
Search

GPU Gems 3

GPU Gems 3 is
now available for
free online!

Please visit our
Recent Documents
page to see all the

latest whitepapers and conference
presentations that can help you with
your projects.

You can also subscribe to our
Developer News Feed to get
notifications of new material on the
site.

Chapter 25. Rendering
Vector Art on the GPU

Charles Loop
Microsoft Research

Jim Blinn
Microsoft Research

25.1 Introduction

Vector representations are a
resolution-independent means of
specifying shape. They have the
advantage that at any scale, content
can be displayed without tessellation or
sampling artifacts. This is in stark
contrast to a raster representation
consisting of an array of color values.
Raster images quickly show artifacts
under scale or perspective mappings.
Our goal in this chapter is to present a
method for accelerating the rendering
of vector representations on the GPU.

Modern graphics processing units excel
at rendering triangles and triangular
approximations to smooth objects. It is
somewhat surprising to realize that the
same architecture is ideally suited to
rendering smooth vector-based objects
as well. A vector object contains layers
of closed paths and curves. These

Developer Site Homepage

Developer News Homepage

Developer Login

Become a
Registered Developer

Developer Tools

Documentation

DirectX

OpenGL

GPU Computing

Handheld

Events Calendar

Newsletter Sign-Up

Drivers

Jobs (1)

Contact

Legal Information

Site Feedback

Foreword
Preface
Contributors
Copyright
Part I: Geometry

Chapter 1. Generating Complex
Procedural Terrains Using the GPU
Chapter 2. Animated Crowd
Rendering
Chapter 3. DirectX 10 Blend
Shapes: Breaking the Limits
Chapter 4. Next-Generation
SpeedTree Rendering
Chapter 5. Generic Adaptive Mesh
Refinement
Chapter 6. GPU-Generated
Procedural Wind Animations for
Trees
Chapter 7. Point-Based
Visualization of Metaballs on a GPU

Part II: Light and Shadows
Chapter 8. Summed-Area Variance
Shadow Maps
Chapter 9. Interactive Cinematic
Relighting with Global Illumination
Chapter 10. Parallel-Split Shadow
Maps on Programmable GPUs
Chapter 11. Efficient and Robust
Shadow Volumes Using Hierarchical
Occlusion Culling and Geometry
Shaders
Chapter 12. High-Quality Ambient
Occlusion
Chapter 13. Volumetric Light
Scattering as a Post-Process

Part III: Rendering
Chapter 14. Advanced Techniques
for Realistic Real-Time Skin
Rendering
Chapter 15. Playable Universal
Capture
Chapter 16. Vegetation Procedural
Animation and Shading in Crysis
Chapter 17. Robust Multiple
Specular Reflections and
Refractions
Chapter 18. Relaxed Cone Stepping
for Relief Mapping
Chapter 19. Deferred Shading in
Tabula Rasa
Chapter 20. GPU-Based Importance
Sampling

Part IV: Image Effects

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

1 of 21 03/03/14 10:38



paths and curves are generally
quadratic and cubic Bézier spline
curves, emitted by a drawing program.
We present algorithms for rendering
these spline curves directly in terms of
their mathematical descriptions, so
that they are resolution independent
and have a minimal geometric
representation.

The main ingredient of our algorithm is
the notion of implicitization: the
transformation from a parametric [x(t)
y(t)] to implicit f (x, y) = 0 plane
curve. We render the convex hull of the
Bézier control points as polygons, and
a pixel shader program determines
pixel inclusion by evaluating the
curve's implicit form. This process
becomes highly efficient by leveraging
GPU interpolation functionality and
choosing just the right implicit form. In
addition to resolving in/out queries at
pixels, we demonstrate a mechanism
for performing antialiasing on these
curves using hardware gradients. Much
of this work originally appeared in Loop
and Blinn 2005.

