
Vector Texture Maps on the GPU

Nicolas Ray Thibaut Neiger Bruno Lévy Xavier Cavin

Figure 1: Vector Texture Maps applied onto an object. The ACM logo is represented by four gradient shaders, combined by VTMs. By
indexing characters in a font represented by a compressed VTM (that uses 128 KB), the anti-aliased text on the paper roll only uses 8 bytes
per character (two RGBA texels). Performances are 54 FPS (3DLabs Wildcat Realizm 200).

Abstract

This paper presents VTMs (Vector Texture Maps), a novel repre-
sentation of vector images that can be used as a texture by the GPU
for real-time rendering. A VTM decomposes texture space into dif-
ferent regions, represented in an analytic way, by a set of implicit
degree 3 polynomials. Each region can be rendered by a different
fragment shading function. Accurate anti-aliasing is performed in
real-time, based on an estimate of fragment coverage. As a con-
sequence, infinite zooming can be applied without any pixel dis-
cretization artifact. Based on a hierarchical data structure, our rep-
resentation has low memory requirements. Its versatility is demon-
strated in various settings, including a font engine completely im-
plemented in the GPU.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: texture mapping, vector image, fragment shader,
graphics hardware

1 Introduction

In computer graphics, bitmap-based texture mapping is ubiqui-
tously used to represent the variations of colors attached to an ob-
ject. In the context of real-time computer graphics, this can be ex-
plained by the fact that this representation has been directly sup-
ported by consumer GPUs since the mid-90’s. Note that not only
efficient display of textured polygons were implemented, but also
techniques to deal with aliasing and filtering issues. For instance,
solutions were early developed by hardware vendors to implement
both magnification techniques (bi-linear interpolation) and minifi-
cation techniques (tri-linear interpolation with pre-filtered texture
pyramids [Williams 1983]).

However, while this solution is highly efficient for a wide class of
objects and materials, the bitmap representation is not best suited to
some image types with sharp discontinuities, such as images con-
taining text or logos. In the industrial design domain, this type of
images is frequently used and display quality is especially impor-
tant. This is also the case in driving simulators that require an ac-
curate display of road signs. Therefore, using classic bitmap-based
texture mapping poses problems for a wide class of applications.

In practice, to deal with this issue, designers construct a vec-
tor representation of the discontinuities by changing the mesh of
the surface. They introduce additional vertices that can be used
to represent different materials attached
to both sides of the discontinuities.
Closely related isdiscontinuity mesh-
ing [Heckbert 1992; Lischinski et al.
1992] that is used in global illumination
as an explicit representation of discon-
tinuities. A major drawback of this ap-
proach is that it artificially increases the
vertex workload. This is due to the large number of additional ver-
tices required to accurately capture a discontinuity. This is espe-
cially true for curved features, since only piecewise linear disconti-
nuities can be represented using this strategy. Moreover, texturing
parametric surfaces (Splines, Nurbs, . . .) requires a prior conver-
sion into a mesh model.

We propose a solution to this problem by introducing a newvector
representation of the textures together with an efficient rendering
algorithm, well suited to GPU implementations. In our represen-
tation, the discontinuities are encoded in ananalytic form, repre-
sented by a set of coefficients. As a result of using our approach,
it is possible to zoom on the details without seeing any sampling
artifacts. To fill-in the different regions of our vector texture maps,
one can use not only constant colors, but also any material, com-
puted by a fragment shader. Since our method is fully implemented
in a fragment shader, the rendering is only output-sensitive (per-
formance depends on the number of rasterized fragments) and no
longer input-sensitive (performance is almost independent of the
complexity of the encoded vector graphics).

Previous work

2D vector graphics, such as Postscript, PDF, Macromedia Flash or
SVG are more and more popular, since they offer both a compact
representation and high rendering quality compared to bitmap file
formats. Recently, the OpenVG API has been announced as a low-
level hardware acceleration interface for vector graphics libraries,
including Flash or SVG. Since hardware-accelerated texturing is
becoming an integral part of graphical user interfaces (e.g., Quartz
Extreme in MacOS X and Windows Longhorn), adapting vector
graphics to the GPU is an important research area.

