754-1985, conversions must be provided between dec-
imal strings (in at least one format) and floating-point numbers in all sup-
ported basic precisions. As for IEEE 754-1985, these constraints might seem
somewhat below what one could now expect: at the time the standard was
released, some of the best conversion algorithms that can now be found in
the literature were not published yet.

Consider decimal strings with values of the form ±M × 10±N , with 0 ≤
M ≤ 10D − 1. When several representations are possible, the one with the
smallest N is used in Tables 3.9 and 3.10. Conversions must be provided in
the range specified in Table 3.9, and correctly rounded in the range specified
in Table 3.10. The value em in these tables is

em = max {D + (p− 1− emin) log10(β), (emax + 1) log10(β) + 1−D} .

When conversion is not correctly rounded (i.e., outside the range given
in Table 3.10) and β = 2, the error in the converted result must be less
than 0.97 ulp of the target format in the round-to-nearest mode, and less than
1.47 ulp in the directed rounding modes. The direction of the directed round-
ing modes must be satisfied (e.g., when the active rounding mode is RD, the
obtained result must be less than or equal to the exact result). These bounds
of 0.97 and 1.47 ulps come from the best conversion algorithms that were
available at that time [81].
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β Max D Max N

2 dp log10 2 + 1e 10blog10(em)c+1 − 1

10 p 10blog10(em)c+1 − 1

Table 3.9: Floating-point from/to decimal string conversion ranges in the IEEE 854-
1987 standard [11] ( c©IEEE, 1987, with permission).

β Max D Max N

2 dp log10 2 + 1e bpe log5(2)c

10 p 10blog10(em)c+1 − 1

Table 3.10: Correctly rounded conversion ranges in the IEEE 854-1987 standard [11]
( c©IEEE, 1987, with permission). Variable pe denotes the smallest permissible value
as extended support for precision p.

3.2.4 Rounding

The IEEE 854-1987 standard requires that the arithmetic operations and the
square root be correctly rounded. Exactly as for IEEE 754-1985, four rounding
modes are specified: rounding toward −∞, toward +∞, toward 0, and to
nearest. Round to nearest must be the default mode, with the following two
characteristics:

• when rounding x, if the two floating-point numbers nearest to x are
equally near, the one whose least significant digit is even is delivered
(this is the round-to-nearest-even mode, as in IEEE 754-1985, but general-
ized for other radices);

• if the exact result has an absolute value larger than or equal to
βemax

(
β − 1

2β1−p
)
, then an infinite result (with the correct sign) is

returned. Notice that when β = 2, this is what was already required
in IEEE 754-1985 (see Section 3.1.5, page 67).

3.2.5 Operations

The arithmetic operations, the remainder operation, and the square root
(including the

√
−0 = −0 requirement) are defined very much as in IEEE

754-1985.
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3.2.6 Comparisons

The comparisons are defined very much as in IEEE 754-1985. Especially,
every NaN compares “unordered” with everything including itself: the test
“x 6= x” must return true if x is a NaN.

3.2.7 Exceptions

The IEEE 754-1985 way of handling exceptions was also chosen for IEEE
854-1987. The only modifications come from the facts that two possible
radices are considered and the formats are not fully specified. For instance,
when a trap occurs in the case of an overflow or underflow, the scaling factor
K used for scaling the result returned to the trap handler becomes βα, where
α ≈ 3

4 (emax − emin) , and α should be a multiple of 12.

3.3 The Need for a Revision

The IEEE 754-1985 standard was a huge improvement. It soon became imple-
mented on most platforms of commercial significance. And yet, 15 years after
its release, there was a clear need for a revision.

• Some features that had become common practice needed to be stan-
dardized: e.g., the “quadruple-precision” (i.e., 128-bit wide, binary) for-
mat, the fused multiply-add operator.

• Since 1985, new algorithms were published that allowed one to eas-
ily perform computations that were previously thought too complex.
Typical examples are the radix conversion algorithms presented in Sec-
tion 2.7: now, for an internal binary format, it is possible to have much
stronger requirements on the accuracy of the conversions that must be
done when reading or printing decimal strings. Another example is
the availability of reasonably fast libraries for some correctly rounded
elementary functions: the revised standard can now deal with tran-
scendental functions and recommend that some should be correctly
rounded.

• There were some ambiguities in IEEE 754-1985. For instance, when eval-
uating expressions, when a larger internal format is available in hard-
ware, it was unclear in which format the implicit intermediate variables
should be represented.

• As pointed out by David Hough, the various implementations of IEEE
754-1985 did not allow one to code the most arcane aspects of the stan-
dard in a portable way.
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3.3.1 A typical problem: “double rounding”

The processor being used may offer an internal precision that is wider than
the precision of the variables of a program (a typical example is the double-
extended format available on Intel platforms, when the variables of the pro-
gram are single-precision or double-precision floating-point numbers). This
may sometimes have strange side effects, as we will see in this section.

Consider the C program (Program 3.1).

#include <stdio.h>

int main(void)
{
double a = 1848874847.0;
double b = 19954562207.0;
double c;
c = a * b;
printf("c = %20.19e\n", c);
return 0;

}

Program 3.1: A C program that might induce a double rounding.

Tables 3.11 and 3.12 give some results returned by this program, depend-
ing on the processor and the compilation options. In order to really test the
arithmetic of the machine, it is important that the compiler does not optimize
the multiplication by performing it at compile time (one controls even less
what occurs at compile time); by default, GCC does not do such an optimiza-
tion. Notice that the double-precision number closest to the exact product is
3.6893488147419111424e+19.

Switches on the
GCC command line

Output

no switch (default) c = 3.6893488147419103232e+19
-mfpmath=387 c = 3.6893488147419103232e+19
-march=pentium4 -mfpmath=sse c = 3.6893488147419111424e+19

Table 3.11: Results returned by Program 3.1 on a Linux/Debian Etch 32-bit Intel
platform, with GNU Compiler Collection (GCC) 4.1.2 20061115, depending on the
compilation options. Notice that on the 32-bit platform, the default is to use the 387
registers.
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Switches on the
GCC command line

Output

no switch (default) c = 3.6893488147419111424e+19
-mfpmath=387 c = 3.6893488147419103232e+19
-march=pentium4 -mfpmath=sse c = 3.6893488147419111424e+19

Table 3.12: Results returned by Program 3.1 on a Linux/Debian Etch 64-bit Intel
platform, with GCC 4.1.2 20061115, depending on the compilation options. Notice
that on the 64-bit platform, the default is to use the SSE registers.

What happened? The exact value of a*b is 36893488147419107329, whose
binary representation is

64 bits︷ ︸︸ ︷
10000000000000000000000000000000000000000000000000000︸ ︷︷ ︸

53 bits

10000000000 01

On the processor used, with the -mfpmath=387 switch, the product is first
rounded to the precision of the registers (namely, double-extended precision),
which gives (in binary)

64 bits︷ ︸︸ ︷
10000000000000000000000000000000000000000000000000000︸ ︷︷ ︸

53 bits

10000000000×4

Then, that intermediate value is rounded to the double-precision desti-
nation format, which gives (using the round-to-nearest-even rounding mode)

10000000000000000000000000000000000000000000000000000︸ ︷︷ ︸
53 bits

× 213

= 3689348814741910323210,

whereas the product a*b correctly rounded to the nearest double-precision
number is

10000000000000000000000000000000000000000000000000001︸ ︷︷ ︸
53 bits

× 213

= 3689348814741911142410.

The -march=pentium4 -mfpmath=sse compilation switches force the product
to be stored in the 64-bit Streaming SIMD Extension (SSE) registers. In that
case, it is directly rounded to double precision, so that we get the expected
result.
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The problem we have faced here is called “double rounding.” In this
example, it appears during a multiplication, but it may also appear during
another arithmetic operation. Another example (still with double-precision
input values) is the addition of

9223372036854775808.0 = 263

and
1024.25.

Such examples are not so rare that they can be neglected. Assuming
double-precision variables and a double-extended internal format, if the cho-
sen compilation switches do not prevent the problem from occurring, the
double rounding problem occurs when the binary expansion of the exact
result of some operation is of the form

2k ×
53 bits︷ ︸︸ ︷

1.xxxxx · · ·xx0
11 bits︷ ︸︸ ︷

10000000000 0
at least one 1 somewhere︷ ︸︸ ︷

xxxxxxxxxxxxxxxxxxxxxx · · ·

or

2k ×
53 bits︷ ︸︸ ︷

1.xxxxx · · ·xx1
11 bits︷ ︸︸ ︷

01111111111 1
at least one 0 somewhere︷ ︸︸ ︷

xxxxxxxxxxxxxxxxxxxxxx · · · .

Assuming equal probabilities of occurrence for the zeros and ones in the
binary expansion of the result of an arithmetic operation,8 the probability of
a double rounding is 2−12 = 1/4096, which means that without care with
the compilation options, double roundings will occur in any computation of
significant size.

We must emphasize that this might be a problem with some very spe-
cific algorithms only (such as those presented in Chapter 4), but with most
calculations, it will be unnoticed.

3.3.2 Various ambiguities

In [280], Monniaux gives some very convincing examples of consequences of
“ambiguities.” The examples shown here were obtained on a Pentium pro-
cessor, under Linux in 32 bits, with GCC 4.0.1.

Consider Program 3.2.
What happened? Although in double-precision arithmetic, in round-

to-nearest (i.e., the default) mode, the multiplication v * v should have
returned +∞, the implicit variable representing that product was actually
stored in a double-extended precision register of the processor. And since
the product v * v is much below the overflow threshold in double-extended

8Which is not very realistic but suffices to get a rough estimate of the frequency of
occurrences of double roundings.



78 Chapter 3. Floating-Point Formats and Environment

#include <stdio.h>
int main(void)
{
double v = 1E308;
double x = (v * v) / v;
printf("%g\n",x);
return 0;

}

Program 3.2: This example is due to David Monniaux [280]. Compiled with GCC
under Linux/x86, we get 1e+308, whereas if all computations had been performed in
double-precision arithmetic, we should have obtained +∞.

precision, the stored value was not +∞, but the double-extended number
closest to the exact product. The result +∞ can be obtained with recent GCC
versions and the -ffloat-store option, which forces the intermediate results
to be spilt to memory,9 in double precision.

It is important to notice that, in this case, the obtained result is very
accurate, which is not that surprising: in most cases, using a larger inter-
nal precision for intermediate calculations leads to better calculations. What
matters then is not to forbid that, but to allow programmers to decide if
they want all intermediate calculations to be performed in the format of the
operands (which enhances portability and provability and is necessary for
safely using most of the small algorithms given in Chapter 4), or if they
prefer these intermediate calculations to be performed in a wider format
(typically, the largest format available in hardware, which in general impr-
oves the accuracy of the results). A tradeoff is to be found between portabil-
ity, accuracy, and (frequently) speed. Choosing which among these criteria is
the most important should be the programmer’s task, not the compiler’s.

The following example is even more interesting. Consider Program 3.3.
Compiled with GCC under Linux without optimization, we get inf;

compiled with optimization (option “-O”), we get 1e+308. Now, let us see
what happens if we just insert a statement to print y just after its computa-
tion (see Program 3.4).

Compiled with GCC under Linux with optimization (option “-O”), we
now get inf (whereas we got 1e+308 without the printf call). That state-
ment forced y to be spilt to memory (hence, to be represented in the double-
precision format), instead of staying in a double-extended precision register.
This example shows that even a statement that does not involve a numeric compu-
tation in the program (here, a call to the printf function) can change the final result.
This sometimes makes portable and provable numerical programs very diffi-
cult to design. Chapter 7 deals with these issues.

9However this is not guaranteed by the GCC documentation, and the effect of the
-ffloat-store option may still depend on the GCC version.
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#include <stdio.h>

static inline double f(double x)
{
return x / 1E308;

}

double square(double x)
{
double y = x * x;
return y;

}

int main(void)
{
printf("%g\n", f(square(1E308)));
return 0;

}

Program 3.3: This example is due to David Monniaux [280]. Compiled with GCC
under Linux without optimization, we get inf, compiled with optimization (option
“-O”), we get 1e+308.

3.4 The New IEEE 754-2008 Standard

The IEEE 754-1985 standard has been revised from 2000 to 2006, and the
revised standard was adopted in June 2008. Some of the various goals of the
working group were as follows (see http://grouper.ieee.org/groups/754/

revision.html):

• merging the 854-1987 standard into the 754-1985 standard;

• reducing the implementation choices;

• resolving some ambiguities in the 754-1985 standard (especially con-
cerning expression evaluation and exception handling). The revised
standard allows languages and users to focus on portability and repro-
ducibility, or on performance;

• standardizing the fused multiply-add (FMA) operation, and

• including quadruple precision.

Also, the working group had to cope with a very strong constraint: the
revised standard would rather not invalidate hardware that conformed to
the old IEEE 754-1985 standard.
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#include <stdio.h>

static inline double f(double x)
{
return x / 1E308;

}

double square(double x)
{
double y = x * x;
printf("%g\n",y);
return y;

}

int main(void)
{
printf("%g\n", f(square(1E308)));
return 0;

}

Program 3.4: This example is due to David Monniaux [280]. Compiled with GCC
under Linux with optimization (option “-O”), we get inf.

3.4.1 Formats specified by the revised standard

The revised standard requires that the radix β should be 2 or 10, and that emin

should be 1− emax for all formats. It defines two kinds of formats:

• interchange formats, whose encodings are fully specified as bit strings,
and that allow data interchange between different platforms, provided
that endianness problems (see Section 3.1.2) are resolved,10 and

• extended and extendable precision formats,11 whose encodings are not
specified, but may match those of interchange formats.

The standard requires that conversions between any two supported for-
mats be implemented. Moreover, a format is said to be an arithmetic format if
all the mandatory operations defined by the standard are supported by the
format.

Among the interchange formats, the standard defines five basic formats,
which must also be arithmetic formats: the three binary formats on 32, 64,
and 128 bits, and the two decimal formats on 64 and 128 bits. A conforming
implementation must implement at least one of them.

10This is not much more difficult than with the integers, though. Alternatively character
strings can be used.

11The revised standard [187] makes a distinction between an extended format, which extends
a basic format with a wider precision and range, and is language defined or implementation
defined, and an extendable precision format, whose precision and range are defined under pro-
gram control.
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Name binary16 binary32 binary64 binary128
(basic) (basic) (basic)

p 11 24 53 113
emax +15 +127 +1023 +16383
emin −14 −126 −1022 −16382

Table 3.13: Main parameters of the binary interchange formats of size up to 128 bits
specified by the 754-2008 standard [187].

Name decimal32 decimal64 decimal128
(basic) (basic)

p 7 16 34
emax +96 +384 +6144
emin −95 −383 −6143

Table 3.14: Main parameters of the decimal interchange formats of size up to 128 bits
specified by the 754-2008 standard [187].

The main parameters of the interchange formats of size up to 128 bits are
given in Tables 3.13 and 3.14.

3.4.2 Binary interchange format encodings

The binary interchange formats are very much like the formats of the IEEE
754-1985 standard. The floating-point numbers are encoded using a 1-bit sign,
a WE-bit exponent field, and a (p−1)-bit field for the trailing significand. This
is illustrated in Figure 3.1.

1 bit

WE bits p− 1 bits

TES

MSB LSB

Figure 3.1: Binary interchange floating-point formats [187] ( c©IEEE, 2008, with
permission).

Define E as the integer whose binary representation consists of the bits
of the exponent field, T as the integer whose representation consists of the
bits of the trailing significand field, and S as the sign bit. The binary encoding
(S, E, T ), similar to that of IEEE 754-1985 (summarized in Table 3.4), should
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be interpreted as follows [187]:

• if E = 2WE − 1 and T 6= 0, then a NaN, either quiet (qNaN) or sig-
naling (sNaN), is represented. As in IEEE 754-1985, a quiet NaN is the
default result of an invalid operation, and a signaling NaN will signal
the invalid operation exception whenever it appears as an operand;

• if E = 2WE − 1 and T = 0, then (−1)S × (+∞) is represented;

• if 1 ≤ E ≤ 2WE − 2, then the (normal) floating-point number being
represented is

(−1)S × 2E−b ×
(
1 + T · 21−p

)
,

where the bias b = emax = 2WE−1 − 1 is equal to 15, 127, 1023,
and 16383 in the binary16, binary32, binary64, and binary128 formats,
respectively;

• if E = 0 and T 6= 0, then the (subnormal) number being represented is

(−1)S × 2emin ×
(
0 + T · 21−p

)
;

• if E = 0 and T = 0, then the number being represented is the signed
zero (−1)S × (+0).

The sizes of the various fields are given in Table 3.15.

format binary16 binary32 binary64 binary128
storage width 16 32 64 128
p− 1, trailing
significand width 10 23 52 112

WE , exponent field width 5 8 11 15
b, bias 15 127 1023 16383

Table 3.15: Width (in bits) of the various fields in the encodings of the binary inter-
change formats of size up to 128 bits [187].

The binary32 and binary64 formats correspond to the single- and
double-precision formats of the IEEE 754-1985 standard: the encodings are
exactly the same.

3.4.3 Decimal interchange format encodings

The decimal format encodings are more complex than the binary ones, for
several reasons.

• Two encoding systems are specified, called the decimal and binary encod-
ings: the members of the revision committee could not agree on a single
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encoding system. The reason for that is that the binary encoding makes
a software implementation of decimal arithmetic easier, whereas the dec-
imal encoding is more suited for a hardware implementation. And yet,
despite this problem, one must understand that the set of representable
floating-point numbers is the same for both encoding systems, so that
this additional complexity will be transparent for most users. Also, a
conforming implementation must provide conversions between these
two encoding systems ([187, §5.5.2]).

• Contrary to the binary interchange formats, the sign, exponent, and
(trailing) significand fields are not fully separated: to preserve as much
accuracy as possible, some information on the significand is partly
encoded in what used to be the exponent field and is hence called the
combination field.

• In the decimal formats, the representations (M, e) are not normalized,
so that a decimal floating-point number may have multiple valid rep-
resentations. The set of the various representations of a same number is
called a cohort. As a consequence, we will have to explain which expo-
nent is preferred for the result of an arithmetic operation.

• Even if the representation itself (that is, values of the sign, exponent,
and significand) of a number x (or an infinite, or a NaN) and the type
of encoding (binary or decimal) are chosen, a same number (or infinite,
or NaN) can still be encoded by different bit strings. One of them will
be said to be canonical.

Roughly speaking, the difference between the decimal and binary
encodings originates from a choice in the encoding of the significand. The
integral significand is a non-negative integer less than or equal to 10p − 1.
One can encode it either in binary (which gives the binary encoding) or in
decimal (which gives the decimal encoding).

Concerning the decimal encoding, in the early days of computer arith-
metic, people would use the binary coded decimal (BCD) encoding, where
each decimal digit was encoded by four bits. That encoding was quite waste-
ful, since among the 16 possible values representable on four bits, only 10
were actually used. And yet, since 210 = 1024 is very close to 103 (and
larger), one can design a much denser encoding by encoding three consec-
utive decimal digits by a 10-bit declet[68]. Many possible ways of performing
that encoding are possible. The one chosen by the standard committee for the
decimal encoding of decimal numbers is given in Tables 3.19 (declet to dec-
imal) and 3.20 (decimal to declet). It was designed to facilitate conversions:
all these tables have a straightforward hardware implementation and can be
implemented in three gate levels [123]. Note that Table 3.19 has 1024 possi-
ble inputs and 1000 possible outputs (hence, there is some redundancy), and
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Table 3.20 has 1000 possible inputs and outputs. This implies that there are 24
“noncanonical” bit patterns,12 which are accepted in input values but cannot
result from an arithmetic operation. An encoding that contains a noncanoni-
cal bit pattern is called noncanonical.

Let us explain more precisely why there is no clear separation between
an exponent field and a significand field (as is the case in the binary formats).
Consider as an example the decimal64 format (see Table 3.14). In that format,
emax = 384 and emin = −383; therefore, there are 768 possible values of the
exponent. Storing all these values in binary in an exponent field would
require 10 bits. Since we can store 1024 possible values in a 10-bit field, that
would be wasteful. This explains why it was decided to put all the infor-
mation about the exponent plus some other information in a “combination
field,” where will be stored:

• “classification” information: Does the datum represent a finite number,
or ±∞, or a NaN?

• the exponent (if the datum represents a finite number);

• the leading part of the significand (if the datum represents a finite num-
ber); more precisely, the leading decimal digit (if the decimal encoding is
used) or 3 to 4 leading bits (if the binary encoding is used). The remain-
ing significand bits/digits are stored in the trailing significand field.

1 bit

w + 5 bits t = J × 10 bits

TGS

MSB LSB

Figure 3.2: Decimal interchange floating-point formats [187] ( c©IEEE, 2008, with
permission).

The widths of the various fields are given in Table 3.16. It is important
to notice that in this table the bias b is related to the quantum exponent (see
Section 2.1), which means that if e is the exponent of x, if q = e − p + 1 is its
quantum exponent, then the biased exponent E is

E = q + b = e− p + 1 + b.

The floating-point format illustrated in Figure 3.2, with a 1-bit sign, a
(w + 5)-bit combination field, and a t = (J × 10)-bit trailing significand field
must be interpreted as follows [187]:

12Those of the form 01x11x111x, 10x11x111x, or 11x11x111x.
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decimal32 decimal64 decimal128
storage width 32 64 128
t = 10J , trailing significand width 20 50 110
w + 5, combination field width 11 13 17
b = E − (e− p + 1), bias 101 398 6176

Table 3.16: Width (in bits) of the various fields in the encodings of the decimal inter-
change formats of size up to 128 bits [187].

• if the five most significant bits of G (numbered from the left, G0 to G4)
are all ones, then the datum being represented is a NaN. Moreover, if G5

is 1, then it is an sNaN, otherwise it is a qNaN. In a canonical encoding
of a NaN, the bits G6 to Gw+4 are all zeros;

• if the five most significant bits of G are 11110, then the value being rep-
resented is (−1)S×(+∞). Moreover, the canonical encodings of infinity
have bits G5 to Gw+4 as well as trailing significand T equal to 0;

• if the four most significant bits of G, i.e., G0 to G3, are not all ones, then
the value being represented is a finite number, equal to

(−1)S × 10E−b × C. (3.3)

Here, the value E − b is the quantum exponent (see Section 2.1), where
b, the exponent bias, is equal to 101, 398, and 6176 for the decimal32,
decimal64, and decimal128 formats, respectively. E and C are obtained
as follows.

1. If the decimal encoding is used for the significand, then the least
significant w bits of the biased exponent E are made up of the bits
G5 to Gw+4 of G, whereas the most significant two bits of E and
the most significant two digits of C are obtained as follows:

– if the five most significant bits G0G1G2G3G4 of G are of the
form 110xx or 1110x, then the leading significand digit C0 is
8 + G4 (which equals 8 or 9), and the leading biased exponent
bits are G2G3;

– if the five most significant bits of G are of the form 0xxxx or
10xxx, then the leading significand digit C0 is 4G2 + 2G3 + G4

(which is between 0 and 7), and the leading biased exponent
bits are G0G1.

The p− 1 = 3J decimal digits C1, . . . , Cp−1 of C are encoded by T ,
which contains J declets encoded in densely packed decimal (see
Tables 3.19 and 3.20). Note that if the five most significant bits of G
are 00000, 01000, or 10000, and T = 0, then the significand is 0 and
the represented number is (−1)S × (+0).
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Table 3.17 summarizes these rules.
2. If the binary encoding is used for the significand, then

– if G0G1 is 00, 01, or 10, then E is made up of the bits G0 to
Gw+1, and the binary encoding of the significand C is obtained
by prefixing the last 3 bits of G (i.e., Gw+2Gw+3Gw+4) to T ;

– if G0G1 is 11 and G2G3 is 00, 01 or 10, then E is made up of the
bits G2 to Gw+3, and the binary encoding of the significand C
is obtained by prefixing 100Gw+4 to T .

Remember that the maximum value of the integral significand is
10p − 1 = 103J+1 − 1. If the value of C computed as above is
larger than that maximum value, then the value used for C will
be zero [187], and the encoding will not be canonical. Table 3.18
summarizes these rules.

A decimal software implementation of IEEE 754-2008, based on the
binary encoding of the significand, is presented in [85, 87]. Interesting
information on decimal arithmetic can be found in [90]. A decimal floating-
point multiplier that uses the decimal encoding of the significand is presented
in [129].

Example 3 (Finding the encoding of a decimal number assuming decimal
encoding of the significands). Consider the number

x = 3.141592653589793× 100 = 3141592653589793× 10−15.

This number is exactly representable in the decimal64 format. Let us find its encod-
ing, assuming decimal encoding of the significands.

• First, the sign bit is 0;

• since the quantum exponent is −15, the biased exponent will be 383 (see
Table 3.16), whose 10-bit binary representation is 0101111111. One should
remember that the exponent is not directly stored in an exponent field, but
combined with the most significant digit of the significand in a combination
field G. Since the leading significand digit is 3, we are in the case

if the five most significant bits of G are of the form 0xxxx or 10xxx, then
the leading significand digit C0 is 4G2 + 2G3 + G4 (which is between 0
and 7), and the leading biased exponent bits are G0G1.

Hence,

– G0 and G1 are the leading biased exponent bits, namely 0 and 1;
– G2, G3, and G4 are the binary encoding of the first significand digit 3,

i.e., G2 = 0, and G3 = G4 = 1; and
– the bits G5 to G12 are the least significant bits of the biased exponent,

namely 01111111.
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Table 3.17: Decimal encoding of a decimal floating-point number (IEEE 754-
2008).
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Table 3.18: Binary encoding of a decimal floating-point number (IEEE 754-
2008).
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b6b7b8b3b4 d0 d1 d2

0 x x x x 4b0 + 2b1 + b2 4b3 + 2b4 + b5 4b7 + 2b8 + b9

1 0 0 x x 4b0 + 2b1 + b2 4b3 + 2b4 + b5 8 + b9

1 0 1 x x 4b0 + 2b1 + b2 8 + b5 4b3 + 2b4 + b9

1 1 0 x x 8 + b2 4b3 + 2b4 + b5 4b0 + 2b1 + b9

1 1 1 0 0 8 + b2 8 + b5 4b0 + 2b1 + b9

1 1 1 0 1 8 + b2 4b0 + 2b1 + b5 8 + b9

1 1 1 1 0 4b0 + 2b1 + b2 8 + b5 8 + b9

1 1 1 1 1 8 + b2 8 + b5 8 + b9

Table 3.19: Decoding the declet b0b1b2 · · · b9 of a densely packed decimal en-
coding to three decimal digits d0d1d2 [187] ( c©IEEE, 2008, with permission).

d0
0 d0

1 d0
2 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9

0 0 0 d1
0 d2

0 d3
0 d1

1 d2
1 d3

1 0 d1
2 d2

2 d3
2

0 0 1 d1
0 d2

0 d3
0 d1

1 d2
1 d3

1 1 0 0 d3
2

0 1 0 d1
0 d2

0 d3
0 d1

2 d2
2 d3

1 1 0 1 d3
2

0 1 1 d1
0 d2

0 d3
0 1 0 d3

1 1 1 1 d3
2

1 0 0 d1
2 d2

2 d3
0 d1

1 d2
1 d3

1 1 1 0 d3
2

1 0 1 d1
1 d2

1 d3
0 0 1 d3

1 1 1 1 d3
2

1 1 0 d1
2 d2

2 d3
0 0 0 d3

1 1 1 1 d3
2

1 1 1 0 0 d3
0 1 1 d3

1 1 1 1 d3
2

Table 3.20: Encoding the three consecutive decimal digits d0d1d2, each of them
being represented in binary by four bits (e.g., d0 is written in binary d0

0d
1
0d

2
0d

3
0),

into a 10-bit declet b0b1b2 · · · b9 of a densely packed decimal encoding [187]
( c©IEEE, 2008, with permission).
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• Now, the trailing significand field T is made up of the five declets of the densely
packed decimal encoding of the trailing significand 141592653589793:

– the 3-digit chain 141 is encoded by the declet 0011000001, according to
Table 3.20;

– 592 is encoded by the declet 1010111010;

– 653 is encoded by the declet 1101010011;

– 589 is encoded by the declet 1011001111;

– 793 is encoded by the declet 1110111011.

• Therefore, the encoding of x is

0︸︷︷︸
sign

0101101111111︸ ︷︷ ︸
combination field

. . .

00110000011010111010110101001110110011111110111011︸ ︷︷ ︸
trailing significand field

.

Example 4 (Finding an encoding of a decimal number assuming binary
encoding of the significands). Consider the number

x = 3.141592653589793× 100 = 3141592653589793× 10−15.

(It is the same number as in Example 3, but now we consider binary encoding,
in the decimal64 format.) The sign bit will be zero. Since 3141592653589793 is a
16-digit integer that does not end with a 0, the quantum exponent can only be −15;
therefore, the biased exponent E will be 398−15 = 383, whose binary representation
is 101111111. The binary representation of the integral significand of x is

10 11001010010100001100001010001001010110110100100001︸ ︷︷ ︸
t = 50 bits (trailing significand)

.

The length of that bit string is 52, which is less than t + 4 = 54, hence we are not in
the case

if G0G1 is 11 and G2G3 is 00, 01 or 10, then E is made up of the bits
G2 to Gw+3, and the binary encoding of the significand C is obtained by
prefixing 100Gw+4 to T ,

which means that we are in the case

if G0G1 is 00, 01, or 10, then E is made up of the bits G0 to Gw+1, and
the binary encoding of the significand C is obtained by prefixing the last
3 bits of G (i.e., Gw+2Gw+3Gw+4) to T .
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Therefore, G0G1 . . . G9 = 0101111111, G10G11G12 = 010 and

T = 11001010010100001100001010001001010110110100100001.

Example 5 (Finding the value of a decimal floating-point number from its
encoding, assuming decimal encoding of the significand). Consider the deci-
mal32 number x whose encoding is

1︸︷︷︸
sign

11101101101︸ ︷︷ ︸
combination field G

01101001101111000011︸ ︷︷ ︸
trailing significand field T

.

• Since the bit sign is 1, we have x ≤ 0;

• since the four most significant bits of G are not all ones, x is not an infinity or
a NaN;

• by looking at the four most significant bits of G, we deduce that we are in the
case

if the five most significant bits G0G1G2G3G4 of G are of the form 110xx
or 1110x, then the leading significand digit C0 is 8 + G4 (which equals 8
or 9), and the leading biased exponent bits are G2G3.

Therefore, the leading significand bit C0 is 8 + G4 = 9, and the leading biased
exponent bits are 10. The least significant bits of the exponent are 101101;
therefore, the biased exponent is 101011012 = 17310. Hence, the (unbiased)
quantum exponent of x is 173− 101 = 72;

• the trailing significand field T is made up of two declets, 0110100110 and
1111000011. According to Table 3.19,

– the first declet encodes the 3-digit chain 326;

– the second declet encodes 743.

• Therefore, x is equal to

−9326743× 1072 = −9.326743× 1078.

Example 6 (Finding the value of a decimal floating-point number from its
encoding, assuming binary encoding of the significand). Consider the deci-
mal32 number x whose encoding is

1︸︷︷︸
sign

11101101101︸ ︷︷ ︸
combination field G

01101001101111000011︸ ︷︷ ︸
trailing significand field T

.

(It is the same bit string as in Example 5, but now we consider binary encoding.)

• Since the bit sign is 1, we have x ≤ 0;
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• since the four most significant bits of G are not all ones, x is not an infinity or
a NaN;

• since G0G1 = 11 and G2G3 = 10, we are in the case

if G0G1 is 11 and G2G3 is 00, 01, or 10, then E is made up of the
bits G2 to Gw+3, and the binary encoding of the significand C is
obtained by prefixing 100Gw+4 to T .

Therefore, the biased exponent E is 101101102 = 18210, which means that the
quantum exponent of x is 182− 101 = 71, and the integral significand of x is

1001011010011011110000112 = 987027510.

• Therefore, x is equal to

−9870275× 1071 = −9.870275× 1077.

3.4.4 Larger formats

The IEEE 754-2008 standard also specifies larger interchange formats for
widths that are multiples of 32 bits of at least 128 bits. Their parameters
are given in Table 3.21, and examples are given in Tables 3.22 and 3.23. This
allows one to define “big” (yet, fixed) precisions. A format is fully defined
from its radix (2 or 10) and size: the various parameters (precision, emin, emax,
bias, etc.) are derived from them, using the formulas given in Table 3.21.
Hence, binary1024 or decimal512 will mean the same thing on all platforms.

3.4.5 Extended and extendable precisions

Beyond the interchange formats, the IEEE 754-2008 standard partially speci-
fies the parameters of possible extended precision and extendable precision for-
mats. These formats are optional, and their binary encoding is not specified.

• An extended precision format extends a basic format with a wider pre-
cision and range, and is either language defined or implementation
defined. The constraints on these wider precisions and ranges are given
by Table 3.24. The basic idea behind these formats is that they should
be used to carry out intermediate computations, in order to return a
final result in the associated basic formats. The wider precision makes
it possible to get a result that will generally be more accurate than that
obtained with the basic formats only, and the wider range will drasti-
cally limit the cases of “apparent under/overflow” (that is, cases where
there is an underflow or overflow in an intermediate result, whereas the
final value would have been representable).
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Parameter Binaryk format Decimalk format

(k is a multiple of 32)

k ≥ 128 ≥ 32

p k − b4 log2(k)e+ 13 9× k
32 − 2

t p− 1 (p− 1)× 10/3

w k − t− 1 k − t− 6

emax 2w−1 − 1 3× 2w−1

emin 1− emax 1− emax

b emax emax + p− 2

Table 3.21: Parameters of the interchange formats. bue is u rounded to the nearest
integer, t is the trailing significand width, w is the width of the exponent field for
the binary formats, and the width of the combination field minus 5 for the decimal
formats, and b is the exponent bias [187], ( c©IEEE, 2008, with permission).

Format p t w emin emax b

binary256 237 236 19 −262142 +262143 262143
binary1024 997 996 27 −67108862 +67108863 67108863

Table 3.22: Parameters of the binary256 and binary1024 interchange formats deduced
from Table 3.21. Variables p, t, w, emin, emax, and b are the precision, the trailing sig-
nificant field length, the exponent field length, the minimum exponent, the maximum
exponent, and the exponent bias, respectively.

• An extendable precision format is a format whose precision and range are
defined under user or program control. The standard says that lan-
guage standards supporting extendable precision shall allow users to
specify p and emax (or, possibly, p only with constraints on emax), and
define emin = 1− emax.

3.4.6 Attributes

The proposed revision of the standard defines attributes as parameters,
attached to a program block, that specify some of its numerical and excep-
tion semantics. The availability of rounding direction attributes is manda-
tory, whereas the availability of alternate exception-handling attributes, preferred
width attributes, value-changing optimization attributes, and reproducibility attri-
butes is recommended only. Language standards must provide for constant
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Format p t w + 5 emax b

decimal256 70 230 25 +1572864 1572932
decimal512 142 470 41 +103079215104 103079215244

Table 3.23: Parameters of the decimal256 and decimal512 interchange formats
deduced from Table 3.21. emin (not listed in the table) equals 1 − emax. Variables
p, t, w, emin, emax, and b are the precision, the combination field length, the exponent
field length, the minimum exponent, the maximum exponent, and the exponent bias,
respectively.

Extended formats associated with:
Parameter binary32 binary64 binary128 decimal64 decimal128
p ≥ 32 64 128 22 40
emax ≥ 1023 16383 65535 6144 24576
emin ≤ −1022 −16382 −65534 −6143 −24575

Table 3.24: Extended format parameters in the IEEE 754-2008 standard [187]
( c©IEEE, 2008, with permission).

specification of the attributes, and should also allow for dynamic-mode
specification of them.

Rounding direction attributes

• The directed rounding attributes correspond to the directed rounding
modes of IEEE 754-1985: the roundTowardPositive attribute corre-
sponds to the round-toward +∞ mode of IEEE 754-1985, the round-
TowardNegative attribute corresponds to the round-toward−∞mode,
and the roundTowardZero attribute corresponds to the round-toward-
zero mode.

• Concerning rounding to nearest, the situation is somewhat different.
There are two rounding direction attributes to nearest, which differ in the
way of handling the case when an exact result is halfway between two
consecutive floating-point numbers:

– roundTiesToEven attribute: if the two nearest floating-point num-
bers bracketing the exact result are equally near, the one whose
least significant significand digit is even is delivered. This
corresponds to the round-to-nearest-even mode of IEEE 754-1985 (in
binary) and IEEE 854-1987. The case where these floating-point
numbers both have an odd least significant significand digit (this
can occur in precision 1 only, possibly when converting a number
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such as 9.5 into a decimal string for instance) has been forgotten
in the standard, but for the next revision, it has been proposed13 to
deliver the one larger in magnitude;

– roundTiesToAway attribute: in the same case as above, the value
whose magnitude is larger is delivered.

For instance, in the decimal64 format (p = 16), if the exact result
of some arithmetic operation is 1.2345678901234565, then the returned
result should be 1.234567890123456 with the roundTiesToEven attribute, and
1.234567890123457 with the roundTiesToAway attribute.

The standard requires that an implementation (be it binary or decimal)
provide the roundTiesToEven and the three directed rounding attributes. A
decimal implementation must also provide the roundTiesToAway attribute
(this is not required for binary implementations).

Having roundTiesToEven as the default rounding direction attribute
is mandatory for binary implementations and recommended for decimal
implementations. Whereas roundTiesToEven has several advantages (see
[222]), roundTiesToAway is useful for some accounting calculations. This is
why it is required for radix-10 implementations only, the main use of radix 10
being financial calculations. For instance, the European Council Regulation
No. 1103/97 of 17 June 1997 on certain provisions relating to the introduc-
tion of the Euro sets out a number of rounding and conversion rules. Among
them,

If the application of the conversion rate gives a result which is exactly
half-way, the sum shall be rounded up.

Alternate exception-handling attributes

It is recommended (yet not required) that language standards define
means for programmers to possibly associate alternate exception-handling
attributes with a block. The alternate exception handlers will define lists of
exceptions (invalid operation, division by zero, overflow, underflow, inexact,
all exceptions) and specify what should be done when each of these excep-
tions is signaled. If no alternate exception-handling attribute is associated
with a block, the exceptions are treated as explained in Section 3.4.10 (default
exception handling).

Preferred width attributes

Consider an expression of the form

((a + b)× c + (d + e))× f,

13See http://speleotrove.com/misc/IEEE754-errata.html.
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where a, b, c, d, e, and f are floating-point numbers, represented in the same
radix, but possibly with different formats. Variables a, b, c, d, e, and f are
explicit, but during the evaluation of that expression, there will also be implicit
variables; for instance, the result r1 of the calculation of a + b, and the result
r2 of the calculation of r1 × c. When more than one format is available on
the considered system, an important question arises: In which format should
be represented these intermediate values? That point was not very clear in IEEE
754-1985. Many choices are possible for the “destination width” of an implicit
variable. For instance:

• one might prefer to always have these implicit variables in the largest
format provided in hardware. This choice will generally lead to more
accurate computations (although it is quite easy to build counterexam-
ples for which this is not the case);

• one might prefer to clearly specify a destination format. If that format is
available on all used platforms, this will increase the portability of the
program being written;

• one might require the implicit variables to be in the same format as
the operands (and, if the operands are of different formats, to be of the
widest format among the operands). This also will improve the porta-
bility of programs and will ease the use of smart algorithms such as
those presented in Chapters 4, 5, and 6.

The revised standard recommends (yet does not require) that the fol-
lowing preferredWidthNone and preferredWidthFormat attributes should be
defined by language standards.

preferredWidthNone attribute: When the user specifies a preferredWidth-
None attribute for a block, the destination width of an operation is the
maximum of the operand widths.

preferredWidthFormat attributes: When the user specifies a preferred-
WidthFormat attribute for a block, the destination width is the max-
imum of the width of the preferredWidthFormat and the operand
widths.

Value-changing optimization attributes

Some optimizations (e.g., generation of FMAs, use of distributive and
associative laws) can enhance performance in terms of speed, and yet
seriously hinder the portability and reproducibility of results. Therefore, it
makes sense to let the programmer decide whether to allow them or not. The
value-changing optimization attributes are used in this case. The standard
recommends that language standards should clearly define what is called
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the “literal meaning” of the source code of a program (that is, the order of the
operations and the destination formats of the operations). By default, the
implementations should preserve the literal meaning. Language standards
should define attributes for allowing or disallowing value-changing opti-
mizations such as:

• applying relations such as x · y + x · z = x · (y + z) (distributivity), or
x + (y + z) = (x + y) + z (associativity);

• using FMAs for replacing, e.g., an expression of the form a · b + c · d by
FMA(a, b, c · d);

• using larger formats for storing intermediate results.

Reproducibility attributes

The standard requires that conforming language standards should define
ways of expressing when reproducible results are required. To get repro-
ducible results, the programs must be translated into an unambiguous
sequence of reproducible operations in reproducible formats. As explained
in the standard [187], when the user requires reproducible results:

• the execution behavior must preserve what the standard calls the literal
meaning of the source code;14

• conversions from and to external character strings must not bound the
value of the maximum precision H (see Section 3.4.9) of these strings;

• when the reproducibility of some operation is not guaranteed, the user
must be warned;

• only default exception handling is allowed.

3.4.7 Operations specified by the standard

Preferred exponent for arithmetic operations in the decimal format

Let Q(x) be the quantum exponent of a floating-point number x. Since some
numbers in the decimal format have several possible representations (the set
of their representations is a cohort), the standard specifies for each operation
which exponent is preferred for representing the result of a calculation. The
rule to be followed is:

• if the result of an operation is inexact, the cohort member of smallest
exponent is used;

14This implies that the language standards must specify what that literal meaning is: order
of operations, destination formats of operations, etc.
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• if the result of an operation is exact, then if the result’s cohort includes a
member with the preferred exponent (see below), that very member is
returned; otherwise, the member with the exponent closest to the pre-
ferred exponent is returned.

The preferred quantum exponents for the most common operations are:

• x + y and x− y: min(Q(x), Q(y));

• x× y: Q(x) + Q(y);

• x/y: Q(x)−Q(y);

• FMA(x, y, z) (i.e., xy + z using an FMA): min(Q(x) + Q(y), Q(z));

•
√

x: bQ(x)/2c.

scaleB and logB

For designing fast software for the elementary functions, or for efficiently
scaling variables (for instance, to write robust code for computing functions
such as

√
x2 + y2), it is sometimes very useful to have functions x · βn and

blogβ |x|c, where β is the radix of the floating-point system, n is an integer,
and x is a floating-point number. This is the purpose of the functions scaleB
and logB:

• scaleB(x, n) is equal to x ·βn, correctly rounded15 (following the round-
ing direction attribute);

• when x is finite and nonzero, logB(x) equals blogβ |x|c. When the output
format of logB is a floating-point format, logB(NaN) is NaN, logB(±∞)
is +∞, and logB(±0) is −∞.

Operations with NaNs

We have seen in Sections 3.4.2 and 3.4.3 that in the binary interchange for-
mats, the p− 2 least significant bits of a NaN are not defined, and that in the
decimal interchange formats, the trailing significand bits of a NaN are not
defined. These bits can be used for encoding the payload of the NaN, i.e., some
information that can be transmitted through the arithmetic operation for
diagnosis purposes. To preserve that diagnosis information, it is required that
for an operation with quiet NaN inputs, other than minimum or maximum
operations, the returned result should be one of these input NaNs. Also, the
sign of a NaN is not interpreted.

15In most cases, x · βn is exactly representable so that there is no rounding at all, but requir-
ing correct rounding is the simplest way of defining what should be returned if the result is
outside the normal range.
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Miscellaneous

The standard defines many very useful operations, see [187]. Examples are
nextUp(x) (smallest floating-point number in the format of x that is greater
than x), maxNum(x, y) (maximum of x and y), and class(x) (tells if x is a
signaling NaN, a quiet NaN, −∞, a negative normal number, a negative
subnormal number, −0, +0, a positive subnormal number, a positive normal
number, or +∞), etc.

3.4.8 Comparisons

Floating-point data represented in different formats specified by the standard
must be comparable if these formats have the same radix: the standard does not
require that comparing a decimal and a binary number should be possible
without a preliminary conversion.16 Exactly as in IEEE 754-1985, four rela-
tions are possible: less than, equal, greater than, and unordered, and a compari-
son is delivered either as one of these four relations, or as a Boolean response
to some predicate that gives the desired comparison.

3.4.9 Conversions

Concerning input and output conversions (that is, conversions between an
external decimal or hexadecimal character sequence and an internal binary or
decimal format), the new standard has requirements that are much stronger
than those of IEEE 754-1985. They are described as follows.

1. Conversions between an external decimal character sequence and a
supported decimal format: Input and output conversions are correctly
rounded (according to the applicable rounding direction).

2. Conversions between an external hexadecimal character sequence and
a supported binary format: Input and output conversions are also cor-
rectly rounded (according to the applicable rounding direction), but
such conversions are optional. They have been specified to allow any
binary number to be represented exactly by a finite character sequence.

3. Conversions between an external decimal character sequence and a
supported binary format: first, for each supported binary format,
define a value p10 as the minimum number of decimal digits in the deci-
mal external character sequence that allows for an error-free write-read

16Such comparisons appear extremely rarely in programs designed by sensible beings, and
would be very tricky to implement without preliminary conversion. Also, if we really need
such a comparison, we do not lose much information by performing a preliminary conversion.
Assume that the binary and decimal numbers to be compared are x2 (in format F2) and y10 (in
format F10). Define y2 as y10 correctly rounded to format F2. Then x2 ≥ y10 implies x2 ≥ y2,
and x2 ≤ y10 implies x2 ≤ y2.
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format binary32 binary64 binary128
p10 9 17 36

Table 3.25: Minimum number of decimal digits in the decimal external charac-
ter sequence that allows for an error-free write-read cycle, for the various basic
binary formats of the standard. See Section 2.7 page 40 for further explanation.

cycle, as explained in Section 2.7. Table 3.25, which gives the value of
p10 from the various basic binary formats of the standard, is directly
derived from Table 2.3 (page 44).

Then, define a value H so that H is preferably unbounded, and in any
case, H is larger than or equal to 3 plus the largest value of p10 for all
supported binary formats.

The conversions must be correctly rounded to and from external char-
acter sequences with any number of significant digits between 1 and
H (which implies that these conversions must always be correctly
rounded if H is unbounded).

For output conversions, if the external decimal format has more than
H significant digits, then the binary value is correctly rounded to H dec-
imal digits and trailing zeros are appended to fill the output format.
For input conversions, if the external decimal format has more than H
significant digits, then the internal binary number is obtained by first
correctly rounding the value to H significant digits (according to the
applicable rounding direction), then by correctly rounding the resulting
decimal value to the target binary format (with the applicable rounding
direction). In the directed rounding directions, these rules allow inter-
vals to be respected.

More details are given in the standard [187].

3.4.10 Default exception handling

The revised standard supports the same five exceptions listed in Sections 2.3
and 3.1.5, with minor differences for the underflow.

Invalid operation

This exception is signaled each time there is no satisfactory way of defining
the result of some operation. The default result of such an operation is a quiet
NaN, and it is recommended that its payload contain some diagnostic infor-
mation. The operations that lead to an invalid operation exception are:

• an operation on a signaling NaN (except for some conversions);
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• a multiplication of the form 0×∞ or∞× 0;

• an FMA of the form FMA(0,∞, x) (i.e., 0 × ∞ + x) or FMA(∞, 0, x),
unless x is a quiet NaN (in that last case, whether the invalid operation
exception is signaled is implementation defined);

• additions/subtractions of the form (−∞) + (+∞) or (+∞)− (+∞);

• FMAs that lead to the subtraction of infinities of the same sign (e.g.,
FMA(+∞,−1,+∞);

• divisions of the form 0/0 or∞/∞;

• remainder(x, 0), where x is not a NaN;

• remainder(∞, y), where y is not a NaN;

• conversion of a floating-point number x to an integer, where x is ±∞,
or a NaN, or when the result would lie outside the range of the chosen
integer format;

• comparison using unordered-signaling predicates (called in the
standard compareSignalingEqual, compareSignalingGreater, compare-
SignalingGreaterEqual, compareSignalingLess, compareSignaling-
LessEqual, compareSignalingNotEqual, compareSignalingNotGreater,
compareSignalingLessUnordered, compareSignalingNotLess, and
compareSignalingGreaterUnordered), when the operands are un-
ordered;

• logB(x) where x is NaN or∞;

• logB(0) when the output format of logB is an integer format (when it is
a floating-point format, the value to be returned is −∞).

Division by zero

The words “division by zero” are misleading, since this exception is sig-
naled whenever an exact infinite result is obtained from an operation on finite
operands. The most frequent case, of course, is the case of a division by zero,
but this can also appear, e.g., when computing the logarithm of zero or the
arctanh of 1. An important case is logB(0) when the output format of logB is
a floating-point format.

Overflow

Let us call an intermediate result what would have been the rounded result
if the exponent range were unbounded. The overflow exception is signaled
when the absolute value of the intermediate result is strictly larger than the
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largest finite number Ω = (β − β1−p) · βemax . When an overflow occurs, the
returned result depends on the rounding direction attribute:

• it will be ±∞ with the two “round-to-nearest” attributes, namely
roundTiesToEven and roundTiesToAway, with the sign of the interme-
diate result;

• it will be ±Ω with the roundTowardZero attribute, with the sign of the
intermediate result;

• it will be +Ω for a positive intermediate result and −∞ for a negative
one with the roundTowardNegative attribute;

• it will be −Ω for a negative intermediate result and +∞ for a positive
one with the roundTowardPositive attribute.

Furthermore, the overflow flag is raised and the inexact exception is signaled.
It is important to understand three consequences of these rules:

• with the two “round-to-nearest” attributes, if the absolute value of the
exact result of an operation is greater than or equal to

βemax ·
(

β − 1
2
β1−p

)
= Ω +

1
2

ulp(Ω),

then an infinite result is returned, which is not what one could expect
from a naive interpretation of the words “round to nearest”;

• “overflow” is not equivalent to “infinite result returned”;

• with the roundTowardZero attribute, “overflow” is not equivalent to
“±Ω is returned”: if the absolute value of the exact result of some oper-
ation is larger than or equal to Ω, and strictly less than βemax , then ±Ω
is returned, and yet there is no overflow.

Underflow

The underflow exception is signaled when a nonzero result whose absolute
value is strictly less than βemin is computed.

• For binary formats, unfortunately, there remains some ambiguity in the
revised standard17 (the same as in IEEE 754-1985). See the Note on
underflow in Section 2.1, page 18, for more explanation. The underflow
can be signaled either before rounding, that is, when the absolute value of
the exact result is nonzero and strictly less than 2emin , or after rounding,

17This unfortunate choice probably results from the desire to keep existing implementations
conforming to the standard.
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that is, when the absolute value of a nonzero result computed as if the
exponent range were unbounded is strictly less than 2emin . In rare cases,
this can make a difference, for instance, when computing

FMA
(
−βemin , β−p−1, βemin

)
in rounding to nearest, an underflow will be signaled if this is done
before rounding, but not if it is done after rounding.

• For decimal formats, there is no ambiguity and the underflow result is
signaled before rounding, i.e., when the absolute value of the exact result
is nonzero and strictly less than 10emin .

The result is always correctly rounded: the choice (in the binary case) of how
the underflow is detected (that is, before or after rounding) has no influence
on the delivered result.

In case of underflow, if the result is inexact, then the underflow flag
is raised and the inexact exception is signaled. If the result is exact, then
the underflow flag is not raised. This might sound strange, but this was
a clever choice of the floating-point working group: the major use of the
underflow flag is for warning that the result of some operation might not
be very accurate—in terms of relative error. Thus, raising it when the opera-
tion is exact would be a needless warning. This should not be thought of as
an extremely rare case: indeed, Theorem 3 page 124 shows that with any of the
two round-to-nearest rounding direction attributes, whenever an addition or
subtraction underflows, it is performed exactly.

Inexact

If the result of an operation differs from the exact result, then the inexact
exception is signaled. The correctly rounded result is returned.

3.4.11 Recommended transcendental functions

The revised standard recommends (yet does not require) that the following
functions should be correctly rounded: ex, ex−1, 2x, 2x−1, 10x, 10x−1, ln(x),
log2(x), log10(x), ln(1+x), log2(1+x), log10(1+x),

√
x2 + y2, 1/

√
x, (1+x)n,

xn, x1/n (n is an integer), sin(πx), cos(πx), arctan(x)/π, arctan(y/x)/π, sin(x),
cos(x), tan(x), arcsin(x), arccos(x), arctan(x), arctan(y/x), sinh(x), cosh(x),
tanh(x), sinh−1(x), cosh−1(x), tanh−1(x).

See Chapter 12 for an introduction to the various issues linked with the
correct rounding of transcendental functions.
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3.5 Floating-Point Hardware in Current Processors

Virtually all recent computers are able to support the IEEE 754-1985 standard
efficiently through a combination of hardware and software.

3.5.1 The common hardware denominator

Current processors of desktop computers offer hardware double-precision
(or binary64) operators for floating-point addition, subtraction, and multipli-
cation and at least hardware assistance for division and square root. Peak
performance is typically between 2 and 4 double-precision floating-point
operations per clock cycle for +, −, and ×, with much slower division
and square root [310]. However, most processors go beyond this common
denominator and offer larger precision and/or faster operators. The follow-
ing sections detail these extensions.

3.5.2 Fused multiply-add

The IBM Power/PowerPC, HP/Intel IA-64, and HAL/Fujitsu SPARC64 VI
instruction sets define a fused multiply-add (FMA) instruction, which performs
the operation a× b + c with only one rounding error with respect to the exact
result (see Section 2.8 page 51).18 This is actually a family of instructions that
includes useful variations such as fused multiply-subtract.

These operations are compatible with the FMA defined by IEEE 754-
2008. As far as this operator is concerned, IEEE 754-2008 standardized already
existing practice.

The processors implementing these instruction sets (the IBM POWER
family, PowerPC processors from various vendors, the HP/Intel Itanium
family for IA-64) provide hardware FMA operators, with latencies compa-
rable to classical + and × operators. For illustration, the FMA latency is 4
cycles in Itanium2, 7 cycles on Power6, and both processors are capable of
launching 2 FMA operations at each cycle.

There should soon be FMA hardware in the processors implementing
the IA-32 instruction set: they are defined in the SSE5 extensions announced
by AMD and in the AVX extensions announced by Intel.

3.5.3 Extended precision

The legacy x87 instructions of the IA-32 instruction set can operate on a
double-extended precision format with 64 bits of significand and 15 bits of

18Warning! The instructions called FMADDs and so on from SPARC64 V, which share the same
name and the same encoding with SPARC64 VI, are not real FMA instructions as they perform
two roundings. [140, page 56]
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exponent. The corresponding floating-point operators can be instructed to
round to single, to double, or to double-extended.

The IA-64 instruction set also defines several double-extended formats,
including one 80-bit format compatible with IA-32 and one 82-bit format
with a 64-bit significand and a 17-bit exponent. The two additional exponent
bits are designed to avoid intermediate overflows in certain computations on
80-bit operands.

As we write this book, no processors have full hardware support for the
binary128 format. Some instruction sets (SPARC, POWER) have instructions
operating on binary128 data, but on current hardware these instructions trap
to software emulation.

3.5.4 Rounding and precision control

In most processor instruction sets, including IA-32 (whose floating-point
specification was designed at the same time as the IEEE 754-1985 standard),
both the rounding precision (single, double, double-extended if available)
and the rounding direction attributes are specified via a global status/con-
trol register (called FPSR, Floating-Point Status Register on IA-32). This global
register defines the behavior of all the floating-point instructions.

Changing the value of this control word, however, is extremely costly
on recent processors. First, it requires at least one instruction. More impor-
tantly, it has the effect of flushing the floating-point pipeline: before launching
any new floating-point instruction with the new value of the control register,
all current floating-point instructions have to terminate with the old value.
Unfortunately, some applications, such as interval arithmetic [284], need
frequent rounding direction changes. This performance issue could not be
anticipated in 1985, when processor architectures were not pipelined yet. It
also affects most processor instruction sets designed in the 1980s and 1990s.

More recent instruction sets (most notably HP/Intel IA-64 [88] and Sun
Microsystems’ VIS extension to the SPARC instructions set [397]) permit
changing the rounding direction attribute on a per-instruction basis with-
out any performance penalty. Technically, the rounding direction attribute is
defined in the instruction word, not in a global control register. Unfortunately,
the rounding direction specification in the IEEE 754-1985 standard (and hence
in the language standards that were later designed to implement it) reflects
the notion of a global status word. This means in practice that per-instruction
rounding specification cannot be accessed from current high-level languages
in a standard, portable way. The new IEEE 754-2008 standard corrects this,
but it will take some time to percolate in programming languages. This issue
will be addressed in more detail in Chapter 7, Languages and Compilers.

Note that both with VIS and IA-64, it is still possible to specify that the
rounding direction is taken from a global status word.
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3.5.5 SIMD instructions

Most recent instruction sets also offer single instruction, multiple data (SIMD)
instructions. One such instruction applies the same operation to all the ele-
ments of a vector of data kept in a wide register (64 to 256 bits currently).

Such a wide register can be considered as a vector of 8-bit, 16-bit,
or 32-bit integers. SIMD instructions operating on such integer vectors are
often referred to as multimedia instructions, because typical applications
include image processing (where the color of one pixel may be defined by
three 8-bit integers giving the intensity of the red, green, and blue compo-
nents), and sound processing (where sound data is commonly represented
by 16-bit sound samples).

A wide register may also be considered as a vector of 16-bit, 32-bit, or
64-bit floating-point numbers (the 16-bit formats are used for graphics and
gaming, so that the binary16 format in IEEE 754-2008 actually standardized
existing practice). Examples include AltiVec for the POWER/PowerPC fam-
ily, and for the IA-32 instruction set, 3DNow! (64-bit vector), then SSE to SSE5
(128-bit vector), then AVX (256-bit vector). Each of these extensions comes
with too many new instructions to be detailed here (not only arithmetic oper-
ations but also data movement inside a vector, and complex operations such
as scalar products or sums of absolute values of differences). In addition, in
the IA-32 family, some extensions have been announced by AMD and some
by Intel, and both vendors eventually implement a common subset.

As we write this book, and as far as floating-point instructions are con-
cerned, this common subset on 64-bit IA-32 processors is the SSE2 extension.
It defines sixteen 128-bit registers (called XMM0 to XMM15), each of which
can be considered either as a vector of four binary32 or as a vector of two
binary64 numbers. SSE2 instructions are fully IEEE 754-1985 compliant.

The most recently announced extensions (SSE5 on the AMD side and
AVX on the Intel side) include FMA instructions. As we write this book, no
processors implement these extensions yet.

3.5.6 Floating-point on x86 processors: SSE2 versus x87

The Intel 8087 co-processor was a remarkable achievement when it was
first produced. Twenty years later, however, the floating-point instructions it
defined are showing their age.

• There are only 8 floating-point registers, and their organization as a
stack leads to data movement inefficiencies.

• The risk of double rounding has been exposed in Section 3.3.1.

• The dynamic rounding precision can introduce bugs in modern soft-
ware, which is almost always made up of several components (dy-
namic libraries, plug-ins). For instance, the following bug in Mozilla’s
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Javascript engine was discovered in 2006: if the rounding precision was
reduced to single precision by some plug-in, then the js_dtoa function
(double-to-string conversion) could overwrite memory, making the ap-
plication behave erratically, e.g., crash. The cause was the loop exit con-
dition being always false due to an unexpected floating-point error.19

• Another subtle issue has not been mentioned yet. The x87 FPSR reg-
ister defines the rounding precision (the significand size) but not the
exponent size, which is always 15 bits. Even when instructed to round
to single precision, the floating-point unit (FPU) will signal overflows
or underflows only for numbers out of the double-extended precision
exponent range. True single-precision or double-precision over-
flow/underflow detection is performed only when writing the content
of a floating-point register to memory. This two-step overflow/under-
flow detection can lead to subtle software problems, just like double
rounding. It may be avoided only by writing all the results to mem-
ory, unless the compiler can prove in advance that there will be no
overflows.

The SSE2 instructions were designed more recently. They may result in
computations less accurate than with the legacy x87 instructions, as they do
not offer extended precision. However, in addition to the obvious perfor-
mance advantage, they are fully IEEE 754-1985 compliant, and they permit
better reproducibility (thanks to the static rounding precision) and portabil-
ity with other platforms. Extended precision is still possible since the legacy
x87 unit is still available. Moreover x87-only meant that one had the almost
exclusive choice between portability (the processor being configured in dou-
ble precision) and (in general) better accuracy, with the risk of breaking some
software components when changing the x87 rounding precision.

With both SSE2 and x87 available, SSE2 can be used for double-precision
computations and the x87 can be configured in extended precision in order
to have higher precision for platform-specific applications. This is the choice
made by GCC and GNU/Linux for the x86_64 architecture, as SSE2 is always
available on this architecture.

3.5.7 Decimal arithmetic

As we write this book, only high-end processors from IBM include hard-
ware decimal support. For illustration, each POWER6 processor core includes
one decimal FPU capable of decimal128 computations, in addition to its two
binary64 FMA units and its SIMD VMX unit capable of 4 parallel binary32
operations [123]. However, decimal operations are much slower than binary
ones, with variable latencies of several tens of cycles (see Table 3.26) com-
pared to the fixed latency of 7 cycles for the binary64 FMA.

19CVE-2006-6499 / https://bugzilla.mozilla.org/show_bug.cgi?id=358569
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Cycles decimal64 operands decimal128 operands
addition/subtraction 9 to 17 11 to 19

multiplication 19 + N 21 + 2N

division 82 154

Table 3.26: Execution times of decimal operations on POWER6, from [123]. N is the
number of digits in the first operand, excluding leading zeros.

3.6 Floating-Point Hardware in Recent Graphics
Processing Units

Graphics processing units (GPUs), initially highly specialized integer only
processors, have evolved in recent years towards more and more pro-
grammability and increasingly powerful arithmetic capabilities.

Binary floating-point units appeared in 2002-2003 in the GPUs of the two
main vendors, ATI (with a 24-bit format in the R300 series) and Nvidia (with
a 32-bit format in the NV30 series). In both implementations, addition and
multiplication were incorrectly rounded: according to a study by Collange et
al. [79], instead of rounding the exact sum or product, these implementations
typically rounded a p + 2-bit result to the output precision of p bits.

Still, these units fueled interest in GPUs for general-purpose computing
(GPGPU), as the theoretical floating-point performance of a GPU is up to two
orders of magnitude that of a processor (at least in binary32). In parallel, pro-
grammability was also improved, notably to follow the evolution to version
10 of Microsoft’s DirectX application programming interface. Specific devel-
opment environments also appeared: first Nvidia’s C-based CUDA, soon fol-
lowed by the Khronos Group’s OpenCL.

Between 2007 and 2009, both ATI (now AMD) and Nvidia introduced
new GPU architectures with, among other things, improved floating-point
support. Addition and multiplication are now correctly rounded, the preci-
sions supported are binary32 and binary64, and the Nvidia GT200 architec-
ture even offers correctly rounded binary64 FMAs—which are also supported
by the OpenCL programming environment—with subnormal support and
the four IEEE 754-1985 rounding modes. As we write this book, the latest
AMD GPUs (RV770) are a bit behind, with no subnormal support, no FMA,
and round to nearest only. It is worth mentioning that GPUs also include
hardware acceleration of some elementary functions [311].

Full IEEE-754 compliance in hardware is still not there, though. Some
issues are inherited from older architectures: for instance, on the GT200,
binary32 support is less compliant than binary64, lacking subnormal sup-
port, the four rounding modes, and hardware FMA. Division and square
root are still incorrectly rounded in some cases. Flags and exceptions are not
supported.
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However, as we write this book, it is clear that the trend in GPUs is no
longer to sacrifice IEEE 754 compliance to performance. With the availability
of IEEE 754-2008, this trend toward better quality floating-point in GPUs is
expected to continue.

3.7 Relations with Programming Languages

The IEEE 754-1985 standard was targeted mainly to processor vendors and
did not focus on programming languages. In particular, it did not define
bindings (i.e., how the IEEE 754 standard is to be implemented in the lan-
guage), such as the mapping between native types of the language and
the formats of IEEE 754 and the mapping between operators/functions of
the language and the operations defined by IEEE 754. The IEEE 754-1985
standard did not even deal with what a language should specify or what a
compiler is allowed to do. This has led to many misinterpretations, with users
often thinking that the processor will do exactly what they have written in the
programming language. Chapter 7 will survey in more detail floating-point
issues in mainstream programming languages.

The IEEE 754-2008 standard clearly improves the situation, mainly in
its clauses 10 (Expression evaluation) and 11 (Reproducible floating-point results).
For instance, it deals with the double-rounding problem (observed on x87,
described in Section 3.5.6): “Language standards should disallow, or provide
warnings for, mixed-format operations that would cause implicit conversion
that might change operand values.”

3.7.1 The Language Independent Arithmetic (LIA) standard

Before these shortcomings were tackled in the revision of the IEEE 754 stan-
dard, a new series of standards, Language Independent Arithmetic, had been
developed to fill this gap. This series focuses on the properties of the arith-
metic together with the language and its implementation, and does not define
formats. It consists of three parts.

• LIA-1 (ISO/IEC 10967-1:1994) [189] defines properties of integer and
floating-point arithmetic. It does not go beyond the four arithmetic
operations (+, −, ×, and /). However the floating-point system can be
rather general: the radix is any integer larger than or equal to 2 (but it
should be even), the precision is any integer larger than or equal to 2,
and the minimum and maximum exponents must satisfy some loose
bounds. A parameter iec_559 can be set to true if the arithmetic con-
forms to the IEEE 754-1985 standard (a.k.a. IEC 559).
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• LIA-2 (ISO/IEC 10967-2:2001) [191] adds support for elementary
floating-point functions. It still has a parameter for IEEE 754-1985 sup-
port. For instance, LIA-2 lets ties in the rounding-to-nearest mode be
implementation defined (it just requires them to be sign symmetric),
but if the parameter is true, then ties must be rounded to even.

• LIA-3 (ISO/IEC 10967-3:2006) [193] adds support for complex integer
and floating-point arithmetic, and complex elementary functions.

Each part provides examples of bindings for various programming lan-
guages (e.g., Ada, Basic, C, Common Lisp, FORTRAN, Modula-2, Pascal,
PL/I). But it is up to languages to define the bindings, such as what the ISO
C99 standard does in its LIA-1 compatibility annex.

3.7.2 Programming languages

The requirements of the IEEE 754 and LIA standards do not depend on partic-
ular languages. Languages can specify how they conform to some standard
by providing bindings, which can depend on the implementation.

For instance, it has commonly been believed that the double type
of the ISO C language must correspond everywhere to the double-
precision/binary64 binary format of the IEEE 754 standard, but this prop-
erty is implementation defined, and behaving differently is not a bug. Indeed
the destination (as defined by the IEEE 754 standard) does not necessarily
correspond to the C floating-point type associated with the value, and a C
implementation must provide a macro FLT_EVAL_METHOD, which determines
how operations and constants are evaluated. This is the reason why both im-
plementations mentioned in Section 3.5.6 are valid (assuming the value of
FLT_EVAL_METHOD is correct).

The consequences are that one can get different results on different
platforms. But even when dealing with a single platform, one can also get
unintuitive results, as shown in Goldberg’s article with the addendum Dif-
ferences Among IEEE 754 Implementations [148] or in Chapter 7. More details
will be given in this chapter. But the bottom line is that the reader should
be aware that a language will not necessarily follow standards as expected
a priori. Implementing the algorithms given in this book may require special
care in some environments (languages, compilers, platforms, and so on), at
least until the reproducibility attributes from the IEEE 754-2008 standard (see
Section 3.4.6) are supported.

3.8 Checking the Environment

Checking a floating-point environment (for instance, to make sure that some
compiler optimization option is compliant with one of the IEEE standards)
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may be important for critical applications. Circuit manufacturers
increasingly use formal proofs to make sure that their arithmetic algo-
rithms are correct [283, 355, 356, 357, 169, 170]. Also, when the algorithms
used by some environment are known, it is possible to design test vectors
that allow one to explore every possible branching. Typical examples are
methods for making sure that every element of the table of an SRT division or
square root algorithm is checked. Checking the environment is more difficult
for the end user, who generally does not have any access to the algorithms
that have been used. When we check some environment as a “black box”
(that is, without knowing the code, or the algorithms used in the circuits)
there is no way of being absolutely sure that the environment will always
follow the standards. Just imagine a buggy multiplier that always returns the
right result but for one couple of input operands. The only way of detecting
that would be to check all possible inputs, which, in a pinch, is possible in the
binary32 format, but certainly not in the binary64 or binary128 formats. This
is not pure speculation: in single precision, the divider of the first version
of the Pentium circuit would produce a wrong quotient with probability
around 2.5× 10−11 [290, 122], assuming random inputs.

Since the 1980s, various programs have been designed for determining
the basic parameters of a floating-point environment and assessing its quality.

3.8.1 MACHAR

MACHAR was a program, written in FORTRAN by W. Cody [78], whose
purpose was to determine the main parameters of a floating-point format
(radix, “machine epsilon,” etc.). This was done using algorithms similar to
the one we give in Section 4.1.1 for finding the radix β of the system. Now, it
is interesting for historical purposes only.

In their book on elementary functions, Cody and Waite [75] also gave
methods for estimating the quality of an elementary function library. Their
methods were based on mathematical identities such as

sin(3x) = 3 sin(x)− 4 sin3(x). (3.4)

These methods were useful at the time they were published. And yet,
they can no longer be used with current libraries. Recent libraries are either
correctly rounded or have a maximal error close to 1

2 ulp. Hence, they are far
more accurate than the methods that are supposed to check them.

3.8.2 Paranoia

Paranoia [215] is a program originally written in Basic by W. Kahan, and
translated to Pascal by B.A. Wichmann and to C by T. Sumner and D. Gay
in the 1980s, to check the behavior of floating-point systems. It finds the main
properties of a floating-point system (such as its precision and its exponent
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range), and checks if underflow is gradual, if the arithmetic operations are
properly implemented, etc. It can be obtained at http://www.netlib.org/

paranoia/. Below is an example of Paranoia’s output. The program was run
on the following environment:

• hardware: Intel 32 bits Xeon;

• operating system: Debian/Linux Etch;

• compiler: GCC 4.1.2 20061115 (as per "gcc -v");

• compilation command line: gcc -o paranoia paranoia.c -lm.

The produced code uses the 387 (i.e., double-extended precision) registers
(see below). Notice that no optimization switch was set (default is -O0).
Using more aggressive compilation options (-O1, -O2, etc.) only leads to more
failures, defects, and flaws. Since Paranoia is rather verbose, we suppressed
some parts of the output.20 We interleave comments in Paranoia’s output.

(...)

Running this program should reveal these characteristics:
Radix = 1, 2, 4, 8, 10, 16, 100, 256 ...
Precision = number of significant digits carried.
U2 = Radix/Radix^Precision = One Ulp

(OneUlpnit in the Last Place) of 1.000xxx .
U1 = 1/Radix^Precision = One Ulp of numbers a little
less than 1.0 .
Adequacy of guard digits for Mult., Div. and Subt.
Whether arithmetic is chopped, correctly rounded, or
something else

for Mult., Div., Add/Subt. and Sqrt.
Whether a Sticky Bit used correctly for rounding.
UnderflowThreshold = an underflow threshold.
E0 and PseudoZero tell whether underflow is abrupt,
gradual, or fuzzy.
V = an overflow threshold, roughly.
V0 tells, roughly, whether Infinity is represented.
Comparisons are checked for consistency with subtraction

and for contamination with pseudo-zeros.
Sqrt is tested. Y^X is not tested.

(...)

The program attempts to discriminate among
FLAWs, like lack of a sticky bit,
Serious DEFECTs, like lack of a guard digit, and
FAILUREs, like 2+2 == 5 .

20They are indicated by “(...)”.
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Failures may confound subsequent diagnoses.

(...)

BASIC version of this program (C) 1983 by Prof. W. M. Kahan;
see source comments for more history.

(...)

Program is now RUNNING tests on small integers:
-1, 0, 1/2, 1, 2, 3, 4, 5, 9, 27, 32 & 240 are O.K.

Searching for Radix and Precision.
Radix = 2.000000 .
Closest relative separation found is U1 = 1.1102230e-16 .

(...)

The number of significant digits of the Radix is 53.000000 .

Paranoia detects that the arithmetic used has radix 2, precision 53 (it is the
IEEE 754-1985 double-precision format).

Some subexpressions appear to be calculated extra
precisely with about 11 extra B-digits, i.e.
roughly 3.31133 extra significant decimals.
That feature is not tested further by this program.

Interestingly enough, Paranoia detects that subexpressions are evaluated
with 11 extra binary digits. This corresponds to the 64-bit double-extended
precision significands of the 387 registers. This message disappears when
the -march=pentium4 -mfpmath=sse switches are used on the gcc command
line as, instead, they trigger the SSE2 64-bit floating-point registers with 53-
bit significands. More information on compilation options will be given in
Chapter 7.

On the corresponding 64-bit platform (an Intel Core 2 Quad processor,
matching 64-bit versions of the system and the compiler), defaults are differ-
ent: one has to use the -mfpmath=387 switch to get the same message about
extra bits.

(...)

Subtraction appears to be normalized, as it should be.
Checking for guard digit in *, /, and -.

*, /, and - appear to have guard digits, as they should.
Checking rounding on multiply, divide and add/subtract.

* is neither chopped nor correctly rounded.
/ is neither chopped nor correctly rounded.
Addition/Subtraction neither rounds nor chops.
Sticky bit used incorrectly or not at all.
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FLAW: lack(s) of guard digits or failure(s) to correctly
round or chop (noted above) count as one flaw in the
final tally below.

This FLAW, certainly due to double roundings, disappears when the
-march=pentium4 -mfpmath=sse switches are used on the gcc command line
as, instead, they trigger the SSE2 64-bit floating-point registers with a 53-bit
significand.

Does Multiplication commute? Testing on 20 random pairs.
No failures found in 20 integer pairs.

Running test of square root(x).
Testing if sqrt(X * X) == X for 20 Integers X.
Test for sqrt monotonicity.
sqrt has passed a test for Monotonicity.
Testing whether sqrt is rounded or chopped.
Square root is neither chopped nor correctly rounded.
Observed errors run from -5.0000000e-01 to 5.0000000e-01 ulps.

Note that the errors, although larger than 1/2 ulp (otherwise, square root
would be correctly rounded!) are so close to 1/2 ulp that, when printed in
Paranoia’s output format, they cannot be differentiated from 1/2 ulp. This
warning disappears when moving to the corresponding 64-bit platform (an
Intel Core 2 Quad processor, with 64-bit versions of the system and the com-
piler, but unchanged compiler switches).

Testing powers Z^i for small Integers Z and i.
... no discrepancies found.

Seeking Underflow thresholds UfThold and E0.
Smallest strictly positive number found is E0 = 4.94066e-324 .
Since comparison denies Z = 0, evaluating (Z + Z) / Z should
be safe.
What the machine gets for (Z + Z) / Z is
2.00000000000000000e+00 .
This is O.K., provided Over/Underflow has NOT just been
signaled.
Underflow is gradual; it incurs Absolute Error =
(roundoff in UfThold) < E0.
The Underflow threshold is 2.22507385850720188e-308, below
which calculation may suffer larger Relative error than
merely roundoff.
Since underflow occurs below the threshold
UfThold = (2.00000000000000000e+00)^(-1.02200000000000000e+03)
only underflow should afflict the expression
(2.00000000000000000e+00) ^ (-2.04400000000000000e+03);
actually calculating yields: 0.00000000000000000e+00 .
This computed value is O.K.

Testing X^((X + 1) / (X - 1)) vs. exp(2) =
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7.38905609893065218e+00 as X -> 1.
DEFECT: Calculated 7.38905609548934539e+00 for
(1 + (-1.11022302462515654e-16) ^ (-1.80143985094819840e+16);
differs from correct value by -3.44130679508225512e-09 .
This much error may spoil financial
calculations involving tiny interest rates.

Again, this DEFECT disappears when moving to the corresponding 64-bit
platform (an Intel Core 2 Quad processor, with 64-bit versions of the system
and the compiler, but unchanged compiler switches).

Testing powers Z^Q at four nearly extreme values.
... no discrepancies found.

(...)
Searching for Overflow threshold:
This may generate an error.
Can ‘Z = -Y’ overflow?
Trying it on Y = -inf .
Seems O.K.
Overflow threshold is V = 1.79769313486231571e+308 .
Overflow saturates at V0 = inf .
No Overflow should be signaled for
V * 1 = 1.79769313486231571e+308
nor for V / 1 = 1.79769313486231571e+308 .
Any overflow signal separating this * from the one
above is a DEFECT.
(...)

What message and/or values does Division by Zero produce?
This can interupt your program. You can skip this part if
you wish.
Do you wish to compute 1 / 0?
O.K.

Do you wish to compute 0 / 0?
O.K.
(...)
The number of DEFECTs discovered = 1.
The number of FLAWs discovered = 1.

The arithmetic diagnosed may be Acceptable
despite inconvenient Defects.

3.8.3 UCBTest

UCBTest can be obtained at http://www.netlib.org/fp/ucbtest.tgz. It is a
collection of programs whose purpose is to test certain difficult cases of the
IEEE floating-point arithmetic. Paranoia is included in UCBTest. The “diffi-
cult cases” for multiplication, division, and square root (i.e., almost hardest-
to-round cases: input values for which the result of the operation is very near
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a breakpoint of the rounding mode) are built using algorithms designed by
Kahan, such as those presented in [324].

3.8.4 TestFloat

J. Hauser designed a software implementation of the IEEE 754-1985 floating-
point arithmetic. The package is named SoftFloat and can be downloaded
at http://www.jhauser.us/arithmetic/SoftFloat.html. He also designed a
program, TestFloat, aimed at testing whether a system conforms to IEEE 754-
1985. TestFloat compares results returned by the system to results returned
by SoftFloat.

3.8.5 IeeeCC754

UCBTest focuses on the precisions specified by the IEEE 754-1985 standard.
Verdonk, Cuyt and Verschaeren [418, 419] present a new tool, IeeeCC754,
acronym for IEEE 754 Compliance Checker, that is precision and range indepen-
dent. It is based on a huge set of precision- and range-independent test vec-
tors. It can be downloaded at http://www.cant.ua.ac.be/old/ieeecc754.
html.

3.8.6 Miscellaneous

SRTEST is a FORTRAN program written by Kahan for checking imple-
mentation of SRT [125, 126] division algorithms. It can be accessed on
Kahan’s web page, at http://www.cs.berkeley.edu/~wkahan/srtest/.
Some useful software, written by Nelson H.F. Beebe, can be found at http://
www.math.utah.edu/~beebe/software/ieee/. MPCHECK is a program writ-
ten by Revol, Pélissier, and Zimmermann. It checks mathematical function
libraries (for correct rounding, monotonicity, symmetry, and output range). It
can be downloaded at http://www.loria.fr/~zimmerma/mpcheck/ or https:
//gforge.inria.fr/projects/mpcheck/.



Part II

Cleverly Using Floating-Point
Arithmetic



Chapter 4

Basic Properties and Algorithms

In this chapter, we present some short yet useful algorithms and some
basic properties that can be derived from specifications of floating-point

arithmetic systems, such as the ones given in the various successive IEEE
standards. Thanks to these standards, we now have an accurate definition of
floating-point formats and operations. The behavior of a sequence of opera-
tions becomes at least partially1 predictable (see Chapter 7 for more details
on this). We therefore can build algorithms and proofs that use these specifi-
cations.

This also allows the use of formal proofs to verify pieces of mathematical
software. For instance, Harrison uses HOL Light to formalize floating-point
arithmetic [168, 171] and check floating-point trigonometric functions [169]
for the Intel-HP IA-64 architecture. Russinoff [355] used the ACL2 prover to
check the AMD-K7 floating-point multiplication, division, and square root
instructions. Boldo, Daumas, and Théry use the Coq proof assistant to for-
malize floating-point arithmetic and prove properties of some arithmetic
algorithms [33, 256].

4.1 Testing the Computational Environment

4.1.1 Computing the radix

The various parameters (radix, significand and exponent widths, rounding
modes, etc.) of the floating-point arithmetic used in a computing system may
strongly influence the result of a numerical program. Indeed, very simple
and short programs that only use floating-point operations can find these
parameters. An amusing example of this is the C program (Listing 4.1), given
by Malcolm [146, 269], that returns the radix β of the floating-point system. It
works if the active rounding mode is one of the four rounding modes of IEEE

1In some cases, for instance, intermediate calculations may be performed in a wider inter-
nal format. Some examples are given in Section 3.3.

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_4, 119
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754-1985 (or one of the rounding direction attributes of IEEE 754-2008 [187]).
It is important to make sure that a zealous compiler does not try to “simplify”
expressions such as (A+1.0)−A. See Chapter 7 for more information on how
languages and compilers handle floating-point arithmetic.

C listing 4.1 Malcolm’s algorithm (Algorithm 4.1, see below), written in C.

#include <stdio.h>
#include <math.h>

#pragma STDC FP_CONTRACT OFF

int main (void)
{
double A, B;

A = 1.0;
while ((A + 1.0) - A == 1.0)
A *= 2.0;

B = 1.0;
while ((A + B) - A != B)
B += 1.0;

printf ("Radix B = %g\n", B);
return 0;

}

Let us describe the corresponding algorithm more precisely. Let ◦ be the
active rounding mode. The algorithm is

Algorithm 4.1 Computing the radix of a floating-point system.
A← 1.0
B ← 1.0
while ◦(◦(A + 1.0)−A) = 1.0 do

A← ◦(2×A)
end while
while ◦(◦(A + B)−A) 6= B do

B ← ◦(B + 1.0)
end while
return B

Incidentally, this example shows that analyzing algorithms sometimes
depends on the whole specification of the arithmetic operations, and espe-
cially the fact that they are correctly rounded:

• If one assumes that the operations are exact, then one erroneously con-
cludes that the first loop never ends (or ends with an error due to an
overflow on variable A).
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• If one tries to analyze this algorithm just by assuming that ◦(x + y) is
(x + y)(1 + ε) where |ε| is bounded by some tiny value, it is impossible
to prove anything. For instance, ◦(◦(A + 1.0) − A) is just 1 plus some
“noise.”

And yet, assuming correctly-rounded operations, it is easy to show that
the final value of B is the radix of the floating-point system being used, as we
show now.

Proof. Define Ai as the value of A after the i-th iteration of the loop:

while ◦(◦(A + 1.0)−A) = 1.0.

Let β be the radix of the floating-point system and p its precision. One easily
shows by induction that if 2i ≤ βp−1, then Ai equals 2i exactly. In such a case,
Ai + 1 ≤ βp, which implies that ◦(Ai + 1.0) = Ai + 1. Therefore, one deduces
that ◦(◦(Ai + 1.0)−Ai) = ◦((Ai + 1)−Ai) = 1. Hence, while 2i ≤ βp − 1, we
stay in the first loop.

Now, consider the first iteration j, such that 2j ≥ βp. We have Aj =
◦(2Aj−1) = ◦(2× 2j−1) = ◦(2j). Since β ≥ 2, we deduce

βp ≤ Aj < βp+1.

This implies that the floating-point successor of Aj is Aj + β. Therefore,
depending on the rounding mode, ◦(Aj + 1.0) is either Aj or Aj + β, which
implies that ◦(◦(Aj + 1.0) − Aj) is either 0 or β. In any case, this value is
different from 1.0, so we exit the first loop.

So we conclude that, at the end of the first while loop, variable A satisfies
βp ≤ A < βp+1.

Now, let us consider the second while loop. We have seen that the
floating-point successor of A is A + β. Therefore, while B < β, ◦(A + B)
is either A or A+β, which implies that ◦(◦(A+B)−A) is either 0 or β. In any
case, this value is different from B, which implies that we stay in the loop.

Now, as soon as B = β, ◦(A + B) is exactly equal to A + B; hence,
◦(◦(A + B)−A) = B. We therefore exit the loop when B = β.

4.1.2 Computing the precision

Algorithm 4.2, also introduced by Malcolm [269], is very similar to
Algorithm 4.1 [269]. It computes the precision p of the floating-point system
being used.
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Algorithm 4.2 Computing the precision of a floating-point system. It requires
the knowledge of the radix of the system, and that radix can be given by
Algorithm 4.1.

Input: B (the radix of the FP system)
i← 0
A← 1.0
while ◦(◦(A + 1.0)−A) = 1.0 do

A← ◦(B ×A)
i← i + 1

end while
return i

The proof is very similar to the proof of Algorithm 4.1, so we omit it.
Similar—yet more sophisticated—algorithms are used in inquiry pro-

grams such as Paranoia [215], which provide a means for examining your
computational environment (see Section 3.8, page 111).

4.2 Exact Operations

Although most floating-point operations involve some sort of rounding,
there are some cases when a single operation will be exact, i.e., without round-
ing error. Knowing these cases allows an experienced programmer to use
them in critical algorithms. Typical examples of such algorithms are elemen-
tary function programs [95]. Many other examples will follow throughout
this book.

What are the exact operations? The IEEE standards state that, if the
infinitely-precise result of an arithmetic operation is a floating-point number,
then this number should be returned, whatever the rounding mode. There-
fore, the exact operations are those for which one may prove that the result
belongs to the set of floating-point numbers of the considered format.

4.2.1 Exact addition

An important result, frequently used when designing or proving algorithms,
is Sterbenz’s lemma.

Lemma 2 (Sterbenz [392]). In a radix-β floating-point system with subnormal
numbers available, if x and y are finite floating-point numbers such that

y

2
≤ x ≤ 2y,

then x− y is exactly representable.
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Sterbenz’s lemma implies that, with any of the four rounding modes,
if x and y satisfy the preceding conditions, then when computing x − y in
floating-point arithmetic, the obtained result is exact.

Proof. For reasons of symmetry, we can assume that x ≥ 0, y ≥ 0, and y ≤
x ≤ 2y. Let Mx and My be the integral significand of x and y, and ex and ey

be their exponents (if x and y have several floating-point representations, we
choose the ones with the smallest exponents). We have

x = Mx × βex−p+1,

and
y = My × βey−p+1,

with 
emin ≤ ex ≤ emax

emin ≤ ey ≤ emax

0 ≤Mx ≤ βp − 1

0 ≤My ≤ βp − 1.

From y ≤ x, we easily deduce ey ≤ ex. Define δ = ex − ey. We get

x− y =
(
Mxβδ −My

)
× βey−p+1.

Define M = Mxβδ −My. We have

• x ≥ y implies M ≥ 0;

• x ≤ 2y implies x− y ≤ y, hence Mβey−p+1 ≤Myβ
ey−p+1; therefore,

M ≤My ≤ βp − 1.

Therefore, x−y is equal to M×βe−p+1 with emin ≤ e ≤ emax and |M | ≤ βp−1.
This shows that x − y is a floating-point number, which implies that it is
exactly computed.

It is important to notice that, in our proof, the only thing we have shown
is that x − y is representable with an integral significand M whose absolute
value is less than or equal to βp−1. We have not shown (and it is not possible
to show) that it can be represented with an integral significand of absolute
value larger than or equal to βp−1. Indeed, |x − y| can be less than βemin . In
such a case, the availability of subnormal numbers is required for Sterbenz’s
lemma to be applicable (it suffices to consider the example given by Figure 2.1
page 18).

A slightly more general result is that if the exponent of x−y is less than or
equal to the minimum of ex and ey, then the subtraction is exactly performed.
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Sterbenz’s lemma might seem strange to those who remember their early
lectures on numerical analysis: It is common knowledge that subtracting
numbers that are very near may lead to very inaccurate results. This kind
of numerical error is called a cancellation, or a catastrophic cancellation when
almost all digits of the result are lost. There is no contradiction: The subtrac-
tion of two floating-point numbers that are very near does not introduce any
error in itself (since it is an exact operation), yet it amplifies a pre-existing error.
Consider the following example in IEEE 754-1985 single-precision arithmetic
and round-to-nearest mode:

• A = 10000 and B = 9999.5 (they are exactly representable);

• C = RN(1/10) = 13421773/134217728;

• A′ = RN(A + C) = 5120051/512;

• ∆ = RN(A′ −B) = 307/512 = 0.599609375.

Sterbenz’s Lemma implies that ∆ is exactly equal to A′−B. And yet, the
computation A′ = RN(A + C) introduced some error: A′ is slightly different
from A+C. This suffices to make ∆ a rather bad approximation to (A+C)−B,
since (A + C)−B ≈ 0.6000000015.

In this example, the subtraction A′ − B was errorless, but it somehow
amplified the error introduced by the computation of A′.

Hauser [176] gives another example of exact additions. It shows, inci-
dentally, that when a gradual underflow occurs (that is, the obtained result
is less than βemin but larger than or equal to the smallest subnormal number
α = βemin−p+1), this does not necessarily mean an inaccurate result.

Theorem 3 (Hauser). If x and y are radix-β floating-point numbers, and if the
number RN(x + y) is subnormal, then RN(x + y) = x + y exactly.

Proof. It suffices to notice that x and y (as all floating-point numbers) are
multiples of the smallest nonzero floating-point number α = βemin−p+1.
Hence, x + y is a multiple of α. If it is a subnormal number, then it is less
than βemin . This implies that it is exactly representable.

4.2.2 Exact multiplications and divisions

Some multiplications and divisions are exactly performed. A straightforward
example is multiplication or division by a power of the radix: As soon as there
is no overflow or underflow,2 the result is exactly representable.

2Beware! We remind the reader that by “no underflow” we mean that the absolute value
of the result (before or after rounding, this depends on the definition) is not less than the
smallest normal number βemin . When subnormal numbers are available, as requested by the
IEEE standards, it is possible to represent smaller nonzero numbers, but with a precision that
does not always suffice to represent the product exactly.
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Another example is multiplication of numbers with known zero bits at
the lower-order part of the significand. For instance, assume that x and y are
floating-point numbers whose significands have the form

x0.x1x2x3 · · ·xkx︸ ︷︷ ︸
kx digits

000 · · · 0︸ ︷︷ ︸
p−kx zeros

for x, and
y0.y1y2y3 · · · yky︸ ︷︷ ︸

ky digits

000 · · · 0︸ ︷︷ ︸
p−ky zeros

for y. If kx + ky ≤ p then the product of the significands of x and y fits in
p radix-β digits. This implies that the product xy is exactly computed if no
overflow nor underflow occurs. This property is at the heart of Dekker’s
multiplication algorithm (see Section 4.4.2, page 135). It is also very useful
for reducing the range of inputs when evaluating elementary functions (see
Section 11.1, page 379).

4.3 Accurate Computations of Sums of Two Numbers

Let a and b be radix-β precision-p floating-point numbers. Let s be RN(a+ b),
i.e., a + b correctly rounded to the nearest precision-p floating-point num-
ber, with any choice here in case of a tie. It can easily be shown that, if
the computation of s does not overflow, then the error of the floating-point
addition of a and b, namely t = (a + b) − s, is exactly representable in radix
β with p digits. It is important to notice that this property can be false with
other rounding modes. For instance, in a radix-2 and precision-p arithmetic,
assuming rounding toward −∞, if a = 1 and b = −2−3p, then

s = RD(a + b) = 0. 111111 · · · 11︸ ︷︷ ︸
p

= 1− 2−p,

and
t− s = 1.1111111111 · · · 11︸ ︷︷ ︸

2p

×2−p−1,

which cannot be exactly represented with precision p (it would require preci-
sion 2p).

In the following sections, we present two algorithms for computing t.
They are useful for performing very accurate sums of many numbers. They
also are of interest for very careful implementation of mathematical func-
tions [95].
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4.3.1 The Fast2Sum algorithm

The Fast2Sum algorithm was introduced by Dekker [108] in 1971, but the
three operations of this algorithm already appeared in 1965 as a part of a sum-
mation algorithm, called “Compensated sum method,” due to Kahan [201]
(Algorithm 6.6, page 192). The name “Fast-Two-Sum” seems to have been
coined by Shewchuk [377].

Theorem 4 (Fast2Sum algorithm). ([108], and Theorem C of [222], page 236).
Assume the floating-point system being used has radix β ≤ 3, subnormal numbers
available, and provides correct rounding with rounding to nearest.

Let a and b be floating-point numbers, and assume that the exponent of a is
larger than or equal to that of b (this condition might be difficult to check, but of
course, if |a| ≥ |b|, it will be satisfied). Algorithm 4.3 computes two floating-point
numbers s and t that satisfy the following:

• s + t = a + b exactly;

• s is the floating-point number that is closest to a + b.

Algorithm 4.3 The Fast2Sum algorithm [108].
s← RN(a + b)
z ← RN(s− a)
t← RN(b− z)

(We remind the reader that RN(x) means x rounded to nearest.)

Notice that if a wider internal format is available (one more digit of pre-
cision is enough), and if the computation of z is carried on using that wider
format, then the condition β ≤ 3 is no longer necessary [108]. This may be
useful when working with decimal arithmetic. The Fast2Sum algorithm is
simpler when written in C, as all rounding functions are implicit, as one can
see in Listing 4.2 (yet, it requires round-to-nearest mode, which is the default
rounding mode).

In that program it is assumed that all the variables are declared to be of
the same floating-point format, say all float or all double, and the system is
set up to ensure that all the computations are done in this format. A compiler
that is compliant with the C99 standard will not attempt to simplify these
operations.

Let us now give Dekker’s proof for this algorithm.

Proof. Let ea, eb, and es, be the exponents of a, b, and s. Let Ma, Mb, and
Ms, be their integral significands, and let p be the precision of the floating-
point format being used. We recall that the integral significands have absolute
values less than βp − 1.
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C listing 4.2 Fast2Sum.

/* fast2Sum.c */

#include <stdio.h>
#include <stdlib.h>

void fast2Sum(double a, double b, double *s, double *t)
{
double dum;
double z;
/* Branching below may hinder performance */
/* Suppress if we know in advance that a >= b */

if (b > a) { dum = a; a = b; b = dum; }

*s = a + b;
z = *s - a;

*t = b - z;
}

int main(int argc, char **argv)
{
double a;
double b;
double s;
double t;

/* The inputs are read on the command line. */
a = strtod(argv[1], NULL);
b = strtod(argv[2], NULL);

fprintf(stdout, "a = %1.16g\n", a);
fprintf(stdout, "b = %1.16g\n", b);

fast2Sum(a, b, &s, &t);

printf("s = %1.16g\n", s);
printf("t = %1.16g\n", t);

return(0);
}
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First, let us show that s − a is exactly representable. Notice that, since
eb ≤ ea, s can be represented with an exponent less than or equal to ea + 1.
This comes from

a + b ≤ 2(βp − 1)βea−p+1 ≤ (βp − 1)βea−p+2.

1. If es = ea + 1.

Define δ = ea − eb. We have

Ms =
⌈

Ma

β
+

Mb

βδ+1

⌋
,

where duc is the integer that is nearest to u (when u is an odd multiple
of 1/2, there are two integers that are nearest to u, and we choose the
one that is even).

Define µ = βMs −Ma. We easily find

Mb

βδ
− β

2
≤ µ ≤ Mb

βδ
+

β

2
.

Since µ is an integer and β ≤ 3, this gives

|µ| ≤ |Mb|+ 1.

Therefore, since |Mb| ≤ βp − 1, either |µ| ≤ βp − 1 or |µ| = βp. In both
cases, since s− a = µβea−p+1, s− a is exactly representable.3

2. If es ≤ ea.

Define δ1 = ea − eb. We have

a + b =
(
βδ1Ma + Mb

)
βeb−p+1.

If es ≤ eb then s = a − b, since a + b is a multiple of βeb−p+1, and s is
obtained by rounding a+b to the nearest multiple of βes−p+1 ≤ βeb−p+1.
This implies that s−a = b is exactly representable. If es > eb, then define
δ2 = es − eb. We have

s =
⌈
βδ1−δ2Ma + β−δ2Mb

⌋
βes−p+1,

which implies(
β−δ2Mb −

1
2

)
βes−p+1 ≤ s− a ≤

(
β−δ2Mb +

1
2

)
βes−p+1.

3When |µ| ≤ βp − 1, s− a is representable with exponent ea, but not necessarily in normal
form. This is why the availability of subnormal numbers is necessary.
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Hence,

|s− a| ≤
(

β−δ2 |Mb|+
1
2

)
βes−p+1,

and s− a is a multiple of βes−p+1, which gives s− a = Kβes−p+1, with

|K| ≤ β−δ2 |Mb|+
1
2
≤ βp − 1,

which implies that s− a is exactly representable.

Therefore, in all cases, z = RN(s− a) = s− a exactly.
Second, let us show that b − z is exactly representable. From ea ≥ eb,

we deduce that a and b are both multiples of βeb−p+1. This implies that s
(obtained by rounding a + b), s − a, z = s − a, and b − z, are multiples of
βeb−p+1. Moreover,

|b− z| ≤ |b|. (4.1)

This comes from |b−z| = |a+b−s|: If |a+b−s|was larger than |b| = |a+b−a|,
then a would be a better floating-point approximation to a + b than s.

From (4.1) and the fact that b− z is a multiple of βeb−p+1, we deduce that
b− z is exactly representable, which implies t = b− z.

Now, the theorem is easily obtained. From t = b− z we deduce

t = b− (s− a) = (a + b)− s.

4.3.2 The 2Sum algorithm

The Fast2Sum algorithm, presented in the previous section, requires a pre-
liminary knowledge of the orders of magnitude of the two operands (since
we must know which of them has the largest exponent).4

The following 2Sum algorithm (Algorithm 4.4), due to Knuth [222] and
Møller [279], requires 6 consecutive floating-point operations instead of 3
for Fast2Sum, but does not require a preliminary comparison of a and b.
Notice that on modern processors the penalty due to a wrong branch pre-
diction when comparing a and b costs much more than 3 additional floating-
point operations. Also, unless a wider format is available, Fast2Sum does not
work in radices greater than 3, whereas 2Sum works in any radix. This is of
interest when using a radix-10 system.

The name “TwoSum” seems to have been coined by Shewchuk [377].

4Do not forget that |a| ≥ |b| implies that the exponent of a is larger than or equal to that of
b. Hence, it suffices to compare the two variables.
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Algorithm 4.4 The 2Sum algorithm.
s← RN(a + b)
a′ ← RN(s− b)
b′ ← RN(s− a′)
δa ← RN(a− a′)
δb ← RN(b− b′)
t← RN(δa + δb)

Knuth shows that, if a and b are normal floating-point numbers, then for
any radix β, provided that no underflow or overflow occurs, a + b = s + t.
Boldo et al. [32] show that in radix 2, underflow does not hinder the result
(and yet, obviously, overflow does). Formal proofs of 2Sum, Fast2Sum, and
many other useful algorithms, can be found in a Coq library.5

Notice that, in a way, 2Sum is optimal in terms of number of floating-
point operations. More precisely, Kornerup, Lefèvre, Louvet, and Muller, give
the following definition [226]:

Definition 8 (RN-addition algorithm without branching). We call
RN-addition algorithm without branching an algorithm

• without comparisons, or conditional expressions, or min/max instructions;

• only based on floating-point additions or subtractions in round-to-nearest
mode: At step i the algorithm computes RN(a + b) or RN(a − b), where a
and b are either one of the input values or a previously computed value.

For instance, 2Sum is an RN-addition algorithm without branching. It
requires 6 floating-point operations. Only counting the operations just gives
a rough estimate on the performance of an algorithm. Indeed, on modern
architectures, pipelined arithmetic operators and the availability of several
floating-point units (FPUs) make it possible to perform some operations in
parallel, provided they are independent. Hence, the depth of the dependency
graph of the instructions of the algorithm is an important criterion. In the case
of the 2Sum algorithm, two operations only can be performed in parallel:

δb = RN(b− b′)

and
δa = RN(a− a′);

hence, we will say that the depth of the 2Sum algorithm is 5. Kornerup,
Lefèvre, Louvet, and Muller, prove the following two theorems:

Theorem 5. In double-precision/binary64 floating-point arithmetic, an
RN-addition algorithm without branching that computes the same results as
2Sum requires at least 6 arithmetic operations.

5http://lipforge.ens-lyon.fr/www/pff/
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Theorem 6. In double-precision/binary64 floating-point arithmetic, an
RN-addition algorithm without branching that computes the same results as
2Sum has depth at least 5.

These theorems show that, among the RN-addition algorithms without
branching, if we do not have any information on the ordering of |a| and
|b|, 2Sum is optimal both in terms of number of arithmetic operations and
in terms of depth. The proof was obtained by enumerating all possible
RN-addition algorithms without branching that use 5 additions or less, or
that have depth 4 of less. Each of these algorithms was run with a few well-
chosen floating-point entries. None of the enumerated algorithms gave the
same results as 2Sum for all chosen entries.

4.3.3 If we do not use rounding to nearest

The Fast2Sum and 2Sum algorithms rely on rounding to nearest. The example
given at the beginning of Section 4.3 shows that, if s is computed as RD(a+b)
or RU(a + b), then s− (a + b) may not be a floating-point number, hence the
algorithms would fail to return an approximate sum and the error term.

Nonetheless, in his Ph.D. dissertation [337], Priest gives a longer algo-
rithm that only requires faithful arithmetic. From two floating-point numbers
a and b, it deduces two other floating-point numbers c and d such that

• c + d = a + b, and

• either c = d = 0, or |d| < ulp(c).

In particular, Algorithm 4.5 works if ◦ is any of the four rounding modes
of IEEE 754-1985, provided no underflow or overflow occurs.

Algorithm 4.5 Priest’s Sum and Roundoff error algorithm. It only requires
faithful arithmetic.

if |a| < |b| then
swap(a, b)

end if
c← ◦(a + b)
e← ◦(c− a)
g ← ◦(c− e)
h← ◦(g − a)
f ← ◦(b− h)
d← ◦(f − e)
if ◦(d + e) 6= f then

c← a
d← b

end if
return c, d
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4.4 Computation of Products

In the previous section, we have seen that, under some conditions, the error
of a floating-point addition is a floating-point number that can be computed
using a few operations. The same holds for floating-point multiplication:

• If x and y are radix-β precision-p floating-point numbers, whose expo-
nents ex and ey satisfy ex+ey ≥ emin+p−1 (where emin is the minimum
exponent of the system being considered), and

• if r is ◦(xy), where ◦ is one of the four rounding modes of the IEEE
754-1985 standard,

then t = xy − r is a radix-β precision-p floating-point number.
Actually, computing t is very easy if a fused multiply-add (FMA) oper-

ator is available; This will be described in Chapter 5. Without an FMA, the
best-known algorithm for computing t is Dekker’s algorithm [108]. Roughly
speaking, it consists in first splitting each of the operands x and y into two
floating-point numbers, the significand of each of them being representable
with bp/2c or dp/2e digits only. The underlying idea is that (using a property
given in Section 4.2.2) the pairwise products of these values should be exactly
representable, which is not always possible if p is odd, since the product of
two dp/2e-digit numbers does not necessarily fit on p digits.6

Then these pairwise products are added.
Let us now present that algorithm with more detail. We first show how to

perform the splitting, using floating-point addition and multiplication only,
by means of an algorithm due to Veltkamp [416, 417].

4.4.1 Veltkamp splitting

Before examining how we can compute exact products without an FMA, we
need to see how we can “split” a precision-p radix-β floating-point number
x into two floating-point numbers xh and x` such that, for a given s < p, the
significand of xh fits in p − s digits, the significand of x` fits in s digits, and
x = xh + x` exactly.

This is done using Veltkamp’s algorithm (Algorithm 4.6). It uses a
floating-point constant C equal to βs + 1.