25.2 Quadratic Splines

The best way to understand our
algorithm is to show how it works with
a simple example. Consider the letter
"e" shown in Figure 25-1. Figure 25-1a
shows the TrueType data used to
describe this font glyph. TrueType uses
a combination of quadratic B-splines
and line segments to specify an
oriented vector outline. The region on
the right0hand side of the curve is
considered inside by convention. The
hollow dots are B-spline control points
that define curves; the solid dots are
points on the curve that can define
discontinuities such as sharp corners.
As a preprocess, we convert the
B-spline representation to Bézier form
by inserting new points at the midpoint
of adjacent B-spline control points.
Each B-spline control point will
correspond to a quadratic Bézier curve.
Next, we triangulate the interior of the
closed path and form a triangle for
each quadratic Bézier curve. After
triangulation, we will have interior
triangles (shown in green) and
boundary triangles that contain curves
(shown in red and blue), as you can
see in Figure 25-1b.

Chapter 21. True Impostors
Chapter 22. Baking Normal Maps
on the GPU
Chapter 23. High-Speed,
Off-Screen Particles
Chapter 24. The Importance of
Being Linear
Chapter 25. Rendering Vector
Art on the GPU
Chapter 26. Object Detection by
Color: Using the GPU for Real-Time
Video Image Processing
Chapter 27. Motion Blur as a
Post-Processing Effect
Chapter 28. Practical Post-Process
Depth of Field

Part V: Physics Simulation
Chapter 29. Real-Time Rigid Body
Simulation on GPUs
Chapter 30. Real-Time Simulation
and Rendering of 3D Fluids
Chapter 31. Fast N-Body Simulation
with CUDA
Chapter 32. Broad-Phase Collision
Detection with CUDA
Chapter 33. LCP Algorithms for
Collision Detection Using CUDA
Chapter 34. Signed Distance Fields
Using Single-Pass GPU Scan
Conversion of Tetrahedra
Chapter 35. Fast Virus Signature
Matching on the GPU

Part VI: GPU Computing
Chapter 36. AES Encryption and
Decryption on the GPU
Chapter 37. Efficient Random
Number Generation and Application
Using CUDA
Chapter 38. Imaging Earth's
Subsurface Using CUDA
Chapter 39. Parallel Prefix Sum
(Scan) with CUDA
Chapter 40. Incremental
Computation of the Gaussian
Chapter 41. Using the Geometry
Shader for Compact and Variable-
Length GPU Feedback

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

2 of 21 03/03/14 10:38



Figure 25-1 Rendering Quadratic
Splines

The interior triangles are filled and
rendered normally. Triangles that
contain curves are either convex or
concave, depending on which side of
the curve is inside the closed region.
See the red and blue curves in Figure
25-1b.

We use a shader program to determine
if pixels are on the inside or outside of
a closed region. Before getting to this
shader, we must assign [u v]
coordinates to the vertices of the
triangles that contain curves. An
example is shown in Figure 25-2. When
these triangles are rendered under an
arbitrary 3D projective transform, the
GPU will perform perspective-correct
interpolation of these coordinates and
provide the resulting [uv] values to a
pixel shader program. Instead of
looking up a color value as in texture
mapping, we use the [u v] coordinate
to evaluate a procedural texture. The
pixel shader computes the expression

u 2 - v,

Figure 25-2 Procedural Texture
Coordinate Assignment

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

3 of 21 03/03/14 10:38



using the sign of the result to
determine pixel inclusion. For convex
curves, a positive result means the
pixel is outside the curve; otherwise it
is inside. For concave curves, this test
is reversed.

The size of the resulting representation
is proportional to the size of the
boundary curve description. The
resulting image is free of any artifacts
caused by tessellation or
undersampling because all the pixel
centers that lie under the curved
region are colored and no more.

The intuition behind why this algorithm
works is as follows. The procedural
texture coordinates [0 0], [½ 0], and
[1 1] (as shown in Figure 25-2) are
themselves Bézier control points of the
curve

u(t) = t, v(t) = t 2.