New techniques were recently developed to implement vector

Figure 2: In the spirit of “shader algebra”, our method combines
two fragment shaders by a vector mask and outputs a new shader.

graphics at the fragment level. To our knowledge, the first represen-
tation of discontinuities encoded in textures was proposed in [Sen
et al. 2003], in the context of real-time shadow rendering. Tum-
blin et al. [2004] introducebixels, that encode both colors and dis-
continuities. They use a dual-contouring technique to represent
piecewise linear discontinuities inside a classical texture. Sen et
al. [2004] propose a hardware implementation of a similar data
structure. However, both representations are limited to piecewise
linear discontinuities.

A more general representation was proposed in [Ramanarayanan
et al. 2004], that supports discontinuities represented by cubic
splines. However, they do not propose any filtering method. More-
over, they use a parametric representation of the discontinuities.
This means that classifying a fragment requires to solve several cu-
bic equations. We show further a solution based on an implicit
representation of the discontinuities, best suited to a GPU imple-
mentation of the fragment classification function.

Note that none of the approaches mentioned above take into ac-
count all the constraints related with a possible implementation on
the GPU of a full-featured vector graphics engine, i.e, cubic dis-
continuities, efficient rendering and accurate filtering. As far as
filtering is concerned, only [Sen 2004] proposes a solution. How-
ever, no solution is proposed foranti-aliasing the discontinuities,
and the approach is limited to linear features.

In the context of shape modeling, Frisken et al. [2000] propose to
represent a shape by a level set of a signed distance field. To com-
press the representation, they use a hierarchical structure (quad-
tree). This is similar to our VTM representation, with the differ-
ence that we take into account the additional constraints dictated
by real-time texturing in the GPU. Those constraints concern both
the efficiency, the compactness of the representation and filtering
issues.

Features

This paper presents a new method to implement vector graphics on
the GPU. Our approach offers the following features:

� Discontinuities are completely represented at the fragment level.
As a consequence, our vector texture maps can be transparently
used, as if they were standard bitmap textures, addressed by reg-
ular (s, t) texture coordinates.

� Curved discontinuities (cubic Splines) and sharp turns can be
represented.

� In the spirit ofShader Algebra[McCool et al. 2004], our tech-
nique is used as follows. Given two materials, represented by
fragment shaders, and given a representation of the discontinu-
ities between these two materials, our method automatically gen-
erates a composite shader, that selects the right shader for each
fragment (see Figure 2).

Figure 3: General structure of our algorithm. Depending on the
derivatives of(s, t), two different filtering strategies are used. If the
object is far away from the camera (minification), the outputs of
the shaders are blended using a pre-filtered classification function,
stored in a mipmap. Otherwise (magnification), the relative impor-
tance of the shaders is estimated by a VTM, optionally represented
in a compressed hierarchical form. A smooth interpolation between
theses two strategies avoids artefacts at their transition.

Figure 4:To separate two regions (green and yellow) in a map (left),
we define a regular grid. In each cell of this grid, we represent an
implicit function (middle) which sign determines the region (right).

� Filtering (both anti-aliased magnification and minification) is ef-
ficiently achieved, by computing a blending coefficient for the
two shaders used at each side of a discontinuity.

� Discontinuity maps with large zones free of discontinuities can
be efficiently compressed using a hierarchical data structure.

� The versatility of our solution is demonstrated by implementing
a complete font engine in the GPU. Using this font engine, only
8 bytes per character (two RGBA texels) are needed to encode a
page of text, rendered in real-time by the GPU with anti-aliased
vector fonts (when using a fixed-width font, this reduces to 1 byte
per character).

2 Overview of the method

We consider the problem of representing a vector image in texture
space, decomposed into different regionsR1,R2, . . .Rn. Note that
each region may have holes, and may be composed of an arbitrary
number of connected components. Our goal is to implement a frag-
ment shader that will trigger a different function in each region. We
consider for the moment two regionsR1 andR2. Section 3.2 will
show how to handle an arbitrary number of regions.