6In radix 2, we will use the fact that a 2g+1-bit number can be split into two g-bit numbers.
This explains why (see Section 4.4.2) Dekker’s algorithm work if the precision is even or if the
radix is 2.
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Algorithm 4.6 Split(x,s): Veltkamp’s algorithm.
Require: C = βs + 1

γ ← RN(C · x)
δ ← RN(x− γ)
xh ← RN(γ + δ)
x` ← RN(x− xh)

Dekker [108] proves this algorithm in radix 2, with the implicit assump-
tion that no overflow or underflow occurs. Boldo [30] shows that for any
radix β and any precision p, provided that C · x does not overflow, the algo-
rithm works. More precisely:

• if C · x does not overflow, no other operation will overflow;

• there is no underflow problem: If x` is subnormal, the result still holds.

Another property of Veltkamp’s splitting that will be important for
analyzing Dekker’s multiplication algorithm is the following: If β = 2, the
significand of x` actually fits in s− 1 bits.

Before giving a proof of Veltkamp’s splitting algorithm, let us give an
example.

Example 7 (Veltkamp’s splitting). Assume a radix-10 system, with precision 8.
We want to split the significands of the floating-point numbers into parts of equal
width; that is, we choose s = 4. This gives C = 10001. Assume x = 1.2345678. We
successively find:

• C · x = 12346.9125678, therefore

γ = RN(C · x) = 12346.913;

• x− γ = −12345.6784322, therefore

δ = RN(x− γ) = −12345.678;

• γ + δ = 1.235, therefore

xh = RN(γ + δ) = 1.235;

• x− xh = −0.0004322, therefore

x` = RN(x− xh) = −0.0004322.

One can easily check that 1.2345678 equals 1.235− 0.0004322. In this example, the
last two arithmetic operations are exact; that is, xh = γ + δ and x` = x − xh (no
rounding error occurs). We will see in the proof that this is always true.
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Now, let us give a proof of Algorithm 4.6. For simplicity, we assume
that the radix is 2, that s ≥ 2, and that no underflow nor overflow occurs.
For a more general and very rigorous proof, see the remarkable paper by
Boldo [30].

Proof. Since all variables in the algorithm are scaled by a factor 2k, if we
multiply x by 2k, we can assume that 1 ≤ x < 2 without loss of generality.
Furthermore, since the behavior of the algorithm is fairly obvious if x = 1,
we assume 1 < x < 2, which gives (since x is a precision-p floating-point
number)

1 + 2−p+1 ≤ x ≤ 2− 2−p+1.

We now consider the four successive operations in Algorithm 4.6.

Computation of γ. Cx = (2s + 1)x implies 2s + 1 ≤ Cx < 2s+2. Therefore,

2s−p+1 ≤ ulp(Cx) ≤ 2s−p+2.

This gives  γ = (2s + 1)x + ε1, with |ε1| ≤ 2s−p+1,

γ is a multiple of 2s−p+1.

Computation of δ. We have x− γ = −2sx− ε1. From this we deduce

|x− γ| ≤ 2s(2− 2−p+1) + 2s−p+1 = 2s+1.

This implies that δ = RN(x − γ) = x − γ + ε2 = −2sx − ε1 + ε2, with
|ε2| ≤ 2s−p.

Also, |x − γ| ≥ 2s(1 + 2−p+1) − 2s−p+1 ≥ 2s, which implies that δ is a
multiple of 2s−p+1.

Computation of xh. Now, −δ = 2sx + ε1 − ε2 and γ = 2sx + x + ε1 are quite
close together. As soon as s ≥ 2, they are within a factor of 2 from each
other. So Lemma 2 (Sterbenz’s lemma) can be applied to deduce that
γ + δ is computed exactly. Therefore,

xh = γ + δ = x + ε2.

Also, xh is a multiple of 2s−p+1 (since xh = γ + δ, and γ and δ are
multiples of 2s−p+1). From x < 2 and xh = x − ε2 one deduces xh <
2 + 2s−p, but the only multiple of 2s−p+1 between 2 and 2 + 2s−p is 2, so
xh ≤ 2.
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Computation of x`. Since xh = x + ε2 and x are very near, we can use
Lemma 2 again to show that x− xh is computed exactly. Therefore,

x` = x− xh = ε2.

As a consequence, |x`| = |ε2| is less than or equal to 2s−p. Moreover, x`

is a multiple of 2−p+1, since x and xh are multiples of 2−p+1.

Thus, we have written x as the sum of two floating-point numbers xh and x`.
Moreover,

• xh ≤ 2 and xh is a multiple of 2s−p+1 imply that xh fits in p− s bits;

• x` ≤ 2s−p and x` is a multiple of 2−p+1 imply that x` fits in s− 1 bits.

4.4.2 Dekker’s multiplication algorithm

Algorithm 4.7 was discovered by Dekker, who presented it and proved it in
radix 2, yet seemed to assume that it would work as well in higher radices.
Later on, it was analyzed by Linnainmaa [263], who found the necessary
condition in radices different from 2 (an even precision), and by Boldo [30],
who examined the difficult problem of possible overflow or underflow in the
intermediate operations, and gave a formal proof in Coq.

Here, we present the algorithm using Boldo’s notation. We assume a
floating-point arithmetic with radix β, subnormal numbers, and precision p.
From two finite floating-point numbers x and y, the algorithm returns two
floating-point numbers r1 and r2 such that xy = r1 + r2 exactly, under condi-
tions that will be made explicit below.

Algorithm 4.7 Dekker product.
Require: s = dp/2e

(xh, x`)← Split(x, s)
(yh, y`)← Split(y, s)
r1 ← RN(x · y)
t1 ← RN(−r1 + RN(xh · yh))
t2 ← RN(t1 + RN(xh · y`))
t3 ← RN(t2 + RN(x` · yh))
r2 ← RN(t3 + RN(x` · y`))

Listing 4.3 presents the same algorithm, written in C.
Here is Boldo’s version [30] of the theorem that gives the conditions

under which Dekker’s multiplication algorithm returns a correct result.
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C listing 4.3 Dekker product.

/* Dekker (exact) double multiplication */

#include <stdlib.h>
#include <stdio.h>
#define SHIFT_POW 27 /* 53 / 2 for double precision. */
void dekkerMult(double a, double b, double *p, double *t);
void veltkampSplit(double x, int sp, double *x_high, double *x_low);
int main(int argc, char **argv)
{
double x;
double y;
double r_1;
double r_2;
x = strtod(argv[1], NULL);
y = strtod(argv[2], NULL);
printf("x = %1.16a\n", x);
printf("y = %1.16a\n", y);
dekkerMult(x, y, &r_1, &r_2);
printf("r_1 = %1.16a\n", r_1);
printf("r_2 = %1.16a\n", r_2);
return 0;

}

void dekkerMult(double x, double y, double *r_1, double *r_2)
{
double x_high, x_low;
double y_high, y_low;
double t_1;
double t_2;
double t_3;
veltkampSplit(x, SHIFT_POW, &x_high, &x_low);
veltkampSplit(y, SHIFT_POW, &y_high, &y_low);
printf("x_high = %1.16a\n", x_high);
printf("x_low = %1.16a\n", x_low);
printf("y_high = %1.16a\n", y_high);
printf("y_low = %1.16a\n", y_low);

*r_1 = x * y;
t_1 = -*r_1 + x_high * y_high ;
t_2 = t_1 + x_high * y_low;
t_3 = t_2 + x_low * y_high;

*r_2 = t_3 + x_low * y_low;
}

void veltkampSplit(double x, int sp, double *x_high, double *x_low)
{
unsigned long C = (1UL << sp) + 1;
double gamma = C * x;
double delta = x - gamma;

*x_high = gamma + delta;

*x_low = x - *x_high;
}
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Theorem 7. Assume the minimal exponent emin and the precision p satisfy7 p ≥ 3
and βemin−p+1 ≤ 1. Let ex and ey be the exponents of the floating-point numbers x
and y. If β = 2 or p is even, and if there is no overflow in the splitting of x and y
or in the computation of r1 = RN(x · y) and RN(xh · yh), then the floating-point
numbers r1 and r2 returned by Algorithm 4.7 satisfy:

1. if ex + ey ≥ emin + p− 1 then xy = r1 + r2 exactly;

2. in any case,

|xy − (r1 + r2)| ≤
7
2
βemin−p+1.

As pointed out by Boldo, the “7/2” in Theorem 7 could probably be
sharpened. In particular, if the radix is 2, that coefficient can be reduced to 3.

Notice that the condition “ex + ey ≥ emin + p − 1” on the exponents is
a necessary and sufficient condition for the error term of the product to be
always representable (see [31]), whatever the significands of x and y might
be. Condition “β = 2 or p is even” might seem strange at first glance, but is
easily understood by noticing that:

• xh · yh is exactly representable with a 2×bp/2c-digit significand, hence,
it is representable in precision p:

RN(xh · yh) = xh · yh;

• xh ·y` and x` ·yh are exactly representable with a bp/2c+dp/2e = p-digit
significand;

• and yet, in many cases, x` · y` will be a 2× dp/2e-digit number.

Therefore, if the precision p is even, then 2 × dp/2e = p, so that x` · y`

is exactly representable. And if β = 2, then we know (see Section 4.4.1) that,
even if p is odd, x` and y` actually fit on dp/2e − 1 bits, so their product fits in
p bits.

For instance, with the decimal formats specified by the new standard
IEEE 754-2008 (see Chapter 3), Algorithm 4.7 will not always work in the
decimal32 interchange format (p = 7), and yet it can be used safely in the
decimal64 (p = 16) and decimal128 (p = 34) interchange formats.

Conditions on the absence of overflow for r1 = RN(x ·y) and RN(xh ·yh)
might seem redundant: Since these values are very close, in general they will
overflow simultaneously. And yet, it is possible to build tricky cases where
one of these computations will overflow, and not the other one. Condition
βemin−p+1 ≤ 1 is always satisfied in practice.

7These assumptions hold on any “reasonable” floating-point system.
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Proof. For a full proof, see [30]. Here, we give a simplified proof, assuming
radix 2, and assuming that no underflow/overflow occurs.

First, since the splittings have been performed to make sure that xhyh,
x`yh, xhy`, and x`y` should be exactly representable, we have

RN(xhyh) = xhyh,RN(x`yh) = x`yh,RN(xhy`) = xhy`, and RN(x`y`) = x`y`.

Without loss of generality, we can assume 1 ≤ x < 2 and 1 ≤ y < 2.
From the proof of Veltkamp’s algorithm, we know that xh ≤ 2, yh ≤ 2, and
that |x− xh| ≤ 2s−p and |y − yh| ≤ 2s−p. From

(xy − xhyh) = (x− xh)y + (y − yh)xh,

we deduce
|xy − xhyh| ≤ 2s−p+2.

Since we also have

|xy − r1| ≤
1
2

ulp(xy) ≤ 2−p+1,

we get
|r1 − xhyh| ≤ 2−p+1 + 2s−p+2.

This shows that r1 and RN(xhyh) = xhyh are very close, so that Sterbenz’s
lemma (Lemma 2) can be applied to their subtraction. As a consequence,

t1 = −r1 + xhyh.

Now, xy − xhyh = xhy` + x`yh + x`y`, so that

|t1 + xhy`| = | − r1 + xhyh + xhy`|

= | − r1 + xy + (xhyh + xhy` − xy)|

≤ | − r1 + xy|+ |x`(yh + y`)|

≤ 2−p+1 + 2s−p+1 < 2s−p+2.

Since xh is a multiple of 2s−p+1 and y` is a multiple of 2−p+1, xhy` is
a multiple of 2s−2p+2. This implies that t1 + xhy` is a multiple of 2s−2p+2.
This and |t1 + xhy`| < 2s−p+2 imply that t1 + xhy` is exactly representable.
Therefore,

t2 = −r1 + xhyh + xhy`.

Now, t2 + x`yh = (−r1 + xy) + x`y`; therefore,

|t2 + x`yh| ≤ | − r1 + xy|+ |x`y`|

≤ 2−p+1 + 22s−2p.
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From s = dp/2e, we deduce 2s− 2p = −p or −p + 1; therefore,

|t2 + x`yh| ≤ 2−p+2.

This and the fact that t2 + x`yh is a multiple of 2s−2p+2 imply that t2 + x`yh is
exactly representable; therefore,

t3 = t2 + x`yh = −r1 + xhyh + xhy` + x`yh.

Lastly, |t3 + x`y`| = | − r1 + xy| ≤ 2−p+1, and it is a multiple of 2−2p+2, thus
t3 + x`y` is exactly computed. Therefore,

r2 = xy − r1.

Dekker’s multiplication algorithm requires 17 floating-point operations:
7 multiplications, and 10 additions/subtractions. This may seem a lot, com-
pared to the 6 floating-point additions/subtractions required by the 2Sum
algorithm (Algorithm 4.4). Yet an actual implementation of Dekker’s algo-
rithm will not be 17/6 times slower than an actual implementation of 2Sum.
Indeed, since many operations in Dekker’s algorithm are independent, they
can be performed in parallel or in pipeline if the underlying architecture sup-
ports it. In the summary given in Figure 4.1, all the operations on a same line
can be performed in parallel.

γx ← RN(Cx) γy ← RN(Cy) r1 ← RN(xy)

δx ← RN(x− γx) δy ← RN(y − γy)

xh ← RN(γx + δx) yh ← RN(γy + δy)

x` ← RN(x− xh) y` ← RN(y − yh) α11 ← RN(xhyh)

t1 ← RN(−r1 + α11) α12 ← RN(xhy`) α21 ← RN(x`yh) α22 ← RN(x`y`)

t2 ← RN(t1 + α12)

t3 ← RN(t2 + α21)

r2 ← RN(t3 + α22)

Figure 4.1: Summary of the various floating-point operations involved in the Dekker
product of x and y. The operations on a same line can be performed in parallel.

4.5 Complex numbers

If a and b are two floating-point numbers, the pair (a, b) can be used to
represent the complex number z = a + ib. This is called the “Cartesian
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representation” of z. Another possible representation of a complex number
is its “polar” form z = r · eiφ, but the polar form is less suited for the
addition. Here we will concentrate on the Cartesian representation. Notice
that accurate conversions can be performed between the two representations
once accurate trigonometric functions and their inverses are implemented.
We refer to Chapters 11 and 12 for these issues.

Adding two floating-point complex numbers z0 = a0 + ib0 and z1 =
a1 + ib1 is done easily by computing the coordinate-wise sum:

(RN(a0 + a1),RN(b0 + b1)).

Things become more complicated with multiplication (Section 4.5.2), division
(Section 4.5.3), and square root (Section 4.5.4). For instance, the C99 standard
says that the usual mathematical formulas for complex multiply, divide, and absolute
value are problematic because of their treatment of infinities and because of undue
overflow and underflow. The CX_LIMITED_RANGE pragma can be used to inform
the implementation that (where the state is “on”) the usual mathematical formulas
are acceptable.

4.5.1 Various error bounds

Two notions of relative error are often considered while performing approx-
imate computations on complex numbers. Suppose we have a floating-point
computation producing a complex number z̄ = ā + ib̄ which is meant to
approximate a complex number z = a + ib. One sometimes requires
component-wise relative error bounds, which corresponds to bounding both

|ā− a|
|a|

and
|b̄− b|
|b|

.

This is intrinsically linked with the Cartesian interpretation of complex num-
bers. Sometimes one wants a bound on the quantity

|z̄ − z|
|z|

,

which is intrinsically related to the polar interpretation of complex numbers.
The latter is usually referred to as a normwise error bound, as |z| is the
Euclidean norm of the two-dimensional vector (a, b). Having a bound of
the first kind implies having a bound of the second kind, but the reverse is
incorrect, as detailed in the following lemma.

Lemma 8. Let z = a + ib and z′ = a′ + ib′ be two complex numbers. Suppose
that |a′ − a| ≤ ε|a| and |b′ − b| ≤ ε|b|, for some ε > 0. Then

|z′ − z| ≤ ε|z|.

The converse does not hold: We may simultaneously have |z′ − z| ≤ ε|z| and an
arbitrarily large quantity |a′−a|

|a| .
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Proof. We have the following relations:

|z′ − z|2 = (a′ − a)2 + (b′ − b)2

≤ ε2|a|2 + ε2|b|2

= ε2|z|2.

For the second part of the lemma, consider z = t + i and z′ = t +
√

t + i,
with t ∈ (0, 1). Then

|a′ − a|
|a|

=
1√
t

can be made arbitrarily large (when t is close to 0), while

|z′ − z|
|z|

=
√

t

1 + t2
≤
√

t ≤ 1.

4.5.2 Error bound for complex multiplication

Suppose we are given two complex numbers z0 = a0 + ib0 and z1 = a1 + ib1.
We want to compute in floating-point arithmetic an approximation to their
product

z0z1 = (a0a1 − b0b1) + i(a0b1 + b0a1).

We first consider the “naive algorithm” which consists in computing the
quantities RN(RN(a0a1) − RN(b0b1)) and RN(RN(a0b1) + RN(b0a1)). Error
bounds for complex multiplication based on the naive algorithm can be
found in [436, 317]. Here we show the following bound, a proof of which
can also be found in [182].

Lemma 9. Consider a floating-point arithmetic with rounding to nearest, and
assume that no underflow/overflow occurs in the computation8. Let ε be 1

2 ulp(1).
Let a0, a1, b0, b1 be four floating-point numbers, and define two complex numbers
z0 = a0 + ib0 and z1 = a1 + ib1. Let

z = a + ib = RN(RN(a0a1)− RN(b0b1)) + iRN(RN(a0b1) + RN(b0a1)).

Then

|z − z0z1| ≤
√

2(2 + ε)ε|z0||z1|.

8We remind the reader that when a subnormal number is returned, we consider that there
is an underflow.
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Proof. We first consider the real part of z. We have

|a− (a0a1 − b0b1)|
≤ |a− (RN(a0a1)− RN(b0b1))|+ |RN(a0a1)− a0a1|+ |RN(b0b1)− b0b1|
≤ ε|RN(a0a1)− RN(b0b1)|+ |RN(a0a1)− a0a1|+ |RN(b0b1)− b0b1|
≤ ε|a0a1 − b0b1|+ (1 + ε)|RN(a0a1)− a0a1|+ (1 + ε)|RN(b0b1)− b0b1|
≤ ε|a0a1 − b0b1|+ (1 + ε)ε|a0a1|+ (1 + ε)ε|b0b1|
≤ (2 + ε)ε[|a0a1|+ |b0b1|]
≤ (2 + ε)ε|z0||z1|.

Similarly, we have |b− (a0b1 + b0a1)| ≤ (2+ ε)ε|z0||z1|. As a consequence,

|z − z0z1|2 ≤ 2(2 + ε)2ε2|z0|2|z1|2,

which provides the result.

Notice that the error bound given above is not component-wise. A rela-
tive component-wise error bound cannot exist since complex multiplication
can be used to perform subtraction of two floating-point numbers x and y.
For instance, consider the real part of z0z1, with z0 = 1 + i and z1 = x + iy.

Furthermore, the error bound given in Lemma 9 is not tight. One can-
not build floating-point numbers a0, a1, b0, b1 for which |z − z0z1| is indeed
close to

√
8ε|z0z1|. This was discovered experimentally by Percival [330], who

gave a first proof that
√

8 can in fact be replaced by
√

5. Unfortunately, his
proof was flawed, and a corrected proof was published by Brent, Percival,
and Zimmermann [46]. More precisely, they showed the following.

Theorem 10. Consider a floating-point arithmetic with rounding to nearest, and
assume that no underflow/overflow arises in the computation. Let ε be 1

2 ulp(1).
Suppose that ε ≤ 2−5. Let a0, a1, b0, b1 be four floating-point numbers, and
define z0 = a0 + ib0 and z1 = a1 + ib1. Let

z = a + ib = RN(RN(a0a1)− RN(b0b1)) + iRN(RN(a0b1) + RN(b0a1)).

Then
|z − z0z1| ≤

√
5ε|z0||z1|.

The proof is lengthy, and we refer to [46] for the details. Notice first that
both bounds (that we obtained in the proof of Lemma 9)

|a− (a0a1 − b0b1)| ≤ (2 + ε)ε|z0||z1|

and
|b− (a0b1 + b0a1)| ≤ (2 + ε)ε|z0||z1|

are essentially sharp when considered independently. The proof of Brent,
Percival, and Zimmermann exploits the fact that they cannot be tight
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Assumption Bound on |a− (a0a1 − b0b1)|

ulp(b0b1) ≤ ulp(a0a1) ≤ u ε(2a0a1 − b0b1) + 2ε2(a0a1 + b0b1)

ulp(b0b1) < u < ulp(a0a1) 7
4εa0a1

u ≤ ulp(b0b1) < ulp(a0a1) 3
2εa0a1

u < ulp(b0b1) = ulp(a0a1) ε(a0a1 + b0b1)

Table 4.1: The four cases of Brent, Percival, and Zimmermann.

simultaneously. By considering multiplications by i and −1 and by taking
complex conjugates, one can see that it is sufficient to prove that the bound
holds when a0, a1, a2, a3 ≥ 0 and b0b1 ≤ a0a1.

By distinguishing the cases when

ulp(a0b1 + b0a1) < ulp(RN(a0b1) + RN(b0a1))

and
ulp(a0b1 + b0a1) ≥ ulp(RN(a0b1) + RN(b0a1)),

the authors prove that

|b− (a0b1 + b0a1)| ≤ 2ε(a0b1 + b0a1),

which is better than in the proof of Lemma 9 only by a factor of (1 + ε/2).
Then they consider four cases (see Table 4.1) for the real part of z, by

looking at the respective values of ulp(b0b1), ulp(a0a1), and

u = ulp(RN(a0a1)− RN(b0b1)).

One of these cases must occur since we assumed that b0b1 ≤ a0a1.
Then each bound is combined independently with the previously

obtained error bound on the imaginary part.
Their analysis shows that the bound

|z − z0z1| ≤
√

5ε|z0||z1|

can be close to tight only in the fourth case of Table 4.1. In [46], the authors
also provide worst cases for the single precision/binary32 and double pre-
cision/binary64 formats of the IEEE 754-1985 and IEEE 754-2008 standards.
For β = 2, t = 24, and ε = 2−24 (single precision), the largest value of the
quantity

|z − z0z1|
|z0z1|
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is reached for

z0 =
3
4

+ i
3
4
(1− 4ε) and z1 =

2
3
(1 + 11ε) + i

2
3
(1 + 5ε),

with
|z − z0z1|
|z0z1|

' ε
√

5− 168ε.

For β = 2, t = 53, and ε = 2−53 (double precision), the worst case is reached
for

z0 =
3
4
(1 + 4ε) + i

3
4

and z1 =
2
3
(1 + 7ε) + i

2
3
(1 + ε),

with
|z − z0z1|
|z0z1|

' ε
√

5− 96ε.

On systems for which multiplication of floating-point numbers is
significantly more expensive than addition and subtraction (a typical
example is multiple-precision systems), it is worth considering Karatsuba’s
algorithm [214] for complex multiplication. It performs 3 floating-point
multiplications and 5 additions/subtractions instead of 4 multiplications and
2 additions/subtractions. Suppose we are multiplying the complex num-
bers z0 = a0 + ib0 and z1 = a1 + ib1. Then Karatsuba’s algorithm is as shown
in Algorithm 4.8.

Algorithm 4.8 Karatsuba’s complex multiplication of a0 + ib0 and a1 + ib1

p1 ← RN(RN(a0 + b0) · RN(a1 + b1))
p2 ← RN(a0 · a1)
p3 ← RN(b0 · b1)
a← RN(p2 − p3)
b← RN(RN(p1 − p2)− p3)

It is argued in [46] that the norm-wise relative error induced by Karat-
suba’s algorithm can be bounded by approximately 8ε, but this bound may
be pessimistic.

4.5.3 Complex division

Complex division is not as well understood as complex multiplication. It
seems harder to obtain tight worst-case norm-wise error bounds. Moreover,
the influence of underflows and overflows is more complicated.

We now give an error bound similar to the one of Higham [182] in the
case where no underflow/overflow occurs when performing division using
the straightforward algorithm. Then we will review some results explaining
how to handle underflows and overflows.
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Lemma 11. Consider a floating-point arithmetic with rounding to nearest, and
assume that no underflow/overflow occurs in the computation. Define ε = 1

2 ulp(1).
Suppose that ε ≤ 2−3. Let a0, a1, b0, b1 be four floating-point numbers, and
define z0 = a0 + ib0 and z1 = a1 + ib1. Let

z = a + ib

= RN
(

RN(RN(a0a1) + RN(b0b1))
RN(RN(a2

1) + RN(b2
1))

)
+ iRN

(
RN(RN(b0a1)− RN(a0b1))

RN(RN(a2
1) + RN(b2

1))

)
.

Then ∣∣∣∣z − z0

z1

∣∣∣∣ ≤ 5
√

2(1 + 6ε)ε
|z0|
|z1|

.

Proof. We first consider the denominator. The quantity∣∣|z1|2 − RN(RN(a2
1) + RN(b2

1))
∣∣ is less than or equal to:

|RN(RN(a2
1) + RN(b2

1))− (RN(a2
1) + RN(b2

1))|

+|a2
1 − RN(a2

1)|+ |b2
1 − RN(b2

1)|

≤ ε|RN(a2
1) + RN(b2

1)|+ |a2
1 − RN(a2

1)|+ |b2
1 − RN(b2

1)|

≤ ε(1 + ε)(a2
1 + b2

1) + εa2
1 + εb2

1 = (2 + ε)ε|z1|2.

Similar to the proof of Lemma 9, we have

|RN(RN(a0a1) + RN(b0b1))− (a0a1 + b0b1)| ≤ (2 + ε)ε|z0||z1|,
|RN(RN(b0a1)− RN(a0b1))− (b0a1 − a0b1)| ≤ (2 + ε)ε|z0||z1|.

Using the triangular inequality, this gives us that the quantity∣∣∣∣RN(RN(a0a1) + RN(b0b1))
RN(RN(a2

1) + RN(b2
1))

− a0a1 + b0b1

a2
1 + b2

1

∣∣∣∣
is less than or equal to

|RN(RN(a0a1) + RN(b0b1))− (a0a1 + b0b1)|
a2

1 + b2
1

+|RN(RN(a0a1) + RN(b0b1))|
|RN(RN(a2

1) + RN(b2
1))− (a2

1 + b2
1)|

RN(RN(a2
1) + RN(b2

1))(a
2
1 + b2

1)

≤ (2 + ε)ε
|z0|
|z1|

+ (1 + (2 + ε)ε)
(2 + ε)ε

1− (2 + ε)ε
|z0|
|z1|

=
2(2 + ε)ε

1− (2 + ε)ε
|z0|
|z1|

.
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We can then bound the quantity∣∣∣∣RN
(

RN(RN(a0a1) + RN(b0b1))
RN(RN(a2

1) + RN(b2
1))

)
− a0a1 + b0b1

a2
1 + b2

1

∣∣∣∣
by:

ε

∣∣∣∣RN(RN(a0a1) + RN(b0b1))
RN(RN(a2

1) + RN(b2
1))

∣∣∣∣+ 2(2 + ε)ε
1− (2 + ε)ε

|z0|
|z1|

≤ ε

(
1 + (1 + ε)

2(2 + ε)
1− (2 + ε)ε

)
|z0|
|z1|

.

Since ε ≤ 1/8, we have

(2 + ε)ε ≤ 17
8

ε ≤ 1/2

and
(1 + ε)(2 + ε)
1− (2 + ε)ε

≤ (1 + ε)(2 + ε)
(

1 +
17
4

ε

)
≤ 2 + 14ε.

Overall, this gives that:∣∣∣∣RN

(
RN(RN(a0a1) + RN(b0b1))

RN(RN(a2
1) + RN(b2

1))

)
− a0a1 + b0b1

a2
1 + b2

1

∣∣∣∣ ≤ ε(5 + 28ε)
|z0|
|z1|

.

The latter also holds for the imaginary part, and overall this provides∣∣∣∣z − z0

z1

∣∣∣∣2 ≤ 2ε2(5 + 28ε)2
|z0|2

|z1|2
,

which gives the result.

Overflows and underflows may occur while performing a complex
division even if the result lies well within the limits. Consider for example
the quotient of z0 = 1 and z1 = 2600 in the IEEE 754-1985 double-precision
format. The denominator |z1|2 is evaluated to +∞, so that the result of the
computation is 0, which is far away from the correct result 2−600. The most
famous method to work around such harmful intermediate under-
flows/overflows is due to Smith [381]. It consists in first comparing |a1| and
|b1|. After that,

• if |a1| ≥ |b1|, one considers the formula

z =
a0 + b0(b1a

−1
1 )

a1 + b1(b1a
−1
1 )

+ i
b0 − a0(b1a

−1
1 )

a1 + b1(b1a
−1
1 )

,

and
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• if |a1| ≤ |b1|, one considers the formula

z =
a0(a1b

−1
1 ) + b0

a1(a1b
−1
1 ) + b1

+ i
b0(a1b

−1
1 )− a0

a1(a1b
−1
1 ) + b1

.

Doing this requires 1 comparison, 3 floating-point divisions, and 3 floating-
point multiplications, instead of 2 divisions and 6 multiplications. Note that
if dividing is much more expensive than multiplying, then it is worth starting
by inverting the common denominator of both the real and imaginary parts,
and then multiplying the result by the numerators. This leads to 1 compari-
son, 2 divisions, and 5 multiplications for Smith’s algorithm, and 1 division
and 8 multiplications for the naive algorithm. In any case, Smith’s algorithm
can thus be significantly slower if (as it frequently happens) comparing and
dividing are more expensive than multiplying.

Stewart [393] improves the accuracy of Smith’s algorithm by perform-
ing a few additional comparisons. More precisely, he suggests computing
the products a0b1a

−1
1 and b0a1b

−1
1 in a way that prevents harmful under-

flows and overflows during that particular step: when computing a · b · c, if
the result does not underflow or overflow, then it is safe to first compute the
product of the two numbers of extremal magnitudes and then multiply the
obtained result by the remaining term. However, Stewart’s variant of Smith’s
algorithm can still suffer from harmful intermediate overflows and under-
flows. For instance, suppose that 0 < b1 < a1 and that both are close to the
overflow limit. Then the denominator a1 + b1(b1a

−1
1 ) will overflow. Suppose

furthermore that a0 ≈ a1 and b0 ≈ b1. Then the result of Stewart’s algorithm
will be NaN, although the result of the exact division is close to 1. Li et al.
[257, Appendix B] show how to avoid harmful underflows and overflows in
Smith’s algorithm, by scaling the variables a0, a1, b0 and b1 beforehand. We
do not describe their method, since Priest’s algorithm, given below, achieves
the same result at a smaller cost.

Priest [338] uses a two-step scaling of the variables to prevent harmful
overflows and underflows in the naive complex division algorithm. The scal-
ings are particularly efficient because the common scaling factor s is a power
of 2 that can be quickly determined from the input operands.

Algorithm 4.9 Priest’s algorithm for computing a0+ib0
a1+ib1

, using a scaling factor s

a′1 ← s× a1

b′1 ← s× b1

t← 1/(a′1 × a′1 + b′1 × b′1)
a′′1 ← s× a′1
b′′1 ← s× b′1
x← (a0 × a′′1 + b0 × b′′1)× t
y ← (b0 × a′′1 − a0 × b′′1)× t
return x + iy
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In Algorithm 4.9, the scaling factor s is first applied to a1 and b1 to allow
for a safe computation of (a scaling of) the denominator. It is applied a second
time to allow for a safe computation of the numerators. Priest proves that one
can always choose a scaling factor s that depends on the inputs (taking s close
to |a1 + ib1|−3/4 suffices for most values of a0 + ib0), such that the following
properties hold:

• If an overflow occurs in the computation, at least one of the two com-
ponents of the exact value of

a0 + ib0

a1 + ib1

is above the overflow threshold or within a few ULPs of it.

• Any underflow occurring in the first five steps of Algorithm 4.9 or in
the computations of a0 × a′′1 + b0 × b′′1 and b0 × a′′1 − a0 × b′′1 is harmless,
i.e., its contribution to the relative error

|(x + iy)− z0/z1|
|z0/z1|

is at most a few ULPs.

• Any underflow occurring in the multiplications by t in the last two
steps of Algorithm 4.9 incurs at most a few ulp(λ)’s to the absolute
error |(x + iy)− z0/z1|, where λ is the smallest positive normal floating-
point number.

The above properties imply that an error bound similar to that of
Lemma 11 holds for Priest’s algorithm. Furthermore, the restriction that no
underflow nor overflow should occur may then be replaced by the weaker
restriction that none of the components of the exact value of

a0 + ib0

a1 + ib1

should lie above the overflow threshold nor within a few ULPs of it.
In [338], Priest also provides a very efficient way of computing a scaling

parameter s that satisfies the constraints for the above properties to hold,
for the particular situation of IEEE-754 binary double precision arithmetic.
In [204], Kahan describes a similar scaling method, but it requires possibly
slow library functions to find and apply the scaling.
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4.5.4 Complex square root

The simplest algorithm for evaluating a complex square root u + iv of x + iy,
based on real square roots, consists in successively computing

` =
√

x2 + y2

u =
√

(` + x)/2

v = ±
√

(`− x)/2

(4.2)

with sign(v) = sign(y). Ahrendt [3] shows that this algorithm is optimal in the
algebraic sense, i.e., in the number of exact operations +,−,×,÷,

√. However,
it suffers from a major drawback: x2 + y2 can overflow and underflow, even
if the exact square root is representable, leading to very poor results.

Another solution [135] is to first compute

w =



0 if x = y = 0

√
|x|

√
1 +

√
1 + (y/x)2

2
if |x| ≥ |y|

√
|y|

√
|x/y|+

√
1 + (x/y)2

2
if |x| < |y|

and then obtain

u + iv =
√

x + iy =



0 if w = 0

w + i
y

2w
if w 6= 0 and x ≥ 0

|y|
2w

+ iw if w 6= 0 and x < 0 and y ≥ 0

|y|
2w
− iw if w 6= 0 and x < 0 and y < 0.

This allows one to avoid intermediate overflows at the cost of more com-
putation including several tests, divisions, and real square roots which make
the complex square root evaluation quite slow compared to a single arith-
metic instruction. Also, estimating the final accuracy seems very difficult.
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Kahan [204] gives a better solution that also correctly handles all special
cases (infinities, zeros, NaNs, etc.), also at the cost of much more computation
than the naive method (4.2).



Chapter 5

The Fused Multiply-Add
Instruction

The fused multiply-add (FMA) instruction makes it possible to
evaluate ab + c, where a, b, and c are floating-point numbers, with

one final rounding only. That is, it computes

◦(ab + c),

where ◦ is the active rounding mode (see Section 2.2).
FMA was introduced in 1990 on the IBM RS/6000 processor [183, 281].

The instruction allows for faster and, in general, more accurate dot prod-
ucts, matrix multiplications, and polynomial evaluations. As noticed for
instance by Markstein [271], it also makes it possible to design fast algorithms
for correctly rounded division and square root, as we will see later in this
chapter. This might be the most interesting property of the FMA instruction,
and it explains why, on current chips offering such an instruction, there is no
hardwired division and/or square root operator. An FMA also simplifies the
design of an accurate range reduction algorithm for the trigonometric func-
tions [256].

After the IBM RS/6000, FMA units were implemented in many commer-
cial, general-purpose processors. Examples are the IBM PowerPC [199], the
HP PA-8000 [212, 236], and the HP/Intel Itanium [88]. An interesting survey
on FMA architectures, along with suggestions for new architectures, is pre-
sented in [339].

The FMA instruction is included in the new IEEE 754-2008 standard for
floating-point arithmetic. As a consequence, within a few years, this instruc-
tion will probably be available on most general-purpose processors.

The aim of this chapter is to show examples of calculations that are facil-
itated (and sometimes made possible) when an FMA instruction is available.
We will start with the very simple yet useful example of the evaluation of the
error of floating-point multiplication.

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_5, 151
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5.1 The 2MultFMA Algorithm

In Chapter 4 (Section 4.4.2, page 135), we have studied an algorithm due to
Dekker that allows one to deduce, from two floating-point numbers x1 and
x2, two other floating-point numbers r1 and r2 such that (under some condi-
tions)

r1 + r2 = x1 · x2

exactly, and

r1 = RN(x1 · x2).

That is, r2 is the error of the floating-point multiplication of x1 by x2. Dekker’s
multiplication algorithm requires 17 floating-point operations. It only works
if the radix is 2 or the precision is even (see Chapter 4, Theorem 7, page 137),
and if no overflow occurs in the intermediate calculations.

If an FMA instruction is available, we can design a much simpler algo-
rithm, which only requires two consecutive operations, and works for any
radix and precision, provided the product x1 · x2 does not overflow and
ex1 + ex2 ≥ emin + p − 1, where ex1 and ex2 are the exponents of x1 and
x2. Although we present it for round-to-nearest mode, it works as well for
the other rounding modes. See Algorithm 5.1.

Algorithm 5.1 2MultFMA(x1, x2).
r1 ← RN(x1 · x2)
r2 ← RN(x1 · x2 − r1)

Notice that condition ex1 + ex2 ≥ emin + p − 1 cannot be avoided: if
it is not satisfied, the product may not be representable as the exact sum of
two floating-point numbers (r2 would be below the underflow threshold).
Consider for instance the following example, in the decimal64 format of the
IEEE 754-2008 standard (β = 10, p = 16, emin = −383).

• x1 = 3.141592653589793× 10−190;

• x2 = 2.718281828459045× 10−190;

• the floating-point number closest to x1 · x2 is r1 = 8.539734222673566×
10−380;

• the floating-point number closest to x1 · x2 − r1 is subnormal. Its value
is −0.000000000000322 × 10−383, which differs from the exact value of
x1 · x2 − r1, namely −0.322151269472315× 10−395.
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5.2 Computation of Residuals of Division and Square
Root

As we will see, the availability of an FMA instruction simplifies the imple-
mentation of correctly rounded division and square root. The following two
theorems have been known for a long time (see for instance [29]). We prefer
here to give the recent presentation by Boldo and Daumas [31], since it fully
takes into account the possibilities of underflow. Assume a radix-β, precision-
p, floating-point system with extremal exponents emin and emax.

In these theorems, we will call a representable pair for a floating-point
number x a pair (M, e) of integers1 such that x = M · βe−p+1, |M | ≤ βp − 1,
and emin ≤ e (such pairs are “floating-point representations” that are not
necessarily normal, without upper constraint on the exponents).

Theorem 12 (Exact residual for division [31]). Let x and y be floating-point num-
bers in the considered format. Let q be ◦(x/y), where ◦ is round-to-nearest, or a
directed mode (see Section 2.2). If q is neither an infinity nor a Not a Number (NaN)
datum, then

x− qy

is a floating-point number if and only if there exist two representable pairs (My, ey)
and (Mq, eq) that represent y and q such that

• ey + eq ≥ emin + p− 1 and

• q 6= α or α/2 ≤ |x/y|,

where α = βemin−p+1 is the smallest positive subnormal number.

Theorem 13 (Exact residual for square root [31]). Let x be a floating-point num-
ber in the considered format. Let σ be x rounded to a nearest floating-point value. If
σ is neither an infinity nor a NaN, then

x− σ2

is representable if and only if there exists a representable pair (Mσ, eσ) that represents
σ such that

2eσ ≥ emin + p− 1.

See [31] for the proofs of these theorems. Consider the following exam-
ple, which illustrates that if the conditions of Theorem 12 are not satisfied,
then x− qy is not exactly representable.

Example 8 (A case where x− qy is not exactly representable). Assume β = 2,
p = 24, and emin = 1−emax = −126 (single-precision format of the IEEE 754-1985

1Beware: M is not necessarily the integral significand of x.
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standard, binary32 format of IEEE 754-2008). Let x and y be floating-point numbers
defined as

x = 2−104 + 2−105 = (1.1
22 zeros︷ ︸︸ ︷

0000000000000000000000)2 × 2−104

and

y = 2−21 + 2−44 = (1.

22 zeros︷ ︸︸ ︷
0000000000000000000000 1)2 × 2−21.

The floating-point number that is nearest to x/y is

q = (1.0 1111111111111111111111︸ ︷︷ ︸
22 ones

)2 × 2−83,

and the exact value of x− qy is

x− qy = −(1. 111111111111111111111︸ ︷︷ ︸
21 ones

)2 × 2−129,

which is not exactly representable. The (subnormal) floating-point number obtained
by rounding x− qy to nearest even is −2−128.

In the example, ey + eq = −104, and emin + p − 1 = −103: condition
“ey + eq ≥ emin + p− 1” of Theorem 12 is not satisfied.

An important consequence of Theorem 12 is the following result, which
will make it possible to perform correctly rounded divisions using Newton–
Raphson iterations, provided that an FMA instruction is available (see Sec-
tion 5.3).

Corollary 1 (Computation of division residuals using an FMA). Assume x and
y are precision-p, radix-β, floating-point numbers, with y 6= 0 and |x/y| below the
overflow threshold. If q is defined as

• x/y if it is exactly representable;

• one of the two floating-point numbers that surround x/y otherwise;2

then
x− qy

is exactly computed using one FMA instruction, with any rounding mode, provided
that

ey + eq ≥ emin + p− 1,

and

q 6= α or |x/y| ≥ α
2 ,

(5.1)

2Or q is the largest finite floating-point number Ω, in the case where x/y is between that
number and the overflow threshold (the same thing applies on the negative side).
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where ey and eq are the exponents of y and q. In the frequent case 1 ≤ x < β
and 1 ≤ y < β (straightforward separate handling of the exponents in the division
algorithm), condition 5.1 is satisfied as soon as

emin ≤ −p,

which holds in all usual formats.

Similarly, from Theorem 13, we deduce the following result.

Corollary 2 (Computation of square root residuals using an FMA). Assume
x is a precision-p, radix-β, positive floating-point number. If σ is

√
x rounded to a

nearest floating-point number then

x− σ2

is exactly computed using one FMA instruction, with any rounding mode, provided
that

2eσ ≥ emin + p− 1, (5.2)

where eσ is the exponent of σ. In the frequent case 1 ≤ x < β2 (straightforward
separate handling of the exponent in the square root algorithm), condition 5.2 is
satisfied as soon as

emin ≤ 1− p,

which holds in all usual formats.

Corollary 2 is much weaker than Corollary 1: the “correcting term” x−σ2

may not be exactly representable when σ is not a floating-point number near-
est to x, even if σ is one of the two floating-point numbers that surround x.
An example, in radix-2, precision-5 arithmetic is x = 111102 and σ = 101.102.

5.3 Newton–Raphson-Based Division with an FMA

Before using some of the results presented in the previous section to build
algorithms for correctly rounded division, let us recall some variants of the
Newton–Raphson iteration for reciprocation and division.

5.3.1 Variants of the Newton–Raphson iteration

Assume we wish to compute an approximation to b/a in a binary floating-
point arithmetic of precision p. We will first present some classical iterations,
all derived from the Newton–Raphson root-finding iteration, that are used in
several division algorithms [271, 86, 270, 88]. Some of these iterations make
it possible to directly compute b/a, yet most algorithms first compute 1/a: A
multiplication by b followed by a possible correcting step is necessary.
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For simplicity, we assume that a and b satisfy

1 ≤ a, b < 2,

which is not a problem in binary floating-point arithmetic (they are signifi-
cands of floating-point numbers).

The Newton–Raphson iteration is a well-known and useful technique
for finding roots of functions. It was introduced by Newton around 1669 [301]
to solve polynomial equations (without explicit use of the derivative) and
generalized by Raphson a few years later [372].

For finding roots of function f , the iteration is

xn+1 = xn −
f(xn)
f ′(xn)

. (5.3)

If x0 is close enough to a root α of f , if f has a second derivative, and if
f ′(α) 6= 0, then the iteration (5.3) converges quadratically to α. By “quadratic
convergence” we mean that the distance between xn+1 and α is proportional
to the square of the distance between xn and α. If α 6= 0, this implies that
the number of common digits between xn and α roughly doubles at each
iteration. For computing 1/a, we look for the root of function f(x) = 1/x− a,
which gives

xn+1 = xn(2− axn). (5.4)

That iteration converges to 1/a for any x0 ∈ (0, 2/a). This is easy to see
in Figure 5.1. And yet, of course, fast convergence requires a value of x0 close
to 1/a.

In the case of iteration (5.4), we easily get

xn+1 −
1
a

= −a

(
xn −

1
a

)2

, (5.5)

which illustrates the quadratic convergence.

Beware: for the moment, we only deal with mathematical, “exact” iter-
ations. When rounding errors are taken into account, the formulas become
more complicated. Table 5.1 gives the first values xn in the case a = 1.5 and
x0 = 1.
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xn+1 = xn(2− axn)

xn+1

xn

1/ax1 x00

1/a

Figure 5.1: Iteration (5.4). We easily see that it converges to 1/a for 0 < x0 < 2/a.

n xn

1 0.5
2 0.625
3 0.6640625
4 0.666656494140625
5 0.6666666665114462375640869140625
6 0.6666666666666666666305265942504831855330849066376686 · · ·
7 0.6666666666666666666666666666666666666647075094152961 · · ·

Table 5.1: First values xn given by iteration (5.4), in the case a = 1.5, x0 = 1.
The quadratic convergence is displayed by the fact that the number of common digits
between xn and the limit roughly doubles at each iteration.

Iteration (5.4) has a drawback: the three floating-point operations (two
if an FMA instruction is available) it requires are dependent, i.e., no paral-
lelism is available. This is a significant penalty, for instance, if the floating-
point operators are implemented with a pipeline of large depth. And yet, a
great advantage of that iteration is that it is “self-correcting”: small errors
(e.g., rounding errors) when computing xn do not change the value of the
limit.
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Although the iterations would converge with x0 = 1 (they converge
for 0 < x0 < 2/a, and we have assumed 1 ≤ a < 2), in practice, we
drastically reduce their number by starting with a value x0 close to 1/a,
obtained either by looking up an approximation to 1/a in a table3 addressed
by a few most significant bits of a, or by using a polynomial approxima-
tion of very small degree to the reciprocal function. Many papers address
the problem of cleverly designing a table that returns a convenient value x0

[322, 360, 361, 362, 394, 106, 229]—see Section 9.2.8 page 286 for a review.
Now, by defining εn = 1− axn, one obtains the following iteration:{

εn = 1− axn

xn+1 = xn + xnεn
. (5.6)

That iteration was implemented on the Intel Itanium processor [86, 270,
88]:

• it still has the “self-correcting” property;

• it is as sequential as iteration (5.4), since there is a dependency between
xn+1 and εn;

• however, it has a nice property; under the conditions of Corollary 1 (that
is, roughly speaking, if xn is within one ulp from 1/a), the “residual”
εn = 1 − axn will be exactly computed with an FMA. As we will see
later on, this is a key feature that allows for correctly rounded division.

Another apparently different way of devising fast division algorithms is to
use the power series

1
1− ε

= 1 + ε + ε2 + ε3 + · · · (5.7)

with ε = 1− a. Using (5.7) and the factorization

1 + ε + ε2 + ε3 + · · · = (1 + ε)(1 + ε2)(1 + ε4)(1 + ε8) · · · ,

one can get a “new” fast iteration. By denoting

εn = ε2
n
,

we get εn+1 = ε2n, and

1
1− ε

= (1 + ε0)(1 + ε1)(1 + ε2)(1 + ε3) · · · ,

3For instance, on the Intel/HP Itanium, there is an instruction, frcpa, that returns approx-
imations to reciprocals, with at least 8.886 valid bits.
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denoting xn = (1 + ε0)(1 + ε1) · · · (1 + εn), we get the following iteration:{
xn+1 = xn + xnεn

εn+1 = ε2n.
(5.8)

As for the Newton–Raphson iteration, one can significantly accelerate the
convergence by starting from a value x0 close to 1/a, obtained from a table.
It suffices then to choose ε0 = 1− ax0. Now, it is important to notice that the
variables εn of (5.8) and (5.6) are the same: from εn = 1− axn, one deduces

ε2n = 1− 2axn + a2x2
n

= 1− axn(2− axn)
= 1− axn+1

= εn+1.

Hence, from a mathematical point of view, iterations (5.6) and (5.8) are
equivalent: we have found again the same iteration through a totally different
method. However, from a computational point of view, they are quite different:

• the computations of xn+1 and εn+1 in (5.8) can be done in parallel,
which is a significant improvement in terms of performance on most
platforms;

• however, variable a no longer appears in (5.8). A consequence of this
is that rounding errors in the computations will make information on
the input operand disappear progressively—this iteration is not self-
correcting.

Of course, one can mix these various iterations. For instance, we may
choose to compute εn as 1 − axn during the last iterations, because accuracy
becomes crucial, whereas it may be preferable to compute it as ε2n−1 during
the first iterations, because this can be done in parallel with the computation
of xn.

Another feature of iteration (5.8) is that one can directly compute b/a
instead of first computing 1/a and then multiplying by b, but this is not neces-
sarily efficient (see below). This is done by defining a new variable,

yn = bxn,

which gives  yn+1 = yn + ynεn

εn+1 = ε2n.
(5.9)

The difficult point, however, is to get a sensible starting value y0:
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• either we start the iterations with y0 = b (which corresponds to x0 = 1)
and ε0 = 1− a, and in such a case, we may need many iterations if a is
not very close to 1 (i.e., if x0 is far from 1/a);

• or we try to start the iterations with the (hidden) variable x0 equal to a
close approximation a∗ to 1/a, and ε0 = 1−aa∗. In such a case, we must
have y0 = ba∗.

Now, one can design another iteration by defining{
rn = 1− εn

Kn+1 = 1 + εn,
(5.10)

which leads to the well-known Goldschmidt iteration [151]
yn+1 = Kn+1yn

rn+1 = Kn+1rn

Kn+1 = 2− rn.
(5.11)

This iteration, still mathematically equivalent to the previous ones, also
has different properties from a computational point of view. The computa-
tions of yn+1 and rn+1 are independent and hence can be done in parallel,
and the computation of Kn+1 is very simple (it is done by two’s complement-
ing rn). In case of a hardware implementation, since both multiplications that
appear in the iteration are by the same value Kn+1, some optimizations—
such as a common Booth recoding [37, 126]—are possible. However, unfortu-
nately, the iteration is not self-correcting: after the first rounding error, exact
information on a is lost forever.

From (5.9) or (5.6), by defining{
yn = bxn

δn = bεn,
(5.12)

one gets {
δn = b− ayn

yn+1 = yn + δnxn.
(5.13)

This last iteration is used in Intel and HP’s algorithms for the Itanium:
once a correctly rounded approximation xn to 1/a is obtained from (5.6)—
we will see later how it can be correctly rounded—one computes a first
approximation yn to b/a by multiplying xn by b. Then, this approximation
is improved by applying iteration (5.13).

5.3.2 Using the Newton–Raphson iteration for correctly rounded
division

In this section, we assume that we wish to compute ◦(b/a), where a and b are
floating-point numbers of the same format, and ◦ is one of the four following
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rounding modes: round to nearest even, round toward −∞, round toward
+∞, round toward zero. We will use some of the iterations presented in the
previous section. If the radix of the floating-point system is 2, we do not have
to worry about how values halfway between two consecutive floating-point
numbers are handled in the round-to-nearest mode. This is due to the follow-
ing result.

Lemma 14 (Size of quotients in prime radices, adapted from [270]). Assume
that the radix β of the floating-point arithmetic is a prime number. Let q = b/a,
where a and b are two floating-point numbers of precision p:

• either q cannot be exactly represented with a finite number of radix-β digits;

• or q is a floating-point number of precision p (assuming unbounded exponent
range).

Proof. Assume that q is representable with a finite number of radix-β digits,
but not with p digits or less. This means that there exist integers Q and eq

such that
q = Q · βeq−p+1,

where Q > βp, and Q is not a multiple of β.
Let A and B be the integral significands of a and b, and let ea and eb be

their exponents. We have

B · βeb−p+1

A · βea−p+1
= Q · βeq−p+1.

Therefore, there exists an integer e, e ≥ 0, such that

B = AQ · βe

or
B · βe = AQ.

This and the primality of β imply that B is a multiple of Q, which implies
B > βp. This is not possible since b is a precision-p floating-point number.

In Lemma 14, the fact that the radix should be a prime number is neces-
sary. For instance, in radix 10 with p = 4, 2.005 and 2.000 are floating-point
numbers, and their quotient 1.0025 has a finite representation, but cannot be
represented with precision 4. A consequence of Lemma 14 is that, in radix 2,
a quotient is never exactly halfway between two consecutive floating-point
numbers. Notice that in prime radices greater than 2, Lemma 14 does not
imply that quotients exactly halfway between two consecutive floating-point
numbers do not occur.4

4When the radix is an odd number, values exactly halfway between two consecutive
floating-point numbers are represented with infinitely many digits.
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An interesting consequence of Lemma 14, since there is a finite number
of quotients of floating-point numbers, is that there exists an exclusion zone
around middles of consecutive floating-point numbers, where we cannot find
quotients. There are several, slightly different, “exclusion theorems.” This is
one of them:

Lemma 15 (Exclusion lemma [88]). Assume radix 2 and precision p, and let b be
a normal floating-point number, and a a nonzero floating-point number. If c is either
a floating-point number or the exact midpoint between two consecutive floating-point
numbers, then we have ∣∣∣∣ ba − c

∣∣∣∣ > 2−2p−2 b

a
.

Another one is the following.

Lemma 16 (A slightly different exclusion lemma). Assume radix 2 and preci-
sion p, and let b be a normal floating-point number, and a a nonzero floating-point
number. If c is the exact midpoint between two consecutive floating-point numbers,
then we have ∣∣∣∣ ba − c

∣∣∣∣ > 2−p−1 ulp
(

b

a

)
.

Let us give a simple proof for Lemma 16.

Proof. Let A and B be the integral significands of a and b. We have

a = A · 2ea−p+1

and
b = B · 2eb−p+1.

Define

δ =
{

0 if B ≥ A
1 otherwise.

We have

ulp
(

b

a

)
= 2eb−ea−p+1−δ.

Also, the middle c of two consecutive floating-point numbers around b/a is
of the form

c = (2C + 1) · 2eb−ea−p−δ,

where C is an integer, 2p−1 ≤ C ≤ 2p − 1.
Therefore,

b

a
− c =

B

A
· 2eb−ea − (2C + 1) · 2eb−ea−p−δ

=
1
2

ulp
(

b

a

)
·
(

B

A
· 2p+δ − (2C + 1)

)
=

1
2A

ulp
(

b

a

)
·
(
B · 2p+δ − (2C + 1)A

)
.
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Since 1/A > 2−p, and since B · 2p+δ − (2C + 1)A is a nonzero integer, we
deduce ∣∣∣∣ ba − c

∣∣∣∣ > 2−p−1 ulp
(

b

a

)
.

When the processor being used has an internal precision that is signif-
icantly wider than the “target” precision, a careful implementation of itera-
tions such as (5.6) and (5.13) will allow one to obtain approximations to b/a
accurate enough so that Lemma 15 or a variant can be applied to show that,
once rounded to the target format, the obtained result will be the correctly
rounded (to the nearest) quotient. The main difficulty is when we want to
compute quotients of floating-point numbers in a precision that is the widest
available. In such a case, the following result is extremely useful.

Theorem 17 (Peter Markstein [270]). Assume a precision-p binary floating-point
arithmetic, and let a and b be normal numbers. If

• q is a faithful approximation to b/a, and

• y approximates 1/a with a relative error less than 2−p, and

• the calculations
r = ◦(b− aq), q′ = ◦(q + ry)

are performed using a given rounding mode ◦, taken among round to nearest
even, round toward zero, round toward −∞, round toward +∞,

then q′ is exactly ◦(b/a) (that is, b/a rounded according to the same rounding mode
◦).

Markstein also shows that the last FMA raises the inexact exception if
and only if the quotient was inexact. Notice that if y approximates 1/a with
an error less than or equal to 1

2 ulp(1/a), (that is, if y is 1/a rounded to near-
est), then it approximates 1/a with a relative error less than 2−p, so that
Theorem 17 can be applied.

Proof. Let us prove Theorem 17 in the case of round-to-nearest even mode
(the other cases are quite similar). First, notice that from Theorem 12, r is
computed exactly.5 Also, we will use the fact that if a is positive and is not a
subnormal number,6 then

a

2p − 1
≤ ulp(a) ≤ a

2p−1
. (5.14)

5As soon as ea + eq ≥ emin + p− 1, which will hold, in practice, if either we perform some
“prescaling” or handle the “difficult” cases separately.

6Again, such “difficult” cases can be processed separately.
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We assume that a, b, and q are not in the subnormal range; we also
assume a > 0, b > 0 (and hence q > 0). Figure 5.2 illustrates the various
cases that may occur, if we wish to return b/a rounded to nearest:

• if q − 1
2 ulp

(
b
a

)
< b

a < q + 1
2 ulp

(
b
a

)
, we must return q;

• if b
a > q + 1

2 ulp
(

b
a

)
, we must return q + ulp

(
b
a

)
;

• if b
a < q − 1

2 ulp
(

b
a

)
, we must return q − ulp

(
b
a

)
.

Notice that the case b
a = q ± 1

2 ulp
(

b
a

)
cannot occur from Lemma 14. The

returned value q′ is obtained by adding a correcting term ry to q, and round-
ing the obtained result to nearest. One can easily find that to make sure that
q′ = RN(b/a):

• if q − 1
2 ulp

(
b
a

)
< b

a < q + 1
2 ulp

(
b
a

)
, |ry|must be less than 1

2 ulp
(

b
a

)
;

• if b
a > q + 1

2 ulp
(

b
a

)
, ry must be larger than 1

2 ulp
(

b
a

)
and less than

3
2 ulp

(
b
a

)
;

• if b
a < q − 1

2 ulp
(

b
a

)
, ry must be larger than −3

2 ulp
(

b
a

)
and less than

−1
2 ulp

(
b
a

)
.

q

exclusion zones: b/a cannot be there

b/a is in that domain
length ulp(b/a)

return q return q + ulp(b/a)return q − ulp(b/a)

Figure 5.2: The various values that should be returned in round-to-nearest mode,
assuming q is within one ulp(b/a) from b/a.

Since y approximates 1/a with relative error less than 2−p, we have

1
a
− 1

2pa
< y <

1
a

+
1

2pa
. (5.15)
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1. If q− 1
2 ulp

(
b
a

)
< b

a < q + 1
2 ulp

(
b
a

)
. Assume b

a − q ≥ 0 (the other case is
symmetrical). We have

0 ≤ b− aq <
a

2
ulp
(

b

a

)
;

therefore, since b− aq and a
2 ulp

(
b
a

)
are floating-point numbers,

r = b− aq ≤ a− ulp(a)
2

ulp
(

b

a

)
.

Using (5.14), we get

0 ≤ r ≤
(

a

2
− a

2p+1 − 2

)
ulp
(

b

a

)
.

This, along with (5.15), gives an upper bound on |ry|:

|ry| <
(

a

2
− a

2p+1 − 2

)(
1
a

+
1

2pa

)
ulp
(

b

a

)
,

from which we deduce

|ry| <
(

1
2
− 1

2p−1(2p+1 − 2)

)
ulp
(

b

a

)
<

1
2

ulp
(

b

a

)
.

Therefore, RN(q + ry) = q, which is what we wanted to show.

2. If b
a > q + 1

2 ulp
(

b
a

)
(the case b

a < q− 1
2 ulp

(
b
a

)
is symmetrical). We have

a

2
ulp
(

b

a

)
< b− aq < a ulp

(
b

a

)
;

therefore, since b − aq, a
2 ulp

(
b
a

)
and aulp

(
b
a

)
are floating-point num-

bers,(
a + ulp(a)

2

)
ulp
(

b

a

)
≤ r = b− aq ≤ (a− ulp(a)) ulp

(
b

a

)
.

Using (5.14), we get(
a + a

2p−1

2

)
ulp
(

b

a

)
≤ r ≤

(
a− a

2p − 1

)
ulp
(

b

a

)
.

This, along with (5.15), gives(
a + a

2p−1

2

)(
1
a
− 1

2pa

)
ulp
(

b

a

)
< ry

<

(
a− a

2p − 1

)(
1
a

+
1

2pa

)
ulp
(

b

a

)
,
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from which we deduce

1
2

ulp
(

b

a

)
< ry <

(
1− 21−p

2p − 1

)
ulp
(

b

a

)
< ulp

(
b

a

)
.

Therefore, RN(q + ry) = q +ulp
(

b
a

)
, which is what we wanted to show.

Hence, a careful use of Theorem 17 makes it possible to get a correctly
rounded quotient b/a, once we have computed a very accurate approxima-
tion to the reciprocal 1/a. Let us therefore now focus on the computation
of reciprocals. More precisely, we wish to always get RN(1/a). The central
result, due to Peter Markstein, is the following one.

Theorem 18 (Markstein [270]). In precision-p binary floating-point arithmetic, if
y is an approximation to 1/a with an error less than 1 ulp(1/a), and the calculations

r = ◦(1− ay), y′ = ◦(y + ry)

are performed using round-to-nearest-even mode, then y′ is exactly 1/a rounded to
nearest even, provided that the integral significand of a, namely A = a/ulp(a), is
different from 2p − 1 = 11111 · · · 112.

A division algorithm can therefore be built as follows.

• First, RN(1/a) is computed. In general, it is wise to use iteration (5.8)
for the first steps because it is faster, and iteration (5.6) for the last steps
because it is more accurate (both in round-to-nearest mode). A very care-
ful error analysis must be performed to make sure that, after these itera-
tions, we get an approximation to 1/a that is within 1 ulp from 1/a. That
error analysis depends on the accuracy of the table (or approximation
of any kind, e.g., by a polynomial of small degree) that gives x0, on the
precision of the input and output values, on the available internal pre-
cision, etc.). A way to perform (and to automate) that error analysis is
presented by Panhaleux [321].

• Then, Theorem 18 is applied, to get RN(1/a) (except, possibly in the
case where the integral significand of a is 2p − 1 = 11111 · · · 112. That
case is easily handled separately [270]).

• A first approximation to the quotient is computed, by multiplying the
previously obtained value RN(1/a) by b.

• That approximation to the quotient is refined, in round-to-nearest
mode, using iteration (5.13). Again, a careful error analysis is required
to make sure that we get an approximation to b/a that is within ulp(b/a).
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• Finally, Theorem 17 is applied to get b/a correctly rounded in the
desired rounding mode.

Several variants of division algorithms (depending on the required and
internal precisions, depending on whether we wish to optimize the through-
put or to minimize the latency) are given by Markstein in his excellent
book [270].

5.4 Newton–Raphson-Based Square Root with an FMA

The Newton–Raphson iteration can also be used to evaluate square roots.
Again, the availability of an FMA instruction allows for rather easily obtained
correctly rounded results. We will not present the methods in detail here (one
can find them in [270, 86, 88]): we will focus on the most important results
only.

5.4.1 The basic iterations

From the general Newton–Raphson iteration (5.3), one can derive two classes
of algorithms for computing the square root of a positive real number a.

• If we look for the positive root of function f(x) = x2 − a, we get

xn+1 =
1
2

(
xn +

a

xn

)
. (5.16)

This “Newton–Raphson” square root iteration goes back to much
before Newton’s time. Al-Khwarizmi mentions this method in his
arithmetic book [94]. Furthermore, it was already used by Heron of
Alexandria (which explains why it is frequently named “the Heron iter-
ation”), and seems to have been known by the Babylonians 2000 years
before Heron [138]. One can easily show that if x0 > 0, then xn goes to√

a. This iteration has a drawback: it requires a division at each step.
Also, guaranteeing correct rounding does not seem to be a simple task.

• If we look for the positive root of function f(x) = 1/x2 − a, we get

xn+1 = xn(3− ax2
n)/2. (5.17)

This iteration converges to 1/
√

a, provided that x0 ∈ (0,
√

3/
√

a). To get
a first approximation to

√
a it suffices to multiply the obtained result

by a. And yet, this does not always give a correctly rounded result:
some refinement is necessary. To obtain fast, quadratic, convergence,
the first point x0 must be a close approximation to 1/

√
a, read from a

table or obtained using a polynomial approximation of small degree.
Iteration (5.17) still has a division, but that division (by 2) is very
simple, especially in radix 2.
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5.4.2 Using the Newton–Raphson iteration for correctly rounded
square roots

From Equation (5.17), and by defining a “residual” εn as 1− ax2
n, one gets εn = 1− ax2

n

xn+1 = xn + 1
2εnxn.

(5.18)

To decompose these operations in terms of FMA instructions, Markstein [270]
defines new variables: 

rn = 1
2εn

gn = axn

hn = 1
2xn.

(5.19)

From (5.18) and (5.19), one finds the following iteration:
rn = 1

2 − gnhn

gn+1 = gn + gnrn

hn+1 = hn + hnrn.

(5.20)

Variable hn goes to 1/(2
√

a), and variable gn goes to
√

a. Iteration (5.20) is
easily implemented with an FMA instruction. Some parallelism is possible
since the computations of gn+1 and hn+1 can be performed simultaneously.

Exactly as for the division iteration, a very careful error analysis is
needed, and the iterations are performed as well as a final refinement step.
Here are some results that make it possible to build refinement techniques.
See Markstein’s book [270] for more details.

Theorem 19. In any radix, the square root of a floating-point number cannot be the
exact midpoint between two consecutive floating-point numbers.

Proof. Assume that r is the exact middle of two consecutive radix-β,
precision-p floating-point numbers, and assume that it is the square-root of a
floating-point number x. Without loss of generality we can assume that r has
the form

r = (r0.r1r2 · · · rp−1)β +
1
2
β−p+1;

i.e., that 1 ≤ r < β. Let R = (r0r1r2 · · · rp−1)β be the integral significand of r.
We have

2rβp−1 = 2R + 1;

i.e.,
4r2β2p−2 = (2R + 1)2.

Since r2 is a floating-point number between 1 and β2, it is a multiple of β−p+1,
which implies that r2β2p−2 is an integer. Thus, 4r2β2p−2 is a multiple of 4. This
contradicts the fact that it is equal to the square of the odd number 2R+1.
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Theorem 20. If the radix of the floating-point arithmetic is 2, then the square root
reciprocal of a floating-point number cannot be the exact midpoint between two con-
secutive floating-point numbers.

The proof is very similar to the proof of Theorem 19.
In non-binary radices, Theorem 20 may not hold, even if the radix is

prime. Consider for example a radix-3 arithmetic, with precision p = 6. The
number

x = 32410 = 1100003

is a floating-point number, and the reader can easily check that

1√
x

=
1
38
·
(

1111113 +
1
2

)
,

which implies that 1/
√

x is the exact midpoint between two consecutive
floating-point numbers.

Also, in radix 10 with precision 16 (which corresponds to the decimal64
format of the IEEE 754-2008 standard), the square-root reciprocal of

70.36874417766400︸ ︷︷ ︸
16 digits

is
0. 11920928955078125︸ ︷︷ ︸

17 digits

,

which is the exact midpoint between two consecutive floating-point num-
bers.

The following Tuckerman test allows one to check if a floating-point num-
ber r is the correctly rounded-to-nearest square root of another floating-point
number a. Markstein [270] proves the following theorem in prime radices,
but it holds in any radix.

Theorem 21 (The Tuckerman test, adapted from Markstein’s presenta-
tion [270]). In radix β, if a and r are floating-point numbers, then r is

√
a rounded

to nearest if and only if

r(r − ulp(r−)) < a ≤ r(r + ulp(r)) (5.21)

where r− is the floating-point predecessor of r.

Proof. We should first notice that Theorem 20 implies that
√

a cannot be a
“midpoint” (i.e., a value exactly halfway between two consecutive floating-
point numbers). Therefore, we do not have to worry about tie-breaking rules.
Also, if k is an integer such that βkr and β2ka do not overflow or underflow,
then (5.21) is equivalent to

(βkr)((βkr)− βk ulp(r−)) < β2ka ≤ (βkr)((βkr) + βk ulp(r));



170 Chapter 5. The Fused Multiply-Add Instruction

which is equivalent, if we define R = βkr and A = β2ka to

R(R− ulp(R−)) < A ≤ R(R + ulp(R)).

Since R = RN(
√

A) is straightforwardly equivalent to r = RN(
√

a), we
deduce that without loss of generality, we can assume that 1 ≤ r < β. Let
us now consider two cases.

1. If r = 1. In this case (5.21) becomes 1 − β−p < a ≤ 1 + β−p+1; that is,
since a is a floating-point number,

a ∈ {1, 1 + β−p+1}. (5.22)

Since
√

a cannot be a midpoint, 1 = RN(
√

a) is equivalent to

1− 1
2
β−p <

√
a < 1 +

1
2
β−p+1,

which is equivalent to

1− β−p +
1
4
β−2p < a < 1 + β−p+1 +

1
4
β−2p+2. (5.23)

The only floating-point numbers lying in the real range defined
by (5.23) are 1 and 1 + β−p+1, so that (5.23) is equivalent to (5.22).

2. If 1 < r < β. In this case ulp(r−) = ulp(r) = β−p+1 and (5.21) is thus
equivalent to

r(r − β−p+1) < a ≤ r(r + β−p+1). (5.24)

Since
√

a cannot be a midpoint, r = RN(
√

a) is equivalent to

r − 1
2
β−p+1 <

√
a < r +

1
2
β−p+1.

By squaring all terms, this is equivalent to

r(r − β−p+1) +
1
4
β−2p+2 < a < r(r + β−p+1) +

1
4
β−2p+2. (5.25)

Now, since r is a floating-point number between 1 and β, it is a multiple
of β−p+1. This implies that r(r− β−p+1) and r(r + β−p+1) are multiples
of β−2p+2.

An immediate consequence is that there is no multiple of β−2p+2

between r(r − β−p+1) and r(r − β−p+1) + 1
4β−2p+2, or between r(r +

β−p+1) and r(r + β−p+1) + 1
4β−2p+2.

This implies that there is no floating-point number between r(r − β−p+1)
and r(r−β−p+1)+ 1

4β−2p+2, or between r(r+β−p+1) and r(r+β−p+1)+
1
4β−2p+2.

As a consequence, since a is a floating-point number, (5.25) is equivalent
to (5.24). q.e.d.
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With an FMA instruction, and assuming that instructions for computing
the floating-point predecessor and successor of r are available, the Tucker-
man test is easily performed. For instance, to check whether

a ≤ r(r + ulp(r)),

it suffices to compute

δ = RN(r × successor(r)− a)

using an FMA, and to test the sign of δ.

5.5 Multiplication by an Arbitrary-Precision Constant

Many numerical algorithms require multiplications by constants that are not
exactly representable in floating-point arithmetic. Typical examples of such
constants are π, 1/π, ln(2), e, as well as values of the form cos(kπ/N) and
sin(kπ/N), which appear in fast Fourier transforms. A natural question that
springs to mind is: Can we, at low cost, perform these multiplications with
correct rounding?

The algorithm presented here was introduced by Brisebarre and
Muller [51].

Assume that C is an arbitrary-precision constant. We want to design an
algorithm that always returns RN(Cx), for any input floating-point number
x of a given format. We want the algorithm to be very simple (two consecu-
tive operations only, without any test). We assume that the “target” format is
a binary floating-point format of precision p. Two possible cases are of inter-
est: in the first case, all intermediate calculations are performed in the target
format. In the second case, the intermediate calculations are performed in a
somewhat larger format. A typical example is when the target precision is the
double precision of IEEE 754-1985 (i.e., the binary64 format of IEEE 754-2008),
and the internal precision is that of the double-extended precision format.

The algorithm requires that the two following floating-point numbers be
pre-computed: {

Ch = RN(C),
C` = RN(C − Ch).

(5.26)

Let us first present Algorithm 5.2.

Algorithm 5.2 Multiplication by C with a multiplication and an FMA [51].
From x, compute {

u1 = RN(C`x),
u2 = RN(Chx + u1).

(5.27)

The result to be returned is u2.
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Beware: we do not claim that for all values of C, this algorithm will
return RN(Cx) for all x. Indeed, it is quite simple to build counterexamples.
What we claim is that

• we have reasonably simple methods that make it possible, for a given
value of C, to check if Algorithm 5.2 will return RN(Cx) for all floating-
point numbers x;

• in practice, for most usual values of C, Algorithm 5.2 returns RN(Cx)
for all floating-point numbers x.

Note that without the use of an FMA instruction, Algorithm 5.2 would
fail to always return a correctly rounded result for all but a few simple (e.g.,
powers of 2) values of C.

In this section, we will present a simple method that allows one to
check, for a given constant C and a given format, if Algorithm 5.2 will
return RN(Cx) for all x. That method is sometimes unable to give an
answer. See [51] for a more sophisticated method that always either certi-
fies that Algorithm 5.2 always returns a correctly rounded result, or gives all
counterexamples. The method we are going to present is based on the con-
tinued fraction theory. Continued fractions are very useful in floating-point
arithmetic (for instance, to get worst cases for range reduction of trigonomet-
ric functions, see Chapter 11 and [293]). We present some basic results on that
theory in the appendix (Section 16.1, page 521).

5.5.1 Checking for a given constant C if Algorithm 5.2 will always
work

Without loss of generality, we assume in the following that 1 < x < 2 and
1 < C < 2, that C is not exactly representable, and that C−Ch is not a power
of 2. Define xcut = 2/C. We will have to separate the cases x < xcut and
x > xcut, because the value of ulp(C · x) is not the same for these two cases.

The middle of two consecutive floating-point numbers around C · x has
the form

2A + 1
2p

if x < xcut,

and
2A + 1
2p−1

if x > xcut,

where A is an integer between 2p−1 and 2p. Our problem is reduced to know-
ing if there can be such a midpoint between C · x and the value u2 returned
by Algorithm 5.2. If this is not the case, then, necessarily,

u2 = RN(C · x).

Hence, first, we must bound the distance between u2 and C · x.
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In this book, we will assume that the intermediate calculations are
performed in the “target” format (see [51] for the general case).

One has the following property; see [51, Property 2]:

Property 13. Define ε1 = |C − (Ch + C`)| .

• If x < xcut − 2−p+2, then |u2 − Cx| < 1
2 ulp(u2) + η,

• If x ≥ xcut + 2−p+2, then |u2 − Cx| < 1
2 ulp(u2) + η′,

where  η =
1
2

ulp(C`xcut) + ε1xcut,

η′ = ulp(C`) + 2ε1.

Property 13 tells us that u2 is within 1
2 ulp(u2) + η or 1

2 ulp(u2) + η′ from
C · x, where η and η′ are very small. What does this mean?

• u2 is within 1
2 ulp(u2) from C · x. In such a case,7 u2 = RN(C · x), which

is the desired result;

• or (see Figure 5.3), C · x is very close (within distance η or η′) from the
exact middle of two consecutive floating-point numbers. Depending on
whether x < xcut or not, this means that C · x is very close to a number
of the form (2A + 1)/2p or (2A + 1)/2p−1, which, by defining

X = 2p−1x,

means that 2C or C is very close to a rational number of the form

2A + 1
X

.

Hence, our problem is reduced to examining the best possible rational
approximations to C or 2C, with denominator bounded by 2p − 1. This is a
typical continued fraction problem. Using Theorem 50 (in the Appendix,
Chapter 16, page 523), one can prove the following result [51].

7Unless u2 is a power of 2, but this case is easily handled separately.
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u2

FP numbers

Domain where
Cx can be
located

Can Cx be here?

If Cx is here, then (Cx ) = u2

1
2 ulp (u2 )

Figure 5.3: We know that Cx is within 1
2 ulp(u2) + η (or η′) from the floating-point

(FP) number u2, where η is less than 2−2p+1. If we can show that Cx cannot be at
a distance less than or equal to η (or η′) from the midpoint of two consecutive FP
numbers, then u2 will be the FP number that is closest to Cx [51]. c© IEEE, with
permission.

Theorem 22 (Conditions on C and p). Assume 1 < C < 2. Let xcut = 2/C and
Xcut =

⌊
2p−1xcut

⌋
.

• If
X = 2p−1x ≤ Xcut

and
ε1xcut +

1
2

ulp(C`xcut) ≤
1

2p+1Xcut

(where ε1 is defined in Property 13) then Algorithm 5.2 will always return a
correctly rounded result, except possibly if X is a multiple of the denominator
of a convergent n/d of 2C for which

|2Cd− n| < 2p

d2p−1/de

(
ε1xcut +

1
2

ulp(C`xcut)
)

;
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• If
X = 2p−1x > Xcut

and
22p+1ε1 + 22p−1 ulp(2C`) ≤ 1,

then Algorithm 5.2 will always return a correctly rounded result, except pos-
sibly if X is a multiple of the denominator of a convergent n/d of C for which

|Cd− n| < ε1d +
2n−1

dXcut/de
ulp(C`).

Hence, to check whether Algorithm 5.2 will always return a correctly
rounded result, it suffices to compute the first convergents of C and 2C (those
of denominator less than 2p).

Table 5.2 gives some results obtained using this method (“Method 2” in
the table) and two other methods, presented in [51]. Method 3 is the most
complex, but it always gives an answer (either it certifies, for a given C, that
the algorithm will always return RN(C · x), or it returns all the counterexam-
ples). From Table 5.2, one can for instance deduce the following result.

Theorem 23 (Correctly rounded multiplication by π [51]). Algorithm 5.2
always returns a correctly rounded result in the double-precision/binary64 format
with C = 2jπ, where j is any integer, provided no under/overflow occurs.

Hence, in this case, multiplying by π with correct rounding only requires
two consecutive FMAs.

If a wider internal format of precision p+g is available then it is possible
to slightly modify Algorithm 5.2 to get an algorithm that works for more
values of C. See [51], as well as http://perso.ens-lyon.fr/jean-michel.

muller/MultConstant.html, for more details.

5.6 Evaluation of the Error of an FMA

We have previously seen that, under some conditions, the error of a floating-
point addition or multiplication can be exactly representable using one
floating-point number, and is readily computable using simple algorithms.
When dealing with the FMA instruction, two natural questions arise:

• How many floating-point numbers are necessary for representing the
error of an FMA?

• Can these numbers be easily calculated?

Boldo and Muller [35] studied that problem, in the case of radix-2 arith-
metic and assuming rounding to nearest. They showed that two floating-
point numbers always suffice for representing the error of an FMA, and
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C p Method 1 Method 2 Method 3

π 8
Does not work for

226

Does not work for

226

AW unless X =

226

π 24 unable unable AW

π 53 AW unable AW

π 64 unable AW AW

π 113 AW AW AW

1/π 24 unable unable AW

1/π 53
Does not work for

6081371451248382
unable

AW unless X =

6081371451248382

1/π 64 AW AW AW

1/π 113 unable unable AW

ln 2 24 AW AW AW

ln 2 53 AW unable AW

ln 2 64 AW unable AW

ln 2 113 AW AW AW
1

ln 2
24 unable AW AW

1
ln 2

53 AW AW AW
1

ln 2
64 unable unable AW

1
ln 2

113 unable unable AW

Table 5.2: Some results obtained using the method presented here (Method 2), as well
as Methods 1 and 3 of [51]. The results given for constant C hold for all values
2±jC. “AW” means “always works” and “unable” means “the method is unable to
conclude.” [51], c© IEEE, 2008, with permission.

they gave an algorithm for computing these two numbers. That algorithm is
Algorithm 5.3, given below. It uses Algorithm 5.1 (2MultFMA), presented at
the beginning of this chapter, as well as Algorithms 4.3 (Fast2Sum) and 4.4
(2Sum) of Chapter 4. The total number of floating-point operations it requires
is 20.

Algorithm 5.3 ErrFma(a,x,y).
r1 ← RN(ax + y);
(u1, u2)← 2MultFMA(a, x);
(α1, α2)← 2Sum(y, u2);
(β1, β2)← 2Sum(u1, α1);
γ ← RN(RN(β1 − r1) + β2);
(r2, r3)← Fast2Sum(γ, α2);
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One can show that if no underflow or overflow occurs, then:

• ax + y = r1 + r2 + r3 exactly;

• |r2 + r3| ≤ 1
2 ulp(r1);

• |r3| ≤ 1
2 ulp(r2).

Recently, Boldo wrote a formal proof in Coq of that result.8

5.7 Evaluation of Integer Powers

Now, we describe a method due to Kornerup et al. for accurately evaluating
powers to a positive integer n in binary floating-point arithmetic. We refer to
the research report [225] for the proofs of the results that we claim here.

We assume that we use a radix-2 floating-point arithmetic that follows
the IEEE 754-1985 or the IEEE 754-2008 standard, in round-to-nearest mode.
We also assume that an FMA instruction is available.9 An important case is
when an internal format wider than the “target precision” is available. For
example, when the target format is double precision (or, equivalently,
binary64) and the internal format is the associated extended format, for
“reasonable” values of the power n, we will be able to guarantee correctly
rounded powers.

Algorithms Fast2Sum (Algorithm 4.3, page 126) and 2MultFMA
(Algorithm 5.1, page 152) both provide exact results for computations of the
form x + y and x · y. These exact results are represented by pairs (ah, a`) of
floating-point numbers such that |a`| ≤ 1

2 ulp(ah). In the following we need
products of such pairs. However, we do not need exact products: we will
be satisfied with approximations to the products, obtained by discarding
terms of the order of the product of the two low order terms. Given
two double-precision operands (ah, a`) and (bh, b`), the algorithm DblMult
(Algorithm 5.4) computes (x, y) such that

x + y = [(ah + a`)(bh + b`)](1 + δ),

where the relative error δ is given by Theorem 24. Several slightly different
versions of algorithm DblMult are possible.

8See http://lipforge.ens-lyon.fr/www/pff/FmaErr.html.
9As a matter of fact, the availability of an FMA is not strictly mandatory. And yet, the

algorithm uses 2MultFMA products (Algorithm 5.1). If an FMA is not available, these prod-
ucts must be replaced by Dekker products (Algorithm 4.7), which are much more costly.
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Algorithm 5.4 DblMult(ah, a`, bh, b`), Kornerup et al. [225].

t1h := RN(ahbh);
t2 := RN(ahb`);
t1` := RN(ahbh − t1h);
t3 := RN(a`bh + t2);
t4 := RN(t1` + t3);
ch := RN(t1h + t4);
t5 := RN(ch − t1h);
c` := RN(t4 − t5);

The result to be returned is (ch, c`).

Theorem 24 (Kornerup et al. [225]). Let ε = 2−p, where p ≥ 3 is the precision of
the radix-2 floating-point system used. If |a`| ≤ 2−p|ah| and |b`| ≤ 2−p|bh|, then the
returned value (x, y) of DblMult(ah, a`, bh, b`) satisfies

x + y = (ah + a`)(bh + b`)(1 + α), with |α| ≤ η,

where

η := 7ε2 + 18ε3 + 16ε4 + 6ε5 + ε6.

Function DblMult uses 8 floating-point operations: 2 multiplications,
4 additions/subtractions, and 2 FMAs. DblMult is at the heart of the follow-
ing powering algorithm (Algorithm 5.5).

Algorithm 5.5 IteratedProductPower(x, n), n ≥ 1, Kornerup et al. [225].

i := n;
(h, `) := (1, 0);
(u, v) := (x, 0);
while i > 1 do

if (i mod 2) = 1 then
(h, `) := DblMult(h, `, u, v);

end;
(u, v) := DblMult(u, v, u, v);
i := bi/2c;

end do;
(h, `) := DblMult(h, `, u, v);

The number of floating-point operations used by the IteratedProduct-
Power algorithm is between 8(1 + blog2(n)c) and 8(1 + 2 blog2(n)c). One can
show the following result.
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Theorem 25. The values h and ` returned by algorithm IteratedProductPower
satisfy

h + ` = xn(1 + α), with |α| ≤ (1 + η)n−1 − 1,

where η = 7ε2 + 18ε3 + 16ε4 + 6ε5 + ε6 is the same value as in Theorem 24.

From Theorem 25 one can deduce that if algorithm Iterated
ProductPower is implemented in double-precision/binary64 arithmetic, then
RN(h + `) is a faithful result (see Section 2.2) for xn, as long as n ≤ 249.

To guarantee a correctly rounded result in double-precision/binary64
arithmetic, we must know how close xn can be to the exact midpoint between
two consecutive floating-point numbers. This problem is an instance of the
Table Maker’s Dilemma, which is the main topic of Chapter 12.

For instance, in double-precision arithmetic, the hardest-to-round case
for function x952 corresponds to

x = (1.0101110001101001001000000010110101000110100000100001)2,

for which we have

x952 = (1.0011101110011001001111100000100010101010110100100110︸ ︷︷ ︸
53 bits

1

00000000 · · · 00000000︸ ︷︷ ︸
63 zeros

1001 · · · )2 × 2423.

For that example, xn is extremely close to the exact middle of two consecutive
double-precision numbers. There is a run of 63 consecutive zeros after the
rounding bit. This case is the worst case for all values of n between 3 and
1035.

To get correctly rounded results in double-precision, we will need to run
algorithm IteratedProductPower in double-extended precision. In the follow-
ing RNd means round to nearest in double precision. When implemented
in double-extended precision, Algorithm 5.5 returns two double-extended
numbers h and ` such that

h + ` = xn(1 + α), with |α| ≤ αmax,

where αmax is given by Theorem 25.
Using that bound and worst cases for the correct rounding of functions

xn that are presented in Section 12.5.2 (page 458), one can show the following
result.

Theorem 26. If algorithm IteratedProductPower is performed in double-extended
precision, and if 3 ≤ n ≤ 1035, then RNd(h + `) = RNd(xn): hence by rounding
h + ` to the nearest double-precision number, we get a correctly rounded result.



Chapter 6

Enhanced Floating-Point Sums,
Dot Products, and Polynomial
Values

In this chapter, we focus on the computation of sums and dot products,
and on the evaluation of polynomials in IEEE 754 floating-point arith-

metic.1 Such calculations arise in many fields of numerical computing. Com-
puting sums is required, e.g., in numerical integration and the computation
of means and variances. Dot products appear everywhere in numerical lin-
ear algebra. Polynomials are used to approximate many functions (see Chap-
ter 11).

Many algorithms have been introduced for each of these tasks (some of
them will be presented later on in this chapter), usually together with some
backward, forward, or running/dynamic error analysis. See for example [182,
Chapters 3, 4, 5] and [222, 354, 266].

Our goal here is not to add to these algorithms but rather to observe
how a floating-point arithmetic compliant with one of the IEEE standards
presented in Chapter 3 can be used to provide validated running error bounds
on and/or improved accuracy of the results computed by various algorithms.
The consequence is enhanced implementations that need neither extended
precision nor interval arithmetic but only the current working precision. In all
that follows, we assume that the arithmetic is correctly rounded, and, more
specifically, that it follows the IEEE 754-1985 or IEEE 754-2008 standard for
floating-point arithmetic.

Providing a validated running error bound means being able to compute
on the fly, during the calculation of a sum, a dot product, or a polynomial
value, a floating-point number that is a mathematically true error bound on
the result of that calculation, and that can be computed using only standard
floating-point operations (just like the error terms of, say, a+ b). Such bounds

1Section 9.7 will survey how these tasks may be accelerated using specific hardware.

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_6, 181
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follow from some basic properties of IEEE 754-2008 floating-point arithmetic,
which we shall review first.

Providing improved accuracy means that we are able to return a useful
result even if the problem is ill conditioned (e.g., when computing the sum
a1 + a2 + · · · + an, if |

∑n
i=1 ai| is very small in front of

∑n
i=1 |ai|). More pre-

cisely, we wish to obtain results that are approximately as accurate as if the
intermediate calculations were performed in, say, double-word or triple-
word arithmetic (see Chapter 14), without having to pay the cost (in terms of
computation time, of code size, and clarity) of such an arithmetic. To do that,
we will frequently use “compensated algorithms”: In Chapters 4 and 5, we
have studied some tricks (2Sum, Fast2Sum, Dekker product, 2MultFMA) that
allow one to retrieve the error of a floating-point addition or multiplication.2

It is therefore tempting to use these tricks to somehow compensate for the
rounding errors that occur in a calculation. The first compensated algorithm
was due to Kahan (see Section 6.3.2).

Although we will only focus here on sums, dot products, and polyno-
mials, compensated algorithms can be built for other numerical problems.
Some numerical algorithms that are simple enough (we need some kind of
“linearity”) can be transformed into compensated algorithms automatically.
This is the underlying idea behind Langlois’s CENA method [241]. Rump
and Böhm also suggested a way of automatically improving some numerical
calculations [350].

In this chapter overflows are ignored and all input values are assumed
to be exactly representable by floating-point numbers (which means that we
do not include a possible preliminary rounding in the error analyses).

6.1 Preliminaries

We collect here some notation and basic facts needed later that follow from
the definition of floating-point arithmetic given in Chapter 2. Most of these
basic facts have already been mentioned in previous chapters, but we review
them here, to make this chapter (almost) self-contained.

Recall that the smallest positive subnormal number is

α = βemin−p+1,

that the smallest positive normal number is

βemin ,

and that the largest finite floating-point number is

Ω = (β − β1−p) · βemax .

2Under some conditions. See Chapters 4 and 5 for more details.
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Also (see Definition 6 in Chapter 2, page 39), we remind the reader that the
unit roundoff u is

u =


1
2
β1−p in round-to-nearest mode,

β1−p in the other rounding modes.

6.1.1 Floating-point arithmetic models

Several models have been proposed in the literature to analyze numerical
algorithms that use floating-point arithmetic [186, 55, 25, 60, 182]. A widely
used property is the following. Let x and y be two floating-point numbers and
let op ∈ {+,−,×, /}. If βemin ≤ |x op y| ≤ Ω then no underflow/overflow3

occurs when computing x op y, and there exist some real numbers ε1 and ε2
such that

◦(x op y) = (x op y)(1 + ε1) (6.1a)
= (x op y)/(1 + ε2), |ε1|, |ε2| ≤ u. (6.1b)

See Section 2.2.3, page 23, for an explanation. Identity (6.1a) corresponds to
what is called the standard model of floating-point arithmetic (see [182, p. 40]).
Identity (6.1b) proves to be extremely useful for running error analysis and
exact error-bound derivation, as we will see below.

The identities in (6.1) assume that no underflow occurs. If we want to
take into account the possibility of underflow, we must note that:

• if underflow occurs during addition/subtraction, then the computed
result is the exact result (this is Theorem 3 in Chapter 4, page 124, see
also [176], [182, Problem 2.19]). Thus, (6.1) still holds (indeed, with
ε1 = ε2 = 0) for op ∈ {+,−} in the case of underflows;

• however, if op ∈ {×, /} and underflow may occur, then the preceding
model must be modified as follows: there exist some real numbers ε1,
ε2, η1, η2 such that

◦(x op y) = (x op y)(1 + ε1) + η1 (6.2a)
= (x op y)/(1 + ε2) + η2, (6.2b)

with
|ε1|, |ε2| ≤ u, |η1|, |η2| ≤ α, ε1η1 = ε2η2 = 0. (6.2c)

From now on we will restrict our discussion to (6.1) for simplicity, thus
assuming that no underflow occurs. More general results that do take possi-
ble underflows into account using (6.2) can be found in the literature (see for
instance [266, 354]).

3See the note on underflow, Section 2.1, page 18.
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6.1.2 Notation for error analysis and classical error estimates

Error analysis using the “standard model” (6.1) often makes repeated use of
factors of the form 1 + ε1 or 1/(1 + ε2), with |ε1|, |ε2| ≤ u (see for instance the
example of iterated products, given in Section 2.6.3, page 37). A concise way
of handling such terms is through the θn and γn notation defined by Higham
in [182, p. 63]:

Definition 9 (θn and γn). For εi such that |εi| ≤ u, 1 ≤ i ≤ n, and assuming
nu < 1,

n∏
i=1

(1 + εi)±1 = 1 + θn,

where
|θn| ≤

nu
1− nu

=: γn.

Notice that if n� 1/u, γn ≈ nu. Such quantities enjoy many properties,
among which (see [182, p. 67]):

γn ≤ γn+1. (6.3)

Let us now see the kind of error bounds that can be obtained by
combining the standard model with the above θn and γn notation, focus-
ing for instance on the following three classical algorithms (Algorithms 6.1
through 6.3):4

Algorithm 6.1 Algorithm RecursiveSum(a).
r ← a1

for i = 2 to n do
r ← ◦(r + ai)

end for
return r

Algorithm 6.1 is the straightforward algorithm for computing

a1 + a2 + · · ·+ an.

More sophisticated algorithms will be given in Section 6.3. Similarly,
Algorithm 6.2 is the straightforward algorithm for computing

a1 · b1 + a2 · b2 + · · ·+ an · bn.

4These bounds are given in [182, p. 82, p. 63, p. 95].
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Algorithm 6.2 Algorithm RecursiveDotProduct(a,b).
r ← ◦(a1 × b1)
for i = 2 to n do

r ← ◦
(
r + ◦(ai × bi)

)
end for
return r

Algorithm 6.3 computes p(x) = anxn+an−1x
n−1+· · ·+a0 using Horner’s

rule. See Section 6.5 for a “compensated” Horner algorithm.

Algorithm 6.3 Algorithm Horner(p,x).
r ← an

for i = n− 1 downto 0 do
r ← ◦

(
◦(r × x) + ai

)
end for
return r

Let us first consider recursive summation (Algorithm 6.1). In that algo-
rithm, the first value of variable r (after the first iteration of the for loop) is

(a1 + a2)(1 + ε1),

with |ε1| ≤ u. That is, that value of r can be rewritten as

(a1 + a2)(1 + θ1),

where the notation θ1 is introduced in Definition 9. The second value of vari-
able r (after the second iteration of the for loop) is

((a1 + a2)(1 + ε1) + a3) (1 + ε2) with |ε2| ≤ u
= (a1 + a2)(1 + θ2) + a3(1 + θ1),

and, by a straightforward induction, the last value of r has the form

(a1 + a2)(1 + θn−1) + a3(1 + θn−2) + a4(1 + θn−3) + · · · + an(1 + θ1).

Using (6.3), we obtain the absolute forward error bound∣∣∣∣∣RecursiveSum(a)−
n∑

i=1

ai

∣∣∣∣∣ ≤ γn−1

n∑
i=1

|ai|. (6.4)

Similarly, it follows for Algorithm 6.2 that∣∣∣∣∣RecursiveDotProduct(a, b)−
n∑

i=1

ai · bi

∣∣∣∣∣ ≤ γn

n∑
i=1

|ai · bi|, (6.5)
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and, for Algorithm 6.3, that

|Horner(p, x)− p(x)| ≤ γ2n

n∑
i=0

|ai| · |x|i. (6.6)

Notice that if a fused multiply-add (FMA, see Section 2.8, page 51) instruc-
tion is available, Algorithms 6.2 and 6.3 can be rewritten so that they become
simpler, faster (the number of operations is halved) and, in general, slightly
more accurate (for polynomial evaluation, γ2n is replaced by γn so that the
error bound is roughly halved).5

An important notion in numerical analysis is that of backward error,
introduced by Wilkinson [435]. Assume we wish to compute y = f(x).
Instead of y we compute some value ŷ (that we hope is close to y). In most
cases, ŷ is the exact value of f at some locally unique point x̂ (that we hope is
close to x).

• The backward error of this computation is

|x− x̂|,

• and the relative backward error is∣∣∣∣x− x̂

x

∣∣∣∣ .
When there might be some ambiguity, the usual absolute and relative errors,
namely

|y − ŷ|

and

|y − ŷ|/|y|

are called the forward error and relative forward error, respectively.
In Equations (6.4), (6.5), and (6.6), the values γn−1, γn, and γ2n are upper

bounds on the backward relative error of the computation. These equations
show that recursive summation and dot product have a small backward error
if nu � 1, as well as Horner’s algorithm if 2nu � 1 (which holds in all
practical cases: for instance, in double-precision/binary64 arithmetic, nobody
evaluates a polynomial of degree 250).

5Which, of course, does not imply that the error itself is halved.
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And yet, the forward relative errors of these algorithms can be arbitrarily
large if the condition numbers

Csummation =

n∑
i=1

|ai|∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣
(summation)

Cdot product =

2 ·
n∑

i=1

|ai · bi|∣∣∣∣∣
n∑

i=1

ai · bi

∣∣∣∣∣
(dot product)

CHorner =

n∑
i=0

|ai| · |x|i∣∣∣∣∣
n∑

i=0

ai · xi

∣∣∣∣∣
(polynomial evaluation)

are too large.

6.1.3 Properties for deriving validated running error bounds

Together with the definition of u, Equation (6.1) yields a number of properties
that will prove useful for deriving validated error bounds.

Property 14. Let x, y, z be non-negative floating-point numbers. If underflow does
not occur, then xy + z ≤ ◦(◦(x× y) + z)(1 + u)2.

Proof. Applying (6.1b) to xy gives xy + z = ◦(x× y)(1 + ε) + z, |ε| ≤ u. Since
xy + z, ◦(x× y), and z are all non-negative, we deduce that

xy + z ≤ ◦(x× y)|1 + ε|+ z

≤ ◦(x× y)(1 + u) + z

≤ (◦(x× y) + z)(1 + u).

Applying (6.1b) to the sum ◦(x× y) + z gives further

◦(x× y) + z = ◦(◦(x× y) + z)(1 + ε′), |ε′| ≤ u,

= ◦(◦(x× y) + z)|1 + ε′|
≤ ◦(◦(x× y) + z)(1 + u),

which concludes the proof.
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Property 15. If the radix is even, p ≤ −emin (these two conditions always hold in
practice), and if k is a positive integer such that ku < 1, then 1 − ku is a normal
floating-point number.

Proof. Recall that u is equal to 1
2β1−p in round-to-nearest, and to β1−p in the

other rounding modes. Since p > 0 both k and u−1 are positive integers.
Thus, ku < 1 implies u ≤ 1−ku < 1. Since p ≤ −emin and β ≥ 2 is even, both
possible values for u are at least βemin . Consequently, βemin ≤ 1− ku < 1.

Hence, there exist a real µ and an integer e such that

1− ku = µ · βe−p+1,

with βp−1 ≤ µ < βp and emin ≤ e < 0. Writing µ = (u−1 − k)uβ−e+p−1,
it follows that µ is a positive integer as the product of the positive integers
u−1 − k and uβ−e+p−1.

Property 16 is a direct consequence of [314, Lemma 2.3] and Property 15.

Property 16 (Rump et al. [314]). Let k be a positive integer such that ku < 1 and
let x be a floating-point number such that βemin ≤ |x| ≤ Ω. Then

(1 + u)k−1|x| ≤ ◦
(
|x|

1− ku

)
.

6.2 Computing Validated Running Error Bounds

Equations (6.4), (6.5), and (6.6) give error bounds for three basic algorithms.
These error bounds contain expressions such as γ2n

∑n
i=0 |ai| · |x|i (for poly-

nomial evaluation) that make them difficult to check using floating-point
arithmetic only. Hence, it is interesting to design algorithms that compute a
validated error bound on the fly.

Ogita, Rump, and Oishi give a compensated algorithm for the dot prod-
uct with running error bound in [313]. Below, Algorithm 6.4 is a modification
of [182, Algorithm 5.1] which evaluates a polynomial using Horner’s rule and
provides a validated running error bound.
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Algorithm 6.4 This algorithm computes a pair (r, b) of floating-point numbers
such that r = Horner(p, x) and |r − p(x)| ≤ b, provided no underflow or
overflow occurs.

r ← an;
s← ◦(|an|/2);
for i = n− 1 downto 1 do

r ← ◦
(
◦(r × x) + ai

)
;

s← ◦
(
◦(s× |x|) + |r|

)
;

end for
r ← ◦

(
◦(r × x) + a0

)
;

b← ◦
(
2× ◦(s× |x|) + |r|

)
;

b← u× ◦
(
b/(1− (2n− 1)u)

)
;

return (r, b);

If an FMA instruction is available, then the core of Horner’s loop in
Algorithm 6.4 obviously becomes r ← ◦(r × x + ai). This results in a faster
and slightly better algorithm.

Following the analysis of Horner’s rule given in [182, page 95], we arrive
at the result below.

Theorem 27. If no underflow or overflow occurs, then Algorithm 6.4 computes in
4n + 1 flops a pair of normal floating-point numbers (r, b) such that∣∣∣∣∣r −

n∑
i=0

aix
i

∣∣∣∣∣ ≤ b.

Proof. Recalling that Horner’s rule in degree n takes exactly 2n flops and
ignoring operations such as absolute value and multiplication/division by 2,
u, or n, we deduce the flop count of 4n + 1 for Algorithm 6.4.

Now, for the error bound, following [182, page 95], let ri be the value of
r after the loop of index i, so that

ri = ◦
(
◦(ri+1 · x) + ai

)
for 0 ≤ i < n, and rn = an. Using (6.1a) and (6.1b), we obtain

(1 + εi)ri = ri+1x(1 + δi) + ai, |εi|, |δi| ≤ u.

Now, for 0 ≤ i ≤ n, define qi =
∑n

h=i ahxh−i and ei = ri − qi. We have en = 0
and, for 1 ≤ i < n, using qi = qi+1x + ai allows one to deduce from the above
equation that

ei = xei+1 + δixri+1 − εiri.

Taking absolute values, we get |ei| ≤ |x||ei+1|+u
(
|x||ri+1|+|ri|

)
. Using en = 0

further leads to ∣∣∣∣∣r −
n∑

i=0

aix
i

∣∣∣∣∣ = |e0| ≤ uE0,
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with E0 given by the following recurrence:

En = 0 and, for n > i ≥ 0, Ei =
(
Ei+1 + |ri+1|

)
|x|+ |ri|.

Therefore, E0 = |rnxn| + 2
∑n−1

i=1 |rix
i| + |r0|. Since rn = an and r0 = r, this

can be rewritten as
E0 = 2S(|x|) · |x|+ |r|,

where

S(x) =
|an|
2

xn−1 +
n−2∑
i=0

|ri+1|xi.

Since S is a polynomial of degree n−1 with non-negative coefficients only, we
deduce from Property 14 that S(|x|) ≤ s · (1 + u)2n−2, where s is the floating-
point number obtained at the end of Algorithm 6.4. The conclusion follows
using Property 16 with k = 2n− 1.

Notice that the validated running error bound b computed by
Algorithm 6.4 is obtained at essentially the same cost as the running error
estimate of [182, Algorithm 5.1]. The paper by Ogita, Rump, and Oishi [313]
and Louvet’s Ph.D. dissertation [266] are good references for other examples
of validated running error bounds.

6.3 Computing Sums More Accurately

As stated in the beginning of this chapter, many numerical problems require
the computation of sums of many floating-point numbers. In [181] and later
on in [182], Higham gives a survey on summation methods. Interesting infor-
mation can also be found in [354]. Here, we will just briefly present the main
results: the reader should consult these references for more details.

We will first deal with methods that generalize the straightforward
RecursiveSum algorithm (Algorithm 6.1). After that, we will present some
methods that use the Fast2Sum and 2Sum algorithms presented in Chapter 4,
pages 126 and 130 (we remind the reader that these algorithms compute the
error of a rounded-to-nearest floating-point addition. It is therefore tempting
to use them to somehow compensate for the rounding errors).

In this section, we want to evaluate, as accurately as possible, the sum of
n floating-point numbers, x1, x2, . . . , xn.

6.3.1 Reordering the operands, and a bit more

When considering the RecursiveSum algorithm (Algorithm 6.1), conven-
tional methods for improving accuracy consist in preliminarily sorting the
input values, so that

|x1| ≤ |x2| ≤ · · · ≤ |xn|
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(increasing order), or even sometimes

|x1| ≥ |x2| ≥ · · · ≥ |xn|

(decreasing order). Another common strategy (yet expensive in terms of com-
parisons), called insertion summation, consists in first sorting the xi’s by
increasing order of magnitude, then computing ◦(x1 +x2), and inserting that
result in the list x3, x4, . . . , xn, so that the increasing order is kept, and so on.
We stop when there remains only one element in the list: that element is the
approximation to

∑
1≤i≤n xi.

To analyze a large class of similar algorithms, Higham defines in [182,
page 81] a general algorithm expressed as Algorithm 6.5.