This is clearly a parameterization for

the algebraic (implicit) curve u 2 - v =
0. Suppose P is the composite
transform from u, v space to curve
design (glyph) space to viewing and
perspective space to screen space.
Ultimately this will be a projective
mapping from 2D onto 2D. Any
quadratic curve segment projected to
screen space will have such a P. When
the GPU interpolates the texture
coordinates, it is in effect computing

the value of P-1 for each pixel.
Therefore, we can resolve the
inside/outside test in u, v space where
the implicit equation is simple, needing
only one multiply and one add.

As an alternative, we could find the
algebraic equation of each curve
segment in screen space. However, this
would require dozens of arithmetic
operations to compute the general
second-order algebraic curve
coefficients and require many
operations to evaluate in the
corresponding pixel shader.
Furthermore, the coefficients of this
curve will change as the viewing
transform changes, requiring
recomputation. Our approach requires
no such per-frame processing, other
than the interpolation of [u v]
procedural texture coordinates done by
the GPU.

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

4 of 21 03/03/14 10:38



Quadratic curves turn out to be a very
simple special case. Assignment of the
procedural texture coordinates is the
same for all (integral) quadratic
curves, and the shader equation is
simple and compact. However, drawing
packages that produce vector artwork
often use more-flexible and smooth
cubic splines. Next, we extend our
rendering algorithm to handle cubic
curves. The good news is that the
runtime shader equation is also simple
and compact. The bad news is that the
preprocessing—assignment of
procedural texture coordinates—is
nontrivial.

25.3 Cubic Splines

Our algorithm for rendering cubic
spline curves is similar in spirit to the
one for rendering quadratic curves. An
oriented closed path is defined by cubic
Bézier curve segments, each consisting
of four control points. See Figure
25-3a. We assume the right-hand side
of the curve to be considered inside.
The convex hull of these control points
forms either a quadrilateral consisting
of two triangles, or a single triangle. As
before, we triangulate the interior of
the path, as shown in Figure 25-3b.
The interior triangles are filled and
rendered normally. The interesting part
is how to generalize the procedural
texture technique we used for
quadratics.

Figure 25-3 Rendering Cubic Splines

Unlike parametric quadratic curves,
parametric cubic plane curves are not
all projectively equivalent. That is,
there is no single proto-curve that all
others can be projected from. It is well
known that all rational parametric
plane curves have a corresponding
algebraic curve of the same degree. It
turns out that the algebraic form of a
parametric cubic belongs to one of

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

5 of 21 03/03/14 10:38



three projective types (Blinn 2003), as
shown in Figure 25-4. Any arbitrary
cubic curve can be classified as a
serpentine, cusp, or loop. Furthermore,
a projective mapping exists that will
transform an arbitrary parametric cubic
curve onto one of these three curves.
If we map the Bézier control points of
the curve under this transform, we will
get a Bézier parameterization of some
segment of one of these three curves.

Figure 25-4 All Parametric Cubic Plane
Curves Can Be Classified as the
Parameterization of Some Segment of
One of These Three Curve Types

A very old result (Salmon 1852) on
cubic curves states that all three types
of cubic curves will have an algebraic
representation that can be written

k 3 - lmn = 0,

where k, l, m, and n are linear
functionals corresponding to lines k, l,
m, and n as in Figure 25-4. (The
reason line n does not appear in Figure
25-4 will be made clear shortly.) More
specifically, k = au + bv + cw, where
[u v w] are the homogeneous
coordinates of a point in the plane, and

k = [a b c] T are the coordinates of a
line; and similarly for l, m, and n. The
relationship of the lines k, l, m, and n
to the curve C(s, t) has important
geometric significance. A serpentine

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

6 of 21 03/03/14 10:38



curve has inflection points at k l, k

m, and k n and is tangent to
lines l, m, and n, respectively. A loop

curve has a double point at k l

and k m and is tangent to lines l

and m at this point; k n
corresponds to an inflection point. A
cusp curve has a cusp at the point
where coincident lines l and m
intersect k, and it is tangent to line l =

m at this point; and k n
corresponds to an inflection point.