Previous work in hardware accelerated rendering of discontinuities
[Sen 2004; Tumblin and Choudhury 2004] enhance bitmap textures
by embedding discontinuities in them. Our strategy is different, and
aims at defining a general representation of discontinuities, inde-
pendently from any bitmap image. We demonstrate how this strat-
egy offers a higher flexibility, both in terms of use and in terms of
implementation. Before describing the details of our representa-
tion, we now proceed to give a general outline of the method and
explain the specificities of a GPU implementation.

In a CPU implementation, vector graphics rendering algorithms
first rasterize the boundary of the regions. The interior of the re-

gions is then filled. In this setting that supposes a random access to
the frame buffer, the parametric representation is best suited.

In a GPU implementation, the problem setting is different. The
fragments are issued one by one, independently one from each
other to the fragment processor. As a consequence, a parametric
representation of the boundaries is not optimum. We need instead
to implement afragment classification function f. Given texture
coordinates(s, t), this function returnsf (s, t) = 0 if (s, t) ∈ R1 or
f (s, t) = 1 if (s, t) ∈R2. As shown below, a set ofimplicit functions
can efficiently represent this classification function. In addition,
to implement anti-aliasing, the classification function can be easily
extended to real values.

From a practical point of view, as shown in Figure 2, from a repre-
sentation of the discontinuities bounding the two regions and from
two fragment shaders, we generate a new fragment shader. The
general structure of the generated fragment shader is depicted in
Figure 3 and outlined below:

1. Compute the blending coefficientb by applying the classifi-
cation function to the texture coordinates:b← f (s, t)

2. Call the two initial shaders to compute the colorsc1 andc2.
Note that ifb = 0 (resp. b = 1), only the second (resp. the
first) shader needs to be called.

3. Blend the two colors relative to the proportions determined at
step 1:fragment color← b c1 +(1−b) c2.

The first step that computes the classification functionf is the most
complex one. Depending on the applications, different strategies
may be used. The simplest version determines to which region the
(s, t) coordinates belong and returnsb = 0 or b = 1 according to
the result. The classification function is represented by a set of
implicit functions, encoded by a set of coefficients, represented in
a texture, called thediscontinuity map(see Section 3). Since the
discontinuities may be irregularly distributed over the texture, we
propose to compress the discontinuity map, by using a hierarchical
structure (see Section 5).

To support anti-aliasing and filtering, we propose more elaborate
strategies. Our approach replaces thediscreteclassification func-
tion with acontinuousclassification functionf . Depending on the
configuration, we will use a magnification filter (used to zoom-
in), as shown in Section 4.1. To support minification (used to
zoom-out), a pre-filtered classification function is used, stored in
a mipmap (see Section 4.2). The transition between theses two
strategies is performed like the transition between two levels of a
mipmap : both strategies are estimated then their results are inter-
polated according to the derivatives of the projection function.

The remainder of this paper is organized as follows. The data struc-
ture used to store the discontinuities is presented in Section 3. We
then proceed to present solutions to the filtering problem (minifica-
tion and magnification) in Section 4. In Section 5, we show how
to compress the discontinuity map in uniform regions, by using a
hierarchical data structure stored in the GPU. Results and applica-
tions are presented in Section 6, including a complete font engine
implemented in the GPU.

3 Representing the discontinuities

In this section we present thediscontinuity map, the data structure
that defines the classification functionf . If this map was stored in
a classical bitmap texture, the frontiers between the regions could
not be arbitrary curves. In our approach, the discontinuity map is

A

B

Aα

αB

AB

AB

s’

t’

p = (s,t)
s’ = Ap.AB / ||AB||
t’ = Ap.AB / ||AB||

2
2

p

Figure 5:Local basis(A, ~AB, ~AB⊥) used to encode the classification
function in a cell of the discontinuity map.

represented by a set of implicit functionsf : R2→ R. Given tex-
ture coordinates(s, t), the sign off (s, t) determines to which region
(s, t) belongs (see Figure 4). In our specific case, the functionf is
piecewise defined on the cells of a grid as a set of cubic functions.
The coefficients of these cubic functions can be stored in a texture
of the size of the grid. We first show how to represent a single dis-
continuity in each cell of the grid. We will then proceed to combine
multiple discontinuities.