Algorithm 6.5 General form for a large class of addition algorithms (Higham,
Algorithm 4.1 of [182]).

Let S = {x1, x2, . . . , xn}
while S contains more than one element do

Remove two numbers x and y from S and add ◦(x + y) to S.
end while
Return the remaining element of S.

Note that since the number of elements of S decreases by one at each
iteration, this algorithm always performs n − 1 floating-point additions (the
while loop can be replaced by a for loop).

If Ti is the result of the i-th addition of Algorithm 6.5, Higham shows
that the final returned result, say s = Tn−1, satisfies∣∣∣∣∣s−

n∑
i=1

xi

∣∣∣∣∣ ≤ u
n−1∑
i=1

|Ti|, (6.7)

where, as in the previous sections, u is the unit roundoff defined in Chapter 2,
page 39 (Definition 6).

Hence, a good strategy is to minimize the terms |Ti|. This explains some
properties:

• although quite costly, insertion summation is a rather accurate method
(as pointed out by Higham, if all the xi’s have the same sign, this is the
best method among those that are modeled by Algorithm 6.5);

• When all the xi’s have the same sign, ordering the input values in
increasing order gives the smallest bound among the recursive sum-
mation methods.6

6It gives the smallest bound, which does not mean that it will always give the smallest error.
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Also, when there is much cancellation in the computation (that is, when∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣
is much less than

∑n
i=1 |xi|), Higham suggests that recursive summation with

the xi sorted by decreasing order is likely to give better results than that using
increasing ordering (an explanation of this apparently strange phenomenon
is Sterbenz’s lemma, Chapter 4, page 122: when x is very close to y, the sub-
traction x − y is performed exactly). Table 6.1 presents an example of such a
phenomenon.

6.3.2 Compensated sums

The algorithms presented in the previous section could be at least partly
analyzed just by considering that, when we perform an addition a + b and
no underflow occurs, the computed result is equal to

(a + b)(1 + ε),

with |ε| ≤ u. Now, we are going to consider algorithms that cannot be so sim-
ply analyzed. They use the fact that when the arithmetic operations are cor-
rectly rounded (to the nearest), floating-point addition has specific properties
that allow for the use of tricks such as Fast2Sum (Algorithm 4.3, page 126).

In 1965 Kahan suggested the following compensated summation algo-
rithm (Algorithm 6.6) for computing the sum of n floating-point numbers.
Babuška [18] independently found the same algorithm.

Algorithm 6.6 Original version of Kahan’s summation algorithm.
s← x1

c← 0
for i = 2 to n do

y ← ◦(xi − c)
t← ◦(s + y)
c← ◦(◦(t− s)− y)
s← t

end for
return s

Presented like this, Kahan’s algorithm may seem very strange. But we
note that in round-to-nearest mode the second and third lines of the for loop
constitute the Fast2Sum algorithm (Algorithm 4.3, page 126), so that Kahan’s
algorithm can be rewritten as Algorithm 6.7.
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Algorithm 6.7 Kahan’s summation algorithm rewritten with a Fast2Sum.
s← x1

c← 0
for i = 2 to n do

y ← ◦(xi + c)
(s, c)← Fast2Sum(s, xi)

end for
return s

Can we safely use the Fast2Sum algorithm? Notice that the conditions of
Theorem 4 (Chapter 4, page 126) are not necessarily fulfilled:7

• we are not sure that the exponent of s will always be larger than or
equal to the exponent of y;

• furthermore, Algorithm 6.6 is supposed to be used with various round-
ing modes, not only round-to-nearest.

And yet, even if we cannot be certain (since the conditions of Theorem 4
may not hold) that after the line

(s, c)← Fast2Sum(s, y),

the new value of s plus c will be exactly equal to the old value of s plus y,
in practice, they will be quite close. Thus, (−c) is a good approximation to the
rounding error committed when adding y to s. The elegant idea behind Kahan’s
algorithm is therefore to subtract that approximation from the next term of
the sum, in order to (at least partly) compensate for that rounding error.

Knuth and Kahan show that the final value s returned by Algorithm 6.6
satisfies ∣∣∣∣∣s−

n∑
i=1

xi

∣∣∣∣∣ ≤ (2u +O(nu2)
) n∑

i=1

|xi|. (6.8)

This explains why, in general, Algorithm 6.6 will return a very accurate
result.

And yet, if there is much cancellation in the computation (that is, if
|
∑n

i=1 xi| �
∑n

i=1 |xi|), the relative error on the sum can be very large. Priest
gives the following example [337]:

• assume binary, precision-p, rounded-to-nearest arithmetic, with n = 6,
and

7Indeed, when Kahan introduced his summation algorithm, Theorem 4 of Chapter 4 was
not known: Dekker’s paper was published in 1971. Hence, it is fair to say that the Fast2Sum
algorithm first appeared in Kahan’s paper, even if it was without the conditions that must be
fulfilled for it to always return the exact error of a floating-point addition.
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• set x1 = 2p+1, x2 = 2p+1 − 2, and x2 = x2 = · · · = x6 = −(2p − 1).

The exact sum is 2, whereas the sum returned by Algorithm 6.6 is 3.
To deal with such difficulties, Priest [336, 337] comes up with another

idea. He suggests to first sort the input numbers xi in descending order
of magnitude, then to perform the doubly compensated summation algorithm
shown in Algorithm 6.8.

Algorithm 6.8 Priest’s doubly compensated summation algorithm.
s1 ← x1

c1 ← 0
for i = 2 to n do

yi ← ◦(ci−1 + xi)
ui ← ◦(xi − ◦(yi − ci−1))
ti ← ◦(yi + si−1)
vi ← ◦(yi − ◦(ti − si−1))
zi ← ◦(ui + vi)
si ← ◦(ti + zi)
ci ← ◦(zi − ◦(si − ti))

end for

Again, the algorithm looks much less arcane if we rewrite it with
Fast2Sums as shown in Algorithm 6.9.

Algorithm 6.9 Priest’s doubly compensated summation algorithm, rewritten
with Fast2Sums.

s1 ← x1

c1 ← 0
for i = 2 to n do

(yi, ui)← Fast2Sum(ci−1, xi)
(ti, vi)← Fast2Sum(si−1, yi)
zi ← ◦(ui + vi)
(si, ci)← Fast2Sum(ti, zi)

end for

Priest shows the following result.

Theorem 28 (Priest [337]). In radix-β, precision-p arithmetic, assuming round-to-
nearest mode,8 if |x1| ≥ |x2| ≥ · · · ≥ |xn| and n ≤ βp−3, then the floating-point
number sn returned by the algorithm satisfies∣∣∣∣∣sn −

n∑
i=1

xi

∣∣∣∣∣ ≤ 2u

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ .
8Priest proves that result in a more general context, just assuming that the arithmetic is

faithful and satisfies a few additional properties. See [337] for more details.
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As soon as the xi’s do not all have the same sign, this is a significantly
better bound than the one given by formula (6.8). Indeed, if n is not huge
(n ≤ βp−3), then the relative error is bounded by 2u even for an arbitrarily
large condition number. On the other hand, due to the need for preliminarily
sorted input values, this algorithm will be significantly slower than Kahan’s
algorithm: one should therefore reserve Priest’s algorithm for cases where we
need very accurate results and we know that there will be some cancellation
in the summation (i.e., |

∑
xi| is significantly less than

∑
|xi|).

In Kahan’s algorithm (Algorithm 6.7), in many practical cases, c will
be very small in front of xi, so that when adding them, a large part of the
information contained in variable c may be lost. Indeed, Priest’s algorithm
also compensates for the error of this addition, hence the name “doubly com-
pensated summation.”

To deal with that problem, Pichat [332] and Neumaier [299] indepen-
dently found the same idea: at step i, the rounding error,9 say ei, is still
computed due to the addition of xi. However, instead of immediately sub-
tracting ei from the next operand, the terms ek are added together, to get a
correcting term e that will be added to s at the end of the computation. See
Algorithm 6.10.

Algorithm 6.10 Pichat and Neumaier’s summation algorithm [332, 299].
Notice, since Fast2Sum is used, that the radix of the floating-point system
must be at most 3 (which means, in practice, that this algorithm should be
used in radix 2 only).

s← x1

e← 0
for i = 2 to n do

if |s| ≥ |xi| then
(s, ei)← Fast2Sum(s, xi)

else
(s, ei)← Fast2Sum(xi, s)

end if
e← RN(e + ei)

end for
return RN(s + e)

To avoid tests, the algorithm of Pichat and Neumaier can be rewritten
using the 2Sum algorithm (it also has the advantage of working in any radix).
This gives the cascaded summation algorithm of Rump, Ogita, and Oishi [354].
It always gives exactly the same result as Pichat and Neumaier’s algorithm,
but it does not need comparisons. See Algorithm 6.11.

9It was then possible to evaluate that error exactly: Dekker’s result was known when Pichat
published her paper.
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Algorithm 6.11 By rewriting Pichat and Neumaier’s summation algorithm
with a 2Sum, we get the cascaded summation algorithm of Rump, Ogita, and
Oishi [354].

s← x1

e← 0
for i = 2 to n do

(s, ei)← 2Sum(s, xi)
e← RN(e + ei)

end for
return RN(s + e)

Rump, Ogita, and Oishi show the following result.

Theorem 29 (Rump, Ogita, and Oishi [354]). If Algorithm 6.11 is applied to
floating-point numbers xi, 1 ≤ i ≤ n, and if nu < 1, then, even in the presence of
underflow, the final result σ returned by the algorithm satisfies

∣∣∣∣∣σ −
n∑

i=1

xi

∣∣∣∣∣ ≤ u

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣+ γ2
n−1

n∑
i=1

|xi|.

The same result also holds for Algorithm 6.10, since both algorithms output the very
same value.

Rump, Ogita, and Oishi generalize their method, by reusing the same
algorithm for summing the ei, in a way very similar to what Pichat suggested
in [332]. To present their K-fold algorithm, we first modify Algorithm 6.11 as
shown in Algorithm 6.12.

Algorithm 6.12 VecSum(x) [354]. Here, p and x are vectors of floating-
point numbers: x = (x1, x2, . . . , xn) represents the numbers to be summed.
If we compute p = Vecsum(x), then pn is the final value of variable
s in Algorithm 6.11, and pi (for 1 ≤ i ≤ n − 1) is variable ei of
Algorithm 6.11.

p← x
for i = 2 to n do

(pi, pi−1)← 2Sum(pi, pi−1)
end for
return p

Then, here is Rump, Ogita, and Oishi’s K-fold summation algorithm
(Algorithm 6.13).
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Algorithm 6.13 K-fold algorithm [354]. It takes a vector x = (x1, x2, . . . , xn)
of floating-point numbers to be added and outputs a result whose accuracy
is given by Theorem 30.

for k = 1 to K − 1 do
x← VecSum(x)

end for
c = x1

for i = 2 to n− 1 do
c← c + xi

end for
return xn + c

Rump, Ogita, and Oishi prove the following result.

Theorem 30 (Rump, Ogita, and Oishi [354]). If Algorithm 6.13 is applied to
floating-point numbers xi, 1 ≤ i ≤ n, and if 4nu < 1, then, even in the presence of
underflow, the final result σ returned by the algorithm satisfies∣∣∣∣∣σ −

n∑
i=1

xi

∣∣∣∣∣ ≤ (u + γ2
n−1)

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣+ γK
2n−2

n∑
i=1

|xi|.

Theorem 30 shows that the K-fold algorithm is almost as accurate as
a conventional summation in precision Kp followed by a final rounding to
precision p. Klein [221] suggests very similar algorithms.

Tables 6.1 and 6.2 give examples of errors obtained using some of the
summation algorithms presented in this section. They illustrate the fact that
Pichat and Neumaier’s and Priest’s algorithms give very accurate results.
Although slightly less accurate, Kahan’s compensated summation algorithm
is still of much interest, since it is very simple and fast.

Incidentally, one could wonder whether it is possible to design a very
simple summation algorithm that would always return correctly rounded
sums. Kornerup, Lefèvre, Louvet, and Muller [226] have recently shown
that, under simple conditions, an RN-addition algorithm without branching (that
is, an algorithm that only uses rounded-to-nearest additions and subtrac-
tions, without any test; see Definition 8 in Chapter 4, page 130) cannot always
return the correctly rounded-to-nearest sum of 3 or more floating-point num-
bers. This shows that an “ultimately accurate” floating-point summation
algorithm cannot be very simple. And yet, if we accept tests and/or changes
of rounding modes, getting the correctly rounded sum of several floating-
point numbers is indeed possible, as we will see in Section 6.3.4 in the case
of 3 numbers. Notice that Rump, Ogita and Oishi have designed an efficient
algorithm, with tests, for the rounded-to-nearest sum of n numbers [353].
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Method Error in ulps

increasing order 18.90625

decreasing order 16.90625

compensated (Kahan) 6.90625

doubly compensated (Priest) 0.09375

Pichat and Neumaier; or Rump, Ogita, and Oishi 0.09375

Table 6.1: Errors of the various methods for xi = RN(cos(i)), 1 ≤ i ≤ n, with
n = 5000 and binary32 arithmetic. Notice that all the xi are exactly representable.
The methods of Priest; Pichat and Neumaier; and Rump, Ogita, and Oishi give the
best possible result (that is, the exact sum rounded to the nearest binary32 number).
The recursive summation method with decreasing ordering is slightly better than the
same method with increasing order (which is not surprising: there is much cancel-
lation in this sum), and Kahan’s compensated summation method is significantly
better than the recursive summation.

Method Error in ulps

increasing order 6.86

decreasing order 738.9

compensated (Kahan) 0.137

doubly compensated (Priest) 0.137

Pichat and Neumaier; or Rump, Ogita, and Oishi 0.137

Table 6.2: Errors of the various methods for xi = RN(1/i), 1 ≤ i ≤ n, with n = 105

and binary32 arithmetic. Notice that all the xi are exactly representable. The methods
of Kahan; Priest; Pichat and Neumaier; and Rump, Ogita, and Oishi give the best
possible result (that is, the exact sum rounded to the nearest binary32 number). The
recursive summation method with increasing ordering is much better than the same
method with decreasing order, which is not surprising since all the xi’s have the same
sign.
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6.3.3 Implementing a “long accumulator”

Kulisch advocated augmenting the processors with a long accumulator that
would enable exact accumulation and dot product [233, 234]. So far, processor
vendors have not considered the benefits of this extension to be worth its cost.
It will be reviewed, as well as other prospective hardware improvements, in
Section 9.7, page 314.

6.3.4 On the sum of three floating-point numbers

Computing the correctly rounded sum of three numbers is sometimes use-
ful. For instance, in the CRlibm elementary function library,10 several calcu-
lations are done using a “triple-double” intermediate format (see Section 14.1,
page 494), using functions due to Lauter [244]. To return a correctly rounded
result in double-precision/binary64 arithmetic, one must convert a “triple-
double” into a binary64 number: this reduces to computing the correctly
rounded sum of three floating-point numbers.

For that purpose, Boldo and Melquiond [34] introduce a new rounding
mode, round-to-odd, ◦odd, defined as follows:

• if x is a floating-point number, then ◦odd(x) = x;

• otherwise, ◦odd(x) is the value among RD(x) and RU(x) whose integral
significand is an odd integer.11

This rounding mode is not implemented on current architectures, but
that could easily be done. Interestingly enough, Boldo and Melquiond show
that in radix-2 floating-point arithmetic, using only one rounded-to-odd
addition (and a few rounded-to-nearest additions/subtractions), one can eas-
ily compute

RN(a + b + c),

where a, b, and c are floating-point numbers. Their algorithm is presented in
Figure 6.1. Boldo and Melquiond also explain how to emulate rounded-to-
odd additions (with a method that requires testing). Listing 6.1 presents a C
program that implements their method in the particular case when the input
operands are ordered.

Algorithm 6.14, introduced by Kornerup et al. [225], emulates the
rounded-to-odd addition required by Boldo and Melquiond’s algorithm dis-
played in Figure 6.1.

10See http://lipforge.ens-lyon.fr/www/crlibm/.
11This means, in radix 2, that the least significant bit of the significand is a one.
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Error-free addition

Error-free addition

Odd-rounded addition
v = ◦odd(t` + u`)

Rounded-to-nearest addition

z = RN(a + b + c)

a b c

uh u`

th t`

Figure 6.1: Boldo and Melquiond’s algorithm [34] for computing RN(a + b + c) in
radix-2 floating-point arithmetic. It requires an “odd-rounded” addition. The error-
free additions are performed using the 2Sum algorithm (unless we know for some
reason the ordering of the magnitude of the variables, in which case the Fast2Sum
algorithm can be used). c© IEEE, with permission.

Algorithm 6.14 OddRoundSum(a,b): computes ◦odd(a + b) in radix-2
floating-point arithmetic.

d← RD(a + b)
u← RU(a + b)
e′ ← RN(d + u)
e← e′ × 0.5
z′ ← u− e
z ← z′ + d
return z
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C listing 6.1 Boldo and Melquiond’s program [34] for computing the cor-
rectly rounded-to-nearest sum of three binary floating-point numbers xh,
xm, and xl, assuming |xh| ≥ |xm| ≥ |xl|. The encoding of the double-
precision/binary64 floating-point numbers specified by the IEEE 754 stan-
dard is necessary here: it is that encoding that ensures that thdb.l++ is the
floating-point successor of thdb.l.

double CorrectRoundedSum3(double xh,
double xm, double xl) {
double th, tl;
db_number thdb; // thdb.l is the binary
// representation of th
// Dekker’s error-free adder of two ordered
// numbers
Add12(th, tl, xm, xl);
// round to odd th if tl is not zero
if (tl != 0.0) {
thdb.d = th;
// if the significand of th is odd, there is
// nothing to do
if (!(thdb.l & 1)) {
// choose the rounding direction
// depending on the signs of th and tl
if ((tl > 0.0) ^ (th < 0.0))
thdb.l++;
else
thdb.l--;
th = thdb.d;
}
}
// final addition rounded to the nearest
return xh + th;
}

6.4 Compensated Dot Products

The dot product of two vectors [ai]1≤i≤n and [bi]1≤i≤n is
∑

1≤i≤n ai · bi. When
the condition number

Cdot product =

2 ·
n∑

i=1

|ai · bi|∣∣∣∣∣
n∑

i=1

ai · bi

∣∣∣∣∣
is not too large, Algorithm 6.2 can be used safely. When this is not the case,
one can design a compensated dot product algorithm.

Notice that one can easily reduce the problem of computing the dot
product of two vectors of dimension n to the problem of computing the
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sum of 2n floating-point numbers, since the Dekker product (Algorithm 4.7,
page 135) and the 2MultFMA algorithm (Algorithm 5.1, page 152) make it
possible (under some conditions) to deduce, from two floating-point num-
bers a and b, two floating-point numbers r1 and r2 such that

r1 + r2 = a · b and |r2| ≤
1
2

ulp(r1). (6.9)

Hence, many methods presented in Section 6.3 can readily be adapted to the
computation of dot products. And yet, by doing that, we do not use the fact
that, in Equation (6.9), r2 is very small in front of r1: the sum we have to
compute is not an arbitrary sum of 2n numbers, some are much smaller than
others, and that property can be used to design faster algorithms.

Let us now give the compensated dot product algorithm introduced
by Ogita, Rump, and Oishi [313]. See Algorithm 6.15. In that algorithm,
2Prod will denote either the 2MultFMA algorithm (if an FMA instruction
is available), or the Dekker product. Remember that to be able to use the
Dekker product we need the radix of the floating-point system to be equal
to 2 or the precision p to be even. Remember also that Equation (6.9) holds
if ea + eb ≥ emin + p − 1, where ea and eb are the exponents of a and b,
respectively (see Chapter 4 for more details).

Algorithm 6.15 Algorithm CompensatedDotProduct(a,b) [313]. It computes
a1 · b1 + a2 · b2 + · · ·+ an · bn.

(s1, c1)← 2Prod(a1, b1)
for i = 2 to n do

(pi, πi)← 2Prod(ai, bi)
(si, σi)← 2Sum(pi, si−1)
ci ← RN(ci−1 + RN(πi + σi))

end for
return RN(sn + cn)

Many variants of the algorithm can be designed, possibly inspired
from the variants of the compensated summation algorithm presented in
Section 6.3. Ogita, Rump, and Oishi have shown the following theorem,
which says (it suffices to compare to Equation (6.5)) that, in precision p, the
result of Algorithm 6.15 is as accurate as the value computed by the straight-
forward algorithm (Algorithm 6.2) in precision 2p and rounded back to the
working precision p.

Theorem 31 (Ogita, Rump, and Oishi [313]). If no underflow or overflow occurs,
in radix 2,∣∣∣∣∣CompensatedDotProduct(a, b)−

n∑
i=1

ai · bi

∣∣∣∣∣ ≤ u

∣∣∣∣∣
n∑

i=1

ai · bi

∣∣∣∣∣+ γ2
n

n∑
i=1

|ai · bi|.
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6.5 Compensated Polynomial Evaluation

Recently, Graillat, Langlois, and Louvet [155, 266] introduced a new compen-
sated algorithm for polynomial evaluation. Let us present it briefly. Assume
we wish to compute

p(x) = anxn + an−1x
n−1 + · · ·+ a0,

where x and all the ai are floating-point numbers. In the following, 2Prod
will denote the 2MultFMA algorithm (Algorithm 5.1, page 152) if an FMA
instruction is available, and the Dekker product (Algorithm 4.7, page 135)
otherwise. Graillat, Langlois, and Louvet first define the following “error-free
transformation” (see Algorithm 6.16).

Algorithm 6.16 The Graillat–Langlois–Louvet error-free transformation [155,
266]. Input: a degree-n polynomial p(x) = anxn + an−1x

n−1 + · · · + a0.
Output: the same result r0 as the conventional Horner’s evaluation of p, and
two degree-(n− 1) polynomials π(x) and σ(x), of degree-i coefficients πi and
σi, such that p(x) = r0 + π(x) + σ(x) exactly.

rn ← an

for i = n− 1 downto 0 do
(pi, πi)← 2Prod(ri+1, x)
(ri, σi)← 2Sum(pi, ai)

end for
return r0, (π0, π1, . . . , πn−1), (σ0, σ1, . . . , σn−1)

Define Horner(p, x) as the result returned by Horner’s rule
(Algorithm 6.3) with polynomial p and input variable x. Also, for a
polynomial q =

∑n
i=0 qix

i, define

q̃(x) =
n∑

i=0

|qi|xi.

We have the following result.

Theorem 32 (Langlois, Louvet [242]). The values r0, (π0, π1, . . . , πn−1), and
(σ0, σ1, . . . , σn−1) returned by Algorithm 6.16 satisfy

• r0 = Horner(p, x);

• p(x) = r0 + π(x) + σ(x);

• ˜(π + σ)(|x|) ≤ γ2n p̃(|x|).

Theorem 32 suggests to transform Algorithm 6.16 into a compensated
polynomial evaluation algorithm as shown in Algorithm 6.17.
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Algorithm 6.17 The Graillat–Langlois–Louvet compensated polynomial eval-
uation algorithm [155, 266]. Input: a degree-n polynomial p(x) = anxn +
an−1x

n−1 + · · ·+a0. Output: an approximation r to p(x). In practice, the eval-
uation of Horner(q, x) wit q(x) =

∑
0≤i<n qix

i would be done in the for loop:
we wrote it as shown here for the sake of clarity.

rn ← an

for i = n− 1 downto 0 do
(pi, πi)← 2Prod(ri+1, x)
(ri, σi)← 2Sum(pi, ai)
qi ← RN(πi + σi)

end for
r ← RN(r0 + Horner(q, x))
return r

An immediate consequence of Theorem 32 is the following.

Theorem 33 (Langlois, Louvet [242]). The value r returned by Algorithm 6.17
satisfies

|r − p(x)| ≤ u|p(x)|+ γ2
2n p̃(|x|).

Note the similarity with Theorem 31. Juste like for dot products, the
above result says that as soon as p̃(|x|) =

∑n
i=0 |ai| · |x|i is not huge in front of

|p(x)|, Algorithm 6.17 will return a very accurate result (namely, for a work-
ing precision p, as accurate as if we had used Horner’s rule in twice that
working precision and then rounded back). If this is not the case, it is possi-
ble to define K-fold compensated polynomial evaluation algorithms by recursively
using the same method for evaluating σ(x) and π(x). See Louvet’s Ph.D. dis-
sertation [266] for details.



Chapter 7

Languages and Compilers

The previous chapters have given an overview of interesting properties
and algorithms that can be built on IEEE 754-compliant floating-point

arithmetic. In this chapter, we discuss the practical issues encountered
when trying to implement such algorithms in actual computers using actual
programming languages. In particular, we discuss the relationship between
standard compliance, portability, accuracy, and performance. This chap-
ter is useful to a programmer wishing to obtain a standard-compliant
behavior from his/her program, but it is also useful for understanding how
performance may be improved by relaxing standard compliance and also
what risks may be encountered.

7.1 A Play with Many Actors

Even with a computer supporting one of the IEEE 754 standards for floating-
point arithmetic, it still requires some effort to be in control of the details
of the floating-point computations of one’s program (for instance, to ensure
portability).

Most programming languages will allow one to write an expression such
as a+b+c*d, using variables a, b, c, and d, of some (possibly implicit) floating-
point type. However, when the program is run, the sequence of floating-
point operations that is actually executed differs widely, depending on the
language, but also on the environment used, including:

• the compiler, and the optimization options that were passed to it;

• the processor, which may or may not have a given floating-point capa-
bility;

• the operating system, which is responsible for making the processor’s
capabilities available for user programs;

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_7, 205
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2010
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• the system libraries, for the mathematical functions (when they are not
handled by the compiler).

Let us now review these elements to give a taste of what may happen.
The following sections will then detail in more depth the specifics of some
widely used programming environments.

7.1.1 Floating-point evaluation in programming languages

Consider the evaluation of a+b+c+d. Its semantics is a sequence of three
floating-point additions. The results of two of them have to be kept in tem-
porary variables or registers. This leads to several implementation choices:

Expression reordering

In which order should these operations be executed? In other terms, what is
the implicit parenthesizing used when evaluating a+b+c+d? Alternatives are,
on this example, ((a+b)+c)+d, (a+b)+(c+d), a+(b+(c+d)). A related question
is: Should addition be considered associative? Is (a+d)+(b+c) also an option?

There is a tradeoff here. On one side, it should be clear to the reader, after
reading the previous chapters, that floating-point addition is not associative.
A language should allow one to express useful algorithms such as the 2Sum
algorithm, which requires computing (a+b)-a (See Section 4.3.2, page 129).
On the other side, such situations are fairly rare and well identified. In more
general floating-point codes, rewriting freedom allows for many optimiza-
tions.

• (a+b)+(c+d) exposes more parallelism for processors able to compute
two additions in parallel.

• In general, in a pipelined processor, the fastest parenthesizing depends
on the order of availability of the four variables, which itself depends
on previous computations.

• If a and d are compile-time constants, computing the sum a+d at com-
pile time will save one addition at execution time.

• The parenthesizing may impact register allocation, etc.

Precision of intermediate computations

Many languages require the programmer to declare the variables of a given
type, say binary32 (float in C) or binary64 (double in C). However, they usu-
ally do not require the precision to be declared for each operation of the code
(assembly languages, of course, do). Deducing the precision of the operations
from the precision of the data is not straightforward. Consider, for instance,
the following situations.
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• If a, b, c, and d are declared of binary32 type, and the hardware is able to
compute on binary64 as fast as on binary32, shouldn’t this “free” extra
accuracy be used?

• In an assignment such as r=a+b+c+d, where r is declared as binary64
and the other variables are declared as binary32, should the computa-
tions be performed using binary32 addition or binary64 addition?

• If a and d are declared binary32, and b and c are declared binary64,
what will be the precision of the operations? Note that this question
makes sense only after a parenthesizing has been chosen.

These questions are not purely academic. For most applications, it makes per-
fect sense to use binary32 as a storage format, as it requires half the space of
binary64 and holds more precision than most instruments can measure. And
it makes sense to use binary64 to carry out computations that may involve
millions of iterations.

In the new IEEE 754-2008 standard, there has been some effort to address
this problem; see Section 3.4.6, page 93. Note that similar issues arise when
one considers the active rounding mode.

Antagonistic answers

The languages C and FORTRAN, probably the two languages that are most
used in numerical computing, offer perfectly antagonistic answers to the pre-
vious questions.

• In C, an expression of successive add or multiply operators is inter-
preted with left-associativity,1 i.e., a+b+c+d is syntactically equivalent
to ((a+b)+c)+d. Concerning the precision, each operation may well
be performed in an internal precision wider than the precision of the
type (we already discussed that problem in Section 3.3.1, page 75); the
expression may also be contracted (see Section 7.2.3).

• In contrast, FORTRAN fixes the precision but does not guarantee the
parenthesizing, so the expression a+b+c+d may validly be evaluated as
(a+b)+(c+d) or (a+d)+(b+c).

Each language has a rationale for these choices, and we will explore it in the
following sections.

1This requirement was introduced in C89 and kept in the current C99 standard. The orig-
inal Kernighan and Ritchie C [217] allowed regrouping, even with explicit parentheses in
expressions.



208 Chapter 7. Languages and Compilers

7.1.2 Processors, compilers, and operating systems

The compiler is in charge of translating the program into a succession of
elementary processor instructions. Modern compilers spend most of the com-
pilation time in optimization. We have seen some optimizations related to
floating-point evaluation order and precision, but there also exist optimiza-
tions that are more directly related to the processor’s available hardware.

As an example, consider a processor which offers hardware implemen-
tations of the fused multiply-add (FMA, see Section 2.8, page 51). To com-
ply with the IEEE 754-1985 standard, a compiler should not generate FMA
instructions for such processors. Additions should be implemented as (a ×
1 + b) and multiplications as (a × b + 0). Of course, the default behavior of
most compilers will be to try to fuse additions and multiplications (that is,
to use FMA instructions), which usually improves both speed and accuracy.
If one wants portability between, for instance, a platform without FMA and
one with FMA, one has to find special directives (such as C’s FP_CONTRACT

pragma) or compiler options (such as GCC’s -mno-fused-madd with proces-
sors that support this option) that prevent fusing × and +.

There is a similar tradeoff between portability and improved accuracy
on processors which offer hardware binary80 arithmetic (see Section 3.5.3,
page 104). Here the extended accuracy, although providing more accurate re-
sults in most cases, incurs additional risks, such as subtle bugs due to double
rounding (see Section 3.3.1, page 75).

Again, much effort has been spent to address such issues in IEEE 754-
2008. There was a clear consensus on the fact that programmers who want
portability should be able to get it, while programmers who want perfor-
mance also should be able to get it. The consensus was not so clear on what
should be the default.

Finally, the operating system (kernel and libraries) is in charge of initial-
izing the state of the processor prior to the program execution. For example,
it will set the dynamic rounding precision on x87 hardware. Considering the
previous tradeoff between accuracy and portability, different systems make
different choices. For instance, the same conforming C program, compiled by
the same compiler with the same options, may yield different results on the
same hardware under OpenBSD and Linux. By default, OpenBSD chooses
to enhance portability and configures the x86 traditional floating-point unit
(FPU) to round to double precision. Linux, in contrast, favors better accuracy
and configures the FPU to round to double-extended precision by default.

To summarize, the behavior of each of these actors may influence the
others. A program may change the processor state because of an operating
system call, for instance, to request rounding toward zero. An ill effect will
often be that the mathematical library (a.k.a. libm, also a part of the operat-
ing system) no longer functions properly because it expects the processor to
round to nearest.
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7.1.3 In the hands of the programmer

So standard compliance enhances portability, but usually degrades perfor-
mance, and sometimes even accuracy. For this reason, the default behavior
of a computing system will usually be a compromise between performance,
accuracy, and portability. A notable exception is Java, which was designed
for portability from the ground up. Section 7.5 will show the difficulty of ful-
filling this ambition.

However, recent versions of Java offer means to relax portability for per-
formance under programmer control, while the C99 standard added pragmas
to improve portability in C. This illustrates the consensus that a programmer
should be given the ability to choose the behavior of the floating-point envi-
ronment.

The important message in this chapter is that the floating-point behavior
of a given program in a given computer is not arbitrary. It is usually well
documented, although unfortunately in various places (language standards,
compiler manuals, operating system specifications, web pages, and so on). It
is thus possible for the programmer to control to the last bit the behavior of
every last floating-point operation of his/her programs.

Let us now consider some mainstream programming environments in
more detail.

7.2 Floating Point in the C Language

The C language was designed to replace the assembly language for rewrit-
ing an operating system (UNIX). This explains why C is very close to the
hardware. Since it was not designed as a language for numerical computa-
tions, important issues such as reproducibility of the results in floating-point
arithmetic were not given much attention. Floating-point code could behave
very differently from one platform to another, or even from one compiler
another on the same system. As time went by, C compilers were retrofitted
with features that were common in languages like FORTRAN, and it was
only in the C99 standard that support for IEEE 754-1985 (mostly overlooked
in the 1989/1990 C standard revision) was paid some attention.

The remainder of this section describes floating-point features of the C99
standard. Programmers should be aware that C99 compliance may not be
the default for all compilers. However, there is almost always a compiler
option to enable it. On most POSIX systems, the c99 utility can be used for this
purpose.

7.2.1 Standard C99 headers and IEEE 754-1985 support

Three headers, <float.h>, <math.h>, and <fenv.h>, define the macros and
functions that are necessary for dealing with floating-point numbers in C.
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• The <float.h> header gathers the description of the characteristics of
the floating-point environment. Indeed, the C standard requires very
little.

First, the radix for the standard floating-point types (float, double, and
long double) is implementation defined, in other words not defined
by the C standard. It can be obtained with the FLT_RADIX macro. In
most cases, it is equal to 2. But particular platforms may choose another
radix. For instance, radix 10 has been chosen by the TIGCC project for
Texas Instruments calculators2 (see Section 2.5, page 29 for a discussion
on the choice of the radix). Interest in decimal floating-point arithmetic
has increased even for desktop computers. An extension to C, bringing
new decimal types, is currently being standardized [194].

Other macros (such as DBL_MAX, DBL_EPSILON. . . ) provide information
on the range and precision of each standard floating-point type and on
how rounding is performed.

• In <math.h>, one finds, apart from the expected mathematical func-
tions (sin, cos. . . ), most of the functions and predicates (isnan,
isunordered. . . ), that were recommended by the Appendix to the IEEE
754-1985/IEC 60559 standard and that can be found nowadays in Sec-
tion 5.7.2 of the new IEEE 754-2008 standard. One also finds additional
types and macros.

• In <fenv.h>, one finds the necessary tools for manipulating the floating-
point environment (e.g., changing the rounding mode, accessing the
status flags. . . ).

Most of the material related to the support of IEEE 754 can be found
in Annex F of the C99 standard [190]. Throughout that document, IEEE
754-1985 is referred to as IEC 60559. Recent compilers (IBM’s XL C/C++
9.0 Linux PowerPC64, Sun’s C 5.9 Linux i386, Intel’s icc 10.1 Linux IA-64,
for instance) and C libraries (since 1997, the GNU C library, a.k.a. glibc, for
instance) define the __STDC_IEC_559__ macro, which guarantees their confor-
mance to Annex F, even though, in practice, the conformance is known to be
incomplete. For instance, the glibc defines __STDC_IEC_559__ uncondition-
ally, even when extended intermediate precision is used for the double type
(see below).

7.2.2 Types

When __STDC_IEC_559__ is defined, two of the basic binary formats (single-
precision/binary32 and double-precision/binary64) are directly supported
by the float and double types, respectively.

2http://tigcc.ticalc.org/doc/float.html#FLT_RADIX
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What long double means is another story. In C99, whether
__STDC_IEC_559__ is defined or not, the long double type can be
almost anything, provided that a long double has at least the precision
and the range of a double. Note that these requirements are much weaker
than those imposed on IEEE-754 extended formats (see Table 3.2, page 57, for
the IEEE 754-1985 requirements). The format of the long double type and
the associated arithmetic depend on both the processor and the operating
system. Sometimes it can also be changed by compiler options.

A program can obtain information on the arithmetic behind long

double through the macros LDBL_MANT_DIG, LDBL_MIN_EXP, and LDBL_MAX_EXP

(defined in <float.h>), which respectively provide the number of digits of
the significand of normal numbers, and the minimum and maximum possi-
ble exponents of normal numbers (the FLT_RADIX macro, already mentioned,
gives the radix). Beware: The extremal exponents given by LDBL_MIN_EXP and
LDBL_MAX_EXP do not correspond to our definition of the exponent (given in
Section 2.1, page 13). There, we assumed significands of normal numbers in
radix β to be between 1 and β, whereas these macros assume significands
between 1/β and 1. Hence, having LDBL_MAX_EXP = 1024 corresponds, with
our notation, to having emax = 1023.

For illustration, here are four arithmetics that have been found among
various C implementations. The numbers in parentheses correspond to
LDBL_MANT_DIG, LDBL_MIN_EXP, and LDBL_MAX_EXP, respectively.

Double precision (53 / −1021 / 1024): This arithmetic (the same as the one
of the double type) has been found on ARM processors under Linux,
and this is the choice originally made for the ARM Developer Suite [13,
Section 3.3.2]. This choice could be surprising, as the floating-point
accelerator (FPA) architecture (ARM’s first floating-point implemen-
tation) supports extended precision [14, Section 2.9.2]. But ARM
processors originally did not have floating-point hardware, many ARM
processors still do not (thus floating-point arithmetic must be emulated
in software), and the new Vector floating-point (VFP) architecture does
not support extended precision [14, Section 2.9.1].

80-bit extended precision (64 / −16381 / 16384): This arithmetic has been
found on x86, x86_64, and IA-64 architectures, because of hardware
support.

Double-double arithmetic (106 / −968 / 1024): This arithmetic has been
found on PowerPC, under both Darwin (Mac OS X) and Linux (with
recent GCC/glibc), and comes from IBM’s AIX operating system. A
number is representable in that arithmetic if it can be written as the
sum of two double-precision/binary64 floating-point numbers, that
very roughly emulates a 106-bit precision. This is not a genuine floating-
point arithmetic, but can be regarded as an extension of a floating-point



212 Chapter 7. Languages and Compilers

arithmetic whose precision and exponent-range parameters are the
numbers given in parentheses (see Section 14.1, page 494 for informa-
tion on “double-double”—more generally, “double-word”—numbers).
This conforms to the C standard, which allows, in addition to normal-
ized floating-point numbers, other kinds of floating-point data (such as
the subnormal numbers, infinities, and NaNs of the IEEE 754 standard).
The range of numbers that can be represented is roughly the same as
the range of double-precision numbers. Therefore, this is a valid long

double type. However, some properties requiring strict floating-point
arithmetic (such as Sterbenz’s lemma: Lemma 2 in Chapter 4, page 122)
will not always be true for the long double type, and corresponding
floating-point algorithms may no longer work.

Quadruple precision (113 / −16381 / 16384): This arithmetic has been
found under HP-UX (HPPA and IA-64) and Solaris (SPARC only [396]),
and is implemented in software.3

The arithmetic does not completely define the type. Indeed the enco-
ding may depend on the platform (e.g., due to a different endianness).
Even the type size (as per the sizeof operator) can vary, for alignment rea-
sons (to provide better memory access speed). For instance, with GCC, the
default width of a long double is 12 bytes long for the x86 (32-bit)
application binary interface (ABI) and rises to 16 bytes long for the x86_64

(64-bit) ABI. However, compiler options can alter this behavior. For instance,
the -m96bit-long-double and -m128bit-long-double switches control the
storage size of long double values. But note that this has no effect on the
floating-point results: range and precision remain the same.

Infinities, NaNs, and signed zeros

Support for (signed or unsigned) infinities and signed zeros is optional. The
INFINITY macro from <math.h> represents a positive or unsigned infinity,
when available. However, a HUGE_VAL (for the double type) macro is always
available, which typically is an infinity when supported (this is required by
Annex F of the C99 standard).

Support of Not a Number (NaN, also optional) is limited to the quiet
flavor (qNaN). Signaling NaNs (sNanN) were not included in the C99 stan-
dard since its authors felt it entailed a lot of trouble for a limited usefulness,
and that qNaNs were sufficient for the closure of the floating-point arithmetic
algebraic structure.

3The SPARC architecture has instructions for quadruple precision, but in practice, current
processors generate traps to compute the results in software.
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7.2.3 Expression evaluation

Except for assignment and cast, the C99 standard states
[190, Section 5.2.4.2.2]:

the values of operations with floating operands and values subject
to the usual arithmetic conversions and of floating constants are
evaluated to a format whose range and precision may be greater
than required by the type.

While this will be a bonus in many situations, it may also break the assump-
tions founding some algorithms presented in this book. It may also lead to
the “double rounding” problem depicted in Section 3.3.1, page 75, which can
occur even with a single operation, such as a = b + c. Splitting an expression
by using temporary variables and only one operation per statement will force
any intermediate result to be in the required precision; this workaround does
not avoid the “double rounding” problem, but one gets a faithful rounding
(see Section 2.2, page 20), which may be sufficient for some algorithms.

The C99 standard provides a macro, FLT_EVAL_METHOD, whose value
gives a clue about what is actually going on. Table 7.1 shows which inter-
mediate type (both range and precision) is used for the evaluation of an
operation of a given type.

FLT_EVAL_METHOD float double long double
0 float double long double
1 double double long double
2 long double long double long double

Table 7.1: FLT_EVAL_METHOD macro values.

FLT_EVAL_METHOD = 2 is typically used with x87 arithmetic (when
the processor is configured to round in extended precision). Processors
with static rounding format (range and precision) will generally use
FLT_EVAL_METHOD = 0. In addition to these values, FLT_EVAL_METHOD = −1 can
be used when the evaluation method is not determined (e.g., because of some
optimizations that can change the results).

Unfortunately, FLT_EVAL_METHOD is an information macro only. There is
no standard way of changing the behavior it indicates. This does not mean
that it cannot be changed, but it may require compiler switches (Section 3.3.1,
page 75, contained some examples) or nonstandard features (e.g., operating
system calls).

Operators and functions

The +, -, *, / operators and the sqrt() and remainder() functions provide the
basic operations as expected in IEEE 754-1985. More functions and macros
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cover conversions, comparison, and floating-point environment manipula-
tion as well as the set of functions recommended in Annex A of 754-1985.
Among others, we can highlight the fma() function (new in C99), which will
allow one to “play around” with the FMA instruction even if it is not directly
supported by the processor (none of the x86 chips does, up to year 2008)
and test the nifty algorithms presented in the FMA chapter (see Chapter 5).
However, beware: as we write this book, some software implementations of
fma() do not comply with the requirements of the C99 and IEEE 754-2008
standards. For instance, the GNU C Library (glibc), at least until the current
version 2.9, implements fma() as a multiplication followed by an addition on
x86 processors; this means that two roundings are done instead of only one,
and in particular, spurious overflow exceptions can occur (if the multiplica-
tion overflows but the mathematical result is in the range of the floating-point
format).

Contracted expressions

As stated by the C99 standard, “a floating expression may be contracted, that
is, evaluated as though it were an atomic operation, thereby omitting round-
ing errors implied by the source code and the expression evaluation method.”
This was meant to allow the use of mixed-format operations (with a single
rounding, when supported by the processor) and hardware compound oper-
ators such as FMA. For instance, the default behavior of the main compilers
(GCC, IBM’s XL C/C++ 9.0 Linux PowerPC64 compiler, Intel’s compiler icc,
Microsoft Visual C/C++ compiler) is to contract x * y + z to fma(x,y,z)

when a hardware FMA is available.
Most of the time, this is beneficial in terms of both performance and accu-

racy. However, it will break algorithms that rely on evaluation as prescribed
by the code. For instance, sqrt(a * a - b * b) may be contracted using an
FMA as if sqrt(fma(a, a, - b * b)) were used, and if a and b are equal, the
result can be nonzero because of the broken symmetry (see example below).

The FP_CONTRACT pragma (from <math.h>) gives some control on this
issue to the programmer. When set to on, it allows contracting expressions.
When set to off, it prevents it. As contracting expressions is potentially dan-
gerous, a C implementation (compiler and associated libraries) must doc-
ument the default state and the way in which expressions are contracted.
Compilers may ignore this pragma, but in this case, they should behave as
if it were off (disabled contraction) in order to preserve the semantics of the
program. Again, your mileage may vary: At the time of writing this book,
gcc does the opposite.

Following the same example, Listing 7.1 computes the result of the
expression a >= b ? sqrt (a * a - b * b) : 0 in the particular case of
a = b. By default, contraction is disabled, but compiling this program with
-DFP_CONTRACT sets the pragma to on, thus enabling contraction. For instance,
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icc 10.1 on IA-64 gives on the inputs 1, 1.1, and 1.2:

Test of a >= b ? sqrt (a * a - b * b) : 0 with FP_CONTRACT OFF

test(1) = 0

test(1.1000000000000000888) = 0

test(1.1999999999999999556) = 0

Test of a >= b ? sqrt (a * a - b * b) : 0 with FP_CONTRACT ON

test(1) = 0

test(1.1000000000000000888) = 2.9802322387695326562e-09

test(1.1999999999999999556) = nan

C listing 7.1 Testing the effect of the contraction of a floating expression to
FMA.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#ifdef FP_CONTRACT
#undef FP_CONTRACT
#define FP_CONTRACT "ON"
#pragma STDC FP_CONTRACT ON
#else
#define FP_CONTRACT "OFF"
#pragma STDC FP_CONTRACT OFF
#endif

static double fct (double a, double b)
{
return a >= b ? sqrt (a * a - b * b) : 0;

}

/* "volatile" and "+ 0.0" may be needed to avoid optimizations. */
static void test (volatile double x)
{
printf ("test(%.20g) = %.20g\n", x, fct (x, x + 0.0));

}

int main (int argc, char **argv)
{
int i;

printf ("Test of a >= b ? sqrt (a * a - b * b) : 0 with FP_CONTRACT "
FP_CONTRACT "\n");

for (i = 1; i < argc; i++)
test (atof (argv[i]));

return 0;
}
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Constant expressions, initialization, and exceptions

There are some issues specific to C regarding the relationship between trans-
lation (compilation) time and execution time, on the one hand, and excep-
tions, on the other hand. As stated by the C99 standard:

the FENV_ACCESS pragma provides a means to inform the
implementation when a program might access the floating-point
environment to test floating-point status flags or run under non-
default floating-point control modes.

When the state of this pragma is off, the compiler is allowed to do some opti-
mizations that can have side effects, such as evaluating constant expressions.
Otherwise, if the state is on, constant expressions should be evaluated at
execution time (unless the compiler can deduce that a translation-time eval-
uation will not change the result, including exceptions). However, this does
not affect initialization of objects with static storage duration, necessarily using
constant expressions, which are evaluated at translation time and do not raise
exceptions.

Special values of mathematical functions

The C99 standard also specifies (in its optional Annex F) the values of the
elementary functions for particular arguments. Some of these values are
different from those recommended by the new IEEE 754-2008 standard.
Moreover, these definitions can cause some head scratching. Consider for ins-
tance, the following requirement for the power function: pow(−1, ±∞) = 1.
This may be a bit puzzling until one understands that any sufficiently large
binary floating-point number is an even integer: hence, “by taking the limit,”
the prescribed value of 1. Other rules do not even have such a justification:
pow(+1,x) and pow(x,±0) must return 1 for any x, even a NaN, which breaks
with the usual NaN propagation rule.

Concerning these special cases for pow, IEEE 754-2008 chose to remain
compatible with C99, but added three more functions, powr (whose special
cases are derived by considering that it is defined by ey log x), and pown/rootn
(which deal with integral exponents only).

7.2.4 Code transformations

Many common transformations of a code into some naively equivalent code
become impossible if one takes into account special values such as NaNs,
signed zeros, and rounding modes. For instance, the expression x + 0 is not
equivalent to the expression x if x is -0 and the rounding is to nearest.

Similarly, some transformations of code involving relational operators
become impossible due to the possibility of unordered values (see page 64).
This is illustrated in Listing 7.2.
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C listing 7.2 Strangely behaving relational operators (excerpt from Annex
F of the C99 standard). These two pieces of code may seem equivalent, but
behave differently if a and b are unordered.

// calls g and raises "invalid" if a and b are unordered
if (a < b)
f();

else
g();

// calls f and raises "invalid" if a and b are unordered
if (a >= b)
g();

else
f();

As sNaNs are not specified in C99, C implementations that support them
must do so with special care. For instance, the transformation of 1 * x to x is
valid in C99, but if x can be a sNaN, this transformation becomes invalid.

7.2.5 Enabling unsafe optimizations

Complex arithmetic in C99

The C99 standard defines another pragma allowing a more efficient imple-
mentation of some operations for multiplication, division, and absolute value
of complex numbers, for which the usual, straightforward formulas can give
incorrect results on infinities or spurious exceptions (overflow or underflow)
on huge or tiny inputs (see Section 4.5, page 139). The programmer can set the
CX_LIMITED_RANGE pragma to on if he or she knows that the straightforward
mathematical formulas are acceptable, in which case the compiler can choose
to use them instead of a code that would work on (almost) any input but
which is slower. The default state of this pragma is off, for safe computation.

Range reduction for trigonometric functions

For ARM processors using the ARM Developer Suite or the RealView tools,
the default trigonometric range reduction is inaccurate for very large argu-
ments. This is valid for most programs: if a floating-point number is so large
that the value of its ulp is several times the period 2π, it usually makes lit-
tle sense to compute its sine accurately. Conversely, if the input to the sine is
bound by construction to reasonably small values, the default range reduc-
tion is perfectly accurate. The situation is comparable to using the previous
quick and unsafe complex operators: they are perfectly safe if the values that
may appear in the program are under control. The big difference, however, is
that here the default behavior is the unsafe one.
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The accuracy of range reduction can be improved by the following
pragma [13, Section 5.4]:

#pragma import (__use_accurate_range_reduction)

The more accurate range reduction is slower and requires more memory (this
will be explained in Section 11.1, page 379). The ARM mainly focuses on
embedded applications such as mobile devices, which are memory-limited.

Compiler-specific optimizations

Compilers can have their own directives to provide unsafe optimizations
which may be acceptable for most common codes, e.g., assuming that no
exceptions or special values occur, that mathematically associative opera-
tions can be regarded as associative in floating-point arithmetic, and so on.
This is the case of GCC’s generic -ffast-math option (and other individual
options enabled by this one). Users should use such options with much care.
In particular, using them on a code they have not written themselves is highly
discouraged.

7.2.6 Summary: a few horror stories

As pointed out by David Goldberg [148] (in his edited reprint), all these
uncertainties make it impossible, in many cases, to figure out the exact
semantics of a floating-point C program just by reading its code. As a con-
sequence, portability is limited, and moving a program from one platform to
another may involve some rewriting. This also makes the automatic verifica-
tion of floating-point computations very challenging, as noticed by Monni-
aux [280].

The following section describes a few traps that await the innocent pro-
grammer.

Printing out a variable changes its value

Even the crudest (and most common) debugging mode of all, printing out
data, can be a trap. Consider the program given in Listing 7.3. With GCC
version 4.1.2 20061115 on a 32-bit Linux platform and the default settings,
the program will display:

9007199254740991.5 is strictly less than 9007199254740992

9007199254740992 is strictly less than 9007199254740992

While there is nothing wrong with the first line, the second is a bit more
disturbing. For the former we have used the long double type, which, on
this platform, maps to 80-bit x87 registers. These have enough room to store
all the bits of the sum. To no one’s surprise, the first test evaluates to true.
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C listing 7.3 Strange behavior caused by spilling data to memory.

long double lda = 9007199254740991.0; // 2^53 - 1
double da = 9007199254740991.0; // dito
if (lda + 0.5 < 9007199254740992.0)
{
printf("%.70Lg is strictly less than %.70Lg\n",

lda + 0.5,
(long double) 9007199254740992.0);

}
if (da + 0.5 < 9007199254740992.0)
{
printf("%.70g is strictly less than %.70g\n",

da + 0.5,
9007199254740992.0);

}

There is also enough room to store all the bits when, to call the printf()

function, the register holding the sum is spilled out to memory (remember a
long double is 12 bytes long on this platform). The printed message reflects
what happens in the registers.

For the second line, while we are supposed to work with 64 bits, the
addition and the test for inequality are also executed in the 80-bit x87 regis-
ters. The test evaluates again to true since, at register level, we are in the exact
same situation. What changes is that, when the sum is spilled to memory, it is
rounded to its “actual” 64-bit size. Using the rounding-to-nearest mode and
applying the “even rule” to break ties leads us to the 9007199254740992 value,
which is eventually printed out. By the way, it has nothing to do (as a suspi-
cious reader might wonder) with the formats used in the printf() function.
One may be convinced by trying the following:

• on the same platform, add to the command line the flags that
require the use of 64-bit SSE registers instead of the 80-bit x87 ones
(-march=pentium4 and -mfpmath=sse);

• on the 64-bit corresponding platform, run GCC with the default settings
(which are to use the SSE registers and not the x87).

The second line never prints out since the rounding of the sum takes place,
this time, in the 64-bit registers before the comparison is executed.

A possible infinite loop in a sort function

It is difficult to implement a sorting algorithm without the basic hypothesis
that if, at some point, two elements have compared as a < b, then in the future
they will also compare as b > a. If this assumption is violated, the program-
mer of the sorting algorithm cannot be held responsible if the program goes
into an infinite loop.
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Now let us write a function that compares two my_type structures
according to their radius.

C listing 7.4 A radius comparison function.

int compare_radius (const my_type *a, const my_type *b)
{
double temp = a->x*a->x + a->y*a->y - b->x*b->x - b->y*b->y;
if (temp > 0)
return 1;

else if (temp < 0)
return -1;

else
return 0;

}

We see at least two ways things can go wrong in Listing 7.4.

• If temp is computed using an FMA, there are two different ways of com-
puting each side of the subtraction, as we have seen in Section 7.2.3.

• Some of the intermediate results in the computation of temp may be
computed to a wider precision, especially when using an x87 FPU.

In both cases, the net result is that the compare_radius function,
although written in a symmetrical way, may be compiled into asym-
metrical code: it may happen that compare_radius(a,b) returns 0 while
compare_radius(b,a) returns 1, for instance. This is more than enough to
break a sorting algorithm.

Getting to the root of such bugs is very difficult for several reasons. First,
it will happen extremely rarely. Second, as we have just seen, entering debug
mode or adding printfs is likely to make the bug vanish. Third, it takes a
deep understanding of floating-point issues to catch (and fix) such a bug. We
hope that our reader now masters this knowledge.

7.3 Floating-Point Arithmetic in the C++ Language

7.3.1 Semantics

The semantics of the C++ language is similar to that of the C language with
respect to floating-point arithmetic. The parenthesizing order is the same and,
as in C, intermediate expressions may use a bigger format since as per the C99
standard [190], section 6.3.1.8:

The values of the floating operands and the results of floating
expressions may be represented in greater precision and range
than that required by the type; the types are not changed thereby.
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While the C++ standard does not mention the C99 language,4, there is
no fundamental reason for floating-point arithmetic to behave differently
between C99 and C++. Most of Section 7.2 should therefore apply to C++
as well.

7.3.2 Numeric limits

In addition to the macros inherited from C, the C++ standard library pro-
vides the template class std::numeric_limits in the <limits> header file to
allow metaprogramming depending on the floating-point capabilities. For a
floating-point type T, the class std::numeric_limits<T> provides the follow-
ing static members.

1. Format:

• int radix: the radix β, either 2 or 10 usually,

• bool is_iec559: true if T is an IEEE-754 format and the operations
on T are compliant.5

2. Special values:

• bool has_infinity: true if T has a representation for +∞,

• bool has_quiet_NaN: true if T has a representation for a qNaN,

• bool has_signaling_NaN: true if T has a representation for an
sNaN,

• T infinity(): representation of +∞,

• T quiet_NaN(): representation of a qNaN,

• T signaling_NaN(): representation of a sNaN.

3. Range:

• T min(): smallest positive normal number,

• T max(): largest finite number,

• T lowest(): negated max(),

• int min_exponent: smallest integer k such that βk−1 is a normal
number, e.g., −125 for binary32,

• int max_exponent: largest integer k such that βk−1 is a normal
number, e.g., 128 for binary32,

4The first version C++98, was published before the C99 standard. There was a minor
revision in 2003, but which was only a corrected version of the 1998 standard. The next C++
standard, tentatively named C++0x, will take C99 into account.

5When is_iec559 is true , the C++ standard mandates that infinities and NaNs are
available.
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• int min_exponent10: smallest integer k such that 10k is a normal
number, e.g., −37 for binary32,

• int max_exponent10: largest integer k such that 10k is a normal
number, e.g., 38 for binary32.

4. Subnormal numbers:

• float_denorm_style has_denorm: denorm_present, denorm_-

absent, or denorm_indeterminate, depending on whether
subnormal numbers are known to be supported or not,

• bool has_denorm_loss: true if inaccurate subnormal results are
detected with an “underflow” exception (Section 3.1.5) instead of
just an “inexact” exception,

• T denorm_min(): smallest positive subnormal number,

• bool tinyness_before: true if subnormal results are detected
before rounding (see Definition 1 of Chapter 2, page 18).

5. Rounding mode and error:

• T epsilon(): the subtraction 1+ − 1 with 1+ the successor of 1 in
the format T,

• T round_error(): biggest relative error for normalized results of
the four basic arithmetic operations, with respect to epsilon(),
hence 0.5 when rounding to nearest,

• float_round_style round_style: round_toward_zero, round_-

to_nearest, round_toward_infinity, round_toward_neg_-

infinity, or round_indeterminate, depending on whether the
rounding mode is known or not. 6

7.3.3 Overloaded functions

In C++, functions from the <cmath> header have been overloaded to take
argument types into account (float and long double). For instance, while
<math.h> provides a sinf function for computing sine on float, <cmath> pro-
vides float sin(float) in the std namespace. In particular, it means that the
following piece of code does not have the same semantics in C and in C++
(assuming the std namespace is in scope):

float a = 1.0f;
double b = sin(a);

6round_style is a constant member. Therefore, it may well be set to the default
round_to_nearest style, even if the architecture allows us to change the rounding direction
on the fly.
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In C, the variable a will first be promoted to double. The double-precision
sine will then be called and the double-precision result will be stored in b.
In C++, the single-precision sine will be called and its single-precision result
will then be promoted to double and stored in b. Of course, the first approach
provides a more accurate result.

The C++0x standard (to be ratified in 2009) also provides utility func-
tions that replace the C99 macros for classifying or ordering floating-point
values:

namespace std {
template <class T> bool signbit(T x);
template <class T> int fpclassify(T x);
template <class T> bool isfinite(T x);
template <class T> bool isinf(T x);
template <class T> bool isnan(T x);
template <class T> bool isnormal(T x);

template <class T> bool isgreater(T x, T y);
template <class T> bool isgreaterequal(T x, T y);
template <class T> bool isless(T x, T y);
template <class T> bool islessequal(T x, T y);
template <class T> bool islessgreater(T x, T y);
template <class T> bool isunordered(T x, T y);

}

7.4 FORTRAN Floating Point in a Nutshell

7.4.1 Philosophy

FORTRAN was initially designed as a FORmula TRANslator, and this
explains most of its philosophy with respect to floating-point arithmetic. In
principle, a FORTRAN floating-point program describes the implementation
of a mathematical formula, written by a mathematician, an engineer, or a
physicist, and involving real numbers instead of floating-point numbers. This
is illustrated by the fact that a floating-point variable is declared with the
REAL keyword or one of its variants. Compare this with the C float key-
word which describes a machine implementation of the reals, following the C
“close-to-the-metal” philosophy. FORTRAN also draws a clear line between
integers and reals, and acknowledges them as fundamentally different math-
ematical objects.

In the compilation of a FORTRAN program, the formula provided by the
user should be respected. In the translation process, a FORTRAN compiler is
free to apply to the source code (formula) any mathematical identity that is
valid over the reals, as long as it results in a mathematically equivalent for-
mula. However, it gives little importance to the rounding errors involved in
this process. They are probably considered unavoidable, and small anyway.
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Here is a biased excerpt of the FORTRAN standard [192] that illustrates
this.

(...) the processor may evaluate any mathematically equivalent
expression (...). Two expressions of a numeric type are mathemat-
ically equivalent if, for all possible values of their primaries, their
mathematical values are equal. However, mathematically equiv-
alent expressions of numeric type may produce different compu-
tational results.

Again, integers and reals are distinct objects, as illustrated by the follow-
ing excerpt:

Any difference between the values of the expressions (1./3.)*3.
and 1. is a computational difference, not a mathematical differ-
ence. The difference between the values of the expressions 5/2

and 5./2. is a mathematical difference, not a computational dif-
ference.

Therefore, (1./3.)*3. may be quietly replaced by 1., but 5/2 and 5./2.

are not interchangeable.
However, the standard acknowledges that a programmer may

sometimes want to impose a certain order to the evaluation of a formula.
It therefore makes a considerable exception to the above philosophy: when
parentheses are given, the compiler should respect them. Indeed, the first
sentence of the first excerpt reads in full:

(...) the processor may evaluate any mathematically equivalent
expression, provided that the integrity of parentheses is not
violated.

Then, another excerpt elaborates on this:

In addition to the parentheses required to establish the desired
interpretation, parentheses may be included to restrict the alter-
native forms that may be used by the processor in the actual
evaluation of the expression. This is useful for controlling the
magnitude and accuracy of intermediate values developed dur-
ing the evaluation of an expression.

For example, an expression written

a/b ∗ c/d

may be computed either as
(a/b) ∗ (c/d), (7.1)
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or as

(a ∗ c)/(b ∗ d). (7.2)

A FORTRAN compiler may choose the parenthesizing it deems the more
efficient. These two expressions are mathematically equivalent but do not
lead to the same succession of rounding errors, and therefore the results may
differ. For instance, if a, b, c, and d are all equal and strictly larger than the
square root of the largest representable finite floating-point number Ω, then
choosing Equation (7.1) leads to the right result 1, whereas choosing Equa-
tion (7.2) leads to the quotient of two infinities (which gives a NaN in an arith-
metic compliant with the IEEE 754-2008 standard). During the development
of the LHC@Home project [103], such an expression, appearing identically in
two points of a program, was compiled differently and—very rarely—gave
slightly different results. This led to inconsistencies in the distributed simula-
tion, and was solved by adding explicit parentheses on the offending expres-
sion.

Here are some more illustrations of the FORTRAN philosophy, also from
the FORTRAN standard [192]. In Tables 7.2 and 7.3 , X, Y, Z are of arbitrary
numeric types, A, B, C are reals or complex, and I, J are of integer type.

Expression Allowable alternative
X+Y Y+X
X*Y Y*X
-X + Y Y-X
X+Y+Z X + (Y + Z)
X-Y+Z X - (Y - Z)
X*A/Z X * (A / Z)
X*Y - X*Z X * (Y - Z)
A/B/C A / (B * C)
A / 5.0 0.2 * A

Table 7.2: FORTRAN allowable alternatives.

The example of the last line of Table 7.2 could be turned into a similar
example by replacing the “5.0” by “4.0” and the “0.2” by “0.25”. However,
it is not possible to design a similar example by replacing the “5.0” by “3.0”
because no finite sequence “0.3333 · · · 3” is exactly equal to 1/3: FORTRAN
accepts replacements of formulas only by other formulas that are mathemat-
ically equivalent.

To summarize, FORTRAN has much more freedom when compiling
floating-point expressions than C. As a consequence, the performance of a
FORTRAN program is likely to be higher than that of the same program
written in C.
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Expression Forbidden alternative Why
I/2 0.5 * I integer versus real operation
X*I/J X * (I / J) real versus integer division
I/J/A I / (J * A) integer versus real division
(X + Y) + Z X + (Y + Z) explicit parentheses
(X * Y) - (X * Z) X * (Y - Z) explicit parentheses
X * (Y - Z) X*Y-X*Z explicit parentheses

Table 7.3: FORTRAN forbidden alternatives.

7.4.2 IEEE 754 support in FORTRAN

Section 13 of the FORTRAN standard, Intrinsic procedures and modules,
defines a machine model of the real numbers which corresponds to normal-
ized floating-point numbers:

The model set for real x is defined by

x =


0 or

s× be ×
p∑

k=1

fk × b−k ,

where b and p are integers exceeding one; each fk is a non-
negative integer less than b, with f1 non zero; s is +1 or −1; and
e is an integer that lies between some integer maximum emax and
some integer minimum emin inclusively. For x = 0, its exponent e
and digits fk are defined to be zero. (...) the integer parameters b,
p, emin , and emax determine the set of model floating-point num-
bers. The parameters of the integer and real models are available
for each integer and real type implemented by the processor. The
parameters characterize the set of available numbers in the def-
inition of the model. The floating-point manipulation functions
(13.5.10) and numeric inquiry functions (13.5.6) provide values of
some parameters and other values related to the models.

Numeric inquiry functions are DIGITS (X), EPSILON (X), HUGE (X),
MAXEXPONENT (X), MINEXPONENT (X), PRECISION (X), RADIX (X), RANGE (X),
TINY (X). Most need no further explanation, but be aware that the signifi-
cand in the previous model is in [1/b, 1); therefore, emin and emax differ from
those of the IEEE 754 standard. Some of these functions have strange defi-
nitions in 13.5.10: EPSILON (X) is defined as Number that is almost negligible
compared to one, which is not very precise. It becomes clearer in 13.7, Speci-
fications of the standard intrinsic procedures, which defines it as b1−p with the
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notation of the model above. HUGE (X) and TINY (X) are defined, respec-
tively, as Largest number of the model and Smallest positive number of the model.
For these functions, remember that the model includes neither infinities nor
subnormals. Indeed, TINY (X) is defined later in 13.7 of the FORTRAN stan-
dard as bemin−1.

The following floating-point manipulation functions are available:

• EXPONENT (X) Exponent part of a model number;

• FRACTION (X) Fractional part of a number;

• NEAREST (X, S) Nearest different processor number in the direction
given by the sign of S;

• SPACING (X) Absolute spacing of model numbers near a given num-
ber. This under-specified definition of the ulp is clarified in 3.7 as
bmax(e−p,emin−1);

• RRSPACING (X) Reciprocal of the relative spacing of model numbers
near a given number;

• SCALE (X, I) Multiply a real by its radix to an integer power;

• SET EXPONENT (X, I) Set exponent part of a number.

All the previous information is mostly unrelated to the IEEE 754 stan-
dard. In addition, the FORTRAN standard dedicates its Section 14 to Excep-
tions and IEEE arithmetic. This section standardizes IEEE 754 support when
it is provided, but does not make it mandatory. It provides, in the intrinsic
modules IEEE EXCEPTIONS, IEEE ARITHMETIC and IEEE FEATURES, numer-
ous inquiry functions testing various parts of standard compliance. It also
defines read and write access functions to the rounding directions, as well as
read and write access functions to the underflow mode (which may be either
gradual, i.e., supporting subnormals, or abrupt, i.e., without subnormals).
Finally, it defines subroutines for all the functions present in the IEEE
754-1985 standard.

7.5 Java Floating Point in a Nutshell

7.5.1 Philosophy

“Write once, run anywhere (or everywhere)” is the mantra of the Java lan-
guage evangelists. Reproducibility between platforms is an explicit and
essential goal, and this holds for numeric computations as well. In practi-
cal terms, this is achieved through byte-code compilation (instead of compi-
lation to object code) and interpretation on a virtual machine rather than
direct execution on the native operating system/hardware combination.
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In the first versions of the Java platform, this meant poor performance, but
techniques such as “Just In Time” or “Ahead Of Time” compilation were later
developed to bridge the gap with native execution speed.

The initial language design tried to ensure numerical reproducibility by
clearly defining execution semantics, while restricting floating-point capa-
bilities to a subset of formats and operators supported by most processors.
Unfortunately, this was not enough to ensure perfect reproducibility, but
enough to frustrate performance-aware programmers who could not exploit
their extended precision or FMA hardware [210]. We will see how Java later
evolved to try and give to the programmers the choice between reproducibil-
ity and performance.

In general terms, Java claims compliance with the IEEE 754-1985 stan-
dard, but only implements a subset of it. Let us now look at the details.

7.5.2 Types and classes

Java is an object-oriented language “with a twist”: the existence of primi-
tive types and the corresponding wrapper classes. One of the main reasons
behind the existence of basic types is a performance concern. Having many
small and simple variables incurs a severe access time penalty if created on
the heap as objects are.

As far as floating-point numbers are concerned, there are two basic
types:

• float: binary32 analogous, Float being the wrapper class;

• double: binary64 analogous, Double being the wrapper class.

As the Java Language Specification puts it, these types are “conceptually
associated with the 32-bit single-precision and 64-bit double-precision format
of IEEE 754 standard.”

In the virtual machine

Although the virtual machine is supposed to insulate the execution from the
peculiarities of the hardware, at some point, floating-point operations have
to be performed on the actual processor. Of course, specialized floating-point
units could be totally avoided and all instructions software emulated using
integer registers, but the speed penalty would be prohibitive.

Looking at the details of the Java Virtual Machine Specification, second
edition [262, Section 3.3.2], one may observe that the Java designers have been
forced to acknowledge the peculiarity of the x87 hardware, which can be set
to round to a 53-bit or 24-bit significand, but always with the 16-bit expo-
nent of the double-extended format. The Java Virtual Machine Specification
defines, in addition to the float and double formats, a double-extended-exponent
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format that exactly corresponds to what is obtained when one sets an x87 FPU
to rounding to 53 bits. Unfortunately, from there on, reproducibility vanishes,
as the following excerpt illustrates:

These extended-exponent value sets may, under certain circum-
stances, be used instead of the standard value sets to represent
the values of type float or double.

The first edition of the Java Virtual Machine Specification was much
cleaner, with only float and double types, and fewer “may” sentences threat-
ening reproducibility. The only problem was that it could not be implemented
efficiently on x86 hardware (or, equivalently, efficient implementations were
not strictly compliant with the specification).

Neither the first edition nor the second is fully satisfactory. To be honest,
this is not to be blamed on the Java designers, but on the x87 FPU. The fact
that it could not round to the standard double-precision format is one of the
main flaws of an otherwise brilliant design. It will be interesting to see if Java
reverts to the initial specification, now that x86-compatible processors, with
SSE2, are turning the x87 page and offering high-performance hardware with
straightforward rounding to binary32 and binary64.

In the Java language

In Java 2 SDK 1.2, a new keyword (and the corresponding behavior) was
introduced to make sure computations were realized as if binary32 and
binary64 were actually used all the way (again, at some performance cost).
See Program 7.1. Technically, this strictfp modifier is translated into a bit

// In this class, all operations in all methods are performed
// in binary32 or binary64 mode.
strictfp class ExampleFpStrictClass {
...
} // End class ExampleFpStrictClass

class NormalClass {
...
// This particular method performs all its operations in binary32
// or binary64 mode
strictfp double aFpStrictMethod(double arg)
{
...

} // End aFpStrictMethod
} // End class NormalClass

Program 7.1: The use of the strictfp keyword.

associated to each method, down to the virtual machine.
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The strictfp modifier ensures that all the computations are performed
in strict binary32 or binary64 mode, which will have a performance cost
on x86 hardware without SSE2. According to the specification, what non-
strictfp allows is just an extended exponent range, “at the whim of the
implementation” [153].

However, as usual, one may expect compilation flags to relax compliance
to the Java specification. Here, the interested reader should look at the docu-
mentation not only of the compiler (the javac command or a substitute), but
also of the runtime environment (the java command or a substitute, includ-
ing just-in-time compilers). There are also Java native compilers such as JET
or GCJ, which compile Java directly to machine code (bypassing the virtual
machine layer). Some enable extended precision even for the significand.

7.5.3 Infinities, NaNs, and signed zeros

Java has the notion of signed infinities, NaNs, and signed zeros. Infinities
and NaNs are defined as constants in their respective wrapper classes (e.g.,
java.lang.Double.POSITIVE_INFINITY, java.lang.Float.NaN).

A first pitfall one must be aware of is that Double and double do not
compare the same, as Program 7.2 shows. Here is the output of this program:

NaN != NaN

NaN == NaN

aDouble and anotherDouble are different objects.

anotherDouble and aThirdDouble are the same object.

anotherDouble and aThirdDouble have the same value NaN == NaN

As one can see, the == operator does not behave the same for basic types and
objects.

• For basic types, if the variables hold the same value, the compari-
son evaluates to true, except for the java.lang.{Float | Double}.NaN

value, in accordance with any version of the IEEE 754 standard.

• For the object types, the == operator evaluates to true only if both ref-
erences point to the same object. To compare the values, one must use
the equals() method. But as you can see, NaN equals NaN, which is a bit
confusing.

We are confronted here with a tradeoff between respect for the IEEE
754 standard and the consistency with other Java language elements as
maps or associative arrays. If floating-point objects are used as keys,
one should be able to retrieve an element whose index is NaN.



7.5. Java Floating Point in a Nutshell 231

import java.io.*;

class ObjectValue {
public static void main(String args[])
{
double adouble = java.lang.Double.NaN;
double anotherdouble = java.lang.Double.NaN;
Double aDouble = new Double(java.lang.Double.NaN);
Double anotherDouble = new Double(java.lang.Double.NaN);
Double aThirdDouble = anotherDouble;

if (adouble != anotherdouble){
System.out.print(adouble);
System.out.print(" != ");
System.out.println(anotherdouble);

}
if (aDouble.equals(anotherDouble)){
System.out.print(aDouble.toString());
System.out.print(" == ");
System.out.println(anotherDouble.toString());

}
if (aDouble != anotherDouble)
System.out.println("aDouble and anotherDouble are different objects.");

if (anotherDouble == aThirdDouble)
System.out.println("anotherDouble and aThirdDouble are the same object.");

if (anotherDouble.equals(aThirdDouble)){
System.out.print("anotherDouble and aThirdDouble have the same value ");
System.out.print(anotherDouble.toString());
System.out.print(" == ");
System.out.println(aThirdDouble.toString());

}
} // End main

} // End class ObjectValue

Program 7.2: Object comparison in Java.

7.5.4 Missing features

The compliance of the Java Virtual Machine [262, Section 3.8] to IEEE 754
remains partial in two main respects:

• It does not support flags or exceptions. The term exception must be taken
here with the meaning it has in the IEEE 754 standard, not with the one
it has in Java (which would more accurately translate into trap, in IEEE
754 parlance).

• All operations are performed with rounding to the nearest. As a con-
sequence, some of the algorithms described in this book cannot be
implemented. Worse, as this is a virtual machine limitation, there is
no possibility of a machine interval arithmetic data type as first class
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citizen in the Java language. This does not mean that interval arith-
metic cannot be done at all in Java; several external packages have been
developed for that, but they are much less efficient than operations
performed using hardware directed rounding modes. This is all the
more surprising because most processors with hardware floating-point
support also support directed rounding modes.

7.5.5 Reproducibility

The strictfp keyword enables reproducibility of results computed using
basic operations. Expression evaluation is strictly defined and unambiguous,
with (among others) left-to-right evaluation, StrictFP compile-time constant
evaluation, and widening of the operations to the largest format [153].

However, tightening basic operations is not enough. Until Java 2
SDK 1.3, when a mathematical function of the java.lang.Math package was
called (sine, exponential, etc.), it was evaluated using the operating system’s
implementation, and the computed result could change from platform to
platform. Java 2 SDK 1.3 was released with the new java.lang.StrictMath

package. It tried to guarantee the same bit-for-bit result on any plat-
form, again, at the expense of performance. Nevertheless, correct round-
ing to the last bit was not ensured. Eventually, in Java 2 SDK 1.4, the
implementation of java.lang.Math functions became simple calls to their
java.lang.StrictMath counterparts.

This enabled numerical consistency on all platforms at last, with two ill
effects. Some users observed that the result changed for the same program
on the same platform. Users also sometimes noticed a sharp drop in execu-
tion speed of their program, and the standard Java platform no longer offers
a standard way out for users who need performance over reproducibility.
Many tricks (e.g., resorting to JNI for calls to an optimized C library) were
tried to gain access again to the speed and precision of the underlying plat-
form.

To summarize this issue, the history of Java shows the difficulty of
the “run anywhere with the same results” goal. At the time of writing
this book, there are still some inconsistencies; for example, the fact that the
default choice for elementary function evaluation is reproducibility over
performance, while the default choice for expression evaluation (without
strictfp) is performance over reproducibility.

Things will evolve favorably, however. We have already mentioned that
the generalization of SSE2 extensions will render strictfp mostly useless. In
addition, in the near future, the generalization of correctly rounded elemen-
tary functions which are recommended by IEEE 754-2008 (see Section 11.6,
page 394) could reconcile performance and reproducibility for the elementary
functions: the Java virtual machine could again trust the system’s optimized
mathematical library if it knows that it implements correct rounding. It is
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unfortunate that the java.lang.StrictMath current implementation did not
make the choice of correct rounding. It remains for Java designers to specify a
way to exploit the performance and accuracy advantage of the FMA operator
when available [9] without endangering numerical reproducibility.

7.5.6 The BigDecimal package

The Java designers seem to have been concerned by the need for reliable deci-
mal floating-point, most notably for perfectly specified accounting. They pro-
vided the necessary support under the form of the java.math.BigDecimal

package. Although this package predates the IEEE 754-2008 standard and
therefore does not exactly match the decimal floating-point specification, it
shares many concepts with it.

In particular, the java.math.MathContext class encapsulates a notion
of precision and a notion of rounding mode. For instance, the preset
MathContext.DECIMAL128 defines a format matching the IEEE 754-2008 dec-
imal128 and the “round to nearest and break ties to even” default rounding
mode. Users can define their own kind of MathContext and have, for that
purpose, a wide choice of rounding modes.

A MathContext can be used to control how operations are performed,
but also to emulate IEEE 754 features otherwise absent from the language,
such as the inexact flag. Program 7.3 illustrates this.

Current State of Java for HP

import java.math.*;

class DecimalBig {
public static void main(String args[])
{
// Create a new math context with 7 digits precision, matching
// that of MathContext.DECIMAL32 but with a different rounding
// mode.
MathContext mc = new MathContext(7, RoundingMode.UNNECESSARY);
BigDecimal a = new BigDecimal(1.0, MathContext.DECIMAL32);
BigDecimal b = new BigDecimal(3.0, MathContext.DECIMAL32);
BigDecimal c;

// Perform the division in the requested MathContext.
// In this case, if the result is not exact, within the required
// precision, an exception will be thrown.
c = a.divide(b, mc);
// could have been written as
// c = a.divide(b, 7, RoundingMode.UNNECESSARY)

} // End main
} // End class DecimalBig

Program 7.3: BigDecimal and MathContext.
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This program will crash, since we do not catch the exception that would,
in IEEE 754 parlance, raise the “inexact status flag,” and will print out a mes-
sage of the following type:

Exception in thread "main" java.lang.ArithmeticException:

Rounding necessary

at java.math.BigDecimal.divide(BigDecimal.java:1346)

at java.math.BigDecimal.divide(BigDecimal.java:1413)

at DecimalBig.main(DecimalBig.java:12)

This is more awkward and dangerous than the behavior proposed in
IEEE 754-2008: in IEEE 754, an inexact computation silently raises a flag and
does not interrupt execution. Still, when used with care, this is the closest to
floating-point environment control one can find in “out-of-the-box” Java.

A completely different problem is that BigDecimal numbers are objects,
not basic types. They incur all the performance overhead associated with
objects (in addition to the performance overhead associated with software
decimal operations) and require a clumsy object-oriented method syntax
instead of the leaner usual infix operators.

7.6 Conclusion

We wish we convinced the reader that, from the floating-point perspective,
languages and systems were not ”designed equal,” and that the designer of
numerical programs may save on debugging time by looking carefully at the
documentations of both the chosen language and the underlying system.

Obviously, considering the variety of choices made by different systems,
there is no perfect solution, in particular because of the performance/repr-
oducibility conflict (where reproducibility may be replaced with portability,
predictability, or numerical consistency, depending on the programmer’s con-
cerns). The perfect solution may be a system which

• is safe by default (favoring portability) so that subtle numerical bugs,
such as the infinitely looping sort, are impossible, and

• gives to the programmer the possibility of improving performance
when needed, with due disclaimers with respect to numerical pre-
dictability.

Even so, the granularity of the programmer’s control on this tradeoff is an
issue. Compilation flags or operating-system-level behavior control are typi-
cally too coarse, while adding pragmas or strictfp everywhere in the code
may be a lot of work, and may not be possible when external libraries are
used.

We have not covered all the existing languages, of course. Some of
them are well specified, and some are explicitly under-specified (C#, Perl,
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Python, etc.). In the latter case, note that most recent documentations explic-
itly warn the user about floating-point arithmetic.

Finally, some languages, such as ECMAScript (ECMA-262 / ISO/IEC
16262), do not have integer arithmetic and rely on IEEE 754 floating-point
arithmetic to emulate integer arithmetic. The only difficulty is the integer
division, which is commonly implemented as a floating-point division fol-
lowed by a floor, without any justification. Developers should be aware that
some inputs can yield an incorrect result because of the rounded floating-
point division, although in most cases (in particular those encountered in
practice), one can prove that the result is correct [254].
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Implementing Floating-Point
Operators



Chapter 8

Algorithms for the Five Basic
Operations

Among the many operations that the IEEE 754 standards specify
(see Chapter 3), we will focus here and in the next two chapters on

the five basic arithmetic operations: addition, subtraction, multiplication,
division, and square root. We will also study the fused multiply-add (FMA)
operator. We review here some of the known properties and algorithms used
to implement each of those operators. Chapter 9 and Chapter 10 will detail
some examples of actual implementations in, respectively, hardware and soft-
ware.

Throughout this chapter, the radix β is assumed to be either 2 or 10.
Following the IEEE 754-2008 standard [187], we shall further assume that
extremal exponents are related by emin = 1 − emax and that the formats con-
sidered are basic formats only.

8.1 Overview of Basic Operation Implementation

For the five basic operations, the IEEE 754-2008 standard requires correct
rounding: the result returned must be as if the exact, infinitely precise
result was computed, then rounded. The details of the cases that may occur,
illustrated in Figure 8.1, are as follows.

• If the result is undefined, a Not a Number (NaN) will be returned.

• Otherwise, let us consider the real number which is the infinitely pre-
cise result of the operation.

– If this real result is exactly representable as a floating-point
number, no rounding will be needed. However, there may still
be work to do: a representable result may have several possible

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_8, 239
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Figure 8.1: Specification of the implementation of a floating-point operation.

representations, and the implementation has to compute which
one it returns out of its intermediate representation of the result:

∗ In binary, there is only one valid representation, which is the
one with the smallest possible exponent;
∗ In decimal, several representations of the result may be valid

(they form what is called a cohort). The standard precisely
defines which member of such a cohort should be returned.
For each operation, a preferred exponent is defined as a func-
tion of the operation’s inputs (see Section 3.4.7, page 97). The
implementation has to return the member of the cohort result
whose exponent is closest to the preferred exponent;

– If the exact result is not exactly representable as a floating-point
number, it has to be rounded to a floating-point number. If that
floating-point number has several possible representations, the
returned result, both in binary and in decimal, is the one with
the smallest possible exponent.

In practice, there are two classes of operations.

• When adding, subtracting, or multiplying two floating-point numbers,
or when performing a fused multiply-add (FMA) operation, the
infinitely precise result is actually always finite and may be exactly
computed by an implementation. Therefore, the previous discussion
has a straightforward translation into an architecture or a program.1

1In many cases, there are better ways of implementing the operation.

return NaN
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• When performing a division or computing a square root or an elemen-
tary function, the exact result may have an infinite number of digits;
consider, for instance, the division 1.0/3.0. In such cases, other means
are used to reduce the rounding problem to a finite computation. For
division, one may compute a finite-precision quotient, then the remain-
der allows one to decide how to round. Similarly, for the square root,
one may compute y ≈

√
x, then decide rounding by considering x− y2.

Some iterations also allow, when an FMA instruction is available, to
directly get a correctly rounded quotient or square root from an accu-
rate enough approximation (see Section 5.3). Correct rounding of the
elementary functions will be the subject of Chapters 11 and 12.

Section 8.2 addresses the general issue of rounding a value (the “com-
pute rounding” box of Figure 8.1). The subsequent sections will address
specifically each of the five basic operators.

8.2 Implementing IEEE 754-2008 Rounding

8.2.1 Rounding a nonzero finite value with unbounded exponent
range

Obviously every nonzero finite real number x can be written as

x = (−1)s ·m · βe, (8.1)

where β is the chosen radix, here 2 or 10, where e is an integer, and where the
real m is the (possibly infinitely precise) significand of x, such that 1 ≤ m < β.
We will call the representation (8.1) the normalized representation of x. (Note
however that this does not mean that x is a normal number in the IEEE 754
sense since x may have no finite radix-β expansion.) If we denote mi the digit
of weight β−i (i.e., the i-th fractional digit) in the radix-β expansion of m, we
have

m =
∑
i≥0

miβ
−i = (m0.m1m2 . . .mp−1mpmp+1 . . .)β,

where m0 ∈ {1, . . . , β − 1} and, for i ≥ 1, mi ∈ {0, 1, . . . , β − 1}. In addition,
an unbounded exponent range is assumed from now on, so that we do not have
to worry about overflow, underflow, or subnormals (they will be considered
in due course).

At precision p the result of rounding x is either the floating-point number

xp = (−1)s · (m0.m1m2 . . .mp−1)β · βe

obtained by truncating the significand m after p− 1 fractional digits, or

• the floating-point successor of xp when x is positive,
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• the floating-point predecessor of xp when x is negative.

In other words, writing Succ(x) for the successor of a floating-point number
x, the rounded value of x will always be one of the two following values:

(−1)s · |xp| or (−1)s · Succ(|xp|),

with |xp| = (m0.m1m2 . . .mp−1)β · βe.
Note that rounding essentially reduces to rounding non-negative values,

because of the following straightforward properties of rounding operators:

RN(−x) = −RN(x), RZ(−x) = −RZ(x),
RU(−x) = −RD(x). (8.2)

Computing the successor in a binary interchange format

The reader may check that the binary interchange formats (see [187] and
Chapter 3) are built in such a way that the binary encoding of the successor of a
positive floating-point value is the successor of the binary encoding of this value, con-
sidered as a binary integer. This important property (which explains the choice
of a biased exponent over two’s complement or sign-magnitude) is true for
all positive floating-point numbers, including subnormal numbers, from +0
to the largest finite number (whose successor is +∞). It also has the conse-
quence that the lexicographic order on the binary representations of positive
floating-point numbers matches the order on the numbers themselves.

This provides us with a very simple way of computing Succ(|xp|):
consider the encoding of |xp| as an integer, and increment this integer.
The possible carry propagation from the significand field to the exponent
field will take care of the possible exponent change.

Example 9. Considering the binary32 format, let x24 = (2− 2−23) · 2−126. The bit
string X31 . . . X0 of the 32-bit integer X =

∑31
i=0 Xi2i that encodes x24 is

0 00000001︸ ︷︷ ︸
8 exponent bits

11111111111111111111111︸ ︷︷ ︸
23 fraction bits

.

The successor Succ(x24) of x24 is encoded by the 32-bit integer X + 1 whose bit
string is

0 00000010︸ ︷︷ ︸
8 exponent bits

00000000000000000000000︸ ︷︷ ︸
23 fraction bits

.

That new bit string encodes the number 1 · 22−127, which is indeed Succ(x24) =
x24 +2−23 ·2−126 = 2−125. Note how the carry in the addition X +1 has propagated
up to the exponent field.

For algorithms that use a few floating-point operations for computing
the predecessor and successor of a floating-point number, see [351].
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Choosing between |xp| and its successor Succ(|xp|)

As already detailed by Table 2.1, page 22 for radix 2, the choice between |xp|
and Succ(|xp|) depends on the sign s, the rounding mode, the value of the
digit mp of m (called the round digit), and a binary information telling us if
there exists at least one nonzero digit among the (possibly infinitely many)
remaining digits mp+1,mp+2, . . .. In radix 2, this information may be defined
as the logical OR of all the bits to the right of the round bit, and is therefore
named the sticky bit. In radix 10, the situation is very similar. One still needs
a binary information, which we still call the sticky bit. It is no longer defined
as a logical OR, but as follows: its value is 0 if all the digits to the right after
mp are zero, and 1 otherwise.

Let us consider some decimal cases for illustration.

• When rounding x toward zero, the rounded number is always2 xp.

• When rounding a positive x toward +∞, the rounded number is
Succ(xp), except if x was already a representable number, i.e., when
both its round digit and sticky bit are equal to zero.

• When rounding to nearest with roundTiesToEven a positive decimal
number x, if the round digit mp belongs to {0, 1, 2, 3, 4}, then the
rounded number is xp; if mp belongs to {6, 7, 8, 9}, then the rounded
number is Succ(xp). If mp is equal to 5, then the sticky bit will decide
between Succ(xp) (if equal to 1) or a tie (if equal to 0). In case of a tie,
the ties to even rule considers the last digit (of weight 10−p+1) of the two
candidates. The rounded result is the one whose last digit is even.

Having defined the infinitely accurate normalized representation
x = (−1)s · m · βe with 1 ≤ m < β of the result allows us to manage flags
and exceptional cases as well. However, note first that for some operations,
overflow or underflow signaling may be decided by considering the inputs
only, before any computation of the results. For example, as we will see later
in this chapter, square root overflows if and only if the input is +∞, never
underflows, and returns NaN if and only if the input is NaN or strictly nega-
tive. The possibility of such an early detection of exceptional situations will be
mentioned when appropriate.

8.2.2 Overflow

As stated in Section 3.4.10, page 101, the overflow exception is signaled when
the absolute value of the intermediate result is strictly larger than the largest
finite number Ω = (β − β1−p) · βemax . Here, the intermediate result is defined

2In this discussion we assume that 4.999...9∞ is written 5.0∞; otherwise, this sentence is
not true. This remark is academic: a computer will only deal with finite representations, which
do not raise this ambiguity.
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as the infinitely accurate result rounded to precision p with an unbounded
exponent range.

For rounding to the nearest, this translates to: an overflow is signaled
when

(e > emax)

or(
e = emax and (m0.m1m2 . . .mp−1)β = β − β1−p and mp ≥

β

2

)
.

Note that in the case mp = β
2 , when e = emax and (m0.m1m2 . . .mp−1)β =

β−β1−p, with roundTiesToEven, the exact result is rounded to the intermediate
result βemax+1; therefore, it signals overflow without having to consider the
sticky bit.

When rounding a positive number to +∞, an overflow is signaled when

(e > emax)

or(
e = emax and (m0.m1 . . .mp−1)β = β − β1−p

and (mp > 0 or sticky = 1)
)
.

This reminds us that overflow signaling is dependent on the prevailing
rounding direction. The other combinations of sign and rounding direction
are left as an exercise to the reader.

8.2.3 Underflow and subnormal results

As stated in Section 3.4.10, page 102, the underflow exception is signaled
when a nonzero result whose absolute value is strictly less than βemin is com-
puted.3 This translates to: an underflow is signaled if e < emin, where e is the
exponent of the normalized infinitely precise significand.

In such cases, the previous rounding procedure has to be modified as
follows: m (the normalized infinitely precise significand) is shifted right by
emin − e (it will no longer be normalized), and e is set to emin. We thus have
rewritten x as

x = (−1)s ·m′ · βemin ,

with
m′ = (m′

0.m
′
1m

′
2 . . .m′

p−1m
′
pm

′
p+1 . . .)β.

3We remind the reader that there remains some ambiguity in the standard, since underflow
can be detected before or after rounding. See Section 2.1, page 18, and Section 3.4.10, page 102,
for more on this. Here, we describe underflow detection before rounding.
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From this representation, we may define the round digit m′
p, the sticky bit

(equal to 1 if there exists a nonzero m′
i for some i > p, and 0 otherwise), and

the truncated value |xp| = (m′
0.m

′
1m

′
2 . . .m′

p−1)β · βemin as previously. As the
successor function is perfectly defined on the subnormal numbers—and even
easy to compute in the binary formats—the rounded value is decided among
(−1)s · |xp| and (−1)s · Succ(|xp|) in the same way as in the normal case.

One will typically need the implementations to build the biased exponent
(that is, in binary, what is actually stored in the exponent field), equal to the
exponent plus the bias (see Table 3.4, page 60). There is one subtlety to be
aware of in binary formats: the subnormal numbers have the same exponent
as the smallest normal numbers, although their biased exponent is smaller
by 1. In general, we may define nx as the “is normal” bit, which may be
computed as the OR of the bits of the exponent field. Its value will be 0 for
subnormal numbers and 1 for normal numbers. Then the relation between
the value of the exponent ex and the biased exponent Ex is the following:

ex = Ex − bias + 1− nx . (8.3)

This relation will allow us to write exponent-handling expressions that are
valid in both the normal and subnormal cases.

In addition, nx also defines the value of the implicit leading bit: the
actual significand of a floating-point number is obtained by prepending nx

to the significand field.

8.2.4 The inexact exception

This exception is signaled when the exact result y is not exactly representable
as a floating-point number (◦(y) 6= y, y not a NaN). As the difference
between ◦(y) and y is condensed in the round digit and the sticky bit, the
inexact exception will be signaled unless both the round digit and the sticky
bit are equal to 0.

8.2.5 Rounding for actual operations

Actual rounding of the result of an operation involves two additional diffi-
culties.

• Obtaining the intermediate result in normalized form may require some
work, all the more as some of the inputs, or the result, may belong to the
subnormal range. In addition, decimal inputs may not be normalized
(see the definition of cohorts in Section 3.4.3, page 82).

• For decimal numbers, the result should not always be normalized (see
the definition of preferred exponents in Section 3.4.7, page 97).

These two problems will be addressed on a per-operation basis.
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Decimal rounding using the binary encoding

The entire discussion in Section 8.2 assumes that the digits of the infinitely
precise significand are available in the radix in which it needs to be rounded.
This is not the case for the binary encoding of the decimal formats (see
Section 3.4.3, pages 82 and seq.). In this case, one first needs to convert the
binary encoding to decimal digits, at least for the digits needed for rounding
(the round digit and the digits to its right). Such radix conversion is typically
done through the computation of a division by some 10k (with k > 0) with
remainder. Cornea et al. [85, 87] have provided several efficient algorithms
for this purpose, replacing the division by 10k with a multiplication by a pre-
computed approximation to 10−k. They also provide techniques to determine
to which precision 10−k should be precomputed.

8.3 Floating-Point Addition and Subtraction

When x or y is nonzero, the addition of x = (−1)sx · |x| and y = (−1)sy · |y| is
based on the identity

x + y = (−1)sx ·
(
|x|+ (−1)sz · |y|

)
, sz = sx XOR sy ∈ {0, 1}. (8.4)

For subtraction a similar identity obviously holds since x − y = x + (−y).
Hence, in what follows we shall consider addition only.

The IEEE 754-2008 specification for |x| ± |y| is summarized in Tables 8.2
and 8.3. Combined with (8.2) and (8.4) it specifies floating-point addition
completely provided x or y is nonzero. When both x and y are zero, the stan-
dard stipulates to return +0 or −0, depending on the operation (addition or
subtraction) and the rounding direction attribute, as shown in Table 8.1.

In Table 8.2 and Table 8.3 the sum or difference ◦(|x| ± |y|) of the two
positive finite floating-point numbers

|x| = mx · βex and |y| = my · βey

is given by
◦
(
|x| ± |y|

)
= ◦
(
mx · βex ±my · βey

)
. (8.5)

The rest of this section discusses the computation of the right-hand side of
the above identity.

Note that for floating-point addition/subtraction, the only possible
exceptions are invalid operation, overflow, underflow, and inexact (see [126,
p. 425]).

In more detail, the sequence of operations traditionally used for imple-
menting (8.5) is as follows.

• First, the two exponents ex and ey are compared, and the inputs x and
y are possibly swapped to ensure that ex ≥ ey.
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x op y
◦(x op y) for

◦ ∈ {RN, RZ, RU}
RD(x op y)

(+0) + (+0) +0 +0

(+0) + (−0) +0 −0

(−0) + (+0) +0 −0

(−0) + (−0) −0 −0

(+0)− (+0) +0 −0

(+0)− (−0) +0 +0

(−0)− (+0) −0 −0

(−0)− (−0) +0 −0

Table 8.1: Specification of addition/subtraction when both x and y are zero. Note that
floating-point addition is commutative.

|x|+ |y|
|y|

+0 (sub)normal +∞ NaN

|x|

+0 +0 |y| +∞ qNaN

(sub)normal |x| ◦(|x|+ |y|) +∞ qNaN

+∞ +∞ +∞ +∞ qNaN

NaN qNaN qNaN qNaN qNaN

Table 8.2: Specification of addition for positive floating-point data.

|x| − |y|
|y|

+0 (sub)normal +∞ NaN

|x|

+0 ±0 −|y| −∞ qNaN

(sub)normal |x| ◦(|x| − |y|) −∞ qNaN

+∞ +∞ +∞ qNaN qNaN

NaN qNaN qNaN qNaN qNaN

Table 8.3: Specification of subtraction for floating-point data of positive sign. Here
±0 means +0 for “all rounding direction attributes except roundTowardNegative”
(◦ = RD), and −0 for ◦ = RD; see [187, §6.3].
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• A second step is to compute my ·β−(ex−ey) by shifting my right by ex−ey

digit positions (this step is sometimes called significand alignment). The
exponent result er is tentatively set to ex.

• The result significand is computed as mr = mx +(−1)sz ·my ·β−(ex−ey):
either an addition or a subtraction is performed, depending on the signs
sx and sy. Then if mr is negative, it is negated. This (along with the signs
sx and sy) determines the sign sr of the result. At this step, we have an
exact sum (−1)sr ·mr · βer .

• This sum is not necessarily normalized (in the sense of Section 8.2). It
may need to be normalized in two cases.

– There was a carry out in the significand addition (mr ≥ β). Note
that mr always remains strictly smaller than 2β, so this carry is at
most 1. In this case, mr needs to be divided by β (i.e., shifted right
by one digit position), and er is incremented, unless er was equal
to emax, in which case an overflow is signaled as per Section 3.4.10,
page 101.

– There was a cancellation in the significand addition (mr < 1). In
general, if λ is the number of leading zeros of mr, mr is shifted left
by λ digit positions, and er is set to er − λ. However, if er − λ <
emin (the cancellation has brought the intermediate result in the
underflow range, see Section 3.4.10, page 102), then the exponent
is set to emin and mr will be shifted left only by er − emin.

Note that for decimals, the preferred exponent rule (mentioned in Sec-
tion 3.4.7, page 97) states that inexact results must be normalized as just
described, but not exact results. We will come back to this case.

• Finally, the normalized sum (which again is always finite) is rounded
as per Section 8.2.

Let us now examine this algorithm more closely. We can make important
remarks.

1. This algorithm never requires more than a p-digit effective addition for
the significands. This is easy to see in the case of an addition: the least
significant digits of the result are those of my, since they are added to
zeros. This is also true when y is subtracted, provided the sticky bit
computation is modified accordingly.

2. The alignment shift need never be by more than p + 1 digits. Indeed,
if the exponent difference is larger than p + 1, y will only be used for
computing the sticky bit, and it doesn’t matter that it is not shifted to
its proper place.
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3. Leading-zero count and variable shifting will only be needed in case of
a cancellation, i.e., when the significands are subtracted and the expo-
nent difference is 0 or 1. But in this case, several things are simpler. The
sticky bit is equal to zero and need not be computed. More importantly,
the alignment shift is only by 0 or 1 digit.

In other words, although two large shifts are mentioned in the previous
algorithm (one for significand alignment, the other one for normaliza-
tion in case of a cancellation), they are mutually exclusive. The literature
defines these mutually exclusive cases as the close case (when the expo-
nents are close) and the far case (when their difference is larger than 1).

4. In our algorithm, the normalization step has to be performed before
rounding: indeed, rounding requires the knowledge of the position
of the round and sticky bits, or, in the terminology of Section 8.2, it
requires a normalized infinite significand. However, here again the dis-
tinction between the close and far cases makes things simpler. In
the close case, the sticky bit is zero whatever shift the normalization
entails. In the far case, normalization will entail a shift by at most one
digit. Classically, the initial sticky bit is therefore computed out of the
digits to the right of the (p+2)-nd (directly out of the lower digits of the
lesser addend). The (p+2)-nd digit is called the guard digit. It will either
become the round digit in case of a 1-digit shift, or it will be merged to
the previous sticky bit if there was no such shift. The conclusion of this
is that the bulk of the sticky bit computation can be performed in par-
allel with the significand addition.

Let us now detail specific cases of floating-point addition.

8.3.1 Decimal addition

We now come back to the preferred exponent rule (see Section 3.4.7, page 97),
which states that exact results should not be normalized. As the notion of
exactness is closely related to that of normalization (a result is exact if it has
a normalized representation that fits in p digits), the general way to check
exactness is to first normalize X , then apply the previous algorithm.

Exactness of the intermediate result is then determined combinatorially
out of the carry-out and sticky bits, and the round and guard digits.

For addition, the preferred exponent is the smaller of the input expo-
nents (in other words, ey and not ex). If the result is exact, we therefore need
to shift mr right and reduce er to ey. Therefore, the preferred exponent rule
means two large shifts.

In case of a carry out, it may happen that the result is exact,
but the result’s cohort does not include a member with the preferred
exponent. An example is 9.999e0 + 0.0001e0 for a p = 4-digit system.
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Both input numbers have the same quantum exponent, yet the (exact) value
of the result, 10, cannot be represented with the same quantum exponent and
must be represented as 1.000e1.

In practice, the exact case is a common one in decimal applications (think
of accounting), and even hardware implementations of decimal floating-
point addition distinguish it and try to make this common case fast.

The IBM POWER6 [123] distinguishes the following three cases (from
the simplest to the most complex).

Case 1 Exponents are equal: This is the most common case of accounting:
adding amounts of money which have the decimal point at the same
place. It is also the simplest case, as no alignment shifting is necessary.
Besides, the result is obtained directly with the preferred exponent. It
may still require a one-digit normalization shift and one-digit round-
ing in case of overflow, but again such an overflow is highly rare in
accounting applications using decimal64—it would correspond to as-
tronomical amounts of money!

Case 2 Aligning to the operand with the smaller exponent: When the expo-
nent difference is less than or equal to the number of leading zeros in
the operand with the bigger exponent, the operand with the larger
exponent can be shifted left to properly align it with the smaller
exponent value. Again, after normalization and rounding, the pre-
ferred exponent is directly obtained.

Case 3 Shifting both operands: This is the general case that we have consid-
ered above.

The interested reader will find in [123] the detail of the operations
performed in each case in the POWER6 processor. This leads to a variable
number of cycles for decimal addition—9 to 17 for decimal64.

8.3.2 Decimal addition using binary encoding

A complete algorithm for the addition of two decimal floating-point numbers
in the binary encoding is presented in [85, 87].

The main issue with the binary encoding is the implementation of the
shifts. The number M1 · 10e1 + M2 · 10e2 , with e1 ≥ e2, is computed as

10e2 ·
(
M1 · 10e1−e2 + M2

)
.

Instead of a shift, the significand addition now requires a multiplication by
some 10k, with 0 ≤ k ≤ p, because of remark 2 on page 248. There are few
such constants, so they may be tabulated, and a multiplier or FMA will then
compute the “shifted” values [85, 87]. The full algorithm takes into account
the number of decimal digits required to write M1 and M2, which is useful to
obtain the preferred exponent. This number is computed by table lookup.

For the full algorithm, the interested reader is referred to [87].
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8.3.3 Subnormal inputs and outputs in binary addition

Here are the main modifications to the previous addition algorithm to ensure
that it handles subnormal numbers properly in the binary case. Let us define,
for the inputs x and y, the “is normal” bits nx and ny. One may compute nx

(resp. ny) as the OR of the bits of the exponent field of x (resp. y).

• The implicit leading bit of the significand of x (resp. y) is now set to nx

(resp. ny).