The procedural texture coordinates are
the values of the k, l, m, and n
functionals at each cubic Bézier control
point. When the (triangulated) Bézier
convex hull is rendered, these
coordinates are interpolated by the
GPU and a pixel shader program is
called that evaluates the shader

equation k 3 - lmn. This will determine
if a pixel is inside or outside the curve
based on the sign of the result.

We work in homogeneous coordinates
where points in the plane are
represented by 3-tuples [x y w]; the
2D Cartesian coordinates are x/w and
y/w. We also work with a
homogeneous curve parameterization
where the parameter value is
represented by the pair [s t]; the 1D
scalar parameter is s/t. We use
homogeneous representations because
the projective geometric notion of
points at infinity is captured by w = 0;
similarly, an infinite parameter value
occurs when t = 0.

In principle, we can render any planar
cubic Bézier curve defined this way;
however, we make some simplifying
assumptions to ease the derivation and
implementation of our algorithm. The
first is that the Bézier control points
are affine, so w = 1. This means that
curves must be integral as opposed to
rational. This is not a severe limitation,
because most drawing tools support
only integral curves. We will still be
able to render the correct projected
image of an integral cubic plane curve,
but in the plane where the curve is
defined it cannot be rational. For
integral curves the line n = [0 0 1];
that is, the line at infinity. All three
cubic proto-curves in Figure 25-4 have
integral representations, so line n does
not appear. The linear functional

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

7 of 21 03/03/14 10:38



corresponding to the line at infinity is n
= 1, so the shader equation simplifies
to

k 3 - lm.

Although this saves only one multiply
in the shader, it removes an entire
texture coordinate from a vertex,
leading to potentially more-efficient
code. The primary reason for assuming
integral curves, however, is to simplify
curve classification. Our second
assumption is that the control point
coordinates are exact floating-point
numbers. This assumption is not
strictly necessary, but we can avoid
floating-point round-off errors that
might crop up in tests for equality. This
corresponds to an interactive drawing
scenario where control points lie on a
regular grid.

A cubic Bézier curve in homogeneous
parametric form is written

where the b i are cubic Bézier control
points.

The first step is to compute the
coefficients of the function I(s, t)
whose roots correspond to inflection
points of C(s, t). An inflection point is
where the curve changes its bending
direction, defined mathematically as
parameter values where the first and
second derivatives of C(s, t) are
linearly dependent. The derivation of
the function I is not needed for our
current purposes; see Blinn 2003 for a
thorough discussion. For integral cubic
curves,

I(s, t) = t(3d 1 s 2 - 3d 2 st + d 3 t
2),

where

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

8 of 21 03/03/14 10:38



d 1 = a 1 - 2a 2

+ 3a 3,
d 2 = -a 2

+ 3a 3,
d 3 =
3a 3

and

a 1 = b 0 ·
(b 3 x b 2),

a 2 = b 1 ·
(b 0 x b 3),

a 3 = b 2 ·
(b 1 x b 1).

The function I is a cubic with three
roots, not all necessarily real. It is the
number of distinct real roots of I(s, t)
that determines the type of the cubic
curve. For integral cubic curves, [s t] =
[1 0] is always a root of I(s, t). This
means that the remaining roots of I(s,
t) can be found using the quadratic
formula, rather than by the more
general solution of a cubic—a
significant simplification over the
general rational curve algorithm.

Our cubic curve classification reduces
to knowing the sign of the discriminant
of I(s, t), defined as

If discr(I) is positive, the curve is a
serpentine; if negative, it is a loop; and
if zero, a cusp. Although it is true that
all cubic curves are one of these three
types, not all configurations of four
Bézier control points result in cubic
curves. It is possible to represent
quadratic curves, lines, or even single
points in cubic Bézier form. Our
procedure will detect these cases, and
our rendering algorithm can handle
them. We don't need to consider (or
render) lines or points, because the
convex hull of the Bézier control points
in these cases has zero area and,
therefore, no pixel coverage. The
general classification of cubic Bézier
curves is given by Table 25-1.