3.1 Single discontinuity

In each cell of the discontinuity map, the classification function
is represented by an implicit function, determined by the pointA
where the discontinuity enters the cell, the pointB where it leaves
the cell, and the tangents to the discontinuity inA andB (see Figure
5). Our goal is now to define an implicit functionf : R2→ R such
that the iso-0 off passes throughA andB with the specified tan-
gents. To interpolate this data by a polynomial implicit function, at
least degree 3 is required. In the general case, such a cubic function
requires 10 coefficients to be stored. To reduce both storage and
processing time, we restrict ourselves to a smaller class of implicit
cubic functions. In configurations for which this restriction cannot
be applied, we simply subdivide the cell recursively. The resulting
hierarchical structure is stored as explained in Section 5.

Let (s′, t ′) denote the coordinates in the basis(A, ~AB, ~AB
⊥
). In this

basis, we represent the cubic discontinuity by a univariate Hermite
function:

t ′ = cA s′2(1−s′)+cB s′(1−s′)2

wherecA = tan(αA) and cB = − tan(αB). By implicit-izing this
formulation, we obtain:

f (s, t) = t ′−
(

cA s′2(1−s′)+cB s′(1−s′)2
)

wheres′(s, t) andt ′(s, t) are computed as shown in Figure 5. To rep-
resent the functionf , each cell stores the coordinatesAs,At ,Bs,Bt
of the entry and exit pointsA andB and the coefficientscA,cB that
determine the angle of the tangent toA andB. In practice, these co-
efficients are stored in two textures. One 4-channels texture stores
As,At ,Bs,Bt . Another 2-channels texture stores a discretized rep-
resentation ofcA andcB. In our implementation, those coefficients
are restricted to the interval[−5,5]. This allows representing an-
gles between -78 and 78 degrees with a precision of 1.1 degrees.
The tangent deviation resulting from this discretization cannot be
distinguished visually.

3.2 Compositing discontinuities

The function f defined in the previous section can efficiently en-
code the boundary of large regions with curved borders. Unfortu-

Figure 6:The region boundaries in the two highlighted cells have
thin features (left) and sharp turns (right). Representing them re-
quires to combine two discontinuities.

nately, this is not sufficient to handle two common configurations,
sharp turns and thin features, shown in Figure 6.

To represent both configurations, we combine two implicit func-
tions in a CSG manner (see Figure 8). The two discontinuities to be
combined are represented in implicit form by the functionsf1(s, t)
and f2(s, t). The composite discontinuityf is then defined by:

f (s, t) = Max(ε1 f1(s, t),ε2 f2(s, t))

where the parametersε1∈{−1,1} andε2∈{−1,1} define the CSG
combination applied to the two discontinuitiesf1 and f2. In other
words, they specify which side of the discontinuity corresponds to
the interior of regionR1.

As in the previous section, the parameters that define the functions
f1 and f2 can be stored in textures. In this case, a new texture
is used to storeε1 andε2. However, to avoid consuming too many
texture units, it is also possible to store all the parameters in a single
2n× 2n texture, wheren denotes the dimension of the grid. The
parametersA,B,cA,cB for the functionsf1, f2 and the coefficients
ε1, ε2 are retrieved by applying different offsets to thes, t texture
coordinates.

To deal with more complex discontinuities, two different strategies
may be used. It is possible to use a finer grid, compressed by a hier-
archical data structure, as explained in Section 5. It is also possible
to use our VTM method recursively, i.e. use a VTM to combine
two VTMs. An example of this latter configuration is shown in
Figure 7.

Using this definition of the classification function, it is possible to
implement vector texture mapping. The region to which a given
fragment(s, t) belongs is determined by testing the sign off (s, t).
However, it is well known that high-quality texture mapping re-
quires to implement filtering strategies. This issue is addressed in
the next section.