• If Ex and Ey are the respective biased exponents of the inputs, we now
have ex = Ex−bias +1−nx and ey = Ey −bias +1−ny. The exponent
difference, used for the alignment shifting, is now computed as Ex −
nx − Ey + ny. Of course, two subnormal inputs are already aligned.

• As already stated in Section 8.2.3, the normalization shift should handle
subnormal outputs: the normalization shift distance will be min(λ, ex−
emin) digit positions, where λ is the leading-zero count. The output is
subnormal if λ > ex − emin.

8.4 Floating-Point Multiplication

Floating-point multiplication is much simpler than addition. Given x =
(−1)sx · |x| and y = (−1)sy · |y|, the exact product x× y satisfies

x× y = (−1)sr ·
(
|x| × |y|

)
, sr = sx XOR sy ∈ {0, 1}. (8.6)

The IEEE 754-2008 specification for |x| × |y| is summarized in Table 8.4.
Combined with (8.2) and (8.6), it specifies floating-point multiplication com-
pletely.

|x| × |y|
|y|

+0 (sub)normal +∞ NaN

|x|

+0 +0 +0 qNaN qNaN

(sub)normal +0 ◦(|x| × |y|) +∞ qNaN

+∞ qNaN +∞ +∞ qNaN

NaN qNaN qNaN qNaN qNaN

Table 8.4: Specification of multiplication for floating-point data of positive sign.

In Table 8.4 the product ◦(|x|×|y|) of the two positive finite floating-point
numbers

|x| = mx · βex and |y| = my · βey



252 Chapter 8. Algorithms for the Five Basic Operations

is given by
◦(|x| × |y|) = ◦

(
mxmy · βex+ey

)
. (8.7)

The rest of this section discusses the computation of the right-hand side of
(8.7).

For floating-point multiplication, the only possible exceptions are invalid
operation, overflow, underflow, and inexact (see [126, p. 438]).

8.4.1 Normal case

Let us first consider the case when both inputs are normal numbers such that
1 ≤ mx < β and 1 ≤ my < β (this is notably the case for binary normal
numbers). It follows that the exact product mxmy satisfies 1 ≤ mxmy < β2.
This shows that the significand product has either one or two nonzero digits
left to the point. Therefore, to obtain the normalized significand required to
apply the methods given in Section 8.2, the significand product mxmy may
need to be shifted right by one position. This is exactly similar to the far case
of addition, and will be handled similarly, with a guard and a round digit,
and a partial sticky bit. Since the product of two p-digit numbers is a 2p-digit
number, this partial sticky computation has to be performed on p− 1 digits.

The significand multiplication itself is a fixed-point multiplication, and
much literature has been dedicated to it; see for instance [126] and refer-
ences therein. Hardware implementations, both for binary and decimal, are
surveyed in Section 9.2.4. Chapter 10 discusses issues related to software
implementations.

In binary, the exponent is equal to the biased exponent Ex minus the bias
(see Section 3.1, page 56). The exponent computation is therefore ex + ey =
Ex − bias + Ey − bias. One may directly compute the biased exponent of the
result (before normalization) as Ex + Ey − bias.

8.4.2 Handling subnormal numbers in binary multiplication

We now extend the previous algorithm to accept subnormal inputs and pro-
duce subnormal outputs when needed.

Let us define again, for the inputs x and y, the “is normal” bits nx and ny.
One may compute nx as the OR of the bits of the exponent field Ex. This bit
can be used as the implicit bit to be added to the significand, and also as the
bias correction for subnormal numbers: we now have ex = Ex−bias +1−nx

and ey = Ey − bias + 1− ny.
Let us first note that if both operands are subnormal (nx = 0 and ny = 0),

the result will be zero or one of the smallest subnormals, depending on the
rounding mode. This case is therefore handled straightforwardly.

Let us now assume that only one of the operands is subnormal. The sim-
plest method is to normalize it first, which will bring us back to the normal
case. For this purpose we need to count its leading zeros. Let us call l the
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number of leading zeros in the significand extended by nx. We have l = 0 for
a normal number and l ≥ 1 for a subnormal number. The subnormal signifi-
cand is then shifted left by l bit positions, and its exponent becomes emin − l.
Obviously, this requires a larger exponent range than what the standard
format offers. In practice, the exponent data is only one bit wider.

An alternative to normalizing the subnormal input prior to a normal
computation is to normalize the product after the multiplication: indeed, the
same multiplication process which computes the product of two p-bit num-
bers will compute this product exactly if one of the inputs has l leading zeros.
The product will then have l or l+1 leading zeros, and will need to be normal-
ized by a left shift. However, the advantage of this approach is that counting
the subnormal leading zeros can be done in parallel with the multiplication.
Therefore, this alternative will be preferred in the hardware implementations
presented in the next chapter.

For clarity, we now take the view that both inputs have been normalized
with a 1-bit wider exponent range, and focus on producing subnormal out-
puts. Note that they may occur even for normal inputs. They may be handled
by the standard normalization procedure of Section 8.2. It takes an arbitrary
shift right of the significand: if ex + ey < emin, shift right by emin − (ex + ey)
before rounding.

To summarize, the cost of handling subnormal numbers is: a slightly
larger exponent range for internal exponent computations, a leading-zero
counting step, a left-shifting step of either the subnormal input or the prod-
uct, and a right-shifting step before rounding. Section 9.4.4 will show how
these additional steps may be scheduled in a hardware implementation in
order to minimize their impact on the delay.

8.4.3 Decimal specifics

For multiplication, the preferred exponent rule (see Section 3.4.7, page 97)
mentions that, for exact results, the preferred quantum exponent is Q(x) +
Q(y). We recall the relation Q(x) = ex − p + 1, see Section 3.4.

Again, exactness may be computed by first normalizing the two inputs,
then computing and normalizing the product, then observing its round digit
and sticky bit.

However, exactness may also be predicted when the sum of the numbers
of leading zeros of both multiplicands is larger than p, which will be a very
common situation.

To understand why, think again of accounting. Multiplication is used
mostly to apply a rate to an account (a tax rate, an interest rate, a currency
conversion rate, etc.). After the rate has been applied, the result is rounded to
the nearest cent before being further processed. Rounding to the nearest cent
can be performed using the quantize operation specified by the IEEE 754-2008
standard.
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Such rates are 3- to 6-digit numbers (the euro official conversion rates
with respect to the currencies it replaces were all defined as 6-digit numbers).
The product of such a rate with your bank account will be exact (when using
the 16-digit format decimal64), unless your wealth exceeds 1010 cents (one
hundred million dollars), in which case your bank will be happy to spend a
few extra cycles to manage it.

In the common case when the product is exact, the quantum exponent is
set to Q(x) + Q(y) (it makes sense to have a zero quantum exponent for the
rate, so that the product is directly expressed in cents) and the product needs
no normalization. The significand to output is simply the last p digits of the
product.

Counting the leading zeros of the inputs is an expensive operation, but
it may be performed in parallel to the multiplication.

To summarize, an implementation may compute in parallel the 2p-bit
significand product and the two leading-zero counts of the inputs. If the sum
of the counts is larger than p (common case), the result is exact, and no round-
ing or shift is required (fast). Otherwise, the result needs to be normalized,
and then rounded as per Section 8.2. Note that the result may also be exact in
this case, but then the result significand is too large to be representable with
the preferred exponent. The standard requires an implementation to return
the representable number closest to the result, which is indeed the normal-
ized one.

8.5 Floating-Point Fused Multiply-Add

When computing ◦(ab + c), the product ab is a 2p-digit number, and needs
to be added to the p-digit number c. Sign handling is straightforward: what
actually matters is whether the operation will be an effective subtraction or
an effective addition.

We base the following analysis on the actual exponent of the input
numbers, denoted ea, eb, and ec. Computing ab + c requires first aligning the
product ab and, with the summand c, using the exponent difference

d = ec − (ea + eb).

In the following figures, the precision used is p = 5 digits.

8.5.1 Case analysis for normal inputs

If a and b are normal numbers, one has |a| = ma · βea and |b| = mb · βeb , and
the product |ab| has at most two digits in front of the point corresponding to
ea + eb:

|c| = βec·|ab| = βea+eb·
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Figure 8.2: Product-anchored FMA computation for normal inputs. The stars show
the possible position of the leading digit.

One may think of first performing a 1-digit normalization of this product
ab, but this would add to the computation a step which can be avoided, and
it only marginally reduces the number of cases to handle. Following most
implementations, we therefore chose to base the discussion of the cases on
the three input exponents only. We now provide an analysis of the alignment
cases that may occur. These cases are mutually exclusive. After any of them,
we need to perform a rounding step as per Section 8.2. This step may incre-
ment the result exponent again.

Product-anchored case

The exponent of the result is almost that of the product, and no cancellation
can occur, for d ≤ −2, as illustrated by Figure 8.2.

In this case, the leading digit may have four positions: the two possible
positions of the leading digit of ab, one position to the left in case of effective
addition, and one position to the right in case of effective subtraction. This
defines the possible positions of the round digit. All the digits lower than the
lower possible position of the round digit may be condensed in a sticky bit.
An actual addition is only needed for the digit positions corresponding to the
digits of ab (see Figure 8.2); therefore, all the bits shifted out of this range may
be condensed into a sticky bit before addition. If d ≤ −2p + 1, all the digits
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Figure 8.3: Addend-anchored FMA computation for normal inputs. The stars show
the possible position of the leading digit.

of c will go to the sticky bit. This defines the largest alignment one may need
to perform in this case: if d ≤ −2p + 1, a shift distance of 2p − 1 and a sticky
computation on all the shifted p bits will provide the required information (Is
there a nonzero digit to the right of the round bit?).

To summarize, this case needs to perform a shift of c by at most 2p − 1
with a p-bit sticky computation on the lower bits of the output, a 2p-bit add-
ition with sticky output of the p − 3 lower bits, and a 3-bit normalization
(updating the sticky bit). The exponent is set tentatively to ea + eb, and the
3-bit normalization will add to it a correction in {−1, 0, 1, 2}.

Addend-anchored case

The exponent of the result will be close to that of the addend (and no cancel-
lation can occur) when (d ≥ 3 or (d ≥ −1 and EffectiveAdd)), as illustrated
by Figure 8.3. In that case, the leading digit may be in five different positions.
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Figure 8.4: Cancellation in the FMA. The stars show the possible position of the
leading digit.

The whole of ab may be condensed in a sticky bit as soon as there is a gap
of at least two digits between ab and c. One gap digit is needed for the case of
an effective subtraction |c| − |ab|, when the normalized result exponent may
be one less than that of c (for instance, in decimal with p = 3, 1.00 − 10−100

rounded down returns 0.999). The second gap digit is the round digit for
rounding to the nearest. A sufficient condition for condensing all of ab in a
sticky bit is therefore d ≥ p + 3 (see Figure 8.3).

To summarize, this case needs to perform a shift of ab by at most p +
3 positions, a (p + 2)-bit addition, a 2p-bit sticky computation, and a 4-bit
normalization (updating the sticky bit). The exponent is set tentatively to ec,
and the 4-bit normalization will add to it a correction in {−1, 0, 1, 2, 3}.

Cancellation

If −1 ≤ d ≤ 2 and the FMA performs an effective subtraction, a cancellation
may occur. This happens for four values of the exponent difference d, versus
only three in the case of the floating-point addition, because of the uncer-
tainty on the leading digit of the product. Possible cancellation situations are
illustrated by Figure 8.4.

In that case we need a (2p + 1)-digit addition, and an expensive normal-
ization consisting of leading-zero counting and right shifting, both of size
2p + 1.
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Figure 8.5: FMA ab − c, where a is the smallest subnormal, ab is nevertheless in
the normal range, |c| < |ab|, and we have an effective subtraction. Again, the dot
corresponds to an exponent value of ea + eb.

Example 10. Consider in radix 2, precision p the inputs a = b = 1 − 2−p and
c = −(1 − 2−p+1). The FMA should return the exact result ab + c = 2−2p. In this
example ea = eb = ec = −1, d = 1, and there is a (2p− 1)-bit cancellation.

The result exponent is equal to ea +eb +3−λ, where λ is the leading-zero
count.

8.5.2 Handling subnormal inputs

To manage subnormal inputs, we define na, nb, and nc as the “is normal” bits.
In binary floating-point, these bits are inserted as leading bits of the signifi-
cands, and the exponent difference that drives the aligner becomes

d = ec − (ea + eb) = Ec − Ea − Eb + bias− 1− nc + na + nb. (8.8)

If both a and b are subnormal, the whole of ab will be condensed in a
sticky bit even if c is subnormal. Let us therefore focus on the case when only
one of a or b is subnormal. Most of the previous discussion remains valid in
this case, with the following changes.

• The significand product may now have up to p leading zeros. Indeed, as
the situation where both inputs are subnormals is excluded, the small-
est significand product to consider is the smallest subnormal signifi-
cand, equal to β−p+1, multiplied by the smallest normal significand,
equal to 1. This is illustrated by Figure 8.5.

• In the product-anchored case, this requires us to extend the shift by
two more digit positions, for the cases illustrated by Figure 8.5. The
maximum shift distance is now −d = 2p + 1.
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• In fact, the product-anchored case is not necessarily product anchored
if one of the multiplicands is subnormal. The leading digit of the result
may now come from the addend—be it normal or subnormal. Still, this
requires neither a larger shift, nor a larger addition, than that shown
on Figure 8.2. However, the partial sticky computation from the lower
bits of the product shown on this figure is now irrelevant: one must
first determine the leading digit before knowing which digits go to the
sticky bit. This requires a leading-zero counting step on p digits. In this
respect, the product-anchored case when either a or b is subnormal now
closely resembles the cancellation case, although it requires a smaller
leading-zero counting (p digits instead of 2p + 1).

• The addend c may have up to p − 1 leading zeros, which is more than
what is shown on Figure 8.3, but they need not be counted, as the expo-
nent is stuck to emin in this case.

8.5.3 Handling decimal cohorts

In decimal, the previous case analysis is valid (we have been careful to always
use the word “digit”). The main difference is the handling of cohorts, which
basically means that a decimal number may be subnormal for any exponent.
As a consequence, there may be more stars in Figures 8.2 to 8.4. In particular,
the addend-anchored case may now require up to a (p+4)-digit leading-zero
count instead of p.

In addition, one must obey the preferred exponent rule: for inexact
results, the preferred exponent is the least possible (this corresponds to nor-
malization in the binary case, and the previous analysis applies). For exact
results, the preferred quantum exponent is min(Q(a) + Q(b), Q(c)). As for
addition and multiplication, this corresponds to avoiding any normalization
if possible.

The only available decimal FMA implementation, to our knowledge, is
a software one, part of the Intel Decimal Floating-Point Math Library [85, 87].
A hardware decimal FMA architecture is evaluated in Vázquez’s Ph.D.
dissertation [413].

Let us now conclude this section with a complete algorithmic description
of an implementation of the binary FMA.

8.5.4 Overview of a binary FMA implementation

Most early hardware FMA implementations chose to manage the three cases
evoked above (product-anchored, addend-anchored, and canceling/subnor-
mal) in a single computation path [281, 183]. In the next chapter, more recent,
multiple-path implementations [373, 238, 339] will be reviewed.

Here is a summary of the basic single-path implementation handling
subnormals. Figure 8.6 represents the data alignment in this case. It is a



260 Chapter 8. Algorithms for the Five Basic Operations

0 0 0 0 0 0 00 00

cshifted

c

(max 3p + 4)
right shift

sticky

s = abshifted + cshifted

p + 2

sticky update

p + 1

left normalization shift

abshifted

ab

LZC (2p + 3 bits)

scomplemented

constant shift

3p + 5

p + 3

2p

Figure 8.6: Significand alignment for the single-path algorithm.
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simplified superimposition of Figures 8.2 to 8.5. The single-path approach
is in essence product anchored.

• The “is normal” bits are determined, and added as implicit bits to
the three input significands. The exponent difference d is computed as
per (8.8).

• The 2p-digit significand of ab is shifted right by p+3 digit positions (this
is a constant distance). Appending two zeros to the right, we get a first
(2p + 5)-digit number abshifted.

• The summand shift distance d′ and the tentative exponent e′r are deter-
mined as follows:

– if d ≤ −2p + 1 (product-anchored case with saturated shift), then
d′ = 3p + 4 and e′r = ea + eb;

– if −2p + 1 < d ≤ 2 (product-anchored case or cancellation), then
d′ = p + 3− d and e′r = ea + eb;

– if 2 < d ≤ p + 2 (addend-anchored case), then d′ = p + 3 − d and
e′r = ec;

– if d ≥ p + 3 (addend-anchored case with saturated shift), then
d′ = 0 and e′r = ec.

• The p-digit significand c is shifted right by d′ digit positions. The maxi-
mum shift distance is 3p + 4 digits, for instance, 163 bits for binary64.

• The lower p − 1 digits of the shifted c are compressed into a sticky bit.
The leading 2p + 5 digits form cshifted.

• In case of effective subtraction, cshifted is bitwise inverted.

• The product abshifted and the possibly inverted addend cshifted are added
(with a carry in in case of an effective subtraction), leading to a (3p+4)-
digit number s. This sum may not overflow because of the gap of two
zeros in the case d = p + 3.

• If s is negative, it is complemented. Note that the sign of the result
can be predicted from the signs of the inputs and the exponents,
except when the operation is an effective subtraction and either d = 1
or d = 0.

• The possibly complemented sum s now needs to be shifted left so that
its leading digit is a 1. The value of the left shift distance d′′ is deter-
mined as follows.

– if d ≤ −2 (product-anchored case or cancellation), let l be the num-
ber of leading zeros counted in the 2p + 3 lower digits of s.
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∗ If ea + eb − l + 2 ≥ emin, the result will be normal, the left
shift distance is d′′ = p + 2 + l, and the exponent is set to
e′r = ea + eb − l + 2.

∗ If ea +eb− l+2 < emin, the result will be a subnormal number,
the exponent is set to e′r = emin, the result significand will have
emin − (ea + eb − l + 2) leading zeros, and the shift distance is
therefore only d′′ = p + 4− emin + ea + eb.

Note that this case covers the situation when either a or b is a sub-
normal.

– if d > 2 (addend-anchored case), then d′′ = d′: the left shift undoes
the initial right shift. However, after this shift, the leading one may
be one bit to the left (if effective addition) or one bit to the right
(if effective subtraction), see the middle case of Figure 8.3. The
large shift is therefore followed by a 1-bit normalization. The result
exponent is accordingly set to one of e′r ∈ {ec, ec − 1, ec + 1}. If c
was a subnormal, the left normalization/exponent decrement is
prevented.

These shifts update the sticky bit and provide a normalized (p+1)-digit
significand.

• Finally, this significand is rounded to p digits as per Section 8.2, using
the rounding direction and the sticky bit. Overflow may also be handled
at this point, provided a large enough exponent range has been used in
all the exponent computations (two bits more than the exponent field
width are enough).

One nice feature of this single-path algorithm is that subnormal handling
comes almost for free.

8.6 Floating-Point Division

8.6.1 Overview and special cases

Given x = (−1)sx · |x| and y = (−1)sy · |y|, we want to compute:

x/y = (−1)sr ·
(
|x|/|y|

)
, sr = sx XOR sy ∈ {0, 1}. (8.9)

The IEEE 754-2008 specification for |x|/|y| is summarized in Table 8.5
(see [187] and [198]); Combined with (8.2) and (8.9) it specifies floating-point
division completely.

We now address the computation of the quotient of |x| = mx · βex and
|y| = my · βey . We obtain

|x|/|y| = mx/my · βex−ey . (8.10)
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|x|/|y|
|y|

+0 (sub)normal +∞ NaN

|x|

+0 qNaN +0 +0 qNaN

(sub)normal +∞ ◦(|x|/|y|) +0 qNaN

+∞ +∞ +∞ qNaN qNaN

NaN qNaN qNaN qNaN qNaN

Table 8.5: Special values for |x|/|y|.

In the following, we will assume that mx and my are normal numbers,
written mx = (mx,0.mx,1 . . .mx,p−1)β and my = (my,0.my,1 . . .my,p−1)β , with
mx,0 6= 0 and my,0 6= 0. An implementation may first normalize both in-
puts (if they are subnormals or decimal numbers with leading zeros) using an
extended exponent range. After this normalization, we have mx ∈ [1, β) and
my ∈ [1, β), therefore mx/my ∈ ( 1

β , β). This means that a 1-digit normaliza-
tion may be needed before rounding.

8.6.2 Computing the significand quotient

There are three main families of division algorithms.

• Digit-recurrence algorithms, such as the family of SRT algorithms
named after Sweeney, Robertson, and Tocher [344, 408], generalize
the paper-and-pencil algorithm learned at school. They produce one
digit of the result at each iteration. Each iteration performs three tasks
(just like the pencil-and-paper method): determine the next quotient
digit, multiply it by the divider, and subtract it from the current partial
remainder to obtain a partial remainder for the next iteration.

In binary, there are only two choices of quotient digits, 0 or 1; there-
fore, the iteration reduces to one subtraction, one test, and one shift.
A binary digit-recurrence algorithm can therefore be implemented on
any processor as soon as it is able to perform integer addition.

Higher radix digit-recurrence algorithms have been designed for
hardware implementation, and will be briefly reviewed in Section 9.6.
Detailed descriptions of digit-recurrence division theory and imple-
mentations can be found in the books by Ercegovac and Lang [125, 126].

One important thing about digit-recurrence algorithms is that they are
exact. Starting from fixed-point numbers X and D, they compute at iter-
ation i an i-digit quotient Qi and a remainder Ri such that the identity
X = DQi+Ri holds. For floating-point purposes, this means that all the
information needed for rounding the result is held in the pair (Ri, Qi).
In practice, to round to precision p, one needs p iterations to compute
Qp, then possibly a final addition on Qp depending on a test on Rp.
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• Functional iteration algorithms generalize Newton iteration for approx-
imating the function 1/x. They make sense mostly on processors hav-
ing a hardware multiplier. The number of iterations is much less than
in digit-recurrence algorithms (O(log p) versus O(p)), but each iteration
involves multiplications and is therefore more expensive.

Functional iterations are not exact; in particular, they start with an
approximation of the inverse, and round their intermediate computa-
tions. Obtaining a correctly rounded result therefore requires some care.
The last iteration needs to provide at least twice the target precision p,
as a consequence of the exclusion lemma, see Lemma 15, Chapter 5,
page 162. In Chapter 5, it has been shown that the FMA, which indeed
internally computes on more than 2p digits, provides the required pre-
cision. However, AMD processors have used functional iteration algo-
rithms to implement division without an FMA [307]. The iteration is
implemented as a hardware algorithm that uses the full 2p-bit result of
the processor’s multiplier before rounding. To accommodate double-
extended precision (p = 64 bits) and cater to the error of the initial
approximation and the rounding errors, they use a 76 × 76-bit multi-
plier [307].

• Polynomial approximation can also be used to evaluate 1/x to the
required accuracy [430]. Note that, mathematically speaking, functional
iterations evaluate a polynomial in the initial approximation error [88].
Both approaches may be combined; see [334] and [340, §9.5]. An exam-
ple of the polynomial approach in a software context will be shown in
Chapter 10.

Note that each division method has its specific way of obtaining the cor-
rectly rounded result.

8.6.3 Managing subnormal numbers

Subnormal inputs are best managed by first normalizing with a wider expo-
nent range.

A subnormal result can be predicted from the exponent difference. As
it will have less than p significand digits, it requires less accuracy than a
standard computation. In a functional iteration, it suffices to round the high-
precision intermediate result to the proper digit position.

In a digit-recurrence implementation, the simplest way to handle round-
ing to a subnormal number is to stop the iteration after the required number
of digits has been produced, and then shift these digits right to their proper
place. In this way, the rounding logic is the same as in the normal case.
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8.6.4 The inexact exception

In general, the inexact exception is computed as a by-product of correct
rounding. Directed rounding modes, as well as round to nearest even in
the “even” case, require, respectively, exactness and half-ulp exactness detec-
tion. From another point of view, the inexact exception is straightforwardly
deduced from the sticky bit. In digit-recurrence algorithms, for instance,
exactness is deduced from a null remainder. Methods using polynomial
approximations have to compute the remainder to round, and the inexact
flag comes at no extra cost.

FMA-based functional iterations are slightly different in that they do not
explicitly compute a sticky bit. However, they may be designed in such a way
that the final FMA operation raises the inexact flag if and only if the quotient
is inexact (see Section 5.3 or [270, page 115]).

8.6.5 Decimal specifics

For the division, the preferred exponent rule (see Section 3.4.7, page 97) men-
tions that for exact results, the preferred exponent is Q(x)−Q(y).

8.7 Floating-Point Square Root

We end this chapter with the square root operation sqrt, which is often con-
sidered as the fifth basic arithmetic operation, after +,−,×, and÷. Although
it has similarities with division, square root is somewhat simpler to imple-
ment conformally with the IEEE 754 standards. In particular, it is univariate
and, as we will recall, it never underflows, and overflows if and only if the
input is +∞.

8.7.1 Overview and special cases

If x is positive (sub)normal, then the correctly rounded value ◦(
√

x) must
be returned. Otherwise, a special value must be returned conformally with
Table 8.6 (see [187] and [197]).

Operand x +0 +∞ −0 less than zero NaN

Result r +0 +∞ −0 qNaN qNaN

Table 8.6: Special values for sqrt(x).

In the following, we will assume that mx is a normal number, written
mx = (mx,0.mx,1 . . .mx,p−1)β with mx,0 6= 0. An implementation may first
normalize the input (if it is a subnormal or a decimal number having some
leading zeros) using an extended exponent range.
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After this normalization, we have a number of the form mx · βex with
mx ∈ [1, β). Another normalization, by 1 digit, may be needed before taking
the square root in order to make the exponent ex even:

mx · βex =

{
mx · βex if ex is even,
(β ·mx) · βex−1 if ex is odd.

Consequently, for c ∈ {0, 1} depending on the parity of ex, we have

√
mx · βex =

√
βc ·mx · β

ex−c
2 ,

where (ex− c)/2 = bex/2c is an integer. Since βc ·mx ∈ [1, β2), the significand
square root satisfies √

βc ·mx ∈ [1, β).

8.7.2 Computing the significand square root

The families of algorithms most commonly used are exactly the same as for
division, and a survey of these has been given by Montuschi and Mezzalama
in [282].

• Digit-recurrence algorithms. Those techniques are extensively covered
in [125] and [126, Chapter 6], with hardware implementations in mind.
Here we simply note that the recurrence is typically a little more compli-
cated than for division; see, for example, the software implementation
of the restoring method that is described in Section 10.5.3, page 366.

• Functional iteration algorithms. Again, those methods generalize
Newton iteration for approximating the positive real solution y =

√
x

of the equation y2 − x = 0. As for division, such methods are often
used when an FMA operator is available. This has been covered in
Section 5.4.

• Evaluation of polynomial approximations. As for division, these
methods consist in evaluating sufficiently accurately a “good enough”
polynomial approximation of the function

√
x. Such techniques have

been combined with functional iterations in [334] and [340, Section
11.2.3]. More recently, it has been shown in [196, 197] that, at least in
some software implementation contexts, using exclusively polynomials
(either univariate or bivariate) can be faster than a combination with
a few steps of functional iterations. These approaches are described
briefly in Section 10.5.3, page 369.
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8.7.3 Managing subnormal numbers

As in division, a subnormal input is best managed by first normalizing with
a wider exponent range.

Concerning output, the situation is much simpler than for division, since
a subnormal result can never be produced. This useful fact is an immediate
consequence of the following property.

Property 17. For x = mx · βex a positive, finite floating-point number, the real
√

x
satisfies √

x ∈ [βemin , β
1
2
emax).

Proof. The floating-point number x is positive, so β1−p+emin ≤ x < βemax .
Since the square root function is monotonically increasing,

β(1−p+emin)/2 ≤
√

x < βemax/2,

and the upper bound follows immediately. Using p ≤ 1 − emin (which is a
valid assumption for all the formats of [187]), we get further

√
x ≥ βemin .

This property also implies that

• the floating-point square root never underflows. It overflows if and
only if the input is +∞.

• The only exceptions to be considered are invalid and inexact.

8.7.4 The inexact exception

In digit-recurrence algorithms or polynomial-based approaches, exactness is
deduced from a null remainder just as in division—the remainder here is
x− r2.

FMA-based functional iterations may be designed in such a way that the
final FMA operation raises the inexact flag if and only if the square root is
inexact [270, page 115].

8.7.5 Decimal specifics

For the square root, the preferred quantum exponent is bQ(x)/2c.



Chapter 9

Hardware Implementation of
Floating-Point Arithmetic

The previous chapter has shown that operations on floating-point num-
bers are naturally expressed in terms of integer or fixed-point operations

on the significand and the exponent. For instance, to obtain the product of
two floating-point numbers, one basically multiplies the significands and
adds the exponents. However, obtaining the correct rounding of the result
may require considerable design effort and the use of nonarithmetic prim-
itives such as leading-zero counters and shifters. This chapter details the
implementation of these algorithms in hardware, using digital logic.

Describing in full detail all the possible hardware implementations of
the needed integer arithmetic primitives is beyond the scope of this book.
The interested reader will find this information in the textbooks on the subject
[224, 323, 126]. After an introduction to the context of hardware floating-point
implementation in Section 9.1, we just review these primitives in Section 9.2,
discuss their cost in terms of area and delay, and then focus on wiring them
together in the rest of the chapter.

9.1 Introduction and Context

We assume in this chapter that inputs and outputs are encoded according to
IEEE 754-2008, the IEEE Standard for Floating-Point Arithmetic.

9.1.1 Processor internal formats

Some systems, although compatible with the standard from a user point of
view, may choose to use a different data format internally to improve perfor-
mance. These choices are related to processor design issues that are out of the
scope of this book. Here are a few examples.

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_9, 269
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• Many processors add tag bits to floating-point numbers. For instance, a
bit telling if a number is subnormal saves having to detect it by checking
that all the bits of the exponent field are zeros. This bit is set when an
operand is loaded from memory, or by the arithmetic operator if the
number is the result of a previous computation in the floating-point
unit: each operator has to determine if its result is subnormal anyway, to
round it properly. Other tags may indicate other special values such as
zero, infinities, and NaNs. Such tags are stored in the register file of the
processor along with the floating-point data, which may accordingly
not be fully compliant with the standard. For instance, if there is a tag
for zero, there is no need to set the data to the full string of zeros in this
case.

• The fused multiply-add (FMA) of the IBM POWER6 has a short-circuit
feedback path which sends results back to the input. On this path, the
results are not fully normalized, which reduces the latency on depen-
dent operations from 7 cycles to 6. They can be normalized as part of
the first stage of the FMA.

• An internal data format using a redundant representation of the signif-
icands has been suggested in [134].

• Some AMD processors have a separate “denormalization unit” that for-
mats subnormal results. This unit receives data in a nonstandard format
from the other arithmetic units, which alone do not handle subnormals
properly.

9.1.2 Hardware handling of subnormal numbers

In early processors, it was common to trap to software for the handling of
subnormals. The cost could be several hundreds of cycles, which sometimes
made the performance collapse each time subnormal numbers would appear
in a computation. Conversely, most recent processors have fixed-latency
operators that handle subnormals entirely in hardware. This improvement is
partly due to very large-scale integration (VLSI): the overhead of managing
subnormal numbers is becoming negligible with respect to the total area of
a processor. In addition, several architectural improvements have also made
the delay overhead acceptable.

An intermediate situation was to have the floating-point unit (FPU) take
more cycles to process subnormal numbers than the standard case. The
solution, already mentioned above, used in some AMD processors is a
denormalizing unit that takes care of situations when the output is a sub-
normal number. The adder and multiplier produce a normalized result with a
larger exponent. If this exponent is in the normal range, it is simply truncated
to the standard exponent. Otherwise, that result is sent to the denormalizing
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unit which, in a few cycles, will shift the significand to produce a subnor-
mal number. This can be viewed as a kind of “trap,” but one that is managed
in hardware. An alternative approach, used in some IBM processors, saves
the denormalizing unit by sending the number to be denormalized back to
the shifter of the adder. The problem is then to manage conflicts with other
operations that might be using this shifter.

The state of the art concerning subnormal handling in hardware is rev-
iewed by Schwarz, Schmookler, and Trong [371]. They show that subnormal
numbers can be managed with relatively little overhead, which explains why
most recent FPUs in processors handle subnormal numbers in hardware. This
is now even the case in graphics processing units (GPUs), the latest of which
provide binary64 standard-compatible hardware. We will present, along with
each operator, some of the techniques used. The interested reader is referred
to [371] and references therein for more details and alternatives.

9.1.3 Full-custom VLSI versus reconfigurable circuits

Most floating-point architectures are implemented as full-custom VLSI in
processors or GPUs. There has also been a lot of interest in the last decade
in floating-point acceleration using reconfigurable hardware, with field-
programmable gate arrays (FPGAs) replacing or complementing processors.
The feasibility of floating-point arithmetic on FPGA was studied long before
it became a practical possibility [378, 259, 261]. At the beginning of the
century, several libraries of floating-point operators were published almost
simultaneously (see [305, 247, 260, 345] among others). The increase of cap-
acity of FPGAs soon meant that they could provide more floating-point com-
puting power than a processor in single precision [305, 260, 345], then in
double precision [441, 120, 109, 265, 178]. FPGAs also revived interest in hard-
ware architectures for the elementary functions [119, 114, 113, 116] and other
coarser or more exotic operators [442, 49, 105, 159].

We will survey floating-point implementations for both full-custom
VLSI and FPGA. The performance metrics of these targets may be quite
different (they will be reviewed in due course), and so will be the best
implementation of a given operation.

By definition, floating-point implementation on an FPGA is application-
specific. The FPGA is programmed as an “accelerator” for a given problem,
and the arithmetic operators will be designed to match the requirements
of the problem but no more. For instance, most FPGA implementations are
parameterized by exponent and significand sizes, not being limited to those
specified by the IEEE 754 standard. In addition, FPGA floating-point opera-
tors are designed with optional subnormal support, or no support at all. If
tiny values appear often enough in an application to justify subnormal han-
dling, the application can often be fixed at a much lower hardware cost by
adding one bit to the exponent field. This issue is still controversial, and
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subnormal handling is still needed for some applications, including those
which require bit-exact results with respect to a reference software.

9.1.4 Hardware decimal arithmetic

Most of the research so far has focused on binary floating-point arithmetic. It
is still an open question whether it is worth implementing decimal arithmetic
in hardware [91, 130, 90, 413, 429], or if a software approach [85, 87], possibly
with some minor hardware assistance, is more economical. This chapter cov-
ers both hardware binary and hardware decimal, but the space dedicated to
hardware decimal reflects the current predominance of binary implementa-
tions.

As exposed in detail in Section 3.4.3, the IEEE 754-2008 standard speci-
fies two encodings of decimal numbers, corresponding to the two main com-
peting implementations of decimal arithmetic at the time IEEE 754-2008 was
designed. The binary encoding allows for efficient software operations, using
the native binary integer operations of a processor. It is probable that pro-
cessor instruction sets will be enriched to offer hardware assistance to this
software approach. The decimal encoding, also known as densely packed deci-
mal or DPD, was designed to make a hardware implementation of decimal
floating-point arithmetic as efficient as possible.

In the DPD format, the significand is encoded as a vector of radix-1000
digits, each encoded in 10 bits (declets). This encoding is summarized in
Tables 3.18, 3.19, and 3.20, pages 88 and 89. It was designed to facilitate the
conversions: all these tables have a straightforward hardware implementa-
tion, and can be implemented in three gate levels [123]. Although decimal
numbers are stored in memory in the DPD format, hardware decimal arith-
metic operators internally use the simpler binary coded decimal (BCD) rep-
resentation, where each decimal digit is straightforwardly encoded as a 4-bit
number. Of course, the main advantage of this encoding is that all the declets
of a number can be processed in parallel.

Considering that the operations themselves use the BCD encoding,
should the internal registers of a processor use DPD or BCD? On one hand,
having the registers in BCD format saves the time and power of converting
the input operands of an operation to BCD, then converting the result back to
DPD—to be converted again to BCD in a subsequent operation. On the other
hand, as pointed out by Eisen et al. [123], it is unlikely that an application will
intensively use binary floating-point and decimal floating-point at the same
time; therefore, it makes sense to have a single register file. The latter will
contain 64-bit or 128-bit registers, which is a strong case for accepting DPD
numbers as inputs to a decimal FPU.
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9.1.5 Pipelining

Most floating-point operator designs are pipelined. There are three character-
istics of a pipelined design:

• its frequency, which is the inverse of the cycle time;

• its depth or latency, which is the number of cycles it takes to obtain the
result after the inputs have been presented to the operator;

• its silicon area.

IEEE 754-compliant operations are combinatorial (memory-less) func-
tions of their inputs. Therefore, one may in principle design a combinational
(unpipelined) operator of critical path delay T , then insert n register levels
to convert it into a pipelined one of latency n. If the logical depth between
each register is well balanced along the critical path, the cycle time will be
close to T/n. It will always be larger due to the delay incurred by the addi-
tional registers. These additional registers also add to the area. This defines
a technology-dependent tradeoff between a deeply pipelined design and a
shallower one [383]. For instance, recent studies suggest an optimal delay of
6 to 8 fanout-of-4 (FO4) inverter delays per stage if only performance is con-
sidered [185], but almost double if power is taken into consideration [447].

Besides, some computations will not benefit from deeper pipelines. An
addition using the result of another addition must wait for this result. This
is called a data dependency. The deeper the pipeline, the more cycles dur-
ing which the processor must wait. If there are other operations that can be
launched during these cycles, the pipeline will be fully utilized, but if the
only possible next operation is the dependent operation, the processor will
be idle. In this case, the pipeline is not used to its full capacity, and this
inefficiency is worse for a deeper pipeline. Very frequently, due to data
dependencies, a deeper pipeline will be less efficient, in terms of operations
per cycle, than a shallower one. This was illustrated by the transition from the
P6 microarchitecture (used among others in the Pentium III) to the NetBurst
microarchitecture (used among others in the Pentium 4). The latter had
roughly twice as deep a pipeline as the former, and its frequency could be
almost twice as high, but it was not uncommon that a given piece of floating-
point code would need almost twice as many cycles to execute [100], negating
the performance advantage of the deeper pipeline. Considering this, recent
Intel microprocessors (most notably the Core microarchitecture) have
stepped back to shallower pipelines, which have additional advantages in
terms of power consumption and design complexity.

In the design of a processor, the target frequency is decided early, which
imposes a limit on the logic depth delay in each pipeline level. One then
tries to keep the number of cycles as close as possible to the theoretical
optimal (obtained by dividing the critical path delay by the cycle time).
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In general-purpose processors, the area of the arithmetic operators is not as
much of a problem. Thanks to Moore’s law, transistors are cheap, and the
floating-point units account for a few percent of the area of a processor any-
way. It is not uncommon to replicate computations if this decreases the critical
path. In the following pages, we will see many examples.

In GPUs or reconfigurable circuits, the context is slightly different. The
applications being targeted to GPUs and FPGAs will expose enough paral-
lelism so that the issue of operation latency will not be significant: the cycles
between dependent operations will be filled with other computations. On the
other hand, one wants as many operators as possible on a chip to maximally
exploit this parallelism. Therefore, floating-point operators on GPUs and
FPGAs will favor small area over small latency.

9.2 The Primitives and Their Cost

Let us first review the primitives which will be required for building most
operations. These include integer arithmetic operations (addition/subtrac-
tion, multiplication, integer division with remainder) but also primitives
used for significand alignment and normalization (shifters and leading-zero
counters). Small tables of precomputed values may also be used to accelerate
some computations.

These primitives may be implemented in many different ways, usually
exposing a range of tradeoffs between speed, area, and power consumption.
The purpose of this section is to expose these tradeoffs.

9.2.1 Integer adders

Integer addition deserves special treatment because it appears in virtually
all floating-point operators, though with very different requirements. For
instance, the significand addition in a floating-point adder needs to be as fast
as possible, while operating on numbers of fairly large width. In contrast,
exponent addition in a floating-point multiplier operates on smaller integers,
and does not even need to be fast, since it can be performed in parallel with
the significand product. As a third example, integer multiplication can be
expressed in terms of iterated additions, and adders may be designed specif-
ically for this context.

Fortunately, a wide range of adder architectures has been proposed and
allows us to address each of these needs. We present each adder family suc-
cinctly. The interested reader will find details in the bibliographic references.

Carry-ripple adders

The simplest adder is the carry-ripple adder, represented in Figure 9.1 for bin-
ary inputs and in Figure 9.2 for decimal BCD inputs. Carry-ripple addition
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AFAFAF

sn s0s1cn+1

c0 = 0

xn y1x1 x0 y0yn

Figure 9.1: Carry-ripple adder.
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sn s0s1cn+1

c0 = 0

xn y1x1 x0 y0yn

Figure 9.2: Decimal addition. Each decimal digit is coded in BCD by 4 bits.

is simply the paper-and-pencil algorithm learned at school. A carry-ripple
adder has O(n) area and O(n) delay, where n is the size in digits of the num-
bers to be added.

The building block of the binary carry-ripple adder is the full adder (FA),
which outputs the sum of three input bits xi, yi, and zi (this sum is between
0 and 3) as a 2-bit binary number cisi. Formally, it implements the equation
2ci + si = xi + yi + zi. The full adder can be implemented in many ways with
a two-gate delay [126]. Typically, one wants to minimize the delay on the
carry propagation path (horizontal in Figure 9.1). Much research has been
dedicated to implementing full adders in transistors; see, for instance,
Zimmermann [443] for a review. A clean CMOS implementation requires 28
transistors, but many designs have been suggested with as few as 10 transis-
tors (see [440, 1, 376, 61] among others). These transistor counts are given for
illustration only: smaller designs have limitations, for instance they cannot be
used for building carry-ripple adders of arbitrary sizes. The best choice of a
full-adder implementation depends much on the context in which it is used.

Carry-ripple adders can be built in any radix β (take β = 10 for illustra-
tion). The basic block DA (for digit addition) now computes the sum of an
input carry (0 or 1) and two radix-β digits (between 0 and β − 1). This sum is
between 0 and 2β − 1 and can therefore be written in radix β as cisi, where ci

is an output carry (0 or 1) and si is a radix-β digit.
Useful radices for building hardware floating-point operators are 2,

small powers of 2 (in which case the DA block is simply a binary adder as
shown on Figure 9.4), 10, and small powers of 10. Figure 9.2 gives the example
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FA FAFAFAFA

FAFAFAFA

1 0 1 0 1 0 1 0

si,3 si,2 si,1 si,0
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0 1 1 0

xi,3 yi,3 xi,2 yi,2 xi,1 yi,1 xi,0 yi,0

cin

cout

Figure 9.3: An implementation of the decimal DA box.

FAFAFAFA
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cincout

Figure 9.4: An implementation of the radix-16 DA box.

of a radix-10 ripple-carry adder. The implementation of a typical decimal
DA block is depicted by Figure 9.3. It first computes xi + yi + zi using a
binary 4-bit adder. To detect if the sum is larger than 10, a second 5-bit adder
adds 6 to this sum. The carry out of this adder is always 0 (the sum is at most
9 + 9 + 1 + 6 = 25 < 32) and can be ignored. The bit of weight 24 is the dec-
imal carry: it is equal to 1 iff xi + yi + zi + 6 ≥ 16, i.e., xi + yi + zi ≥ 10. The
sum digit is selected according to this carry. Many low-level optimizations
can be applied to this figure, particularly in the constant addition. However,
comparing Figures 9.4 and 9.3 illustrates the intrinsic hardware overhead of
decimal arithmetic over binary arithmetic.

Many optimizations can also be applied to a radix-2p adder, such as the
one depicted in Figure 9.4, particularly to speed up the carry-propagation
path from cin to cout. In a carry-skip adder [126], each radix-2p DA box first
computes, from its xi and yi digit inputs (independently of its ci input, there-
fore in parallel for all the digits), two signals gi (for generate) and pi (for
propagate), such that ci+1 = gi OR (pi AND ci). Carry propagation then takes
only 2 gate delays per radix-2p digit instead of 2p gate delays when the DA
box is implemented as per Figure 9.4. The drawback is that the DA box is
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AFAFAF

cn c2 c1 c0

z0z1zn

sn s0s1cn+1

c0 = 0

xn y1x1 x0 y0yn

Figure 9.5: Binary carry-save addition.

now larger: this family of adders exposes a tradeoff between area and adder
delay.

Parallel adders

The hardware of a carry-ripple adder can be used to perform carry-save
addition in O(n) area and O(1) time, as shown in Figure 9.5. The catch
is that the result is obtained in a nonstandard redundant number format:
Figure 9.5 shows a carry-save adder that adds three binary numbers and
returns the sum as two binary numbers: R =

∑n+1
i=0 (ci + si)2i.

The cost of converting this result to standard representation is a carry
propagation, so this is only useful in situations when many numbers have to
be added together. This is the case, e.g., for multiplication.

As shown in Figure 9.6 for radix 232, this idea works for any radix. A
radix-β carry-save number is a vector of pairs (ci, si), where ci is a bit and
si a radix-β digit, representing the value

∑n
i=0(ci + si)βi. A radix-β carry-

save adder adds one radix-β carry-save number and one radix-β number and
returns the sum as a radix-β carry-save number.

Radix-2p carry-save representation is also called partial carry save. It
allows for the implementation of very large adders [439] or accumulators
[234, 105] working at high frequency in a pipelined way. It has also been pro-
posed that its use as the internal format for the significands inside a proces-
sor floating-point unit would reduce the latency of most operations [134].
Conversions between the IEEE 754-2008 interchange formats presented in
Section 3.4.1 and this internal format would be performed only when a num-
ber is read from or written to memory.

Fast adders

It is usual to call fast adders adders that take their inputs and return
their results in standard binary representation, and compute addition in
O(log n) time instead of O(n) for carry-ripple addition. They require more
area (O(n log n) instead of O(n)). In this case, the constants hidden behind
the O notation are important.
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32 32

32

32 32 32 32

3232

Add32Add32Add32

cn c2 c1 c0

z0z1zn

sn s0s1cn+1

c0 = 0

xn y1x1 x0 y0yn

Figure 9.6: Partial carry-save addition.

Here is a primer on prefix tree adders [126], a very flexible family of fast
adders. For any block i : j of consecutive bits of the addition with i ≥ j, one
may define a propagate signal Pi:j and a generate signal Gi:j . These signals are
defined from the input bits of the range i : j only, and have the following
meanings: Pi:j = 1 iff the block will propagate its input carry, whatever its
value; Gi:j = 1 iff the block will generate an output carry, regardless of its
input carry. For a 1-bit block we have Gi:i = ai AND bi and Pi:i = ai XOR bi.
The key observation is that generate and propagate signals can be built in an
associative way: if i ≥ j ≥ k, we have

(Gi:k, Pi:k) = (Gi:j OR (Pi:j AND Gj:k), Pi:j AND Pj:k),

which is usually noted (Gi:k, Pi:k) = (Gi:j , Pi:j) • (Gj:k, Pj:k). The operator •
is associative: for any value of the bits a1, b1, a2, b2, a3, b3, we have

((a1, b1) • (a2, b2)) • (a3, b3) = (a1, b1) • ((a2, b2) • (a3, b3)) .

Because of this associativity, it is possible to compute in parallel in log-
arithmic time all the (Gi:0, Pi:0), using a parallel-prefix tree. The sum bits are
then computed in time O(1) as si = ai XOR bi XOR Gi:0.

The family of prefix tree adders has the advantage of exposing a wide
range of tradeoffs, with delay between O(log n) and O(n) and area between
O(n log n) and O(n). In addition, the tradeoff can be expressed in other terms
such as fan-out (the number of inputs connected to the output of a gate) or in
terms of wire length. With submicrometer VLSI technologies, the delay and
power consumption are increasingly related to wires. See [326] for a recent
survey.

Another advantage of prefix adders is that computing A + B + 1 on
top of the computation of A + B comes at the price of O(n) additional
hardware and O(1) additional delay. Once the (Gi:0, Pi:0) are available, the
bits of A + B + 1 are defined by setting the input carry to 1 as follows:
s′i = ai XOR bi XOR (Gi:0 OR Pi:0) [411]. A fast adder designed to compute
both A + B and A + B + 1 is called a compound adder [375]. It is useful for
floating-point operators, typically because the rounded significand is either a
sum or the successor of this sum.
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Figure 9.7: Carry-select adder.

A variation of the compound adder computes |A − B| when A and B
are two positive numbers (e.g., significands). In that case, using two’s com-
plement, one needs to compute either A−B = A + B + 1 or B −A = A + B,
depending on the most significant bit sn−1 of A − B which is set if A − B
is negative (see Figure 9.12). This approach is sometimes referred to as an
end-around carry adder.

To summarize, the design of an adder for a given context typically uses a
mixture of all the techniques presented above. See [439] for a recent example.

Fast addition in FPGAs

In reconfigurable circuits, the area is measured in terms of the elementary
operation, which is typically an arbitrary function of 4 to 6 inputs imple-
mented as a look-up table (LUT). As the routing is programmable, it actu-
ally accounts for most of the delay: in a circuit, you just have a wire, but
in an FPGA you have a succession of wire segments and programmable
switches [99]. However, all current FPGAs also provide fast-carry circuitry.
This is simply a direct connection of each LUT to one of its neighbors which
allows carry propagation to skip the slow generic routing.

The net consequence is that fast (logarithmic) adders are irrelevant to
FPGAs. For illustration, a high-end FPGA in 2009 has a typical peak fre-
quency of 500MHz (corresponding roughly to the traversal of a few LUTs
and a few programmable wires). In this cycle time, one may also perform a
30-bit carry-propagation addition using the fast-carry logic. Using that 30-bit
carry propagation, the simple carry-select adder shown in Figure 9.7 provides
60-bit addition at the peak frequency, which is enough for binary64.
Additions larger than 30 bits may also be implemented by adding very few
pipeline levels in the fast-carry propagation.
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9.2.2 Digit-by-integer multiplication in hardware

The techniques learned at school for paper-and-pencil multiplication and
division require the computation of the product of a digit by a number. This
operation also occurs in hardware versions of these algorithms.

Multiplying an n-bit number by a bit simply takes n AND gates oper-
ating in parallel in O(1) time. However, as soon as the radix β is larger than
two, the product of two digits in {0, ..., β − 1} does not fit on a single digit,
but on two. Computing the product of a digit by a number then takes a carry
propagation, and time is now O(n), still for O(n) area with the simplest oper-
ators (the previously seen methods for fast addition can readily be adapted).
Similarly to addition, if it is acceptable to obtain the product in nonstandard
redundant format, this operation can be performed in O(1) time.

For small radices, digit-by-integer multiplication in binary resumes to a
few additions and constant shifts. For instance, if the radix is a power of 2,
2X = X << 1 (X shifted left by one bit), 3X = X + (X << 1), etc. All
the multiplications up to 10X can be implemented by a single addition/sub-
traction and constant shifts. These additions require a carry propagation. We
now see a general method, recoding, that can avoid these carry propagations.

9.2.3 Using nonstandard representations of numbers

Note that the radix here is not necessarily 2 or 10. For instance, considering
a binary number as a radix-4 number simply means considering its digits
two by two. An operation expressed in radix 4 will have fewer digit oper-
ations than the same operation expressed in radix 2. However, each digit
operation will be more complex. The choice of a larger radix may allow one to
reduce the number of cycles for an operation while maximizing the amount
of computation done within one cycle. For instance, Intel recently reduced
the latency of division in their x86 processors by replacing the radix-4 divi-
sion algorithm with a radix-16 algorithm [287].

The digit set to be used in radix β is not necessarily {0, ..., β−1}. Any set
of at least β consecutive digits including 0 allows for representation of any
number. Furthermore, it is common to use a redundant digit set, i.e., a digit
set with more than β digits. The value of a string of p digits (dp−1dp−2 · · · d0)
in radix β is still

N =
p−1∑
i=0

diβ
i .

In such a system, some numbers will have more than one representation.
A digit set including negative digits makes it possible to represent neg-

ative numbers (these redundant number systems with negative digits are
sometimes called signed-digit number systems).
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Example 11 (Radix 10 with digit set {-5,-4,-3,-2,-1,0,1,2,3,4,5}). Let us note the
negative digits with an overline, e.g., 5 = −5. Here are some examples of number
representations in this system:

0 = 0
9 = 11 (= 10− 1)
−8 = 12 (= −10 + 2)
17 = 23
5 = 05 = 15 (= −10 + 2) .

The main point of redundant digit sets is that they provide more algo-
rithmic freedom. For instance, carry propagation can be prevented by choos-
ing, among two possible representations of the sum, the one that will be able
to consume an incoming carry. This is the trick behind Avizienis’ signed-digit
addition algorithm [16]. Another example where this freedom of choice is
useful is SRT division, introduced in Section 9.6.

Nonstandard digit sets also have other advantages. A trick commonly
used to speed up binary multiplication is modified Booth recoding [37]. It con-
sists in rewriting one of the operands of the multiplication as a radix-4 num-
ber using the digit set {2, 1, 0, 1, 2}. The advantage is that multiplication of the
other operand by any of these recoded digits still consists of a row of AND as
in binary, and a possible shift. As the digits are in radix 4, they are twice
as few. Compared to using standard radix 4 with digits in {0, 1, 2, 3}, we no
longer have the carry propagation that was needed to compute 3X = X+2X .

Booth recoding can be done in O(1) time using O(n) area. In a first step,
the initial radix-4 digits in {0, 1, 2, 3} are rewritten in parallel as follows: 0
and 1 are untouched, 2 is rewritten 4 + 2, 3 is rewritten 4 + 1. Here the 4 cor-
responds to a carry in radix 4, sent one digit position to the left. In a second
step, these carries are added, again in parallel, to the digits from the previ-
ous step, which belonged to {2, 1, 0, 1}. The resulting digits indeed belong to
{2, 1, 0, 1, 2}. Again, thanks to redundancy, there was no carry propagation.

Recoding can also be used for decimal multiplication and will be sur-
veyed in Section 9.2.5.

9.2.4 Binary integer multiplication

There are many ways of implementing integer multiplication with a range
of area-time tradeoffs [126]. We focus here on high-performance implemen-
tations. They are typically performed in three steps, illustrated in Figure 9.8.

• First, one of the operands is Booth recoded, and each of its digits is
multiplied by the other operand. This results in a partial product array
of (n + 1) × n/2 weighted bits. The result of the multiplication will be
the sum of these weighted bits. This step can be performed in constant
time.
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final adder

Booth recoding,
partial product generation

compression tree

Figure 9.8: Binary integer multiplication.

• A second step reduces this array to only two lines using several
carry-save adders, or more generally, compressors. For instance, the 3:2
compressor is the carry-save adder of Figure 9.5, a 4:2 compressor takes
4 binary numbers and writes their sum as two binary numbers (i.e., as
a carry-save number). A 4:2 compressor can be implemented as two
carry-save adders, but it may also be implemented more efficiently
(using fewer transistors). It has been argued that a good 4:2 compressor
implementation may perform the same function as Booth recoding in
less time using less resources [420].

This step can be performed in O(log n) time, using a tree of compres-
sors.

• Finally, the carry-save result of the previous step is summed using a fast
adder in O(log n) time.

This multiplier scheme is quite flexible. It easily accommodates signed
integers at no extra cost. More important for floating-point, rounding can be
performed at almost no cost by adding a few bits in the partial product array,
as detailed in Section 9.4. Finally, computing a multiply-and-add a×b+c adds
only one more line of bits (corresponding to c) to the initial partial product
array of a × b depicted in Figure 9.8. In practice, the requirement of correct
rounding of the FMA makes the overall data path much more complex; see
Section 9.5.
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Figure 9.9: Partial product array for decimal multiplication. One digit product,
9× 2 = 18, is highlighted.

9.2.5 Decimal integer multiplication

The basic scheme presented above can be used for decimal multiplication.
The design of a carry-save decimal adder is straightforward. The partial
product array may be built by computing all the digit-by-digit products in
parallel, as illustrated by Figure 9.9. Notice that this figure is different from
the one obtained using the paper-and-pencil algorithm, which needs a carry
propagation to compute the product of one number by one digit.

Here also, recoding can help in several ways. Recoding the decimal dig-
its to dl ∈ {−5, ..., 5}, for instance, and handling signs separately, reduces the
number of digit-by-digit products to compute from 100 to 36, with a corre-
sponding reduction in the complexity of the digit-by-digit multiplier [131].
Interestingly enough, Cauchy already had that idea (of course, in a different
context!) in 1840 [65]. In [240], each decimal digit is recoded as the sum of
two digits, dh + d`, with dh ∈ {0, 5, 10} and d` ∈ {−2,−1, 0, 1, 2}. Multiplying
a decimal input by such a recoded digit still leads to two lines in the partial
product array, as in Figure 9.9, but the computation of these two lines requires
very little hardware.

• Multiplication by 0, ±1, and ±10 is almost “for free.”

• Multiplication by 2 resumes to a shift and a 4-bit addition. A carry may
be produced to the next digit position, but, added to an even digit, it
will not propagate further.

• Multiplication by 5 is performed as multiplication by 10 (digit shift)
then division by 2. The latter is performed digit-wise. For odd digits,
there is a fractional part equal to 0.5. It is sent as a +5 to the digit
position to the right. Similarly to the previous case, this “anti-carry”
may not propagate any further.
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In [414], the standard BCD code is named BCD-8421 (indicating the weights
of the 4 bits of a digit), and different codings of decimal digits are sug-
gested: BCD-4221 or BCD-5211. The advantage of these codes is that they
are slightly redundant, which in practice enables faster decimal carry-save
addition. More alternatives can be found in Vásquez [413].

Other recent variations on decimal multiplication may be found in [129,
429]. Earlier decimal architectures were more sequential, more or less like
the paper-and-pencil algorithm [63, 128]. In this case, a first step may be to
compute multiples of the multiplicand and store them in registers.

In [298], Neto and Véstias implement decimal multiplication in FPGAs
using a radix-1000 binary format. This is motivated by the availability of
embedded multipliers able to perform the product of two 10-bit numbers and
return the exact product. They also propose addition-based radix conversion
algorithms that exploit the fast addition fabric of FPGAs.

9.2.6 Shifters

Normalizing a binary floating-point result means bringing its leading “1” to
the first position of the significand. If this “1” was preceded by a string of
zeros, an idea is to count these zeros first, and then feed this count to a shifter.
Note that a simple way of handling subnormal inputs is to normalize them to
an internal format with a few more exponent bits. This concerns practically
all operations that need to manage subnormal inputs.

A hardware shifter (commonly called a barrel shifter) takes one input x
of size n (the number to be shifted) and one input d of size dlog2 ne (the shift
distance). It consists of dlog2 ne stages. The i-th stage considers the i-th bit
of d, say di, shifts by 2i if di = 1 and does nothing otherwise, using a 2:1
multiplexer. Ignoring fan-in and fan-out issues, such a multiplexer for a data
of n bits has area O(n) and delay O(1). Therefore, the area of a complete barrel
shifter is O(n log n), and its delay is O(log n).

Shifting to a constant distance is cheaper, as it reduces to wires and pos-
sibly a multiplexer, in O(n) area and O(1) time.

9.2.7 Leading-zero counters

If an intermediate result may produce an arbitrary number of leading zeros
(a typical case is a cancellating subtraction), it is necessary to count these
leading zeros. A leading-zero counter (LZC) provides the shift value that will
allow one to normalize the result.

Of course, one may derive from an LZC an architecture that counts lead-
ing ones. A leading-zero-or-one counter (LZOC) may also be useful: if an
operation may return a negative number and the latter is available in two’s
complement, it will have to be complemented and normalized. In this case,
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one may perform the leading-zero counting in parallel with the complement-
ing: what needs to be counted is the numbers of bits identical to the most
significant bit (MSB) of the two’s complement value.

Tree-based leading-zero counter

In general, counting the leading zeros in a number of size n can be performed
in a binary tree manner in O(log n) time and O(n) area. The basic algorithm
is the following [316]. The first level considers pairs of adjacent bits and
associates to each pair a 2-bit number that counts the leading zeros in this
pair. The second level considers groups of 4 consecutive bits and builds 3-bit
numbers that count the leading zeros in each group, and so on. Each com-
puting node at level i considers groups of 2i consecutive bits and outputs
the leading-zero count for such a group as an (i + 1)-bit number. A node is
able to to build this count using simple multiplexers out of the counts of the
previous level, because of the following observation: the MSB of such a count
is 1 iff the group consists of only zeros. Algorithm 9.1 makes explicit the
operation of a node.

Algorithm 9.1 One node of the i-th level of an LZC tree.
Inputs: two i-bits numbers L and R
l←most significant bit of L
r ←most significant bit of R
if l = 0 (there is a 1 on the left group) then

D ← 0L (ignore the right group)
else if l = 1 and d = 1 (both groups are all zeros) then

D ← 2i+1 (written 10...0)
else if l = 1 and d = 0 (all zeros on the left) then

D ← 1R (add 2i to the count of the right group)
end if
Returns: the (i + 1)-bit number D;

Many variations of this algorithm, e.g., using coarser levels, can be
designed to match the constraints or requirements of a given operator.

Leading-zero counting by monotonic string conversion

A completely different approach to leading-zero counting consists in first
converting the input into a monotonic string, i.e., a bit string of the same size,
which has the same leading zeros as the input, but only ones after the lead-
ing one. This is a very simple prefix-OR computation that may be performed
efficiently in hardware in several ways [364]. By ANDing this string with
itself negated and shifted by one bit position, one gets a string S = sn−1...s1s0

consisting of only zeros, except at the position of the leading one. From this
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last string, each bit of the count R can be computed as an n/2-wide OR. This
approach is also well suited to leading-zero anticipation techniques, which will
be presented in Section 9.3.3.

Combined leading-zero counting and shifting for FPGAs

Algorithm 9.2 combines leading-zero counting and shifting, which is what is
needed for floating-point normalization.

Algorithm 9.2 Combined leading-zero counting and shifting.
k ← dlog2 ne;
xk ← x;
for i = k − 1 downto 0 do

if there are 2i leading zeros in xi+1 then
di ← 1
xi ← xi+1, shifted left by 2i;

else
di ← 0
xi ← xi+1;

end if
end for
return (d, x0);

The theoretical delay of this algorithm is worse than that of an LZC fol-
lowed by a shifter (both in O(log n). Indeed, the test

if there are 2i leading zeros in xi+1

is itself an expensive operation: implemented as a binary tree, it costs O(i)
delay. The total delay would therefore be O(k2) = O((log n)2).

However, in recent FPGAs, the dedicated hardware accelerating carry-
propagation addition can also be used to compute the required wide
OR operation. Thus, the practical delay of leading-zero counting in algo-
rithm 9.2 is completely hidden in that of the shifter for input sizes up to
roughly 30 bits. If the input is larger, pipeline levels may have to be inserted
to reach the peak FPGA frequency, but this only concerns the first few stages.
As this algorithm also leads to a compact implementation, it will be preferred
over an LZC followed by a shifter.

9.2.8 Tables and table-based methods for fixed-point function
approximation

There are several situations where an approximation to a function must be
retrieved from a table. In particular, division and square root by functional
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iteration require an initial approximation to the reciprocal, square root, or
reciprocal square root of a significand [322, 360, 361, 362, 394, 229]. Many
other applications exist, especially in the field of reconfigurable computing.
For instance, table-based architectures for floating-point elementary func-
tions are presented in [114] (exponential and logarithm), [113] (sine and
cosine), and [121] (power function). Multiplication by a constant may also
resort to precomputed tables, as will be detailed in Section 9.7.2. All these
tables make sense in an architecture targeting FPGAs, because these circuits
include a huge number of memory elements (from the LUT to larger config-
urable RAMs).

Plain tables

A table with an n-bit address may hold 2n values. If each of these values is
stored as m bits, the total number of bits stored in the table is m · 2n. Such
a table is typically implemented in VLSI technology as a ROM (read-only
memory) of area O(m · 2n). The delay is that of the address decoding, in
O(n). Some tables, for instance with very small n or very redundant content,
may be best implemented directly as Boolean circuits.

In an FPGA, a LUT-based table will have a LUT cost of O(m · 2n−k)
(where k is the number of inputs to the elementary LUT, currently from 4
to 6). However, a table may also be implemented using one or several config-
urable RAM blocks—for more details on the RAM blocks available in a given
FPGA circuit, refer to vendor documentation.

Table-based methods

If the function to be tabulated is continuous and derivable with well-bounded
derivatives on the interval of interest (this is the case of the reciprocal on [1, 2),
for instance), it is possible to derive an architecture that may replace a table
of the function, at a much lower hardware cost. Such an architecture is based
on a piecewise linear approximation to the function, where both the constant
term and the product are tabulated in two smaller tables (typically each with
2n/3 address bit). The resulting bipartite architecture consists of an addition
that sums the output of the two tables.

To our knowledge, this idea was first published for the sine function
[398], then rediscovered independently for the reciprocal function [361]. It
was later generalized to arbitrary functions and improved gradually to more
than two tables [394, 291, 106]. The generalized multipartite method in [106]
builds an architecture with several tables and several additions which guar-
antees faithful rounding of the result while optimizing a given cost function.
For instance, consider a 16-bit approximation to the reciprocal on [1, 2), with
value in (1

2 , 1]. As there is one constant input bit and one constant output
bit, the function to tabulate is actually f(x) = 2

x+1 − 1. A 15 bits in, 15 bits
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Figure 9.10: A multipartite table architecture for the initial approximation of 1/x.
The XORs implement changes of sign to exploit the symmetry of a linear approxima-
tion segment with respect to its center [394].

out faithful multipartite architecture for such a function is presented in
Figure 9.10. It consists of three tables of 18.29, 9.29, and 6.28 bits respectively,
and two additions. This represents 30 times less storage than using a plain
table with 15-bit addresses. Moreover, as the three tables are accessed in par-
allel, the delay of a multipartite architecture is very small—in an FPGA, it is
smaller than the delay of the plain table, because the smaller tables are also
accessed faster, which more than compensates the delay due to the adders.

The multipartite method was then generalized to higher degree approxi-
mations with architectures involving small multipliers [112], further reducing
the area at the expense of the delay.

9.3 Binary Floating-Point Addition

A binary floating-point adder basically follows the generic algorithm given
in Section 8.3. We focus here on the implementation issues.

9.3.1 Overview

Let us call x and y the floating-point inputs. First, the exponent difference
ex − ey is computed, and the inputs are possibly swapped to ensure that
ey ≤ ex. Then comes a possibly large shift to align the significands. In case
of effective subtraction, one of the significands is possibly complemented.
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Figure 9.11: A dual-path floating-point adder.

The addition itself is then performed. Finally, the result may be normalized.
In the case of a cancellation, this normalization may require an LZC and a
shifter.

9.3.2 A first dual-path architecture

As remarked already in the previous chapter, the two large shifts occur in
situations that are exclusive: a cancellation may only occur if the input expo-
nents differ by at most one, but in this case there is no need for a large align-
ment shift. Besides, the decision of which path to choose depends only on
the input exponents and can be made early, typically in the same time as the
initial exponent comparison. Therefore, virtually all the recent floating-point
adders are variations of the dual-path architecture presented in Figure 9.11.
The close path is for situations where a massive cancellation (more than 1 bit)
may occur: effective subtractions of inputs with exponents that differ by at
most 1. The far path is for distant exponents (their difference is at least 2).

Here are a few remarks on Figure 9.11.
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Figure 9.12: Possible implementations of significand subtraction in the close path.

• Both paths are relatively balanced in terms of critical path; however, the
close path has slightly more work to do.

• The far path may perform either an addition or a subtraction. The sign
of the result is known in advance; it will be the sign of the number
whose exponent is larger.

• The close path always performs a significand subtraction; however, the
sign of the result is unknown. If it is negative, it needs to be negated to
obtain a positive significand (changing the sign bit of the result). This
change of sign is represented after the subtraction in Figure 9.11. A bet-
ter latency is obtained by computing in parallel mx −my and my −mx

and selecting the one that is positive, as shown in Figure 9.12.

• The final normalization unit inputs an exponent ez , a (p + 1)-bit sig-
nificand mz whose MSB is 1 and whose least-significant bit (LSB) is a
round bit, and a sticky bit s′ (the sticky bit coming from the close path
is always 0). This information suffices to perform rounding according
to the rules defined in Chapter 8. The integer increment trick described
page 242 may be used: a (p + wE)-bit integer is built by removing the
leading 1 of the significand and concatenating the exponent to its left,
then the rounding rules simply decide (from the round and sticky bits)
if this integer should be incremented or not. This provides a normal-
ized representation of the result even when the increment entails an
overflow.

• The LZC/shift box of the close path, and the prenorm box of the far
path, prepare the information for the final normalization unit.

• The prenorm box in the far path inputs the (p + 1)-bit significand sum
(including a possible carry out), and three more bits from the shifted
significand, classically called g for guard bit, r for round bit, and s a sticky
bit computed from the p least significand bits of the shifted sum.
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The prenorm box is essentially a multiplexer controlled by the two
leading bits of significand sum (including the carry out):

– if 1x (carry out), this carry will be the leading 1 of the p-bit signifi-
cand of the result. In this case the exponent is ez = ex + 1 and the
sticky out is s′ = g OR r OR s ;

– if 01, the significand sum is still aligned with mx. The (p + 1)-bit
significand mz is obtained by removing the leading zero of the sum
and concatenating g as its LSB. The exponent is ez = ex and the
sticky out is s′ = r OR s;

– if 00 (an effective subtraction leads to a one-bit cancellation), since
the shift was at least by two bit positions, it is easy to prove that
the third bit is a 1. In this case the exponent is ex− 1 and the sticky
out is s′ = s.

Compared to a single-path architecture, the area overhead of the dual-
path architecture is limited. The only duplicated hardware are the significand
additions, and the far path prenormalization, which may be considered as a
2-bit combined LZC/shifter. Besides there is also the cost of the multiplexer
selecting the results from the close or far path, and in a pipelined implemen-
tation the cost of registers synchronizing both paths.

Still, the dual-path design makes sense even when area is a concern, as
in FPGA implementations [247, 115]. The design of Figure 9.11 is indeed suit-
able for an FPGA implementation since the delay of leading-zero counting
can be hidden in the shift delay.

Now in a standard full-custom VLSI technology, implementing
Figure 9.11 will lead to a larger latency in the close path than in the far path.
The far path still involves only two logarithmic steps in sequence (a shifter
and an adder), whereas the close path has three: the subtracter (if imple-
mented as shown in Figure 9.12), an LZC, and a shifter. The latter can not
be overlapped: the LZC provides the most significant bits of the shift in its
last levels, whereas the shifter needs them in its first levels.

The solution is leading-zero anticipation, a technique that allows us to com-
pute an approximate of the leading-zero count in parallel with the significand
subtraction.

9.3.3 Leading-zero anticipation

A leading-zero anticipator (LZA) is a block that computes or estimates the
number of leading zeros from the inputs of the significand adder, instead
of having to wait for its output. Figure 9.13 describes an adder architecture
using an LZA. Note that some authors call the LZA a leading-one predictor
or LOP.

An LZA works in two stages.
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Figure 9.13: A dual-path floating-point adder with LZA.
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• The first stage recodes in parallel the two p-bit inputs mx and my to
be subtracted into a single p-bit indicator string f . This string has the
following property: if its leading one is in position i, then the leading
one of the sum is at position i or i + 1. This stage has a constant delay
of a few gates.

• A standard LZC on the string f then provides an estimation of the
leading-zero count of the result of the subtraction, which may be off
by at most 1.

The reason why the result may be off by 1 is that the LZA computes the count
from the MSB to the LSB, therefore it ignores a possible carry propagation
coming in the other direction. This may be corrected in two possible ways:

• either the LZA count is corrected when the addition is finished;

• or the shifter is followed by a multiplexer that implements the needed
possible 1-bit shift. This is the LZA correction box of Figure 9.13. Its con-
struction is very similar to the prenorm box, and it also has a delay of
a few gates. In practice, this last stage may be efficiently fused with the
last stage of the shifter: this stage normally shifts by 0 or 1 bit position,
and may be modified to shift also by 2 bit positions.

Let us now give an example of computation of the indicator string (see
[364] for a comprehensive survey). We first present it in the simpler case of
addition. An LZA for subtraction, which is what we need for the
floating-point adder, raises the additional difficulty of the sign of the result,
which we will address later.

Let us denote by A and B two positive integer numbers written on n bits
an−1...a0 and bn−1...b0, respectively.

Let 
pi = ai XOR bi

gi = ai AND bi

ki = ai AND bi

,

where the overline denotes the binary negation. These are the propagate, gen-
erate, and kill signals classically used in fast adders. If pi is set, the i-th bit
position propagates the incoming carry, whatever it is, to the (i + 1)-st bit
position. If gi is set, a carry is generated at the i-th bit position regardless of
the incoming carry. If ki is set, no carry will exit the i-th bit position, regard-
less of the incoming carry.

One may then check that a leading-zero string on the sum corresponds:

• either to a leftmost sequence of consecutive bit positions such that ki is
set (this is often noted k∗, using a notation inspired by regular expres-
sions);
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• or to a sequence (from left to right) of zero or more consecutive bit
positions with pi set, followed by one position with gi set, followed by
zero or more consecutive positions with ki set (in regular expression
notation, a sequence p∗gk∗). Note that this case corresponds to an add-
ition of A and B with overflow (carry out). Here we ignore the carry
out in the leading-zero count: this will be justified as we use such an
addition for two’s complement subtraction.

The trick is that these two sequences can be encoded as the indicator
string defined by

fi = pi XOR ki−1

(the proof is by enumeration).
The important thing here is that the computation of fi is a Boolean func-

tion of only two bits of A and two bits of B: it may be computed with a few
gates and in a very small delay.

Let us now consider an LZA for the close path of a floating-point adder.
As the addition is actually a subtraction, A will be 2p ·mx with n = p+1, and
B will be the binary complement of either 2p · my or 2p−1 · my. If the result
is positive, we have our estimation of the leading-zero count. However, if
the result turns out to be negative, we should have counted the leading ones
instead.

A conceptually simple solution is to duplicate the LZA hardware, just
as the addition itself is duplicated in Figure 9.12. This approach means
duplicating the LZC as well. Another solution is to derive an indicator string
that works for leading zeros as well as for leading ones. This approach does
not need to duplicate the LZC, but the computation of the indicator string
is now more complex, as it needs to examine three bits of each input [58]. A
discussion of this tradeoff is given in [364].

As a conclusion, the best implementation of leading-zero anticipation
is very technology dependent. It also depends on the pipeline organization
and on the implementation of the adder itself. For a comprehensive review of
these issues, see the survey by Schmookler and Nowka [364]. Many patents
are still filed each year on this subject.

Subnormal handling in addition

Binary floating-point addition has a nice property (Theorem 3, page 124):
any addition that returns a subnormal number is exact. A subnormal either
results from the addition or subtraction of two subnormals, or from a cancel-
lation (in the close path of Figure 9.13). In the first case, no shift is needed.
In the second case, the shift amount has to be limited to the one that brings
the exponent to emin: the remaining leading zeros will be left in the subnor-
mal significand. In both cases, we do not have to worry about rounding the
result, since it is exact.
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The only issue is to ensure that the detection of subnormal inputs on one
side and the limitation of the shift amount in the close path on the other side
do not degrade the critical path of the overall operator.

The shift at the beginning of the addition far path is now driven by the
exponent difference Ex − nx + Ey − ny, where nx and ny are the “is normal”
bits. To hide the delay of the computation of these bits (nx is computed as
the OR of the bits of Ex), one may compute in parallel nx, ny, and the three
alternative differences ex−ey, ex−ey−1, and ex−ey +1, and select the correct
one depending on nx and ny. This adds just one level of multiplexers to the
critical path. Besides, nx and ny are the implicit bits of the significand, and
are available before the significand shift, so there is no increase of the critical
path delay here.

It is more difficult to limit to ex − emin the normalizing shift in the close
path without increasing the close path critical path. The shift distance is now
min(λ, ex−emin), where λ is now the tentative number of leading zeros output
by the LZA. The value ex − emin may be computed early, but the delay of the
comparison with λ, from the LZA output, to decide shifting is added to the
critical path. A solution is to perform the two shifts (by λ bits and by ex−emin

bits) tentatively while comparing these two numbers and to select the valid
one when the comparison is available. This adds a lot to the area.

Another solution would be to inject a dummy leading 1 in the proper
position (ex − emin) before leading-zero counting. Again, ex − emin may be
computed in parallel with exponent difference, but bringing a 1 in this posi-
tion is a shift. It is difficult to obtain this value before the leading-zero count.

To summarize, we have to add at least the delay of a few multiplexers to
both the far path and the close path, and this may cost much area. Or, a more
area-efficient solution may be preferred, and it will add to the critical path
the delay of an exponent addition, which remains small. The best solution in
a given adder will depend on whether the critical path delay is in the close
path or in the far path.

9.3.4 Probing further on floating-point adders

We have not discussed the technology-dependent decomposition of the
adder in pipeline stages. The pipeline depth is typically 2 [375], 3 [308], or
4 [295] cycles for binary64 operands. In [308], the latency is variable from 1 to
3 cycles, depending on the operands.

Even and Seidel suggest a nonstandard two-path architecture in [375],
and compare it to implementations in Sun and AMD processors. Their
motivation is the minimization of the overall logic depth of floating-point
addition [374].

Pillai et al. present a three-path approach for lower power consumption
in [333].

Fahmy, Liddicoat, and Flynn suggest using an internal redundant format
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for floating-point numbers within processors [134]. This enables significand
addition with O(1) delay. Numbers have to be converted back to the standard
format only when writing back to memory.

As floating-point adders are complex designs, there have been several
attempts to prove their correctness using formal methods [357, 26]. A formal
approach to the design is also advocated by Even and Paul [132].

9.4 Binary Floating-Point Multiplication

9.4.1 Basic architecture

The architecture depicted by Figure 9.14 directly follows the algorithm given
in Section 8.4, page 251, of Chapter 8. It does not illustrate sign or over-
flow handling, which is straightforward. Underflow handling is discussed in
Section 9.4.4. Here are a few comments on this architecture.

• The computation in parallel of ex + ey − b and ex + ey − b + 1 consumes
little area, as it may use small and slow carry-propagate adders: the
exponents are not needed before the end of the significand product,
which takes much more time.

• The sticky bit computation may in principle be performed as a
by-product of the multiplication, in such a way that the sticky bit is
available at the same time as the result of the significand multiplexer.

• The increment in the final normalization unit may change the expo-
nent a second time. One idea could be to use a single adder using a
carry propagation from the significand to the exponent, as explained
in Section 8.2.1, page 242. However, note that even rounded up, the
product of two significands in [1, 2) never reaches 4. Indeed, the largest
possible significand is 2 − 2−p+1, whose square is 4 − 2−p+2 + 2−2p+2.
This is the largest possible significand product, and it is rounded up to
4 − 2−p+2 + 2−p+1 < 4. As a consequence, the exponent is never incre-
mented twice. In other words, there will only be a carry out from the
normalization incrementer if the exponent was ex + ey − b, in which
case it is changed to ex + ey − b + 1.

• Not shown on Figure 9.14 are sign and exception handling, which are
straightforward, except for subnormal numbers, which are managed
using methods discussed in Section 9.4.4.

9.4.2 FPGA implementation

The architecture of Figure 9.14 is well suited for FPGA implementations.
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Figure 9.14: Basic architecture of a floating-point multiplier without subnormal
handling.

• Subnormal handling is not a strong requirement for applications
using FPGA floating-point accelerators. The floating-point format used
in these accelerators can be nonstandard, and in particular can have an
ad hoc exponent range.

• Significand multiplication can be performed efficiently using the small
integer multipliers embedded in the FPGA fabric of high-performance
FPGAs. These multipliers are typically able to perform 18×18-bit prod-
ucts, and recent FPGAs have increased this size to 25×18-bit to facilitate
the implementation of binary32 arithmetic. For larger significand sizes,
several of these multipliers have to be grouped together; for instance, a
36× 36-bit product can be implemented using four 18× 18-bit multipli-
ers and a few adders. In recent FPGAs, the embedded multipliers are
tightly coupled to specific adders. The main purpose of these blocks is
efficient multiply-and-accumulate operations for digital signal process-
ing (DSP), but they also allow for building larger multipliers [104].

• Embedded multipliers are not able to compute the sticky bit as a
by-product. However, a wide OR can be computed using the fast-carry
circuitry. As soon as more than one embedded multiplier is needed, the
higher part of the result comes from an addition, and the sticky compu-
tation can be overlapped with this addition.
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• The increment in the final rounding unit can be performed by an
area-efficient carry-propagate adder through the fast-carry circuitry.

9.4.3 VLSI implementation optimized for delay

Let us analyze the delay of the previous design when implemented in full-
custom VLSI. The critical path is in the significand computation.

• One of the operands is Booth recoded (see Section 9.2.4), and the partial
product array is generated. This step takes a small constant delay.

• A compression tree in log p time compresses the partial product array
into a carry-save representation of the product.

• A fast adder, also in log p time, converts this carry-save product to stan-
dard representation.

• The normalization unit needs to wait for the MSB of the result of this
addition to decide where to increment. This increment takes another
fast adder, again with a log p delay.

It is possible to reduce the two adder latencies to only one (and a few
more gate delays). Let us start from the output of the compression tree,
which is a carry-save number, i.e., a pair of vectors s−1s0s1 · · · s2p−2 and
c−1c0c1 · · · c2p−2.

An easy case is round to zero, which comes down to a truncation. In
this mode, all one needs is a 2p-bit fast adder inputting s−1s0s1 · · · s2p−2 and
c−1c0c1 · · · c2p−2 and outputting y−1y0y1 · · · y2p−2. Then, a multiplexer selects
y−1y0 · · · yp−2 if y−1 = 1, and y0y · · · yp−1 if y−1 = 0. It also selects the expo-
nent among ea + eb and ea + eb + 1.

The reason why we need a second large adder in the previous architec-
ture is the possible increment of the result, which never happens in round-to-
zero mode.

The trick will therefore be to reduce the other rounding modes to the
round-to-zero mode. For this purpose, we add to the partial product array a
few bits which depend only on the rounding mode. These rounding injection
bits [133] may, in principle, add at most one gate delay to the delay of the
reduction tree. In practice, however, the tree is designed to fit in one or two
pipeline cycles, and the injection bits do not increase its latency.

The injection bits are defined as follows:

inj =


0 if round to zero
2−p if round to nearest
2−p+1 − 2−2p+2 if round to infinity.

If the significand product is in [1, 2), we indeed have ◦(z) = RZ(z + inj)
except in one case: the round to nearest thus implemented is round to nearest
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up, not round to nearest even. In case of a tie, it always returns the larger
number. This will be easy to fix by simply considering the LSB zp−1 of the
rounded result. If zp−1 = 0, the result is even and there is nothing to do.
If zp−1 = 1, the nearest even number is obtained by simply pulling zp−1 to 0,
which takes no more than one gate delay.

To summarize so far, the injection bits allow us to obtain the correctly
rounded result in any rounding mode using only one 2p-bit adder and a few
extra gates, in the case when the significand product is in [1, 2). The correctly
rounded result is obtained by truncation as the bits z0 · · · zp−1, with the bit
zp−1 pulled down in case of a tie for RN mode. Detecting a tie requires a
sticky bit computation as usual, which can be performed in parallel to the
sum of the lower bits.

Let us now consider the case when the result will be in [2, 4). In this case,
the injection bits have been added one bit to the right of their proper position:
the injection should have been

inj[2,4) =


0 if round to zero
2−p+1 if round to nearest
2−p+2 − 2−2p+2 if round to infinity.

To correct this injection, if the result turns out to be in [2, 4), we have to
add a correction defined by

corr = inj[2,4) − inj =


0 if round to zero
2−p if round to nearest
2−p+1 if round to infinity.

The problem is that we do not know if this correction should be applied
before the end of the significand adder. Of course, we don’t want this final
correction to involve another carry propagation delay over the full signifi-
cand. The solution is to compute in parallel the two versions of the higher
bits, one with the correction, and one without.

The sum of the lower bits of the carry-save product, sp · · · s2p−2 +
cp · · · c2p−2, is condensed into a sticky bit, a sum bit s′p, and a carry-out bit
c′p−1 (see Figure 9.15). This carry out will be the carry in to the sum of the
higher part of the carry-save product. As the correction may add one bit at
position p− 1, a row of half-adders is used to reduce s−1 · · · sp−1 + c1 · · · cp−1

to s′−1 · · · s′p−1+c′−1 · · · c′p−2. Thus, if the correction is 2−p+1 (round to infinity),
it will be added to at most two bits at position p− 1 (s′p−1 and c′p−1) and gen-
erate a carry at position p − 2. If the correction is 2−p, it will be added to one
bit of the same weight (s′p), and again a carry may propagate to the higher
bits.

Thus, the two versions of the higher sum to compute in parallel are
z−1 · · · zp−2 = s′−1 · · · s′p−2 + c′−1 · · · c′p−2, and the same with a carry in in
case of correction. These two sums can be computed by a compound adder.
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The carry in—which will decide which of these results is valid—is a combina-
torial function of s′p−1, s′p, c′p, the rounding mode which defines the correction
to apply, and of course the value of z−1 which decides normalization, and
hence whether a correction should be applied. This is the z−1 of the sum, not
of the incremented sum: there will be a carry in to the compound adder only
if the sum is in [2, 4), in which case we know that the incremented sum is also
in [2, 4).

The lower bit of the normalized result is another combinatorial function
from the same information, plus the sticky bit.

The resulting architecture is shown in Figure 9.15. The compound
adder on this figure outputs the normalized versions of z and zcorrected, i.e.,
z0 · · · zp−3 if z−1 = 1 and z1 · · · zp−2 if z−1 = 0.

The full detail of the Boolean equations involved can be found in [133],
which also compares this rounding algorithm to two other approaches.

9.4.4 Managing subnormals

As explained in the previous chapter, handling subnormals conceptually con-
sists in two additional steps:

• normalizing a possible subnormal input using a wider exponent range;

• detecting a possible subnormal output and shifting its significand to
insert the necessary leading zeros, before rounding.

This conceptual view does not fit our previous architecture. First, the
two steps added are long-latency ones, and they are sequential. Second, we
perform rounding by injection in the compression tree, and if the output is
subnormal, we will have performed the rounding at the wrong place. Let us
analyze in more detail the issues involved in order to schedule this additional
work in parallel with the existing steps, and not in sequence.

• Subnormal inputs must be detected, which means testing the exponent
field for all zeros. If both inputs are subnormals, the result will be zero
or one of the smallest floating-point numbers; therefore, only the situa-
tion where one input is subnormal and the other is normal needs to be
managed with care. Let nx (resp ny) be the “is normal” bit, a flag bit of
value 1 if x (resp. y) is normal, and 0 if it is subnormal. This bit can be
used as the implicit bit to be added to the significand, and also the bias
correction for subnormals.

• The implicit bit affects one row and one column of partial products.
The simplest solution here is to delay the compression of these partial
products long enough so that it begins when the implicit bit has been
determined. This does not add to the critical path.
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• The leading zeros of the subnormal input need to be counted. Define λ
as the number of leading zeros of the significand with nx appended as
the leading bit.

• The subnormal input need not be normalized before multiplication.
Indeed, the existing multiplier which computes the product of two
p-bit numbers will compute this product as well if one of the inputs
has leading zeros. The product will then have leading zeros, too, so
it needs to be normalized, but this gives us the time to compute λ in
parallel with the multiplication tree. This latency reduction comes at a
hardware cost: we now have to shift two 2p-bit strings (c and s) instead
of one p-bit string.

• After this shift we have, in carry-save form (c, s), a significand in [1, 4)
whose exponent is ex + ey −λ. The result will be subnormal if ex + ey +
z1 − λ < emin, where z1 is the leading bit of the (yet to be computed)
sum of c and s. In this case, the result will have to be shifted right by
emin − (ex + ey + z1 − λ) bit positions before rounding.

• We now need to preprocess the injected rounding bits to antici-
pate this shift. Ignoring z−1, which will be handled by the same
correction as previously, the injection has to be shifted left by
max {emin − (ex + ey − λ), 0} bit positions. If we are able to compute
this shift value and perform the shift in a delay shorter than that of
the compression tree, the shifted injection will be ready to be added in
a late stage of the compression tree, and this will not add to the delay.

• Finally, the two previous shifts may be combined in a single one,
but this requires changing the injection again. Finally, the injection
becomes:

inj =


0 if round to zero
2−p−l+max(emin−(ex+ey−l),0) if round to nearest
2−p+1−l+max(emin−(ex+ey−l),0) − 2−2p+2 if round to infinity.

• To summarize, the delay overhead related to subnormal handling is the
delay of one large significand shift. All the other computations can be
hidden by the delay of the compression tree.

• Note that no correction will occur in the case of a subnormal output
as z−1 will be 0, which means that there is nothing to change in the
correction logic.

9.5 Binary Fused Multiply-Add

Let us now discuss the hardware implementation of a fused multiply-add
(FMA) binary operator. Most of the algorithm is explained in Section 8.5.4,
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page 259. We first present the most classical architectures, then discuss
several propositions of alternative architectures.

9.5.1 Classic architecture

The first widely available FMA was that of the IBM RS/6000 [281, 183]. Its
architecture closely follows the algorithm sketched in Section 8.5.4 and is
depicted in Figure 9.16. The data width and alignments are identical. The
main differences one may observe on this figure with respect to the algorithm
are the following.

• As in the floating-point multiplier, the intermediate significand prod-
uct is produced in carry-save representation. The “is normal” bits are
injected in late stages of the compression tree.

• The shift of the addend is performed in parallel with the product com-
pression tree.

• A carry-save adder inputs the carry-save product and the 2p lower bits
of the shifted summand, and produces their sum in carry-save repre-
sentation.

• This sum is completed with the higher bits of the shifted summand and
a carry in that completes the bit inversion in case of effective subtrac-
tion.

• A fast adder transforms this carry-save sum in standard representation,
and complements it if negative. This step may use an end-around carry
adder, or two adders in parallel, with the proper result being selected
depending on the sign bit.

• In parallel, an LZA determines λ, the number of leading zeros needed in
case of cancellation or of an input subnormal. In some implementations,
in cases when the result will be subnormal, a 1 is injected before the
LZA to limit the count to the proper value [371].

• The normalization box is mostly a large shifter, but it also performs the
case analysis described in Section 8.5.4 and determines the exponent
before rounding.

• The rounding box performs the rounding and the possible subsequent
1-bit normalization, and handles overflow and sign.

This architecture is typically pipelined in 3 to 7 cycles. In the POWER6
FMA implementation, the latency is reduced from 7 to 6 cycles for dependent
operations, as the final rounding is performed in the beginning of the next
operation [410].



304 Chapter 9. Hardware Implementation of Floating-Point Arithmetic

p− 1

2p2p

p + 5

2p + 3
2p + 3

3p + 53p + 5

p− 1

3p + 5

3p + 5

2p

na

nb
nc

compression treeinvert

generation
product

partial

ma

right shift

mb

(left shift)
normalization

complement
effective

subtraction

rounding
overflow and sign handling

tentative
s
r

r

mcEcEbEascsbsa

sticky update

sign update
anticipator

zero
leading

e
a

e
b

e
c

3:2 carry-save adder
S C0

sticky

λ

Figure 9.16: The classic single-path FMA architecture.



9.6. Division 305

9.5.2 To probe further

An overview of the issues related to subnormal handling is given in [371].
Several authors [373, 339] have investigated multiple-path FMA imple-

mentations.
Lang and Bruguera described an FMA architecture that anticipates the

normalization step before the addition [238]. This enables a shorter-latency
rounding-by-injection approach. They also suggested an FMA architecture
that reduces the latency in case of an addition by bypassing the multiplier
stages [59].

Quinnell et al. [373, 339] propose a bridge FMA architecture that adds
FMA functionality to an existing floating-point unit by reusing parts of the
adder and of the multiplier.

An example of a recent deep submicrometer, high-frequency implemen-
tation is the POWER6 FMA described in [410, 439]. To minimize wiring, the
pipeline of this FMA is laid out as a U with the floating-point registers on the
top.

The single-precision FMAs in the synergistic processing elements (SPEs)
of the Cell/B.E. processors are non IEEE-compliant [315].

9.6 Division

There are three main families of division algorithms: digit recurrence,
Newton–Raphson based, and polynomial based. Newton–Raphson-based
algorithms have been reviewed in Chapter 5, and an example of polynomial
based algorithm will be presented in Chapter 10. These two approaches rely
on multiplication, and make sense mostly in a software or microcode con-
text, when a multiplier is available. In this section, we focus on division by
digit recurrence, which is the algorithm of choice for a stand-alone hardware
implementation because it reduces to simpler primitives: addition and digit-
by-integer multiplication. In addition, we will see that it exposes a wide range
of tradeoffs, which means that it may be adapted to a wide range of contexts.

In microprocessors, the current trend is not to include a division operator
and compute divisions using the FMA as shown in Chapter 5. However, this
design decision is still open. For instance, in [147] there is a discussion of the
pros and cons of both approaches for the IBM z990, and the digit-recurrence
approach is preferred.

In FPGA-accelerated applications, a stand-alone hardware divider often
makes sense. Current implementations usually employ digit recurrences, but
this choice could be reassessed considering the availability of embedded mul-
tipliers. Some multiplication-based dividers have been published for FPGAs
[334, 430], but so far they do not provide correct rounding.

Let us now focus on a hardware floating-point divider using a digit-
recurrence algorithm. More details on digit-recurrence division theory and
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implementations can be found in textbooks by Ercegovac and Lang [125, 126].

9.6.1 Digit-recurrence division

We assume the sign and special cases have been handled as per Section 8.6,
page 262, and that the input numbers have been normalized. We refer to Sec-
tion 8.6 for sign and exponent handling (see Figure 9.17 for an illustration),
and focus on dividing the significand

X = x0.x1 · · ·xp−1

by the significand
D = d0.d1 · · · dp−1,

with x0 6= 0 and d0 6= 0. We have X ∈ [1, β) and D ∈ [1, β); therefore, X/D ∈
(1/β, β). For clarity, in the rest of this section, upper-case letters denote multi-
digit numbers, and lower-case letters denote digits.

In digit-recurrence approaches, the division is expressed using the
Euclidean equation

X = QD + R with 0 ≤ R < D ulp(Q). (9.1)

This equation corresponds to rounding the quotient down. For the other
rounding directions, a final correction will be needed.
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Algorithm 9.3 is a generic radix-β digit recurrence that computes two
numbers Q = q0.q1 · · · qp−1 and R satisfying

X = QD + R.

Note that this algorithm depicts the paper-and-pencil division. In this
algorithm, β may indeed be 10, or 2, or small powers of 2. We will come back
to the choice of number representation.

Algorithm 9.3 Generic digit-recurrence algorithm.

R(0) ← X
Q(0) ← 0
for j = 0 to p− 1 do

qj ← Sel(R(j), D)
R(j+1) ← βR(j) − qjD

end for
R← R(p)

Q← q0.q1 · · · qp−1

The reader may check that, if we call Q(j) = q0.q1 · · · qj the quotient com-
puted at iteration j, this algorithm maintains the invariant

X = Q(j)D + R(j+1).

Inside the loop, the second line is composed of a subtraction and a
digit-by-significand multiplication. Both operations are much simpler than
significand-by-significand multiplication, having an O(p) digit-level opera-
tion cost, and possibilities of O(1) computation time when using redundant
number systems. Also, note that it is possible to precompute, before starting
the iteration, all the qjD for all the possible digit values. They may even be
computed in parallel. Then, the iteration no longer involves any product.

The first line of the loop is the selection of the next quotient digit. The
choice has to be made in order to ensure the convergence of the algorithm
towards a final residual such that 0 ≤ R < D ulp(Q). This is obtained by
ensuring this condition at each iteration; thus, the invariant of the algorithm
becomes {

X = Q(j)D + R(j+1),

0 ≤ R(j+1) < D ulp(Q(j)).

In the paper-and-pencil method, the Sel function is implemented by
intuition. The human operator performs an approximation of the computa-
tion of the second line, using leading digits only. It fails very rarely, when βRj

is very close to a nontrivial multiple of D such as 7D. In this case, the human
computes the next residual R(j+1), observes that it is too large or negative,
and backtracks with a neighboring value of qj .
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In a hardware implementation, a form of backtracking can be used in the
binary case (β = 2) as follows. The subtraction is performed as if qj = 1:

R
(j+1)
1 = 2R(j) −D.

Then, if R
(j+1)
1 < 0, it means that the correct choice was qj = 0; therefore,

the next partial remainder is set to the current one, shifted: R(j+1) = 2R(j).
Otherwise R(j+1) = R

(j+1)
1 . Here, backtracking means simply restoring the

previous partial remainder and does not involve a new computation. This
algorithm is called the restoring division algorithm. A classical variant, called
the nonrestoring algorithm, uses one register less [125].

In higher radices, backtracking is not a desirable option as it would
need a recomputation of R(j+1) and thus lead to a variable-latency operator.
A better alternative is the use of a redundant digit set for the quotient Q.
Redundancy will give some freedom in the choice of qj . Thus, in the difficult
cases (again, when βRj is close to a nontrivial multiple of D), there will be
two valid choices of qj . For both choices, the iteration will converge. This in
turn means that the selection function Sel(R(j), D) need not consider the full
2p-digit information (R(j), D) to make its choice. As the human operator in
the paper-and-pencil approach, it may consider the leading digits of R(j) and
D only, but it will do so in a way that never requires backtracking.

The family of division algorithms obtained this way is called SRT divi-
sion, after the initials of the names of Sweeney, Robertson, and Tocher, who
invented it independently [344, 408] . Its theory and a comprehensive survey
of implementations are available in the book by Ercegovac and Lang [126].
We now briefly overview performance and cost issues.

The choice of the radix β has an obvious impact on performance. In
binary, we have to choose β = 2k. Each iteration then produces k bits of the
quotient, so the total number of iterations is roughly p/k. Notice, thus, that
here β is not necessarily the radix of the floating-point system: it is a power
of that radix. Intel recently reduced the latency of division in their x86 pro-
cessors by replacing a radix-4 division algorithm with a radix-16 algorithm
[287]. However, each iteration is also more complex for larger k, in particular
for the product qjD. In a processor, the choice of radix is limited by the target
cycle time.

A second factor that has an impact on the cost is the choice of the digit
set used for the quotient. Most implementations use a symmetrical digit set:

qj ∈ {−α, . . . , α} with dβ/2e ≤ α < β.

The choice of α is again a tradeoff. A larger α brings in more redundancy
and therefore eases the implementation of the selection function. However it
also means that more digit-significand products must be computed.

With a quotient using a redundant digit set, the selection function may
be implemented as a table indexed by the leading digits of Rj and D. Other
choices are possible; see [126] for a review.
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Another variation on digit-recurrence algorithms is prescaling. The idea
is that if the divider D is closer to 1, the selection function is easier to imple-
ment. To understand it, think again of the paper-and-pencil algorithm: when
dividing for instance by 1.0017, one gets a very quick intuition of the next
quotient digit by simply looking at the first digit of the partial remainder. In
SRT algorithms, it is possible to formally express the benefit of prescaling.
In practice, prescaling consists in multiplying both X and D by an approxi-
mation to the inverse of D. This multiplication must remain cheap, typically
equivalent to a few additions. Prescaling has also been used to implement
complex division [127].

9.6.2 Decimal division

An implementation of a decimal Newton–Raphson iteration was proposed
by Wang and Schulte [428].

The SRT scheme is well suited to decimal implementations. The imple-
mentation of a digit recurrence decimal divider in the POWER6 processor is
described by Eisen et al. in [123]. They use a radix-10 implementation with
digit set {−5, . . . , 5} and prescaling to get the scaled divisor in [1, 1.11). This
is probably the only decimal division architecture actually in operation at the
time of writing this book.

A complete architecture for decimal SRT division with the same digit set,
but with D recoded in the BCD-5421 code (see Section 9.2.5), is also presented
in Vásquez’s thesis [413].

9.7 Conclusion: Beyond the FPU

The current trend in the processor world is to converge toward a single
unifying operator, the FMA. The FMA replaces addition, subtraction, and
multiplication, delivers to most applications better throughput and better
accuracy for a reduced register usage, and allows for efficient and flexible
implementations of division, square root, and elementary functions. It is
about as bulky as an adder and a multiplier together, but this complexity
brings subnormal number handling almost for free. Its architecture is not yet
as mature as that of the legacy operators, but it has been receiving much
attention recently. Legacy FPUs with their four arithmetic operators for ±,
×, /, and √ , will be around at least as long as x86-compatible processors,
but both AMD and Intel announced an FMA even for such processors in the
coming years.

Therefore, one may argue that the processor floating-point landscape is
getting simpler. Not only do we have a consensus, but the consensus is on a
single operator, the FMA, to replace four different ones. Processors need “one
size fits all” operators.
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The situation is exactly opposite in the emerging domain of FPGA-based
floating-point accelerators. People initially ported the four operations and
used them to accelerate computing cores. It was then realized that these oper-
ations could be optimized differently in different contexts. For instance, when
programming an FPGA, you don’t have to make a dramatic choice between
a large and fast divider or a small and slow one. One will suit one applica-
tion, and the other will suit another application. You could even use both for
different tasks at the same time in one application. Similarly, you don’t have
to make a dramatic choice between small but inaccurate binary32 or slow
but accurate binary64. You may use binary42 if it represents the soft spot in
performance/accuracy for your application. Most floating-point libraries tar-
geted for FPGAs are parameterized in precision.

This section is a survey of the architectural opportunities offered by
the “one size need not fit all” feature of the FPGA target with respect to
floating-point. The FPGA is the near-term target of the operators prospected
here, and indeed some of these operators are so context specific that they
make no sense at all in a processor. However, some others have found their
way into the FPUs of application-specific circuits. For instance, GPUs include
hardware for the evaluation of common elementary functions in binary32
arithmetic. Finally, we also review some operators which could be valuable
additions to the FPUs of future general-purpose processors.

9.7.1 Optimization in context of standard operators

Optimization in context can be more radical than just a change of precision.
Consider a common example, the computation of the Euclidean norm of a
three-dimensional floating-point vector,

√
x2 + y2 + z2.

• The multipliers can be optimized in this context. On one side, com-
puting the significand square m2

x requires in principle half the work
of an arbitrary significand multiplication mxmy, due to symmetries in
the partial product array. On the other side, the exponent (before nor-
malization) of x2 is 2ex, which saves one addition.

• The adders also can be optimized in this context. The squares are pos-
itive, so these additions are effective additions, which means that the
close path of Figure 9.11 can be removed altogether [115].

These optimizations preserve a bit-exact result when compared to
unoptimized operators in sequence. If one lifts this requirement, one may
go further.

• Overflows which occur in the intermediate computation of
x2 + y2 + z2, although the result

√
x2 + y2 + z2 is in the floating-

point range, may be prevented by using two more exponent bits in the
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intermediate results, or by dividing in such cases the three inputs by
a power of two, the result being then multiplied by the same value.
When implemented in hardware, both solutions have a very small area
and latency overhead. The scaling idea can be used in software, but
its relative overhead (several tests and additional operations) is much
higher.

• The alignment of the three significand squares can be computed in par-
allel before adding them, reducing the critical path.

• Then, a 3-input significand adder is more efficient than two 2-input
ones in sequence.

• Intermediate normalizations and roundings can be saved or relaxed.
For instance, it is possible to build a Euclidean norm operator that
returns a faithful result, and is thus more accurate than the combination
of correctly rounded operators, at a much lower hardware cost than this
combination. Such a fused operator may have other advantages, for in-
stance, symmetry in its three inputs.

Going even further, Takagi and Kuwahara [403] have described an opti-
mized architecture for the Euclidean norm that fuses the computation of the
square root with that of the sum of squares. This approach could even be
extended to inverse square root [402], and other useful algebraic combina-
tions such as

x√
x2 + y2

.