Table 25-1. Cubic Curve
Classification

Serpentine discr(I) > 0

Cusp discr(I) = 0

Loop discr(I) < 0

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

9 of 21 03/03/14 10:38



Quadratic d 1 = d 2 = 0

Line d 1 = d 2 = d 3 = 0

Point b 0 = b 1 = b 2 = b 3

If our Bézier control points have exact
floating-point coordinates, the
classification given in Table 25-1 can
be done exactly. That is, there is no
ambiguity between cases, because
discr(I) and all intermediate variables
can be derived from exact floating
representations.

Once a curve has been classified, we
must find the texture coordinates [ki li
mi ] corresponding to each Bézier
control point b i , i = 0, 1, 2, 3. Our
approach is to find scalarvalued cubic
functions

k(s, t) = k
. C(s, t),

l(s, t), = l
. C(s, t),

m(s, t) = m
. C(s, t),

in Bézier form; the coefficients of these
functions will correspond to our
procedural texture coordinates.
Because we know the geometry of the
lines k, l, and m in Figure 25-4, we
could find points and tangent vectors
of C(s, t) and from these construct the
needed lines. But lines are
homogeneous, scale-invariant objects;
what we need are the corresponding
linear functionals, where (relative)
scale matters.

Our strategy will be to construct k(s,
t), l(s, t), and m(s, t) by taking
products of their linear factors. These
linear factors are found by solving for
the roots of I(s, t) and a related
polynomial called the Hessian of I(s, t).
For each curve type, we find the
parameter values [ls lt ] and [ms mt ]

of I(s, t) where k l and k m.
We denote these linear factors by the
following:

L  (slt - tls
),

M  (smt - tms

).

We can reason about how to construct
k(s, t), l(s, t), and m(s, t) from L and
M by studying the geometric

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

10 of 21 03/03/14 10:38



relationship of C(s, t) to lines k, l, and
m. For example, k(s, t) will have roots
at [ls lt ], [ms mt ], and a root at
infinity [1 0]. Therefore, for all cubic
curves:

k(s, t) = LM.

Finding the cubic functions l(s, t) and
m(s, t) for each of the three curve
types has its own reasoning, to be
described shortly.

Once the functions k(s, t), l(s, t), and
m(s, t) are known, we convert them to
cubic Bézier form to obtain

where [ki li mi ] are the procedural
texture coordinates associated with b i

, i = 0, 1, 2, 3.

Finally, to make sure that the curve
has the correct orientation—to the
right is inside—we may need to reverse
orientation by multiplying the implicit
equation by -1. This is equivalent to

setting M M · O, where

The conditions for correcting
orientation depend on curve type,
described next.

25.3.1 Serpentine

For a serpentine curve, C(s, t) is
tangent to line l at the inflection point

where k l. The scalar-valued
function l(s, t) will also have an
inflection point at this parameter
value; meaning that l(s, t) will have a
triple root there. A similar analysis
applies for m(s, t). We form products
of the linear factors to get

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

11 of 21 03/03/14 10:38



k(s, t) =
LM,

l(s, t) = L
3,

m(s, t) = M
3.

To find the parameter value of these
linear factors, we compute the roots of
I(s, t):

We convert k(s, t), l(s, t), and m(s, t)
to cubic Bézier form and form the
coefficient matrix

Each row of the M matrix corresponds
to the procedural texture coordinate
associated with the Bézier curve
control points. If d 1 < 0, then we must

reverse orientation by setting M M
· O.

25.3.2 Loop

For a loop curve, C(s, t) is tangent to
line l and crosses line m at one of the
double point parameters. This means
that l(s, t) will have a double root at [ls
lt ] and a single root at [ms mt ]. A
similar analysis holds for m(s, t). We
then take products of the linear factors
to get

k(s, t) =
LM,

l(s, t) = L 2

M,

m(s, t) =

LM 2.