Figure 7: By hierarchically applying our technique, it is possible
to combine an arbitrary number of discontinuities. In the example
shown here, a VTM combines two VTMs, each of them combining
two gradient shaders. This example runs at 62 frames per second
on a 1024x1024 framebuffer with a 3DLabs Wildcat Realizm 200.

Figure 8:Thin features (top) and sharp turns (bottom) represented
by combining two implicit functions.

4 Filtering and anti-aliasing

Using the sign of the functionf results in the same rendering qual-
ity as the magnification filter described in [Sen 2004] (pixel pre-
cision). Our goal is to further increase the rendering quality. We
introduce in this section an anti-aliased (sub-pixel precision) mag-
nification filter and a minification filter.

In the case of bitmap-based texture mapping, sampling artifacts are
generated by the interaction between the discretization of the tex-
ture (texels) and the discretization of the screen (pixels). In our
case, since our definition of the discontinuities is analytic, the set-
ting is simpler, and we only need to consider how the pixel grid
samples the classification functionf . Instead of simply using the
sign of the functionf , we estimate the region coverage ratio as fol-
lows.

Let Q denote the projection of the current pixel in texture space.
The region coverage ratiob is defined byb = A (Q∩R1)/A (Q),
whereA denotes area. Note that estimating the coverage ratio re-
quires different strategies depending on whether the projected pixel
Q covers one or several cells of the discontinuity map. IfQ is
smaller than one cell, then we are in amagnificationconfigura-
tion. In bitmap-based texture mapping, this corresponds to the case
where several pixels are mapped to the same texel. In the other
case, we are in aminificationconfiguration. In bitmap language,
this corresponds to the case where several texels are mapped to the
same pixel. The following two subsections describe our filtering
strategies for both cases.

4.1 Anti-aliased magnification

To efficiently handle magnification, we no longer only use the sign
of the implicit function. Our strategy is based on the simple remark
that near a discontinuity, the implicit function can be directly used
to evaluate the region coverage ratio.

Figure 9: Left : the coverage ratio of the pixel (black square) is
approximated on the blue square. The vectors d and dir are used
to compute the distance h between the center of the pixel and the
discontinuity. Right : d′ and dir′ pre-images of d and dir in the
definition domain of f .

Figure 10:VTM without (left) and with (right) anti-aliasing.

The estimation of the coverage ratio is based on a linear approxi-
mation of the discontinuity : it is defined as 0.5 minus the distance
h between the center of the pixelP and the lineD approximating
the discontinuity.

In the definition domain(s′, t ′) of the classification functionf , the
image ofD (D′) can be defined as the iso-0 of an order 1 Taylor

expansion off . The lineD′ can be defined by the vector
−→
d′ =

f (s′, t ′)∇̇ f (s′, t ′) witch is orthogonal toD′ and linksP′(s′, t ′) (the

image ofP) andD′ with the following relation : the pointP′+
−→
d′ is

in D′.

The direction ofD′ is then
−→
dir ′ = RΠ/2∇ f (s′, t ′) where

RΠ/2 =

(
0 1

−1 0

)

is the 2D rotation matrix ofΠ/2.

The distanceh (in screen coordinates) is computed using
−→
d and

the direction ofD (
−→
dir) that can be deduced from

−→
d′ and

−→
dir ′. Since

both are vectors, the jacobien matrix of the function going from
(s′, t ′) to the screen is sufficient to deduce them. This jacobien ma-
trix is given by the invert of the matrix :

J =

 ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

 .

(
x−→

AB
y−→

AB

x−−→
AB⊥

y−−→
AB⊥

)

The direction ofD and
−→
d are then given by

−→
d = J−1−→d′ and

−→
dir =

J−1−→dir ′.

The minimum distance betweenP andD is then :h = RΠ/2.
−→
dir

‖
−→
dir‖

We now have an implementation of vector texture mapping that
supports magnification. We now proceed to implement a minifi-
cation filter.

Figure 11:VTM without (left) and with (right) minification filter.