The Euclidean norm is one example of a coarser operator that is of gen-
eral use and in the context of which the basic operators can be optimized.
Other coarser operators will be considered in Section 9.7.5. Let us first fo-
cus on an important case of operator optimization in context: the case of a
constant operand.

9.7.2 Operation with a constant operand

A typical floating-point program involves many constants. Addition and sub-
traction with a constant operand do not allow for much optimization of the
operator, but multiplication and division by a constant do.

By definition, a constant has a fixed exponent, therefore the floating
point is of little significance here: all the research that has been done on inte-
ger constant multiplication [67, 248, 101, 437, 160, 118] can be used straight-
forwardly. Let C be an integer constant and X an input integer. Chapman’s
approach [67, 437] is FPGA specific: it exploits the structure of FPGAs, based
on k-input LUTs, by writing the input X in radix 2k: X =

∑n
i=0(2

k)ixi. Then

CX =
n∑

i=0

(2k)iCxi,
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where the Cxi may be efficiently tabulated in k-input LUTs. Most other recent
approaches consider the binary expression of the constant. Let X be a p-bit
integer. The product is written CX =

∑k
i=0 2iciX , and by only considering

the nonzero ci, it is expressed as a sum of 2iX ; for instance, 17X = X + 24X .
In the following, we will note this using the shift operator << , which has
higher priority than + and −; for instance, 17X = X + X <<4. As in stan-
dard multipliers, recoding the constant using signed bits allows us to reduce
the number of nonzero bits, replacing some of the additions with subtrac-
tions; for instance, 15X = X<<4 − X . Finally, one may reuse sub-constants
that have already been computed; for instance, 4369X = 17X + (17X)<<8.
One needs to resort to heuristics to find the best (or a nearly best) decompo-
sition of a large constant into shifts and additions [248, 41, 160, 423]. When
applied to hardware, the cost function of a decomposition must take into
account not only the number of additions, but also the sizes of these additions
[111, 200, 6, 49]. Other approaches are possible; for instance, the complexity
of multiplication by a constant has recently been shown to be sublinear in the
size of the constant [118], using an algorithm that is not based on the binary
decomposition of the input, but is inefficient in practice.

To summarize, it is possible to derive an architecture for a multiplier by
an integer constant that is smaller than that of a standard multiplier. How
much smaller depends on the constant. A full performance comparison with
operators using embedded multipliers or Digital Signal Processing (DSP)
blocks remains to be done, but when these DSP blocks are a scarce resource,
the multiplications to be implemented in logic should be the constant ones.

The architecture of a multiplier by a floating-point constant of arbitrary
size is a straightforward specialization of the usual floating-point multiplier
[49]. There are extreme cases, such as the multiplication by the constant 2.0,
which reduces to one addition on the exponent.

We may also define constant multipliers that are much more accurate
than what can be obtained with a standard floating-point multiplier. For
instance, consider the irrational constant π. It cannot be stored on a finite
number of bits, but it is nevertheless possible to design an operator that prov-
ably always returns the correctly rounded result of the (infinitely accurate)
product πx [49], using techniques similar to those presented in Section 5.5,
page 171. The number of bits of the constant that is needed depends on the
constant, and may be computed using continued fraction arguments [51].
Although one needs to use typically 2p bits of the constant to ensure cor-
rect rounding, the resulting constant multiplier may still be smaller than a
generic one.

A practical application is division by a floating-point constant [52]. It
is implemented as a multiplication by the inverse, but to obtain a bit-exact
result (the same result as using a divider), one needs to consider the inverse
as an infinitely accurate constant. The correctly rounded product of X by this
infinitely accurate constant is then equal to the correctly rounded division.
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input (summand)

accumulated value

Figure 9.18: Iterative accumulator.

9.7.3 Block floating point

When an input floating-point vector is to be multiplied by another constant
one (as happens in filters, Fourier transforms, etc.), one may use block float-
ing point, a technique first used in the 1950s, when floating point arith-
metic was implemented in software, and more recently applied to FPGAs
[8]. The technique consists in an initial alignment of all the input signifi-
cands to the largest one, which brings them all to the same exponent (hence
the phrase “block floating point”). After this alignment, all the computa-
tions (multiplications by constants and accumulation) can be performed in
fixed point, with a single normalization at the end. Compared with the same
computation using standard operators, this approach saves the renormaliza-
tion shifts of the intermediate results. The argument is that the information
lost in the initial shifts would have been lost in later shifts anyway. As seen in
Section 6.3, this argument may be disputable in some cases. In practice, how-
ever, a typical block floating-point implementation will accumulate the dot
product in a fixed-point register slightly larger than the input significands,
thus ensuring a better accuracy than that achieved using standard operators.

9.7.4 Specific architectures for accumulation

As already explained in Chapter 6, summing many independent terms is a
very common operation. Scalar product, matrix-vector, and matrix-matrix
products are defined as sums of products. Another common pattern is inte-
gration: when a value is defined by some integral, the computation of this
value will consist in adding many elementary contributions. Monte Carlo
simulations also typically involve sums of many independent terms.

For a few simple terms, one may build trees of adders, but when one
has to add an arbitrary number of terms, one needs the iterative accumulator
depicted by Figure 9.18.

In this case, the latency l of floating-point addition (typically 3 cycles in a
processor, 6 to 12 cycles for FPGA high-frequency implementations) becomes
a problem. Either the pipeline will actually work one cycle out of l, or one
needs to compute l independent sub-sums and add them together at the end.
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It is a common situation that the error due to the computation of one
summand is independent of the other summands and of the sum, while
the error due to the summation grows with the number of terms to sum.
This happens in integration and sum of products, for instance. In this case,
it makes sense to have more accuracy in the accumulation than in the
summands.

A first idea, to accumulate more accurately, is to use a standard
floating-point adder with a larger significand. However, this leads to sev-
eral inefficiencies. In particular, this large significand will have to be shifted,
sometimes twice (first to align both operands and then to normalize the
result). These shifts are in the critical path loop of the sum (see Figure 9.11).

The large accumulator concept

A better solution may be to perform the accumulation in a large fixed-
point register, typically much larger than a significand (see Figure 9.20).
This removes all the shifts from the critical path of the loop, as illustrated
by Figure 9.19. The loop is now a fixed-point accumulation for which cur-
rent FPGAs are highly efficient. Fast-carry logic enables high frequencies for
medium-sized accumulators, and larger ones may use partial carry save (see
Figure 9.6).

The shifters now only concern the summand (see Figure 9.19) and can
be pipelined as deeply as required by the target frequency.

The normalization of the result may be performed at each cycle, also in
a pipelined manner. However, most applications won’t need all the interme-
diate sums: they will output the contents of the fixed-point accumulator (or
only some of its MSBs), and the final normalization may be performed offline
in software, once the sum is complete, or in a single normalizer shared by
several accumulators (case of matrix operations). Therefore, it makes sense
to provide this final normalizer as a separate component, as shown by
Figure 9.19.

For clarity, implementation details are missing from these figures—
the interested reader will find them in [105]. For example, the accumula-
tor stores a two’s complement number, so the shifted summand has to be
sign-extended. The normalization unit also has to convert back from two’s
complement to sign-magnitude, and perform a carry propagation in case the
accumulator holds a partial carry-save value. None of this is on the critical
path of the loop.

Designing an application-specific accurate accumulator

In addition to being simpler, the proposed accumulator has another decisive
advantage over the one using the standard floating-point adder: it may also
be designed to be much more accurate. Indeed, it will even be exact (entailing
no roundoff error whatsoever) if the accumulator size is large enough so that
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Figure 9.19: The proposed accumulator (top) and post-normalization unit (bottom).
Only the registers on the accumulator itself are shown. The rest of the design is
combinatorial and can be pipelined arbitrarily.
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its LSB is smaller than that of all the inputs, and its MSB is large enough to
ensure that no overflow may occur. Figure 9.20 illustrates this idea, showing
the significands of the summands, and the accumulator itself.

This idea was advocated by Kulisch [233, 234, 235] for implementation in
microprocessors. He made the point that an accumulator of 640 bits for single
precision (and 4288 bits for double precision) would allow for arbitrary dot
products to be computed exactly, except when the final result is out of the
floating-point range. Processor manufacturers always considered this idea
too costly to implement.1

When accelerating a specific application using an FPGA, things are dif-
ferent: instead of a huge generic accumulator, one may choose the size that
matches the requirements of the application. There are five parameters on
Figures 9.19 and 9.20: wE and p are the exponent and significand size of
the summands; MSBA and LSBA are the respective weights of the most and
least significant bits of the accumulator (the size in bits of the accumulator is
wA = MSBA − LSBA + 1), and MaxMSBX is the maximum expected weight
of the MSB of a summand. By default MaxMSBX will be equal to MSBA, but
sometimes the designer is able to tell that each summand is much smaller in
magnitude than the final sum. For example, when integrating a function that
is known positive, the size of a summand could be bounded by the product
of the integration step and the max of the function. In this case, providing
MaxMSBX < MSBA will save hardware in the input shifter.

Defining these parameters requires some trial-and-error, or (better) some
error analysis which will involve one more hidden parameter, the number N
of summands to accumulate. In most cases, the application dictates an a priori
bound either on MaxMSBX or on MSBA. LSBA may be viewed as controlling
the absolute accuracy, which still depends on N . The error analysis can be
loose. For instance, adding to the maximum expected value of the result a
margin of three orders of magnitude means adding only 10 bits to the accu-
mulator.

This issue is surveyed in more detail in [105], where it is also shown that
such an accumulator is much better in terms of area and latency than one
using standard floating-point operators.

Example 12. In [92], FPGAs are used to accelerate the computation of the induc-
tance of a set of coils. This inductance is computed by the integration of inductances
from elementary wire segments. Physical expertise tells us that the sum will be less
than 105 (using arbitrary units), while profiling of a software version of the computa-
tion showed that the absolute value of an elementary inductance was always between
10−2 and 2.

Converting to bit positions, and adding two orders of magnitude (or 7 bits)
for safety in all directions, this defines MSBA = dlog2(102 × 105)e = 24,

1Note that many earlier (fixed-point) desk calculators offered such a wide accumulator,
and they are still commonly used in fixed-point DSP processors.
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MaxMSBX = 8 and LSBA = −p− 14 where p is the significand width of the sum-
mands. For p = 24 (binary32), we conclude that an accumulator stretching from
LSBA = −24− 14 = −38 (least significant bit) to MSBA = 24 (most significant
bit) will be able to absorb all the additions without any rounding error: according to
our profiling, no summand will ever add bits lower than 2−38, and the accumulator
is large enough to ensure it never overflows. The accumulator size should therefore
be wA = 24 + 38 + 1 = 63 bits.

Of course this is an optimistic view: profiling does not guarantee that no sum-
mand will ever be smaller than 10−4, so in practice this accumulator will not be
exact. However, profiling does show that such very small summands are extremely
rare, and the accumulation of errors due to them is very likely to have no measurable
effect.

Remark that in this application, only LSBA depends on p, since the other
parameters (MSBA and MaxMSBX ) are related to physical quantities, regardless
of the precision used to simulate them. This illustrates that LSBA is the parameter
that allows one to manage the accuracy/area tradeoff for an accumulator.

Exact dot products and matrix operations

Kulisch extends the previously presented accurate accumulator to accurate
dot products, which are exactly computed in his proposal [234, 235]. The idea
is simply to accumulate the exact results of all the multiplications. To this
purpose, instead of standard multipliers, we use exact multipliers that return
all the bits of the exact product: for p-bit input significands, these multipliers
return a 2p-bit significand floating-point number. The exponent range is also
doubled, which means adding one bit to wE . Such multipliers incur no round-
ing error, and are actually cheaper to build than the standard (wE , p) ones.
Indeed, the latter also have to compute 2p bits of the result, and in addition
have to round it. In the exact floating-point multiplier, we save all the round-
ing logic altogether. Results do not even need to be normalized, as they will
be immediately sent to the fixed-point accumulator. The only additional cost
is in the accumulator, which requires a larger input shifter (see Figure 9.19).

With these exact multipliers, if we are able to bound the exponents of
the inputs so as to obtain a reasonably small accumulator, it becomes easy to
prove that the whole dot-product process is exact, whatever the dimension
of the input vectors. Otherwise, it is just as easy to provide accuracy bounds
which are better than standard, and arbitrarily small. As matrix-vector and
matrix-matrix products are parallel instances of dot products, these advan-
tages extend to such operations.

9.7.5 Coarser-grain operators

If a sequence of floating-point operations is central to a given computation, it
is often possible to design a specific operator for this sequence.
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The successful recipe for such designs will be to perform as much as
possible of the computation in fixed point. If the compound operator is
proven to always compute more accurately than the succession of elemen-
tary operators, it is likely to be accepted. Another possible requirement may
be to provide results guaranteed to be faithful (1 ulp accurate) with respect
to the exact result.

The real question is: When do we stop? Which of these optimized
operators are sufficiently general and offer sufficient optimization potential
to justify that they are included in a library? There is a very pragmatic answer
to this question: as soon as an operator is designed for a given application,
it may be placed in a library. From there on, other applications will be able
to use it. Again, this approach is very specific to the FPGA paradigm. In the
CPU world, adding a hardware operator to an existing processor line must
be backed by a lot of benchmarking showing that the cost does not outweigh
the benefit. Simply take the example of division: Is a hardware divider wasted
silicon in a CPU? Roughly at the same time, Flynn et al. did such benchmark-
ing to advocate hardware dividers [309], while the industry designed new
instruction sets around the FMA and without hardware dividers.

We now list some of these compound operators in more or less detail,
depending on the state of the art. We do not pretend to exhaustiveness. Many
applications will bring in some compound operation worth investigating.

Algebraic operators

We have already mentioned Euclidean norm. Other useful classes of algebraic
operators are operations on complex numbers and polynomial or rational
evaluators.

2Sum and 2Mul for compensated algorithms

Let us discuss the hardware acceleration of the 2Sum Algorithm (Algo-
rithm 4.4, page 130) and the Dekker product (Algorithm 4.7, page 135). These
algorithms are used in the compensated summation techniques reviewed
in Chapter 6. In an FPGA, the application-specific approach presented in
Section 9.7.4 should make more sense if it is applicable. What we discuss
here is a prospective processor enhancement. Still, even for FPGA applica-
tions, compensated algorithms have several advantages. They require less
error analysis, they scale better to problem sizes unknown a priori, and they
are software compatible.

These approaches rely on two basic blocks called 2Sum and 2Mul that
respectively compute the exact sum and the exact product of two floating-
point numbers (see Figure 9.21). In both cases, as Chapter 4 has shown, the
result fits in the unevaluated sum of two floating-point numbers. In a pro-
cessor, these 2Sum and 2Mul operators require long sequences of standard
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Figure 9.21: The 2Sum and 2Mul operators.

floating-point additions and multiplications: 3 to 6 floating-point additions
for an exact sum, depending on the context (see the Fast2Sum and 2Sum
algorithms in Section 4.3), and between 2 and 17 operations for the exact mul-
tiplication, depending on the availability of an FMA (see Section 4.4). Besides,
most of these operations are data dependent, preventing an efficient use of
the pipeline.

This is very inefficient: indeed, the information needed to build the
lower part of the result is computed during the initial sum or product, but
it is then discarded in the rounding process and has to be recomputed. There-
fore, Dieter et al. [117] suggested the following modification to floating-point
units. First, an additional p-bit register receives the residual bits that, in clas-
sical implementations of addition and multiplication, are used only to com-
pute the sticky bits. Second, an additional instruction converts this residual
register into a normal floating-point register. Filling the residual register inv-
olves no additional work with respect to a classical floating-point operator.
Specifically, a floating-point multiplier has to compute the full 2p-bit signif-
icand product to determine rounding. A floating-point adder does not per-
form the full addition, but the lower bits are untouched by the addition, so no
additional computation is needed to recover them. Then the residual register
holds an unnormalized significand. It is normalized, only when needed, by
the copy instruction, which uses the LZC and shifter available in the adder.
Actually, the residual register also has to store a bit of information saying
whether the rounded significand was the truncated significand or its succes-
sor, as this information propagates to the residual and may change its sign.
Consider for example (in decimal for clarity), the product of the 4-digit num-
bers 6.789 and 5.678. The product 3.8547942 · 101 may be represented by the
unevaluated sum 3.854 · 101 +7.942 · 10−3, but 2Sum and 2Mul return in their
higher part the correct rounding of the exact result. Therefore, the product
returned should be 3.855 · 101 − 2.058 · 10−3 (the reader can check that the
sum is the same). The details may be found in [117].

With this approach, 2Sum and 2Mul now only cost two instructions each,
for an area overhead of less than 10%. The authors of [117] were concerned
with the binary32 units of GPUs, but the same approach could be applied to
processor FPUs.
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In an FPGA implementation of the 2Sum and 2Mul hardware operators,
one probably wants a fully pipelined operator suitable for fully pipelined
compensated algorithm implementations. Therefore, reusing the normaliza-
tion hardware of the adder is not an option. The area and delay of these
operators will still be less than a factor 2 of the standard ones. In terms of raw
performance, comparing with the cost of software implementations of 2Mul
and 2Sum on a processor, we conclude that, on algorithms based on these
operators such as those presented in Chapter 6, the FPGA would recover the
performance gap due to its 5 to 10 times slower frequency.

Similar improvements could probably be brought to the basic blocks
used in the architecture of DeHon and Kapre [107] that computes a parallel
sum of floating-point numbers which is bit-compatible with the sum obtained
in a sequential order.

Elementary and compound functions

Some recent work has been dedicated to floating-point elementary function
computation by FPGAs (exp and log in single precision [119, 114] and double
precision [116], trigonometric functions in single precision [319, 113], and the
power function in single precision [121]). The goal of such works is to design
specific, combinatorial architectures based on fixed-point computations for
such functions. These architectures can then be pipelined arbitrarily to run at
the typical frequency of the target FPGA, with latencies that can be quite long
(up to several tens of cycles for double precision), but with a throughput of
one elementary function per cycle. The area of the state-of-the-art architecture
is comparable to that of a few multipliers. As these pipelined architectures
compute one result per cycle, the performance here is one order of magnitude
better than that of a processor.

9.8 Probing Further

The reader wishing to examine actual designs will find several open source
implementations of hardware FPUs in the OpenCores project.2 For FPGAs,
the FloPoCo project3 from ENS-Lyon provides standard operators and
explores nonstandard ones such as those listed in Section 9.7. Other open
source floating-point implementations exist, in particular in the VFLOAT
project from Northeastern University.4

2http://www.opencores.org/
3http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/
4http://www.ece.neu.edu/groups/rpl/projects/floatingpoint/



Chapter 10

Software Implementation of
Floating-Point Arithmetic

The previous chapter has presented the basic paradigms used for
implementing floating-point arithmetic in hardware. However, some

processors may not have such dedicated hardware, mainly for cost reasons.
When it is necessary to handle floating-point numbers on such processors,
one solution is to implement floating-point arithmetic in software. The goal
of this chapter is to describe a set of techniques for writing an efficient imple-
mentation of the five floating-point operators +, −, ×, ÷, and

√
· by working

exclusively on integer numbers.
We will focus on algorithms for radix-2 floating-point arithmetic and

provide some C99 codes for the binary32 format, for which the usual floating-
point parameters β (radix), k (width), p (precision), and emax (maximum
exponent), are

β = 2, k = 32, p = 24, emax = 127.

Details will be given on how to implement some key specifications of the
IEEE 754 standard for each arithmetic operator. How should we implement
special values? How should we implement correct rounding? For simplicity,
we restrict ourselves here to “rounding to nearest even” (called roundTiesTo-
Even in IEEE 754-2008 [187, §4.3.1]), but other rounding direction attributes
can be implemented using very similar techniques. Note also that our codes
will not handle exceptions.

Except for Listings 10.24 and 10.29, the codes we give in this chapter are
taken from the FLIP software library.1 For other software implementations for
radix 2, we refer especially to Hauser’s SoftFloat library [175].2 More recently,

1FLIP (Floating-point library for integer processors) can be downloaded at http://flip.
gforge.inria.fr/ and is designed by the Arénaire project of CNRS, Université de Lyon, and
Inria.

2SoftFloat is available at http://www.jhauser.us/arithmetic/SoftFloat.html.

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_10, 321
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some software for radix-10 floating-point arithmetic has also been released.
It will not be covered here, but the interested reader may refer to [85, 87].

10.1 Implementation Context

10.1.1 Standard encoding of binary floating-point data

Assume that the width of the floating-point format is k, and that the binary
floating-point numbers are represented according to one of the basic formats
specified by the IEEE 754 standard. As explained in Chapter 3, the encod-
ing chosen for the standard allows one to compare floating-point numbers
as if they were integers. We will make use of that property, and frequently
manipulate the floating-point representations as if they were representations
of integers. This is the “standard encoding” into k-bit unsigned integers [187,
§3.4].

For a nonzero finite binary floating-point number

x = (−1)sx ·mx · 2ex ,

the standard encoding is the integer X represented by the bit string
Xk−1 . . . X0 such that

X =
k−1∑
i=0

Xi2i. (10.1)

Here the Xi are defined from the following splitting of the bit string into three
fields:

• Sign bit: Xk−1 = sx;

• Biased exponent:
k−p−1∑

i=0

Xi+p−12i = Ex (10.2)

= ex − emin + nx,

where
emin = 1− emax

and where nx is the “is normal” bit3 of x:

nx =

{
1 if x is normal,
0 if x is subnormal;

(10.3)

• Fraction bits: Xi = mx,p−i−1 for i = 0, . . . , p− 2.

3That bit is not actually stored in the floating-point representation. It is easily obtained
from the exponent field, and we will use it many times.
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Notice that Ex is indeed nonnegative, for emin ≤ ex ≤ emax and nx ≥ 0. Also,
this encoding allows us to represent zeros, infinities, and Not a Number data
(NaNs). For the binary32 format, this is made clear in Table 10.1. The table
displays the integer value (or range) of the encoding as well as its bit string.
In this chapter, both will be used heavily, leading to fast code sequences; for
similar implementation tricks in a different context (using SSE2 instructions
on the Intel IA-32 architecture) see [12].

Of course, the same encoding will be used for the other operand y (if
any) and for the result r of an operation involving x and/or y. Consequently,
implementing, say, a multiplication operator for ◦ = RN and the binary32
format means writing a C function of the form

uint32_t RN_binary32_mul(uint32_t X, uint32_t Y) { ... }

which returns an unsigned 32-bit integer R encoding the multiplication
result r. The goal of Section 10.3 will be precisely to show how the core
{ ... } of this function can be implemented in C using exclusively 32-bit
integer arithmetic.

10.1.2 Available integer operators

Concerning the operations on input or intermediate variables, we assume
available the basic arithmetic and logical operators

+, -, <<, >>, &, |, ^,

etc. We assume further that we have a fast way of computing the following
functions:

• Maximum or minimum of two unsigned integers: max(A,B) and
min(A,B) for A,B ∈ {0, . . . , 2k − 1}. These functions will be written

maxu, minu

in all our C codes.

• Maximum or minimum of two signed integers: max(A,B) and
min(A,B) for A,B ∈ {−2k−1, . . . , 2k−1 − 1}. These functions will be
written

max, min

in all our C codes.

• Number of leading zeros of an unsigned integer: This function counts
the number of leftmost zeros of the bit string of A ∈ {0, . . . , 2k − 1}.
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∑31
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(see [197]).
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• Lower half of the product of two unsigned integers: This function
computes AB mod 2k, for A,B ∈ {0, . . . , 2k − 1}.

• Upper half of the product of two unsigned integers: This function
computes bAB/2kc, where b·c denotes the usual floor function.

The last three functions will be written, respectively,

nlz, *, mul

in all our C codes.
Some typical C99 implementations of the maxu, minu, max, min, mul, and

nlz operators are given in Listings 10.1 through 10.4 for k = 32.

C listing 10.1 Implementation of the maxu and minu operators for k = 32.

uint32_t maxu(uint32_t A, uint32_t B)
{ return A > B ? A : B; }

uint32_t minu(uint32_t A, uint32_t B)
{ return A < B ? A : B; }

C listing 10.2 Implementation of the max and min operators for k = 32.

int32_t max(int32_t A, int32_t B)
{ return A > B ? A : B; }

int32_t min(int32_t A, int32_t B)
{ return A < B ? A : B; }

C listing 10.3 Implementation of the mul operator for k = 32.

uint32_t mul(uint32_t A, uint32_t B)
{
uint64_t t0, t1, t2;

t0 = A;
t1 = B;
t2 = (t0 * t1) >> 32;
return t2;

}
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C listing 10.4 Implementation of the nlz operator for k = 32.

uint32_t nlz(uint32_t X)
{
uint32_t Z = 0;

if (X == 0) return(32);
if (X <= 0x0000FFFF) {Z = Z +16; X = X <<16;}
if (X <= 0x00FFFFFF) {Z = Z + 8; X = X << 8;}
if (X <= 0x0FFFFFFF) {Z = Z + 4; X = X << 4;}
if (X <= 0x3FFFFFFF) {Z = Z + 2; X = X << 2;}
if (X <= 0x7FFFFFFF) {Z = Z + 1;}
return Z;
}

Therefore, in principle all that is needed to run our implementation
examples is a C99 compiler that supports 32-bit integer arithmetic. However,
optimizations (to achieve low latency) depend on the features of the targeted
architectures and compilers. Some of these features will be described in Sec-
tion 10.1.4.

Before that, we shall give in the next section a few examples that show
how one can implement some basic building blocks (needed in several places
later in this chapter) by means of some of the integer operators we have given
above.

10.1.3 First examples

For k = 32, given an integer X as in (10.1), we consider here three sub-tasks.
How does one deduce Ex as in (10.2)? How shall we deduce nx as in (10.3)?
Assuming that x is (sub)normal and defining λx as the number of leading
zeros of the binary expansion of the significand mx, that is,

mx = [0.0 . . . 0︸ ︷︷ ︸
λx zeros

1mx,λx+1 . . .mx,23], (10.4)

how does one compute that number λx?

Extracting the exponent field

Since by (10.2) the bit string of Ex consists of the bits X30, . . . , X23, a left shift
by one position (to remove the sign bit X31) followed by a right shift by 24
positions (to remove in particular the fraction bits X22, . . . , X0) will give us
what we want. This can be implemented as in Listing 10.5.
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C listing 10.5 Computation of the biased exponent Ex of a binary32 datum x.

uint32_t Ex;

Ex = (X << 1) >> 24;

Of course, an alternative to the left shift would be to mask the sign bit
by taking the bitwise AND of X and

231 − 1 = (0 1111111111111111111111111111111︸ ︷︷ ︸
31 ones

)2 = (7FFFFFFF )16.

This alternative is implemented in Listing 10.6. In what follows we will often
interpret the fact of masking the sign bit as taking the “absolute value” of X
(even if X encodes a NaN), and we will write |X| for the corresponding inte-
ger (which is in fact simply X mod 231) and absX for the corresponding vari-
able. This variable absX will turn out to be extremely useful for implementing
addition, multiplication, and division (see Sections 10.2, 10.3, and 10.4).

C listing 10.6 Another way of computing the biased exponent Ex of a
binary32 datum x.

uint32_t absX, Ex;

absX = X & 0x7FFFFFFF;
Ex = absX >> 23;

Computing the “is normal” bit

Assume that X encodes a (sub)normal binary floating-point number x and
recall that the “is normal” bit of x is defined by (10.3). Once absX has been
computed (see Listing 10.6), we deduce from Table 10.1 that x is normal if
and only if absX is at least 223 = (800000)16. Hence the code in Listing 10.7.

C listing 10.7 For a (sub)normal binary32 number x, computation of its “is
normal” bit nx.

uint32_t absX, nx;

absX = X & 0x7FFFFFFF;
nx = absX >= 0x800000;

Computing the number of leading zeros of a significand

Assume again that X encodes a (sub)normal binary floating-point number
x = (−1)sx · mx · 2ex and recall that the number of leading zeros of mx is
λx ≥ 0 as in (10.4).
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Let us define LX as the number of leading zeros of |X|. Clearly, since
the leading bit of |X| is zero, one has LX ≥ 1. On the other hand, since x is
nonzero, |X| is nonzero as well, and one has LX ≤ 31. More interestingly, one
can show (see [197]) that λx is related to LX as follows:

λx = MX − w, MX = max(LX , w),

where w = k−p is the bit width of the biased exponent field. For the binary32
format, it follows from k = 32 and p = 24 that w = 8.

Consequently, one can implement the computation of λx by using the
integer operators of Section 10.1.2. This is shown in Listing 10.8.

C listing 10.8 For a (sub)normal binary32 number x, computation of the num-
ber λx of leading zeros of the significand of x.

uint32_t absX, MX, lambdax;

absX = X & 0x7FFFFFFF;
MX = maxu(nlz(absX),8);
lambdax = MX - 8;

The number λx appears in some formulas used for computing the expo-
nent of a product or a quotient in Sections 10.3 and 10.4. However, we will see
there that these formulas also involve a constant term which can be updated
in order to carry the−8 of identity λx = MX −8. Consequently, in such cases,
λx itself is not needed and computing MX will be enough.

10.1.4 Design choices and optimizations

We have already seen with the examples of Listings 10.5 and 10.6 that even a
simple expression can be implemented in a variety of ways. Which one is best
depends on the goal to achieve (low latency or high throughput, for example),
as well as on some features of the targeted architecture and compiler.

The C codes given in the following sections have been written so as
to expose some instruction-level parallelism (ILP). In fact, we will see that
the algorithms used for implementing addition, multiplication, division, and
square root very often lead in a fairly natural way to some code with rela-
tively high ILP. For example, it is clear that multiplying two floating-point
numbers can be done by, roughly, multiplying the significands and simulta-
neously adding the exponents. However, we shall show further that some ILP
can already be exposed for performing the exponent addition itself.

Our codes have also been written with some particular architectural and
compiler features in mind. These features are those of the ST231 VLIW4 pro-
cessor and compiler (see [340, §2] and [196, §II]). Concerning the processor,
these features include the following.

4VLIW is an acronym for very long instruction word.



10.2. Binary Floating-Point Addition 329

• Four instructions can be launched simultaneously at every cycle, with
some restrictions (for example, at most two of them can be * or mul).

• The latency of 32-bit integer arithmetic and logic is 1, except for * and
mul, whose latency is 3.

• Registers consist in 64 general-purpose registers and 8 condition regis-
ters.

• It is possible to encode immediate operands up to 32 bits.

• An efficient branch architecture is available, with multiple condition
registers.

• Execution is predicated through select instructions.

The compiler features include:

• if-conversion optimization [57]: it generates mostly straight-line code
by emitting efficient sequences of select instructions instead of costly
control flow;

• the linear assembly optimizer (LAO) [98]: it generates a schedule for the
instructions that is often very close to the optimal.

In practice, the codes we propose in the following sections are well
suited to these features in the sense that when compiling for the ST231
architecture, the obtained latencies are indeed low (from 20 to 30 cycles,
depending on the operator). For more performance results in this context,
we refer to [196, 197, 198] and to the FLIP software library. 5

10.2 Binary Floating-Point Addition

An implementation of the method of Section 8.3 for computing ◦(x + y) will
be described here for ◦ = RN and the binary32 format:

β = 2, k = 32, p = 24, emax = 127.

The case where either x or y is a special datum (like ±0, ±∞, or NaN) is
discussed in Section 10.2.1, while the case where both x and y are (sub)normal
numbers is described in Sections 10.2.2 through 10.2.4.

5See http://flip.gforge.inria.fr/.
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10.2.1 Handling special values

In the case of addition, the input (x, y) is considered a special input when x
or y is ±0, ±∞, or NaN. For each possible case the IEEE 754-2008 standard
requires that a special value be returned. When both x and y are zero, these
special values are given by Table 8.1; when x or y is nonzero, they follow from
Tables 8.2 and 8.3, page 247, by adjoining the correct sign, using

x + y = (−1)sx ·
(
|x|+ (−1)sz · |y|

)
, sz = sx XOR sy. (10.5)

(Notice that the standard does not specify the sign of a NaN result; see [187,
§6.3].)

As said above, considering |x| means setting the sign bit of X to zero,
that is, considering X mod 2k−1 instead of X . Recall that we use the notation

|X| := X mod 2k−1. (10.6)

Detecting that a special value must be returned

Special inputs can be filtered out very easily using Table 10.2, which is a direct
consequence of the standard binary encoding [187, §3.4]. Indeed, we deduce

Value or range of integer X Floating-point datum x

0 +0

(0, 2k−1 − 2p−1) positive (sub)normal number

2k−1 − 2p−1 +∞
(2k−1 − 2p−1, 2k−1 − 2p−2) sNaN

[2k−1 − 2p−2, 2k−1) qNaN

Table 10.2: Some floating-point data encoded by X .

from this table that (x, y) is a special input if and only if

|X| or |Y | is in {0} ∪ [2k−1 − 2p−1, 2k−1). (10.7)

An equivalent formulation of (10.7) that allows us to use the max operator is

max
(
(|X| − 1) mod 2k, (|Y | − 1) mod 2k

)
≥ 2k−1 − 2p−1 − 1. (10.8)

For example, when k = 32 and p = 24, an implementation of (10.8) is given
by lines 3, 4, 5 of Listing 10.9.
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C listing 10.9 Special value handling in a binary32 addition operator.

1 uint32_t absX, absY, absXm1, absYm1, Max, Sx, Sy;
2
3 absX = X & 0x7FFFFFFF; absY = Y & 0x7FFFFFFF;
4 absXm1 = absX - 1; absYm1 = absY - 1;
5 if (maxu(absXm1, absYm1) >= 0x7F7FFFFF)
6 {
7 Max = maxu(absX, absY); Sx = X & 0x80000000; Sy = Y & 0x80000000;
8 if (Max > 0x7F800000 ||
9 (Sx != Sy && absX == 0x7F800000 && absY == 0x7F800000))

10 return 0x7FC00000 | Max; // qNaN with payload equal to
11 // the last 22 bits of X or Y
12 if (absX > absY) return X;
13 else if (absX < absY) return Y;
14 else return X & Y;
15 }

Returning special values as recommended or required by IEEE 754-2008

Once our input (x, y) is known to be special, one must return the corre-
sponding result as specified in Tables 8.2 and 8.3, page 247. First, a quiet
NaN (qNaN) must be returned as soon as one of the following two situations
occurs:

• If |X| or |Y | encodes a NaN, that is, according to Table 10.2, if

max (|X|, |Y |) > 2k−1 − 2p−1; (10.9)

• If sz = 1 and if both |X| and |Y | encode +∞, that is, if

Xk−1 XOR Yk−1 = 1 and |X| = |Y | = 2k−1 − 2p−1. (10.10)

When k = 32 and p = 24, one has 2k−1 − 2p−1 = 231 − 223 = (7F800000)16.
Therefore, the conditions in (10.9) and (10.10) can be implemented as in lines
7, 8, 9 of Listing 10.9.

Let us raise here a few remarks about the qNaN we return at line 10 of
Listing 10.9. Since (7FC00000)16 = 231 − 222, the bit string of this qNaN has
the form

0 111111111︸ ︷︷ ︸
9 ones

Z21 . . . Z0︸ ︷︷ ︸
payload

,

where the string Z21 . . . Z0 is either X21 . . . X0 or Y21 . . . Y0 (we feel free to set
the sign bit to zero because, as stated above, the standard does not specify the
sign of a NaN result). That particular qNaN carries the last 22 bits of one of
the operand encodings. So, in a sense, this follows the IEEE 754-2008 recom-
mendation that, in order “to facilitate propagation of diagnostic information
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contained in NaNs, as much of that information as possible should be pre-
served in NaN results of operations“ (see [187, §6.2]). More precisely, if only
one of the inputs is NaN, then its payload is propagated (by means of the
bitwise OR involving the variable Max at line 10), as recommended in [187,
§6.2.3]); if both inputs x and y are NaN, then the payload of one of them is
propagated, again as recommended in [187, §6.2.3]).

Assume now that the case of a qNaN result has been handled, and let us
focus on the remaining special values by inspecting three cases:

• If |X| > |Y | then, using Tables 8.2 and 8.3, page 247, together with (10.5),
we must return (−1)sx · |x| = x.

• If |X| < |Y | then we return (−1)sx · |y| if sz = 0, and (−1)sx · (−|y|) if
sz = 1, that is, y in both cases.

• If |X| = |Y | then both x and y are either zero or infinity. However,
since at this stage qNaN results have already been handled, the only
possible inputs to addition are (±0,±0), (+∞,+∞), and (−∞,−∞).
Using Table 8.1, page 247, for RN(x + y) shows that for all these inputs
the result is given by the bitwise AND of X and Y .

An example of implementation of these three cases is given for the binary32
format at lines 12, 13, 14 of Listing 10.9.

10.2.2 Computing the sign of the result

We assume from now on that the input (x, y) is not special; that is, both x and y are
finite nonzero (sub)normal numbers.

Recalling that sz = sx XOR sy, one has

x + y = (−1)sx ·
(
|x|+ (−1)sz · |y|

)
= (−1)sy ·

(
(−1)sz · |x|+ |y|

)
. (10.11)

Hence, the sign of the exact result x + y is sx if |x| > |y|, and sy if |x| < |y|.
What about the particular case where |x| = |y| and sx 6= sy?6 In that case
x + y = ±0, and the standard prescribes that ◦(x + y) = +0 “in all rounding-
direction attributes except roundTowardNegative; under that attribute, the
sign of an exact zero sum (or difference) shall be −0.” (See [187, §6.3].)

Recalling that RN(x) ≥ 0 if and only if x ≥ 0, we conclude that the sign
sr to be returned is given by

sr =


sx if |x| > |y|,
sy if |x| < |y|,
sx = sy if |x| = |y| and sz = 0,
0 if |x| = |y| and sz = 1.

6We remind the reader that we have assumed at the beginning of this section that x and y
are nonzero.
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Now, because of the standard encoding of binary floating-point data, the con-
dition |x| > |y| is equivalent to |X| > |Y |. Consequently, the computation of
sr for the binary32 format can be implemented as shown in Listing 10.10,
assuming sx, sy, |X|, and |Y | are available (all of them have been computed,
e.g., in Listing 10.9 when handling special values due to special inputs).

C listing 10.10 Sign computation in a binary32 addition operator, assuming
rounding to nearest (◦ = RN) and that sx, sy, |X|, and |Y | are available.

1 uint32_t Sr;
2
3 if (absX > absY)
4 Sr = Sx;
5 else if (absX < absY)
6 Sr = Sy;
7 else
8 Sr = minu(Sx,Sy);

In fact, Listing 10.10 can be used even if the input (x, y) is special. Hence,
if special values are handled after the computation of sr, one can reuse the
variables Sr and Max, and replace lines 12, 13, 14 of Listing 10.9 with

return Sr | Max;

10.2.3 Swapping the operands and computing the alignment shift

As explained in Section 8.3, page 246, one may classically compare the
exponents ex and ey and then, if necessary, swap x and y in order to ensure
ex ≥ ey. It turns out that in radix 2 comparing |x| and |y| is enough (and is
cheaper in our particular context of a software implementation), as we will
see now.

Recalling that RN(−x) = −RN(x) (symmetry of rounding to nearest)
and that sz = sx XOR sy, we deduce from the identities in (10.11) that the
correctly rounded sum satisfies

RN(x + y) = (−1)sx · RN
(
|x|+ (−1)sz · |y|

)
= (−1)sy · RN

(
(−1)sz · |x|+ |y|

)
.

Thus, it is natural to first ensure that

|x| ≥ |y|,

and then compute only one of the two correctly rounded values above,
namely,

RN
(
|x|+ (−1)sz · |y|

)
.
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Since |x| = mx · 2ex and |y| = my · 2ey , this value is in fact given by

r := RN
(
|x|+ (−1)sz · |y|

)
= RN(mr · 2ex),

where
mr = mx + (−1)sz ·my · 2−δ (10.12)

and
δ = ex − ey. (10.13)

Interestingly enough, the condition |x| ≥ |y| implies in particular that ex ≥ ey.
More precisely, we have the following property.

Property 18. If |x| ≥ |y| then mr ≥ 0 and δ ≥ 0.

Proof. Let us show first that ex < ey implies |x| < |y|. If ex < ey then ey ≥ ex+
1 > emin. Thus, y must be a normal number, which implies that its significand
satisfies my ≥ 1. Since mx < 2, one obtains my · 2ey ≥ 2ex+1 > mx · 2ex .

Let δ = ex − ey. We can show that mx − my · 2−δ is non-negative by
considering two cases:

• If ex = ey then δ = 0, and |x| ≥ |y| is equivalent to mx ≥ my.

• If ex > ey then δ ≥ 1 and, reasoning as before, x must be normal. On
the one hand, δ ≥ 1 and my ∈ (0, 2) give my · 2−δ ∈ (0, 1). On the other
hand, x being normal, one has mx ≥ 1. Therefore, mx −my · 2−δ ≥ 0,
which concludes the proof.

Operand swap

To ensure that |x| ≥ |y|, it suffices to replace the pair (|x|, |y|) by the pair
(max(|x|, |y|),min(|x|, |y|)). Using the maxu and minu operators and assuming
that |X| and |Y | are available, an implementation for the binary32 format is
straightforward, as shown at line 3 of Listing 10.11.

Alignment shift

For |x| ≥ |y|, let us now compute the non-negative integer δ in (10.13) that is
needed for shifting the significand my right by δ positions (in order to align it
with the significand mx as in (10.12)). Recall that nx and ny are the “is normal”
bits of x and y (so that nx = 1 if x is normal, and 0 if x is subnormal). Recall
also that the biased exponents Ex and Ey of x and y satisfy

Ex = ex − emin + nx and Ey = ey − emin + ny.
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Therefore, the shift δ in (10.13) is given by

δ = (Ex − nx)− (Ey − ny).

For the binary32 format, this expression for δ can be implemented as shown
at lines 4, 5, 6 of Listing 10.11. Note that Ex, nx, Ey, and ny can be computed
in parallel, and that the differences Ex−nx and Ey−ny can then be computed
in parallel too.

C listing 10.11 Operand swap and alignment shift computation in a binary32
addition operator, assuming |X| and |Y | are available.

1 uint32_t Max, Min, Ex, Ey, nx, ny, delta;
2
3 Max = maxu(absX, absY); Min = minu(absX, absY);
4 Ex = Max >> 23; Ey = Min >> 23;
5 nx = Max >= 0x800000 ; ny = Min >= 0x800000;
6 delta = (Ex - nx) - (Ey - ny);

10.2.4 Getting the correctly rounded result

It remains to compute the correctly rounded value r = RN(mr · 2ex), where
mr is defined by (10.12). Recalling that nx and ny are “is normal” bits, the
binary expansions of mx and my · 2−δ are, respectively,

mx = (nx.mx,1 . . . . . . . . . . mx,p−1 0 . . . . . . . . . 0)2
my · 2−δ = (0.0 . . . 0︸ ︷︷ ︸

δ zeros

nymy,1 . . .my,p−1−δmy,p−δ . . .my,p−1)2.

Therefore, the binary expansion of mr must have the form

mr = (cs0.s1 . . . sp−1sp . . . sp+δ−1)2, c ∈ {0, 1}. (10.14)

We see that mr is defined by at most p + δ + 1 bits. Note that c = 1 is due to a
possible carry propagation when adding my ·2−δ to mx. If no carry propagates
during that addition, or in the case of subtraction, then c = 0.

A first easy case: x = −y 6= 0

This case, for which it suffices to return +0 when ◦ = RN, will not be
covered by the general implementation described later (the exponent of the
result would not always be set to zero). Yet, it can be handled straightfor-
wardly once |X|, |Y |, and sz are available.

C listing 10.12 Addition for the binary32 format in the case where x = −y 6= 0
and assuming rounding to nearest (◦ = RN).

if (absX == absY && Sz == 1) return 0;
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A second easy case: both x and y are subnormal numbers

When |x| ≥ |y|, this case occurs when nx = 0. Indeed, if nx = 0 then x is
subnormal and therefore |x| < 2emin . Now, the assumption |x| ≥ |y| clearly
implies |y| < 2emin as well, which means that y is subnormal too.

In this case, x and y are such that

|x| = (0.mx,1 . . .mx,p−1)2 · 2
emin and |y| = (0.my,1 . . .my,p−1)2 · 2

emin ,

so that
δ = 0

and
mr = (0.mx,1 . . .mx,p−1)2 ± (0.my,1 . . .my,p−1)2.

This is a fixed-point addition/subtraction and mr can thus be computed exa-
ctly. Furthermore, one has mr ∈ [0, 2) and ex = emin, so that r = RN(mr · 2ex)
is in fact given by

r = mr · 2emin ,

with
mr = (mr,0.mr,1 . . .mr,p−1)2.

Note that the result r can be either normal (mr,0 = 1) or subnormal (mr,0 = 0).
The code in Listing 10.13 shows how this can be implemented for the

binary32 format. Here we assume that |x| ≥ |y| and that the variables Max and
Min encode, respectively, the integers |X| and |Y |. We also assume that nx (the
“is normal” bit of x) and the operand and result signs sx, sy, sr are available.
(These quantities have been computed in Listings 10.9, 10.10, and 10.11.)

C listing 10.13 Addition for the binary32 format in the case where both
operands are subnormal numbers.

1 uint32_t Sz, Mx, My, compMy, Mr;
2 // Assume x and y are non-special and such that |x| >= |y|.
3 if (nx == 0)
4 {
5 Sz = (Sx != Sy);
6 compMy = (My ^ (0 - Sz)) + Sz;
7 Mr = Mx + compMy;
8 return Sr | Mr;
9 }

Since both x and y are subnormal, the bit strings of Mx and My in List-
ing 10.13 are

[0 00000000︸ ︷︷ ︸
8 zeros

mx,1 . . .mx,23] and [0 00000000︸ ︷︷ ︸
8 zeros

my,1 . . .my,23].
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Recalling that δ = 0, we see that it suffices to encode (−1)sz · my. This is
achieved by computing compMy, using two’s complement in the case of effec-
tive subtraction: compMy is equal to My if sz = 0, and to ~My + 1 if sz = 1,
where “~” refers to the Boolean bitwise NOT function.

Notice also that the bit string of the returned integer is

[sr 0000000︸ ︷︷ ︸
7 zeros

mr,0mr,1 . . .mr,23].

Therefore, the correct biased exponent has been obtained automatically as a
side effect of concatenating the result sign with the result significand. Indeed,

• if mr,0 = 1, then r is normal and has exponent emin, whose biased value
is emin + emax = 1;

• if mr,0 = 0, then r is subnormal, and its biased exponent will be zero.

Implementation of the general case

Now that we have seen two preliminary easy cases, we can describe how
to implement, for the binary32 format, the general algorithm recalled in Sec-
tion 8.3, page 246 (note that our general implementation presented here will
in fact cover the previous case where both x and y are subnormal numbers).

In the general case, because of significand alignment, the exact sum mr

in (10.14) has p + δ − 1 fraction bits (which can be over 200 for the binary32
format). However, it is not necessary to compute mr exactly in order to round
correctly, and using p − 1 fraction bits together with three additional bits
(called guard bits) is known to be enough (see, for example, [126, §8.4.3] as
well as [340, §5]).

Thus, for the binary32 format, we can store mx and my into the following
bit strings of length 32 (where the last three bits will be used to update the
guard bits):

[0 0 0 0 0 nxmx,1 . . .mx,23 0 0 0 ]

and

[0 0 0 0 0 nymy,1 . . .my,23 0 0 0 ].

This corresponds to the computation of integers mx and my at lines 3 and 4 of
Listing 10.14.
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C listing 10.14 Addition/subtraction of (aligned) significands in a binary32
addition operator.

1 uint32_t mx, my, highY, lowY, highR;
2
3 mx = (nx << 26) | ((Max << 9) >> 6);
4 my = (ny << 26) | ((Min << 9) >> 6);
5
6 highY = my >> minu(27, delta);
7
8 if (delta <= 3)
9 lowY = 0;

10 else if (delta >= 27)
11 lowY = 1;
12 else
13 lowY = (my << (32 - delta)) != 0;
14
15 if (Sz == 0)
16 highR = mx + (highY | lowY);
17 else
18 highR = mx - (highY | lowY);

The leading bits of my · 2−δ are then stored into the 32-bit integer highY
obtained by shifting my right by δ positions:

highY = [000 . . . 000︸ ︷︷ ︸
5 + δ zeros

nymy,1 . . .my,26−δ].

We see that if δ ≥ 27, then all the bits of highY are zero: hence, the use of the
minu instruction at line 6 of Listing 10.14. This prevents us from shifting by a
value greater than 31, for which the behavior of the bitwise shift operators >>
and << is undefined.

The bits my,27−δ, . . . ,my,23 of my that have been discarded by shifting
are used to compute the sticky bit T . In fact, all we need is to know whether
all of them are zero or not. This information about the lower part of my · 2−δ

can thus be collected into an integer lowY as follows.

• If δ ≤ 3 then, because of the last three zeros of the bit string of my, none
of the bits of my has been discarded and thus lowY is equal to 0.

• If δ ≥ 27 then all the bits of my have been discarded and, since at least
one of them is nonzero because my 6= 0, we must have lowY equal to 1.

• If δ ∈ {4, . . . , 26} then the last δ − 3 bits of my can be extracted from the
integer my by shifting it left by 32− δ positions.

A possible implementation of lowY is thus as in lines 8–13 of Listing 10.14.
Once the value 0 or 1 of lowY has been obtained, it is used to update the

last bit (sticky bit position) of highY. Only then can the effective operation
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(addition if sz = 0, subtraction if sz = 1) be performed. Since the bit string
of lowY consists of 31 zeros followed by either a zero or a one, a possible
implementation is as in lines 15–18 of Listing 10.14.

The bit string of the result highR is

highR = [0 0 0 0 c r0r1 . . . r23r24r25r26].

As stated in Section 8.3, page 246, normalization may now be necessary, either
because of carry propagation (c = 1) or because of cancellation (c = 0 and r0 =
· · · = ri = 0 for some i ≥ 0). Such situations, which further require that
the tentative exponent ex be adjusted, can be detected easily using the nlz

instruction to count the number n of leading zeros of the bit string of highR
shown above:

• If n = 4 then c = 1. In this case, the guard bit and the sticky bit are,
respectively,

G = r23 and T = OR(r24, r25, r26).

Consequently, r = RN(mr · 2ex) is obtained as

r =
(
(1.r0 . . . r22)2 + B · 2−23

)
· 2ex+1, (10.15)

where, for rounding to nearest, the bit B is defined as

B = G AND
(
r22 OR T

)
,

(see for example [126, page 425]). An implementation of the computa-
tion of B from the integer highR is detailed in Listing 10.15. Notice that
G and T can be computed in parallel (line 7). Note also that since the &

operator is a bitwise operator and since G is either 0 or 1, the bit r22 need
not be extracted explicitly. Instead, the whole significand

M = (1.r0 . . . r22)2 · 2
23 (10.16)

can be used to produce B ∈ {0, 1} (line 8). The value of the integer M
can also be computed simultaneously with the values of G and T .

C listing 10.15 Computation of the rounding bit in a binary32 addition
operator, in the case of carry propagation (c = 1) and rounding to near-
est (◦ = RN).

1 uint32_t n, M, G, T, B;
2
3 n = nlz(highR);
4
5 if (n == 4)
6 {
7 M = highR >> 4; G = (highR >> 3) & 1; T = (highR << 29) != 0;
8 B = G & (M | T);
9 }
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• If n = 5 then c = 0 and r0 = 1. In this case, the guard bit and the sticky
bit are, respectively,

G = r24 and T = OR(r25, r26).

Consequently, r = RN(mr · 2ex) is obtained as

r =
(
(1.r1 . . . r23)2 + B · 2−23

)
· 2ex , (10.17)

where, for rounding to nearest, the bit B is now defined as

B = G AND
(
r23 OR T

)
.

An implementation can be obtained in the same way as the one of
Listing 10.15. Note here that, unlike the previous case (n = 4), no nor-
malization is necessary. Indeed, the tentative exponent ex had to be
adjusted to ex + 1 in (10.15), while it is kept unchanged in (10.17) since
neither carry propagation nor cancellation has occurred.

• If n ≥ 6 then c = r0 = · · · = ri = 0 for some i ≥ 0. Hence, normalization
is required, by shifting left the bits of highR until either the leading 1
reaches the position of r0, or the exponent obtained by decrementing
ex reaches emin. Again, this can be implemented in the same fashion as
in Listing 10.15. However, when n ≥ 7, a simplification occurs since,
as stated in Section 8.3, page 246, δ must be either 0 or 1 in this case,
implying G = T = 0.

At this stage, the truncated normalized significand M and the rounding
bit B have been computed, and only the result exponent is missing. It turns
out that it can be deduced easily from ex for each of the preceding cases:
n = 4, n = 5, and n ≥ 6.

For example, an implementation for the case n = 4 is given at line 5
of Listing 10.16. When n = 4, we can see in (10.15) that the result exponent
before rounding is

d = ex + 1.

Note that d > emin, so that the result r is either infinity or a normal number,
for which the bias is emax. Since the integer M in (10.16) already contains the
implicit 1, we will in fact not compute D = d + emax but rather

D − 1 = ex + emax,

and then add M to (D − 1) · 223. Recalling that Ex = ex − emin + nx and
that emin + emax = 1, the value D − 1 can be obtained as shown at line 5 and
stored in the unsigned integer Dm1. Notice the parenthesizing, which allows
us to reuse the value of Ex − nx, already needed when computing the shift δ
in Listing 10.11. Then two situations may occur.
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• If Dm1 is at least 2emax = 254 = (FE)16, then ex + 1 > emax because
emin = 1−emax. Consequently,±∞must be returned in this case (line 8).

• Otherwise, ex + 1 is at most emax and one can round and pack the
result. The line 10 follows from (10.15), (10.16), and the standard
encoding of binary32 data, and the considerations about rounding/
computing a successor in Section 8.2, page 241. More precisely, if the
addition of B to M propagates a carry up to the exponent field, then,
necessarily, B = 1 and M = 224 − 1. In this case, (D − 1) · 223 + M + B
equals (D + 1) · 223 and the result exponent is not ex + 1 but ex + 2.
(In particular, overflow will occur if ex = 126.) Else, M + B fits in 24
bits and then (D − 1) · 223 + M + B encodes the floating-point number
whose normalized representation is given in (10.15). One may check
that in both cases the bit string of (D − 1) · 223 + M + B has the form
[0 ∗ · · · ∗] and thus has no overlap with the bit string [∗ 0 · · · 0] of Sr.

C listing 10.16 Computation of the correctly rounded result in a binary32
addition operator, in the case of carry propagation (c = 1) and rounding to
nearest (◦ = RN).

1 uint32_t Dm1;
2
3 if (n == 4)
4 {
5 Dm1 = (Ex - nx) + 1;
6
7 if ( Dm1 >= 0xFE ) // overflow
8 return Sr | 0x7F800000;
9 else

10 return ((Sr | (Dm1 << 23)) + M) + B;
11 }

10.3 Binary Floating-Point Multiplication

We now turn to the implementation of the method of Section 8.4, page 251,
for computing ◦(x× y), again for ◦ = RN and the binary32 format:

β = 2, k = 32, p = 24, emax = 127.

The case where either x or y is a special datum (like ±0, ±∞, or NaN) is
described in Section 10.3.1, while the case where both x and y are (sub)normal
numbers is discussed in Sections 10.3.2 through 10.3.4.

10.3.1 Handling special values

In the case of multiplication, the input (x, y) is considered a special input when
x or y is ±0, ±∞, or NaN. For each possible case the IEEE 754-2008 standard
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requires that a special value be returned. These special values follow from
those given in Table 8.4, page 251, by adjoining the correct sign, using

x× y = (−1)sr ·
(
|x| × |y|

)
, sr = sx XOR sy. (10.18)

We remind the reader that the standard does not specify the sign of a NaN
result (see [187, §6.3]).

Detecting that a special value must be returned

Special inputs can be filtered out exactly in the same way as for addition (see
Section 10.2.1); hence, when k = 32 and p = 24, lines 3, 4, 5 of Listing 10.17.
Here and hereafter |X|will have the same meaning as in (10.6).

C listing 10.17 Special value handling in a binary32 multiplication operator.

1 uint32_t absX, absY, Sr, absXm1, absYm1, Min, Max, Inf;
2
3 absX = X & 0x7FFFFFFF; absY = Y & 0x7FFFFFFF; Sr = (X ^ Y) & 0x80000000;
4 absXm1 = absX - 1; absYm1 = absY - 1;
5 if (maxu(absXm1, absYm1) >= 0x7F7FFFFF)
6 {
7 Min = minu(absX, absY); Max = maxu(absX, absY); Inf = Sr | 0x7F800000;
8 if (Max > 0x7F800000 || (Min == 0 && Max == 0x7F800000))
9 return Inf | 0x00400000 | Max; // qNaN with payload equal to

10 // the last 22 bits of X or Y
11 if (Max != 0x7F800000) return Sr;
12 return Inf;
13 }

Returning special values as recommended or required by IEEE 754-2008

Once the input (x, y) is known to be special, one must return the corre-
sponding result as specified in Table 8.4, page 251. First, that table shows
that a qNaN must be returned as soon as one of the following two situations
occurs:

• if |X| or |Y | encodes a NaN, that is, according to Table 10.2, if

max (|X|, |Y |) > 2k−1 − 2p−1; (10.19)

• if (|X|, |Y |) encodes either (+0,+∞) or (+∞,+0), that is, if

min(|X|, |Y |) = 0 and max(|X|, |Y |) = 2k−1 − 2p−1. (10.20)

When k = 32 and p = 24, the conditions in (10.19) and (10.20) can be imple-
mented as in lines 7 and 8 of Listing 10.17. Here, we must raise two remarks.
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• The condition in (10.19) is the same as the one used in (10.9) for
handling NaN results in binary floating-point addition. However, the
condition in (10.20) is specific to multiplication.

• The qNaN returned at line 9 of Listing 10.17 enjoys the same nice prop-
erties as for binary floating-point addition. Roughly speaking, just as
for addition, our code for multiplication returns a qNaN that keeps as
much information on the input as possible, as recommended by IEEE
754-2008 (see [187, §6.2]).

Once the case of a qNaN output has been handled, it follows from
Table 8.4, page 251, that a special output must be ±0 if and only if neither
x nor y is ±∞, that is, according to Table 10.2, if and only if

max(|X|, |Y |) 6= 2k−1 − 2p−1.

For k = 32 and p = 24, the latter condition is implemented at line 11 of
Listing 10.17. Finally, the remaining case, for which one must return (−1)sr∞,
is handled by line 12.

10.3.2 Sign and exponent computation

We assume from now on that the input (x, y) is not special; that is, both x and y are
finite nonzero (sub)normal numbers.

The sign sr of the result is straightforwardly obtained by taking the XOR
of the sign bits of X and Y . It has already been used in the previous sec-
tion for handling special values (for an example, see variable Sr at line 3 of
Listing 10.17).

Concerning the exponent of the result, let us first recall that using (10.18)
together with the symmetry of rounding to nearest gives

RN(x× y) = (−1)sr · RN
(
|x| × |y|

)
.

Second, defining λx and λy as the numbers of leading zeros of the significands
mx and my, and defining further

m′
x = mx · 2λx and m′

y = my · 2λy , (10.21)

and
e′x = ex − λx and e′y = ey − λy, (10.22)

we obtain a product expressed in terms of normalized significands:

RN
(
|x| × |y|

)
= RN

(
m′

xm′
y · 2e′x+e′y

)
, m′

x, m′
y ∈ [1, 2).

Third, taking

c =

{
0 if m′

xm′
y ∈ [1, 2),

1 if m′
xm′

y ∈ [2, 4),
(10.23)
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one has
RN
(
|x| × |y|

)
= RN(` · 2d),

with
` = m′

xm′
y · 2−c and d = e′x + e′y + c. (10.24)

Here c allows one to ensure that ` lies in the range [1, 2). Thus, computing
the exponent should, in principle, mean computing the value of d as above.
There are in fact two possible situations:

• if d ≥ emin then the real number ` · 2d lies in the normal range or in the
overflow range, and therefore RN(` · 2d) = RN(`) · 2d;

• if d < emin, which may happen since both e′x and e′y can be as low as
emin − p + 1, the real ` · 2d falls in the subnormal range. As explained in
Section 8.4.2, in this case d should be increased up to emin by shifting `
right by emin − d positions.

For simplicity, here we will detail an implementation of the first case only:

d ≥ emin. (10.25)

The reader may refer to the FLIP software library for a complete implemen-
tation that handles both cases.

To compute the exponent d of the result, we shall as usual manipulate its
biased value, which is the integer D such that

D = d + emax. (10.26)

And yet, similarly to the implementation of binary floating-point addition
(see for example Listing 10.16), we will in fact compute D−1 and then let this
tentative (biased) exponent value be adjusted automatically when rounding
and packing. Recalling that emin = 1− emax and using (10.25), one has

D − 1 = d− emin ≥ 0.

Computing the non-negative integer D − 1

Using (10.22) and (10.24) together with the fact that

Ex = ex − emin + nx,

one may check that

D − 1 = (Ex − nx) + (Ey − ny)− (λx + λy − emin) + c.

The identity
λx + λy − emin = MX + MY − (2w + emin),
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where 2w + emin is a constant defined by the floating-point format, shows
further that computing λx and λy is in fact not needed.

In practice, among all the values involved in the preceding expression of
D − 1, the value of condition c = [m′

xm′
y ≥ 2] may be the most expensive to

determine. On the other hand, nx, ny, Ex, and Ey require 2 instructions, while
MX and MY require 3 instructions. Hence, recalling that 2w + emin is known
a priori, a scheduling for the computation of D − 1 that exposes some ILP is
given by the following parenthesizing:

D−1 =
([

(Ex−nx)+(Ey−ny)
]
−
[
(MX +MY )− (2w + emin)

])
+ c. (10.27)

For example, w = 8 and emin = −126 for the binary32 format. Then
2w + emin = −110, and an implementation of the computation of D − 1 that
uses (10.27) is thus as shown in Listing 10.18.

C listing 10.18 Computing D − 1 in a binary32 multiplication operator,
assuming d ≥ emin and that |X|, |Y |, and c are available.

1 uint32_t Ex, Ey, nx, ny, MX, MY, Dm1;
2
3 Ex = absX >> 23; Ey = absY >> 23;
4 nx = absX >= 0x800000; ny = absY >= 0x800000;
5 MX = maxu(nlz(absX), 8); MY = maxu(nlz(absY), 8);
6
7 Dm1 = (((Ex - nx) + (Ey - ny)) - ((MX + MY) + 110)) + c;

Notice that in Listing 10.18 nx, ny, Ex, Ey, MX , and MY are independent
of each other. Consequently, with unbounded parallelism and a latency of 1
for all the instructions involved in the code, the value of D − 1 − c can be
deduced from X and Y in 6 cycles. Then, once c has been computed, it can be
added to that value in 1 cycle.

10.3.3 Overflow detection

As stated in Chapter 8, overflow can occur for multiplication only when d ≥
emin. In this case one has |x| × |y| = ` · 2d, with ` ∈ [1, 2) given by (10.24).

Overflow before rounding

A first case of overflow is when d ≥ emax + 1, since then the exact product
|x| × |y| is larger than the largest finite number Ω = (2− 21−p) · 2emax , and so
will be its rounded value. This first case can be detected easily from the value
of D − 1, applying (10.26):

d ≥ emax + 1 if and only if D − 1 ≥ 2emax.
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For the binary32 format, 2emax = 254 = (FE)16 and this first case of overflow
can be implemented as shown in Listing 10.19.

C listing 10.19 Returning ±∞when d ≥ emax + 1 in the binary32 format.

if (Dm1 >= 0xFE) return Inf; // Inf = Sr | 0x7F800000;

Notice that Inf has already been used for handling special values (see
line 7 of Listing 10.17). Notice also the similarity with binary floating-point
addition (see lines 7 and 8 of Listing 10.16).

Overflow after rounding

A second case of overflow is when d = emax and RN(`) = 2. This case is
handled automatically when rounding the significand and packing the result
via the integer addition

(D − 1) · 2p−1 + RN(`) · 2p−1

(see the end of Section 10.3.4). For example, for the binary32 format, when
D − 1 = 2emax − 1 = 253 = (11111101)2 and RN(`) = 2, the bit string of
(D − 1) · 2p−1 is

[0 11111101 00000000000000000000000︸ ︷︷ ︸
p− 1 = 23 bits

],

and the bit string of RN(`) · 2p−1 = 2 · 2p−1 is

[0 00000010 00000000000000000000000︸ ︷︷ ︸
p− 1 = 23 bits

].

Summing them gives the integer that encodes +∞, and it remains to con-
catenate its bit string with the correct sign. The result will then be a correctly
signed infinity, as required.

10.3.4 Getting the correctly rounded result

It remains to compute the correctly rounded value r = RN(` · 2d). As in the
previous section, assume for simplicity that d ≥ emin. Then one has

r = RN(`) · 2d

and, since a biased value D − 1 of d has already been computed (see List-
ing 10.18), we are left with the computation of RN(`), with

` = m′
xm′

y · 2−c

as in (10.24). The following paragraphs explain how to implement this for the
binary32 format.



10.3. Binary Floating-Point Multiplication 347

Computing the normalized significands m′
x and m′

y

Recall that the integer λx is defined as the number of leading zeros of the
binary expansion of the significand mx:

mx = [0.0 . . . 0︸ ︷︷ ︸
λx zeros

1mx,λx+1 . . .mx,23].

Consequently, we start by storing the bits of m′
x into the following string of

length 32:
[1mx,λx+1 . . .mx,23 000 . . . 000︸ ︷︷ ︸

λx + 8 zeros

]. (10.28)

If λx = 0 then this bit string is deduced from the bit string of |X| by shifting
it left by 8 positions and simultaneously introducing the implicit 1. If λx > 0
then it suffices to shift |X| left by 8 + λx positions. In both cases, the amount
of the shift is

MX = max(nlz(|X|), 8).

An implementation can be found at line 3 of Listing 10.20, where the bit string
of the variable mpX is as in (10.28). The same is done for storing m′

y by means
of variable mpY.

Computing the product m′
xm′

y exactly

Since m′
x and m′

y can each be represented using at most 24 bits, their exact
product can be represented using at most 48 bits. Those bits fit into two
32-bit integers, which are called highS and lowS, and are defined as follows:

m′
xm′

y = (cs0.s1 . . . s30︸ ︷︷ ︸
=: highS

s31 . . . s46

16 zeros︷ ︸︸ ︷
000 . . . 000︸ ︷︷ ︸

=: lowS

)2. (10.29)

Here c = 0 if m′
xm′

y < 2, and c = 1 if m′
xm′

y ≥ 2. In the latter case, a carry has
been propagated; thus, normalization will be necessary to obtain ` in [1, 2).

The computation of the integers highS, lowS, and c is done at lines 5 and
6 of Listing 10.20, using our basic multiply instructions mul and * as well as
the fact that c = 1 if and only if the integer highS is at least 231 = (80000000)16.

Computing the guard and sticky bits needed for rounding correctly

Once the product m′
xm′

y (and thus ` as well) is known exactly, one can deduce
RN(`) in the classical way, by means of a guard bit G and a sticky bit T . We
now discuss how to compute those bits efficiently. We start by considering the
cases c = 0 and c = 1 separately, and then propose a single code for handling
both of them.
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• If c = 0 then, since m′
xm′

y ≥ 1, the bit s0 in (10.29) must be equal to 1.
Thus, combining (10.24) and (10.29) gives

` = (1.s1 . . . s46)2,

from which it follows that the guard bit and the sticky bit are, respec-
tively,

G = s24 and T = OR(s25, . . . , s46).

Finally, the correctly rounded value RN(`) is obtained as

RN(`) = (1.s1 . . . s23)2 + B · 2−23,

where, for rounding to nearest, the bit B is defined as

B = G AND
(
s23 OR T

)
(see, for example, [126, page 425]). Using (10.29) we see that G can be
obtained by shifting highS = [01s1 . . . s24s25 . . . s30] right by 6 positions
and then masking with 1:

G = (highS >> 6) & 1;

On the other hand, T = OR(s25, . . . , s30, lowS) by definition of lowS.
Therefore, the value of T can be obtained as follows:

T = ((highS << 26) != 0) | (lowS != 0);

Clearly, the two comparisons to zero that appear in the computation of
T can be done in parallel. Besides, given highS and lowS, the computa-
tion of T itself can be performed in parallel with that of G.

• If c = 1 then (10.24) and (10.29) give

` = (1.s0s1 . . . s46)2.

It follows that RN(`) = (1.s0 . . . s22)2 + B · 2−23, where, for rounding to
nearest, the bits B, G, and T are now given by

B = G AND
(
s22 OR T

)
, G = s23, T = OR(s24, . . . , s46).

The computation of G and T can be implemented as before, the only
difference being the values by which we shift:

G = (highS >> 7) & 1; T = ((highS << 25) != 0) | (lowS != 0);
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It is now clear that the two cases c = 0 and c = 1 that we have just analyzed
can be handled by a single code fragment, which corresponds to lines 8, 10,
12 of Listing 10.20. As in Listing 10.15 for binary floating-point addition, com-
puting B does not require us to extract the last bit (s23 if c = 0, s22 if c = 1) of
the significand (stored in the variable M). Instead, we work directly on M .

Also, since highT will generally be more expensive to obtain than lowT

and M, one can expose more ILP by ORing lowT and M during the computation
of highT. This is done at line 10 of Listing 10.20, and is just one example of
the many ways of optimizing this kind of code. The FLIP software library
implements some other tricks that allow one to expose even more ILP and
thus, in some contexts, to save a few cycles.

Rounding the significand and packing the result

Once the sign, the (biased) exponent, the significand, and the rounding bit
have been computed (and are available in the integers Sr, Dm1, M, and B,
respectively), one can round the significand and pack the result. This is done
in the same way as in Listing 10.16 for binary floating-point addition; see line
14 of Listing 10.20.

C listing 10.20 Computation of the rounding bit and of the correctly rounded
result in a binary32 multiplication operator, in the case of rounding to nearest
(◦ = RN) and assuming |X|, |Y |, MX , and MY are available.

1 uint32_t mpX, mpY, highS, lowS, c, G, M, highT, lowT, M_OR_lowT, B;
2
3 mpX = (X << MX) | 0x80000000; mpY = (Y << MY) | 0x80000000;
4
5 highS = mul(mpX, mpY); lowS = mpX * mpY;
6 c = highS >= 0x80000000; lowT = (lowS != 0);
7
8 G = (highS >> (6 + c)) & 1; M = highS >> (7 + c);
9

10 highT = (highS << (26 - c)) != 0; M_OR_lowT = M | lowT;
11
12 B = G & (M_OR_lowT | highT);
13
14 return ((Sr | (Dm1 << 23)) + M) + B;

10.4 Binary Floating-Point Division

This section describes how to implement the floating-point division of
binary32 data. The main steps of the algorithm have been recalled in
Section 8.6. When subnormal numbers are not supported, a complete descrip-
tion of a possible implementation can be found in [198].
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The case where either x or y is a special datum (like ±0, ±∞, or NaN) is
described in Section 10.4.1, while the case where both x and y are (sub)normal
numbers is discussed in Sections 10.4.2 through 10.4.4.

10.4.1 Handling special values

Similarly to addition and multiplication, the input (x, y) to division is con-
sidered a special input when x or y is ±0, ±∞, or NaN. For each possible case
the IEEE 754-2008 standard requires that a special value be returned by the
division operator. These special values are obtained from those in Table 8.5,
page 263, by adjoining the correct sign, using

x/y = (−1)sr ·
(
|x|/|y|

)
, sr = sx XOR sy. (10.30)

We remind the reader that the standard does not specify the sign of a NaN
result; see [187, §6.3].

Detecting that a special value must be returned

For division, a special input (x, y) can be filtered out in the same way as for
addition and multiplication. When k = 32 and p = 24, such a filter can be
implemented as shown at lines 3, 4, 5 of Listing 10.21.

C listing 10.21 Special value handling in a binary32 division operator.

1 uint32_t absX, absY, Sr, absXm1, absYm1, Max, Inf;
2
3 absX = X & 0x7FFFFFFF; absY = Y & 0x7FFFFFFF; Sr = (X ^ Y) & 0x80000000;
4 absXm1 = absX - 1; absYm1 = absY - 1;
5 if (maxu(absXm1, absYm1) >= 0x7F7FFFFF)
6 {
7 Max = maxu(absX, absY); Inf = Sr | 0x7F800000;
8 if (Max > 0x7F800000 || absX == absY)
9 return Inf | 0x00400000 | Max; // qNaN with payload equal to

10 // the last 22 bits of X or Y
11 if (absX < absY) return Sr;
12 return Inf;
13 }

Returning special values as recommended or required by IEEE 754-2008

Here and hereafter |X| will have the same meaning as in (10.6). Once our
input (x, y) is known to be special, one must return the corresponding result
as specified in Table 8.5, page 263. From that table we see that a qNaN must
be returned as soon as one of the following two situations occurs:
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• if |X| or |Y | encodes a NaN, that is, according to Table 10.2, if

max (|X|, |Y |) > 2k−1 − 2p−1; (10.31)

• if (|X|, |Y |) encodes either (+0,+0) or (+∞,+∞), that is, since (x, y)
is known to be special and assuming the case where x or y is NaN is
already handled by (10.31), if

|X| = |Y |. (10.32)

When k = 32 and p = 24, the conditions in (10.31) and (10.32) can be
implemented as in lines 7 and 8 of Listing 10.21. One can raise the following
remarks:

• The condition in (10.31) is the same as the one used for addition and
multiplication (see (10.9) and (10.19)). On the contrary, the condition
in (10.32) is specific to division.

• The qNaN returned at line 9 of Listing 10.21 enjoys the same nice prop-
erties as for binary floating-point addition and binary floating-point
multiplication: in a sense, it keeps as much information on the input
as possible, as recommended by IEEE 754-2008 (see [187, §6.2]).

Once the case of a qNaN output has been handled, it follows from
Table 8.5, page 263, that a special output must be ±0 if and only if |x| < |y|,
that is, according to Table 10.2, if and only if

|X| < |Y |.

For k = 32 and p = 24, the latter condition is implemented at line 11 of
Listing 10.21. Finally, the remaining case, for which one must return (−1)sr∞,
is handled by line 12.

10.4.2 Sign and exponent computation

We assume from now on that the input (x, y) is not special; that is, that both x and
y are finite nonzero (sub)normal numbers.

Exactly as for multiplication, the sign sr of the result is straightforwardly
obtained by taking the XOR of the sign bits of X and Y . It has already been
used in the previous section for handling special values (for an example, see
variable Sr at line 3 of Listing 10.21).

Concerning the exponent of the result, the approach is also very similar
to what we have done for multiplication in Section 10.3.2. First, using (10.30)
together with the symmetry of rounding to nearest, we obtain

RN(x/y) = (−1)sr · RN
(
|x|/|y|

)
.
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Then, using the same notation as in Section 10.3.2, we can express the fraction
in terms of normalized significands:

RN
(
|x|/|y|

)
= RN

(
m′

x/m′
y · 2e′x−e′y

)
, m′

x,m′
y ∈ [1, 2).

Finally, as in multiplication, we introduce a parameter c that will be used
for normalizing the fraction m′

x/m′
y. Indeed, 1 ≤ m′

x,m′
y < 2 implies that

m′
x/m′

y ∈ (1/2, 2). Hence, 2m′
x/m′

y ∈ (1, 4) ⊂ [1, 4) and so 2m′
x/m′

y · 2−c ∈
[1, 2), provided c satisfies

c =

{
0 if m′

x < m′
y,

1 if m′
x ≥ m′

y.
(10.33)

It follows that the binary floating-point number RN(|x|/|y|) is given by

RN
(
|x|/|y|

)
= RN(` · 2d),

with
` = 2m′

x/m′
y · 2−c and d = e′x − e′y − 1 + c. (10.34)

Since by definition ` ∈ [1, 2), the result exponent will thus be set to d.
As in multiplication, the following two situations may occur:

• if d ≥ emin then the real number ` · 2d lies in the normal range or the
overflow range, and therefore

RN(` · 2d) = RN(`) · 2d; (10.35)

• if d < emin, which may happen since e′x can be as low as emin−p+1 and
e′y can be as large as emax, the real number ` · 2d falls in the subnormal
range. As explained in Section 8.6.3, several strategies are possible in
this case, depending on the method chosen for the approximate com-
putation of the rational number `.

For simplicity, here we detail an implementation of the first case only:

d ≥ emin. (10.36)

The reader may refer to the FLIP software library for a complete implemen-
tation that handles both cases by means of polynomial approximation.

Note, however, that unlike multiplication the binary floating-point num-
ber RN(`) is always strictly less than 2. This fact is a direct consequence of the
following property, shown in [198]:

Property 19. If m′
x ≥ m′

y then ` ∈ [1, 2− 21−p], else ` ∈ (1, 2− 21−p).
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When d ≥ emin it follows from this property that RN(`) ·2d is the normal-
ized representation of the correctly rounded result sought.7 Consequently, d
is not simply a tentative exponent that would require updating after round-
ing, but is already the exponent of the result. We will come back to this point
in Section 10.4.3 when considering the overflow exception.

Let us now compute d using (10.34). As usual, what we actually compute
is the integer D−1 such that D = d+emax (biased value of d). Since emin = 1−
emax, the assumption (10.36) gives, as in binary floating-point multiplication,

D − 1 = d− emin ≥ 0. (10.37)

Computing the non-negative integer D − 1

The approach is essentially the same as for multiplication, with d now defined
by (10.34) instead of (10.24). Recalling that Ex = ex − emin + nx and that
λx = MX − w, one obtains

D − 1 = (Ex − nx)− (Ey − ny)− (MX −MY ) + c− emin − 1. (10.38)

Before parenthesizing this expression for D− 1, let us consider the com-
putation of c. Interestingly enough, the value of c is in fact easier to obtain for
division than for multiplication. Indeed, unlike (10.23), its definition in (10.33)
does not involve the product m′

xm′
y, and it suffices to compute the normalized

significands m′
x and m′

y, and to compare them to deduce the value of c. For
the binary32 format, a possible implementation is as shown in Listing 10.22.

C listing 10.22 Computation of the normalized significands m′
x and m′

y and
of the shift value c in a binary32 division operator.

1 uint32_t absX, absY, MX, MY, mpX, mpY, c;
2
3 absX = X & 0x7FFFFFFF; absY = Y & 0x7FFFFFFF;
4 MX = maxu(nlz(absX), 8); MY = maxu(nlz(absY), 8);
5 mpX = (X << MX) | 0x80000000; mpY = (Y << MY) | 0x80000000;
6
7 c = mpX >= mpY;

With unbounded parallelism and a latency of 1 for each of the instruc-
tions in Listing 10.22, we see that c can be obtained in 6 cycles. In compari-
son, the shift value c for binary floating-point multiplication (obtained at line
6 of Listing 10.20) costs 6 cycles plus the latency of mul. For example, on the
STMicroelectronics ST200 processor, which has four issues and where mul has

7Since ` is upper bounded by the largest binary floating-point number strictly less than 2,
this is not specific to rounding to nearest even.
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a latency of 3 cycles, computing c costs 9 cycles in the case of binary floating-
point multiplication, but only 6 cycles in the case of binary floating-point
division.

Computing c as fast as possible is important, for c is used in the def-
inition of the fraction ` in (10.34), whose approximate computation usually
lies on the critical path. Therefore, every cycle saved for the computation of
c should, in principle, allow one to reduce the latency of the whole division
operator.

Let us now turn to the computation of D − 1 as given by (10.38). Still
assuming unbounded parallelism and with a latency of 6 cycles for c, one
can keep the parenthesizing proposed at line 7 of Listing 10.18 since there
the expression to be added to c can also be computed in 6 cycles. The only
modification consists in replacing the constant −(2w + emin) with −emin − 1.
For the binary32 format,−emin−1 = 125, and the corresponding code is given
by Listing 10.23.

C listing 10.23 Computing D − 1 in a binary32 division operator, assuming
d ≥ emin and that |X|, |Y |, and c are available.

1 uint32_t Ex, Ey, nx, ny, MX, MY, Dm1;
2
3 Ex = absX >> 23; Ey = absY >> 23;
4 nx = absX >= 0x800000; ny = absY >= 0x800000;
5 MX = maxu(nlz(absX), 8); MY = maxu(nlz(absY), 8);
6
7 Dm1 = (((Ex - nx) + (Ey - ny)) - ((MX + MY) - 125)) + c;

With unbounded parallelism, the code given above thus produces D− 1
in 7 cycles. Of course, this is only one of the many possible ways of parenthe-
sizing the expression of D−1. Other schemes may be better suited, depending
on the algorithm chosen for approximating ` and on the actual degree of par-
allelism of the target processor. Examples of other ways of computing D − 1
have been implemented in FLIP, with the STMicroelectronics ST200 processor
as the main target.

10.4.3 Overflow detection

Because of Property 19, binary floating-point division will never overflow
because of rounding, but only when

d ≥ emax + 1.

This is different from the case of binary floating-point multiplication (see
Section 10.3.3).



10.4. Binary Floating-Point Division 355

The situation where d ≥ emax + 1 clearly requires that our assumption
d ≥ emin be true and thus, using (10.37), it is characterized by the condition

D − 1 ≥ 2emax.

This characterization has already been used for multiplication in Sec-
tion 10.3.3 and one can reuse the implementation provided by Listing 10.19.

10.4.4 Getting the correctly rounded result

As in the previous sections, assume for simplicity that d ≥ emin (the gen-
eral case is handled in the FLIP library). Recall from (10.35) that in this case
the correctly rounded result to be returned is RN(`) · 2d. Since the values of
c and D − 1 = d − emin have already been computed in Listing 10.22 and
Listing 10.23, we are left with the computation of

RN(`) = (1.r1 . . . rp−1)2,

where ` is defined by (10.34) and thus a priori has an infinite binary expansion
of the form

` = (1.`1 . . . `p−1`p . . .)2. (10.39)

As explained in Section 8.6, many algorithms exist for such a task, and
they belong to one of the following three families: digit-recurrence algorithms
(SRT, etc.), functional iteration algorithms (Newton iteration, etc.), and poly-
nomial approximation-based algorithms.

We will now show how to implement in software two examples of such
algorithms. The first one is the restoring division algorithm, which is the sim-
plest digit-recurrence algorithm (see, for example, the Sections 1.6.1 and 8.6.2
of [126] for a detailed presentation of this approach). The second one con-
sists in computing approximate values of a function underlying ` by means
of polynomial evaluation [198]. Note that this second approach has already
been used for implementing division (and square root) in software in a differ-
ent context, namely when a floating-point FMA instruction is available; see,
for example, [2].

As we will see, our first example leads to a highly sequential algorithm,
while our second example allows us to expose much instruction-level par-
allelism (ILP). Hence those examples can be seen as two extremes of a wide
range of possible implementations.

First example: restoring division

Restoring division is an iterative process, where iteration i produces the value
of the bit `i in (10.39).

In order to see when to stop the iterations, recall first that since we have
assumed that d ≥ emin, the rational number ` lies in the normal range or the
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overflow range. Then in this case it is known that ` cannot lie exactly halfway
between two consecutive normal binary floating-point numbers (see for
example [126, page 452] or [88, page 229]).8 Consequently, the binary floating-
point number RN(`) can be obtained with only one guard bit (the sticky bit
is not needed, in contrast to addition and multiplication):

RN(`) = (1.`1 . . . `p−1)2 + `p · 21−p. (10.40)

We conclude from this formula that p iterations suffice to obtain RN(`).
Let us now examine the details of one iteration and how to implement

it in software using integer arithmetic. To do so, let us first write the binary
expansions of the numerator and denominator of ` = 2m′

x ·2−c/m′
y as follows:

2m′
x · 2−c = (N−1N0.N1 . . . Np−1)2

and
m′

y = (01.M1 . . .Mp−1)2.

Notice that N−1 = 1 − c, where c is given by (10.33). It follows from the two
identities above that the positive integers

N =
p∑

i=0

Np−1−i2i

and

M = 2p−1 +
p−2∑
i=0

Mp−1−i2i

satisfy
` = N/M.

Next, define for i ≥ 0 the pair (qi, ri) by qi = (1.`1 . . . `i)2 and
N = qi ·M + ri. Clearly, ri ≥ 0 for all i ≥ 0, and (qi, ri) goes to (`, 0) when i
goes to infinity. Defining further Qi = qi · 2i and Ri = ri · 2i, we arrive at

2iN = Qi ·M + Ri, i ≥ 0. (10.41)

Since qi > 0 has at most i fractional bits, Qi is indeed a positive integer.
Besides, since the identity Ri = 2iN − Qi ·M involves only integers, Ri is
an integer as well. Note also that since ` − qi is, on the one hand, equal to
2−iRi/M and, on the other hand, equal to (0.0 . . . 0`i+1`i+2 . . .)2 ∈ [0, 2−i), we
have

0 ≤ Ri < M. (10.42)

8This is not the case when d < emin since in that case ` lies in the subnormal range; see the
FLIP library on how to handle such cases.
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This tells us that Qi and Ri are, respectively, the quotient and the remainder
in the Euclidean division of integer 2iN by integer M . Note the scaling of N
by 2i.

The preceding analysis shows that, given

Q0 = 1 and R0 = N −M,

computing the first p fractional bits of ` iteratively simply reduces to
deducing (Qi, Ri) from (Qi−1, Ri−1), for 1 ≤ i ≤ p. Using Qi = qi · 2i and
qi = qi−1 + `i · 2−i, it is not hard to verify that

Qi = 2Qi−1 + `i. (10.43)

Then, the identity in (10.41) gives

2iN = (2Qi−1 + `i) ·M + Ri using (10.43)
= 2Qi−1M + `i ·M + Ri

= 2(2i−1N −Ri−1) + `i ·M + Ri using (10.41) with i− 1.

Hence, after simplification,

Ri = 2Ri−1 − `i ·M. (10.44)

Equations (10.43) and (10.44) lead to Algorithm 10.1. For i ≥ 1, one computes
a tentative remainder T = 2Ri−1 −M ; that is, we do as if `i = 1. Then two
situations may occur:

• if T is negative, then `i is in fact equal to zero. In this case Qi = 2Qi−1

and we restore the correct remainder Ri = 2Ri−1 by adding M to T ;

• if T ≥ 0, then Ri = T satisfies (10.42), so that `i = 1 and Qi = 2Qi−1 +1.

Algorithm 10.1 The first p iterations of the restoring method for binary
floating-point division.

(Q0, R0)← (1, N −M)
for i ∈ {1, . . . , p} do

T ← 2Ri−1 −M
if T < 0 then

(Qi, Ri)← (2Qi−1, T + M)
else

(Qi, Ri)← (2Qi−1 + 1, T )
end if

end for

An implementation of Algorithm 10.1 for the binary32 format, for which p =
24, is detailed in Listing 10.24.



358 Chapter 10. Software Implementation of Floating-Point Arithmetic

Recalling that the bit strings of m′
x and m′

y are stored in the variables
mpX and mpY (see (10.28) as well as line 5 of Listing 10.22), one can deduce the
integers N and M simply by shifting to the right. The initial values Q0 = 1
and R0 = N −M ∈ [0, . . . , 2p+1) can then be stored exactly into the 32-bit
unsigned integers Q and R. These integers will be updated during the algo-
rithm so as to contain, respectively, Qi and Ri at the end of the i-th iteration.
Obviously, the multiplications by two are implemented with shifts by one
position to the left.

C listing 10.24 First 24 iterations of the restoring method, rounding and pack-
ing for a binary32 division operator. Here we assume that d ≥ emin and that
Sr, Dm1, mpX, mpY, and c are available.

1 uint32_t N, M, Q, R, i;
2 int32_t T;
3
4 N = mpX >> (7 + c); M = mpY >> 8;
5 Q = 1; R = N - M;
6
7 for (i = 1; i < 25; i++)
8 {
9 T = (R << 1) - M;

10
11 if (T < 0)
12 {
13 Q = Q << 1; R = T + M;
14 }
15 else
16 {
17 Q = (Q << 1) + 1; R = T;
18 }
19 }
20
21 return (Sr | (Dm1 << 23)) + ((Q >> 1) + (Q & 1));

At the end of iteration 24, the bit string of Q contains the first 24 fraction
bits of `:

Q = [0000000︸ ︷︷ ︸
7 zeros

1`1 . . . `23`24].

Applying (10.40) with p = 24, we have RN(`) = (1.`1 . . . `23)2 + `24 · 2−23.
Consequently, the 32-bit unsigned integer

Sr · 231 + (D − 1) · 223 + RN(`) · 223

that encodes the result is thus obtained as in line 21 of Listing 10.24.
From this code it is clear that the restoring method is sequential in

nature. Although at iteration i both variables Q and R can be updated indepen-
dently from each other, 24 iterations are required. A rough (but reasonable)
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count of at least 3 cycles per iteration thus yields a total latency of more than
70 cycles, and this only for the computation of `1, . . . , `24. Adding to this the
cost of computing c, handling special values, computing the sign and expo-
nent, rounding and packing, will result in an even higher latency.

To reduce latency, one may use higher radix digit recurrence algorithms.
For example, some implementations of radix-4 and radix-512 SRT algorithms
have been studied in [340, §9.4], which indeed are faster than the restor-
ing method on some processors of the ST200 family. In the next paragraph,
we present a third approach that allows one to obtain further speed-ups by
expressing even more ILP. In the ST200 processor family, the latency is then
typically reduced to less than 30 cycles for the complete binary floating-point
division operator (see [198] and the division code in FLIP).

Second example: division by polynomial evaluation

This example summarizes an approach first introduced in [197] for square
root, and then adapted to division in [198]. For ` as in (10.34), this approach
uses two main steps to produce RN(`). First, for each input (x, y) we compute
a value v which is representable with at most k bits and which approximates
` from above as follows:

− 2−p < `− v ≤ 0. (10.45)

Then, we can deduce from v the correctly rounded value RN(`) by
implementing a method essentially similar to the method outlined in [126,
page 460].

Computing the one-sided approximation v

Although a functional iteration approach (Newton iteration or one of its vari-
ants; see Section 5.3, page 155, and Section 8.6.2, page 263) could be used to
compute v, more ILP can be exposed by evaluating a suitable polynomial that
approximates the exact quotient `. Instead of (10.45) we shall in fact ensure
the slightly stronger condition∣∣(` + 2−p−1)− v

∣∣ < 2−p−1. (10.46)

This form is more symmetric and more natural to attain than (10.45). First,
the rational number ` + 2−p−1 can be considered as the exact value at some
particular point (σ, τ) of the function

F (s, t) = 2−p−1 +
s

1 + t
.

Recalling that ` = 2m′
x/m′

y · 2−c, a typical choice is

(σ, τ) = (2m′
x · 2−c,m′

y − 1).
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Then F is approximated over a suitable domain S × T (that contains all the
possible values for (σ, τ) when x and y vary) by a polynomial P of the form

P (s, t) = 2−p−1 + s · a(t), with a(t) =
δ∑

i=0

ait
i. (10.47)

Finally, the polynomial P is evaluated at (σ, τ) and the obtained value is
assigned to v.

This process introduces two kinds of errors: an approximation error which
quantifies the fact that P ≈ F over S × T and, since the evaluation of P at
(σ, τ) is done by a finite-precision program, an evaluation error which quanti-
fies the fact that v ≈ P (σ, τ).

In [198] some sufficient conditions on these two errors have been given
in order to ensure that (10.46) holds. Then, a suitable polynomial a(t) has
been obtained under such conditions. By “suitable” we mean a polynomial
of smallest degree δ and for which each coefficient absolute value |ai| fits in a
32-bit unsigned integer. Such a polynomial was obtained as a “truncated min-
imax” polynomial approximation, 9 using the software environment Sollya.10

More precisely, the polynomial a(t) has the form

a(t) =
10∑
i=0

(−1)i ·Ai · 2−32 · ti, (10.48)

where Ai ∈ {0, . . . , 232 − 1} for 0 ≤ i ≤ 10. Sollya has further been used to
guarantee, using interval arithmetic, that the approximation error induced by
this choice of polynomial is small enough for our purposes.

A minimal degree δ has been sought for obvious speed reasons (intu-
itively, the smaller the polynomial a is, the faster our division code will be).
However, once δ has been fixed, there are still many ways of evaluating the
arithmetic expression P (s, t) for P as in (10.47) and a as in (10.48). A classical
way is Horner’s rule:

P (s, t) = 2−p−1 + s ·
(
a0 + t ·

(
· · ·+ t · (a9 + a10 · t) . . .

))
.

This parenthesizing of P (s, t) involves 11 additions and 11 multiplications.
Assuming a latency of 1 for an addition and 3 for multiplication (of type mul;
see Section 10.1.2), one can, in principle, deduce from s and t an approxi-
mate value for P (s, t) in 44 cycles. This already seems faster than the rough
estimate of 70 cycles used by the 24 iterations in the restoring method (see
Listing 10.24).

9We have used a minimax-like approximation and not, for example, a simpler Taylor-like
polynomial 1 − t + t2 − t3 + · · · because, as detailed in [198], the domain T on which a(t)
should approximate 1/(1 + t) is [0, 1− 21−p] and thus contains values that are close to 1.

10See http://sollya.gforge.inria.fr/ and Lauter’s Ph.D. dissertation [245].
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And yet, Horner’s rule is fully sequential (just like the restoring method),
and other parenthesizings of P (s, t) exist that make it possible to expose
much more ILP. In such cases, provided the degree of parallelism is high
enough, much lower latencies can be expected. An example of such a paren-
thesizing, generated automatically, has been given in [198]. It reduces the
44-cycle latency of Horner’s rule shown above to only 14 cycles, provided one
can launch at least 3 operations + or mul simultaneously, at most 2 of them
being mul. Note that this latency of 14 cycles comes from viewing P (s, t) as a
bivariate polynomial, and could not be obtained by first evaluating the uni-
variate polynomial a(t) as fast as possible, and then applying the final Horner
step 2−p−1 + s · a(t).

Once a fast/highly parallel evaluation scheme has been found, it
remains to implement it using 32-bit integer arithmetic and to check the
numerical accuracy of the resulting program (evaluation error). An example
of a C program that implements the 14-cycle evaluation scheme just men-
tioned is given in Listing 10.25. The variables S, T , V used in Listing 10.25
are integer representations of σ, τ , v, respectively:

S = σ · 230, T = τ · 232, V = v · 230.

Also, each hexadecimal constant corresponds to a particular Ai as in (10.48). It
turns out that the variables r1, ..., r25, V are indeed in the range {0, . . . , 232−1}
of 32-bit unsigned integers, and that v = V · 2−30 satisfies (10.45), as
desired. Checking such properties by paper-and-pencil calculations, if pos-
sible, would surely be long and error-prone. In [198] they have thus been
verified mechanically using the Gappa software.11

Rounding to nearest even

For some details on how to effectively implement the move from v to
RN(`), we refer to the second example of a square root operator in Sec-
tion 10.5.3.12 A complete implementation of division, including subnormal
numbers as well as all the IEEE 754-2008 rounding direction attributes, can
be found in the FLIP library.

10.5 Binary Floating-Point Square Root

Now, let us deal with the software implementation, for the binary32 format
and ◦ = RN, of a square root operator. Our exposition follows [196, 197].

The case where x is a special datum (like ±0, ±∞, or NaN) is described
in Section 10.5.1, while the case where x is a (sub)normal is discussed in Sec-
tions 10.5.2 and 10.5.3.

11http://lipforge.ens-lyon.fr/www/gappa/ and Chapter 13.
12For the square root, the situation will be a little simpler since the output cannot be a sub-

normal number.
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C listing 10.25 Polynomial evaluation program used in a binary32 division
operator (Listing 1 in [198]).

1 uint32_t S, T, V,
2 r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13,
3 r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25;
4
5 r0 = mul( T , 0xffffe7d7 );
6 r1 = 0xffffffe8 - r0;
7 r2 = mul( S , r1 );
8 r3 = 0x00000020 + r2;
9 r4 = mul( T , T );

10 r5 = mul( S , r4 );
11 r6 = mul( T , 0xffbad86f );
12 r7 = 0xfffbece7 - r6;
13 r8 = mul( r5 , r7 );
14 r9 = r3 + r8;
15 r10 = mul( r4 , r5 );
16 r11 = mul( T , 0xf3672b51 );
17 r12 = 0xfd9d3a3e - r11;
18 r13 = mul( T , 0x9a3c4390 );
19 r14 = 0xd4d2ce9b - r13;
20 r15 = mul( r4 , r14 );
21 r16 = r12 + r15;
22 r17 = mul( r10 , r16 );
23 r18 = r9 + r17;
24 r19 = mul( r4 , r4 );
25 r20 = mul( T , 0x1bba92b3 );
26 r21 = 0x525a1a8b - r20;
27 r22 = mul( r4 , 0x0452b1bf );
28 r23 = r21 + r22;
29 r24 = mul( r19 , r23 );
30 r25 = mul( r10 , r24 );
31 V = r18 + r25;

As we will see, our analysis and code have many similarities with those
for division in the previous section. However, things are simpler for at least
two obvious reasons: first,

√
x is univariate while x/y was bivariate; and sec-

ond,
√

x ≥ 0 over the reals, so that the sign is known in advance.13 A third
reason is that binary floating-point square roots never underflow or overflow,
and an efficient implementation should take advantage of this.

10.5.1 Handling special values

For the square root, the input x is considered a special input when it is either
±0, ±∞, NaN, or a binary floating-point number that is finite, nonzero,

13Note however that the IEEE 754 standards require that
√
−0 = −0, a special case which is

covered in Section 10.5.1.
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and negative. The special output values that the IEEE 754-2008 standard
mandates in such situations have been listed in Table 8.6, page 265.

Detecting that a special value must be returned

Using Table 10.2 we see that x is a special input if and only if X 6∈ (0, 2k−1 −
2p−1); that is, if and only if

(X − 1) mod 2k ≥ 2k−1 − 2p−1 − 1. (10.49)

For example, when k = 32 and p = 24, an implementation of (10.49) is given
by lines 3 and 4 of Listing 10.26.

C listing 10.26 Special value handling in a binary32 square root operator.

1 uint32_t Xm1;
2
3 Xm1 = X - 1;
4 if (Xm1 >= 0x7F7FFFFF)
5 {
6 if (X <= 0x7F800000 || X == 0x80000000)
7 return X;
8 else
9 return (0x7FC00000 | X); // qNaN with payload equal to

10 // the last 22 bits of X
11 }

Returning special values as recommended or required by IEEE 754-2008

Once x is known to be special, we deduce from Table 8.6, page 265, that there
are only two cases to be considered: the result must be either x itself, or a
qNaN. Since here x is known to be not a positive (sub)normal number, this
first case, which is x ∈ {+0, +∞,−0}, is characterized by

X ≤ 2k−1 − 2p−1 or X = 2k−1.

When k = 32 and p = 24, an implementation of this condition is given at line
6 of Listing 10.26, using

231 − 223 = (7F800000)16 and 231 = (80000000)16.

Returning a qNaN is done in the same way as for addition, multiplication, or
division, by masking with the constant (7FC00000)16, whose bit string is

[0 111111111︸ ︷︷ ︸
9 ones

0000000000000000000000︸ ︷︷ ︸
22 zeros

].

Again, this kind of mask keeps as much of the information of the input as
possible, and, in particular, the payload of x, as recommended by the IEEE
754-2008 standard (see [187, §6.2]).
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10.5.2 Exponent computation

We assume from now on that the input x is not special; that is, x is a positive finite
nonzero (sub)normal number.

Formula for the exponent of the result

In order to see how to compute the exponent of our correctly rounded square
root, let us first rewrite x = mx · 2ex as

x = m′
x · 2e′x ,

with m′
x as in (10.21) and e′x as in (10.22). Let us also introduce the shift value

c defined as

c =

{
0 if e′x is even,
1 if e′x is odd.

(10.50)

Rewriting x as x = (2c · m′
x) · 2e′x−c, we obtain

√
x = ` · 2d, so that, after

rounding,
RN(
√

x) = RN(` · 2d),

where

` =
√

2c ·m′
x and d =

e′x − c

2
. (10.51)

Notice that, by definition of c, the real ` lies in [1, 2). Moreover, as recalled
in Section 8.7, floating-point square roots never underflow or overflow, and
thus

emin ≤ d ≤ emax. (10.52)

Hence, the correctly rounded value of the square root of x is given by the
following product:

RN(
√

x) = RN(`) · 2d. (10.53)

In general, applying a rounding operator ◦(·) to a real number ` ∈ [1, 2)
yields the weaker enclosure ◦(`) ∈ [1, 2]. However, in the case of square root
with rounding to nearest, one has the following nice property (see [197] for a
proof).

Property 20. RN(`) ∈ [1, 2).

From Property 20 and the inequalities in (10.52) we conclude that

RN(`) · 2d

in (10.53) is already the normalized representation of RN(
√

x). In particular,
neither overflow detection nor exponent update is needed.14

14The latter is of course still true for ◦ ∈ {RZ, RD}, but not for ◦ = RU, as shown in [197].
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In conclusion, the result exponent is indeed d as in (10.51). Since c is
either zero or one, and since e′x = ex−λx, we arrive at the following formula:

d =
⌊

ex − λx

2

⌋
, (10.54)

where b·c denotes the usual floor function. Note that the shift value c
in (10.50) does not appear explicitly in the above formula for d. In practice,
this means that c and d can be computed independently of each other.

Implementation for the binary32 format

Let us now implement (10.54). As for other basic operations, we shall in fact
compute the biased value

D − 1 = d + emax − 1.

Combining (10.54) with Ex = ex − emin + nx and λx = MX − w and emin =
1− emax, one can deduce that

D − 1 =
⌊

Ex − nx −MX + w − emin

2

⌋
.

For the binary32 format, w − emin = 8 + 126 = 134, and thus D − 1 can be
implemented as shown in Listing 10.27.

C listing 10.27 Computing D − 1 in a binary32 square root operator.

1 uint32_t Ex, nx, MX, Dm1;
2
3 Ex = X >> 23; nx = X >= 0x800000; MX = max(nlz(X), 8);
4
5 Dm1 = ((Ex - nx) + (134 - MX)) >> 1;

Notice that in the above code x is assumed to be nonspecial, which in
the case of square root implies X = |X|. Hence, computing |X| is not needed,
and the biased exponent value Ex can be deduced simply by shifting X .

10.5.3 Getting the correctly rounded result

In (10.53), once d has been obtained through the computation of D − 1, it
remains to compute the binary floating-point number

RN(`) = (1.r1 . . . rp−1)2,

where
` =

√
2c ·m′

x = (1.`1 . . . `p−1`p . . .)2. (10.55)

Exactly as for division in Section 10.4.4,



366 Chapter 10. Software Implementation of Floating-Point Arithmetic

• in general, the binary expansion of ` is infinite;

• we will give two examples of how to implement the computation of
RN(`): the first uses the classical restoring method for square rooting
(see for example [126, §6.1] for a description of the basic recurrence).
The second one, which comes from [197], is based on polynomial
approximation and evaluation.

Before that, we shall see how to implement the computation of the shift
value c defined in (10.50). Since the value of c was not explicitly needed for
obtaining the square root exponent d, it has not been computed yet. This is
in contrast to binary floating-point multiplication and division, where the
corresponding c value was already used for deducing D − 1 (see line 7 in
Listing 10.18 and line 7 in Listing 10.23).

Computation of the shift value c

From (10.50) we see that c is 1 if and only if e′x is odd. Again, combining the
facts that Ex = ex−emin+nx and λx = MX−w with the definition e′x = ex−λx,
we have for the binary32 format (where emin = −126 and w = 8)

e′x = Ex − nx −MX − 118.