The parameter values of the double
point are found as roots of the Hessian
of I(s, t), defined as

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

12 of 21 03/03/14 10:38



Because H(s, t) is quadratic, we use
the quadratic formula to find the roots:

We convert k(s, t), l(s, t), and m(s, t)
to cubic Bézier form to get

A rendering artifact will occur if one of
the double point parameters lies in the
interval [0/1, 1/1]. To solve this
problem, we subdivide the curve at the
double point parameter—see Figure
25-5—and reverse the orientation of
one of the subcurves. Note that the
procedural texture coordinates of the
subcurves can be found by subdividing
the procedural texture coordinates of
the original curve. Once a loop curve
has been sub divided at its double
point, the procedural texture
coordinates ki , i = 0, . . ., 3 will have
the same sign. Orientation reversal (M

M · O) is needed if (d 1 > 0 and
sign(k 1) < 0) or (d 1 < 0 and sign(k 1)
> 0).

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

13 of 21 03/03/14 10:38



Figure 25-5 Cubic Curve with a Double
Point

25.3.3 Cusp

A cusp occurs when discr(I) = 0. This
is the boundary between the
serpentine and loop cases.
Geometrically, the lines l and m are
coincident; therefore [ls lt ] = [ms mt

]. We could use the procedure for
either the loop or the serpentine case,
because the texture coordinate
matrices will turn out to be the same.

There is an exception: when d 1 = 0.
In the serpentine and loop cases, it

must be that d 1  0; otherwise
discr(I) = 0 and we would have a cusp.

The case where d 1 = 0 and d 2  0
corresponds to a cubic curve that has a
cusp at the parametric value [1
0]—that is, homogeneous infinity. In
this case, the inflection point
polynomial reduces to

I(s, t) = t 2(d 3 t - 3d 2 s),

which has a double root at infinity and
a single root [ls lt ] = [d 3 3d 2]. We
find

k(s, t) =
L,

l(s, t) = L
3,

m(s, t) =
1.

Converting these to Bézier form gives
us the columns of the matrix:

The orientation will never need to be
reversed in this case. An example of a
cubic curve whose inflection point
polynomial has a cusp at infinity is [t t
3].

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

14 of 21 03/03/14 10:38



25.3.4 Quadratic

We showed earlier that quadratic
curves could be rendered by a pixel
shader that evaluated the expression u
2 - v. Switching away from the cubic
shader would be inefficient for the
GPU, and therefore undesirable.
However, if we equate the cubic

function k(s, t) m(s, t), our cubic
shader expression can be written as

k 3 - kl = k(k 2 - l).

We see that the part inside the
parentheses is the quadratic shader
expression with u and v replaced with
k and l. The sign of this expression will
agree with the quadratic shader,
provided the value of k does not
change sign inside the convex hull of
the curve. We can degree-elevate the
quadratic procedural texture
coordinates to get

Interpolation will not change the sign
of k in this case. Finally, we reverse
orientation if d 3 < 0.

25.4 Triangulation

Our triangulation procedure was only
briefly discussed in Sections 25.2 and
25.3 in the interest of simplicity. An
important detail not previously
mentioned is that Bézier convex hulls
cannot overlap. There are two reasons
for this: one is that overlapping
triangles cause problems for
triangulation code; the other is that
unwanted portions of one filled region
might show through to the other,
resulting in a visual artifact. This
problem can be resolved by subdividing
one of the offending curves so that
Bézier curve convex hulls no longer
overlap, as shown in Figure 25-6.

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

15 of 21 03/03/14 10:38



Figure 25-6 Handling Overlapping
Triangles

We locally triangulate all
non-overlapping Bézier convex hulls.
For quadratics, the Bézier convex hull
is uniquely a triangle. For cubics, the
Bézier convex hull may be a quad or a
triangle. If it is a quad, we triangulate
by choosing either diagonal. Next, the
interior of the entire boundary is
triangulated. The details of this
procedure are beyond the scope of this
chapter. Any triangulation procedure
for a multicontour polygon will work.