Figure 12: A: a hierarchy of4× 4 grids. B: the corresponding
tree. C: the 16-tree texture stores the hierarchy and the VTM texture
stores the discontinuities

4.2 Minification

We now consider the configuration where a large texture area is
mapped onto the same pixel. Simply using the color computed with
respect of the center of the pixel results in visible sampling artifacts
and “moiŕe” effects (see Figure 11). For this reason, to correct these
effects, it is necessary to compute the average color in the texture
zone that corresponds to the pixel under consideration. In our case,
multiple cells of the discontinuity map may be projected to the same
pixel. For this reason, using our analytic representation of the dis-
continuities would be inefficient.

Our strategy is to operate as in classic bitmap-based texture map-
ping, by using a pre-filtered texture pyramid (or mipmap). The dif-
ference with classic mipmapping and with [Sen 2004] is that this
pre-filtered mipmap represents the classification functionf rather
than texture colors. Since only low-resolution levels need to be
represented, and since the classification function can be stored as
a graylevel texture, this representation has a low memory over-
head. The pre-filtered classification function can be computed by
the GLUbuildMipMaps function. In a dynamic setting where
the VTM changes, it is also possible to render the classification
function in a PBuffer, and generate the mipmap levels using the
SGIS_generate_mipmap extension.

The toplevel shader, outlined in Figure 3, determines which filtering
strategy (magnification/minification) should be used, based on the
derivatives of the functionP that maps the pixels of the screen to
texture space. If those derivatives are smaller than 1, we use the
magnification filter (Section 4.1) and the continuous classification
function f is evaluated analytically from the discontinuity map. If
they are smaller than 1, the continuous classification functionf is
looked-up from the pre-filtered texture pyramid.

5 Compressing the discontinuity map

In most cases, vector images are composed of large regions sepa-
rated by complex borders. The VTM needs to be fine enough to
capture the details of the borders, leading to an oversampling of the
homogeneous regions. To reduce memory requirements, we use a
hierarchical data structure, as done in [Binotto et al. 2003] (with the
difference that we compress 2D textures instead of 3D textures). A
similar method is also described in [Kraus and Ertl 2002]. We give
a short outline of the method. The reader is referred to the orig-
inal paper for more details. From an intuitive point of view, this
means implementing a texture withvarying resolution(see Figure
12). The stored texture is decomposed into different zones of vari-
ous resolutions (A), stored and packed in texture-space (C). To op-
timize look-ups, they are organized in a tree (B) stored in a texture
(C). The internal nodes of these tree are 4×4 indirection textures.
In our experiments, using a tree of depth 2 results in a compression
factor of 8.

6 Results and applications

We have implemented our VTM approach in the OpenGL Shad-
ing Language [Rost 2004]. All the reported experiments have been
conducted on a 3DLabs Wildcat Realizm 200 graphics accelerator.
Table 1 shows the number of instructions and texture lookups used
by each step of the algorithm. The optional VTM compression con-
sumes 22 additional instructions and 3 additional texture lookups.
In the font engine presented below, the compressed VTM font uses
128 KB (versus 1 MB for the uncompressed data). Note that with
conditional branchings supported by modern GPUs, not all the steps
are executed. In our implementation, an early test quickly classifies
the pixels falling in cells without discontinuity. Therefore, for most
fragments, only 8 instructions are executed. Table 2 shows the per-
formances under various configurations. In a setting similar to [Sen
2004] (i.e., linear discontinuities), this reduces to 45 instructions
and 4 texture lookups only.

VTM a.a. mipmap total tree
lookup magnif. minif. decomp.

TEX 4 0 1 5 3
] instr. 73 6 7 86 22

Table 1:Number of instructions and texture lookups used by each
step of the algorithm.

no filtering filtered no filtering filtered
no comp. no comp. comp. comp.

FPS 61 52 57 49

Table 2: Frames per second obtained with and without filtering,
with and without tree compression. The compression data struc-
ture is a 16-tree of depth 2. The tests are done on a 1024x1024
framebuffer, mapped with the repetitive pattern shown in Figure 14.