Therefore, e′x is odd if and only if Ex − nx −MX is odd.
For the binary32 format, we have seen in Listing 10.27 how to deduce Ex,

nx, and MX from X . Hence, we use the code in Listing 10.28 for deducing the
value of c. Since MX is typically more expensive to obtain than Ex and nx, one
can compute MX in parallel with Ex − nx. Of course, other implementations
are possible (for example, using logic exclusively), but this one reuses the
value Ex − nx that appears in Listing 10.27.

C listing 10.28 Computing the shift value c in a binary32 square root operator.
Here we assume that Ex, nx, and MX are available.

1 uint32_t c;
2
3 c = ((Ex - nx) - MX) & 1;

First example: restoring square root

Similarly to restoring division (which we have recalled in detail in
Section 10.4.4), restoring square root is an iterative process whose iteration
number i ≥ 1 produces the bit `i of the binary expansion of ` in (10.55).

Exactly as for division, it is known (see, for example, [88, page 242]
and [126, page 463]) that the square root of a binary floating-point num-
ber cannot be the exact middle of two consecutive (normal) binary floating-
point numbers. Therefore, the correctly rounded result RN(`) can be obtained
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using the same formula as the one used for division in (10.40), and p iterations
are again enough. Compared to division, the only specificity of the restoring
square root method is the definition of the iteration itself, which we will recall
now.

Let q0 = 1. The goal of iteration 1 ≤ i ≤ p is to produce `i, or, equiva-
lently, to deduce qi = (1.`1 . . . `i)2 from qi−1 = (1.`1 . . . `i−1)2. For 0 ≤ i ≤ p,
one way of encoding the rational number qi into a k-bit unsigned integer
(k > p) is through the integer

Qi = qi · 2p, (10.56)

whose bit string is

[ 000 . . . 000︸ ︷︷ ︸
k − p− 1 zeros

1 q1 . . . qi 000 . . . 000︸ ︷︷ ︸
p− i zeros

].

One has 0 ≤ `− qi < 2−i, and thus qi ≥ 0 approximates ` from below. Hence,
q2
i approximates `2 from below as well, and one can define the remainder

ri ≥ 0 by
`2 = q2

i + ri. (10.57)

Now, `2 = 2c ·m′
x has at most p− 1 fraction bits, and

q2
i =

(
(1.q1 . . . qi)2

)2
has at most 2i fraction bits. Since 0 ≤ i ≤ p, both `2 and q2

i have at most
p + i fraction bits and we conclude that the following scaled remainder is a
non-negative integer:

Ri = ri · 2p+i. (10.58)

The following property shows further that the integer Ri can be encoded
using at most p+2 bits. For example, for the binary32 format, p+2 = 26 ≤ 32,
and so Ri will fit into a 32-bit unsigned integer.

Property 21. For 0 ≤ i ≤ p, the integer Ri satisfies 0 ≤ Ri < 2p+2.

Proof. We have already seen that Ri is an integer such that 0 ≤ Ri. Let us
now show the upper bound. From 0 ≤ `− qi < 2−i it follows that

`2 − q2
i = (`− qi)(2qi + (`− qi)) ≤ 2−i(2qi + 2−i).

Now, qi = (1.`1 . . . `i)2 ≤ 2 − 2−i, so that 2qi + 2−i ≤ 4 − 2−i < 4. From this
we conclude that

Ri = (`2 − q2
i ) · 2p+i < 4 · 2−i · 2p+i = 2p+2.
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Combining the definition of Qi in (10.56) with the facts that q0 = 1 and,
for 1 ≤ i ≤ p, that qi = qi−1 + `i · 2−i, we get

Q0 = 2p (10.59)

and, for 1 ≤ i ≤ p,
Qi = Qi−1 + `i · 2p−i. (10.60)

Then, using (10.59) and (10.60) together with the invariant in (10.57) and the
definition of Ri in (10.58), one may check that

R0 = m′
x · 2p+c − 2p (10.61)

and, for 1 ≤ i ≤ p,

Ri = 2Ri−1 − `i · (2Qi−1 + `i · 2p−i). (10.62)

Note that the recurrence relation (10.62) is, up to a factor of 2p, analogous to
Equation (6.12) in [126, page 333].

As for division, we deduce from the above recurrence relations for Qi

and Ri a restoring algorithm (see Algorithm 10.2), which works as follows.
A tentative remainder T is computed at each iteration, assuming `i = 1 in the
recurrence (10.62) that gives Ri. Then two situations may occur:

• if T < 0 then the true value of `i was in fact 0. Hence, by (10.60)
and (10.62), Qi = Qi−1 while Ri is equal to 2Ri−1;

• if T ≥ 0 then `i = 1 was the right choice. In this case, (10.60) and (10.62)
lead to Qi = Qi−1 + 2p−i and Ri = T .

Algorithm 10.2 The first p iterations of the restoring method for binary
floating-point square root.

(Q0, R0)← (2p,m′
x · 2p+c − 2p)

for i ∈ {1, . . . , p} do
T ← 2Ri−1 − (2Qi + 2p−i)
if T < 0 then

(Qi, Ri)← (Qi−1, 2Ri−1)
else

(Qi, Ri)← (Qi−1 + 2p−i, T )
end if

end for

An implementation of Algorithm 10.2 for the binary32 format, for which p =
24, is detailed in Listing 10.29. Here are a few remarks about lines 4 to 20:
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• The variable Q is initialized with

Q0 = 224 = (1000000)16

and, at the end of iteration 1 ≤ i ≤ 24, contains the integer Qi.

• Similarly, the variable R is initialized with R0 and then contains the suc-
cessive values of Ri. Note that the initialization of R requires the knowl-
edge of both m′

x and c. These are assumed available in variables mpX

and c, respectively. Concerning mpX, we may compute it exactly as for
division (see for example Listing 10.22). Concerning c, we have seen
how to compute it in Listing 10.28. The right shift of 7 − c positions at
line 4 of Listing 10.29 comes from the fact that the bit string of mpX in
Listing 10.22 has the form

[1 ∗ · · · ∗︸ ︷︷ ︸
23 bits

00000000︸ ︷︷ ︸
8 bits

],

and from the fact that the bit string of m′
x · 2p+c has the form

[0000000︸ ︷︷ ︸
7 bits

1 ∗ · · · ∗︸ ︷︷ ︸
23 bits

0] if c = 0,

and
[000000︸ ︷︷ ︸

6 bits

1 ∗ · · · ∗︸ ︷︷ ︸
23 bits

00] if c = 1.

• The tentative remainder T is stored in variable T, while S is initialized
with 224 and contains the integer 224−i at the end of the i-th iteration.

Final rounding of the significand and packing with the result exponent is
done at line 22 of Listing 10.29. The variable Dm1 which encodes the (biased)
result exponent has been computed in Listing 10.23.

The only difference with division (see line 21 of Listing 10.24) is that the
sign bit of RN(

√
x) is known to be zero when x is not special.

Second example: square root by polynomial evaluation

For ` =
√

2c ·m′
x, a way of computing RN(`) that is much faster on some par-

allel architectures has been recently proposed in [196, 197]. Its generalization
to division has already been outlined in the second example of Section 10.4.4,
following [198], and extensions to other functions are currently being inves-
tigated.

Computing the one-sided approximation v

As for division, RN(`) is obtained by first computing a one-sided approxi-
mation v to ` that satisfies (10.46) and is representable using at most k bits.
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C listing 10.29 First 24 iterations of the restoring method, rounding and pack-
ing for a binary32 square root operator. Here we assume that Dm1, mpX, and c

are available.

1 uint32_t Q, R, S, i;
2 int32_t T;
3
4 Q = 0x1000000; R = (mpX >> (7 - c)) - Q;
5 S = 0x1000000;
6
7 for (i = 1; i < 25; i++)
8 {
9 S = S >> 1;

10 T = (R << 1) - ((Q << 1) + S);
11
12 if (T < 0)
13 {
14 R = R << 1;
15 }
16 else
17 {
18 Q = Q + S; R = T;
19 }
20 }
21
22 return (Dm1 << 23) + ((Q >> 1) + (Q & 1));

The main differences concern the choice of function F to be approximated,
the domain S × T on which it is approximated,15 the fact that the evaluation
point (σ, τ) is not exactly representable in finite precision, and the sufficient
conditions on the approximation and evaluation errors. In particular, for the
binary32 format those conditions are simpler and, above all, much easier to
verify, than for division (see [197] and [198] for the details).

To summarize, this first step is aimed at producing a code with high
ILP, in the same spirit as Listing 10.25 and whose output is a 32-bit unsigned
integer V such that v = V · 2−30 satisfies∣∣(` + 2−25)− v

∣∣ < 2−25. (10.63)

Rounding to nearest even

Let us now see how to deduce RN(`) from v. The binary expansion of v has
the form

v = (1.v1 . . . v30)2.

15Although the square root is a univariate function, the real ` =
√

2c ·m′
x depends on c and

m′
x. Hence, `+2−25 may be considered as the exact value of a suitable function F : S×T → R.
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Therefore, truncating v after 24 fraction bits and using (10.63) gives a value

w = (1.v1 . . . v23v24)2

such that

0 ≤ v − w < 2−24. (10.64)

By combining (10.63) and (10.64), we conclude that

|`− w| < 2−24. (10.65)

Given this “truncated approximation” w, one can now deduce the correctly
rounded value RN(`) fairly easily by means of Algorithm 10.3.

Algorithm 10.3 Deducing RN(`) from the truncated approximation w.
if w ≥ ` then

RN(`)← truncate w after 23 fraction bits
else

RN(`)← truncate w + 2−24 after 23 fraction bits
end if

It was shown in [197] that Algorithm 10.3 indeed returns RN(`). In order
to implement it, all we need is a way of evaluating the condition w ≥ `. This
can be done because of the following property [197, Property 4.1].

Property 22. Let W , P , and Q be the 32-bit unsigned integers such that

w = W · 2−30,

P = mul(W,W ),

and

`2 = Q · 2−28.

One has w ≥ ` if and only if P ≥ Q.

As an immediate consequence of this property, we obtain the code
in Listing 10.30 that implements the computation of the correctly rounded
significand RN(`) and its packing with the biased exponent D − 1.
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C listing 10.30 Truncating a one-sided approximation, rounding, and packing
for a binary32 square root operator. Here we assume that V, mpX, c, and Dm1

are available.

1 uint32_t W, P, Q;
2
3 W = V & 0xFFFFFFC0;
4
5 P = mul(W, W); Q = mpX >> (3 - c);
6
7 if (P >= Q)
8 return (Dm1 << 23) + (W >> 7);
9 else

10 return (Dm1 << 23) + ((W + 0x40) >> 7);



Part IV

Elementary Functions



Chapter 11

Evaluating Floating-Point
Elementary Functions

The elementary functions are the most common mathematical func-
tions: sine, cosine, tangent and their inverses, exponentials and log-

arithms of radices e, 2 or 10, etc. They appear everywhere in scientific
computing; thus being able to evaluate them quickly and accurately is impor-
tant for many applications. Various very different methods have been used
for evaluating them: polynomial or rational approximations, shift-and-add
algorithms, table-based methods, etc. The choice of the method greatly
depends on whether the function will be implemented on hardware or soft-
ware, on the target precision (for instance, table-based methods are very good
for low precision, but unrealistic for very high precision), and on the required
performance (in terms of speed, accuracy, memory consumption, size of code,
etc.). With regard to performance, one will also resort to different methods
depending on whether one wishes to optimize average performance or
worst-case performance.

The goal of this chapter is to present a short survey of the existing meth-
ods and to introduce the basic techniques. More details will be given in books
dedicated to elementary function algorithms, such as [88, 270, 293].

Approximation algorithms

The first algorithms used for approximating elementary functions were based
on their power series expansions. Shift-and-add algorithms (i.e., algorithms
that only use additions, multiplications by a power of the radix—that is,
shifts—and small tables) are quite old too, since the first one goes back to
the 1600s. Henry Briggs designed the first algorithm of that kind to build the
14-digit accurate tables of logarithms published in his Arithmetica Logarith-
mica (1624). Another shift-and-add algorithm, the COrdinate Rotation DIgital
Computer (CORDIC) algorithm, was introduced in 1959 by Volder [421, 422],

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_11, 375
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and generalized in 1971 by Walther [426, 427]. That algorithm allowed one
to evaluate square roots, sines, cosines, arctangents, exponentials, and log-
arithms. Its versatility made it attractive for hardware implementations.
CORDIC (or variants of CORDIC) has been implemented in pocket cal-
culators (for instance, Hewlett-Packard’s HP 35 [74]) and in arithmetic
coprocessors such as the Intel 8087 [296]. There are still, each year, a few new
papers presenting new variants of that algorithm. The Journal of VLSI Sig-
nal Processing devoted a special issue to CORDIC (June 2000). Although the
original CORDIC algorithm was designed for radix-2 arithmetic, there exist
radix-10 variants [363, 359].

Power series are still of interest for multiple-precision evaluation of
functions, and shift-and-add methods may still be attractive for hardware-
oriented implementations.1 And yet, most current implementations are soft-
ware implementations and use other polynomial approximations to func-
tions.

The theory of the polynomial approximation to functions was developed
mainly in the nineteenth and the early twentieth centuries. It makes it possi-
ble to build polynomials that better approximate a given function, in a given
interval, than truncated power series.

The easiest approximations to obtain are least squares approximations (also
called L2 approximations). Assuming that w is a continuous, non-negative
function, the L2 approximation to some function f on the interval [a, b] with
weight function w is the polynomial p of degree less than or equal to n that
minimizes

||f − p||L2,[a,b],w =
∫ b

a
w(x) (f(x)− p(x))2 dx. (11.1)

The minimax degree-n polynomial approximation (also called the L∞

approximation) to some function f on the interval [a, b] is the polynomial
p of degree less than or equal to n that minimizes

||f − p||∞,[a,b] = sup
x∈[a,b]

|f(x)− p(x)|.

The Remez algorithm [174, 342, 69], introduced in 1934, allows one to
iteratively compute minimax polynomial approximations to functions. A
generalization of that algorithm also gives minimax rational approximations.

Figures 11.1 and 11.2 show the difference between the natural logarithm
ln function in [1, 2] and its degree-5 Taylor (at point 1.5) and minimax approx-
imations. One immediately sees that the minimax approximation is much
better than the truncated Taylor series.

1As we write this book, for general-purpose systems, software implementations that use
polynomial approximations are used on all platforms of commercial significance [270, 88].
This does not mean that CORDIC-like algorithms are not interesting for special-purpose
circuits.
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Figure 11.1: The difference between the logarithm function and its degree-5 Taylor
approximation (taken at point 1.5) in the interval [1, 2].
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approximation in the interval [1, 2]. By comparing with Figure 11.1, we see that the
minimax approximation is much better than the truncated Taylor series.
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Range reduction

The elementary function algorithms allow us to approximate a function f
in a given bounded domain D, which is generally rather small. Hence, the
first step when evaluating f at a given input argument x consists in finding
an intermediate argument y ∈ D, such that f(x) can be deduced from f(y)
(or, sometimes, from g(y), where g is a related function). A typical example
is function sin(x): assume we have algorithms (e.g., polynomial approxima-
tions) that evaluate sin(y) and cos(y) for y ∈ [0, π/2]. The computation of
sin(x) can be decomposed in three steps:

• compute y and k such that y ∈ [0, π/2] and y = x− kπ/2;

• compute

g(y, k) =


sin(y) if k mod 4 = 0
cos(y) if k mod 4 = 1
− sin(y) if k mod 4 = 2
− cos(y) if k mod 4 = 3;

(11.2)

• obtain sin(x) = g(y, k).

When high accuracy is at stake, y is represented by two (or more)
floating-point numbers.

The first step (computation of y and k from x) is called range reduction (or,
sometimes, argument reduction). In this case, it is an additive range reduction:
y is equal to x plus or minus a multiple of some constant (here, π/2). Range
reduction can also be multiplicative; for instance, when we use

cos(x) = 2 cos2
(x

2

)
− 1

to iteratively reduce the argument. Let us deal with the previous example of
additive range reduction. When x is large (or very close to an integer mul-
tiple of π/2), computing y by the naive method, i.e., actually subtracting the
result of the floating-point operation k×RN(π/2) from x leads to a catastrophic
cancellation: the obtained result may be very poor. Consider the following
example in the binary64 format of the IEEE 754-2008 standard, assuming
round to nearest even. We wish to evaluate the sine of x = 5419351. The
value of k is 3450066. The double-precision number that is nearest to π/2 is

P =
884279719003555
562949953421312

= 1.5707963267948965579989817342720925807952880859375.

Therefore, the value of kP computed in the binary64 format will be
5818983827636183/1073741824. This will lead to a computed value of x− kP
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(namely, RN(x− RN(kP ))) equal to

41
1073741824

= 0.000000038184225559234619140625,

whereas the correct value of the reduced argument is

0.00000003820047507089661120930116470427948776308032614 . . . .

This means that if we use that naive range reduction for evaluating sin(x),
our final result will only have two significant digits. If a fused multiply-
add (FMA) instruction is available, the computed reduced argument (namely,
RN(x− kP )) will be

10811941
281474976710656

= 0.000000038411730685083966818638145923614501953125,

which, surprisingly enough,2 is even worse. And yet, x is not a huge number:
one can build worse cases. The following sections of this chapter will be
devoted to the problem of range reduction. After, we will discuss the clas-
sical methods used to approximate a given function in an interval.

11.1 Basic Range Reduction Algorithms

In the following, we deal with additive range reduction. Let us denote by x the
initial floating-point argument, and C the constant of the range reduction. We
are looking for an integer k and a real number y ∈ [0, C] or [−C/2,+C/2] such
that

y = x− kC.

11.1.1 Cody and Waite’s reduction algorithm

Cody and Waite [75, 77] tried to improve the accuracy of the naive range
reduction by representing C more accurately, as the sum of two floating-point
numbers. More precisely,

C = C1 + C2,

where the significand of C1 has sufficiently many zeros on its right part, so
that when multiplying C1 by an integer k whose absolute value is not too
large (say, less than kmax, where kmaxC is the order of magnitude of the
largest input values for which we want the reduction to be accurate), the
result is exactly representable as a floating-point number. The reduction
operation consists in computing

y = RN(RN(x− RN(kC1))− RN(kC2)), (11.3)

2In general, the result of the naive reduction will be slightly better with an FMA.
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which corresponds, in the C programming language, to the line:

y = (x - k*C1) - k*C2

In (11.3), the product kC1 is exact (provided that |k| ≤ kmax). Also, the
subtraction x−kC1 is also exact, by Sterbenz’s lemma (Lemma 2 in Chapter 4).
Hence, the only sources or error are the computation of the product kC2 and
the subtraction of that product from x− kC1: we have somehow simulated a
larger precision. Still consider our previous example (sine of x = 5419351 in
binary64 arithmetic, with C = π/2, which gives k = 3450066). Consider the
two binary64 floating-point numbers:

C1 =
1686629713
1073741824

= 1.100100100001111110110101010001 (binary)

= 1.570796326734125614166259765625 (decimal)

and

C2 =
4701928774853425

77371252455336267181195264
= 1.00001011010001100001000110100110001

00110001100110001× 2−34 (binary)

= 6.07710050650619224931915769153843113

3315700805042069987393915653228759765625× 10−11 (decimal).

C1 is exactly representable with 31 bits only in the significand. The prod-
uct of C1 by any integer less than or equal to 5340353 is exactly representable
(hence, exactly computed) in binary64 arithmetic. In the considered case, the
computed value of kC1 will be exactly equal to kC1; that is,

2909491913705529
536870912

= 10100101011000101010110.11111111111100100100000111001 (binary)

= 5419350.99979029782116413116455078125 (decimal),

and the computed value of (x− kC1) will be exactly equal to x− kC1,

112583
536870912

= 1.1011011111000111× 2−13 (binary)

= 0.00020970217883586883544921875 (decimal).
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Therefore, the computed value of y = (x− kC1)− kC2 will be

704674387127
18446744073709551616

= 1.010010000010001110111011101010010110111× 2−25 (binary)

= 3.820047507089923896628214095017 · · · × 10−8 (decimal),

which is much more accurate than what we got using the naive method (we
recall that the exact result is 3.82004750708966112093011647 · · · × 10−8).

Cody and Waite’s idea of splitting constant C into two floating-point
numbers can be generalized. For instance, in the library CRlibm3 [95], it is
used with a constant C = π/256 for small arguments to trigonometric func-
tions (|x| < 6433, this threshold value being obtained by error analysis of
the algorithm). However, the reduced argument must be known with an
accuracy better than 2−53. To this purpose the final subtraction is performed
using the Fast2Sum procedure (introduced in Section 4.3.1, page 126). For
larger arguments (6433 ≤ |x| < 13176794), the constant is split into three
floating-point numbers, again with a Fast2Sum at the end.

11.1.2 Payne and Hanek’s algorithm

Payne and Hanek [327] designed a range reduction algorithm for the trigono-
metric functions that is very interesting when the input arguments are large.
Assume we wish to compute

y = x− kC, (11.4)

where C = 2−tπ is the constant of the range reduction. Typical values of C
that appear in current programs are between π/256 and π/4. Assume x is a
binary floating-point number of precision p, and define ex as its exponent and
X as its integral significand, so that x = X × 2ex−p+1. Equation (11.4) can be
rewritten as

y = 2−tπ

(
2t+ex−p+1

π
X − k

)
. (11.5)

Let us denote
0.v1v2v3v4 · · ·

the infinite binary expansion of 1/π. The main idea behind Payne and
Hanek’s algorithm is to note that when computing y using (11.5), we do not
need to use too many bits of 1/π for evaluating the product 2t+ex−p+1

π X :

3CRlibm is developed by the Arénaire team of CNRS, INRIA, and ENS Lyon, France. It is
available at http://lipforge.ens-lyon.fr/www/crlibm/.
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• the bit vi is of weight 2−i. Once multiplied by 2t+ex−p+1X , vi2−i will
become an integral multiple of 2t+ex−p+1−i. Hence, once multiplied,
later on, by 2−tπ, it will become an integral multiple of 2ex−p+1−iπ.
Therefore, as soon as i ≤ ex − p, the contribution of bit vi in
Equation (11.5) will result in an integral multiple of 2π: it will have no
influence on the trigonometric functions. So, in the product

2t+ex−p+1

π
X,

we can replace the bits of 1/π of rank i less than or equal to ex − p by
zeros;

• since |X| ≤ 2p − 1, the contribution of bits vi, vi+1, vi+2, vi+3, . . . in the
reduced argument is less than

2−tπ × 2t+ex−p+1 × 2−i+1 × 2p < 2ex−i+4;

therefore, if we want the reduced argument with an absolute error less
than 2−`, we can replace the bits of 1/π of rank i larger than or equal to
4 + ` + ex by zeros.

11.2 Bounding the Relative Error of Range Reduction

Payne and Hanek’s algorithm (as well as Cody and Waite’s algorithm or sim-
ilar methods) allows one to easily bound the absolute error on the reduced
argument. And yet, we are more interested in bounding relative errors (or
errors in ulps). To do that, we need to know the smallest possible value of
the reduced argument. That is, we need to know what is the smallest possi-
ble value of

x− k · C,

where x is a floating-point number of absolute value larger than C.
If X is the integral significand of x and ex is its exponent, the problem

becomes that of finding very good rational approximations to C, of the form

X · 2ex−p+1

k
,

which is a typical continued fraction problem (see Section 16.1). This prob-
lem is solved using a continued fraction method due to Kahan [203] (a very
similar method is also presented in [380]). See [293, 302] for more details.

Program 11.1, written in Maple, computes the smallest possible value of
the reduced argument and the input value for which it is attained.
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worstcaseRR := proc(Beta,p,efirst,efinal,C,ndigits)
local epsilonmin,powerofBoverC,e,a,Plast,r,Qlast,

Q,P,NewQ,NewP,epsilon,
numbermin,expmin,ell;
epsilonmin := 12345.0 ;
Digits := ndigits;
powerofBoverC := Beta^(efirst-p)/C;
for e from efirst-p+1 to efinal-p+1 do

powerofBoverC := Beta*powerofBoverC;
a := floor(powerofBoverC);
Plast := a;
r := 1/(powerofBoverC-a);
a := floor(r);
Qlast := 1;
Q := a;
P := Plast*a+1;
while Q < Beta^p-1 do

r := 1/(r-a);
a := floor(r);
NewQ := Q*a+Qlast;
NewP := P*a+Plast;
Qlast := Q;
Plast := P;
Q := NewQ;
P := NewP

od;
epsilon :=

evalf(C*abs(Plast-Qlast*powerofBoverC));
if epsilon < epsilonmin then

epsilonmin := epsilon; numbermin := Qlast;
expmin := e

fi
od;
printf("The worst case occurs\n for x = %a * %a ^ %a,\n",

numbermin,Beta,expmin);
printf("The corresponding reduced argument is:\n %a\n",

epsilonmin);
ell := evalf(log(epsilonmin)/log(Beta),10);
printf("whose radix %a logarithm is %a",Beta,ell)

end:

Program 11.1: This Maple program, extracted from [293], gives the worst cases
for range reduction, for constant C, assuming the floating-point systems has
radix Beta, precision p, and that we consider input arguments of exponents
between efirst and efinal. It is based on Kahan’s algorithm [203]. Variable
ndigits indicates the radix-10 precision with which the Maple calculations must
be carried out. A good rule of thumb is to choose a value slightly larger than
(efinal + 1 + 2p) log(Beta)/log(10) + log(efinal− efirst + 1)/log(10).



384 Chapter 11. Evaluating Floating-Point Elementary Functions

For instance, by entering

worstcaseRR(2,53,0,1023,Pi/2,400);

we get

The worst case occurs
for x = 6381956970095103 * 2 ^ 797,

The corresponding reduced argument is:
.46871659242546276111225828019638843989495... e-18

whose radix 2 logarithm is -60.88791794

which means that, for double-precision/binary64 inputs and C = π/2, a
reduced argument will never be of absolute value less than 2−60.89. This has
interesting consequences, among them:

• to make sure that the relative error on the reduced argument will be
less than η, it suffices to make sure that the absolute error is less than
η × 2−60.89;

• since the sine and tangent of 2−60.89 are much larger than 2emin = 2−1022,
the sine, cosine, and tangent of a double-precision/binary64 floating-
point number larger than 2emin cannot underflow;

• since the tangent of π/2−2−60.89 is much less than Ω ≈ 1.798×10308, the
tangent of a double-precision/binary64 floating-point number cannot
overflow.

Table 11.1, extracted from [293], gives the input values for which the
smallest reduced argument is reached, for various values of C and various
formats. These values are obtained using Program 11.1.

11.3 More Sophisticated Range Reduction Algorithms

The most recent elementary function libraries use techniques that are more
sophisticated than the Cody and Waite or the Payne and Hanek methods
presented above. First, several reduction steps may be used. Many current
implementations derive from P. Tang’s table-based methods [404, 405, 406, 407].
Second, the range reduction and polynomial evaluation steps are not really
separated, but somewhat interleaved. Also, very frequently, the reduced
argument y is not just represented by one floating-point number: it is gener-
ally represented by several floating-point values, whose sum approximates y
(this is called an expansion, see Chapter 14). Another important point is the
following: although in the first implementations, the reduced arguments
would lie in fairly large intervals (typically, [−π/4,+π/4] for trigonometric
functions, [0, 1] or [0, ln(2)] for the exponential function), current implemen-
tations tend to use reduced arguments that lie in much smaller intervals. This
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β p C efinal Worst case − logr(ε)

2 24 π/2 127 16367173× 2+72 29.2

2 24 π/4 127 16367173× 2+71 30.2

2 24 ln(2) 127 8885060× 2−11 31.6

2 24 ln(10) 127 9054133× 2−18 28.4

10 10 π/2 99 8248251512× 10−6 11.7

10 10 π/4 99 4124125756× 10−6 11.9

10 10 ln(10) 99 7908257897× 10+30 11.7

2 53 π/2 1023 6381956970095103× 2+797 60.9

2 53 π/4 1023 6381956970095103× 2+796 61.9

2 53 ln(2) 1023 5261692873635770× 2+499 66.8

Table 11.1: Worst cases for range reduction for various floating-point systems and
reduction constants C [293]. The corresponding reduced argument is ε.

is due to the fact that the degree of the smallest polynomial that approximates
a function f in an interval I within some given error decreases with the width
of I (the speed at which it decreases depends on f , but it is very significant).
This is illustrated by Table 11.2, extracted from [293].

a arctan exp ln(1 + x)

10 19 16 15
1 6 5 5
0.1 3 2 3
0.01 1 1 1

Table 11.2: Degrees of the minimax polynomial approximations that are required to
approximate some functions with error less than 10−5 on the interval [0, a]. When a
becomes small, a very low degree suffices [293].

We now give two examples of reduction methods used in the CRlibm
library of correctly rounded elementary functions [95, 245]. We assume
double-precision/binary64 input values.
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11.3.1 An example of range reduction for the exponential function

The natural way to deal with the exponential function is to perform an
additive range reduction, and later on to perform a multiplicative “recon-
struction.” First, from the input argument x, we find z, |z| < ln(2), so that

ex = eE·ln(2)+z =
(
eln(2)

)E
· ez = 2E · ez, (11.6)

where E is a signed integer.
One immediately notes that the use of such an argument reduction

implies a multiplication by the transcendental constant ln (2). This means
that the reduced argument will not be exact, and the reduction error has to
be taken into account when computing a bound on the overall error of the
implemented function.

A reduced argument obtained by the reduction shown above is generally
still too large to be suitable for a polynomial approximation of reasonable
degree. A second reduction step is therefore necessary. By the use of table look-
ups, the following method can be employed to implement that second step. It
yields smaller reduced arguments. Let ` be a small positive integer (a typical
value is around 12). Let w1 and w2 be positive integers such that w1 + w2 = `.
Let

k =
⌊
z · 2`

ln (2)

⌉
,

where bue is the integer closest to u. We compute the final reduced argument
y, and integers M , i1 < 2w1 , and i2 < 2w2 such that

y = z − k · ln (2)
2`

k = 2` ·M + 2w1 · i2 + i1,

(11.7)

which gives

ez = ey · 2k/2`
,

= ey · 2M+i2/2w2+i1/2`
.

(11.8)

The two integers w1 and w2 are the widths of the indices to two tables T1 and
T2 that store

t1 = 2i2/2w2

and
t2 = 2i1/2`

.

A polynomial approximation will be used for evaluating ey. From (11.6)
and (11.8), we deduce the following “reconstruction” step:

ex = 2E · ez = 2M+E · t1 · t2 · ey.
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This argument reduction ensures that

|y| ≤ ln (2)/2` < 2−`.

This magnitude is small enough to allow for efficient polynomial
approximation.

Typical values currently used are ` = 12 and w1 = w2 = 6.
The subtraction in y = z− k ·RN

(
ln (2)/2`

)
can be implemented exactly,

but it leads to a catastrophic cancellation that amplifies the absolute error
of the potentially exact multiplication of k by the approximated ln (2)/2`. A
careful implementation must take that into account.

11.3.2 An example of range reduction for the logarithm

The range reduction algorithm shown below is derived from one due to
Wong and Goto [438] and discussed further in [293]. The input argument x is
initially reduced in a straightforward way, using integer arithmetic, in order
to get an integer E′ and a double-precision/binary64 floating-point number
m so that:

x = 2E′ ·m

with 1 ≤ m < 2.
In the general case (i.e., when x is a normal number), E′ is the exponent

of x and m is its significand. And yet, this first decomposition is performed
so that in any case (i.e., even if x is subnormal) 1 ≤ m < 2: in the subnormal
case, the exponent of x is adjusted accordingly.

This first argument reduction corresponds to the equation

ln (x) = E′ · ln (2) + ln (m) . (11.9)

Using (11.9) directly would lead to a catastrophic cancellation in the case
E′ = −1 and m ≈ 2. To overcome this problem, an adjustment is neces-
sary. It is made by defining an integer E and a double-precision/binary64
floating-point number y as follows:

E =
{

E′ if m ≤
√

2
E′ + 1 if m >

√
2

, (11.10)

and

y =
{

m if m ≤
√

2
m/2 if m >

√
2

. (11.11)

The test m ≤
√

2 need not be performed exactly—of course, the very same test
must be performed for (11.10) and (11.11). Here, the bound

√
2 is somewhat

arbitrary. Indeed, software implementations perform this test using integer
arithmetic on the high order bits of m, whereas hardware implementations
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have used 1.5 instead of
√

2 to reduce this comparison to the examination of
two bits [116].

The previous reduction step can be implemented exactly, as it mainly
consists in extracting the exponent and significand fields of a floating-point
number, and multiplying by powers of 2. We have:

ln (x) = E · ln (2) + ln (y) , (11.12)

where

− ln(2)
2
≤ ln (y) ≤ +

ln(2)
2

.

The magnitude of this first reduced argument y is too large to allow one to
approximate ln(y) by a polynomial of reasonably small degree with very
good accuracy: a second range reduction step will be necessary. That second
reduction step is performed using a table with 2` entries as follows:

• using the high order ` bits of y as an index i, one looks up a tabulated
value ri that approximates 1

y very well;

• setting z = y · ri − 1, one obtains

ln (y) = ln (1 + z)− ln (ri) . (11.13)

Since y and 1/ri are very close, the magnitude of the final reduced argu-
ment z is now small enough (roughly speaking, |z| < 2−`) to allow good
approximation of ln (1 + z) by a minimax polynomial p (z) of reasonably
small degree. The method requires tabulation of the values ln (ri). Current
implementations use values of ` between 6 and 8, leading to tables of 64 to
256 entries.

It is important to notice that the final reduction step

z = y · ri − 1

can be implemented exactly. However, this requires the reduced argument z
to be represented either in a format wider than the input format (a few more
bits are enough), or as an unevaluated sum of two floating-point numbers.

From (11.12) and (11.13), we easily deduce the “reconstruction” step:

ln (x) ≈ E · ln (2) + p (z)− ln (ri) .

11.4 Polynomial or Rational Approximations

After the range reduction step, our problem is reduced to the problem of
approximating a given function f by a polynomial p, in a rather small interval
[a, b]. We will consider two cases, depending on whether we wish to minimize

||f − p||L2,[a,b],w =
∫ b

a
w(x) (f(x)− p(x))2 dx,
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(this is the L2 case), where w is a positive weight function, or

||f − p||∞,[a,b] = sup
x∈[a,b]

|f(x)− p(x)|

(this is the L∞, or minimax case).
We will first recall the classical methods for getting polynomial approxi-

mations. Then, we will deal with the much more challenging problem of get-
ting approximations “with constraints.” Examples of constraints that we wish
to use are requiring all coefficients to be exactly representable in floating-
point arithmetic, or requiring some of them to be zero.

11.4.1 L2 case

Finding an L2 approximation is done by means of a projection. More precisely,

< f, g >=
∫ b

a
w(x)f(x)g(x)dx

defines an inner product in the vector space of the continuous functions from
[a, b] to R. We get the degree-n L2 approximation p∗ to some function f by
projecting f (using the projection associated with the above-defined inner
product) on the subspace Pn constituted by the polynomials of degree less
than or equal to n. Computing p∗ is easily done once we have precomputed
an orthogonal basis of Pn. The basis we will use is a family (Tk), 0 ≤ k ≤ n,
of polynomials, called orthogonal polynomials, such that:

• Tk is of degree k;

• < Ti, Tj >= 0 if i 6= j.

Once the Tk are computed,4 p∗ is obtained as follows:

• compute, for 0 ≤ k ≤ n,

ak =
< f, Tk >

< Tk, Tk >
,

• then get

p∗ = a0T0 + a1T1 + · · · + anTn.

This is illustrated by Figure 11.3.
A very useful example of a family of orthogonal polynomials is the

Chebyshev polynomials. The Chebyshev polynomials can be defined either by
the recurrence relation

4For the usual weight functions w(x) and the interval [−1, 1], the orthogonal polynomials
have been known for decades, so there is no need to recompute them.
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p∗ =
∑n

k=0
<f,Tk>

<Tk,Tk>
Tk

Pn

T1

T0

f

Figure 11.3: The L2 approximation p∗ is obtained by projecting f on the subspace
generated by T0, T1, . . . , Tn.


T0(x) = 1,

T1(x) = x,

Tn(x) = 2xTn−1(x)− Tn−2(x);

or by

Tn(x) =

 cos
(
n cos−1 x

)
for |x| ≤ 1,

cosh
(
n cosh−1 x

)
for x > 1.

They are orthogonal polynomials for the inner product associated with
the weight function

w(x) =
1√

1− x2
,

and the interval [a, b] = [−1, 1]. A detailed presentation of Chebyshev poly-
nomials can be found in [39] and [343]. These polynomials play a central role
in approximation theory.

11.4.2 L∞, or minimax case

As previously, define Pn as the subspace constituted by the polynomials of
degree less than or equal to n. The central result in minimax approximation
theory is the following theorem, due to Chebyshev.



11.4. Polynomial or Rational Approximations 391

Figure 11.4: The exp(cos(x)) function and its degree-4 minimax approximation on
[0, 5], p(x). There are six values where the maximum approximation error is reached
with alternate signs.

Theorem 34 (Chebyshev). p∗ is the minimax degree-n approximation to f on [a, b]
if and only if there exist at least n + 2 values

a ≤ x0 < x1 < x2 < · · · < xn+1 ≤ b

such that:

p∗(xi)− f(xi) = (−1)i [p∗(x0)− f(x0)] = ±||f − p∗||∞.

Chebyshev’s theorem shows that if p∗ is the minimax degree-n approx-
imation to f , then the largest approximation error is reached at least n + 2
times, and that the sign of the error alternates. This is illustrated by Figure 11.4.
That property is used by an algorithm, due to Remez [174, 342], that com-
putes the minimax degree-n approximation to a continuous function itera-
tively.

There is a similar result concerning minimax rational approximations to
functions [293].

A good implementation of the Remez algorithm that works even in
slightly degenerate cases is fairly complex. Here, we just give a rough sketch
of that algorithm. It consists in iteratively building the set of points x0, x1, . . . ,
xn+1 of Theorem 34. This is done as follows.
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1. First, we start from an initial set of points x0, x1, . . . , xn+1 in [a, b]. There
are some heuristics for choosing a “good” starting set of points.

2. We consider the linear system (whose unknowns are p0, p1, . . . , pn and
ε):

p0 + p1x0 + p2x
2
0 + · · · + pnxn

0 − f(x0) = +ε
p0 + p1x1 + p2x

2
1 + · · · + pnxn

1 − f(x1) = −ε
p0 + p1x2 + p2x

2
2 + · · · + pnxn

2 − f(x2) = +ε
· · · · · ·
p0 + p1xn+1 + p2x

2
n+1 + · · · + pnxn

n+1 − f(xn+1) = (−1)n+1ε.

In all nondegenerated cases, it will have a unique solution
(p0, p1, . . . , pn, ε). Solving this system therefore gives us a polynomial
P (x) = p0 + p1x + · · · + pnxn.

3. We compute the set of points yi in [a, b] where P − f has its extremes,
and we start again (step 2), replacing the x′is by the yi’s.

It can be shown [139] that this is a convergent process and that, under
some conditions, the speed of convergence is quadratic [415].

What we have done here (approximating a continuous function by a
degree-n polynomial, i.e., a linear combination of the monomials 1, x, x2, . . . ,
xn) can be generalized to the approximation of a continuous function by a
linear combination of continuous functions g0, g1, . . . , gn that satisfy the Haar
condition: for any subset of distinct points x0, x1, . . . , xn, the determinant∣∣∣∣∣∣∣∣∣∣∣

g0(x0) g1(x0) g2(x0) · · · gn(x0)
g0(x1) g1(x1) g2(x1) · · · gn(x1)
g0(x2) g1(x2) g2(x2) · · · gn(x2)
...

...
... · · ·

...
g0(xn) g1(xn) g2(xn) · · · gn(xn)

∣∣∣∣∣∣∣∣∣∣∣
is nonzero.

11.4.3 “Truncated” approximations

One frequently wishes to have polynomial approximations with a particular
form:

• approximations whose coefficients are exactly representable in floating-
point arithmetic (or, for some coefficients that have much influence on
the final accuracy, that are equal to the sum of two or three floating-
point numbers);

• approximations that have some coefficients equal to zero (for instance,
of the form x + x3p(x2) for the sine function: this preserves symmetry);
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• approximations whose first coefficients coincide with those of the
Taylor series (in general, to improve the behavior of the approximation
near zero).

Of course, one can first compute a conventional approximation (e.g.,
using the Remez algorithm), and then constraint (by rounding) its coefficients
to satisfy the desired requirements. In most cases, the obtained approxima-
tion will be significantly worse than the best approximation that satisfies the
requirements.

Consider the following example, drawn from CRlibm. To evaluate func-
tion arcsin near 1 with correct rounding in the double-precision/binary64
format, after a change of variables we actually have to compute

g(z) =
arcsin(1− (z + m))− π

2√
2 · (z + m)

,

where 0xBFBC28F800009107 ≤ z ≤ 0x3FBC28F7FFFF6EF1 (roughly speaking
−0.110 ≤ z ≤ 0.110) and m = 0x3FBC28F80000910F ' 0.110. We want to
generate a degree-21 polynomial approximation. If we round to nearest the
coefficients of the Remez polynomial, we get a maximum error of around
8× 10−32. If we use tools designed in the Arénaire team to find “nearly best”
approximations whose coefficients are floating-point numbers, we get a max-
imum error of around 8 × 10−37: the generated polynomial is almost 10, 000
times more accurate than the naive rounded Remez polynomial.

The tools we use are based on two techniques: linear programming and
the Lenstra–Lenstra–Lovász (LLL) algorithm. See [53, 54, 48] for more details.

11.5 Evaluating Polynomials

Once we have found a convenient polynomial approximation, we are
reduced to the problem of evaluating p(x), where x lies in some small
domain.

The polynomial p(x) = a0 + a1x + a2x
2 + · · · + anxn, obtained using

one of the methods presented in the previous section, has coefficients that
are either floating-point numbers or sums of a few (generally, two) floating-
point numbers. Also, the variable x, obtained after range reduction, may be
represented as the unevaluated sum of two or three floating-point numbers.

Hence, evaluating p(x) quickly and accurately on a modern pipelined
floating-point unit is a nontrivial task.

Of course, one should never evaluate p(x) using the straightforward
sequence of operations

a0 + (a1× x) + (a2× x× x) + (a3× x× x× x) + · · ·+ (an× x× x× · · · × x︸ ︷︷ ︸
n−1 multiplications

).
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Evaluating a degree-n polynomial using that method would require n(n +
3)/2 floating-point operations: n(n + 1)/2 multiplications and n additions.

All recent evaluation schemes are mix-ups of the well-known Horner’s
rule (Algorithm 6.3, page 185), and Estrin’s method. Choosing a good evalu-
ation scheme requires considering the target architecture (availability of an
FMA instruction, depth of the pipelines, etc.) and performing some error
analysis. A good rule of thumb is that Estrin’s method wins for latency, and
Horner’s rule for throughput.

An example is given in Section 11.7.2. A group at Intel who designed
elementary functions for the IA-64 processor [173, 157] determined by
(almost) exhaustive enumeration the optimal evaluation method (in terms
of latency) of polynomials up to moderate degrees.

The accuracy of Horner’s rule is given by Equation (6.6), page 186.
A similar bound can be derived for Estrin’s method.

Horner’s rule computes p(x) =
∑n

i=0 aix
i by nested multiplications as

p(x) =
(
. . . ((anx + an−1)x + an−2)x + · · ·

)
x + a0,

while Estrin’s method uses a binary evaluation tree implied by splitting p(x)
as

(
∑

0≤i<h

ah+ix
i)xh + (

∑
0≤i<h

aix
i),

where h = (n + 1)/2 is a power of 2.

11.6 Correct Rounding of Elementary Functions to
binary64

11.6.1 The Table Maker’s Dilemma and Ziv’s onion peeling
strategy

With a few exceptions, the image y of a floating-point number x by a transcen-
dental function f is a transcendental number (see Section 12.3.1, page 420, for
a definition of these notions), and can therefore not be represented exactly in
standard number systems. As a consequence, we need to round it. We would
like to round it correctly; that is, to always return ◦(f(x)), where ◦ is the
active rounding mode (or rounding direction attribute), chosen among the
four presented in Section 2.2, page 20.

A computer may evaluate an approximation ŷ to the real number y with
relative accuracy ε. This means that the real value y belongs to the interval
[ŷ(1 − ε), ŷ(1 + ε)]. Sometimes, however, this information is not enough to
decide correct rounding. For example, if [ŷ(1− ε), ŷ(1 + ε)] contains the mid-
point between two consecutive floating-point numbers, it is impossible to
decide which of these two numbers is the floating-point number nearest to y.
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This problem is known as the Table Maker’s Dilemma (TMD). It will be
discussed in detail in Chapter 12.

Ziv’s technique [444] was implemented in the libultim library.5 It con-
sists in progressively improving the accuracy ε of the approximation until the
correctly rounded value can be decided. Given a function f and an argument
x, the value of f(x) is first quickly approximated, using a “simple and fast”
approximation of accuracy ε1. Knowing ε1 and the approximation, it is pos-
sible to decide if correct rounding is possible, or if more accuracy is required,
in which case the computation is restarted using a slower yet more accurate
approximation (of accuracy ε2), and so on. If the εi are adequately chosen, this
approach leads to good average performance, as the slower steps are rarely
taken.

However, there was, until recently, no practical bound on the termina-
tion time of Ziv’s iteration: it may be proven to terminate for some tran-
scendental functions (because of Lindemann’s theorem; see Section 12.4.1,
page 429), but the actual maximal accuracy required in the worst case was
unknown. In libultim, the measured worst-case execution time is indeed
three orders of magnitude larger than that of the usual libms. A related prob-
lem is memory requirement, which is, for the same reason, unbounded in
theory and much higher than the usual libms in practice.

11.6.2 When the TMD is solved

Much effort has been devoted during the last 10 years by Lefèvre and Muller,
and then by Stehlé, Hanrot, and Zimmermann, to compute the actual worst-
case accuracies needed to guarantee correct rounding of the main elementary
functions in double-precision/binary64 arithmetic.6

The techniques used will be the subject of Chapter 12. It was determined,
for example, that evaluating a logarithm to an accuracy of 2−118 was enough
to be able to decide its correct rounding to a binary64 floating-point number
for any binary64 input.

Because of such results, it is now possible to obtain correct rounding in
two Ziv steps only, which we may then optimize separately:

• the first quick step is as fast as a current libm, and provides an accuracy

5libultim was released by IBM. An updated version is now part of the GNU glibc and
available under the GNU General Public License.

6Some results have recently been obtained in decimal64 arithmetic: for example, the
hardest-to-round case for the exponential function in that format is known. Getting hardest-to-
round cases for the binary32 or decimal32 formats only requires a few hours of computation:
we need to examine 232 cases for each function, which is easily done with current comput-
ers. Getting hardest-to-round cases in formats significantly larger than binary64 or decimal64
seems a difficult challenge: with the smallest possible extended precisions associated to
binary64 or decimal64, as defined in Table 3.24, page 94, it will be feasible within a few years,
but larger precisions such as binary128 or decimal128 seem out of reach with current tech-
niques.
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between 2−60 and 2−80 (depending on the function), which is sufficient
to round correctly to the 53 bits of double precision in most cases;

• the second accurate step is dedicated to challenging cases. It is slower
but has a reasonably bounded execution time, being tightly targeted at
the hardest-to-round cases given in Chapter 12. In particular, there is no
need anymore for arbitrary multiple precision.

This was the approach used in CRlibm. Let us now detail some tricks used in
that library.

11.6.3 Rounding test

Let ŷ1 be the approximation to y = f(x) obtained at the end of the fast step.
The test on ŷ1, which either returns a correctly rounded value or launches the
second step, is called a rounding test. The property that a rounding test must
ensure is the following: a value will be returned only if it can be proven to be
the correctly rounded value of y; otherwise (in doubt), the second step will
be launched. To get good performance, it is essential that the rounding test
be fast.

A rounding test depends on a bound ε1 on the overall relative error of the
first step. This bound is usually computed statically, although in some cases
it can be refined at runtime. Techniques for computing ε1 will be surveyed in
Section 11.7.

The implementation of a rounding test depends on the rounding mode
and the nature of ŷ1, which may be a double-extended or a “double-double”
number.7 Besides, in each case, there are several sequences which are accept-
able as rounding tests.

Some rounding tests are conceptually simple. If ŷ1 is a double-extended
number, it suffices to extract the significand of ŷ1, then perform bit mask
operations on the bits after bit 53, looking for a string of zeros in the case of
directed rounding mode, or for a string of the form 10k or 01k for round
to nearest. Here, k is deduced from ε1. Examples can be found in Itanium-
specific code inside the CRlibm distribution, because this architecture offers
both native 64-bit arithmetic and efficient instructions for extracting the sig-
nificand of a floating-point number.

If ŷ1 is computed as a double-double, a better option is to use only
double-precision floating-point operations. Listing 11.1 describes a rounding
test for round to nearest.

7A “double-double” number is the unevaluated sum of two binary64 floating-point num-
bers. Techniques for manipulating such “double-word” numbers are presented in Chapter 14.



11.6. Correct Rounding of Elementary Functions to binary64 397

C listing 11.1 Floating-point-based rounding test.

if( yh == yh + yl*e)) )
return yh;

else
/* more accuracy is needed, launch accurate phase */

The constant e is slightly larger than 1, and its relationship to ε1 is
given by Theorem 35, taken from the CRlibm documentation [95] (this test is
already present in Ziv’s libultim, but neither the test itself nor the way the
constants e have been obtained is documented).

Theorem 35 (Correct rounding of a double-double to the nearest double,
avoiding subnormals). Let y be a real number, and ε1, e, yh, and yl be double-
precision floating-point numbers such that

• yh = ◦(yh + yl)

• neither yh nor yl is a NaN or ±∞,

• |yh| ≥ 2−1022+54 (i.e., 1
4 ulp(yh) is not subnormal),

• |yh + yl − y| < ε1.|y| (i.e., the total relative error of yh + yl with respect to y
is bounded by ε1),

• 0 < ε1 ≤ 2−53−k with k ≥ 3 integer,

• e ≥ (1− 2−53)−1

(
1 +

254ε1
1− ε1 − 2−k+1

)
and e ≤ 2.

The code sequence 11.1, with the two operations performed in round-to-nearest
mode, determines whether yh is the correctly rounded value of y in round-to-nearest
mode.

One may note that the condition |yh| ≥ 2−1022+54 implies that yh is a
normal number. This test is not proven for subnormal numbers, but this is
not a problem in practice for elementary functions.

• For the trigonometric functions (sine, cosine, tangent, and arctangent),
one may deduce from the worst cases of argument reduction obtained
by Program 11.1 that the value of the function never comes close to a
subnormal.

• All the other elementary functions (as well as sine and tangent in the
neighborhood of zero) have asymptotic properties that may be used
to avoid the computation and the rounding test altogether, when their
result is subnormal. These properties will be provided for each function
in the next chapter, see Tables 12.4 (page 417) and 12.5 (page 418).
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Proof. The implication we need to prove is: if the test is true, then yh = ◦(y)
(failure of the test does not necessarily mean that yh 6= ◦(y)).

Let us note u = ulp(yh) and consider only the case when yh is positive
(as the other case is symmetrical).

We have to consider separately the following two cases.

• If yh is not a power of 2 or yl ≥ 0

In this case we will always assume that yl ≥ 0, as the case yl ≤ 0 is
symmetrical when yh is not a power of 2. To prove that yh = ◦(y), it is
enough to prove that |yh − y| ≤ u/2. As |yh + yl − y| < ε1.|y| (fourth
hypothesis) it is enough to prove that u/2− yl > ε1y.

By definition of the ulp of a positive normal number, we have yh ∈
[252u, (253 − 1)u].

From the first hypothesis we have

yl ≤
1
2
u. (11.14)

Therefore, yh + yl ≤ (253 − 1)u + 1
2u, and

y < (yh + yl)/(1− ε1).

Hence,

y <
253 − 1

2

1− ε1
u.

As a consequence, since ε1 ≤ 2−56,

y < 253u. (11.15)

The easy case is when we have yh = ◦(y) regardless of the result of
the test. This is true as soon as yl is sufficiently distant from u/2. More
specifically, if 0 ≤ yl <

(
1
2 − 2−k

)
u, we combine (11.15) with the fifth

hypothesis to get ε1y < 2−ku. From yl <
(

1
2 − 2−k

)
u we deduce u/2 −

yl > 2−ku > ε1y, which proves that yh = ◦(y). Now consider the case
when yl ≥

(
1
2 − 2−k

)
u. The condition |yh| ≥ 2−1022+54 ensures that u/4

is a normal number, and now yl > u/4, so in this case yl is a normal
number. As 1 < e ≤ 2, the result is also normal. Therefore,

yl × e(1− 2−53) ≤ ◦(yl × e) ≤ yl × e(1 + 2−53).

Suppose that the test is true (◦(yh + ◦(yl × e)) = yh). With rounding to
nearest, this implies | ◦ (yl × e)| ≤ u

2
, which in turn implies
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yl × e(1 − 2−53) ≤ u

2
(as yl is a normal number and 1 < e ≤ 2). This is

rewritten as:
u

2
− yl ≥ yl

(
e
(
1− 2−53

)
− 1
)
.

Using yl ≥ (1
2 − 2−k)u, we get

u

2
− yl ≥

(
1
2
− 2−k

)
u
(
e
(
1− 2−53

)
− 1
)
.

We want to ensure that
u

2
− yl ≥ ε1y; we will again use (11.15) and

ensure that
u

2
− yl ≥ 253ε1u. This provides the condition that must be

fulfilled by e for the theorem to hold in this case: we need(
1
2
− 2−k

)
u
(
e(1− 2−53)− 1

)
≥ 253ε1u

rewritten as:

e ≥ (1− 2−53)−1

(
1 +

254ε1
1− 2−k+1

)
.

• If yh is a power of 2 and yl < 0

To prove that yh = ◦(y), it is enough to prove that |yh − y| ≤ u/4.
As yl ≤ 0, we have y ≤ yh and |yh − y| = y − yh.

From the fourth hypothesis, it is enough to prove that u/4 + yl > ε1y.

By our definition of the ulp of a normal number, we have yh = 252u in
this case.

We have yh = 252u and yl ≤ 0; therefore, yh + yl ≤ 252u, and

y <
252u

1− ε1
. (11.16)

The easy case is when we have yh = ◦(y) regardless of the result of the
test. This is true as soon as yl is sufficiently distant from −u/4. More
specifically, if −

(
1
4 −

2−k−1

1−ε1

)
u < yl ≤ 0, after combining (11.16) with

the fifth hypothesis to get ε1y < 2−k−1u
1−ε1

, we deduce yl + u
4 > 2−k−1

1−ε1
u >

ε1y, which proves that yh = ◦(y).

Now consider the case when−yl ≥
(

1
4 −

2−k−1

1−ε1

)
u. The condition |yh| ≥

2−1022+54 ensures that u/8 is a normal number, and now yl > u/8, so in
this case yl is a normal number. As 1 < e ≤ 2, the result is also normal;
therefore,

−yl × e(1− 2−53) ≤ − ◦ (yl × e) ≤ −yl × e(1 + 2−53).
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Suppose that the test is true (◦(yh + ◦(yl× e)) = yh). For this value of yh

and this sign of yl, this implies | ◦ (yl × e)| ≤ u

4
, which in turn implies

−yl × e(1− 2−53) ≤ u

4
.

This is rewritten as:
u

4
+ yl ≥ −yl

(
e
(
1− 2−53

)
− 1
)
.

Using −yl ≥
(

1
4 −

2−k−1

1−ε1

)
u, we get

u

4
+ yl ≥

(
1
4
− 2−k−1

1− ε1

)
u
(
e
(
1− 2−53

)
− 1
)
.

To ensure that
u

4
+yl ≥ ε1y, we again use (11.16) and ensure that

u

4
+yl ≥

252u

1− ε1
ε1. This provides the condition that must be fulfilled by e for the

theorem to hold in this case: we need(
1
4
− 2−k−1

1− ε1

)
u
(
e(1− 2−53)− 1

)
≥ 252u

1− ε1
ε1

rewritten as:

e ≥ (1− 2−53)−1

(
1 +

254ε1
1− ε1 − 2−k+1

)
.

Taking for constraint on e the max of these values completes the proof of the
theorem.

11.6.4 Accurate second step

For the second step, correct rounding requires an accuracy of 2−120 to 2−150,
depending on the function. Several approaches are possible, and they will
be reviewed in Chapter 14. The important point here is that this accuracy
is known statically, so the overhead due to arbitrary multiple precision is
avoided.

The result of the accurate step must finally be rounded to a double-
precision number in the selected rounding mode. For some multiple-
precision representations, this is a nontrivial task. For instance, in the CRlibm
library, the result of the accurate step is represented by a triple-double num-
ber (see Section 14.1, pages 494 through 503). Converting this result to a
double-precision/binary64 number is equivalent to computing the correctly
rounded-to-nearest sum of three double-precision/binary64 numbers. This
can be done using techniques presented in Section 6.3.4, page 199.
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11.6.5 Error analysis and the accuracy/performance tradeoff

The probability p2 of launching the accurate step is the probability that the
interval [ŷ1(1 − ε1), ŷ1(1 + ε1)] contains the midpoint between two consecu-
tive floating-point numbers (or a floating-point number in directed rounding
modes)—see Figure 12.2, page 408. Therefore, it is expected to be propor-
tional to the error bound ε1 computed for the first step.

This defines the main performance tradeoff one has to manage when
designing a correctly rounded function: the average evaluation time will be

Tavg = T1 + p2T2, (11.17)

where T1 and T2 are the execution time of the first and second phase respec-
tively, and p2 is the probability of launching the second phase.

For illustration, T2 ≈ 100T1 in CRlibm using SCSlib,8 and T2 ≈ 10T1 in
CRlibm using double-extended numbers or triple-double numbers.

Typically, we aim at choosing (T1, p2, T2) such that the average cost of the
second step is negligible. Indeed, in this case the performance price to pay for
correct rounding will be almost limited to the overhead of the rounding test,
which is a few cycles only.

The second step is built to minimize T2; there is no tradeoff there. Then,
as p2 is almost proportional to ε1, to minimize the average time, we have to

• balance T1 and p2: this is a performance/precision tradeoff (the more
accurate the first step, the slower),

• and compute a tight bound on the overall error ε1.

Computing this tight bound is the most time-consuming part in the
design of a correctly rounded elementary function. The proof of the correct
rounding property only needs a proven bound, but a loose bound will mean a
larger p2 than strictly required, which directly impacts average performance.
Compare p2 = 1/1000 and p2 = 1/500 for T2 = 100T1, for instance. As a
consequence, when there are multiple computation paths in the algorithm, it
may make sense to precompute different values of ε1 on these different paths
[102].

With the two-step approach, the proof that an implementation always
returns the correctly rounded result resumes to two tasks:

• computing a bound on the overall error of the second step, and check-
ing that this bound is less than the bound deduced from the hardest-to-
round cases (e.g., 2−118 for natural logarithms);

8SCSlib, the Software Carry-Save Library, is a reasonably fast and lightweight multiple-
precision library developed in the Arénaire project at ENS Lyon (http://www.ens-lyon.fr/
LIP/Arenaire/Ware/SCSLib/). It was used in the first versions of CRlibm.
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• proving that the first step returns a value only if this value is correctly
rounded, which also requires a proven (and tight) bound on the evalu-
ation error of the first step.

Let us now survey how such error bounds can be obtained.

11.7 Computing Error Bounds

The evaluation of any mathematical function entails two main sources of
errors:

• approximation errors (also called methodical errors), such as the error
that comes from approximating a function by a polynomial. One may
have a mathematical bound for them (given by a Taylor formula, for
instance), or one may have to compute such a bound using numerics;
for example, if the polynomial has been computed using the Remez
algorithm. If this is the case, one must be certain that the numerical
method will never underestimate the approximation errors [70];

• rounding errors, produced by most (but not all!) floating-point opera-
tions of the code.

The distinction between both types of errors is sometimes arbitrary. For
example, the error due to rounding the polynomial coefficients to floating-
point numbers is usually included in the approximation error of the polyno-
mial. The same holds for the rounding of table values, which is accounted
far more accurately as an approximation error than as a rounding error.
This point is mentioned here because a lack of accuracy in the definition of
the various errors involved in a given code may lead to one of them being
forgotten.

11.7.1 The point with efficient code

Efficient code is especially difficult to analyze and prove because of all the
techniques and tricks used by expert programmers.

For instance, many floating-point operations are exact, and the experi-
enced developer of floating-point code will try to use them. Examples include
multiplication by a power of the radix of the floating-point system, subtrac-
tion of numbers of similar magnitude due to Sterbenz’s lemma (Lemma 2,
Chapter 4, page 122), exact addition and exact multiplication algorithms such
as Fast2Sum (Algorithm 4.3, page 126) and 2MultFMA (Algorithm 5.1, page
152), multiplication of a small integer by a floating-point number whose sig-
nificand ends with enough zeros, etc.

The expert programmer will also do his or her best to avoid computing
more accurately than strictly needed. He or she will remove from the com-
putation some operations that are not expected to improve the accuracy of
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the result by much. This can be expressed as an additional approximation.
However, it soon becomes difficult to know what is an approximation
to what, especially as the computations are re-parenthesized to maximize
floating-point accuracy.

The resulting code obfuscation is best illustrated by an example.

11.7.2 Example: a “double-double” polynomial evaluation

Listing 11.2 is an extract of the code of a sine function in CRlibm. The
“target” arithmetic is double precision/binary64, and we sometimes need to
represent big precision numbers as the unevaluated sum of two
binary64/double-precision numbers (as stated above, in the somehow
clumsy computer arithmetic jargon, such numbers are sometimes called
“double-double” numbers).

These three lines compute the value of an odd polynomial,

p(y) = y + s3 × y3 + s5 × y5 + s7 × y7,

close to the Taylor approximation of the sine function (its degree-1 coefficient
is equal to 1). In our algorithm, the reduced argument y is ideally obtained
by subtracting from the floating-point input x an integer multiple of π/256.
As a consequence, y ∈ [−π/512, π/512] ⊂ [−2−7, 2−7].

However, as y is an irrational number, the implementation of this range
reduction has to return a number more accurate than a double-precision
number; otherwise, there is no hope of achieving an accuracy of the sine that
allows for correct rounding in double precision. In our implementation, the
range reduction step therefore returns a double-double number yh + yl.

To minimize the number of operations, Horner’s rule is used for the
polynomial evaluation:

p(y) = y + y3 × (s3 + y2 × (s5 + y2 × s7)).

For a double-double input y = yh+yl, the expression to compute is thus

(yh + yl) + (yh + yl)3 × (s3 + (yh + yl)2 × (s5 + (yh + yl)2 × s7)).

The actual code uses an approximation to this expression: the computa-
tion is accurate enough if all the Horner steps except the last one are com-
puted in double-precision arithmetic. Thus, yl will be neglected for these
iterations, and coefficients s3 to s7 will be stored as double-precision num-
bers noted s3, s5, and s7. The previous expression becomes:

(yh + yl) + yh3 × (s3 + yh2 × (s5 + yh2 × s7)).
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However, if this expression is computed as parenthesized above, it has
a poor accuracy. Specifically, the floating-point addition yh + yl (by defini-
tion of a double-double number) returns yh, so the information held by yl is
completely lost. Fortunately, the other part of the Horner evaluation also has
a much smaller magnitude than yh—this is deduced from |y| ≤ 2−7, which
gives |y3| ≤ 2−21. The following parenthesizing leads therefore to a much
more accurate algorithm:

yh +
(
yl + yh× yh2 × (s3 + yh2 × (s5 + yh2 × s7))

)
.

In this last version of the expression, only the leftmost addition has to be
accurate. So we will use a Fast2Sum (Algorithm 4.3, page 126), which as we
saw in Chapter 4 provides an exact addition of two double-precision num-
bers, returning a double-double number. The other operations use the native
(and therefore fast) double-precision arithmetic. We obtain the code of
Listing 11.2.

C listing 11.2 Three lines of C.

yh2 = yh * yh; ts = yh2 * (s3 + yh2 * (s5 + yh2 * s7));
Fast2Sum(sh, sl, yh, yl + yh * ts);

To summarize, this code implements the evaluation of a polynomial with
many layers of approximation. For instance, variable yh2 approximates y2

through the following layers:

• y was approximated by yh + yl with the relative accuracy εargred;

• yh + yl is approximated by yh in most of the computation;

• yh2 is approximated by yh2, with a floating-point rounding error.

In addition, the polynomial is an approximation to the sine function,
with a relative error bound of εapprox which is supposed known.

Thus, the difficulty of evaluating a tight bound on an elementary func-
tion implementation is to combine all these errors without forgetting any of
them, and without using overly pessimistic bounds when combining several
sources of errors. The typical tradeoff here will be that a tight bound requires
considerably more work than a loose bound (and its proof, since it is much
longer and more complex, might inspire considerably less confidence). Some
readers may get an idea of this tradeoff by relating each intermediate value
with its error to confidence intervals, and propagating these errors using
interval arithmetic. In many cases, a tighter error will be obtained by split-
ting confidence intervals into several cases, and treating them separately,
at the expense of an explosion of the number of cases. This is one of the
tasks that a tool such as Gappa (see Section 13.3, page 474) was designed
to automate.



Chapter 12

Solving the Table Maker’s
Dilemma

12.1 Introduction

As we have seen in previous chapters (especially in Chapters 2 and 4),
requiring correctly rounded arithmetic operations has a number of

advantages. Among them:

• it greatly improves the portability of software;

• it allows one to design algorithms that use this requirement;

• this requirement can be used for designing formal proofs of software
(see Chapter 13);

• one can easily implement interval arithmetic, or more generally one can
get certain lower or upper bounds on the exact result of a sequence of
arithmetic operations.

The IEEE 754-1985 and 854-1987 standards required correctly rounded
arithmetic operations. It seems natural to try to enforce the same require-
ment for the most common mathematical functions (simple algebraic func-
tions such as 1/

√
x and also a few transcendental functions such as sine,

cosine, exponentials, and logarithms of radices e, 2, and 10, etc.).
This was not done in the 754-1985 and 854-1987 standards, mainly

because of a difficulty known as the Table Maker’s Dilemma. The name Table
Maker’s Dilemma (TMD) was coined by Kahan. Let us quote him [209]:

Why can’t Y W be rounded within half an ulp like SQRT? Because
nobody knows how much computation it would cost to resolve what I
long ago christened “The Table-Maker’s Dilemma” (· · · ). No general
way exists to predict how many extra digits will have to be carried

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_12, 405
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to compute a transcendental expression and round it correctly to some
preassigned number of digits. Even the fact (if true) that a finite number
of extra digits will ultimately suffice may be a deep theorem.

Indeed, there are solutions for algebraic functions (see Definition 14),
even if they are not fully satisfactory (the precision with which the compu-
tations must be performed is, in general, coarsely overestimated). Although
no solution seems to exist for a general transcendental expression (see Defi-
nition 15), we will show in this chapter that for the most common functions
and a given, not too large, floating-point format, one can find satisfactory
solutions to that problem. This is why within the IEEE 754-2008 standard,
correct rounding of some functions becomes recommended (yet not manda-
tory). These functions are:

ex, ex − 1, 2x, 2x − 1, 10x, 10x − 1,
ln(x), log2(x), log10(x), ln(1 + x), log2(1 + x), log10(1 + x),√

x2 + y2, 1/
√

x, (1 + x)n, xn, x1/n(n is an integer), xy,
sin(πx), cos(πx), arctan(x)/π, arctan(y/x)/π,

sin(x), cos(x), tan(x), arcsin(x), arccos(x), arctan(x), arctan(y/x),
sinh(x), cosh(x), tanh(x), sinh−1(x), cosh−1(x), tanh−1(x).

Before going further, let us now define the TMD more precisely.

12.1.1 The Table Maker’s Dilemma

Assume we wish to implement a mathematical function f , and that we use
a radix-β floating-point format of precision p. Let us denote ◦ the active
rounding mode, and call rounding breakpoints the values where the value of ◦
changes:

• for “directed” rounding (i.e., toward +∞,−∞ or 0), the breakpoints are
the (finite) floating-point numbers;

• for rounding to nearest, they are the exact middle of two consecutive
floating-point numbers.

The real number f(x) cannot, in general, be represented with a finite
number of digits. Furthermore, in many cases (e.g., trigonometric functions,
logarithms, . . . ), the function f cannot be exactly reduced to a finite number
of arithmetic operations.

Hence, we must approximate it by some other function that is easier to
evaluate (e.g., a piecewise polynomial or rational function), say f̂ . More pre-
cisely, what we will call f̂ here is the computed approximation, not a real-
valued theoretical approximation. If x is a floating-point number, then f̂(x)
is a floating-point number, of possibly much higher precision than the “tar-
get precision” p. All various rounding errors are included in the definition
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of f̂ , including the roundings of the coefficients of the polynomial or rational
approximation and the roundings of the arithmetic operations.

We assume that the very accurate but finitely precise significand of f̂(x)
approximates the infinitely precise significand of f(x) within an error less
than β−m, where m is significantly larger than p. In the case of several f̂ ’s with
different m’s, we will write f̂m. The only information that we have on f(x)
is that it is located in some interval Ix, centered1 on f̂m(x), of width 2β−m.
We would like to always return ◦(f(x)), and yet the only thing we can easily
return is ◦(f̂m(x)): Can we guarantee that if m is large enough, then these two
values will always be equal?

The TMD occurs, for a given x, when the interval Ix contains a break-
point, i.e., when f̂m(x) is so close to a breakpoint that, taking into account
the error β−m of the approximation, it is impossible to decide whether f(x)
is above or below the breakpoint. In such a case, one does not know which
result should be returned: due to the inaccuracy, it could be the precision-p
floating-point number right above the breakpoint or the one right below it.
This is exemplified by Figures 12.1 and 12.2.

Floating-point numbers

Breakpoints f̂(x)

Interval where f(x) is located

RN(f(x))

Figure 12.1: In this example (assuming rounding to nearest), the interval
around f̂(x) where f(x) is known to be located contains no breakpoint. Hence,
RN(f(x)) = RN(f̂(x)): we can safely return a correctly rounded result.

When the TMD occurs, the only possible solution consists in increas-
ing m, i.e., in performing the computation again, with an approximation more
accurate than the one provided by f̂m. We then compute f̂m′(x) with m′ > m.
Ziv suggests to progressively increase the precision m of the computation,

1Sometimes, we know the sign of some of the errors, so that the interval is not exactly
centered on f̂(x). This does not change the reasoning much.
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Floating-point numbers

Breakpoints

Interval where f(x) is located

f̂(x)

Figure 12.2: In this example (assuming rounding to nearest), the interval around
f̂(x) where f(x) is known to be located contains a breakpoint. We do not have enough
information to provide a correctly rounded result.

until we are able to provide a correctly rounded result [444]. A problem with
such a strategy is that we may not know when the computation stops (for
many functions, we do not even know if it actually always stops).

To summarize, we wish to always return ◦(f(x)) as the result of the com-
putation, but in practice, the best we can do is to return ◦(f̂(x)). Hence, our
problem can be reworded as follows:

Can we make sure, if m is large enough, that ◦(f̂(x)) will always
be equal to ◦(f(x))?

A sufficient condition to ensure that ◦(f̂(x)) = ◦(f(x)) for all floating-point
numbers x is that the infinitely precise significand of f(x) should never be
within a distance β−m from a breakpoint, so that there cannot be a breakpoint
between f̂(x) and f(x). But if f(x) is a breakpoint, this sufficient condition
cannot be satisfied for any value of m. Depending on the function f , several
cases may occur.

• For the most common mathematical functions, either f(x) is never
equal to a breakpoint (when x is a floating-point number), or there
are only a few straightforward cases for which this happens (such as
cos(0) = 1 or log2(2k) = k for integers k).

• For some functions, there are many floating-point numbers x for which
f(x) is a breakpoint, but these values of x are known and can be easily
detected. A typical example is the power function [246].
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• Finally, there are some functions (such as the number theoretic Gamma
function Γ, that generalizes the factorial function to real numbers) for
which we currently know (close to) nothing.

Considering the possibility of f(x) being a breakpoint, our problem
becomes:

Find m as small as possible such that for all floating-point num-
bers x in the domain of implementation of f , either f(x) is a break-
point or the infinitely precise significand of f(x) is not within a
distance β−m from a breakpoint.

The precision-p values x such that the infinitely precise significand
of f(x) is closest to a breakpoint will be called worst cases for the TMD. We
will (informally) call bad cases the floating-point numbers x for which f(x) is
somehow close to a breakpoint. The best (i.e., lowest) bound m will be called
the hardness to round. We give a more formal definition.

Definition 10 (Hardness to round). For a given floating-point format of radix β
and a given rounding mode, the hardness to round for function f in interval [a, b]
is the smallest integer m such that for all floating-point numbers x ∈ [a, b], either
f(x) is a breakpoint or the infinitely precise significand of f(x) is not within β−m

from a breakpoint.

The fact that m must be as small as possible immediately follows from
the requirement that the very accurate but finitely precise significand of f̂
should approximate the infinitely precise significand of f with accuracy β−m.
With a large value of m, big and thus expensive precisions could be necessary
in the worst case. Obtaining the lowest m allows one to provide the best effi-
ciency guarantees for implementing f .

For example, in the single-precision/binary32 of IEEE 754, assuming
round-to-nearest mode, the hardness to round the sine function in [1/2, 1)
is m = 45 bits. There are five floating-point numbers x ∈ [1/2, 1) such that
the infinitely precise significand of sin(x) is within 2−45 from a breakpoint.
One of them is

x = 0.58756285905838012695312510 = 0.1001011001101010100001012,

for which

2 sin(x) =
46 bits︷ ︸︸ ︷

1.00011011110100011011001︸ ︷︷ ︸
24 bits

0111111111111111111111 00010 · · · 2.

The bad rounding cases derived from the study of the TMD can be used
to test if implementations of mathematical functions comply with the cor-
rect rounding requirements. By means of approximations, it is not very hard
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to devise implementations that are almost always correctly rounded. Testing
random values is unlikely to disclose any error, since bad rounding cases are
extremely infrequent (we will give an estimate of their probability in Sec-
tion 12.2.1). A list of bad rounding cases seems much more suited to investi-
gate the reliability of such implementations.

Note that depending on function f , finding a valid m that possibly over-
estimates the hardness to round can already be a difficult problem. In that
case, the TMD is only partially solved, but this suffices for providing guaran-
teed implementations of the function f . These implementations of the func-
tion f may be reasonably efficient as long as m is not too large.

Some methods described in this chapter only provide upper bounds to
the hardness to round. This includes for example some of those related to
Liouville’s theorem (see Section 12.3.3) and variants of the Stehlé–Lefèvre–
Zimmermann (SLZ) algorithm (see Section 12.4.6). On the opposite side,
some methods only provide lower bounds to the hardness to round: they
build bad cases, but may miss the worst ones. That includes Kahan’s tech-
nique relying on Hensel lifting, described in Section 12.3.4 (note that the orig-
inal goal of that technique was not to find worst cases: it aimed at building
bad cases, for function testing purposes). The TMD is fully solved when the
lowest possible m has been determined, along with worst cases. Overall, the
TMD Grail is:

For any standardized radix, rounding mode, precision p, and
function f (that is possibly multivariate), determine the hardness
to round f as well as the corresponding worst cases.

Note that we defined the TMD only for univariate functions f , but the
definition easily generalizes to several variables. At the time we are writing
this book, the TMD Grail remains far from being reached, although much
progress has been made in the last 15 years.

12.1.2 Brief history of the TMD

We should mention the pioneering work of Schulte and Swartzlander [369],
who found worst cases for some functions in the (binary) IEEE 754-1985
single-precision format, by exhaustive searching, and suggested ways of
designing a correctly rounded hardware implementation of these functions
in single precision. For general functions, the first improvement over the
exhaustive search was proposed by Lefèvre in his Ph.D. thesis. Along with
Muller, Tisserand, Stehlé, and Zimmermann, he progressively obtained worst
cases for many functions in double precision [252, 251, 389, 390]. For
instance, the worst case for the natural logarithm in the full IEEE 754 double-
precision/binary64 range [251] is attained for

x = 1.011000101010100010000110000100110110001010
0110110110× 2678
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whose logarithm is

lnx =
53 bits︷ ︸︸ ︷

111010110.0100011110011110101 · · · 110001
000000000000000000 · · · 000000000000000︸ ︷︷ ︸

65 zeros

1110 · · · .

This means that the hardness to round logarithms in double precision (for
any rounding mode) is 52 + 65 = 117. The example given above is a “dif-
ficult case” in the directed rounding modes since it is very near a floating-
point number. One of the two worst cases for radix-2 exponentials in the full
double-precision range [251] is

1.1110010001011001011001010010011010111111
100101001101× 2−10

whose radix-2 exponential is

53 bits︷ ︸︸ ︷
1.0000000001010011111111000010111 · · · 0011

0 11111111111111111 · · · 1111111111111111︸ ︷︷ ︸
59 ones

0100 · · · .

It is a difficult case for rounding to nearest, since it is very close to the middle
of two consecutive floating-point numbers.

Now, in decimal, the worst case (for |x| ≥ 3 × 10−11) for the exponen-
tial function in the decimal64 format of the IEEE 754-2008 standard [253] is
attained for

9.407822313572878× 10−2,

whose exponential is

1.098645682066338︸ ︷︷ ︸
16 digits

5 0000000000000000︸ ︷︷ ︸
16 zeros

2780 · · · .

This is a difficult case for rounding to nearest.
Independently of the algorithmic improvements for the search of

worst cases for general functions, Iordache, Matula, Lang, Muller, and
Brisebarre [195, 239, 50] devised techniques that are specific to algebraic func-
tions (see Definition 14). These specific techniques provide upper bounds to
the hardness to round, for essentially no cost at all (the costs of the general
algorithms grow exponentially with the precision p). Unfortunately, these
upper bounds are most often quite far from being tight.

12.1.3 Organization of the chapter

In this chapter, we first provide some simple preliminary remarks on the
TMD. In particular, we explain what should be expected from the worst cases



412 Chapter 12. Solving the Table Maker’s Dilemma

and how to derive information on the TMD for a given function from infor-
mation on the TMD for another one. We then describe a few methods that
(most often only partially) solve the TMD in the case of algebraic functions.
We then present two algorithms that are more expensive but allow us to
exhaustively compute worst cases, for general mathematical functions. We
finally give the worst cases that have been obtained so far in double/binary64
precisions, for the most common functions and domains.

12.2 Preliminary Remarks on the Table Maker’s
Dilemma

12.2.1 Statistical arguments: what can be expected in practice

Consider that we wish to implement function f with correct rounding. For
simplification, in this section, we assume radix 2 and rounding to nearest,
although what we will state can be generalized rather easily.

Let x be a floating-point number. The infinite significand y of f(x) has
the form

y = y0.y1y2 · · · yn−1

k bits︷ ︸︸ ︷
01111111 · · · 11 xxxxx · · ·

or

y = y0.y1y2 · · · yn−1

k bits︷ ︸︸ ︷
10000000 · · · 00 xxxxx · · ·

with k ≥ 1. The hardness to round function f in a given interval will be
p−1+kmax, where kmax is the largest value of k attained for all floating-point
numbers x in that interval.

If the precision p is small enough, we can exhaustively check all floating-
point numbers in an interval of reasonable size. We have done that for the
sine function in the interval [0.5, 1], and values of p ranking from 8 to 24 (the
results are given in Table 12.3). Looking at that table, we immediately see that
kmax always seems to be quite close to p. There is a statistical explanation for
that phenomenon. It does not prove anything, but it allows one to understand
why we obtain such figures.

A probabilistic model

Let us assume that when x is a precision-p binary floating-point number, the
bits of f(x) after the p-th position can be viewed as if they were sequences of
independent random zeros and ones, with probability 1/2 for 0 as well as for 1.

This assumption is not realistic when the function is too simple: for
instance, the digits of the quotient of two floating-point numbers form an
eventually periodic sequence, which clearly cannot be modeled by a random
sequence. Also, even with a much more “complex function,” this probabilistic
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k
Actual number
of occurrences

Expected number
of occurrences

1 16397 16384
2 8151 8192
3 4191 4096
4 2043 2048
5 1010 1024
6 463 512
7 255 256
8 131 128
9 62 64

10 35 32
11 16 16
12 7 8
13 6 4
14 0 2
15 1 1

Table 12.1: Actual and expected numbers of digit chains of length k of the form
1000 · · · 0 or 0111 · · · 1 just after the p-th bit of the infinitely precise significand of
sines of floating-point numbers of precision p = 16 between 1/2 and 1.

model may not hold in some domains. For instance, the exponential of a tiny
number ε is so close to 1 + ε that the first bits after the p-th position cannot
be viewed as “random” (indeed, that property makes it possible to round
exponentials correctly around zero, without having to actually compute
worst cases, see Section 12.2.2). And yet, in most cases, this probabilistic
model will allow us to predict, quite accurately, the order of magnitude of
the hardness to round functions (alas, these predictions are not proofs).

With our assumption, the “probability” of having k = k0 exactly is 2−k0 .
Hence, if we consider N possible input floating-point numbers x, the number
of input values for which k ≥ k0 should be around

N × 2−k0 . (12.1)

We have checked this by exhaustively counting the number of occur-
rences of the various values of k, for the sine function and numbers between
1/2 and 1 (which gives N = 2p−1), for p = 16 and 24. The results (along with
the predictions of the probabilistic model) are given in Tables 12.1 and 12.2.
One can readily see that the accordance with the prediction of the probabilis-
tic model is excellent.

According to (12.1), as soon as k0 is significantly larger than log2(N),
there should no longer be any input value for which k ≥ k0. Table 12.3 gives
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k
actual number
of occurrences

expected number
of occurrences

1 4193834 4194304
2 2098253 2097152
3 1048232 1048576
4 522560 524288
5 263414 262144
6 131231 131072
7 65498 65536
8 32593 32768
9 16527 16384

10 8194 8192
11 4093 4096
12 2066 2048
13 1063 1024
14 498 512
15 272 256
16 141 128
17 57 64
18 32 32
19 25 16
20 14 8
21 6 4
22 5 2
23 0 1

Table 12.2: Actual and expected numbers of digit chains of length k of the form
1000 · · · 0 or 0111 · · · 1 just after the p-th bit of the infinitely precise significand of
sines of floating-point numbers of precision p = 24 between 1/2 and 1.
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p
kmax

(sine function)
kmax

(exp function)

8 11 8

9 10 9

10 11 8

11 11 9

12 10 16

13 12 14

14 18 13

15 14 19

16 15 14

17 20 15

18 21 16

19 22 22

20 20 22

21 23 20

22 22 22

23 26 22

24 22 24

Table 12.3: Length kmax of the largest digit chain of the form 1000 · · · 0 or 0111 · · · 1
just after the p-th bit of the infinitely precise significands of sines and exponentials of
floating-point numbers of precision p between 1/2 and 1, for various p.

the largest attained value of k for sines and exponentials of floating-point
numbers between 1/2 and 1 (which gives N = 2p−1), and various preci-
sions p. One can see that the largest value of k is always around p (see also, in
the case of function 1/

√
x, Table 12.7).

Hence, a consequence of the probabilistic model is that the expected
hardness to round function f in interval [a, b] should be around p + log2(N),
where N is the number of floating-point numbers in [a, b]. For instance, if
[a, b] is one binade,2 then N = 2p−1 and the predicted hardness to round is
around 2p.

Of course, we have not proved anything: the probabilistic model just
gives us a hint on the order of magnitude of the value of the hardness to
round functions. We now have to actually compute (or sometimes just get
an upper bound on) that hardness to round, for the most usual functions.

2A binade is the interval between two consecutive integer powers of 2.
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And yet, this probabilistic model is very useful: it will help to tune the algo-
rithms that actually find the worst cases. Also, the various results presented
in Section 12.5 show that the predictions of the probabilistic model are quite
accurate.

12.2.2 In some domains, there is no need to find worst cases

For many functions, if the input argument is small enough, reasoning based
on the Taylor expansion of the function being considered allows one to
return correctly rounded results without having to actually find worst cases
or compute the hardness to round.

For instance, in a radix-β, precision-p system, if one wishes to evaluate
the exponential of ε with 0 ≤ ε < β−p (which implies ε ≤ (β−p − β−2p)), then

eε ≤ 1 + (β−p − β−2p) +
β−2p

2
+

β−3p

6
+

β−4p

24
+ · · · ,

which implies

eε < 1 + β−p = 1 +
1
β

ulp(1) ≤ 1 +
1
2

ulp(1).

Therefore, in such a case, one can safely return 1 as the correctly rounded to
the nearest even value of eε: there is no need to compute worst cases for input
values of exponent less than −p.

Similarly, in round-to-nearest mode and double precision/binary64 for-
mat,

• if |ε| ≤ RN
(
31/3

)
× 2−26 = 1.4422 · · · × 2−26, then sin(ε) can be replaced

by ε;

• if RN
(
31/3

)
× 2−26 < ε ≤ 2−25, then sin(ε) can be replaced by

ε− = ε − 2−78 (the case −2−25 ≤ ε < −RN
(
31/3

)
× 2−26 is obviously

symmetrical).

Tables 12.4 and 12.5 give results derived from similar reasoning for some
functions, assuming the double-precision/binary64 format of the IEEE 754
standard.

Similarly, one does not need either to search for worst cases of some
functions on large (positive and/or negative) values. For instance, the expm1
function, defined as expm1(x) = exp(x) − 1, gives −1 on values less than
−54 ln(2), in binary64, rounding to nearest.



12.2. Preliminary Remarks on the Table Maker’s Dilemma 417

This function
can be

replaced by
when

exp(ε), ε ≥ 0 1 ε < 2−53

exp(ε), ε ≤ 0 1 |ε| ≤ 2−54

exp(ε)− 1 ε |ε| < RN(
√

2)× 2−53

exp(ε)− 1, ε ≥ 0 ε+
RN(
√

2)× 2−53

≤ ε < RN(
√

3)× 2−52

log1p(ε) = ln(1 + ε) ε |ε| < RN(
√

2)× 2−53

2ε, ε ≥ 0 1 ε < 1.4426 · · · × 2−53

2ε, ε ≤ 0 1 |ε| < 1.4426 · · · × 2−54

10ε, ε ≥ 0 1 ε < 1.7368× 2−55

10ε, ε ≤ 0 1 |ε| < 1.7368× 2−56

sin(ε), sinh(ε), sinh−1(ε) ε |ε| ≤ α = RN(31/3)× 2−26

arcsin(ε) ε |ε| < α = RN(31/3)× 2−26

sin(ε), sinh−1(ε) ε− = ε− 2−78 α < ε ≤ 2−25

sinh(ε) ε+ = ε + 2−78 α < ε < 2−25

arcsin(ε) ε+ = ε + 2−78 α ≤ ε < 2−25

cos(ε) 1 |ε| < γ = RN(
√

2)× 2−27

cos(ε) 1− = 1− 2−53 γ ≤ |ε| ≤ 1.2247× 2−26

cosh(ε) 1 |ε| < 2−26

cosh(ε) 1+ = 1 + 2−52 2−26 ≤ |ε| ≤ RN(
√

3)× 2−26

cosh(ε) 1++ = 1 + 2−51 RN(
√

3)× 2−26

< |ε| ≤ 1.118× 2−25

tan(ε), tanh−1(ε) ε |ε| < η = RN(121/3)× 2−27

tanh(ε), arctan(ε) ε |ε| ≤ η

tan(ε), tanh−1(ε) ε+ = ε + 2−78 η ≤ ε ≤ 1.650× 2−26

arctan(ε), tanh(ε) ε− = ε− 2−78 η < ε ≤ 1.650× 2−26

Table 12.4: Some results for small values in the double-precision/binary64 format,
assuming rounding to nearest (some of these results are extracted from [293]).
These results make finding worst cases useless for numbers of tiny absolute value.
The number α = RN(31/3)× 2−26 is approximately equal to 1.4422 · · · × 2−26, and
η ≈ 1.1447× 2−26. If x is a real number, we let x− denote the largest floating-point
number strictly less than x.
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This function
can be

replaced by
when

exp(ε), ε ≥ 0 1 ε < 2−52

exp(ε), ε < 0 1− = 1− 2−53 |ε| ≤ 2−53

exp(ε)− 1 ε |ε| < RN(
√

2)× 2−52

ln(1 + ε), ε 6= 0 ε− −2−52 < ε ≤ RN(
√

2)× 2−52

2ε, ε ≥ 0 1 ε < 1.4426 · · · × 2−52

2ε, ε < 0 1− = 1− 2−53 |ε| < 1.4426 · · · × 2−53

10ε, ε ≥ 0 1 ε < 1.7368× 2−54

10ε, ε < 0 1− = 1− 2−53 |ε| < 1.7368× 2−55

sin(ε), sinh−1(ε), ε > 0 ε− ε ≤ τ = RN(61/3)× 2−26

sin(ε), sinh−1(ε), ε ≤ 0 ε |ε| ≤ τ

sin(ε), sinh−1(ε), ε > 0 ε−− τ < ε ≤ 2−25

sin(ε), sinh−1(ε), ε < 0 ε+ τ < |ε| ≤ 2−25

arcsin(ε), sinh(ε), ε ≥ 0 ε ε < τ

arcsin(ε), sinh(ε), ε < 0 ε− |ε| < τ

arcsin(ε), sinh(ε), ε ≥ 0 ε+ = ε + 2−78 τ ≤ ε < 2−25

arcsin(ε), sinh(ε), ε < 0 ε−− = ε− 2−77 τ ≤ |ε| < 2−25

cos(ε), ε 6= 0 1− = 1− 2−53 |ε| < 2−26

cosh(ε) 1 |ε| < RN(
√

2)× 2−26

cosh(ε) 1+ = 1 + 2−52 RN(
√

2)× 2−26 ≤ |ε| < 2−25

tan(ε), tanh−1(ε), ε ≥ 0 ε ε ≤ 1.4422 · · · × 2−26

tan(ε), tanh−1(ε), ε < 0 ε− |ε| ≤ 1.4422 · · · × 2−26

tanh(ε), arctan(ε), ε > 0 ε− ε ≤ 1.4422 · · · × 2−26

tanh(ε), arctan(ε), ε ≤ 0 ε |ε| ≤ 1.4422 · · · × 2−26

Table 12.5: Some results for small values in the double-precision/binary64 format,
assuming rounding toward −∞ (some of these results are extracted from [293]).
These results make finding worst cases useless for numbers of tiny absolute value.
If x is a real number, we let x− denote the largest floating-point number strictly less
than x. The number τ = RN(61/3)×2−26 is approximately equal to 1.817 · · ·×2−26.



12.2. Preliminary Remarks on the Table Maker’s Dilemma 419

12.2.3 Deducing the worst cases from other functions or domains

The worst cases of some functions in some domains can be deduced from
those of other functions. For instance, for sufficiently large inputs, the worst
cases of sinh and cosh can be obtained from those of exp. Indeed, for x ≥ x0:

sinh(x) =
1
2

exp(x) (1 + εs) and cosh(x) =
1
2

exp(x) (1 + εc),

where the relative error can be bounded: |εs|, |εc| ≤ exp(−2x0). For x0 = 26,
since −2x0/ log(2) < −184, one has |εs|, |εc| < 2−184, which gives an error
of at most 2−183 on the significand. Thus, a bad case with a 2−m bound for
sinh or cosh will correspond to a bad case with a bound 2−min(m−1,182) for
exp. Only a small domain can be avoided in the search for the worst cases
(since cosh(x) yields an overflow for x ≥ 711), but in practice, this domain
will be by far the most difficult to deal with for these functions.3 Also, note
that due to the factor 1/2 in the result, the tests of exp must be carried out a
little further than the overflow threshold (of exp) in order to make sure that
one obtains all the worst cases of sinh and cosh.

Other bad-case deductions can be obtained from the fact that the bad-
case condition depends only on the significand of the result, not on its expo-
nent (assuming an unbounded exponent range, i.e., ignoring overflows and
underflows). Reasoning on overflows and underflows will be done specifi-
cally for each considered function, in order to reduce the tested domain (if
possible). Let us mention two examples.

• For the integer power functions f(x) = xn, where n ∈ Z, one has
f(βx) = (βx)n = βnxn = βnf(x). Thus, f(βx) and f(x) have the
same significand. As a consequence, all the worst cases can be obtained
from the results in [1, β), using an extended exponent range, so that
if f(x) overflows or underflows for some x ∈ [1, β) but f(β−1x) fits
in the normal exponent range, one still gets the potential bad cases.
However, if for some x ∈ [1, β), f(x) overflows and f(β−1x) under-
flows, then one does not need to take this argument into account. In
practice, as emin ≈ −emax, this means that for n larger than some
bound, one will be able to remove some interval (that depends on n)
around β1/2 from the tested domain. Alternatively, one can test f(x) for
x ∈ [xmin(n), xmax(n)], where xmin(n) ≥ β−1/2 and xmax(n) ≤ β1/2 are
chosen from the underflow/overflow thresholds of f(x) = xn.

• For f(x) = 2x in binary, one has f(x + n) = 2x+n = 2x2n = 2nf(x),
so that if n ∈ Z, then f(x + n) and f(x) have the same significand.
Moreover, for |x| ≤ 1

2 , if x + n is a machine number, then x is also a

3They will be approximated by polynomials, but the error of the approximation quickly
increases with the input values; practical tests on such large values were up to 40 times slower
than for small input values.
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machine number. As a consequence, all the worst cases of 2x can be
obtained from the results in [−1

2 , 1
2 ].

This property can also be used to obtain all the worst cases of the inve-
rse function log2. However, we will see in Section 12.4.4 that only one
function needs to be tested among f and its inverse f−1, and it happens
that 2x is the most efficient to test for x > x0, where x0 is of the order of
1 (the exact bound depends on the implementation). For instance, using
the discussion in Section 12.4.4, we test log2(x) for x ∈ [1/2, 2) and 2x for
x ∈ [1, 2)4, so that one obtains all the worst cases of 2x. This also covers
the full domain for log2, but due to the large-factor problem mentioned
in Section 12.4.4, we also need to test 2x with a smaller bound on k (38
instead of 44), on larger values of x from an interval of length 1, namely
[32, 33), to be able to get all the wanted worst cases of log2 (see [249,
§3.4.1]).

12.3 The Table Maker’s Dilemma for Algebraic
Functions

For some functions that are simple enough, called the algebraic functions (see
Definition 14), one can rather easily find reasonable bounds on the hardness
to round. Before going further, we must define some classes of numbers and
functions that will be needed in the remainder of this chapter.

12.3.1 Algebraic and transcendental numbers and functions

A rational number p/q is a root of the degree-1 polynomial equation qx− p =
0. This provides an algebraic definition of rational numbers. Namely, a num-
ber is rational if it is the root of a degree-1 polynomial equation with inte-
ger coefficients. The algebraic numbers are the generalization of that definition
where polynomials of higher degree are also allowed.

Definition 11 (Algebraic number). A complex number z is algebraic if there exists
a nonzero polynomial P with integer coefficients such that

P (z) = 0.

For a given algebraic number z, there exist infinitely many polynomi-
als P such that P (z) = 0: if P is such a polynomial, all its multiples satisfy
the same property. Among these polynomials, we distinguish the minimal
polynomial of z.

4This is just an example. We do not claim that these are the best intervals, and for ease of
implementation and bug detection, there is some redundancy.
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Definition 12 (Minimal polynomial and degree of an algebraic number). If α
is an algebraic number, the minimal polynomial of α (over the integers) is the nonzero
polynomial P , of relatively prime integer coefficients and positive leading coefficient,
of smallest degree, such that

P (α) = 0.

If d is the degree of P , we say that α is an algebraic number of degree d.

Definition 13 (Transcendental number). A complex number z is transcendental
if it is not algebraic.

Examples of algebraic numbers are 1, 5/7 (and all the rational numbers,
including the floating-point numbers in any radix),

√
3,
√

1 +
√

7, i. Examples
of transcendental numbers are e, π, sin(1).

Definition 14 (Algebraic function). A complex-valued function f is an algebraic
function if there exists a nonzero bivariate polynomial P with integer coefficients
such that for all x in the domain of f we have

P (x, f(x)) = 0.

Examples of algebraic functions are x + 1,
√

x, 1/
√

2 +
√

x, x4/9. When
x is a floating-point number and f is an algebraic function, then f(x) is an
algebraic number.

Definition 15 (Transcendental function). A function f is a transcendental func-
tion if it is not algebraic.

Examples of transcendental functions are xx, cos(x), exp(x),

Γ(x) =
∫ ∞

0
tx−1e−tdt.

To show that a function is not algebraic, it is sufficient to find an algebraic
number x such that f(x) is not an algebraic number.

Definition 16 (Elementary functions [431]). An elementary function is a func-
tion built from a finite number of (complex) exponentials, logarithms, constants, one
variable, and roots of equations through composition and combinations using the four
elementary operations (+,−,×,÷).

Examples of elementary functions are 1/x, sin(x), (1+x)3/4, cos(1+e−x2
).

An example of a function that is not elementary is Γ(x).
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12.3.2 The elementary case of quotients

Quotients are functions that are sufficiently simple so that we do not need the
analyses described in the rest of this chapter to handle them. The following
elementary properties allow us to understand their hardness to round.

Lemma 36 (Exclusion lemma for directed rounding modes). The infinitely pre-
cise significand of the quotient of two radix-β, precision-p, floating-point numbers
satisfies the following property:

• either it is exactly representable on p digits;

• or its radix-β expansion cannot contain more than p − 1 consecutive zeros or
digits (β − 1) after the p-th digit.

Lemma 36 shows that in directed rounding modes, the hardness to
round function (x, y)→ x/y is at most 2p− 1.

Proof. Let x and y be radix-β, precision-p, floating-point numbers, and let
X and Y be their integral significands. Without loss of generality, we can
assume that x and y are normal. We have

βp−1 ≤ X, Y < βp.

The radix-β expansion of X/Y has the form

X

Y
= δ × (0.q1q2q3 · · · qpqp+1qp+2 · · · ) ,

where δ is 1 or β. Thus, we can write

X

Y
= δ × (0.q1q2q3 · · · qp + ρ) ,

with ρ < β−p. This gives

X = δ × ((Y × 0.q1q2q3 · · · qp) + Y ρ) .

The term Y × 0.q1q2q3 · · · qp is an integer multiple of β−p. That term, added
to Y ρ, is a multiple of 1/δ, which is either 1 or 1/β. Therefore, Y ρ is a multiple
of β−p, which is less than Y β−p. This implies that either β−p ≤ Y ρ ≤ Y β−p −
β−p or Y ρ = 0. Therefore, either

β−2p < β−p/Y ≤ ρ ≤ β−p − β−p/Y < β−p − β−2p

or ρ = 0. We conclude that either the result is exactly representable on p digits
or

0.q1q2 · · · qp 00 · · · 0︸ ︷︷ ︸
p− 1 zeros

1 < 0.q1q2 · · · qp+ρ < 0.q1q2 · · · qp (β − 1) · · · (β − 1)︸ ︷︷ ︸
p− 1 digits (β − 1)

(β−1).



12.3. The Table Maker’s Dilemma for Algebraic Functions 423

Lemma 37 (Exclusion lemma for round-to-nearest mode). The infinitely
precise significand of the quotient of two radix-β, precision-p, floating-point num-
bers satisfies the following property:

• either it is exactly equal to a breakpoint (i.e., the exact middle of two consecutive
floating-point numbers);

• or it is equal to a floating-point number;

• or its radix-β expansion cannot contain more than p − 1 consecutive 0’s or
(β − 1)’s after the p + 1-th digit.

The proof is similar to the proof of Lemma 36. In radix 2 and round-to-
nearest mode, the situation is even simpler.

Lemma 38 (Additional property in radix 2). If the radix is 2, when the quotient of
two floating-point numbers is of absolute value larger than the underflow threshold
2emin , it cannot be a breakpoint of the round-to-nearest mode (i.e., the exact middle of
two consecutive floating-point numbers).

Proof. Let x and y be radix-2, precision-p, floating-point numbers, and let
X and Y be their integral significands. Without loss of generality, we can
assume that x and y are normal. We have

2p−1 ≤ X, Y < 2p.

Assume that the radix-2 expansion of X/Y has the form

X

Y
= δ ×

(
0.q1q2q3 · · · qp + 2−p−1

)
,

with δ ∈ {1, 2} (since |x/y| is larger than 2emin , if it is equal to a breakpoint,
its infinitely precise significand is necessarily of the form 2× (0.q1q2q3 · · · qp +
2−p−1)). This would give

2p+1X = δY (2Q + 1), (12.2)

where Q is the integer whose binary representation is q1q2q3 · · · qp. Since 2Q+
1 is odd, Equation (12.2) implies that δY must be a multiple of 2p+1, which
implies that Y must be a multiple of 2p. And we cannot have Y = 2p, since
we assumed Y < 2p.

We must raise some important remarks with respect to Lemma 38.

• That property is not true in radix 10. For instance, in precision-2,
rounded to nearest, decimal arithmetic, the quotient 0.25/2.0 is exactly
equal to the breakpoint 0.125.
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• In radix 2, for that property to hold, it is essential that the quotient is
of absolute value above the underflow threshold. For instance, if p = 3,
then 1.112 × 2emin divided by 1.002 × 21 is 0.1112 × 2emin , which is the
exact middle of the two consecutive floating-point numbers 0.112×2emin

and 2emin .

• It is frequently believed that Lemma 38 holds whenever the radix β is a
prime number. This is not true. For instance, in radix 3, with p = 2, 2.13

divided by 2.03 is the exact middle of the two consecutive floating-point
numbers 1.03 and 1.13.

12.3.3 Around Liouville’s theorem

A bound on the hardness to round m can always be obtained when the stud-
ied function f is algebraic (see Definition 14). Iordache and Matula [195] gave
some bounds for the division, the square root, and the square root reciprocal
functions. Lang and Muller [239] provided bounds for some other functions.
Some of the results given by Lang and Muller in [239] are summarized in
Table 12.6. The approaches of [195, 239] are related to the following
Diophantine approximation theorem, due to Liouville [264].

Theorem 39 (Liouville [264]). Let α be an algebraic number of degree d ≥ 2. There
exists a constant Cα such that for all integers u, v, with v ≥ 1,∣∣∣α− u

v

∣∣∣ > Cα

vd
.

The effective constant Cα is given by

Cα =
1

max|t−α|≤1/2 |P ′(t)|
,

where P is the minimal polynomial of α over Z.

In [50], Brisebarre and Muller have investigated the implications of
Liouville’s theorem for the TMD for the algebraic functions. Their approach
allows us to obtain rather easily certain upper bounds on the hardness to
round. For example, let us consider function xa/b with gcd(a, b) = 1 and
a > 0 for a floating-point number x ∈ [1, βb) and round-to-nearest mode.
We define k ∈ {0, . . . , a − 1} such that x ∈ [βkb/a, β(k+1)b/a), l as the integer
such that x ∈ [βl, βl+1), and the two quantities u = k ·b+(p−1) · max{a−b, 0}
and v = l ·a+(p−1) · max{b−a, 0}. Then if xa/b is not the middle of two con-
secutive floating-point numbers, the distance between xa/b and the middle of
two consecutive floating-point numbers is always larger than β−µ, where

µ = (p− 1) · max{a, b}+ (b− 1) · (k + 1) + logβ(b) + b · logβ(2)
−min{u, v} − logβ

[
gcd

(
2b, βmax{u−v,0})] .
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Notice that when a, b, and β are fixed, the quantity µ above grows
essentially like p · max{a, b}when the precision p increases. Except for a very
few values of a and b, this is much larger than what one can expect from the
probabilistic model described in Section 12.2.1.

In general, the bounds derived from Liouville’s theorem are crude over-
estimations of the hardnesses to round. To see this, it suffices to look at the
actual hardness to round for function 1/

√
x (which is not in the class of func-

tions considered just above, but for which similar results are also obtained
in [50]) for various values of the precision p, given in Table 12.7, and to com-
pare these values to the bound given in Table 12.6.