Recently, Kokojima et al. 2006
presented a variant on our approach
for quadratic splines that used the
stencil buffer to avoid triangulation.
Their idea is to connect all points on
the curve path and draw them as a
triangle fan into the stencil buffer with
the invert operator. Only pixels drawn
an odd number of times will be
nonzero, thus giving the correct image
of concavities and holes. Next, they
draw the curve segments, treating
them all as convex quadratic elements.
This will either add to or carve away a
curved portion of the shape. A quad
large enough to cover the extent of the
stencil buffer is then drawn to the
frame buffer with a stencil test. The
result is the same as ours without
triangulation or subdivision, and
needing only one quadratic curve
orientation. Furthermore, eliminating
the triangulation steps makes
high-performance rendering of
dynamic curves possible. The
disadvantage of their approach is that
two passes over the curve data are
needed. For static curves, they are
trading performance for
implementation overhead.

25.5 Antialiasing

We present an approach to antialiasing
in the pixel shader based on a signed
distance approximation to a curve

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

16 of 21 03/03/14 10:38



boundary. By reducing pixel opacity
within a narrow band that contains the
boundary, we can approximate
convolution with a filter kernel.
However, this works only when pixel
samples lie on both sides of a
boundary, such as points well inside
the Bézier convex hull of a curve. For
points near triangle edges, or when the
edge of a triangle is the boundary, this
scheme breaks down. Fortunately, this
is exactly the case that is handled by
hardware multisample antialiasing
(MSAA). MSAA uses a coverage mask
derived as the percentage of samples
(from a hardware-dependent sample
pattern) covered by a triangle. Only
one pixel shader call is initiated, and
this is optionally located at the centroid
of the covered samples, as opposed to
the pixel center, to avoid sampling
outside the triangle's image in texture
space. In our case, out-of-gamut
sampling is not a problem, because we
use a procedural definition of a texture
(an algebraic equation). Therefore,
centroid sampling is not recommended.

For antialiasing of curved boundaries
on the interior of the Bézier convex
hull, we need to know the
screen-space signed distance from the
current pixel to the boundary. If this
distance is ±½ a pixel (an empirically
determined choice; this could be less
or more), then the opacity of the pixel
color is changed relative to the pixel's
distance to the curved boundary.
Computing the true distance to a
degree d polynomial curve requires the
solution to a degree 2d - 1 equation.
This is impractical on today's hardware,
for performance reasons.

Instead, we use an approximate signed
distance based on gradients. For a
function f (x, y), the gradient of f is a

vector operator f = [df/dx df/dy].
The GPU has hardware support for
taking gradients of variables in pixel
shader programs via the ddx() and
ddy() functions. We define the signed
distance function to the screen-space
curve f (x, y) = 0 to be

In our case, the implicit function is not
defined in screen (pixel) space.
However, the process of interpolating
procedural texture coordinates in

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

17 of 21 03/03/14 10:38



screen space is, in effect, mapping
screen [x y] space to procedural
texture coordinate space ([u v] for
quadratics, [k l m] for cubics). In other
words, we can think of the interpolated
procedural texture coordinates as
vector functions

[u(x,
y)

v(x,
y)]

or
[k(x,
y)

l(x,
y)

m(x,
y)].

Each of these coordinate functions is
actually the ratio of linear functionals
whose quotient is taken in hardware
(that is, perspective correction). An
implicit function of these coordinate
functions is a composition, defining a
screen-space implicit function.
Therefore, our signed distance function
correctly measures approximate
distance in pixel units.

Hardware gradients are based on
differences between values of adjacent
pixels, so they can only approximate
the derivatives of higher-order
functions. Although this rarely (if ever)
results in artifacts, with only a few
additional math operations, we can get
exact derivatives by applying the chain
rule to our shader equations. Let the
following,

q(x, y) = u(x, y)2 - v(x, y) = 0 and

c(x, y) = k(x, y)3 - l(x, y)m(x, y) =
0,

be our quadratic and cubic shader
equations, respectively. Applying the
chain rule, we get

We can write our signed distance
function as

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

18 of 21 03/03/14 10:38



where f q for quadratics and f
c for cubics. For a boundary interval of
±½ pixel, we map signed distance to
opacity by a = ½ - sd. This is based on
a linear ramp blending; higher-order
blending could be used at higher cost.

If a > 1, we set a  1; if a < 0, we
abort the pixel.