A font engine in the GPU

The most familiar use of vector graphics is font rendering. For this
reason, we show how vector font rendering can be implemented in
the GPU, using our VTM representation. To be able to handle large
texts, a shared VTM (referred to as thefont texture) defines the
vector masks for an array containing all the characters of the font.
This makes it possible to dramatically compress the text texture, by
replacing it with an indirection texture that refers to the font texture.

The indirection texture is a regular grid that decomposes the text
into rectangles. The height of those rectangles corresponds to the
font height. In the case of a fixed-width font, the indirection tex-
ture reduces to an array of character indices. The case of fonts with
variable width is more complicated. The width of the rectangles is
chosen in such a way that no rectangle can cover more than two
characters (see Figure 13). In each rectangle, the positions of the
two characters are stored, together with the location of a vertical
line that separates both characters. The indirection texture is de-
composed into two textures: the first one stores the positions of
each character in the font texture, and the second one stores the po-
sitions of the vertical line, the local position of the first character
and the local position of the second character. Using this represen-
tation, font rendering is achieved in two texture lookups and four
assembly instructions, plus a VTM lookup in the font texture.

Conclusions and future work

We have introduced Vector Texture Maps, a full-featured imple-
mentation of vector graphics in the GPU, that can be used as if it

Figure 13:Each rectangle of the indirection texture is splitted into
two regions, referring to a different character in the font VTM.

was a regular texture. Since filtering and anti-aliasing are fully sup-
ported, VTMs can also be used as a new geometric representation.
The primitive can be displayed by just making the exterior shader
discard the current fragment (see Figure 14). If our anti-aliased
magnification filter is used, it is also possible to make the exterior
shader return a color with zero alpha. In this configuration, this
provides a new anti-aliased OpenGL primitive compatible with the
regular anti-aliased lines and polygons.

The main challenge in the future will be to design automatic tools
for VTM authoring. In our experiments, VTMs are generated by a
vectorization of bitmap images or directly by extracting the para-
metric representation of vector fonts, using thefreetype library.
We have developed a simple authoring tool (Figure 14) to manipu-
late them. Given a vector image in a standard format, a challenging
problem will be to automatically determine the best combination
of hierarchical structure (Section 5) and recursive VTMs (Figure 7)
that represents the input vector image.

References
BINOTTO, A. P. D., COMBA , J.,AND FREITAS, C. M. D. S. 2003. Real-time volume

rendering of time-varying data using a fragment-shader compression approach. In
IEEE Symp. on Parallel and Large-Data Vis. and Graphics, IEEE, 69–76.

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES, T. R. 2000. Adap-
tively sampled distance fields. InSIGGRAPH, ACM.

HECKBERT, P. 1992. Discontinuity meshing for radiosity. InThird Eurographics
Workshop on Rendering, 203–226.

KRAUS, M., AND ERTL, T. 2002. Adaptive texture maps. InConference on Graphics
Hardware conf. proc., Eurographics.

L ISCHINSKI, D., TAMPIERI, F., AND GREENBERG, D. P. 1992. Discontinuity mesh-
ing for accurate radiosity.IEEE Comput. Graph. Appl. 12, 6, 25–39.

MCCOOL, M., TOIT, S. D., CHAN , T. P. B.,AND MOULE, K. 2004. Shader algebra.
ACM TOG (SIGGRAPH).

RAMANARAYANAN , G., BALA , K., AND WALTER, B. 2004. Feature-based textures.
In Eurographics Symposium on Rendering, H. W. Jensen and A. Keller, Eds.

ROST, R. J. 2004.OpenGL Shading Language. Addison Wesley Professional.
SEN, P., CAMMARANO , M., AND HANRAHAN , P. 2003. Shadow silhouette maps.

ACM TOG (SIGGRAPH).
SEN, P. 2004. Silhouette maps for improved texture magnification. InGraphics

Hardware conf. proc., Eurographics.
TUMBLIN , J., AND CHOUDHURY, P. 2004. Bixels: Picture samples with sharp em-

bedded boundaries. InSymp. on Rendering, Eurographics.
WILLIAMS , L. 1983. Pyramidal parametrics. InSIGGRAPH, ACM.

Figure 14:Our VTM authoring tool.