There have been some improvements to Liouville’s theorem, such as the
following, due to Roth.

Theorem 40 (Roth [348]). Let α be an algebraic number of degree d ≥ 2. For all
ε > 0, there exists Cε,α > 0 such that for all integers u, v, with v ≥ 1,∣∣∣α− u

v

∣∣∣ > Cε,α

v2+ε
.

Unfortunately, the constant Cε,α > 0 in Theorem 40 is not effectively
computable.

12.3.4 Generating bad rounding cases for the square root using
Hensel 2-adic lifting

In [206], Kahan described a novel way to test the correct rounding of the
implementations of the square root function

√
x, in radix 2 and for any pre-

cision p and any rounding mode. His method, later strengthened by Parks
in [324, 325], explicitly constructs bad rounding cases. It was implemented in
the U.C. Berkeley test suite (see Section 3.8.3, page 115), which aims at dis-
covering non-compliances to the IEEE 754 standard. In an independent work,
Cornea [84] showed that the hardness to round the square root function can
be obtained by solving Diophantine equations that are very similar to the
ones below. Unfortunately, that reference does not provide details on how to
solve them.

Below, we give a simplified exposition of the method, and refer the inter-
ested reader to [325]. In the rest of this section, we suppose that the radix is 2.
For simplicity, we will restrict ourselves to input values in the binade [1, 2).
Let us first study the rounding breakpoints of the square root function. If the
precision-p floating-point number x ∈ [1, 2) is a bad rounding case, then there
exist a p-bit integer y and a real ε of tiny absolute value such that:

2p−1√x = y + ε in the case of a directed rounding mode;
2p√x = 2y + 1 + ε in the case of the round-to-nearest mode.
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Function
Size of the largest

chain 01111 · · · 1

Size of the largest

chain 10000 · · · 0

Reciprocal = p (p odd) = p

≤ p (p even)

Division = p = p

Square root = p + 2 = p

Inverse

square root
≤ 2p + 2 ≤ 2p + 2

Norm√
x2 + y2 = p + 2 = p + 2

with 1
2 ≤ x, y < 1

2D normalization
x√

x2+y2
≤ 3p + 3 ≤ 3p + 3

with 1
2 ≤ x, y < 1

Table 12.6: Some bounds given by Lang and Muller in [239] on the size kmax of
the largest digit chain of the form 1000 · · · 0 or 0111 · · · 1 just after the p-th bit of the
infinitely precise significand of f(x) (or f(x, y)), for some simple algebraic functions.
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p x (binary) 1/
√

x kmax

4 1.101 0.110010001101 · · · 4

5 11.110 0.10000100001100 · · · 5

6 11.0100 0.10001110000000001101 · · · 10

7 11.11110 0.100000010000001100 · · · 7

8 10.011011 0.1010010001111111110100 · · · 10

9 11.1111110 0.1000000001000000001100 · · · 9

10 11.11111110 0.100000000010000000001100 · · · 10

11 11.111111110 0.1000000000001000000000001100 · · · 11

12 11.1111111110 0.1000000000001000000000001100 · · · 12

13 11.11111111110 0.1000000000000100000000000 13

01100 · · ·

14 1.0010001110011 0.1110111111011101140101 · · · 15

15 11.1000101000110 0.100010000001000011610111 · · · 17

16 10.11111110001000 0.100100111111101110151000 · · · 16

17 1.0111111000101100 0.1101000110000101110191011 · · · 20

18 11.1111111111111110 0.10000000000000000010171100 · · · 18

19 1.100010000011110011 0.110011101101000100010231100 · · · 24

20 1.0000101100011111101 0.1111101010011100111110201000 · · · 21

24 10.1110100001100011100011 0.100101100010000010011110 28

01270100 · · ·

32 1.000111100000110110001011 0.1111001000101101110111010 33

0101101 100101010321011 · · ·

53 1.1010011010101001110011000 0.1100011100111011110100001000110 58

001010110101011110011001110 001010001100001001010101570100 · · ·

Table 12.7: Worst cases for the function 1/
√

x, for binary floating-point systems and
various values of the precision p (including the case of the double-precision/binary64
format: p = 53). The input variables are floating-point numbers satisfying 1 ≤ x <
4, which suffices to deduce all worst cases [239], c©IEEE, 2001, with permission.
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By moving the ε’s to the left-hand sides and squaring, we obtain that

22p−2x− 2p√xε + ε2 = y2 in the case of a directed rounding mode;
22px− 2p+1√xε + ε2 = (2y + 1)2 in the case of the round-to-nearest mode.

Since y and 2p−1x are integers, so must be −2p√xε + ε2 in the case of
directed rounding modes and −2p+1√xε + ε2 in the round-to-nearest mode.
As a consequence:

• in the case of a directed rounding mode: y2 = k mod 2p−1 for some
small integer k;

• in the case of the rounding-to-nearest mode: (2y + 1)2 = k mod 2p+1

for some small integer k.

It is now clear that if we could find integer solutions z to the equa-
tions z2 = k mod 2p+e for e = ±1 and k a small integer, then we would
be able to build bad rounding cases for the square root function.

Let us now show how to find solutions to such equations. We consider
the Diophantine equation

z2 = k mod 2n,

for any arbitrary n. We assume that k is a fixed small odd integer. If n is
small enough, the equation can be solved by exhaustively trying all inte-
gers in [0, 2n). This quickly stops being efficient as n increases. Kahan [206]
described a way to “lift” a solution modulo 2i to a solution modulo 2i+1

when i ≥ 3. This method is in fact a core ingredient in the theory of p-adic
numbers, and is usually referred to as Hensel lifting (see for example
the textbook [223] for an introduction to p-adic numbers). After finding a
solution z3 modulo 23, Kahan suggests lifting it progressively to obtain
solutions z4, z5, z6, . . . modulo 24, 25, 26, . . . to eventually obtain a solution zn

modulo 2n.
Let z3 ∈ {0, 1, . . . , 7} such that z2

3 = k mod 23. We assume that such a z3

exists and has been determined by exhaustive search. Kahan’s method works
as follows:

• if z2
i = k mod 2i+1, let zi+1 = zi;

• otherwise, let zi+1 = 2i−1 − zi mod 2i+1.

Suppose that we are in the second situation and that z2
i = k mod 2i.

Then z2
i = 2i + k mod 2i+1. Furthermore, if i ≥ 3, then 2i− 2 ≥ i + 1 and:

z2
i+1 = 22i−2 + z2

i − 2izi mod 2i+1

= z2
i − 2izi mod 2i+1

= 2i(1− zi) + k mod 2i+1.
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Since z2
i = k mod 2i and k is odd, the integer zi must be odd as well, so

that 1− zi is even, which implies 2i(1− zi) mod 2i+1 = 0. As a consequence,
z2
i+1 = k mod 2i+1.

For example, if we take k = −7 and z3 = 1, we obtain the successive zi’s:

z3 = 1, z4 = 3, z5 = 5, z6 = 11, z7 = 11, . . . , z52 = 919863403429707.

At the end, one may define x = (z2
n − k) · 2−2n and check if this value

provides a bad rounding case for the square root. It could be useful to mod-
ify zn before defining x by adding to it an integer multiple of 2n−1: the quan-
tity zn remains a solution to the equation z2

n = k mod 2n, and it may help
the derived candidate x belong to the desired binade. To continue with the
numerical example just above, if we define

x = ((z52 + 252)2 − k) · 2−104,

then
x =

6531209183803571
4503599627370496

is a double-precision/binary64 floating-point number that belongs to [1, 2)
and:

√
x =

53 bits︷ ︸︸ ︷
1.00110100010010011100011000 · · · 001011

000000000000000000 · · · 000000000000000︸ ︷︷ ︸
50 zeros

1011 · · · .

Note that this method efficiently provides bad rounding cases that are not
necessarily worst cases. Hence, it cannot be directly used to find the hardness
to round the square root function (this was not its goal).

12.4 Solving the Table Maker’s Dilemma for Arbitrary
Functions

The methods described for algebraic functions, although sometimes insuf-
ficient (they give bounds on the hardness to round that are frequently too
coarse), are elegant and efficient. Unfortunately, many functions considered
in the IEEE 754-2008 standard are transcendental, including the exponentials,
logarithms, trigonometric functions, and inverse trigonometric functions. For
these functions, the methods of the previous section become useless.

12.4.1 Lindemann’s theorem: application to some transcendental
functions

In 1882, Lindemann proved5 that ez is transcendental for every nonzero
algebraic complex number z. Since floating-point numbers and breakpoints

5It was that result that showed the transcendence of π.
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are algebraic numbers, we easily deduce that, if we except straightforward
cases such as ln(1) = 0 or cos(0) = 1, the (radix e) exponential or logarithm,
and the sine, cosine, tangent, arctangent, arcsine, and arccosine of a floating-
point number cannot be a breakpoint. As a consequence, if f is any of these
functions, for any floating-point number x (the straightforward cases being
excepted), there exists a number mf,x such that f(x) is not within a distance
βmf,x from a breakpoint. Since there are finitely many floating-point num-
bers in the format being used, we easily deduce that there exists a number
mf = maxx(mf,x), such that for any x, f(x) is not within a distance βmf from
a breakpoint.

Unfortunately, this reasoning does not give any hint on the order of mag-
nitude of mf . For more general functions, such as erf or Γ, we have no equiv-
alent of Lindemann’s theorem, so we do not even know if a number mf does
exist.

12.4.2 A theorem of Nesterenko and Waldschmidt

In [297], Nesterenko and Waldschmidt study the smallness of the expres-
sion

∣∣eθ − α
∣∣ + |θ − α′|, where α and α′ are algebraic numbers and θ is any

nonzero real number. They show that for any real number x:

• either x is far away (in a sense to be made precise below) from an alge-
braic number;

• or so is its exponential.

Restricted to rational numbers, their result provides some useful information
for the study of the worst cases related to the TMD, for several elementary
transcendental functions. Their result can be interpreted as an effective vari-
ant of Liouville’s theorem, in the sense that it provides a lower bound on
the distance between the transcendental number f(x) and algebraic numbers
(including floating-point numbers).

Before giving their result, we need to define the Weil height of an alge-
braic number.

Definition 17 (Weil height). Let α be an algebraic number of degree d and P (x) =∑
i≤d Pix

i be its minimal polynomial. Let P (x) = Pd ·
∏

i≤d(x− αi) be the factor-
ization of P over the complex numbers. Then the Weil height of α is

H(α) =

Pd ·
∏
i≤d

max(1, |αi|)

 1
d

.

Suppose that α is a nonzero normal radix β floating-point number in
precision p. We write α = xβe−p+1, where x is the integral significand of α,
which implies that x is an integer that belongs to [βp−1, βp). From the defini-
tion above, we derive the two following facts:
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• if |α| ≥ 1, then H(α) ≤ βp|α|;

• if 0 < |α| < 1, then H(α) ≤ β−e+p−1 ≤ βp/|α|.

We thus conclude that, for any nonzero floating-point number α, we have

H(α) ≤ βp max(|α|, 1/|α|).

Let us now give the result found by Nesterenko and Waldschmidt, in the
special case where α and α′ are rational numbers.

Theorem 41 (Y. Nesterenko and M. Waldschmidt [297], specialized here to
the rational numbers). Let α and α′ be rational numbers. Let θ be an arbitrary
nonzero real number. Let A,A′, and E be positive real numbers with6

E ≥ e, A ≥ max (H(α), e) , A′ ≥ H(α′).

Then ∣∣eθ − α
∣∣+ |θ − α′| ≥

exp
{
−211 ·

(
lnA′ + ln lnA + 2 ln(E · max{1, |θ|}) + 10

)
·
(
lnA + 2E|θ|+ 6 ln E

)
·
(
3.7 + lnE

)
·
(
lnE

)−2}
.

Now, suppose that α is a precision-p floating-point number in [1, β).
Consider the TMD for the exponential function. The exact value exp(α)
belongs to the interval [e, eβ). Let k be such that the latter interval is
included in [1, βk). We now use the theorem of Nesterenko and Waldschmidt
with E = e and θ = α′, where α′ is any precision-p floating-point number
in [1, βk). We obtain the following:∣∣∣eα′ − α

∣∣∣ ≥
exp
(
−992 · ((3k + p) ln β + ln ((p + 1) ln β) + 12) ·

(
(p + 1) ln β + 2eβk + 6

))
.

For instance, in the case of binary floating-point arithmetic (β = 2, k = 3),
this gives ∣∣∣eα′ − α

∣∣∣ ≥ 2−688p2−992p ln(p+1)−67514p−71824 ln(p+1)−1283614.

This shows that a precision-m approximation f̂ to the exponential func-
tion is sufficient to solve the TMD in [1, β), with m ≈ Cp2 for some rather
big constant C. Unfortunately, the constant C that can be derived from
Theorem 41 is very large. For the double-precision/binary64 format, we find∣∣∣eα′ − α

∣∣∣ ≥ 2−7290678.

6Here, e = 2.718 · · · is the base of the natural logarithm.
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For double-precision calculations and the most common functions
(exponential, logarithm, sine, etc.) the order of magnitude of the bound on m
that can be derived from Theorem 41 is a few millions of bits. Computing
with such a precision is feasible, but far too expensive for practical purposes
(and remember: from the probabilistic arguments of Section 12.2.1, although
we have no proof, we “know” that the actual value of mmax is around 120 for
double-precision/binary64 arguments).

One may try to decrease that huge bound on m by improving the proof
of Nesterenko and Waldschmidt for the special case where α and α′ are
floating-point numbers. However, the constant is likely to remain large.

Also, by considering θ = lnα, one can derive a similar result for the
(natural) logarithm function, and get a similar provably sufficient preci-
sion m′ ≈ C ′p2, for some big constant C ′.

The sufficient precisions obtained using Theorem 41 are too large to be
useful in practice for solving the TMD. However, they have the advantage of
being easily computable, for any precision p and any radix β.

12.4.3 A first method: tabulated differences

A first solution to find the hardness to round of some function f is to test ev-
ery possible input. This can be done by evaluating f with a multiple-precision
library that guarantees the error bound, but this would be very slow, and
solving the TMD in double precision like that (up to about 264 input num-
bers for each function) would not even be feasible in practice. To speed up
such exhaustive tests, one can use the following property of the floating-point
numbers: except when the exponent changes, the floating-point numbers are
in arithmetic progression (e.g., for binary64, 1, 1 + 2−52, 1 + 2 · 2−52, 1 + 3 · 2−52,
. . . , up to 2 = 1+252 ·2−52). The exponent change is not a problem in practice,
as it occurs rarely. In general, the algorithms that will be described below will
not even be able to exploit the full length of the arithmetic progressions.

To be able to use the above property, one will approximate the function f
by a polynomial P on some interval I with some error bound ε on the signif-
icand of f(x) (this error bound must include the error of the evaluation of P ).
Then P can be evaluated very quickly on successive floating-point numbers
(in arithmetic progression) by using tabulated differences [222]: if P has degree
d, after a fast initialization, computing each new value only needs d additions.

Let us show how it works. Let x1, x2, x3, . . . be numbers in arithmetic
progression (i.e., xi+1 − xi = δ,∀i). Define ∆(0)P = P , then

∆(1)P (x) = P (x + δ)− P (x),

and, for i ≤ d,
∆(i+1)P (x) = ∆(i)P (x + δ)−∆(i)P (x).

One can easily show that ∆(d)P is a constant C. This suggests a method
for quickly evaluating the values P (xi): from a few first values we compute
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∆(i)P (x0), for i = 1, . . . , d. Then, each time we want to compute the value of
P at a new point xj+1, we evaluate

∆(d−1)P (xj+1) = ∆(d−1)P (xj) + C

and, for i = d− 2, d− 3, . . . , 0,

∆(i)P (xj+1) = ∆(i)P (xj) + ∆(i+1)P (xj).

A very simple example is shown in Figure 12.3, in the case δ = 1.

0 1 8 27 64 125 216

1 7 19 37 61 91

6 12 18 24 30

6 6 6 6

0 0 0

Figure 12.3: This figure shows how to compute P (1), P (2), P (3), . . . , for P (X) =
X3 with 3 additions per value. The numbers on the left are the coefficients of P in
the base

{
1, X, X(X−1)

2 , X(X−1)(X−2)
6

}
.

Testing whether P (x) is within β−m + ε from a breakpoint allows one
to keep all the values for which f(x) is within β−m from a breakpoint (the
potential worst cases) while eliminating most input values, in particular, all
those for which f(x) is not within β−m + 2ε from a breakpoint. This can be
regarded as a filter: if m is large enough and ε small enough, then it is possible
to test the remaining values in a reasonable time by using a multiple-precision
library, so that the hardness to round f can be found.

Since the breakpoints are also in arithmetic progression (except in the
rare cases where the exponent changes, which can be worked around easily),
one does not need to compute P (x): it suffices to compute P (x) modulo δ,
where δ is the distance between two breakpoints. So, the additions mentioned
above can be carried out modulo δ, avoiding the computation of the most
significant digits.

We have not yet explained how to approximate f by a polynomial P .
Again, a naive algorithm may be too slow, especially if I is small, as this
would mean many approximations to compute: we would need to split the
input domain into too many intervals I . The method suggested in Lefèvre’s
thesis [249] is to use some computer algebra system to approximate f by a
high-degree polynomial Q on a large interval. This interval can be split into
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N subintervals (in a regular way) on which Q can be approximated by poly-
nomials P0, P1, . . . , PN−1 of a smaller degree. The work [249] describes how
one can deduce an approximation Pi from the previous one Pi−1 (the idea is
to use techniques similar to the tabulated differences). This method can be
used recursively.

We have introduced several parameters: the value of m, the error bound,
the length of the interval I , and the degree d of the polynomial P . We would
like to have a small error bound (so that very few values remain after the
tests), a large interval I (to reduce the time needed to compute the approxi-
mations), and a small degree d (so that evaluating the next value can be done
quickly). However, there are constraints between these parameters. For
instance, a small error bound will imply a small interval I and/or a high
degree d. Thus, one needs a compromise between these parameters. It is not
clear how to make the best choice (it depends very much on the implementa-
tion), but the statistical arguments presented in Section 12.2.1 can be useful,
e.g., to guess how many values will remain.

Unfortunately, there exist some functions and domains for which the
approximation by polynomials with reasonable parameters is not possible.
This is the case of the trigonometric functions on very large arguments: due
to the cancellation in the range reduction, there is no clear regularity between
consecutive values of the function. However, the fact that these functions are
periodic can be exploited (see Section 12.4.7).

Finding worst cases in single precision could be done using the naive
method, but this first advanced method was a big step toward solving the
TMD for most functions in double precision. However, it is still too slow to
be used in practice. Two other algorithms will be presented in the upcom-
ing sections: Lefèvre’s algorithm (Section 12.4.5) and the SLZ algorithm (Sec-
tion 12.4.6). These algorithms are complementary, Lefèvre’s algorithm being
more suitable to low precisions (up to double precision), and SLZ being more
suitable to higher precisions, such as the double-extended or quadruple/bi-
nary128 (or decimal128) precisions, and to find bounds on the hardness to
round the function. Both kinds of algorithms are based on notions introduced
in this section.

Before presenting these algorithms, we give a “graphical” presentation
of the problem.

12.4.4 From the TMD to the distance between a grid and a segment

We have already used the fact that:
• the input values are in an arithmetic progression;

• the breakpoints are in an arithmetic progression.

These two important properties will be used to design faster algorithms.
Basically the problem is to find the points of a regular grid that are close
enough to the graph of function f .
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But since the input values are the machine numbers, and the breakpoints
are (depending on the rounding mode) the machine numbers or the middle
points between consecutive machine numbers, these properties also imply a
symmetry between input and output: the graph of the inverse7 function f−1

can be regarded as the same as the graph of f , and the grids for f and for f−1

can be joined to form a single grid, as shown in Figure 12.4.

Figure 12.4: The graph of f (and f−1) and a regular grid consisting of points whose
coordinates are the breakpoints. More precisely, the coordinate of a (vertical or hor-
izontal) row having a small segment on all its points is a machine number. An
intersection between the graph and a vertical (resp. horizontal) segment corresponds
to a bad case for f (resp. f−1). Note that in practice, the segments are chosen much
smaller than on the figure: if double-precision/binary64 is at stake, a typical segment
length is 2−50 times the distance between two points.

By considering this new grid, searching for the worst cases of the inverse
function f−1 can be done at the same time as searching for the worst cases
of f , with little additional cost. Although this doubles the number of input
points to be tested, the approximation part will globally be faster, and by
adequately choosing between f and f−1, this will be faster than testing both
functions separately.

For instance, in double-precision/binary64 arithmetic, the worst cases
of f(x) = 2x among the 252 = 4, 503, 599, 627, 370, 496 input values such that
2−39 ≤ x < 2−38 will be quickly obtained by considering the 5680 possible
machine numbers y such that:

1 + 5678 · 2−52 ≤ f(2−39) ≤ y ≤ f(2−38) ≤ 1 + 11357 · 2−52.

7In practice, we can always decompose the tested domain into subdomains on which f is
invertible, if need be. From the discussion that follows, considering f−1 may be useful even
when one is not interested in the worst cases for this inverse function.
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At the same time, if the factor on the number of input values between f and
f−1 is very large (around 240 in the example), then the selected lower bound
on k (as defined in Section 12.2.1) for the tested function must be much lower
to be able to find bad cases for the inverse function. For instance, the worst
case of f(x) = 2x in the above domain,

f(1.1110011100010111000001001000110011010101101001111100× 2−39)

=
53 bits︷ ︸︸ ︷

1.0000000000000000000000000000000000000010101000110100
000000000000000000000000000000000000000000000000000000︸ ︷︷ ︸

54 zeros

1110 · · ·

will be found from the following bad case for log2:

log2(1.0000000000000000000000000000000000000010101000110100)

=
53 bits︷ ︸︸ ︷

1.1110011100010111000001001000110011010101101001111011
11111111111111︸ ︷︷ ︸

14 ones

0101 · · · .

Notice the similar factor on the distance between the exact result and the
closest machine number.

Hence, testing f and f−1 together will be more efficient than testing
them separately. The fact that the worst cases for f and f−1 are closely related
can be used even if we test both functions separately: we can then compare
the results and detect possible bugs.

As additional points are added to the grid (the points for which both
coordinates are middles of consecutive machine numbers), spurious bad
cases (which correspond to neither f nor f−1) will be found by the various
algorithms. But they can be filtered out later, again with little additional cost.

12.4.5 Linear approximation: Lefèvre’s algorithm

First, for simplicity, we will scale the input and the output values so that the
input values in the considered interval are the first non-negative integers and
the breakpoints are integers. More precisely, the scaling has the following
form, assuming that the distance between two consecutive input values is
β−v and the distance between two consecutive breakpoints is β−w/2: instead
of considering function f on interval I , we will consider g such that g(k) =
2 ·βw ·f(u+β−vk) with non-negative integers k < N , for some floating-point
number u (the left endpoint of I) and integers v, w, and N .

Now the problem is to find the non-negative integers k < N such that
g(k) is very close to an integer, say, such that for some given small positive
real number δ0, one has

∃u ∈ Z, |g(k)− u| < δ0/2.
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The algorithm will be based on a linear approximation of the function:
g is approximated by a degree-1 polynomial P (x) = b0 − ax, where a and
b0 are real numbers. Taking into account the error of the approximation, the
problem becomes:

∃u ∈ Z, |(b0 − k · a)− u| < δ/2

for some positive real number δ, i.e.,

∃u ∈ Z, −δ/2 < (b0 − k · a)− u < δ/2.

We can translate the segment y = b0−a.x upward so that we search for values
slightly above the integers: with b = b0 + δ/2, the condition becomes

∃u ∈ Z, 0 < (b− k · a)− u < δ.

Stated differently, the problem reduces to finding the non-negative integers
k < N such that {b− k · a} < δ, where {y} denotes the positive fractional part
of y. This transformation will yield a simpler algorithm, because only one
comparison is needed instead of two (the fractional part being computable
without any comparison).

One can consider the grid modulo 1 ({y} is equal to y modulo 1). The
upper part of Figure 12.5 shows how the integer grid and the segment
y = b − a.x are reduced modulo 1 for both coordinates (x and y). The value
of {b− k · a} for an integer k is the distance of the point k to the lower left
point of the big square. For instance, on this figure, the distance is minimal
for k = 1.

The points k on the left segment have a particular structure, which will
be used by the algorithm. Before going further, notice one of the properties of
this structure. The endpoints of the left segment can be joined to form a circle
(still from the reduction modulo 1). It can be proved that if one considers all
the distances between adjacent points on the circle for given values of N , a,
and b, then one obtains at most three different values. This is known as the
three-distance theorem [382, 399, 401].

In the following, we will work in R/Z, the additive group of the real
numbers modulo 1. We will choose representatives in the interval [0, 1). A
number y ∈ R, such as a and b, can also be regarded as an element of R/Z,
and its canonical representative is the real number {y}. The operation con-
sisting in adding an element α ∈ R/Z can be regarded as a translation by α
on the segment [0, 1), with possible wrapping (since the endpoints 0 and 1
correspond to the same element of R/Z), or, stated differently, a rotation by
α on the corresponding circle. Finally, if k is a non-negative integer, k is said
to be the (group) index of the element k · a (in the additive subgroup of R/Z
generated by a).

We now study the configurations Cn = {k · a ∈ R/Z : k ∈ N, k < n} for
n ≥ 2. For simplicity, let us assume that, in the following, n is small enough
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Figure 12.5: An example with N = 6 [252], c© IEEE 1998, with permission. This
figure shows: the integer grid and the segment y = b − a.x; the two-dimensional
transformation modulo 1; and the representation of the left segment (corresponding
to x ∈ Z) modulo 1 as a circle.

so that k · a is never 0 for k < n (the particular case k · a = 0 can occur in
practice as implementations work with numbers that are rational, and one
must check that the algorithm can handle it correctly).

In any configuration Cn, the n points k · a split the segment [0, 1) into n
intervals. These intervals have at most three possible different lengths, which
depend on n (this is the three-distance theorem, mentioned above). Moreover,
when a is an irrational number, there are infinitely many particular configu-
rations Cn (see Figure 12.6 for an example), for which these intervals have
exactly two possible lengths h and ` (with h > `).8 We will call these configu-
rations two-length configurations.

When points are added to a two-length configuration (by increasing n),
each new point splits some interval of length h into an interval of length ` and
an interval of length h − `, in some fixed order (explained below). Once all
the intervals of length h have been split, one obtains a new two-length con-
figuration with intervals of lengths ` and h−` only. Note that replacing {h, `}
by {`, h − `} corresponds to a step of the well-known subtractive Euclidean
algorithm for computing GCDs.

8Due to accidental equalities when a is a rational number, as is the case in practice, the real
property of such a configuration is not the fact that intervals have exactly two possible values,
but for the moment, let us explain it this way.
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Figure 12.6: Two-length configurations for a = 17/45. The points k ·a for 0 ≤ k < n
are represented by the vertical bars, with the values of k next to them. The name
of each interval (xr or yr) and the corresponding length (scaled by 45) are given.
The initial configuration considered in this section has two points and two intervals,
but a virtual configuration with one point (0) and one interval is shown here for
completeness, as it may be used in some codes.

More precisely, these two-length configurations Cn satisfy the following
properties (the values of u, v, x, y. . . below all depend on a and n).

• The n points 0 · a (the origin), 1 · a, 2 · a, . . . , (n − 1) · a modulo 1 split
the segment [0, 1) into u intervals of length x and v intervals of length y,
where n = u + v.

• The intervals of length x are denoted x0, x1, . . . , xu−1, where x0 is the
leftmost interval of [0, 1) and xr = x0 + r · a (i.e., xr is x0 translated by
r · a in R/Z). Moreover, the left endpoint of xr has index r.

• The intervals of length y are denoted y0, y1, . . . , yv−1, where y0 is the
rightmost interval of [0, 1) and yr = y0 + r · a (i.e., yr is y0 translated by
r · a in R/Z). Moreover, the left endpoint of yr has index u + r.

Figure 12.6 shows the segment with its initial point 0 and the first four
two-length configurations for a = 17/45. The index of each point is written on
the figure (here, from 0 to 7 on the last configuration). And for each interval,
the name (xr or yr) and the length of the interval are also written. The reader
can check that these properties are satisfied for each configuration.

Now, let us see on this example of Figure 12.6 how a two-length config-
uration Cn is transformed into the next two-length configuration Cm, when
points n, n + 1, . . . , m− 1 are added. First, consider the configuration C3 (i.e.
with 3 points and 3 intervals); one has u = 2, v = 1, x = 17, and y = 11.
Since x > y, each of the two intervals of length x = 17 will be split into two
intervals of respective lengths x − y = 17 − 11 = 6 (on the left) and y = 11
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(on the right), in the same order given by the indices: first x0 (point 3 ·a), then
x1 (point 4 · a). Note that the interval [0, 3 · a) of length 6 becomes the new
leftmost interval. Thus, one gets configuration C5 on the next line of the fig-
ure: u = 2, v = 3, x = 6, y = 11. Similarly, on C5, one has y > x this time. So
each of the three intervals of length y = 11 will be split into two intervals of
respective lengths x = 6 (on the left) and y − x = 11− 6 = 5 (on the right), in
the same order given by the indices: y0 (point 5·a), then y1 (point 6·a), then y2

(point 7 ·a), and the interval [5 ·a, 1) = [5 ·a, 0 ·a) becomes the new rightmost
interval in this new configuration C8. These properties and transformations
are proved in [250].

We have seen that the points k · a modulo 1 have a particular structure.
Now let us show how the above properties can be used to efficiently com-
pute the minimum value d of {b− k · a} for 0 ≤ k < N and the correspond-
ing value of k, assuming CN is a two-length configuration. The value d is
the distance between b and the closest point of CN on its left. Stated differ-
ently, the quantity b is in an interval [k · a, k′ · a) of CN , where k · a and k′ · a
are adjacent, and d = {b− k · a} for this definition of k. So, in order to deter-
mine d and k, we will start from the initial configuration, and run through the
successive two-length configurations, updating all data corresponding to the
configuration and the position of b. Table 12.8 shows how, from the interval
I containing b, its length, and the current position of b in I , one obtains the
data for the next two-length configuration, i.e., the new interval I ′ containing
b and the position of b in I ′. Table 12.9 shows the various data on the example,
with b = 23.5/45.

Case
Current configuration Next configuration

Interval I Length Test Interval I ′ New d

1 any ` same same
2

xr

h

d < x′ (= x− `) xr same
3 d ≥ x′ (= x− `) yr+v d− x′

4
yr

d < x xr+u same
5 d ≥ x yr d− x

Table 12.8: On the left, data corresponding to the current two-length configuration:
the interval I containing b, its length, and the position of b in I . On the right, data
one can deduce for the next two-length configuration: the new interval I ′ containing
b and the position of b in I ′.

These computations can be rearranged to give Algorithm 12.1.
Algorithm 12.1 returns:

• the first non-negative value r < N and a value d such that
d = {b− r · a} < d0 if there is such an integer r;
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Algorithm 12.1 Returns the first non-negative value r < N and a value d such
that d = {b− r · a} < d0 if there is such an integer r, else an integer larger or
equal to N and a lower bound on {b− r · a} for r < N . For any bracket (on
the right), one has ux + vy = 1.

x← {a}
y ← 1− {a}
d = {b}
u← 1
v ← 1
r ← 0
if d < d0 then return (0, d)
loop

if d < x then
while x < y do

if u + v ≥ N then return (N, d) [h = y, b ∈ xr]
y ← y − x
u← u + v

end while
if u + v ≥ N then return (N, d) [h = x, b ∈ xr]
x← x− y
if d ≥ x then

r ← r + v
end if
v ← v + u

else
d← d− x
if d < d0 then return (r + u, d) [b ∈ yr]
while y < x do

if u + v ≥ N then return (N, d) [h = x, b ∈ yr]
x← x− y
v ← v + u

end while
if u + v ≥ N then return (N, d) [h = y, b ∈ yr]
y ← y − x
if d < x then

r ← r + u
end if
u← u + v

end if
end loop
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x y u v I d Case I ′ d′

0 45 0 1 y0 23.5 5 y0 6.5
17 28 1 1 y0 6.5 4 x1 6.5
17 11 2 1 x1 6.5 3 y2 0.5
6 11 2 3 y2 0.5 4 x4 0.5
6 5 5 3 x4 0.5 2 x4 0.5

Table 12.9: Example with a = 17/45 and b = 23.5/45. For better readability, the
values of x, y, d, and d′ have been multiplied by 45.

• an integer larger than or equal to N and a lower bound on {b− r · a}
for r < N (which is, in fact, the minimum value of {b− r · a} on a larger
interval: r < u + v) otherwise.

To get all the values r < N such that {b− r · a} < d0, one can subtract (r+1)·a
from b and r + 1 from N , and rerun the algorithm until one reaches N .

If one is just interested in a lower bound d on {b− r · a} for r < N , then
it suffices to remove all the lines where variable r appears. This simplification
is useful in practice when one wants to search for the worst cases of a given
function, because generally d is large enough to allow one to deduce that
there are no worst cases in the considered interval. In the (rare) case where d
is too small for allowing such a deduction, the full algorithm can be rerun to
find the potential worst cases.

This algorithm has several variants. For instance, some loops could be
unrolled and/or some tests could be performed at different places. One can
also replace sequences of subtractions by divisions, as explained in [250].

Other works make use of linear approximations as in Lefèvre’s algo-
rithm to study the TMD or problems closely related to it. In [124], Elkies used
similar linear approximations in an algorithm that finds small rational points
(i.e., with small numerators and denominators) near curves. For example, for
the curve x3 − y2, he obtained:

58538865167812233 − 4478849284284020423079182 = 161843.

This corresponds to a bad rounding case of the function x3/2, with an
input precision of 53 bits and an output precision of 79 bits. Indeed, for x =
5853886516781223, the binary expansion of x3/2 is

79 bits︷ ︸︸ ︷
1.011110110 · · · 10011011000010101001110 0000000 · · · 00000000︸ ︷︷ ︸

58 zeros

100 . . .× 2−78.

In [152], Gonnet described how to find hard-to-round cases by using
the Lenstra–Lenstra–Lovász (LLL) lattice reduction algorithm [255], which
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looks similar to the SLZ algorithm (see below), due to Stehlé, Lefèvre, and
Zimmermann. Gonnet’s method corresponds to the SLZ algorithm with
degree-1 approximations, which is essentially another way to formulate
Lefèvre’s algorithm.

12.4.6 The SLZ algorithm

To simplify the presentation of the following section, we will once more
restrict ourselves to the case of radix 2 floating-point formats. As demon-
strated in [253], the method described here may be adapted to any radix
(indeed, one of its first applications was finding the worst case for the
exponential function in the decimal64 format of the IEEE 754-2008 standard).

To summarize very quickly, Lefèvre’s algorithm consists in replacing the
function f under study by a piecewise linear approximation, and then find-
ing the worst cases of each one of the linear approximations on its defini-
tion domain. By taking into account the approximation error, we see that
all bad rounding cases of f are (possibly slightly less) bad rounding cases
for the linear approximations. Furthermore, if the subintervals where each
linear approximation is valid are small enough, then the bad rounding cases
of the linear approximations can be found efficiently, as described in the pre-
vious section. If we are trying to find the worst cases of a regular elemen-
tary function f over a given binade, e.g., [1, 2), and if p is the precision, then
one can show that we need around 22p/3 subintervals of length 2−2p/3. Each
subinterval requires a number of operations that is polynomial in p. Roughly
speaking, the overall cost of the computation is around 22p/3.

Higher-degree polynomial approximations

The bottleneck of Lefèvre’s method lies in the number of linear approxima-
tions that are required to approximate the function with the accuracy that is
necessary for the tests. In order to decrease the number of subintervals to be
considered, and thus the overall cost of the search for bad cases, it is tempt-
ing to consider better approximations; namely, polynomial approximations
of higher degree. To achieve that goal, Lefèvre, Stehlé, and Zimmermann
[389, 390] suggested computing a piecewise, constant-degree, polynomial
approximation to the considered function f . Over an interval of width τ < 1,
we can expect a good degree-d polynomial approximation to f to have a
maximal error around τd+1: hence, by choosing a higher degree, we can get
approximations that work in larger intervals.

Consider the following example, with parameters that correspond to
Lefèvre’s method. Take the binade [1, 2) and a precision p = 53 (which
corresponds to the binary64 format or IEEE 754-2008). Suppose we want a
piecewise approximation to a regular enough function f on the binade, with
absolute error less than around 2−72. With linear functions, i.e., d = 1,
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we would be allowed subintervals of length around 2−36. In total, we
would thus require approximately 236 subintervals. Suppose now that we
consider degree-3 polynomials. Then we are allowed subintervals of length
around 2−18, thus requiring only approximately 218 subintervals in total. By
increasing the degree of the approximations up to around 72, we see that only
a small number of subintervals is then needed to approximate f as tightly as
we decided.

It thus seems that by increasing the degree sufficiently, we could find
all worst rounding cases by studying a constant number of subintervals.
Unfortunately, finding the bad rounding cases of a polynomial of degree
d > 1 seems to be significantly more complicated than finding the bad round-
ing cases of a linear function. In addition to the quality of the approximation,
one has to take into account the feasibility of finding the bad cases of the
approximating polynomials. Suppose we consider a precision p. In [389],
Stehlé, Lefèvre, and Zimmermann showed how to use degree-2 approxi-
mations on subintervals of length around 2−3p/5 to find the worst cases
over a given binade in time ≈ 23p/5. They refined their analysis in [390] to
obtain a cost of around 24p/7, still using degree-2 approximations. Later on,
Stehlé [387, 388] strengthened the study further and showed that by using
degree-3 polynomials the cost can be decreased to 2p/2. For the moment,
higher degree polynomials seem useless to determine the hardness to round.

Bad rounding cases of polynomials

Suppose a degree-d polynomial P approximates a function f on an interval
of length τ . As discussed above, we expect that |P (x) − f(x)| ≤ cτd+1 for
any real x in the interval, for some constant c. Suppose we want to find all
precision-p floating-point numbers x in that interval such that f(x) is within
distance 2−m from a floating-point number (this corresponds to searching
bad cases for the directed rounding modes, but can be adapted easily to the
round-to-nearest mode). More precisely, we look for the floating-point num-
bers x such that there exists an integer k with:

|2p · f(x)− k| ≤ 2−m+p.

If a mod 1 denotes the centered fractional part of a, i.e., the number a′ ∈
[−1/2, 1/2) such that a − a′ is an integer, then the preceding equation can be
rewritten as:

|2p · f(x) mod 1| ≤ 2−m+p.

If we restrict ourselves to the x’s belonging to the interval for which P
approximates f , then, by the triangular inequality, we obtain:

|2p · P (x) mod 1| ≤ 2−m+p + 2pcτd+1.

This means that x is also a somewhat bad rounding case for the polynomial P .
If 2pcτd+1 ≈ 2−m+p, then it suffices to look for the bad rounding cases of P
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that are of a slightly degraded quality (the new m is slightly smaller than the
former one).

Suppose now that we are interested in finding the precision-p floating-
point numbers x, belonging to a given interval of length τ , that satisfy:

|2p · P (x) mod 1| ≤ 2−m+p.

To simplify, suppose that we shift the interval in order to center it around 0.
We can then consider the following bivariate polynomial equation:

Q(t, u) = 0 mod 1, (12.3)

where Q(t, u) = 2p · P (2−pt) + u. We are interested in solutions (t0, u0)
such that t0 is an integer in [−2p−1τ, 2p−1τ ] and u0 belongs to the inter-
val [−2−m+p, 2−m+p].

Note that if we had two such bivariate polynomial equations without the
“mod 1,” then we could possibly eliminate variables in order to find the solu-
tions. One would still need to be lucky enough to have the two polynomials
be algebraically independent. The SLZ method relies on such an indepen-
dence assumption (which seems satisfied most often in practice). But so far,
we have only one polynomial equation, modulo 1.

We are interested in the small solutions to Equation (12.3): the ranges of
variables in which we are interested are very restricted. Indeed, the range of
interest for the variable u is [−2−m+p, 2−m+p], although the modulus would
make it natural to consider the larger interval [−1/2, 1/2]. The range of inter-
est of the variable t is [−2p−1τ, 2p−1τ ], although the modulus and the 2−p

scaling would make it more natural to consider the (much) bigger inter-
val [−2p−1, 2p−1]. Such range-restricted polynomial equations modulo an in-
teger have been extensively studied in the field of cryptology. Informally,
today’s leader, the RSA Public Key Cryptosystem relying on integer factor-
ization involves several polynomial equations. In some contexts, often de-
riving from a will to speedup the system, information providing the secret
key is contained in the small solutions of these equations. Solving range-
restricted polynomial equations thus leads to several cryptanalyses of vari-
ants of RSA. With respect to our concerns about the bad rounding cases for
elementary functions, this implies that we can try using the methods devel-
oped by cryptographers to solve the TMD. For instance, the SLZ algorithm
relies on Coppersmith’s method to find small roots of polynomials modulo
an integer [82, 83].

Let us now describe Coppersmith’s method. We mentioned two diffi-
culties while trying to solve Equation (12.3): we would prefer having several
polynomial equations instead of a single one, and we would like to eliminate
the modulus. To work around the first problem, we use shifts and powers of
the initial polynomial. If Q(t, u) = 0 mod 1, then

∀i, j ≥ 0,∀k > 0, tiuj ·Qk(t, u) = 0 mod 1.
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This already provides infinitely many polynomial equations. Further-
more, suppose that R(t, u) is an integer linear combination of finitely
many tiujQk’s: we have

R(t, u) =
∑
i,j,k

ni,j,k · tiuj ·Qk(t, u),

where the ni,j,k’s are integers and only a finite number of them are nonzero.
Then any solution (t0, u0) to the initial polynomial equation (Equation (12.3))
satisfies R(t0, u0) = 0 mod 1. This provides even more polynomial equa-
tions. In Coppersmith’s method, one considers a finite subset of the possi-
ble tiujQk’s with all their integer linear combinations.

By mapping a polynomial to the vector of its coordinates, we obtain a
discrete additive subgroup of some Euclidean space RN (for some integer N
that is possibly large). Such algebraic objects are called Euclidean lattices, and
have been studied extensively in mathematics, after the pioneering work of
Minkowski [278] at the end of the nineteenth century. The main algorithmic
task given a lattice consists in finding a short nonzero vector in the lattice.
The LLL algorithm [255] performs such a task efficiently (to be more specific,
in time polynomial in the bit size of the input description of the lattice). A
brief presentation of LLL is given in Section 16.2, page 524. In our context, by
calling the LLL algorithm, we can find a small bivariate polynomial R such
that if (t0, u0) is a solution to the initial equation, then R(t0, u0) = 0 mod 1.
This smallness helps us to remove the modulus: indeed, if the coefficients
of R are small, since we consider small ranges for the solutions, then |R(t, u)|
is itself small. By choosing all parameters carefully, we obtain that, if (t0, u0)
is a solution to the initial equation, then:

R(t0, u0) = 0 mod 1 and |R(t0, u0)| < 1.

This implies that R(t0, u0) = 0, without the modulus. Note that we now only
have one polynomial equation left. In fact, the LLL algorithm not only finds
one small vector, but several small vectors, and therefore we can find two
polynomial equations R1(t, u) = 0 and R2(t, u) = 0. The solutions to these
equations are then computed using standard variable elimination methods
(for example, using resultants), and one keeps those that are actually solu-
tions to the initial equation

(t, u) = 0 mod 1.

Several technical difficulties arise while trying to apply this general
framework. First, Coppersmith’s method is usually described with integer
polynomials (and a modulus greater than 1). In our case, we have polynomi-
als with real coefficients. In fact, we only have approximately known poly-
nomials with real coefficients. The lattice description is only approximate.
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The errors thus created can be analyzed rigorously and can be handled by
using multi-precision approximations (see Chapter 14 for an introduction to
multi-precision floating-point arithmetic). A second difficulty, which we have
already mentioned, is the fact that the two eventually obtained polynomial
equations over the reals (without the modulus) may not be algebraically
independent. It is not known yet how to avoid that possible annoyance, and
thus the SLZ method remains heuristic. Finally, one needs to “set the differ-
ent parameters adequately” in order to get two sufficiently small polynomials
after the call to LLL. The choice of the parameters derives from an analysis of
the input given to LLL. This reduces to evaluating determinants of nonsquare
matrices, see [388]. There, the determinant of an n1×n2 matrix B with n1 ≥ n2

is defined as the square root of the determinant of the square matrix BT · B
of the pairwise scalar products of the columns of B.

Putting it all together

The SLZ algorithm consists in approximating the function f under scope by
using degree-d polynomials on many small subintervals, and then in find-
ing the bad rounding cases for each one of these polynomials using Copper-
smith’s method.

Taking d = 1 gives Lefèvre’s algorithm, described in the previous sec-
tion. If one increases d, then fewer subintervals are needed in the approxi-
mation step. Unfortunately, when d increases, the variable range restriction
requirements of Coppersmith’s method become stronger. In particular, this
implies that when d increases, either the widths of the subintervals shall
decrease or the parameter m (quantifying the quality of the bad rounding
cases) shall increase. We have seen in Section 12.2.1 that one expects the
worst rounding case of an elementary function over a given binade to sat-
isfy m ≈ 2p. Since we are interested in actually finding the exact hardness
to round, we are limited to increasing m to essentially 2p. This implies that
when d increases greatly, we should decrease the widths of the subintervals
of approximation to ensure that Coppersmith’s method works, and thus
increase the number of subintervals to be considered.

We see that there is a compromise to be found between increasing d to
decrease the number of studied subintervals (because the quality of the
approximations increases), and not increasing d too much because then
Coppersmith’s method requires thinner subintervals. According to the anal-
ysis of [387, 388], it seems that in the context of bad rounding cases, the best
choice for d is 3, i.e., piecewise cubic approximations to the function f . This
provides around 2p/2 subintervals to be considered, each requiring a small
(polynomial in p) number of operations.

Although the complexity of the SLZ algorithm (around 2p/2) is better
than that of Lefèvre’s (around 22p/3), the improvement is not dramatic for the
double-precision (i.e., p = 53). This stems from the fact that each subinterval
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can be dealt with (much) faster in Lefèvre’s algorithm. It seems that the SLZ
algorithm could overtake Lefèvre’s for p = 64. Note that the complexity
remains exponential, and thus increasing p further will quickly render the
SLZ algorithm too costly.

An implementation of the SLZ algorithm is available under the GNU
General Public License at the URL

http://perso.ens-lyon.fr/damien.stehle/english.html#software.

Extensions of the SLZ algorithm

The SLZ algorithm may be used with a larger value of m. As discussed above,
this is useless for disclosing the worst rounding cases in a typical situation.
However, it may be used to find exceptionally bad rounding cases (i.e., much
worse than predicted by the statistical arguments of Section 12.2.1), or to
prove that no such hard-to-round case exists, thus providing a sufficient pre-
cision bound for the correctly rounded evaluation of the function f under
scope. We are not aware of any such application of the SLZ algorithm at the
time of this writing, but it could be worth a further investigation for greater
precisions p.

For example, in quadruple/binary128 precision (p = 113), both Lefèvre’s
and the SLZ algorithms (with m = 2p) become far too expensive, but know-
ing a provably sufficient evaluation precision may still be needed. The cost
of the SLZ decreases when m increases, and even becomes polynomial in p
when the quality parameter m is of the order of p2.

In his Ph.D. dissertation, Stehlé [387] describes an extension of the SLZ
algorithm to functions of several variables. To the best of our knowledge, this
has not been used in practice so far. However, it could prove useful to find
bad rounding cases (or sufficient evaluation precisions) for common func-
tions like xy.

12.4.7 Periodic functions on large arguments

A limitation of the various non-naive algorithms lies in the requirement that
the studied function f can be closely approximated by small degree poly-
nomials on subintervals. These subintervals should not be too small with
respect to the width of the considered binade; otherwise, the number of such
subintervals and thus the cost of the bad-case search explodes. This is the
case for most elementary functions over most of their domains of definition.
The only exceptions are periodic functions, such as the trigonometric func-
tions (sin, cos, tan), on arguments that are far away from the period. In the
extreme case, two consecutive floating-point numbers in such a domain
belong to different periods of the functions and their evaluations are com-
pletely uncorrelated.
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When the period is a particularly simple value, such as a power of two,
as in the functions sin(πx), cos(πx), and tan(πx), it is possible to deduce the
worst cases corresponding to large arguments from those corresponding to
small arguments (see Section 12.2.3). But for the conventional trigonometric
functions (sin, cos, tan), such deductions are not possible.

In [162], Hanrot, Lefèvre, Stehlé, and Zimmermann describe an algo-
rithm that works around that difficulty. The main idea is to not consider the
floating-point numbers themselves, but their reductions modulo the elemen-
tary period (2π or π in the case of the conventional trigonometric functions).
Then the SLZ algorithm or Lefèvre’s algorithm is applied to the studied func-
tion on this new range, for which small degree approximations are valid on
larger subintervals. A difficulty arises from the fact that both Lefèvre’s and
the SLZ algorithms require the possible inputs to form an arithmetic progres-
sion (e.g., floating-point numbers), whereas here the floating-point numbers
reduced modulo 2π may not form an arithmetic progression. By using con-
tinued fractions, the authors are able to subdivide the reduced floating-point
numbers into several arithmetic progressions that are then considered sep-
arately. Overall, this algorithm is slower than SLZ, but it is faster than the
only currently known alternative, i.e., the exhaustive search. The (heuristic)
complexity bounds of this algorithm range from around 24p/5 if it relies on
Lefèvre’s algorithm to around

2(6−2
√

10)p ≤ 20.676p

if it relies on the SLZ algorithm.

12.5 Some Results

12.5.1 Worst cases for the exponential, logarithmic, trigonometric,
and hyperbolic functions

In this section, we give the worst cases for some functions in some domains.
These worst cases have been found after several years of computations
on small networks of workstations/PCs (several hundreds of thousands of
hours, after summing the time on each CPU). These worst cases can be used
to implement mathematical functions with correct rounding and to check
libraries that claim correct rounding. An optimized implementation may
need more bad cases (i.e., a smaller bound on k, with the notation of
Section 12.2.1), possibly with different domain splitting. But we had to make a
choice and could not use dozens of pages for each function. Some functions
have special bad cases that do not follow the probabilistic model because of
some mathematical property. If there are not too many of these bad cases,
they are all given (e.g., sinh and cosh, in Table 12.13); otherwise the domain
is split (e.g., exp, in Table 12.10).
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Each bad case has the following format: the argument (binary64 number)
and the truncated result (i.e., the result rounded toward zero in the binary64
format), both in C99’s hexadecimal format (described below), and then the
bits after the significand of the truncated result. The first bit after the signif-
icand is the rounding bit. Then, as we have bad cases, the rounding bit is
followed by a long run of zeros or ones; the value in exponent (superscript)
is the length of this run. Finally, we give the next four bits.

The argument and the truncated result are written in C99’s hexadecimal
format for concision. Here, each datum consists of:

• a significand, written as a 13-hexadecimal-digit fixed-point number (the
first digit is a 1, hence the 1 + 4 × 13 = 53 bits of precision), the digits
being denoted 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F;

• the letter P (as a separator);

• a binary exponent E, written in decimal, i.e., the significand is to be
multiplied by 2E to get the value.

Let us illustrate this format on an example: the bad case

1.9E9CBBFD6080BP-31

of function exp (see fifth bad case of Table 12.10), whose truncated result is
1.000000033D397P0 and the following bits are 1 057 1010 · · · . The argument x
is here in binary:

53 bits︷ ︸︸ ︷
1. 1001︸︷︷︸

9

1110︸︷︷︸
E

1001︸︷︷︸
9

1100︸︷︷︸
C

1011︸︷︷︸
B

1011︸︷︷︸
B

1111︸︷︷︸
F

1101︸︷︷︸
D

0110︸︷︷︸
6

0000︸︷︷︸
0

1000︸︷︷︸
8

0000︸︷︷︸
0

1011︸︷︷︸
B

×2−31

and its exponential is:

53 bits︷ ︸︸ ︷
1. 0000︸︷︷︸

0

0000︸︷︷︸
0

0000︸︷︷︸
0

0000︸︷︷︸
0

0000︸︷︷︸
0

0000︸︷︷︸
0

0000︸︷︷︸
0

0011︸︷︷︸
3

0011︸︷︷︸
3

1101︸︷︷︸
D

0011︸︷︷︸
3

1001︸︷︷︸
9

0111︸︷︷︸
7

1 00000000000000000000 · · · 00000000000000000000︸ ︷︷ ︸
57 zeros

1010 · · · × 20.

Note: For technical reasons, the bad cases have been searched assuming pre-
cision 53 for any exponent, i.e., as if there were no subnormals in the format.
But the results given in Tables 12.10 through 12.16 include the subnormal
range (down to 2−1074), so that implementers have complete information.
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Table 12.10: Worst cases for functions ex, ex− 1, 2x, and 10x. The worst cases given
here and the results given in Tables 12.4 and 12.5 suffice to round functions ex, 2x

and 10x correctly in the full binary64/double-precision range (for function ex the
input values between −2−53 and 2−52 are so small that the results given in
Tables 12.4 and 12.5 can be applied, so they are omitted here) [251]. Radix-β exponen-
tials of numbers less than logβ(2−1074) are less than the smallest positive machine
number. Radix-β exponentials of numbers larger than logβ(21024) are overflows.
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Table 12.11: Worst cases for functions ln(x) and ln(1+x). The worst cases given here
suffice to round functions ln(x) and ln(1 + x) correctly in the full binary64/double-
precision range.
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Table 12.12: Worst cases for functions log2(x) and log10(x). The worst cases
given here suffice to round functions log2(x) and log10(x) correctly in the full
binary64/double-precision range.



454 Chapter 12. Solving the Table Maker’s Dilemma

Fu
nc

ti
on

D
om

ai
n

A
rg

um
en

t
Tr

un
ca

te
d

re
su

lt
Tr

ai
lin

g
bi

ts

si
nh

[ 2−
2
5
,a

si
nh

(2
1
0
2
4
))

1
.
D
F
F
F
F
F
F
F
F
F
E
3
E
P
-
2
0

1
.
E
0
0
0
0
0
0
0
0
0
F
D
1
P
-
2
0

1
17

2
00

01
· ·
·

1
.
D
F
F
F
F
F
F
F
F
F
8
F
8
P
-
1
9

1
.
E
0
0
0
0
0
0
0
0
3
F
4
7
P
-
1
9

1
16

6
00

01
··
·

1
.
D
F
F
F
F
F
F
F
F
E
3
E
0
P
-
1
8

1
.
E
0
0
0
0
0
0
0
0
F
D
1
F
P
-
1
8

1
16

0
00

01
· ·
·

1
.
6
7
F
F
F
F
F
F
F
D
0
8
A
P
-
1
7

1
.
6
8
0
0
0
0
0
0
1
A
B
2
5
P
-
1
7

1
15

7
00

00
··
·

1
.
8
9
7
3
7
4
D
7
4
D
E
2
A
P
-
1
3

1
.
8
9
7
3
7
4
F
E
0
7
3
E
1
P
-
1
3

1
05

6
10

11
··
·

co
sh

[ 2−
2
5
,2

6
)

1
.
4
6
5
6
5
5
F
1
2
2
F
F
5
P
-
2
4

1
.
0
0
0
0
0
0
0
0
0
0
0
0
C
P
0

1
16

1
00

01
··
·

1
.
7
F
F
F
F
F
F
F
F
F
F
F
7
P
-
2
3

1
.
0
0
0
0
0
0
0
0
0
0
0
4
7
P
0

1
18

9
00

10
· ·
·

1
.
7
F
F
F
F
F
F
F
F
F
F
D
C
P
-
2
2

1
.
0
0
0
0
0
0
0
0
0
0
1
1
F
P
0

1
18

3
00

10
· ·
·

1
.
7
F
F
F
F
F
F
F
F
F
F
7
0
P
-
2
1

1
.
0
0
0
0
0
0
0
0
0
0
4
7
F
P
0

1
17

7
00

10
· ·
·

1
.
7
F
F
F
F
F
F
F
F
F
D
C
0
P
-
2
0

1
.
0
0
0
0
0
0
0
0
0
1
1
F
F
P
0

1
17

1
00

10
· ·
·

1
.
1
F
F
F
F
F
F
F
F
F
F
0
D
P
-
2
0

1
.
0
0
0
0
0
0
0
0
0
0
A
1
F
P
0

1
17

3
01

10
··
·

1
.
D
F
F
F
F
F
F
F
F
F
B
9
B
P
-
2
0

1
.
0
0
0
0
0
0
0
0
0
1
C
1
F
P
0

1
16

9
00

10
··
·

1
.
1
F
F
F
F
F
F
F
F
F
C
3
4
P
-
1
9

1
.
0
0
0
0
0
0
0
0
0
2
8
7
F
P
0

1
16

7
01

10
··
·

1
.
7
F
F
F
F
F
F
F
F
F
7
0
0
P
-
1
9

1
.
0
0
0
0
0
0
0
0
0
4
7
F
F
P
0

1
16

5
00

10
· ·
·

1
.
D
F
F
F
F
F
F
F
F
E
E
6
C
P
-
1
9

1
.
0
0
0
0
0
0
0
0
0
7
0
7
F
P
0

1
16

3
00

10
· ·
·

1
.
1
F
F
F
F
F
F
F
F
F
0
D
0
P
-
1
8

1
.
0
0
0
0
0
0
0
0
0
A
1
F
F
P
0

1
16

1
01

10
··
·

1
.
4
F
F
F
F
F
F
F
F
E
7
E
2
P
-
1
8

1
.
0
0
0
0
0
0
0
0
0
D
C
7
F
P
0

1
16

0
00

11
· ·
·

1
.
7
F
F
F
F
F
F
F
F
D
C
0
0
P
-
1
8

1
.
0
0
0
0
0
0
0
0
1
1
F
F
F
P
0

1
15

9
00

10
··
·

1
.
A
F
F
F
F
F
F
F
F
C
C
B
E
P
-
1
8

1
.
0
0
0
0
0
0
0
0
1
6
C
7
F
P
0

1
15

8
00

10
· ·
·

1
.
D
F
F
F
F
F
F
F
F
B
9
B
0
P
-
1
8

1
.
0
0
0
0
0
0
0
0
1
C
1
F
F
P
0

1
15

7
00

10
· ·
·

1
.
E
A
5
F
2
F
2
E
4
B
0
C
5
P
1

1
.
7
1
0
D
B
0
C
D
0
F
E
D
5
P
4

1
05

7
11

10
··
·

Table 12.13: Worst cases for functions sinh(x) and cosh(x). The worst cases given
here suffice to round these functions correctly in the full binary64/double-precision
range. If x is small enough, the results given in Tables 12.4 and 12.5 can be applied.
If x is large enough, the results given in Section 12.2.3 allow one to use the results
obtained for the exponential function.
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Table 12.14: Worst cases for inverse hyperbolic functions in binary64/double preci-
sion. Concerning function sinh−1, if the input values are small enough, there is no
need to compute the worst cases: the results given in Tables 12.4 and 12.5 can be
applied.
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Table 12.15: Worst cases for the trigonometric functions in binary64/double preci-
sion. So far, we only have worst cases in the following domains:

[
2−25, u

)
where

u = 1.10010010000112 × 21 for the sine function (u = 3.14135742187510 is
slightly less than π);

[
0, acos(2−26)

)
∪
[
acos(−2−27), 22

)
for the cosine function;

and
[
2−25, π/2

]
for the tangent function. Sines of numbers of absolute value less

than 2−25 are easily handled using the results given in Tables 12.4 and 12.5.
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Table 12.16: Worst cases for the inverse trigonometric functions in binary64/double
precision. Concerning the arcsine function, the results given in Tables 12.4 and 12.5
and in this table make it possible to correctly round the function in its whole domain
of definition.
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12.5.2 A special case: integer powers

Concerning the particular case of function xn (where n is an integer), one has
(2x)n = 2nxn. Therefore, if two numbers x and y have the same significand,
their images xn and yn also have the same significand. So only one binade
needs to be tested,9 [1, 2) in practice.

For instance, in double-precision arithmetic, the hardest-to-round case
for the function x952 corresponds to

x = 1.0101110001101001001000000010110101000110100000100001

and we have

x952 = 1.0011101110011001001111100000100010101010110100100110︸ ︷︷ ︸
53 bits

1

00000000 · · · 00000000︸ ︷︷ ︸
63 zeros

1001 · · · × 2423

which means that xn is extremely close to the exact middle of two consecutive
double-precision numbers. There is a run of 63 consecutive zeros after the
rounding bit. This case is the worst case for all values of n between 3 and
1035.

Table 12.17 gives the longest runs k of identical bits after the rounding
bit (assuming the target precision is double precision) in the worst cases for
3 ≤ n ≤ 1035.

These results allow one to design algorithms for computing correctly-
rounded integer powers, for values of n small enough (see Section 5.7,
page 177).

12.6 Current Limits and Perspectives

We have described several ways to find the hardness to round of elemen-
tary functions or bounds thereof. The first approach, related to Liouville’s
theorem, is efficient but restricted to algebraic functions. Furthermore, the
tightness of the bounds it provides degrades quickly with the degree of the
considered algebraic function. In contrast, Lefèvre’s and the SLZ algorithms
apply to most functions. However, although they are significantly faster than
the exhaustive search, their running times remain exponential in the consid-
ered precision p.

Currently, the worst cases of most elementary functions in the
(radix-2) double precision/binary64 format (i.e., p = 53) have been found,
using Lefèvre’s algorithm. This status seems reachable in Intel’s double-
extended precision format (p = 64 for radix-2 floating-point numbers) within

9We did not take subnormal numbers into account, but one can prove that the worst cases
in all rounding modes can also be used to round subnormals correctly.
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a few years, using either Lefèvre’s algorithm or the SLZ algorithm. Due to
their exponential costs, the quadruple precision will remain out of reach for
many years with these methods.

The methods presented here can readily be adapted to decimal arith-
metic [253] (indeed, the worst cases for the exponential function in deci-
mal64 arithmetic have been computed). Another interesting application of
these methods that find worst cases is that they may be used to implement
an “accurate tables method” due to Gal [142, 143, 391].

n k

6, 12, 13, 21, 58, 59, 61, 66, 70, 102, 107, 112, 114, 137, 138, 145, 151,
153, 169, 176, 177, 194, 198, 204, 228, 243, 244, 249, 250, 261, 268, 275,
280, 281, 285, 297, 313, 320, 331, 333, 340, 341, 344, 350, 361, 368, 386,
387, 395, 401, 405, 409, 415, 418, 419, 421, 425, 426, 427, 442, 449, 453,
454, 466, 472, 473, 478, 480, 488, 493, 499, 502, 506, 509, 517, 520, 523,
526, 532, 533, 542, 545, 555, 561, 562, 571, 574, 588, 590, 604, 608, 614,
621, 626, 632, 634, 639, 644, 653, 658, 659, 664, 677, 689, 701, 708, 712,
714, 717, 719, 738, 741, 756, 774, 778, 786, 794, 797, 807, 830, 838, 842,
847, 849, 858, 871, 885, 908, 909, 910, 919, 925, 927, 928, 931, 936, 954,
961, 964, 970, 971, 972, 980, 984, 988, 989, 993, 1006, 1008, 1014, 1024

53

4, 18, 44, 49, 50, 97, 100, 101, 103, 142, 167, 178, 187, 191, 203, 226, 230,
231, 236, 273, 282, 284, 287, 304, 310, 311, 312, 328, 338, 355, 374, 388,
389, 391, 393, 394, 400, 422, 428, 434, 435, 439, 444, 455, 469, 501, 504,
511, 529, 535, 536, 549, 558, 559, 560, 566, 573, 577, 578, 581, 587, 596,
606, 612, 623, 628, 635, 643, 649, 656, 675, 691, 699, 700, 711, 713, 715,
718, 731, 732, 743, 744, 773, 775, 790, 799, 804, 808, 810, 821, 826, 841,
848, 863, 883, 889, 902, 907, 914, 917, 932, 942, 943, 949, 951, 960, 966,
968, 998, 1015, 1023

54

24, 28, 30, 41, 56, 67, 87, 122, 135, 143, 147, 159, 160, 190, 208, 248, 252,
264, 269, 270, 279, 289, 300, 315, 339, 376, 396, 402, 410, 460, 479, 497,
515, 516, 521, 539, 579, 599, 602, 617, 674, 685, 693, 723, 729, 758, 767,
770, 780, 802, 834, 835, 843, 853, 866, 884, 912, 921, 935, 973, 976, 979,
1000, 1004

55

89, 106, 171, 247, 254, 278, 316, 327, 348, 360, 424, 451, 463, 476, 495,
512, 531, 645, 697, 722, 728, 747, 833, 857, 901, 903, 1029, 1033 56

11, 84, 91, 234, 237, 274, 407, 576, 695, 751, 819, 828, 872, 879, 1016 57
35, 144, 233, 337, 733 58
51, 336, 761, 886 59
503, 1017, 1028 60
458 61
878, 1030 62
952 63

Table 12.17: Longest runs k of identical bits after the rounding bit (assuming the target
precision is double precision/binary64) in the worst cases of function xn, for 3 ≤ n ≤ 1035.
Values of n that are not in the table correspond to k < 53.
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Chapter 13

Formalisms for Certifying
Floating-Point Algorithms

While the previous chapters have made clear that it is common prac-
tice to certify floating-point algorithms with pen-and-paper proofs,

this practice can lead to subtle bugs. Indeed, floating-point arithmetic
introduces numerous special cases, and examining all the details would be
tedious. As a consequence, the certification process tends to focus on the main
parts of the correctness proof, so that it does not grow out of reach.

For instance, the proof and even the algorithm may no longer be correct
when some value is equal to or near a power of the radix, as being a dis-
continuity point of the ulp function. Moreover pen-and-paper proofs may be
ambiguous, e.g., by being unclear on whether the exact value or its approxi-
mation is considered for the ulp.

Unfortunately, experience has shown that simulation and testing may
not be able to catch the corner cases this process has ignored. By providing a
stricter framework, formal methods provide a means for ensuring that algo-
rithms always follow their specifications.

13.1 Formalizing Floating-Point Arithmetic

In order to perform an in-depth proof of the correctness of an algorithm, its
specification must be precisely described and formalized. For floating-point
algorithms, this formalization has to encompass the arithmetic: number
formats, operators, exceptional behaviors, undefined behaviors, and so on.
A new formalization may be needed for any variation in the floating-point
environment.

Fortunately, the IEEE 754 standard precisely defines some formats and
how the arithmetic functions behave on these formats: “Each operation shall
be performed as if it first produced an intermediate result correct to infinite
precision and with unbounded range, and then rounded that result [. . . ]”

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_13, 463
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This definition makes a formalization of floating-point arithmetic both
feasible and practical, as long as the implementation (language, compiler,
etc.) strictly follows the IEEE-754 requirements, which may not be the case
in practice (see Chapter 7 and Section 3.4.6). However, a formalization can
still take into account the specificity of the implementation; for the sake of
simplicity and because it is not possible to be exhaustive, such a specificity
will be ignored in the following.

Moreover, this single formalization can be used for describing the spec-
ification of any algorithm whose implementation relies on this standardized
arithmetic.

13.1.1 Defining floating-point numbers

The first stage of a formalization lies in a proper definition of the set of
floating-point numbers. This definition can be performed at several levels.
First of all, one should define the set itself and the values that parameterize
it, e.g., radix and precision. Then comes the actual representation of the num-
bers: how they translate from and to streams of bits. Finally, a semantics of
the numbers is needed. It is generally provided by their interpretation as a
subset of the real numbers.

Structural definition

The IEEE 754 standard describes five categories of floating-point data: signed
zeros, subnormal numbers, normal numbers, signed infinities, and Not a
Number (NaN) data. These categories can be used to define the set of data as
a disjoint union of sets of data. Any given floating-point datum is described
by one and only one of the following branches. For each category, some
additional pieces of information represent the datum, e.g., its significand.

Floating-point data ::=
| Zero: sign
| Subnormal: sign, significand
|Normal: sign, significand, exponent
| Infinity: sign
|NaN: payload

While the same disjoint union could be used to define both binary and
decimal floating-point numbers, the formalization may be simpler if the radix
β is encoded as a parameter of the whole type. The type of the “significand”
fields has to be parameterized by the precision p, while the type of the
“exponent” is parameterized by emin and emax. The type of the “payload”
could also be parameterized by p; but for clarity, we will assume it is not. The
type of “sign” is simply the set {+,−}, possibly encoded by a Boolean. The
fully featured disjoint union has now become:
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Floating-point data (β, p, emin, emax) ::=
| Zero: sign
| Subnormal: sign, significand ∈Ms(β, p)
|Normal: sign, significand ∈Mn(β, p), exponent ∈ E(emin, emax)
| Infinity: sign
|NaN: payload

Notice that the parameters do not necessarily have to be restricted to
the set of values mandated by the standard. A generic formalization can be
written for any radix, any precision, and any extremal exponents. A spe-
cific standard-compliant instantiation of the generic formalization can then
be used when certifying an algorithm.

Some other parameters could be added to represent floating-point num-
bers that do not follow the scheme set by the IEEE 754 standard, e.g., the
use of two’s complement significands. The “Subnormal” branch could also
be removed for implementations that do not support such numbers.

Binary representation

This part of the formalization describes how the numbers are actually stored.
It mainly provides two functions for converting the structural definition of a
number from/to its physical representation as a bit vector. These functions
are indispensable when working at the bit level (What does happen if the
35th bit of a number gets set?), for example, in hardware or software imple-
mentation of floating-point operators.

Note that the floating-point operations are better specified as functions
operating on the structural definition of numbers, which is a more expressive
representation than bit vectors. As a consequence, the conversion functions
can be ignored if the algorithm does not perform any bit twiddling. Indeed,
the algorithm can then be certified on the structural definitions only. Such a
certification is equivalent to the one made on bit vectors, but it allows for the
use of a simplified formalism, as shown in Section 13.1.2.

Semantic interpretation

Floating-point arithmetic is designed as a replacement for the arithmetic
on real numbers in most algorithms. The specification then has to relate
the floating-point results with the corresponding real numbers. This can be
achieved by providing functions between the two sets. Unfortunately, neither
are they isomorphic, nor is one a subset of the other.

First, normal numbers, subnormal numbers, and signed zeros can easily
be converted into real numbers.1 When the specification focuses on the
behavior of the algorithm with respect to real numbers, this conversion

1Both floating-point signed zeros are mapped to the same real zero, so the conversion
function is not injective.
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function r is usually sufficient, and its inverse is not needed. For example,
expressing that a nonzero real number x has to be close to a floating-point
number x̃ can be achieved by the following inequality on real numbers:
|r(x̃)/x− 1| ≤ ε.

As for floating-point infinities and NaNs, the set of real numbers could
be extended to include corresponding elements. The r function would then be
defined on the whole set of floating-point data. In order for this extended real
set to be usable, a coherent arithmetic has to be defined on it. This may prove
difficult and, more importantly, unneeded. Indeed, as these exceptional val-
ues are usually avoided or handled with special care in algorithms, they do
not warrant a special arithmetic. As a consequence, the conversion function
can be restricted to a partial domain of floating-point data. When employed
in a certification, this formalism will then require the use of this function to
be accompanied with a proof that the floating-point datum being converted
is a finite number.

This conversion function is usually hidden: finite floating-point numbers
are implicitly coerced to real numbers in mathematical formulas.

13.1.2 Simplifying the definition

The more complicated the arithmetic formalization is, the less efficient its use
will be when certifying an algorithm, as it requires taking into account many
more corner cases. So, a smaller structural definition and simpler rounding
operators may ease the certification process. However, care should be taken
that the formalization is still meaningful for the algorithm being certified.

First of all, some branches of the disjoint union can be merged: instead
of splitting zeros, subnormal, and normal numbers apart, they can all be exp-
ressed as a triple (s,m, e) which maps to the real number (−1)s ·m · βe−p+1.2

The exponent e is still between emin and emax, but a normal floating-point
number may no longer have a normalized representation since the branch of
the disjoint union should also deal with other numbers. In particular, all the
numbers with m = 0 would now represent a floating-point zero.

Depending on its usage, the formalization can be simplified further. For
most algorithms, the actual bit pattern of the computed values does not mat-
ter much. Indeed, higher-level properties are usually expected: the accuracy
of a result, its being in a given domain, and so on. Therefore, the formaliza-
tion can be simplified, as long as it does not change the truth of the properties
described in the specification of the algorithm. For instance, if the algorithm
never accesses the payload of a NaN, then this payload can be removed from
the definition. Indeed, from the point of view of the algorithm, NaN data will
be indistinguishable from each other.

2Using an integral significand (Section 2.1) can greatly improve the ability of proof assis-
tants to automatically discharge some proof obligations, hence reducing the amount of work
left to the user.
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The following formalization may therefore be sufficient to prove the
exact same properties as the full formalization on a given algorithm:

Floating-point numbers (β, p, emin, emax) ::=
| Finite: sign, significand ∈M(β, p), exponent ∈ E(emin, emax)
| Infinity: sign
|NaN:

Let us now consider the case of signed zeros. Their sign mostly mat-
ters when a floating-point computations has to return a signed zero. So, if
the sign of zero were to be always ignored, it would not have any impact
on the interpretation of these computations. However, there are some other
cases where the sign has an influence, e.g., a division by zero. In this case,
the sign of zero is involved in the choice of the sign of the nonzero (infinite)
result. Yet, if the certification is meant to include proofs that no divisions by
zero occur during computations, then the sign of zero can be safely discarded
from the definition. In particular, it means that the sign can be embedded into
the significand: any zero, subnormal, or normal number would therefore be
represented by a pair (m, e) with m a signed value.

In order to simplify the definition even further, the exponent bounds emin

and emax could be removed. It would, however, introduce values that cannot
be represented as floating-point datums. Section 13.1.4 details this approach.

13.1.3 Defining rounding operators

Thanks to the framework that the IEEE 754 standard provides, floating-point
operators do not have to be formalized to great lengths. They can be
described as the composition of a mathematical operation on real numbers
(“infinite precision” and “unbounded range”) and a rounding operator that
converts the result to a floating-point number. As a consequence, assuming
arithmetic on real numbers has already been properly formalized, most of
the work involved in defining floating-point arithmetic operators will actu-
ally focus on defining rounding operators on real numbers.

Range and precision

In our preceding structural definition, the exponent range [emin, emax] and the
precision p are part of the datum type: they restrict the ranges of the avail-
able significands and exponents. As a consequence and by definition, a finite
floating-point number is bounded. Moreover, a formal object representing a
floating-point number cannot be created unless one proves that its signifi-
cand and exponent, if any, are properly bounded.

Another approach would be to remove these bounds from the datum
type and use them to parameterize the rounding operators only. Then a finite
floating-point number would only be a multiple of a power of the radix β,
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and hence unbounded a priori. The property that it is bounded would instead
come from the fact that such a number was obtained by a rounding operation.

Relational and functional definitions

There are two approaches to defining these operators. The first one considers
rounding operators as relations between the set of floating-point numbers
and the set of real numbers. Two such numbers are related if the first one is
the rounded value of the second one.

In addition to standard rounding modes, this approach makes it possible
to define nondeterministic rounding modes. For example, one could imagine
that, when rounding to nearest, the tie breaking is performed in a random
direction, so several floating-point values could be obtained when rounding
a real number. Such a property can be expressed with a relation. However,
nondeterministic rounding modes are rarely used in practice.

More interestingly, the relational approach can deal with underspecified
rounding operators. This allows us to certify more generic properties about
an algorithm, without having to change the way the algorithm is described.
For instance, an algorithm may compute the correct value, even if some inter-
mediate results are only faithfully rounded. Or some languages may allow a
multiplication followed by an addition to be contracted to an FMA on some
processors (e.g., see Section 7.2.3), and algorithms may still compute the cor-
rect value if this happens.

The other approach applies to deterministic rounding modes only. It
describes them by a function from the set of real numbers to the set of
floating-point numbers. This approach is especially interesting when the
image of the function is actually the set of finite floating-point numbers.3

This functional definition allows us to manipulate floating-point expres-
sions as if they were expressions on real numbers, as long as none of the
floating-point operations of the expressions invoke an exceptional behavior.

Monotonicity

Powerful theorems can be applied on rounded computations as long as
the rounding operators satisfy the following two properties. First, any
floating-point number is its own and only rounded value. Second, if ũ and
ṽ are finite rounded values of the real numbers u and v, the ordering u ≤ v
implies ũ ≤ ṽ. As a consequence, the functional version of a rounding
operator is useful if it is the identity function on the set of floating-point
numbers and a locally constant yet increasing function on the whole set of
real numbers—or at least on the subset that rounds to finite floating-point

3This property arises naturally when the formalism has been extended by removing the
upper bound emax. See Section 13.1.4.
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numbers. As an example of using these two properties, let us consider the
proof of the following simple lemma.

Lemma 42 (Midpoint of two floating-point numbers in radix-2 arithmetic).
Consider the formalism of a binary floating-point arithmetic with no upper bound
emax on the exponents of rounded numbers. When evaluated with any useful round-
ing operator ◦, the expression (a + b) / 2 returns a floating-point value no less
than min(a, b) and no greater than max(a, b), assuming a and b are finite floating-
point numbers.

Proof. We start from the mathematical inequality

2 ·min(a, b) ≤ a + b ≤ 2 ·max(a, b).

The rounding operator is an increasing function, so we get

◦(2 ·min(a, b)) ≤ ◦(a + b) ≤ ◦(2 ·max(a, b)).

Since the floating-point radix is 2, the values 2 ·min(a, b) and 2 ·max(a, b) are
representable floating-point numbers. As a consequence,

2 ·min(a, b) ≤ ◦(a + b) ≤ 2 ·max(a, b).

Halving the terms and using once again the monotonicity of the rounding
operator, we get

◦(min(a, b)) ≤ ◦
(
◦(a + b)

2

)
≤ ◦(max(a, b)).

As the rounding operator is the identity on min(a, b) and max(a, b), we obtain
the final inequality:

min(a, b) ≤ ◦
(
◦(a + b)

2

)
≤ max(a, b).

Note that the identity and monotonicity properties of the rounding
operator are independent of the constraint emin. As a consequence, the lemma
holds, even when subnormal numbers are computed. The correctness of
the proof, however, depends on the numbers 2 · min(a, b) and 2 · max(a, b)
being in the range of finite floating-point numbers. Otherwise, the rounding
operation would no longer be the identity for these two numbers, hence
invalidating the proof. Therefore, a hypothesis was added in order to remove
the upper bound emax. This means that the lemma no longer applies to a prac-
tical floating-point arithmetic. Section 13.1.4 will consider ways to use such a
formalization so that it can be applied to a bounded emax.
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13.1.4 Extending the set of numbers

As mentioned before, a formalization is sufficient for certifying an algorithm,
if it does not change the truth value of the properties one wants to prove on
this algorithm. Therefore, if one can prove that no infinities or NaNs can be
produced by the algorithm,4 a formalization without infinities and NaNs is
sufficient.

Moreover, the simplified formalization does not need an emax bound.
Indeed, in order to prove that this formalization was sufficient, one has
already proved that all the floating-point numbers produced while executing
the algorithm are finite. Therefore, embedding emax in the formalization does
not bring any additional confidence in the correctness of the algorithm.

Such a simplification eases the certification process, but it also requires
some extra discipline. Formal tools will no longer systematically require
proofs of the exponents not overflowing. Therefore, the user has to express
these properties explicitly in the specification, in order to prove that the sim-
plified formalization is valid, and hence to obtain a correct certificate.

Let us consider Lemma 42 anew. This lemma assumes there is no emax,
so that a value like 2 · max(a, b) can be rounded to a finite number. Notice
that this value is not even computed by the algorithm, so whether the prod-
uct overflows or not does not matter. Only the computation of (a + b) / 2

is important. In other words, if one can prove that no overflows can occur in
the algorithm, then the formalization used in Lemma 42 is a valid simplifica-
tion for the problem at hand. Therefore, an immediate corollary of Lemma 42
states: for a full-fledged binary floating-point arithmetic, (a + b) / 2 is
between a and b if the sum a + b does not overflow.

Similarly, if subnormal numbers are proved not to occur, the lower
bound emin can be removed from the description of the floating-point datum
and finite floating-point numbers will be left with zero and normal numbers
only. These modifications are extensions of the floating-point model, as
exponent bounds have been removed. The main consequence is that some
theorems are then valid on the whole domain of floating-point finite num-
bers. For instance, one can assume that |RN(x)− x|/x is bounded by

(n− 1)× β1−p/2

for any (nonzero) real x, without having to first prove that x is in the normal
range. In particular, x does not have to be a value computed by the studied
program; it can be a ghost value that appears in the proof only, in order to
simplify it.

4When arithmetic operations produce a trap in case of exception, the proof is straightfor-
ward; but the trap handling must also be proved (the absence of correct trap handling was
the cause of the explosion of Ariane 5 in 1996). Another way is to prove that all the infinitely
precise values are outside the domain of exceptional behaviors. The proof is more complicated
in the latter case.
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13.2 Formalisms for Certifying Algorithms by Hand

Once there is a mathematical setting for floating-point arithmetic, one can
start to formally certify algorithms that depend on it. Among the early
attempts, one can cite Holm’s work that combined a floating-point formal-
ism with Hoare’s logic in order to check numerical algorithms [184]. Barrett
later used the Z notation to specify the IEEE 754 standard and refine it to a
hardware implementation [23]. Priest’s work is an example of a generic for-
malism for designing guaranteed floating-point algorithms [336]. All of these
works were based on detailed pen-and-paper mathematical proofs.

Nowadays, computer-aided proof systems make it possible, not only to
state formalisms on floating-point arithmetic, but also to mechanically check
the proofs built on these formalisms. This considerably increases the confi-
dence in the correctness of floating-point hardware or software. The follow-
ing paragraphs present a survey of some of these formalisms. The choice of
a given formalism for certifying an algorithm should depend on the scope
of the algorithm (low-level or high-level?) and on the features of the corre-
sponding proof assistant (proof automation, support for real numbers, sup-
port for programming constructs, and so on).

13.2.1 Hardware units

Processor designers have been early users of formal certification. If a bug goes
unnoticed at design time, it may incur a tremendous cost later, as it may cause
its maker to recall and replace the faulty processor. Unfortunately, extensive
testing is not practical for floating-point units, as their highly combinatorial
nature makes it time consuming, especially at pre-silicon stages: hence the
need for formal methods, in order to extend the coverage of these units.

At this level, floating-point arithmetic does not play an important role.
Certified theorems mostly state that “given these arrays of bits representing
the inputs, and assuming that these logical formulas describe the behavior of
the unit, the computed output is the correct result.” Floating-point arithmetic
is only meaningful here for defining what a “correct result” is, but none of its
properties will usually appear in the formal proof.

As an example of such formal certifications, one can cite the various
works around the floating-point units embedded in AMD-K5 processors.
Moore, Lynch, and Kaufmann were interested in the correctness of the
division algorithm [283], while Russinoff tackled the arithmetic operators at
the RTL level [355, 357] and the square root at the microcode level [356]. All
these proofs are based on a formalism written for the ACL2 first-order proof
assistant.5

One specificity of this formalism is the use of rational numbers only.
Since inputs, outputs, and ideal results are all rational numbers, this

5http://www.cs.utexas.edu/users/moore/acl2/
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restriction does not hinder the certification process of addition, multiplica-
tion, and division. But it is an issue for the square root, as the ideal results
often happen to be irrational numbers. It implies that the correctness theo-
rem for the square root cannot be stated as follows:

∀x ∈ Float, sqrt(x) = ◦(
√

x).

It has to be slightly modified so that the square root can be avoided:

∀x ∈ Float, ∀a, b ∈ Rational, 0 ≤ a ≤ b =⇒
a2 ≤ x ≤ b2 =⇒ ◦(a) ≤ sqrt(x) ≤ ◦(b).

From this formally certified theorem, one can then conclude with a
short pen-and-paper proof that the floating-point square root is correctly
computed. First of all, rounding operators are monotonic, so a ≤

√
x ≤ b

implies ◦(a) ≤ ◦(
√

x) ≤ ◦(b). If
√

x is rational, taking a = b =
√

x forces
sqrt(x) = ◦(

√
x). If

√
x is not rational, it is not the rounding breakpoint

between two floating-point values either.6 Therefore, there is a neighborhood
of
√

x in which all the real values are rounded to the same floating-point
number. Since rational numbers are a dense subset of real numbers, choosing
a and b in this neighborhood concludes the proof.

13.2.2 Low-level algorithms

While the addition and multiplication operators are implemented purely in
hardware, division and square root are actually microcoded inside AMD-K5
processors. They are computed by small algorithms performing a sequence
of additions and multiplications, on floating-point numbers with a 64-bit sig-
nificand and a 17-bit exponent, with various rounding operators. Performing
the certification of these algorithms then relies on properties of floating-point
arithmetic, e.g., the notion of rounding errors.

ACL2 is not the only proof assistant with a formalism rich enough to
prove such algorithms. Harrison devised a framework for HOL Light7 [168]
and used it for proving the correctness of the division operator on Intel
Itanium processors [170]. The floating-point unit of these processors provides
the fused multiply-add (FMA) operation only, so division has to be imple-
mented in software by a sequence of floating-point operations. As such, the
approach is similar to AMD-K5’s microcoded division, and so is the certifica-
tion.

There is a third formalism for proving small floating-point algorithms.
It is available for two proof assistants: Coq8 and PVS.9 This effort was started

6One could certainly devise a rounding operator that has irrational breakpoints. Fortu-
nately, none of the standard modes is that vicious.

7http://www.cl.cam.ac.uk/~jrh13/hol-light/
8http://coq.inria.fr/
9http://pvs.csl.sri.com/
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by Daumas, Rideau, and Théry [97]. Boldo then extended it for proving
numerous properties of floating-point arithmetic, e.g., Dekker’s error-free
multiplication for various radices and precisions [30], the faithfulness of
Horner’s polynomial evaluation [36], and the use of an exotic rounding
operator for performing correct rounding [34].

13.2.3 Advanced algorithms

Previous examples of certification are geared toward rounding properties
of algorithms. Once the global rounding error has been proved to be small
enough, the proofs are mostly complete.

When considering more complicated functions, e.g., elementary func-
tions, a separate issue arises. Indeed, the exact evaluation of these functions
cannot even be performed with the basic arithmetic operators on real num-
bers. Therefore, their evaluation has to involve some additional approxima-
tions. For instance, an elementary function may be replaced by a polynomial
that approximates it. As a consequence, proving that the global rounding
error is small enough is no longer sufficient to check that the operator is
correctly evaluated. One must also prove that the chosen polynomial is
sufficiently close to the original elementary function.

This property can be proved by finding the extrema of the error func-
tion ε between the polynomial P and the elementary function f . As this error
may be difficult to directly study from a formal point of view, one could first
replace the elementary function by a high-degree polynomial F , so that the
error function becomes ε = (P − F ) + (F − f). The polynomial F is usu-
ally chosen so that the part F − f can be symbolically bounded. For instance,
when F is a truncation of the alternated Taylor series of f , the bound on F−f
is given by the first discarded term.

The other part Q = P − F is simply a polynomial, so it can be auto-
matically bounded by formal methods. In particular, formally locating the
roots of the derivative Q′ gives guaranteed bounds on the extrema of Q. An
example of this approach to certifying elementary functions can be found in
Harrison’s HOL Light proof of Tang’s floating-point implementation of the
exponential function [167]. In this proof, small intervals enclosing the roots
of Q′ were obtained by using its Sturm sequence.

Harrison has also considered using sum-of-square decompositions for
proving properties of polynomial systems [172], which is a problem much
more general than just bounding Q. The decomposition

∑
R2

i of a polynomial
R = Q + a is particularly well suited for formal proofs. Indeed, while the
decomposition may be difficult to obtain, the algorithm does not have to be
formally proved. Only the equality R =

∑
R2

i has to, which is easy and fast.
A straightforward corollary of this equality is the property Q ≥ −a.

However, both approaches seem to be less efficient than doing a varia-
tion analysis of Q in HOL Light [169]. This analysis also considers the roots
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of the derivative Q′, but instead of using Sturm sequences to obtain the
enclosures of the roots, Harrison recursively encloses all the roots of its
derivatives. Indeed, a differentiable function can be zero only at one point
between two consecutive zeros of its derivative. Since Q is a polynomial, the
recursion stops on linear polynomials which have trivial roots.

Another approach is the decomposition of Q′ in the Bernstein polyno-
mial basis. Indeed, if the number of sign changes in the sequence of coeffi-
cients is zero or one, this is also the number of roots (similar to Descartes’
Law of Signs). If it is bigger, De Casteljau’s algorithm can be used to effi-
ciently compute the Bernstein decompositions of Q on two subintervals. A
bisection can therefore isolate all the extrema of Q. Zumkeller implemented
and proved this method in Coq [445].

Another possibility lies in using interval arithmetic and variation anal-
ysis to obtain extrema. This time, the analysis is directly performed on the
function ε = P−f . For this purpose, Melquiond formalized and implemented
in Coq an automatic differentiation and an interval arithmetic with floating-
point bounds [274]. A similar method was first experimented in PVS [96] but
it proved inefficient due to the use of rational numbers as interval bounds.

13.3 Automating Proofs

Due to the wide scope of floating-point arithmetic, there cannot be an auto-
matic process for certifying all the valid floating-point algorithms. Some parts
of the certification may have to be manually performed, possibly in a formal
environment. Nevertheless, most proofs on floating-point algorithms involve
some repetitive, tedious, and error-prone, tasks, e.g., verifying that no over-
flows occur. Another common task is a forward error analysis in order to
prove that the distance between the computed result and the ideal result is
bounded by a specified constant.

The Gappa10 tool is meant to automate most of these tasks. Given a high-
level description of a binary floating-point (or fixed-point) algorithm, it tries
to prove or exhibit some properties of this algorithm by performing interval
arithmetic and forward error analysis. When successful, the tool also gener-
ates a formal proof that can be embedded into a bigger development,11 hence
greatly reducing the amount of manual certification needed. The methods
used in Gappa depend on the ability to perform numerical computations

10Gappa is distributed under a GNU GPL license. It can be freely downloaded at

http://lipforge.ens-lyon.fr/projects/gappa/

11Certifying the numerical accuracy of an implementation is only a small part of a certifica-
tion effort. One may also have to prove that there are no infinite loops, no accesses out of the
bounds of an array, and so on. So the user has to perform and combine various proofs in order
to get a complete certification.
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during the proofs, so there are two main constraints on the floating-point
algorithms: their inputs have to be bounded somehow,12 and the precision of
the arithmetic cannot be left unspecified.13

While Gappa is meant to help certify floating-point algorithms, it
manipulates expressions on real numbers only and proves properties of these
expressions. Floating-point arithmetic is expressed using the functional
rounding operators presented in Section 13.1.3. As a consequence, infinities,
NaNs, and signed zeros are not first-class citizens in this approach. So, Gappa
is unable to propagate them through computations, but it is nonetheless able
to prove they do not occur during computations.

In developing the tool, several concepts related to the automatic certifi-
cation of the usual floating-point algorithms were brought to light. The fol-
lowing sections describe them in the context of Gappa.

13.3.1 Computing on bounds

Gappa proves floating-point properties by exhibiting facts on expressions
of real numbers. These facts are of several types, characterized by some
predicates mixing numerical values with expressions. The main predicate
expresses numerical bounds on expressions. These bounds are obtained and
can then be verified with interval arithmetic (see Section 2.9 page 51). For
example, if the real x is enclosed in the interval [−3, 7], one can easily prove
that the real

√
1 + x2 is well specified and enclosed in the interval [1, 8].

Exceptional behaviors

Enclosures are sufficient for expressing properties usually encountered while
certifying numerical algorithms. The first kind of property deals with excep-
tional behaviors. An exceptional behavior occurs when the input of a func-
tion is out of its definition domain. It also occurs when the evaluation causes
a trap, e.g., in case of overflow or underflow.

Consider the computation RN(
√

RD(1 + RU(x2))). Let us assume that
the software will not be able to cope with an overflow or an invalid opera-
tion if one is caused by this formula. Certifying that no exceptional behavior
occurs then amounts to checking that neither RU(x2) nor RD(1 + RU(x2))
nor RN(

√
RD(. . .)) overflows, and that RD(1+RU(x2)) is non-negative. This

last property is easy enough to express with an enclosure: RD(1 + RU(x2)) ∈
[0,+∞). What about the ones on overflow?

Let us denote M the biggest representable floating-point number and
M+ the first power of the radix too big to be representable.14 Expressing that

12For algorithms evaluating elementary functions, the inputs are naturally bounded, due to
the argument reduction step (see Section 11, page 378).

13Again, this is hardly an issue, as most algorithms are written with a specific floating-point
format in mind, e.g., binary64.

14So M+ would actually be the floating-point number just after M if there was no overflow.
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RU(x2), or more generally RU(y) does not overflow may be achieved with
the property y ∈ (−M+,+M ]. Negative values outside this half-open inter-
val would be rounded to −∞, and positive values to +∞. This approach
has a drawback: it depends on the direction of the rounding mode. The
enclosure y ∈ (−M+,+M ] is used for RU(y), y ∈ [−M,+M+) for RD(y),
y ∈ (−M+,M+) for RZ(y), and y ∈ (−1

2(M +M+),+1
2(M +M+)) for RN(y).

Let us consider a set of floating-point numbers without an upper bound
on the exponent instead, as described in Section 13.1.4. In other words, while
emax still characterizes numbers small enough to be stored in a given format,
the rounding operators ignore it and may return real numbers bigger than
M , e.g., RN(βM) = βM . This extended set, therefore, makes it simpler to
characterize an operation that does not overflow: one just has to prove that
◦(y) ∈ [−M,+M ], whatever the rounding mode ◦ happens to be.

Quantifying the errors

Proving that no exceptional behaviors occur is only a part of the certification
process. If the algorithm is not meant (or unable) to produce exact values at
each step due to rounding errors, one wants to bound the distance between
the computed value ṽ and the infinitely precise value v̂ at the end of the
algorithm.15 This value v̂ may not even be the mathematical value v that
the algorithm tries to approximate. Indeed, some terms of v may have been
neglected in order to speed up the algorithm (1 + x−42  1 for big x). Or
they may have been simplified so that they can actually be implemented
(cos x 1− x2

2 for small x).
There are two common distances between the computed value and the

mathematical value: the absolute error and the relative error. In order to
reduce the number of expressions to analyze, Gappa favors errors written
as ṽ − v and ṽ−v

v , but other forms could be handled as well.
Error expressions are bounded by employing methods from forward

error analysis. For instance, the expression (ũ × ṽ) − (u × v) is bounded
in two steps. First, the expressions ũ − u and ṽ − v, which are still error
expressions, are bounded separately. The same is done for expressions u and
v. Second, these four bounds are combined by applying interval arithmetic to
the following formula:

(ũ× ṽ)− (u× v) = (ũ− u)× v + u× (ṽ − v) + (ũ− u)× (ṽ − v).

The previous example is the decomposition of the absolute error
between two products. Similar decompositions exist for the two kinds of
error and for all the arithmetic operators: +, −, ×, ÷,

√
·.

15An expression computing v̂ can be obtained by removing all the rounding operators from
an expression computing ṽ.
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Another important class of operators is the rounding operators, as pre-
sented in Section 13.1.3. The absolute error ◦(ũ) − u is decomposed into a
simpler error ũ− u and a rounding error ◦(ũ)− ũ. The rounding error is then
bounded depending on the properties of the rounding operator. For floating-
point arithmetic, this often requires a crude bound on ũ.

Gappa therefore works by decomposing the target expression into
smaller parts by relying on methods related to forward error analysis. Once
all these parts can be bounded—either by hypotheses (e.g., preconditions of
the studied function) or by properties of rounding operators—the tool per-
forms interval arithmetic to compute an enclosure of the expression.

13.3.2 Counting digits

Representable numbers for a given format are a discrete subset of the real
numbers. This is especially noticeable when considering fixed-point arith-
metic. Since we do not consider overflow, a fixed-point format can be defined
as the weight or position of the least significant bit (LSB) of the numbers.
Therefore, given three fixed-point variables a, b, and c with the same number
format, the addition c := ◦(a+b) is exact. Such exact operations are inherently
frequent when using fixed-point arithmetic, be it in software or in hardware
design.

Thus, we would like the tool to be able to prove that c− (a + b) is equal
to zero, so that the rounding error is not overestimated. As described above,
the tool knows how to bound ◦(u) − u for a real number u. For instance,
if ◦ rounds toward +∞ and the weight of the LSB is 2k, then the property
∀u ∈ R, ◦(u) − u ∈ [0, 2k) holds. Notice that [0, 2k) is the smallest possible
subset, since u can be any real number. So this is not helpful in proving
◦(a + b)− (a + b) ∈ [0, 0].

The issue comes from a + b not being any real number. It is the sum of
two numbers belonging to the fixed-point set {m·2k |m ∈ Z}, which happens
to be closed under addition. Since ◦ is the identity on this set, the rounding
error is zero. So manipulating enclosures only is not sufficient: the tool has to
gather some information on the discreteness of the expressions.

Fixed-point arithmetic

As stated above, reasoning on discrete expressions could be achieved by con-
sidering the stability of fixed-point sets. However, it would be overly restric-
tive, as this approach would not cater to multiplication. Instead, Gappa keeps
track of the positions of the LSB of all the expressions, if possible. In the previ-
ous example, a and b are multiples of 2k, so their sum is too. Since the operator
◦ rounds at position k, it does not modify the result of the sum a + b. More
generally, if an expression u is a multiple of 2` and if an operator ◦ rounds at
position h ≤ `, then ◦(u) = u.
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For directed rounding, this proposition can be extended to the opposite
case h > `. Indeed the rounding error ε = ◦(u) − u satisfies |ε| < 2h and is a
multiple of 2`. Thus, |ε| ≤ 2h − 2`. As a consequence, when rounding toward
zero at position h a number u multiple of 2`, the rounding error ◦(u) − u is
enclosed in [−δ, δ] with δ = max(0, 2h − 2`).

Let us denote FIX(u, k) the predicate stating that the expression u is a
multiple of 2k: ∃m ∈ Z, u = m · 2k. Assuming that the properties FIX(u, k)
and FIX(v, `) hold for the expressions u and v, the following properties can
be deduced:

FIX(−u, k),
FIX(u + v,min(k, `)),
FIX(u× v, k + `).

Moreover, if the operator ◦ rounds at position k, then the property
FIX(◦(u), k) holds. The predicate is also monotonic:

FIX(u, k) ∧ k ≥ ` ⇒ FIX(u, `).

Floating-point arithmetic

The error bounds could be handled in a similar way for floating-point arith-
metic, but the improvements are expected to be less dramatic. For instance,
when rounding toward zero the product of two numbers in the binary64
format, the improved bound on the relative error (assuming a nonunderflow-
ing result) is 2−52 − 2−105. This better bound is hardly more useful than the
standard error bound 2−52 for proving the correctness of most floating-point
algorithms.

As a consequence, Gappa does not try to improve the relative error
bound, but it still tries to detect exact operations. Consider that rounding
happens at precision p and that the smallest positive number is 2k. A round-
ing operator ◦p,k will leave an expression u unmodified when its number w
of significant digits is small enough (w ≤ p) and its least significant digit has
a weight 2e big enough (e ≥ k). The second property can be expressed with
the FIX predicate: FIX(u, k). The first property requires a new predicate:

FLT(u, p) ≡ ∃m, e ∈ Z, u = m · 2e ∧ |m| < 2p.

Therefore, Gappa uses the following theorem:

FIX(u, k) ∧ FLT(u, p) ⇒ ◦p,k(u)− u ∈ [0, 0].

Assuming that the properties FLT(u, p) and FLT(v, q) hold for the expres-
sions u and v, the following properties can be deduced:

FLT(−u, p),
FLT(u× v, p + q).
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As with the fixed-point case, some properties can be deduced from a
floating-point rounding operator:

FLT(◦p,k(u), p) ∧ FIX(◦p,k(u), k).

There is again a monotonicity property:

FLT(u, p) ∧ p ≤ q ⇒ FLT(u, q).

And finally, both predicates can be related as long as bounds are known
on the expressions:

FIX(u, k) ∧ |u| < 2g ⇒ FLT(u, g − k),
FLT(u, p) ∧ |u| ≥ 2g ⇒ FIX(u, g − p + 1).

Application

Here is an example showing how the various predicates interact. Consider
two expressions u ∈ [3.2, 3.3] and v ∈ [1.4, 1.8], both with p significant digits
at most. How can we prove that the difference u − v also has p significant
digits at most? Notice that Lemma 2 (Sterbenz’s lemma, see Section 4.2, page
122) does not apply, since 3.3

1.4 > 2.
First of all, by interval arithmetic, we can prove |u− v| ≤ 1.9. Moreover,

since we have |u| ≥ 21 and FLT(u, p), the property FIX(u, 2 − p) holds. Simi-
larly, FIX(v, 1− p) holds. Therefore, we can deduce a property on their differ-
ence: FIX(u−v, 1−p). By combining this property with the bound |u−v| < 21,
we get FLT(u − v, p). So we have proved that u − v has at most p significant
digits.

This reasoning could then be extended until we prove that the floating-
point subtraction is actually exact. Indeed, if the smallest positive floating-
point number is 2k, we have both FIX(u, k) and FIX(v, k). As a consequence,
we also have FIX(u−v, k). By combining this property with FLT(u−v, p), we
conclude that u− v is representable as a floating-point number.

13.3.3 Manipulating expressions

Errors between structurally similar expressions

As presented in Section 13.3.1, Gappa computes bounds on an expression
representing an error, either x̃−x or x̃−x

x , by first rewriting it in another form.
This new expression is meant to make explicit the errors on the subterms of
x̃ and x. For instance, if x̃ and x are the quotients ũ/ṽ and u/v, respectively,
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then Gappa relies on the following equality:16

ũ/ṽ − u/v

u/v
=

εu − εv

1 + εv
with εu =

ũ− u

u
and εv =

ṽ − v

v
.

The left-hand side contains the correlated expressions ũ and u, and ṽ
and v, while the right-hand side does not. Therefore, the latter should have a
better structure for bounding the error by interval arithmetic. It still has a bit
of correlation, since the expression εv appears twice; however, this does not
induce an overestimation of the bounds. Indeed, the whole expression is a
homographic transformation with respect to εv, hence monotonic on the two
parts of its domain. Gappa takes advantage of this property when computing
its enclosure. Therefore, as long as the errors εu and εv are not correlated, tight
bounds on the relative error between ũ/ṽ and u/v are obtained. In fact, unless
the partial errors εu and εv are purposely correlated, this correlation hardly
matters when bounding the whole error.

For this approach to work properly, the expressions x̃ and x have to use
the same operator—a division in the example above. Moreover, their sub-
terms should match, so that the error terms εu and εv are meaningful. In other
words, ũ should somehow be an approximation to u, and ṽ to v.

For instance, Gappa’s approach will fail if the user wants to analyze the
error between the expressions x̃ = (a1 × ũ)/(a2 × ṽ) and x = u/v. If a1 and
a2 are close together, then computing x̃ may be a sensible way of getting an
approximate value for x, hence the need to bound the error. Unfortunately,
a1 × ũ is not an approximation to u, only ũ is. So the transformation above
will fail to produce useful bounds on the error. Indeed, an error expression εu

between a1 × ũ and u does not present any interesting property.
In such a situation, the user should tell Gappa that x̃ and x′ = ũ/ṽ are

close, and how to bound the (relative) error between them. When asked about
the error between x̃ and x, Gappa will separately analyze its two parts—the
error between x̃ and x′ and the error between x′ and x—and combine them.