25.6 Code

Listing 25-1 is HLSL code for our
quadratic shader. The code for the
cubic shader is similar.

Example 25-1. Quadratic Curve
Pixel Shader

   float4 QuadraticPS(float2 p : TEXCOO01.
  float4 color : COLOR0) : COLOR  02.
{  03.
  // Gradients  04.
   float2 px = ddx(p);  05.
  float2 py = ddy(p);  06.
  // Chain rule  07.
   float fx = (2*p.x)*px.x - px.y;  08.
  float fy = (2*p.x)*py.x - py.y;  09.
  // Signed distance  10.
   float sd = (p.x*p.x - p.y)/sqrt(fx*f11.
  // Linear alpha  12.
   float alpha = 0.5 - sd;  13.
  if (alpha > 1)       14.
    color.a = 1;  15.
  else if (alpha < 0)  16.
   clip(-1);  17.
  else                   18.
   // Near boundary  19.
    color.a = alpha;  20.
  return color;  21.
}  22.

25.7 Conclusion

We have presented an algorithm for
rendering vector art defined by closed
paths containing quadratic and cubic
Bézier curves. We locally triangulate
each Bézier convex hull and globally
triangulate the interior (right-hand
side) of each path. We assign
procedural texture coordinates to the
vertices of each Bézier convex hull.
These coordinates encode linear
functionals and are interpolated by the
hardware during rasterization. The

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

19 of 21 03/03/14 10:38



process of interpolation maps the
procedural texture coordinates to a
space where the implicit equation of

the curve has a simple form: u 2 - v =

0 for quadratics and k 3 - lm = 0 for
cubics. A pixel shader program
evaluates the implicit equation. The
sign of the result will determine if a
pixel is inside (negative) or outside
(positive). We use hardware gradients
to approximate a screen-space signed
distance to the curve boundary. This
signed distance is used for antialiasing
the curved boundaries. We can apply
an arbitrary projective transform to
view our plane curves in 3D. The result
has a small and static memory
footprint, and the resulting image is
resolution independent. Figure 25-7
shows an example of some text
rendered in perspective using our
technique.

Figure 25-7 Our Algorithm Is Used to
Render 2D Text with Antialiasing Under
a 3D Perspective Transform

In the future, we would like to extend
this rendering paradigm to curves of
degree 4 and higher. This would allow
us to apply freeform deformations to
low-order shapes (such as font glyphs)
and have the resulting higher-order
curve be resolution independent. The
work of Kokojima et al. 2006 showed
how to render dynamic quadratic
curves; we would like to extend their
approach to handle cubic curves as
well. This is significantly more
complicated than the quadratic case,
because of the procedural texture-
coordinate-assignment phase.
However, it should be possible to do
this entirely on the GPU using DirectX
10-class hardware equipped with a
geometry shader (Blythe 2006).

25.8 References

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

20 of 21 03/03/14 10:38



Blinn, Jim. 2003. Jim Blinn's Corner:
Notation, Notation, Notation. Morgan
Kaufmann.

Blythe, David. 2006. "The Direct3D 10
System." In ACM Transactions on
Graphics (Proceedings of SIGGRAPH
2006) 25(3), pp. 724–734.

Kokojima, Yoshiyuki, Kaoru Sugita,
Takahiro Saito, and Takashi Takemoto.
2006. "Resolution Independent
Rendering of Deformable Vector
Objects using Graphics Hardware." In
ACM SIGGRAPH 2006 Sketches.

Loop, Charles, and Jim Blinn. 2005.
"Resolution Independent Curve
Rendering using Programmable
Graphics Hardware." In ACM
Transactions on Graphics (Proceedings
of SIGGRAPH 2005) 24(3), pp.
1000–1008.

Salmon, George. 1852. A Treatise on
the Higher Order Plane Curves. Hodges
& Smith.

GPU Gems 3 - Chapter 25. Rendering Vector Art o... http://http.developer.nvidia.com/GPUGems3/gpu...

21 of 21 03/03/14 10:38