Using intermediate expressions

This process of using an intermediate expression in order to get errors
between structurally similar expressions is already applied by Gappa for
rounding operators. Indeed, while the user may sometimes want to bound
the error between x̃ = ũ/ṽ and x = u/v, a more usual case is the error
between ỹ = ◦(x̃) and x. The two expressions no longer have a similar struc-
ture, since the head symbol of ỹ is the unary operator ◦while the head symbol
of x is the binary operator /.

16Using the right-hand-side expression to compute the left-hand-side one requires several
hypotheses on u, v, and ṽ not being zero. Section 13.3.4 details how Gappa eliminates these
hypotheses by using a slightly modified definition of the relative error.
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To avoid this issue, Gappa registers that ỹ is an approximation to y = x̃,
by definition and purpose of rounding operators. Whenever it encounters an
error expression involving ỹ, e.g., ◦(x̃)−x

x , Gappa will therefore try to decom-
pose it by using y as an intermediate expression:

ỹ − x

x
= ε1 + ε2 + ε1 × ε2

with

ε1 =
ỹ − y

y
and ε2 =

y − x

x
=

x̃− x

x
.

Rounded values are not the only ones Gappa considers to be approxi-
mations to other values. Whenever the tool encounters a hypothesis of the
form x̃ − x ∈ I or x̃−x

x ∈ I , it assumes that x̃ is an approximation to x, as
the enclosed expression looks like an error between x̃ and x. This heuristic is
useful in automatically handling problems where there are method errors in
addition to rounding errors. In the example of Section 13.4.1, the user has a
polynomial p(x) that approximates sinx. The goal is to get a bound on the
error between the computed value p̃(x) and the ideal value sinx. Since
the user provides a bound on the method error between p and sin, Gappa
deduces that the following equality may be useful:

p̃(x)− sinx

sinx
= εp + εs + εp × εs

with

εp =
p̃(x)− p(x)

p(x)
and εs =

p(x)− sinx

sinx
.

Gappa can then automatically compute a bound on εp, as this is an error
between two expressions with the same structure once rounding operators
have been removed from p̃.

Cases of user hints

When Gappa’s heuristics are unable to reduce expressions to errors between
terms with similar structures, the user can provide additional hints. There are
two kinds of hints. The first kind tells Gappa that two expressions have the
same bounds under some constraints. In particular, if one of the expressions
is composed of errors between structurally similar terms, then Gappa will be
able to deduce tight bounds on the other expression. The second kind of hint
tells Gappa that a specific term approximates another one, so the tool will try
to exhibit an error expression between the two of them.
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Matching formula structures If the developer has decided some terms are
negligible and can be ignored in the computations, then the formula of the
computed value will have some missing terms with respect to the formula of
the exact value. As a consequence, the structures of the two formulas may be
different.

As an example, let us consider a double-double multiplication algo-
rithm. The inputs are the pairs of numbers (xh, x`) and (yh, y`) with x` neg-
ligible with respect to xh, and y` to yh. The output of the algorithm is a pair
(zh, z`) that should approximate the exact product p = (xh + x`) × (yh + y`).
The algorithm first computes the exact result zh + t of the product xh×yh (see
Section 4.4, page 132). The products xh× y` and x`× yh are then added to the
lower part t in order to get z`:

zh + t ← xh × yh

z` ← RN(RN(t + RN(xh × y`)) + RN(x` × yh)).

The product x`×y` is supposedly negligible and was ignored when com-
puting z`. The goal is to bound the error (zh + z`) − p, but the two subterms
do not have the same structure: p is a product, zh + z` is not. So we rewrite
the error by distributing the multiplication and setting aside x` × y`:

(zh +z`)−p = (zh + t)− (xh × yh)︸ ︷︷ ︸
δ1

+ z` − (t + (xh × y`) + (x` × yh))︸ ︷︷ ︸
δ2

−x`×y` .

In the preceding formula, δ1 is zero by definition of the exact product,
while δ2 is the difference between two expressions with the same structure
once the rounding operators have been removed. An evaluation by interval
of the right-hand-side expression will therefore give tight bounds on the left-
hand-side expression.

Handling converging formulas Gappa does not recognize converging
expressions. Handling them with the usual heuristics will fail, since their
structure is generally completely unrelated to the limit of the sequence. The
developer should therefore explain to the tool why a particular formula was
used. Let us consider Newton’s iteration for computing the multiplicative
inverse of a number a:

xn+1 = RN(xn × RN(2− RN(a× xn))).

This sequence quadratically converges toward a−1, when there are no
rounding operators. So the first step is to tell Gappa that the computed value
xn+1 is an approximation to the same expression without rounding operators:

xn+1 ' xn × (2− (a× xn)) ≡ x′n+1.
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Notice that x′n+1 is not defined as depending on x′n but on xn. Indeed, the
iteration is self-correcting, so using xn will help Gappa to notice that round-
ing errors are partly compensated at each step. The developer can now tell
Gappa that the error with the ideal value decreases quadratically:

x′n+1 − a−1

a−1
= −

(
xn − a−1

a−1

)2

.

When evaluating the error (xn+1 − a−1)/a−1 at a step n + 1, Gappa will
split it into two parts: (xn+1 − x′n+1)/x′n+1, which is the total rounding error
at this step, and (x′n+1 − a−1)/a−1, which is given by the identity above and
depends on the error at step n.

13.3.4 Handling the relative error

Expressing a relative error as ũ−u
u implicitly puts a constraint u 6= 0. There-

fore, if the enclosure ũ−u
u ∈ I appears in a hypothesis or as a conclusion of

a theorem, it is generally unavailable until one has also proved u 6= 0. This
additional constraint is not an issue when dealing with the relative error of
a product, that is ũ = ◦(x × y) and u = x × y. Indeed, the relative error
ũ−u

u can usually be bounded only for u outside of the underflow range. As a
consequence, the property u 6= 0 comes for free.

For floating-point addition, the situation is not that convenient. Indeed,
the relative error between ũ = ◦(x + y) and u = x + y (with x and y floating-
point numbers) is commonly admitted to be always bounded, even for sub-
normal results. So the relative error should be expressed in a way such that
its use does not require one to prove that the ideal value u is nonzero.

Gappa achieves this property by introducing another predicate:

REL(ũ, u, I) ≡ −1 < lower(I) ∧ ∃εu ∈ I, ũ = u× (1 + εu).

Always-bounded relative errors

The relative error of a sum z = RN(x) + RN(y) can now be enclosed as fol-
lows:17

REL(RN(z), z, [−2−53, 2−53]).

The property above is too restrictive, however. The two subterms do not
necessarily have to be rounded to nearest in binary64 format. For instance,
it would still hold for z = RD(x) + RZbinary32(y). As a matter of fact, z does
not even have to be a sum. So, which conditions are sufficient for the relative
error to be bounded? For RN(z) with z = RN(x) + RN(y), the bound is a

17The expression z = RN(x) + RN(y) ensures that z is not the sum of any two real num-
bers, but of two floating-point numbers represented with the same format as RN(z), i.e., same
precision and emin.
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consequence of the floating-point addition not losing any information with a
magnitude smaller than the smallest positive floating-point number 2k. This
is generalized to the following theorem, which Gappa relies on to bound the
relative error when rounding to nearest:

FIX(u, k) =⇒ FLT(◦p,k(u), u, [−2−p, 2−p]).

The original property can then be recovered with the following proof.
Since both RN(x) and RN(y) are binary64 numbers, they satisfy the
properties FIX(RN(x),−1074) and FIX(RN(y),−1074). As a consequence
(Section 13.3.2), their sum does too: FIX(RN(x) + RN(y),−1074). Applying
the theorem above hence gives REL(RN(z), z, [−2−53, 2−53]).

Propagation of relative errors

Rules for the REL predicate are straightforward. Given the two properties
REL(ũ, u, Iu) and REL(ṽ, v, Iv), multiplication and division are as follows:

REL(ũ× ṽ, u× v, J) with J ⊇ {εu + εv + εu × εv | εu ∈ Iu, εv ∈ Iv},
REL(ũ/ṽ, u/v, J) with J ⊇ { εu−εv

1+εv
| εu ∈ Iu, εv ∈ Iv}.

Assuming u + v 6= 0 and ṽ/(u + v) ∈ I , the relative error for addition is
given by REL(ũ + ṽ, u + v, J) with

J ⊇ {εu × t + εv × (1− t) | εu ∈ Iu, εv ∈ Iv, t ∈ I}.

Composing relative errors is similar18 to multiplication: Given the two
properties REL(z, y, I1) and REL(y, x, I2), we have REL(z, x, J) with

J ⊇ {ε1 + ε2 + ε1 × ε2 | ε1 ∈ I1, ε2 ∈ I2}.

13.4 Using Gappa

13.4.1 Toy implementation of sine

Let us consider the C code shown in Listing 13.1.
The literal 0x28E9.p-16f is a C99 hexadecimal notation for the floating-

point constant of type float equal to 10473/65536. So the function computes
a value y ' x− x3/6 ' sinx.

Assuming all the computations are rounded to nearest in the binary32
format,19 what is the relative error between the computed value y and the

18Encountering the same formula is not unexpected: taking z = ũ × ṽ, y = ũ × v, and
x = u× v makes it appear.

19With this C code, this is guaranteed by the ISO C99 standard under the condition that
FLT_EVAL_METHOD is equal to 0 (see Section 7.2.3, page 213) and that floating expressions are
not contracted (in particular because an FMA could be used here, see Section 7.2.3, page 214).
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C listing 13.1 Toy implementation of sine around zero.

float my_sine(float x)
{
assert(fabsf(x) <= 1);
float y = x * (1.f - x*x * 0x28E9.p-16f);
return y;

}

mathematical value sinx? The Gappa tool will be used to find some bounds
on this error. Note that, for the sake of this example, x will first be assumed
not to be too small. So one of the hypotheses will be |x| ∈ [2−100, 1].

Gappa is designed to prove some logical propositions involving enclo-
sures of real-valued expressions. These expressions can be built around the
basic arithmetic operators only. In particular, Gappa does not know about the
sine function. So the value sin x will be represented by a new variable sin_x .
Consider the following script:

{ |x| in [1b-100,1] -> (y - sin_x) / sin_x in ? }

Since it contains an interrogation mark, Gappa will try to find an
interval I such that the following statement holds:

∀x∀y∀sin_x |x| ∈ [2−100, 1]⇒ y − sin_x
sin_x

∈ I.

Obviously, there is no such interval I , except R assuming sin_x is
implicitly not zero.20 The proposition is missing a lot of data. In particular,
y should not be a universally quantified variable: it should be an expression
depending on x. This definition of y can be added to the Gappa script before
the logical proposition:21

y = ...; # to be filled
{ |x| in [1b-100,1] -> (y - sin_x) / sin_x in ? }

The computations are performed in rounding to nearest and the num-
bers are stored in the binary32 format. In Gappa’s formalism, this means
that the rounding operator float<24,−149,ne>22 is applied to each infinitely
precise result. Note that the operator float<ieee_32,ne> is a predefined
synonym. Still it would be cumbersome to type this operator for each
floating-point operation, so a shorter alias rnd is defined beforehand:

@rnd = float<ieee_32,ne>;
y = rnd(x * rnd(1 - rnd(rnd(x * x) * 0x28E9p-16)));

20Gappa never assumes that a divisor cannot be zero, unless running in unconstrained mode.
21It does not have to, though. The term y could be directly replaced by its definition in the

logical proposition.
22The parameters of the rounding operator float<24,−149,ne> express its properties: tar-

get precision is 24 bits, the smallest positive representable number is 2−149, and results are
rounded to Nearest Even.
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Even with the alias, the definition of y is still obfuscated. Since all the
operations are using the same rounding operator, it can be prefixed to the
equal symbol, so that the definition is almost identical to the original C code:

y rnd= x * (1 - x*x * 0x28E9p-16);

Although y is now defined, Gappa is still unable to tell anything inter-
esting about the logical proposition, since sin_x is a universally quantified
variable instead of being sinx. It would be possible to define sin_x as the
sum of a high-degree polynomial in x with an error term δ. Then a hypothe-
sis stating some bounds on δ would be sufficient from a mathematical point
of view.

However, this is not the usual approach with Gappa. Rather, we should
look at the original C code again. The infinitely precise expression

My = x×
(

1− 10473
65536

× x2

)
was purposely chosen so that it is close to sinx, since this is what we want to
compute. Therefore, sin_x should be defined with respect to that infinitely-
precise expression. The relative error between My and sin_x = sinx can be
obtained (and proved) by means external to Gappa; it is added as a hypothe-
sis to the proposition:

My = x * (1 - x*x * 0x28E9p-16);
{ |x| in [1b-100,1] /\ |(My - sin_x) / sin_x| <= 1.55e-3
-> ((y - sin_x) / sin_x) in ? }

Note that constants in Gappa are never implicitly rounded. So the literal
1.55e-3 is the real number 155/1000 and the literal 1b-100 represents the real
number 1 · 2−100—it could also have been written 0x1.p-100. Similarly, the
hexadecimal literal 0x28E9p-16 that appears in y and My is a compact way of
expressing the real number 10473/65536.

At this point, Gappa still cannot give an interval containing the relative
error, although all the information seems to be present. In order to find the
issue, the tool can be run in unconstrained mode with the -Munconstrained

command-line option. This mode prevents Gappa from noticing that values
underflow and that divisors are zero.23 Gappa then answers that the relative
error is bounded by 1.551 · 10−3.

The tool also explains that it has assumed sin_x is not zero in order to
get this bound. Indeed, Gappa is unable to use the hypothesis on the rela-
tive error (My − sin_x )/sin_x if sin_x is zero. Since this property cannot be
deduced from the current hypotheses, a new one needs to be added. Since
| sinx| is known to be bigger than |x|

2 for |x| ≤ π
2 , one can just assume that

|sin_x | is bigger than 2−101.

23As a consequence, Gappa no longer generates a formal proof, since it would contain holes.
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Gappa script 13.1 Relative error of a toy implementation of sine.

# Floating-point format is binary32; operations are rounded to nearest
@rnd = float<ieee_32,ne>;

# Value computed by the floating-point function
y rnd= x * (1 - x*x * 0x28E9p-16);
# Value computed with an infinitely-precise arithmetic (no rounding)
My = x * (1 - x*x * 0x28E9p-16);

# Proposition to prove
{
# Input x is smaller than 1 (but not too small)
|x| in [1b-100,1] /\
# My is close to sin x and the bound is known
|(My - sin_x) / sin_x| <= 1.55e-3 /\
# Helper hypothesis: sin x is not too small either
|sin_x| in [1b-101,1]

->
# Target expression to bound
((y - sin_x) / sin_x) in ?

}

Given Script 13.1, Gappa is able to compute and prove a bound on the
relative error between y and sin_x . Since sin_x will appear as a universally
quantified variable in a formal development, it can later be instantiated by
sinx without much trouble. This instantiation will simply require the user to
prove that the properties

|(My − sinx)/ sinx| ≤ 1.55 · 10−3

and
| sinx| ∈ [2−100, 1]

hold for x ∈ [2−100, 1].
In order to get rid of the extraneous hypotheses on x and sinx not being

too small, one can express the relative errors directly with the predicate REL

(Section 13.3.4). In Gappa syntax, the relative error between two expressions
u and v is written u -/ v. It amounts to saying that there exists ε such that
u = v × (1 + ε); and enclosures on u -/ v are actually enclosures on ε. This
leads to Script 13.2.

Two additional informations were given to Gappa in Script 13.2. Firstly,
x is not just any real number, it is a binary32 number. This is expressed by
saying that x is the rounded value of a dummy number x_. Therefore x is no
longer universally quantified, x_ is. This is hardly an issue, as this dummy
variable can be instantiated by the actual argument X of the my_sine func-
tion in a formal development. Since x = RN(x_) = RN(X) = X holds by
virtue of X being a representable floating-point number, the new proposition
is equivalent to the old one.
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Gappa script 13.2 Relative error of a toy implementation of sine (variant).

@rnd = float<ieee_32,ne>;

# x is a binary32 floating-point number
x = rnd(x_);

y rnd= x * (1 - x*x * 0x28E9p-16);
My = x * (1 - x*x * 0x28E9p-16);

{
|x| <= 1 /\
|My -/ sin_x| <= 1.55e-3

->
|y -/ sin_x| <= 1.551e-3

}

# Separate the cases |x| <= 1b-100 and |x| >= 1b-100
$ |x| in (1b-100);

Secondly, there is not a single proof scheme (at least not in Gappa setting)
that fits all of the values x ∈ [−1, 1]. So, the script tells the tool to first consider
the cases |x| small and |x| big separately and then to merge the two resulting
proofs.

13.4.2 Integer division on Itanium

The second example is taken from the software algorithm for perform-
ing 16-bit unsigned integer division with floating-point operations on
Itanium [89, 170]. A specificity of this algorithm is that all the operations are
without rounding error and this is important for proving the correctness of
the algorithm. So, the execution of this script heavily relies on Gappa keeping
count of the significant digits of computed expressions.

The inputs of the algorithm are a and b. They are 16-bit positive integers,
so the logical proposition assumes a, b ∈ [1, 65535]. Moreover, in order to state
their integer status, these variables are defined as the integer part of some
dummy real numbers:24

a = int<dn>(a_);
b = int<dn>(b_);

The first step of the algorithm is to get an approximation to the reciprocal
b−1. This approximation y0 is computed by the Itanium assembly instruction
frcpa, which returns an 11-bit value with a relative error ε0 of at most 2−8.886.
So we add a hypothesis on ε0 too: |ε0| ≤ 0.00211373. Moreover, as previously,

24Rounding direction dn is toward −∞, but the actual direction does not matter. Indeed,
as with Script 13.2, the universally quantified variable a_ is meant to be instantiated by the
integer a, so a = bac = dae = dac.



13.4. Using Gappa 489

y0 is expressed as the rounded value of a dummy real number, so that the
number of significant digits is known to Gappa.

For this purpose, an unusual rounding operator float<11,-1000,dn> is
defined. The fact that it rounds toward −∞ does not matter; only the
11-bit precision does. The choice of the smallest positive value 2−1000 pos-
sibly returned by the operator does not matter either; it is just chosen so that
it does not interfere with the algorithm, whose smallest reciprocal is 65535−1.

y0 = float<11,-1000,dn>(y0_);

The algorithm then follows with three FMA operations performed in
extended precision (operator rnd). These operations could be expressed as

@rnd = float<x86_80,ne>;
q0 = rnd(a * y0);
e0 = rnd(1 + 1b-17 - b * y0);
q1 = rnd(q0 + e0 * q0);

Yet all these operations are exact by design of the algorithm. So using
nonrounded formulas will make the later hints simpler:

q0 = a * y0;
e0 = 1 + 1b-17 - b * y0;
q1 = q0 + e0 * q0;

In order to still get a complete proof, Gappa will instead have to prove
that rounding each of the values does not change the final result. In other
words, the conclusion of the logical proposition asks for a proof that rnd(q0)−
q0, rnd(e0)− e0, and rnd(q1)− q1 are zero.

Ultimately, we would like to prove that bq1c, which is the output of the
algorithm, is equal to ba/bc. This cannot be directly achieved in Gappa; but
a small mathematical lemma can get us closer to it. Let us define err as the
relative error between q1 and a/b:

err = (q1 - a / b) / (a / b);

The product a×err is equal to q1× b−a. If this product is in the interval
[0, 1), then q1 is in the interval [a

b , a+1
b ), which does not contain any integer

except for a/b potentially. As a consequence, the integer bq1c is equal to ba/bc.
Therefore, we need the fact 0 ≤ a×err < 1, which we obtain by asking Gappa
to prove the stronger property a× err ∈ [0, 0.99999].

In order to simplify the expressions, we also introduce the relative error
ε0 between y0 and b−1:

eps0 = (y0 - 1 / b) / (1 / b);

Since the algorithm relies on error compensation, its Gappa proof
requires two mathematical identities—they are the reasons why the algo-
rithm actually computes the integer quotient:

e0 -> -eps0 + 1b-17 { b <> 0 };
err -> -(eps0 * eps0) + (1 + eps0) * 1b-17 { a <> 0, b <> 0 };
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The first rule says that, when Gappa has computed an enclosure

−ε0 + 2−17 ∈ I ,

it can assume the enclosure e0 ∈ I holds (but only if it also proves b 6= 0).
This assumptions is valid because the left-hand side and the right-hand side
of the rule are equal:

e0 = 1 + 2−17 − b× y0 = −(y0 − b−1)/b−1 + 2−17 = −ε0 + 2−17

trivially holds when b is not zero. The second rule is trivial to validate too,
since the rounding operators were purposely omitted from the definition of
the computed values q0, e0, and e1.

At this stage, the Gappa script is almost complete. If run, the tool proves
all the enclosures, except for rnd(q1) − q1 ∈ [0, 0]. It is unable to prove that
64 bits are sufficient for representing q1. As a matter of fact, naive interval
arithmetic tends to overestimate bounds when the input intervals are wide.
So, a simple way to help Gappa is by splitting the interval containing b into
smaller subintervals. Thus, we ask Gappa to perform a bisection until it can
prove the bounds on rnd(q1)− q1 for each subinterval:

rnd(q1) - q1 $ b;

Gappa then succeeds in proving the four properties. A look at the gener-
ated formal proof shows that the tool decided to study two cases: b ∈ [1, 4096]
and b ∈ [4097, 65535].

Another way of helping Gappa to succeed would be to search where
Gappa overestimates intervals, and then add rules (or modify formulas) in
order to tighten the bounds. Here, the overestimation comes from the variable
q0 appearing twice in the definition of q1. Changing the definition to q1 =
q0 × (1 + e0) is then sufficient. But this also means that the definition of q1 is
a bit farther from the usual definition of a floating-point FMA (yet provably
equivalent).

Note that this last step is superfluous when writing a script. Looking for
overestimations does not make the proposition any truer; it just reduces the
size of the generated formal proof, since the tool no longer studies several
cases. Script 13.3 is the complete example.
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Gappa script 13.3 Correctness of the 16-bit integer division on IA-64.

@rnd = float<x86_80,ne>;
a = int<dn>(a_);
b = int<dn>(b_);

y0 = float<11,-1000,dn>(y0_);

# Values computed by FMA, with rounding operators omitted
q0 = a * y0;
e0 = 1 + 1b-17 - b * y0;
q1 = q0 * (1 + e0);

# Relative errors between computed and ideal values
eps0 = (y0 - 1 / b) / (1 / b);
err = (q1 - a / b) / (a / b);

{
# Inputs are unsigned 16-bit integers
a in [1,65535] /\ b in [1,65535] /\
# Error is bounded by specification of frcpa
|eps0| <= 0.00211373

->
# Prove the quotient is correct
a * err in [0,0.99999] /\
# Prove the intermediate computations are exact
rnd(q0) - q0 in [0,0] /\
rnd(e0) - e0 in [0,0] /\
rnd(q1) - q1 in [0,0]

}

# Rules for error compensation
e0 -> -eps0 + 1b-17 { b <> 0 };
err -> -(eps0 * eps0) + (1 + eps0) * 1b-17 { a <> 0, b <> 0 };

# Perform bisection along b; needed when q1 is defined as q0 + q0 * e0
# rnd(q1) - q1 $ b;



Chapter 14

Extending the Precision

Though very useful in many situations, the fixed-precision floating-point
formats that are available in hardware or software in our computers may

sometimes prove insufficient. There are reasonably rare cases when the bi-
nary64/decimal64 or binary128/decimal128 floating-point numbers of the
IEEE 754 standard are too crude as approximations of the real numbers. This
may occur for example when dealing with ill-conditioned numerical prob-
lems: internal computations with very high precision may be needed to ob-
tain a meaningful final result.

Another situation where the usual basic precisions are obviously insuf-
ficient is when the result of the computation itself is required with very high
precision. This frequently happens in “experimental mathematics” [38]; for
example, when one wants billions of decimals of mathematical constants
such as π.

Of course, big precisions may be costly, both in terms of time and mem-
ory consumption, so one must find convenient tradeoffs between cost and
precision. Precision is not the only problem; the dynamic range of usual
formats may be a problem as well. The exponent range may be too restricted
for the application under scope, giving rise to frequent overflows and under-
flows.

The scope of this chapter is to describe usual ways of extending the
precision and the exponent range.

Examples

Usual applications of extended precision and exponent range include many
algorithmic geometry algorithms [377, 335], the computation of the digits of
important mathematical constants such as π [358, 19], the constant e and the
zeros of Riemann’s zeta function, linear algebra [258], and the determination
of integer relations between real or complex numbers [20], etc.

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_14, 493
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For instance, a famous formula such as the Bailey–Borwein–Plouffe
formula for π [21]:

π =
∞∑

k=0

1
16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
,

which allows one to compute the zillionth bit of π without needing to com-
pute the previous ones, was first found using “experimental mathematics”
techniques. Another example from number theory is the work on the Mertens
conjecture [312, 230].

Also, for designing and/or testing libraries that evaluate mathemat-
ical functions in the largest basic formats (e.g., binary64/decimal64 or
binary128/decimal128), it is often necessary to perform preliminary calcula-
tions (e.g., computation of coefficients of polynomial or rational approxima-
tions, and of values stored in tables) in precisions that are significantly higher
than those of the “target” formats. To compute worst cases for the rounding
of mathematical functions (see Chapter 12) we also sometimes require high
precisions.

Multiple-precision arithmetic is out of the scope of this book. However,
since it has useful applications for people who design floating-point algo-
rithms, we will quickly present a few basic methods, give some references,
and list a few useful packages. We will mainly focus on methods that allow
a programmer to roughly double, triple, or even quadruple the precision for
critical parts of programs, without requiring the use of multiple-precision
packages.

14.1 Double-Words, Triple-Words. . .

When the need for increased precision is limited to twice (or thrice, or maybe
even four times) the largest precision of the available floating-point arith-
metic, then a possible solution is to resort to arithmetics that are usually
called “double-double” or “triple-double” arithmetics in the literature. These
clumsy names come from the fact that, as we are writing this book, the
format with the largest precision that is available on all platforms of commer-
cial significance is the double-precision format of IEEE 754-1985 (now much
better named binary64 in the IEEE 754-2008 standard). We will call them
“double-word” and “triple-word” arithmetics, since there is no special rea-
son for necessarily having the underlying floating-point format being double
precision—it makes sense to choose, as the underlying format, the largest one
available in hardware—and because the format that was once called “double
precision” now has another name in the IEEE 754-2008 standard.
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14.1.1 Double-word arithmetic

In Chapters 4 and 5, we have studied algorithms1 that allow one to represent
the sum or product of two floating-point numbers as the unevaluated sum
of two floating-point numbers xh + x`, where xh is nearest the exact result.
A natural idea is to manipulate such unevaluated sums. This is the
underlying principle of double-word arithmetic. It consists in representing a
number x as the unevaluated sum of two basic precision floating-point
numbers:

x = xh + x`,

such that the significands of xh and x` do not overlap,2 which means here
that

|x`| ≤
1
2

ulp(xh).

If the basic precision floating-point numbers are of precision p, double-words
are not equivalent to precision-2p floating-point numbers. For instance, if the
basic precision is double precision/binary64, the double-word that best
approximates π is constituted by

p1 = 11.0010010000111111011010101000100010000101101000110002,

and

p2 = 1.00011010011000100110001100110001010001011100000001112 × 2−53.

Here, p1 + p2 is equivalent to a precision-107 binary floating-point
approximation to π. Now, ln(12) will be approximated by

`1 = 10.0111110000100010110101111001101001110011110011111012,

and

`2 = −1.10011000111001000000111110000101101111010111100101112 × 2−55.

Here, `1 + `2 is equivalent to a precision-109 binary floating-point
approximation to ln(12).

Due to this “wobbling precision” and the fact that the arithmetic
algorithms will be either quite complex or slightly inaccurate, double-word
arithmetic does not exhibit the “clean, predictable behavior” of a correctly
rounded, precision-2p, floating-point arithmetic. It might sometimes be very
useful (there are nice applications in computational geometry, for instance),

1Such as 2Sum (Algorithm 4.4, page 130), Fast2Sum (Algorithm 4.3, page 126), Dekker
product (Algorithm 4.7, page 135), and 2MultFMA (Algorithm 5.1, page 152).

2Of course, when we write xh + x`, the addition symbol corresponds to the exact, mathe-
matical addition.
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but it also frequently is a stopgap, and must be used with caution. Li et
al. [258] qualify double-double arithmetic as an “attractive nuisance except
for the BLAS”3 and even compare it to an unfenced backyard swimming
pool!

When Dekker introduced the Dekker product and Fast2Sum algorithms in
his seminal paper [108], he also suggested ways of performing operations on
double-word numbers (addition, multiplication, division, and square root),
and he provided an analysis of the rounding error for these operations. For
instance, Dekker’s algorithm for adding two double-word numbers (xh, x`)
and (yh, y`) is shown in Algorithm 14.1.

Algorithm 14.1 Dekker’s algorithm for adding two double-word numbers
(xh, x`) and (yh, y`) [108]. We assume radix 2.

if |xh| ≥ |yh| then
(rh, r`)← Fast2Sum(xh, yh)
s← RN(RN(r` + y`) + x`)

else
(rh, r`)← Fast2Sum(yh, xh)
s← RN(RN(r` + x`) + y`)

end if
(th, t`)← Fast2Sum(rh, s)
return (th, t`)

Notice that since the Fast2Sum algorithm is used, we need the radix β to
be less than or equal to 3 (which means, in practice, β = 2).

Dekker’s algorithm for multiplying two double-word numbers is shown
in Algorithm 14.2 (again, it requires radix 2).

Algorithm 14.2 Dekker’s algorithm for multiplying two double-word num-
bers (xh, x`) and (yh, y`) [108]. If a fused multiply-add (FMA) instruc-
tion is available, it is advantageous to replace DekkerProduct(xh, yh) by
2MultFMA(xh, yh) (defined in Section 5.1). The radix must be 2.

(ch, c`)← DekkerProduct(xh, yh)
p1 ← RN(xh · y`)
p2 ← RN(x` · yh)
c` ← RN(c` + RN(p1 + p2))
(th, t`)← Fast2Sum(ch, c`)
return (th, t`)

It is important to understand that these operations are not “correctly
3BLAS is an acronym for Basic Linear Algebra Subroutines.
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rounded.”4 As stated above, in most cases, double-word arithmetics do not
behave like a precision-2p correctly rounded floating-point arithmetic.

When the IEEE 754-1985 standard for floating-point arithmetic was
released, it became much easier to establish simple algorithms that work as
soon as an IEEE 754 floating-point arithmetic is available. The operations
on double-words became more portable, and libraries were developed to
implement this arithmetic. Among the first ones, one can cite Bailey’s [180]
and Briggs’s [47] libraries for “double-double” arithmetic (Briggs has ceased
maintaining his library). Recent and efficient functions for double-double
arithmetic are included in the QD library by Hida, Li, and Bailey [180].5

Several addition and multiplication algorithms are implemented in the
QD library. This makes it possible to choose different tradeoffs between speed
and accuracy. For instance, the most accurate algorithm for double-word
addition in QD, as presented in [258], is shown in Algorithm 14.3.

Algorithm 14.3 The most accurate algorithm implemented in QD for adding
two double-word numbers (xh, x`) and (yh, y`) [258]. A comment in the pro-
gram at http://crd.lbl.gov/~dhbailey/mpdist/ attributes this algorithm
to Briggs and Kahan. The radix must be 2 (otherwise, the Fast2Sum algorithm
cannot be used).

(sh, s`)← 2Sum(xh, yh)
(th, t`)← 2Sum(x`, y`)
c← RN(s` + th)
(vh, v`)← Fast2Sum(sh, c)
w ← RN(t` + v`)
(zh, z`)← Fast2Sum(vh, w)
return (zh, z`)

The multiplication algorithm is shown as Algorithm 14.4.6 We must
warn the reader that it will not be as accurate as a “real” floating-point mul-
tiplication of precision twice the basic precision.

4By the way, “correct rounding” is not clearly defined for double-words: Does this mean
that we get the double-word closest to the exact value, or that we get the 2p-digit number
closest to the exact value (if the underlying arithmetic is of precision p)? This can be quite
different. For instance, in radix-2, precision-p arithmetic, the double-word closest to a = 2p +
2−p + 2−p−1 is a itself, whereas the precision-2p number closest to a is 2p + 2−p+1.

5QD is a library for quad-word (as a matter of fact, quad-double) arithmetic. It also
includes functions for double-word arithmetic. As we are writing these lines, the QD software
is available at http://crd.lbl.gov/~dhbailey/mpdist/.

6As implemented in http://crd.lbl.gov/~dhbailey/mpdist/qd-2.3.7.tar.gz.
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Algorithm 14.4 The algorithm implemented in QD for multiplying two
double-word numbers (xh, x`) and (yh, y`). Here, 2Prod is either the Dekker
product or 2MultFMA, depending on the availability of an FMA instruction.
The radix must be 2 (otherwise, the Fast2Sum algorithm cannot be used).

(ph, p`)← 2Prod(xh, yh)
p` ← RN(p` + RN(xh · y`))
p` ← RN(p` + RN(x` · yh))
(zh, z`)← Fast2Sum(ph, p`)
return(zh, z`)

14.1.2 Static triple-word arithmetic

For triple-word arithmetic, where numbers are represented as unevalu-
ated sums of three floating-point numbers, the implementation by Lauter
[244, 245] is worth mentioning. It is used for handling critical parts in
the CRlibm library for correctly rounded elementary functions in double-
precision/binary64 floating-point arithmetic. It was specifically designed for
the implementation of such functions, which typically require about 120 bits
of accuracy. For such accuracies, double-double (i.e., double-word arithmetic
based on the double-precision/binary64 format) is not enough, but triple-
double, with 3 × 53 = 159 bits, is an overkill (if double-extended precision
is available, double-word arithmetic based on that format is an interesting
alternative). The originality of Lauter’s implementation is therefore to allow
some overlap in the significands of the three double-precision numbers. Here,
two floating-point numbers are said to overlap if their exponent difference is
smaller than their significand size.7 Overlap in a triple-double means that
it is not as accurate as it could be. This is acceptable in static code such as
polynomial-based elementary function evaluation, for which one knows in
advance the number of operations to perform and the accuracy required for
each operation.

As the following will show, removing overlap (an operation called renor-
malization) is expensive. It requires several invocations of the Fast2Sum algo-
rithm, which removes overlap from a double-double. The approach of Lauter
is to provide a separate renormalization procedure, so that renormalizations
are invoked explicitly in the code, and as rarely as possible.

Each operation is provided with a theorem that expresses a bound on its
relative accuracy, as a function of the overlaps of the inputs. For illustration,
we give in Algorithm 14.5 and in Theorem 43 one example of an operation
implemented by Lauter with its companion theorem.

7Note that even if the general idea remains the same, the notion of overlap slightly changes
depending on the authors!
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Algorithm 14.5 Evaluating the sum of a triple-double and a double-double
as a triple-double [244].
Require: ah +a` is a double-double number and bh +bm +b` is a triple-double

number such that

|bh | ≤ 2−2 · |ah |
|a`| ≤ 2−53 · |ah |
|bm | ≤ 2−βo · |bh |
|b`| ≤ 2−βu · |bm |

Ensure: rh + rm + r` is a triple-double number approximating ah +a` + bh +
bm + b` with a relative error given by Theorem 43.
(rh , t1)← Fast2Sum (ah , bh)
(t2, t3)← Fast2Sum (a`, bm)
(t4, t5)← Fast2Sum (t1, t2)
t6 ← RN(t3 + b`)
t7 ← RN(t6 + t5)
(rm , r`)← Fast2Sum (t4, t7)

Here, βo and βu measure the possible overlap of the significands of the
inputs.

Theorem 43 (Relative error of Algorithm 14.5 ). If ah + a` and bh + bm + b` are
the values in the argument of Algorithm 14.5, such that the preconditions hold, then
the values rh , rm , and r` returned by the algorithm satisfy

rh + rm + r` = ((ah + a`) + (bh + bm + b`)) · (1 + ε) ,

where ε is bounded by

|ε| ≤ 2−βo−βu−52 + 2−βo−104 + 2−153.

The values rm and r` will not overlap at all, and the overlap of rh and rm will be
bounded by

|rm | ≤ 2−γ · |rh |
with

γ ≥ min (45, βo − 4, βo + βu − 2) .

Lauter’s library of triple-double operators is freely available as part of
the CRlibm project.8 It offers about 30 operators that have turned out to be
useful for the development of CRlibm functions [100]. Some operators have
inputs of different types, as in the previous example. Several implementa-
tions of the correct rounding of a triple-double to a double-precision number
are also provided. The technical report that describes these operators [244]
has been updated and is available as part of the documentation of CRlibm.

8http://www.ens-lyon.fr/LIP/Arenaire/Ware/
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14.1.3 Quad-word arithmetic

Quad-word arithmetic has been implemented in the QD library by Hida, Li,
and Bailey [180] (each“word” being a double-precision/binary64 number).
A quad-word number is the unevaluated sum of four floating-point numbers
(a0, a1, a2, a3), with the requirement that

ai+1 ≤
1
2

ulp(ai). (14.1)

This means that these numbers are “nonoverlapping” in a sense slightly
stronger than what we will consider later in Section 14.2. Most of the algo-
rithms of Hida, Li, and Bailey first produce an intermediate result in the form
of an unevaluated sum of five floating-point numbers (i.e., a five-term
“expansion,” see Section 14.2). Moreover, these five numbers do not satisfy
a requirement such as (14.1): they may have a few “overlapping bits.”

To produce a final quad-word result, it is therefore necessary to per-
form a “renormalization” step. The following renormalization procedure,
presented in [180], is a variant of the renormalization method for expansions
introduced by Priest [336]. See Algorithm 14.6.

Algorithm 14.6 Renormalize(a0, a1, a2, a3, a4) [180]. The result is
(b0, b1, . . . , bk), with k ≤ 3 (and almost always k = 3). c©IEEE, 2001,
with permission.

(s, t4)← Fast2Sum(a3, a4)
(s, t3)← Fast2Sum(a2, s)
(s, t2)← Fast2Sum(a1, s)
(s, t1)← Fast2Sum(a0, s)
k ← 0
for i = 1 to 4 do

(s, e)← Fast2Sum(s, ti)
if e 6= 0 then

bk ← s
s← e
k ← k + 1

end if
end for
return (b0, b1, . . . , bk)

We should warn the reader that the domain of validity of this
renormalization algorithm is not known exactly.

• It was shown by Priest that, in double-precision/binary64 arithmetic, if
the terms ai do not overlap by more than 51 bits,9 then the terms bi of
the result will satisfy (14.1), i.e., we will get a quad-word.

9Actually, Priest showed that in precision p, it is sufficient that the terms ai do not overlap
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• And yet, that condition is not a necessary condition, and it is only
conjectured that the renormalization algorithm works with the inter-
mediate results produced by the algorithms presented by Hida, Li, and
Bailey in [180]. Again, like double-word arithmetic (and probably even
more), quad-word arithmetic must be used with much caution.

It is easier to explain these algorithms with drawings (using the notation
introduced by Hida, Li, and Bailey). First, the 2Sum algorithm will be
represented as shown in Figure 14.1.

a

b

s

e

Figure 14.1: The representation of Algorithm 2Sum [180]. Here, s = RN(a+b), and
s + e = a + b exactly.

The rounded-to-nearest floating-point addition and multiplication of
two numbers will be represented as shown in Figure 14.2.

Figure 14.2: The representation of rounded-to-nearest floating-point addition and
multiplication [180].

Figure 14.3 represents the simplest of the two algorithms for adding two
quad-words presented by Hida, Li, and Bailey in [180].

Concerning the accuracy of that algorithm, Hida, Li, and Bailey have
shown the following result.

by more than p− 2 digits. This result also works in radix β, provided that we replace the calls
to Fast2Sum by calls to 2Sum (remember that Fast2Sum works if β ≤ 3).
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Figure 14.3: SimpleAddQD, the simplest of the two quadword+quadword algorithms
presented by Hida, Li, and Bailey [180]. It computes the sum of two quad-words
a = (a0, a1, a2, a3) and b = (b0, b1, b2, b3). c©IEEE, 2001, with permission.
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Theorem 44 (Hida, Li, and Bailey [180]). If the underlying floating-point
arithmetic is the double-precision/binary64 format of the IEEE 754 standard, then
the five-term expansion σ produced before the normalization step in algorithm
SimpleAddQD (described in Figure 14.3) satisfies

|σ − (a + b)| ≤ 2−211 max{|a|, |b|}.

If there is much cancellation (i.e., if |a + b| is very small compared to
max{|a|, |b|}), the relative error on the result may therefore become large. A
more accurate algorithm, due to Shewchuk and Boldo, is also presented by
Hida, Li, and Bailey in [180]. That algorithm is rather similar to Shewchuk’s
Fast-Expansion-Sum Algorithm (Algorithm 14.9) presented in the next
section.

14.2 Floating-Point Expansions

In the spirit of double-word, triple-word, and quad-word arithmetics, the
arithmetic on floating-point expansions was first developed by Priest [336],
and in a slightly different way by Shewchuk [377]. To be fair, we must say that
Priest’s expansion arithmetic actually preceded quad-word arithmetic: for
instance, the renormalization algorithm of the QD library (Algorithm 14.6)
is directly inspired from a technique due to Priest.

If, starting from some set of floating-point inputs, we only perform exact
additions and multiplications, then the values we obtain are always equal to
finite sums of floating-point numbers. Such finite sums are called expansions.
Hence, a natural idea is to try to manipulate such expansions,10 for perform-
ing calculations that are either exact, or approximate yet very accurate. An
example of application [377] is the robust implementation of computational
geometry algorithms; and another one is the implementation of a few critical
parts in very accurate function libraries. Let us now give some definitions.

Definition 18 (Expansion—adapted from Shewchuk’s definition [377]). An
expansion x is a set of n floating-point numbers x1, x2, . . . , xn used for representing
the real number

x1 + x2 + · · · + xn.

Each xi is called a component of x.

The notion of expansion is intrinsically redundant: a number whose
radix-β expansion is finite can be represented by many different expansions.
To make expansions useful in practice and easy to manipulate, we must
somewhat reduce that amount of redundancy by requiring that the com-
ponents of an expansion do not overlap. There are several slightly different
notions of overlapping. One of them is the one that was required for quad-
words (Equation (14.1)). Two other definitions of interest are given below.

10Preferably, nonoverlapping expansions, to avoid too much redundancy, as we will see later.
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Definition 19 (Nonoverlapping floating-point numbers). Two radix-β,
precision-p, floating-point numbers x and y are S-nonoverlapping (that is,
nonoverlapping according to Shewchuk’s definition [377]) if there exist integers r
and s such that x = r · βs and |y| < βs, or y = r · βs and |x| < βs.

Assuming x and y have normal representations mx · βex and my · βey (with
1 ≤ mx,my < β), they are P-nonoverlapping (that is, nonoverlapping according
to Priest’s definition [337]) if |ey − ex| ≥ p.

Notice that zero is S-nonoverlapping with any nonzero floating-point
number.

For example, in a floating-point system of radix β = 10 and precision
p = 4, the numbers 1.200×103 and 1.500×101 are S-nonoverlapping, whereas
they are not P-nonoverlapping.

Definition 20 (Nonoverlapping expansions). An expansion is
S-nonoverlapping (that is, nonoverlapping according to Shewchuk’s defi-
nition [377]) if all of its components are mutually S-nonoverlapping. It is
P-nonoverlapping (that is, nonoverlapping according to Priest’s definition [337])
if all of its components are mutually P-nonoverlapping.

In general, a P-nonoverlapping expansion with m components carries
more information than an S-nonoverlapping expansion with m components,
since Priest’s condition for nonoverlapping is stronger than Shewchuk’s
condition. In a pinch, in extreme cases, in radix 2, an S-nonoverlapping
expansion with 53 components may not contain more information than
one double-precision number (it suffices to put each bit of a floating-point
number in a separate component). And yet, S-nonoverlapping expansions
are of much interest, because the arithmetic algorithms that make it possi-
ble to manipulate them are generally simpler than the algorithms used for
P-nonoverlapping expansions.

Definition 21 (Nonadjacent expansions). Following Shewchuk’s definition [377],
we say that two floating-point numbers x and y are adjacent if they S-overlap, or
if βx and y S-overlap, or if x and βy S-overlap. An expansion is nonadjacent if no
two of its components are adjacent.

In radix 2, every expansion can be transformed into a nonadjacent
expansion that represents the same real number. For instance, with β = 2
and p = 5, the S-nonoverlapping expansion:

(
1.01112 × 212

)
+
(
1.012 × 27

)
+
(
1.10012 × 24

)
= 607310

can be transformed into the following nonadjacent expansion:

(
1.12 × 212

)
−
(
1.02 × 26

)
−
(
1.112 × 22

)
= 607310.
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Shewchuk also designates a strongly nonoverlapping expansion (in radix 2) an
expansion such that no two of its components are S-overlapping, no compo-
nent is adjacent to two other components, and whenever there is a pair of
adjacent components, both are powers of 2.

Now let us give examples of algorithms for performing arithmetic opera-
tions on expansions. These algorithms are based on the 2Sum, Fast2Sum, and
Dekker product or 2MultFMA algorithms presented in Chapters 4 and 5. We
first show Algorithms 14.7 and 14.8.

Algorithm 14.7 Shewchuk’s Grow-Expansion algorithm [377]. Input values:
an S-nonoverlapping expansion e of m components and a floating-point
number b. Output value: an S-nonoverlapping expansion e of m + 1 com-
ponents. We assume that the radix is 2 and that the precision p satisfies p ≥ 3.

Q0 ← b
for i = 1 to m do

(Qi, hi)← 2Sum(Qi−1, ei)
end for
hm+1 ← Qm

return h

Algorithm 14.8 Shewchuk’s Expansion-Sum algorithm [377]. Input values:
an S-nonoverlapping m-component expansion e and an S-nonoverlapping
n-component expansion f . Output value: an S-nonoverlapping m + n-
component expansion h.

h← e
for i = 1 to n do

(hi, hi+1, . . . , hi+m)← Grow-Expansion((hi, hi+1, . . . , hi+m−1), fi)
end for
return h

Notice that the sum of an m-component expansion and an n-component
expansion, if calculated with Algorithm 14.8, will be an (m + n)-component
expansion. Sometimes, this growth in the number of components is unavoid-
able. For instance, if the expansions e and f satisfy

∀i, |ei| < 1
2 ulp(ei+1),

|em| < 1
2 ulp(f1),

∀i, |fi| < 1
2 ulp(fi+1),

then the sum of e and f cannot be expressed with fewer than m + n com-
ponents. And yet, in most cases, that sum could be expressed with a much
smaller number of components: to avoid a useless growth in the number of
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components that would make expansion arithmetic very inefficient after a
very few operations, one must frequently compress the expansions. This can
be done using Algorithm 14.11, page 508.

Theorem 45 (Shewchuk [377]). Assume the radix is 2, and that the rounding mode
is round to nearest even. Let e =

∑m
i=1 ei and f =

∑n
i=1 fi be S-nonoverlapping

expansions of m and n floating-point numbers of precision p ≥ 3. Suppose that
the components of e and f are sorted in order of increasing magnitude, except that
any of these components may be zero. Algorithm 14.8 produces an S-nonoverlapping
expansion h such that

h =
m+n∑
i=1

hi = e + f,

where the components of h are also sorted in order of increasing magnitude, except
that any of them may be zero. Furthermore, if e and f are nonadjacent, then h is
nonadjacent.

Beware: the components of the quad-words, in the previous section,
were numbered in order of decreasing magnitude. Here, we assume that the
components of Shewchuk’s expansions are numbered in order of increasing
magnitude, mainly because it simplifies the presentation of the algorithms: in
most cases, the least significant component is calculated first, and it is much
simpler to immediately assign it the number 1.

Let us now give a faster algorithm for adding expansions. Algo-
rithm 14.9 is similar to an algorithm due to Priest [336]. Notice that if the
two input expansions are S-nonoverlapping, we do not necessarily get an
S-nonoverlapping result (Priest showed that in radix 2 the components of the
result may overlap by at most one bit). And yet, if the two input expansions
are strongly nonoverlapping, then the result will be strongly nonoverlapping
too. Again, the number of components of the result is equal to the sum of the
number of components of the input expansions: it is necessary to “compress”
the expansions from time to time. This can be done using Algorithm 14.11,
page 508.

Algorithm 14.9 Shewchuk’s Fast-Expansion-Sum algorithm [377].
Merge e and f into a single sequence g, in order of nondecreasing
magnitude
(Q2, h1)← Fast2Sum(g2, g1)
for i = 3 to m + n do

(Qi, hi−1)← 2Sum(Qi−1, gi)
end for
hm+n ← Qm+n

return h
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Theorem 46 (Shewchuk [377]). Assume the radix is 2 and that the rounding mode
is round to nearest even. Let e =

∑m
i=1 ei and f =

∑n
i=1 fi be strongly nonoverlap-

ping expansions of m and n floating-point numbers of precision p ≥ 4. Suppose that
the components of e and f are sorted in order of increasing magnitude, except that
any of these components may be zero. Algorithm 14.9 produces a strongly nonover-
lapping expansion h such that

h =
m+n∑
i=1

hi = e + f,

where the components of h are also sorted in order of increasing magnitude, except
that any of them may be zero.

Algorithm 14.10 computes the product of an expansion by one floating-
point number. It is the basic building block of an expansion multiplication
algorithm.

Algorithm 14.10 Shewchuk’s Scale-Expansion algorithm [377]. Here, 2Prod
is either the Dekker product or 2MultFMA, depending on the availability of
an FMA instruction.

(Q2, h1)← 2Prod(e1, b)
for i = 2 to m do

(Ti, ti)← 2Prod(ei, b)
(Q2i−1, h2i−2)← 2Sum(Q2i−2, ti)
(Q2i, h2i−1)← Fast2Sum(Ti, Q2i−1)

end for
h2m ← Q2m

return h

Algorithm 14.10 may seem quite complex. It is more understandable
using a graphic representation. Such a representation (due to Shewchuk) is
given in Figure 14.4.

Shewchuk shows that if e =
∑m

i=1 ei is a nonoverlapping expansion of m
(binary) floating-point numbers sorted in order of increasing magnitude,11 if
b is a floating-point number, and if the precision p is larger than or equal to 4
(which always holds in practice), then Algorithm 14.10 produces a nonover-
lapping expansion h of 2m components, equal to b · e.

An algorithm such as 14.10 may be used iteratively to produce the prod-
uct of two expansions. However, this would create an expansion with too
many terms. Again, we need to an algorithm for “compressing” expansions.
Algorithm 14.11 was introduced by Shewchuk [377].

11Except that any of the ei may be zero.
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Fast2Sum 2Sum Fast2Sum 2Sum

2Prod2Prod

Fast2Sum

2Prod 2Prod

2Sum
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b b b

Figure 14.4: Graphic representation of Shewchuk’s Scale-Expansion Algorithm [377]
(Algorithm 14.10).

Algorithm 14.11 Shewchuk’s compression algorithm [377] (there was a small
typo in [377]: line 15 of this algorithm was written ht ← Q instead of ht ← q).
The input value is an m-component expansion e, and the output value is an
n-component expansion h that represent the same real number.

Q← em

b← m
for i = m− 1 downto 1 do

(Q, q)← Fast2Sum(Q, ei)
if q 6= 0 then

gb ← Q
b← b− 1
Q← q

end if
end for
t← 1
for i = b + 1 to m do

(Q, q)← Fast2Sum(gi, Q)
if q 6= 0 then

ht ← q
t← t + 1

end if
end for
ht ← Q
n← t
return h, n

Theorem 47 (Shewchuk [377]). If e =
∑m

i=1 ei is a nonoverlapping expansion
of m ≥ 3 (binary) floating-point numbers, sorted in order of increasing magnitude
(except that any of the ei may be zero), then Algorithm 14.11 produces a nonoverlap-
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ping, n-component expansion12 h, such that
∑n

i=1 hi = e, where the hi are sorted in
order of increasing magnitude. If e 6= 0 then none of the hi is zero, and hn is within
one ulp(hn) from e.

Let us now give an example that illustrates these algorithms.

Example 13 (Manipulation of expansions using Shewchuk’s algorithms).
Assume that the underlying basic precision floating-point arithmetic is the single-
precision/binary32 format of the IEEE 754 standard. Consider the 3-component,
nonoverlapping expansion e:

e1 = −1.111011100101100111011012 × 2−49

e2 = −1.01110111011110100101112 × 2−24

e3 = 11.00100100001111110110112

and the 2-component, nonoverlapping expansion f :

f1 = 1.10011111110011101111012 × 2−25

f2 = 1.011010100000100111100112.

If we add e and f using the Fast-Expansion-Sum algorithm (Algorithm 14.9,
page 506), we get the following 5-component expansion h:

h1 = −1.111011100101100111011012 × 2−49

h2 = 1.0× 2−48

h3 = 1.1110000011110010112 × 2−25

h4 = 0
h5 = 100.100011100100100101012.

Now, if we “compress” this expansion using Algorithm 14.11, we get the fol-
lowing 3-component expansion z:

z1 = 1.00011010011000100112 × 2−53

z2 = 1.1110000011110010112 × 2−25

z3 = 100.100011100100100101012.

One can easily check that z = e + f .

14.3 Floating-Point Numbers with Batched Additional
Exponent

Another limitation of the basic-precision floating-point formats is their
restricted exponent range. For instance, in double-precision/binary64

12Furthermore, it is a nonadjacent expansion if the round-to-nearest-even rounding mode
is used.
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arithmetic, the smallest representable number is

α = 2−1074

and the largest one is

Ω = 21023(2− 2−52).

For example, this restriction may prevent one from converting very large
integers into floating-point numbers. If this is deemed necessary, there are
two main ways to work around that restriction. The easiest way is to use an
arbitrary-precision floating-point library, since for these libraries, the expo-
nent of the considered floating-point number is most often stored in a 32-
or 64-bit integer, which allows much larger numbers. However, this is an
expensive solution since arbitrary-precision numbers can be significantly
more expensive to manipulate than basic-precision floating-point numbers,
and in our case, a larger precision may not be needed.

Another usual approach is to batch each floating-point number f with
an integer e. The represented number is then f · βe (where β is the radix of
the floating-point system), which we will denote by (f, e). A given number
has several representations, due to the presence of two exponents, the one
contained in f , and the additional one, i.e., e. For example, assuming β = 2,
(1.0, 0) = (0.5, 1). To make the representation unique, one may require f to
be between two given consecutive powers of β (and thus make the internal
exponent useless). Normalizing a pair (f, e) into an equivalent one (f ′, e′)
such that f ′ belongs to the prescribed domain can be performed by using
a simple exponent manipulation; for example, with the C function ldexp.
This normalization has the advantage of making all basic arithmetic opera-
tions simpler. Basic arithmetic operations are rather simple to program. Such
numbers are available in the dpe library of Pélissier and Zimmermann [329],
in the INTLAB13 library of Rump, and internally in many libraries, includ-
ing Magma [40] and NTL [379]14 (in which it corresponds to the XD class).
There is also a staggered interval arithmetic implemented in the C-XSC
language [28].

14.4 Large Precision Relying on Processor Integers

The most common approach to obtain arbitrary-precision arithmetic con-
sists in representing a floating-point number as an integer of arbitrary length
along with an exponent. The bit length of the integer is usually chosen to

13INTLAB is the Matlab toolbox for self-validating algorithms, it is available at

http://www.ti3.tu-harburg.de/rump/intlab/.

14NTL is a library for performing number theory, available at http://www.shoup.net/ntl/.
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be a multiple of the size of the machine words slightly larger than the des-
ired precision. Typically, in that setting, an arbitrary-precision floating-point
number consists of a sign, an exponent, an array or a list of machine inte-
gers15 that encode the significand, and possibly a small integer that encodes
the precision of that particular floating-point number (if the precision is not a
global attribute). Multiple-precision integer arithmetic is thus used to manip-
ulate the significands, and usually dominates the costs, in particular when
the precision is large (i.e., a significant number of times the length of machine
words).

This approach has been used since the early days of programming. For
instance, Brent [45] used it in the mid-1970s for his MP library written in
FORTRAN. Bailey et al. [22] pursued MP in ARPREC.16 Nowadays, the
MPFR17 library [137] also relies on this principle. MPFR extends the spirit
of the IEEE 754 standard (correct rounding, special data such as infinities and
NaNs, and exceptions) to arbitrary-precision floating-point arithmetic. It pro-
vides the basic arithmetic operations, many elementary functions, and even
several special functions, with correct rounding to any precision.

In that context, arbitrary-precision integer arithmetic is used to imple-
ment the floating-point arithmetic operations. Then these operations are used
to implement other functions, for example, elementary or special functions.
After a brief discussion on the specifications, we describe how to use inte-
ger arithmetic to perform the basic floating-point arithmetic operations. Then
we quickly review arbitrary-precision integer arithmetic and finally describe
some general techniques used to implement mathematical functions in the
context of arbitrary-precision floating-point arithmetic.

Specifications

Often, on recent packages, arbitrary-precision floating-point numbers have
been implemented in such a way that they can be viewed as “smooth
extensions” of the fixed precisions of the IEEE 754-1985 standard. In particu-
lar, if we require the precision to be the same as in one of the basic formats of
the standard, one should essentially see the behavior described in the stan-
dard. For instance, the RR module of NTL implements multiple-precision real
numbers with correctly rounded-to-nearest arithmetic operations. For the
transcendental functions, correct rounding is not guaranteed, but the com-
puted result has a relative error less than 2−p+1, where p is the current preci-
sion. However, in NTL, there are no special values such as ±∞ or NaN. The
MPFR library is a multiple-precision library that offers correct rounding even

15In a very similar way, native floating-point data representing integers can be used instead
of machine integers, e.g., double-precision numbers, whose value is an integer between 0 and
253 − 1.

16ARPREC is available at http://crd.lbl.gov/~dhbailey/mpdist/.
17MPFR is available at http://www.mpfr.org/.
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for the transcendental functions (this is possible using Ziv’s technique; see
Chapter 12, page 408).

In the future, this similarity of behavior should become even more true
now that the new IEEE 754-2008 standard defines interchange formats for
extended and extendable precision (see Section 3.4.5, page 92).

As a basic-precision floating-point number, an arbitrary-precision float-
ing point number is made of a sign, a significand, and an exponent. Note that
a clear difference from conventional precisions is that underflows and over-
flows are less likely to occur since the exponent is usually stored in a separate
integer. However, the exceptional cases may occur anyway, and are usually
handled in a way similar to what is suggested by the IEEE 754-1985 standard.

Two strategies exist for handling the precision p. First, it may be a
global variable. In that case, at a given time, all floating-point numbers
have the same precision, which may be changed over time. This strategy is
used for NTL’s RR class [379]. The second strategy (available for example in
MPFR [137]) consists in batching each floating-point number with a local pre-
cision. This can be significantly more efficient, because the user can allocate
large precisions only for the variables for which it is deemed necessary, and
low precisions for the other ones. However, this makes the semantics and the
implementation more complicated: the precisions of the operands as well as
the precision of the target must be considered, with different cases that must
be handled carefully.

The major purpose of multiple-precision libraries is often to allow for
diverse and reliable mathematical computations, which explains why they
frequently offer implementations of many mathematical functions. The most
frequent ones, of course, are trigonometric functions, hyperbolic functions,
exponentials and logarithms, and more elaborate special functions such as
the gamma and zeta functions, Bessel functions, and generalizations thereof.

14.4.1 Using arbitrary-precision integer arithmetic for arbitrary-
precision floating-point arithmetic

Suppose we are trying to perform a basic operation op ∈ {+,×,÷} on
arbitrary-precision floating-point numbers. We first perform a related inte-
ger operation on the significands, and then postprocess the integer result to
obtain the floating-point result.

Let a and b be two radix-2 floating-point numbers of precisions pa and pb,
respectively. Suppose we want to compute c = ◦(a op b) for some preci-
sion pc, some rounding mode ◦, and some basic operation op ∈ {+,×,÷}.
The numbers a, b, and c can be written:

x = (−1)sx ·mx · 2ex , for x ∈ {a, b, c},

where mx is an integer whose bit length is close to px, sx belongs to {0, 1},
and ex is a small integer.
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As in Chapter 8, the addition of a and b reduces to the integer addition
or subtraction of ma with a shifted value of mb, the amount of the shift being
determined by the difference between ea and eb. Similarly, the multiplication
of a and b reduces to the integer multiplication of ma and mb. Finally, the
division of a by b can be reduced to the division of a shifted value of ma

by mb.
Note that, in all cases, only the first pc bits of the result of the integer ope-

ration are actually needed to produce most of mc. A few additional bits may
be needed to determine the correctly rounded result. In the case of floating-
point multiplication, this remark can be used to save a possibly significant
proportion of the overall cost. Suppose for example that the input and target
precisions match. Then only the most significant half (plus a few) of the bits
of the integer product of the two significands is actually needed. Krandick
and Johnson [231] designed an efficient algorithm to compute that half of
the bits. It was later improved by Mulders [288] and then by Hanrot and
Zimmermann [164]. In the last two references, the authors concentrate on the
lower half of the product of two polynomials, but their analyses extend to
the upper half of the product of two integers (with complications due to the
propagation of carries).

14.4.2 A brief introduction to arbitrary-precision integer arithmetic

Arbitrary-precision integer arithmetic has been extensively studied for more
than 45 years [214, 409, 368, 366, 367, 141]. A big integer is most often stored
as a list or an array of processor integers. Big integer arithmetic is usually
much slower than processor integer arithmetic, even when the “big integers”
turn out to be small enough to be representable by processor integers. A way
of using the best of both worlds is the following. Consider a machine integer.
If its first (or last) bit is 1, the other bits encode the address of a multiple-
precision integer; otherwise, they encode a small integer. This trick is used,
e.g., for the integers of the Magma18 computational algebra system [40]. The
overhead for small integers can thus be significantly decreased.

Adding or subtracting arbitrary-precision integers is relatively straight-
forward. The algorithmic aspects become significantly more involved when
one considers multiplication and division. Here we will consider only mul-
tiplication. Note that any multiplication algorithm can be turned into a divi-
sion algorithm via the Newton–Raphson iteration (see Section 5.3, page 155),
with a constant factor overhead in the asymptotic complexity, thanks to the
quadratic convergence (see [43] for an extensive discussion). There exists a
full hierarchy of multiplication algorithms. By decreasing complexity upper
bounds, with n being the maximum of the bit lengths of the two integers to
be multiplied, we have:

18Magma is available at http://magma.maths.usyd.edu.au/magma/.
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• the “school-book” multiplication, with complexity O(n2);

• Karatsuba’s multiplication [214], with complexity O(nlog2 3);

• the Toom-Cook-3 multiplication [409], with complexity O(nlog3 5);

• its higher-degree generalizations, with complexities O(nlog4 7),
O(nlog5 9), . . . ;

• and finally the fast multiplication of Schönhage and Strassen,
which relies on the discrete Fourier transform [368], with complex-
ity O(n log n log log n).

Note that integer multiplication is still the focus of active research, and
has been recently improved (at least theoretically) by Fürer [141]. By chang-
ing the ring to which the Fourier transform maps the integers to multiply, the
author was able to obtain an O(n log n log∗ n) complexity bound, where log∗ n
is the number of times the log function has to be applied recursively to
obtain a number below 1. Several practical improvements over the
Schönhage–Strassen algorithm have also been reported recently by Gaudry,
Kruppa, and Zimmermann [144].

In Table 14.1, we give a list of some multiplication algorithms, with their
asymptotic complexities. We also give the approximate numbers of machine
words that the involved integers require for any given algorithm to become
more efficient in practice than the algorithms above it in the table. These
thresholds derive from the GNU MP library [156]. See also some experiments
by Zuras [446].

Algorithm Asymptotic complexity GNU MP thresholds
School-book O(n2) -
Karatsuba O(nlog2 3) [10, 20]

Toom–Cook-3 O(nlog3 5) [100, 200]
Schönhage–Strassen O(n log n log log n) [5000, 10000]

Fürer O(n log n log∗ n) unknown

Table 14.1: Asymptotic complexities of multiplication algorithms and approximate
practical thresholds in numbers of machine words.

The fast multiplication algorithms rely on the evaluation-interpolation
paradigm. We explain it briefly with Karatsuba’s multiplication, and refer
to [27] for a detailed survey on integer multiplication algorithms. Suppose
we want to multiply two positive integers a and b, that are both n bits long.
Karatsuba’s algorithm first splits a and b into almost equal sizes: a is writ-
ten a12dn/2e + a0 and similarly b is written b12dn/2e + b0, where a0 and b0 are
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both in [0, 2dn/2e − 1]. The product c = a · b can be expressed as:

c = c2 · 22dn/2e + c1 · 2dn/2e + c0,

where c2 = a1 · b1, c1 = a1 · b0 + a0 · b1, and c0 = a0 · b0. Using these formu-
las as such leads to an algorithm for multiplying two n-bit-long integers that
uses four multiplications of numbers of size around n/2. Applying this idea
recursively, i.e., replacing (a, b) by (a1, b1), (a1, b0), (a0, b1), and (a0, b0) respec-
tively, leads to a multiplication algorithm of complexity O(n2), which is the
complexity of the school-book algorithm. Indeed, if Cn is the cost of comput-
ing the product of two n-bit-long integers with this algorithm, then we just
proved that Cn = 4Cn/2 + O(n), which leads to Cn = O(n2). Karatsuba’s
contribution was to notice that in order to obtain c0, c1, and c2, we only need
three multiplications of numbers of size around n/2 instead of four, because
of the formulas:

c′2 = a1 · b1 c′1 = (a1 + a0) · (b1 + b0) c′0 = a0 · b0

c2 = c′2 c1 = c′1 − c′2 − c′0 c0 = c′0.

We therefore readily deduce that only three multiplications of numbers of
size around n/2 are needed to perform the product of two numbers of size n
(as well as a few additions, which turn out to be negligible in the cost). If
we apply these formulas recursively (for the computation of the c′i’s), then
we obtain Cn = 3Cn/2 + O(n), which leads to an O

(
nlog2 3

)
≈ O

(
n1.585

)
asymptotic complexity bound.

These formulas may seem extraordinary at first sight, but they can be
interpreted in an elegant mathematical way. Replace 2dn/2e by an indetermi-
nate x. Then the integers a, b, and c become three polynomials:

a(x) = a1x + a0,

b(x) = b1x + b0,

and
c(x) = c2x

2 + c1x + c0.

If we evaluate c(x) for x = 0, x = 1, and x = +∞ (more precisely, at +∞, we
take the dominant coefficient), then we obtain:

c(0) = c0 = c′0,

c(1) = c2 + c1 + c0 = c′1,

c(+∞) = c2 = c′2.

The c′i’s are the evaluations of c(x) at the three points we selected. Further-
more, since c = a · b and c(x) = a(x) · b(x), we have:

c′0 = a(0) · b(0) = a0 · b0,

c′1 = a(1) · b(1) = (a0 + a1) · (b0 + b1),
c′2 = a(+∞) · b(+∞) = a1 · b1.
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Overall, Karatsuba’s algorithm can be summarized as follows: evaluate a
and b at points 0, 1, and +∞; by taking the products, obtain the evaluations
of c at these points; finally, interpolate the evaluations to recover c. The costly
step in Karatsuba’s multiplication is the computation of the evaluations of c
from the evaluations of a and b.

This evaluation-interpolation principle was also generalized with more
than three evaluation points. The Toom-Cook-3 multiplication algorithm con-
sists in splitting a and b into three equal parts (instead of two as in the pre-
vious algorithm), and using five evaluation points, for example, 0, 1, −1, −2,
and +∞. The multiplication of n-bit-long operands can then be performed
with 5 multiplications between operands of bit-size around n/3. This pro-
vides an asymptotic complexity bound O(nlog3 5) ≈ O(n1.465). By letting the
number of evaluation points grow to infinity, one can obtain multiplication
algorithms of complexity O(n1+ε) for any ε > 0. However, when n becomes
large, it is more interesting to consider particular evaluation points, namely,
roots of unity, which gives rise to the Fourier transform-based multiplication
of Schönhage and Strassen [368].



Part VI

Perspectives and Appendix



Chapter 15

Conclusion and Perspectives

With the recent IEEE standard update resulting in IEEE 754-2008, computer
arithmetic will soon see important changes: the fused multiply-add (FMA)
instruction will probably be available on most processors, and correctly
rounded functions (at least in some domains) and decimal arithmetic will be
provided on most systems. Also, it should be easier to specify whether one
wishes the implicit intermediate variables of an arithmetic expression to be
computed and stored in the largest available format (to improve the accuracy
of the calculations) or in a format clearly specified in the program (to enhance
software portability and provability).

We hope that future language standards will allow the users to easily
and efficiently take advantage of the various possibilities offered by IEEE
754-2008.

Some instructions might ease the task of programmers. For instance, if,
instead of having to use algorithms such as 2Sum (Algorithm 4.4, page 130) or
2MultFMA (Algorithm 5.1, page 152), the corresponding operations (i.e., the
exact error of a floating-point addition or multiplication) were implemented
on the floating-point units, we could much more efficiently compute accu-
rate sums of many numbers or implement multiple-precision arithmetic. This
should not complicate the existing architectures too much, since, to guaran-
tee correctly rounded results, a conventional floating-point adder or multi-
plier already has to do a large part of the task. Also (but this might be slightly
more complex to implement in hardware), having instructions for ◦(x+y+z)
or ◦(xy + zt) would make very accurate functions much easier to program.

Concerning the Table Maker’s Dilemma, the current methods will make
it possible to know the worst cases for most univariate functions in the
binary64 or decimal64 formats. For much wider formats (typically, binary128
or decimal128), unless new algorithms are found, we have no hope of deter-
mining the worst cases in the foreseeable future. And yet, methods based on
the Lenstra–Lenstra–Lovász (LLL) algorithm (see the Appendix) might soon
allow us to prove information of the kind “we do not know the hardness to
round, but it is less than 400.”

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_15, 519
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Chapter 16

Appendix: Number Theory
Tools for Floating-Point
Arithmetic

16.1 Continued Fractions

Continued fractions make it possible to build very good (indeed, the best
possible, in a sense that will be made explicit by Theorems 49 and 50)
rational approximations to real numbers. As such, they naturally appear in
many problems of number theory, discrete mathematics, and computer sci-
ence. Since floating-point numbers are rational approximations to real num-
bers, it is not surprising that continued fractions play a role in some areas of
floating-point arithmetic.

Excellent surveys can be found in [166, 384, 331, 218]. Here, we will just
present some general definitions, as well as the few results that are needed in
this book, especially in Chapters 5 and 11.

Let α be a real number. From α, consider the two sequences (ai) and (ri)
defined by 

r0 = α,

ai = bric ,

ri+1 =
1

ri − ai
,

(16.1)

where “b.c” is the usual floor function. Notice that the ai’(s are integers and
that the ri’s are real numbers.

If α is an irrational number, then these sequences are defined for any

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6_16, 521
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2010
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i ≥ 0 (i.e., ri is never equal to ai), and the rational number

Pi

Qi
= a0 +

1

a1 +
1

a2 +
1

a3 +
1

. . . +
1
ai

is called the i-th convergent of α. The ai’s constitute the continued fraction
expansion of α. We write

α = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·
or, to save space,

α = [a0; a1, a2, a3, a4, . . .].

If α is rational, then these sequences terminate for some k, and
Pk/Qk = α exactly. The Pi’s and the Qi’s can be deduced from the ai’s
using the following recurrences:

P0 = a0,
P1 = a1a0 + 1,
Q0 = 1,
Q1 = a1,
Pk = Pk−1ak + Pk−2 for k ≥ 2,
Qk = Qk−1ak + Qk−2 for k ≥ 2.

Note that these recurrences give irreducible fractions Pi/Qi: the values Pi and
Qi that are deduced from them satisfy gcd(Pi, Qi) = 1.

The major interest in the continued fractions lies in the fact that Pi/Qi is
the best rational approximation to α among all rational numbers of denom-
inator less than or equal to Qi. More precisely, we have the following two
results [166].

Theorem 48. ([166, p.151]) Let (Pj/Qj)j≥0 be the convergents of α. If a rational
number P/Q is a better approximation to α than Pk/Qk (namely, if |P/Q − α| <
|Pk/Qk − α|), then Q > Qk.

Theorem 49. ([166, p.151]) Let (Pj/Qj)j≥0 be the convergents of α. If Qk+1 exists,
then for any (P,Q) ∈ Z× N∗, with Q < Qk+1, we have

|P − αQ| ≥ |Pk − αQk|.

If Qk+1 does not exist (which implies that α is rational), then the previous inequality
holds for any (P,Q) ∈ Z× N∗.
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Interestingly enough, a kind of converse result exists: if a rational
approximation to some number α is extremely good, then it must be a con-
vergent of its continued fraction expansion.

Theorem 50. ([166, p.153]) Let P,Q be integers, Q 6= 0. If∣∣∣∣PQ − α

∣∣∣∣ < 1
2Q2

,

then P/Q is a convergent of α.

An example of continued fraction expansion of an irrational number is

e = exp(1) = 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1
. . .

= [2; 1, 2, 1, 1, 4 . . .]

which gives the following rational approximations to e:

P0

Q0
= 2,

P1

Q1
= 3,

P2

Q2
=

8
3
,

P3

Q3
=

11
4

,
P4

Q4
=

19
7

,
P5

Q5
=

87
32

.

Other examples are

π = 3 +
1

7 +
1

15 +
1

1 +
1

292 +
1

1 +
1
. . .

= [3; 7, 15, 1, 292, 1 . . .]

and
√

2 = 1 +
1

2 +
1

2 +
1

2 +
1

2 +
1
. . .

= [1; 2, 2, 2, 2, . . .] = [1; 2].
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(0, 0) (2, 0)

(1, 2)

Figure 16.1: The lattice Z(2, 0)⊕ Z(1, 2).

16.2 The LLL Algorithm

A Euclidean lattice is a set of points that are regularly spaced in the space Rn

(see Definition 22). It is a discrete algebraic object that is encountered in sev-
eral domains of various sciences, including mathematics, computer science,
electrical engineering, and chemistry. It is a rich and powerful modeling tool,
thanks to the deep and numerous theoretical results, algorithms, and imple-
mentations available (see [64, 80, 158, 267, 379] for example).

Let x = (x1, . . . , xn) ∈ Rn. We set

‖x‖2 = (x|x)1/2 =
(
x2

1 + · · ·+ x2
n

)1/2 and ‖x‖∞ = max
1≤i≤n

|xi|.

Definition 22. Let L be a nonempty subset of Rn. The set L is a (Euclidean) lattice
if there exists a set of R-linearly independent vectors b1, . . . , bd such that

L = Z · b1 ⊕ · · · ⊕ Z · bd =

∑
i≤d

xi · bi, xi ∈ Z

 .

The family (b1, . . . , bd) is a basis of the lattice L and d is called the rank of the
lattice L.

For example, the set Zn and all of its additive subgroups are lattices.
These lattices play a central role in computer science since they can be repre-
sented exactly. We say that a lattice L is integer (resp. rational) when L ⊆ Zn

(resp. Qn). An integer lattice of rank 2 is given in Figure 16.1, as well as one
of its bases.

A lattice is often given by one of its bases (in practice, a matrix whose
rows or columns are the basis vectors). Unfortunately, as soon as the rank
of the lattice is greater than 1, there are infinitely many such representations
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(0, 0) (2, 0)

(1, 2)

u

v−3u + v

2u− v

Figure 16.2: Two bases of the lattice Z(2, 0)⊕ Z(1, 2).

for any given lattice. In Figure 16.2, we give another basis of the lattice of
Figure 16.1.

Proposition 1. If (e1, . . . , ek) and (f1, . . . , fj) are two families of R-linearly
independent (column) vectors that generate the same lattice, then k = j (this is the
rank of the lattice), and there exists a (k × k)-dimensional matrix M with integer
coefficients and determinant equal to ±1 such that (ei) = (fi) ·M .

Among the infinitely many bases of a specified lattice (if k ≥ 2), some
are more interesting than others. One can define various notions of what a
“good” basis is, but most of the time it is required to consist of somewhat
short vectors.

The two most famous computational problems related to lattices are the
shortest and closest vector problems (SVP and CVP). Since a lattice is discrete,
it contains a vector of smallest nonzero norm. That norm is denoted by λ and
is called the minimum of the lattice. Note that the minimum is reached at
least twice (a vector and its opposite), and may be reached more times. The
discreteness also implies that, given an arbitrary vector of the space, there
always exists a lattice vector closest to it (note that there can be several such
vectors). We now state the search versions of the SVP and CVP problems.

Problem 1. Shortest vector problem (SVP). Given a basis of a lattice L ⊆ Qn,
find a shortest nonzero vector of L, i.e., a vector of norm λ(L).

SVP naturally leads to the following approximation problem, which we call
γ-SVP, where γ is a function of the rank only: given a basis of a lattice L ⊆ Qn, find
b ∈ L such that

0 < ‖b‖ ≤ γ · λ(L).

Problem 2. Closest vector problem (CVP). Given a basis of a lattice L ⊆ Qn

and a target vector t ∈ Qn, find b ∈ L such that ‖b− t‖ = dist(t, L).
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CVP naturally leads to the following approximation problem, which we call
γ-CVP, where γ is a function of the rank only: given a basis of a lattice L ⊆ Qn and
a target vector t ∈ Qn, find b ∈ L such that

‖b− t‖ ≤ γ · dist(t, L).

Note that SVP and CVP can be defined with respect to any norm
of Rn, and we will write SVP2 and CVP2 to explicitly refer to the Euclidean
norm. These two computational problems have been studied extensively. We
describe very briefly some of the results, and refer to [277] for more details.

Ajtai [4] showed in 1998 that the decisional version of SVP2 (i.e., given
a lattice L and a scalar x, compare λ(L) and x) is NP-hard under random-
ized polynomial reductions. The NP-hardness had been conjectured in the
early 1980s by van Emde Boas [412], who proved the result for the infinity
norm instead of the Euclidean norm. Khot [219] showed that Ajtai’s result
still holds for the decisional version of the relaxed problem γ-SVP2, where γ
is an arbitrary constant. Goldreich and Goldwasser [150] proved that, under
very plausible complexity theory assumptions, approximating SVP2 within
a factor γ =

√
d/ ln d is not NP-hard, where d is the rank of the lattice. No

polynomial-time algorithm is known for approximating SVP2 within a fac-
tor f(d) with f a polynomial in d. On the constructive side, Kannan [213]
described an algorithm that solves SVP2 in time

d
d(1+o(1))

2e ≈ d0.184·d,

and in polynomial space (the complexity bound is proved in [163]). Ajtai,
Kumar and Sivakumar [5] gave an algorithm of complexity 2O(d) both in time
and space that solves SVP with high probability. Similar results hold for the
infinity norm instead of the Euclidean norm.

In 1981, van Emde Boas [412] proved that the decisional version of
CVP2 is NP-hard (see also [276]). On the other hand, Goldreich and Gold-
wasser [150] showed, under very plausible assumptions, that approximat-
ing CVP2 within a factor

√
d/ ln d is not NP-hard. Their result also holds for

the infinity norm (see [328]). Unfortunately, no polynomial-time algorithm is
known for approximating CVP to a polynomial factor. On the constructive
side, Kannan [213] described an algorithm that solves CVP in time

d
d(1+o(1))

2

for the Euclidean norm and
dd(1+o(1))

for the infinity norm (see [163] for the proofs of the complexity bounds).

If we sufficiently relax the parameter γ, the situation becomes far better.
In 1982, Lenstra, Lenstra, and Lovász [255] gave an algorithm that allows
one to get relatively short vectors in polynomial time. Their algorithm is now
commonly referred to by the acronym LLL.
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Theorem 51 (LLL [255]). Given an arbitrary basis (a1, . . . , ad) of a lattice L ⊆ Zn,
the LLL algorithm provides a basis (b1, . . . , bd) of L that is made of relatively short
vectors. Among others, we have ‖b1‖ ≤ 2(d−1)/2 · λ(L). Furthermore, LLL termi-
nates within O(d5n ln3 A) bit operations with A = maxi ‖ai‖.

More precisely, the LLL algorithm computes what is called a δ-LLL-
reduced basis, where δ is a fixed parameter which belongs to (1/4, 1) (if δ
is omitted, then its value is 3/4, which is the historical choice). To define what
a LLL-reduced basis is, we need to recall the Gram–Schmidt orthogonaliza-
tion of a basis. Consider a basis (b1, . . . , bd). Its Gram–Schmidt orthogonaliza-
tion (b∗1, . . . , b

∗
d) is defined recursively as follows:

• the vector b∗1 is b1;

• for i > 1, we set b∗i = bi −
∑

j<i µi,jb
∗
j , where µi,j =

〈bi,b
∗
j 〉

‖b∗j‖2
.

Geometrically, the vector b∗i is the projection of the vector bi orthogonally
to the span of the previous basis vectors b1, . . . bi−1. We say that the basis
(b1, . . . , bd) is δ-LLL-reduced if the following two conditions are satisfied:

• for any i > j, the quantity µi,j has magnitude less than or equal to 1/2.
This condition is called the size-reduction condition;

• for any i, we have δ‖b∗i ‖2 ≤ ‖b∗i+1‖2+µ2
i+1,i‖b∗i ‖2. This condition is called

Lovász’s condition. It means that orthogonally to the first i− 1 vectors,
the (i + 1)-th vector cannot be arbitrarily small compared to the i-th
vector.

LLL-reduced bases have many interesting properties. The most impor-
tant one is probably that the first basis vector cannot be more than 2(d−1)/2

times longer than the lattice minimum. The LLL algorithm computes an LLL-
reduced basis (b1, . . . , bd) of the lattice spanned by (a1, . . . , ad) by incremen-
tally trying to make the LLL conditions satisfied. It uses an index k which
starts at 2 and eventually reaches d+1. At any moment, the first k−1 vectors
satisfy the LLL conditions, and we are trying to make the first k vectors sat-
isfy the conditions. To make the size-reduction condition satisfied for the k-th
vector, one subtracts from it an adequate integer linear combination of the
vectors b1, . . . , bk−1. This is essentially the same process as Babai’s nearest
plane algorithm, described below. After that, one tests Lovász’s condition.
If it is satisfied, then the index k can be incremented. If not, the vectors bk

and bk−1 are swapped, and the index k is decremented. The correctness of
the LLL algorithm is relatively simple to prove, but the complexity analysis
is significantly more involved. We refer the interested reader to [255].

The LLL algorithm has been extensively studied since its invention [211,
365, 395, 303]. Very often in practice, the returned basis is of better quality
than the worst-case bound given above and is obtained faster than expected.
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We refer to [304] for more details about the practical behavior of the LLL
algorithm.

Among many important applications of the LLL algorithm, Babai [17]
derived from it a polynomial-time algorithm for solving CVP with an expo-
nentially bounded approximation factor. We present it in Algorithm 16.1.

Theorem 52 (Babai [17]). Given an arbitrary basis (b1, . . . , bd) of a lattice L ⊆ Zn,
and a target vector t ∈ Zn, Babai’s nearest plane algorithm (Algorithm 16.1) finds a
vector b ∈ L such that

‖b− t‖2 ≤ 2d · dist2(t, L).

Moreover, it finishes in polynomial time in d, n, lnA, and ln ‖t‖, where
A = maxi ‖ai‖.

Algorithm 16.1 Babai’s nearest plane algorithm. The inputs are an LLL-
reduced basis (bi)1≤i≤d, its Gram–Schmidt orthogonalization (b∗i )1≤i≤d, and
a target vector t. The output is a vector in the lattice spanned by the bi’s that
is close to t.

v ← t
for (j = d ; j ≥ 1 ; j- -) do

v ← v −
⌊ 〈v, b∗j 〉
〈b∗j , b∗j 〉

⌉
bj

end for
return (t− v)

Babai’s algorithm may also be described with the LLL algorithm directly.
This may be simpler to implement, in particular, if one has access to an
implementation of LLL. We give that variant in Algorithm 16.2.

Algorithm 16.2 Babai’s nearest plane algorithm, using LLL. The inputs are
an LLL-reduced basis (bi)1≤i≤d and a target vector t. The output is a vector in
the lattice spanned by the bi’s that is close to t.

for (j = 0 ; j ≤ d ; j++ do
ci ← (bi, 0)

end for
B ← maxi ‖bi‖; cd+1 ← (t, B)
(c′1, . . . , c

′
d+1)← LLL(c1, . . . , cd+1)

return (cd+1 − c′d+1)



Bibliography

[1] E. Abu-Shama and M. Bayoumi. A new cell for low power adders. In
Int. Midwest Symposium on Circuits and Systems, pages 1014–1017, 1995.

[2] R. C. Agarwal, F. G. Gustavson, and M. S. Schmookler. Series approx-
imation methods for divide and square root in the Power3 micropro-
cessor. In Koren and Kornerup, editors, Proceedings of the 14th IEEE
Symposium on Computer Arithmetic (Adelaide, Australia), pages 116–123.
IEEE Computer Society Press, Los Alamitos, CA, April 1999.

[3] T. Ahrendt. Fast high-precision computation of complex square roots.
In Proceedings of ISSAC’96 (Zurich, Switzerland), 1996.

[4] M. Ajtai. The shortest vector problem in L2 is NP-hard for random-
ized reductions (extended abstract). In Proceedings of the annual ACM
symposium on Theory of computing (STOC), pages 10–19, 1998.

[5] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the short-
est lattice vector problem. In Proceedings of the annual ACM symposium
on Theory of computing (STOC), pages 601–610, 2001.

[6] L. Aksoy, E. Costa, P. Flores, and J. Monteiro. Optimization of area in
digital FIR filters using gate-level metrics. In Design Automation Confer-
ence, pages 420–423, 2007.

[7] E. Allen, D. Chase, V. Luchangco, J.-W. Maessen, and G. L. Steele Jr.
Object-oriented units of measurement. In OOPSLA ’04: Proceedings of
the 19th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 384–403, New York,
NY, 2004. ACM Press.

[8] Altera Corporation. FFT/IFFT Block Floating Point Scaling, 2005. Appli-
cation note 404-1.0.

[9] B. Amedro, V. Bodnartchouck, D. Caromel, C. Delbé, F. Huet, and G. L.
Taboada. Current state of Java for HP. Preprint, Technical Report 0353,
INRIA, 2008. Available at http://hal.inria.fr/inria-00312039/en.

J.-M. Muller et al., Handbook of Floating-Point Arithmetic, DOI 10.1007/978-0-8176-4705-6, 529
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2010



530 Bibliography

[10] American National Standards Institute and Institute of Electrical and
Electronic Engineers. IEEE Standard for Binary Floating-Point Arithmetic.
ANSI/IEEE Standard 754–1985, 1985.

[11] American National Standards Institute and Institute of Electrical and
Electronic Engineers. IEEE Standard for Radix Independent Floating-Point
Arithmetic. ANSI/IEEE Standard 854–1987, 1987.

[12] C. Anderson, N. Astafiev, and S. Story. Accurate math functions on
the Intel IA-32 architecture: A performance-driven design. In Hanrot
and Zimmermann, editors, Real Numbers and Computers, pages 93–105.
INRIA, July 2006.

[13] ARM. ARM Developer Suite: Compilers and Libraries Guide. ARM Lim-
ited, November 2001. Available at http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.dui0067d/index.html or in PDF at
http://infocenter.arm.com/help/topic/com.arm.doc.dui0067d/

DUI0067.pdf.

[14] ARM. ARM Developer Suite: Developer Guide. ARM Limited, 1.2 edition,
November 2001. Document available at http://infocenter.arm.

com/help/index.jsp?topic=/com.arm.doc.dui0056d/index.html or
in PDF at http://infocenter.arm.com/help/topic/com.arm.doc.

dui0056d/DUI0056.pdf.

[15] W. Aspray, A. G. Bromley, M. Campbell-Kelly, P. E. Ceruzzi, and M. R.
Williams. Computing Before Computers. Iowa State University Press,
Ames, Iowa, 1990. Available at http://ed-thelen.org/comp-hist/

CBC.html.

[16] A. Avizienis. Signed-digit number representations for fast parallel
arithmetic. IRE Transactions on Electronic Computers, 10:389–400, 1961.
Reprinted in E. E. Swartzlander, Computer Arithmetic, Vol. 2, IEEE
Computer Society Press, Los Alamitos, CA, 1990.

[17] L. Babai. On Lovász’ lattice reduction and the nearest lattice point prob-
lem. Combinatorica, 6(1):1–13, 1986.

[18] I. Babuška. Numerical stability in mathematical analysis. In Proceedings
of the 1968 IFIP Congress, volume 1, pages 11–23, 1969.

[19] D. H. Bailey. Some background on Kanada’s recent pi calculation.
Technical report, Lawrence Berkeley National Laboratory, 2003. Avail-
able at http://crd.lbl.gov/~dhbailey/dhbpapers/dhb-kanada.pdf.

[20] D. H. Bailey and J. M. Borwein. Experimental mathematics: examples,
methods and implications. Notices of the AMS, 52(5):502–514, May 2005.



Bibliography 531

[21] D. H. Bailey, J. M. Borwein, P. B. Borwein, and S. Plouffe. The quest for
pi. Mathematical Intelligencer, 19(1):50–57, 1997.

[22] D. H. Bailey, Y. Hida, X. S. Li, and B. Thompson. ARPREC: an
arbitrary precision computation package. Technical report, Lawrence
Berkeley National Laboratory, 2002. Available at http://crd.lbl.gov/
~dhbailey/dhbpapers/arprec.pdf.

[23] G. Barrett. Formal methods applied to a floating-point system. IEEE
Transactions on Software Engineering, 15(5):611–621, May 1989.

[24] F. Benford. The law of anomalous numbers. Proceedings of the American
Philosophical Society, 78(4):551–572, 1938.

[25] M. Bennani and M. C. Brunet. Precise: simulation of round-off error
propagation model. In Proceedings of the 12th World IMACS Congress,
July 1988.

[26] C. Berg. Formal Verification of an IEEE Floating-Point Adder. Master’s
thesis, Universität des Saarlandes, Germany, 2001.

[27] D. J. Bernstein. Multidigit multiplication for mathematicians. Available
at http://cr.yp.to/papers.html#m3, 2001.

[28] F. Blomquist, W. Hofschuster, and W. Krämer. Real and complex stag-
gered (interval) arithmetics with wide exponent range (in German).
Technical Report 2008/1, Universität Wuppertal, Germany, 2008.

[29] G. Bohlender, W. Walter, P. Kornerup, and D. W. Matula. Semantics
for exact floating point operations. In P. Kornerup and D. W. Matula,
editors, Proceedings of the 10th IEEE Symposium on Computer Arithmetic,
pages 22–26. IEEE Computer Society Press, Los Alamitos, CA, June
1991.

[30] S. Boldo. Pitfalls of a full floating-point proof: example on the for-
mal proof of the Veltkamp/Dekker algorithms. In U. Furbach and
N. Shankar, editors, Proceedings of the 3rd International Joint Conference
on Automated Reasoning, volume 4130 of Lecture Notes in Computer Sci-
ence, pages 52–66, 2006.

[31] S. Boldo and M. Daumas. Representable correcting terms for possibly
underflowing floating point operations. In J.-C. Bajard and M. Schulte,
editors, Proceedings of the 16th Symposium on Computer Arithmetic, pages
79–86. IEEE Computer Society Press, Los Alamitos, CA, 2003.

[32] S. Boldo, M. Daumas, C. Moreau-Finot, and L. Théry. Computer val-
idated proofs of a toolset for adaptable arithmetic. Technical report,
École Normale Supérieure de Lyon, 2001. Available at http://arxiv.
org/pdf/cs.MS/0107025.



532 Bibliography

[33] S. Boldo, M. Daumas, and L. Théry. Formal proofs and computations
in finite precision arithmetic. In T. Hardin and R. Rioboo, editors, Pro-
ceedings of the 11th Symposium on the Integration of Symbolic Computation
and Mechanized Reasoning, 2003.

[34] S. Boldo and G. Melquiond. Emulation of FMA and correctly rounded
sums: proved algorithms using rounding to odd. IEEE Transactions on
Computers, 57(4):462–471, April 2008.

[35] S. Boldo and J.-M. Muller. Some functions computable with a fused-
mac. In Proceedings of the 17th IEEE Symposium on Computer Arithmetic
(ARITH-17). IEEE Computer Society Press, Los Alamitos, CA, June
2005.

[36] S. Boldo and C. Muñoz. Provably faithful evaluation of polynomials.
In Proceedings of the 2006 ACM Symposium on Applied Computing, pages
1328–1332, New York, NY, 2006. ACM Press.

[37] A. D. Booth. A signed binary multiplication technique. Quarterly Jour-
nal of Mechanics and Applied Mathematics, 4(2):236–240, 1951. Reprinted
in E. E. Swartzlander, Computer Arithmetic, Vol. 1, IEEE Computer Soci-
ety Press, Los Alamitos, CA, 1990.

[38] J. Borwein and D. H. Bailey. Mathematics by Experiment: Plausible Rea-
soning in the 21st Century. A. K. Peters, Natick, MA, 2004.

[39] P. Borwein and T. Erdélyi. Polynomials and Polynomial Inequalities. Grad-
uate Texts in Mathematics, 161. Springer-Verlag, New York, 1995.

[40] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system.
I. The user language. Journal of Symbolic Computation, 24(3–4):235–265,
1997.

[41] N. Boullis and A. Tisserand. Some optimizations of hardware mul-
tiplication by constant matrices. IEEE Transactions on Computers,
54(10):1271–1282, 2005.

[42] R. T. Boute. The euclidean definition of the functions div and mod.
ACM Trans. Program. Lang. Syst., 14(2):127–144, 1992.

[43] R. Brent and P. Zimmermann. Modern Computer Arithmetic. March
2009. Version 0.2.1. Available at http://www.loria.fr/~zimmerma/

mca/mca-0.2.1.pdf.

[44] R. P. Brent. On the precision attainable with various floating point
number systems. IEEE Transactions on Computers, C-22(6):601–607, June
1973.



Bibliography 533

[45] R. P. Brent. A FORTRAN multiple-precision arithmetic package. ACM
Transactions on Mathematical Software, 4(1):57–70, 1978.

[46] R. P. Brent, C. Percival, and P. Zimmermann. Error bounds on com-
plex floating-point multiplication. Mathematics of Computation, 76:1469–
1481, 2007.

[47] K. Briggs. The doubledouble library, 1998. Available at http://www.
boutell.com/fracster-src/doubledouble/doubledouble.html.

[48] N. Brisebarre and S. Chevillard. Efficient polynomial L∞ approxima-
tions. In ARITH ’07: Proceedings of the 18th IEEE Symposium on Com-
puter Arithmetic, pages 169–176, Washington, DC, 2007. IEEE Computer
Society.

[49] N. Brisebarre, F. de Dinechin, and J.-M. Muller. Integer and floating-
point constant multipliers for FPGAs. In Application-specific Systems,
Architectures and Processors, pages 239–244. IEEE, 2008.

[50] N. Brisebarre and J.-M. Muller. Correct rounding of algebraic functions.
Theoretical Informatics and Applications, 41:71–83, Jan–March 2007.

[51] N. Brisebarre and J.-M. Muller. Correctly rounded multiplication by
arbitrary precision constants. IEEE Transactions on Computers, 57(2):
165–174, February 2008.

[52] N. Brisebarre, J.-M. Muller, and S.-K. Raina. Accelerating correctly
rounded floating-point division when the divisor is known in advance.
IEEE Transactions on Computers, 53(8):1069–1072, August 2004.

[53] N. Brisebarre, J.-M. Muller, and A. Tisserand. Sparse-coefficient poly-
nomial approximations for hardware implementations. In Proc. 38th
IEEE Conference on Signals, Systems and Computers. IEEE, November
2004.

[54] N. Brisebarre, J.-M. Muller, and A. Tisserand. Computing machine-
efficient polynomial approximations. ACM Transactions on Mathematical
Software, 32(2):236–256, June 2006.

[55] W. S. Brown. A simple but realistic model of floating-point computa-
tion. ACM Transactions on Math. Software, 7(4), December 1981.

[56] W. S. Brown and P. L. Richman. The choice of base. Communications of
the ACM, 12(10):560–561, October 1969.

[57] C. Bruel. If-conversion SSA framework for partially predicated VLIW
architectures. In Digest of the 4th Workshop on Optimizations for DSP and
Embedded Systems (Manhattan, New York, NY), March 2006.



534 Bibliography

[58] J. D. Bruguera and T. Lang. Leading-one prediction with concurrent
position correction. IEEE Transactions on Computers, 48(10):1083–1097,
October 1999.

[59] J. D. Bruguera and T. Lang. Floating-point fused multiply-add:
Reduced latency for floating-point addition. In Proceedings of the 17th
IEEE Symposium on Computer Arithmetic (ARITH-17). IEEE Computer
Society Press, Los Alamitos, CA, June 2005.

[60] M. C. Brunet and F. Chatelin. A probabilistic round-off error propa-
gation model, application to the eigenvalue problem. In M. G. Cox
and S. Hammarling, editors, Reliable Numerical Software. Oxford
University Press, London, 1987. Available at http://www.boutell.

com/fracster-src/doubledouble/doubledouble.html.

[61] H. T. Bui, Y. Wang, and Y. Jiang. Design and analysis of low-power
10-transistor full adders using novel XORXNOR gates. IEEE Transac-
tions on Circuits and Systems II: Analog and Digital Signal Processing, 49(1),
2003.

[62] R. G. Burger and R. Kent Dybvig. Printing floating-point numbers
quickly and accurately. In Proceedings of the SIGPLAN’96 Conference on
Programming Languages Design and Implementation, pages 108–116, June
1996.

[63] F. Y. Busaba, C. A. Krygowski, W. H. Li, E. M. Schwarz, and
S. R. Carlough. The IBM z900 decimal arithmetic unit. In Thirty-Fifth
Asilomar Conference on Signals, Systems, and Computers, volume 2, pages
1335–1339, November 2001.

[64] J. W. S. Cassels. An introduction to the geometry of numbers. Classics
in Mathematics. Springer-Verlag, Berlin, 1997. Corrected reprint of the
1971 edition.

[65] A. Cauchy. Sur les moyens d’éviter les erreurs dans les calculs
numériques. Comptes Rendus de l’Académie des Sciences, Paris, 11:789–
798, 1840. Republished in: Augustin Cauchy, oeuvres complètes, 1ère
série, Tome V, pages 431–442. Available at http://gallica.bnf.fr/

scripts/ConsultationTout.exe?O=N090185.

[66] P. E. Ceruzzi. The early computers of Konrad Zuse, 1935 to 1945. Annals
of the History of Computing, 3(3):241–262, 1981.

[67] K. D. Chapman. Fast integer multipliers fit in FPGAs (EDN 1993 design
idea winner). EDN Magazine, May 1994.

[68] T. C. Chen and I. T. Ho. Storage-efficient representation of decimal data.
Communications of the ACM, 18(1):49–52, 1975.



Bibliography 535

[69] E. W. Cheney. Introduction to Approximation Theory. AMS Chelsea
Publishing. Providence, RI, 2nd edition, 1982.

[70] S. Chevillard and C. Q. Lauter. A certified infinite norm for the imple-
mentation of elementary functions. In Seventh International Conference
on Quality Software (QSIC 2007), pages 153–160. IEEE, 2007.

[71] C. W. Clenshaw and F. W. J. Olver. Beyond floating point. Journal of the
ACM, 31:319–328, 1985.

[72] W. D. Clinger. How to read floating-point numbers accurately. ACM
SIGPLAN Notices, 25(6):92–101, June 1990.

[73] W. D. Clinger. Retrospective: how to read floating-point numbers
accurately. ACM SIGPLAN Notices, 39(4):360–371, April 2004.

[74] D. Cochran. Algorithms and accuracy in the HP 35. Hewlett Packard
Journal, 23:10–11, June 1972.

[75] W. Cody and W. Waite. Software Manual for the Elementary Functions.
Prentice-Hall, Englewood Cliffs, NJ, 1980.

[76] W. J. Cody. Static and dynamic numerical characteristics of floating-
point arithmetic. IEEE Transactions on Computers, C-22(6):598–601, June
1973.

[77] W. J. Cody. Implementation and testing of function software. In P. C.
Messina and A. Murli, editors, Problems and Methodologies in Mathe-
matical Software Production, Lecture Notes in Computer Science 142.
Springer-Verlag, Berlin, 1982.

[78] W. J. Cody. MACHAR: a subroutine to dynamically determine machine
parameters. ACM Transactions on Mathematical Software, 14(4):301–311,
December 1988.

[79] S. Collange, M. Daumas, and D. Defour. État de l’intégration de la
virgule flottante dans les processeurs graphiques. Technique et Science
Informatiques, 27(6):719–733, 2008. In French.

[80] J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups.
Springer-Verlag, New York, 1988.

[81] J. Coonen. Contributions to a Proposed Standard for Binary Floating-Point
Arithmetic. Ph.D. thesis, University of California at Berkeley, 1984.

[82] D. Coppersmith. Finding a small root of a univariate modular equa-
tion. In U. M. Maurer, editor, Proceedings of EUROCRYPT, volume 1070
of Lecture Notes in Computer Science, pages 155–165. Springer-Verlag,
Berlin, 1996.



536 Bibliography

[83] D. Coppersmith. Finding small solutions to small degree polynomi-
als. In J. H. Silverman, editor, Proceedings of Cryptography and Lattices
(CaLC), volume 2146 of Lecture Notes in Computer Science, pages 20–31.
Springer-Verlag, Berlin, 2001.

[84] M. Cornea. Proving the IEEE correctness of iterative floating-point
square root, divide and remainder algorithms. Intel Technology Journal,
Q2:1–11, 1998. Available at http://download.intel.com/technology/
itj/q21998/pdf/ieee.pdf.

[85] M. Cornea, C. Anderson, J. Harrison, P. T. P. Tang, E. Schneider, and
C. Tsen. A software implementation of the IEEE 754R decimal floating-
point arithmetic using the binary encoding format. In P. Kornerup and
J.-M. Muller, editors, Proceedings of the 18th IEEE Symposium on
Computer Arithmetic (ARITH-18), pages 29–37. IEEE Computer Society
Conference Publishing Services, June 2007.

[86] M. Cornea, R. A. Golliver, and P. Markstein. Correctness proofs out-
line for Newton–Raphson-based floating-point divide and square root
algorithms. In Koren and Kornerup, editors, Proceedings of the 14th IEEE
Symposium on Computer Arithmetic (Adelaide, Australia), pages 96–105.
IEEE Computer Society Press, Los Alamitos, CA, April 1999.

[87] M. Cornea, J. Harrison, C. Anderson, P. T. P. Tang, E. Schneider, and
E. Gvozdev. A software implementation of the IEEE 754R decimal
floating-point arithmetic using the binary encoding format. IEEE Trans-
actions on Computers, 58(2):148–162, 2009.

[88] M. Cornea, J. Harrison, and P. T. P. Tang. Scientific Computing on
Itanium R©-based Systems. Intel Press, Hillsboro, OR, 2002.

[89] M. Cornea, C. Iordache, J. Harrison, and P. Markstein. Integer divide
and remainder operations in the IA-64 architecture. In J.-C. Bajard,
C. Frougny, P. Kornerup, and J.-M. Muller, editors, Proceedings of the
4th Conference on Real Numbers and Computers, 2000.

[90] M. F. Cowlishaw. Decimal floating-point: algorism for computers. In
Bajard and Schulte, editors, Proceedings of the 16th IEEE Symposium on
Computer Arithmetic (ARITH-16), pages 104–111. IEEE Computer
Society Press, Los Alamitos, CA, June 2003.

[91] M. F. Cowlishaw, E. M. Schwarz, R. M. Smith, and C. F. Webb. A
decimal floating-point specification. In N. Burgess and L. Ciminiera,
editors, Proceedings of the 15th IEEE Symposium on Computer Arithmetic
(ARITH-15), pages 147–154, Vail, CO, June 2001.



Bibliography 537
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