OpenVG Specification

Version 1.1
Version 1.0 — August 1, 2005

Version 1.0.1 — January 26, 2007
Version 1.1 — December 3, 2008

Editors: Daniel Rice, Google, Inc.
Robert]. Simpson, AMD

Vei A3 Fie| Pie P _lo s] L R gl V4
I | | |t | r L I | = L> |t g & 1Y
E 3 ‘!s E | | | | | | -dl- =I IY é - \r
J e 1
. s
P =
- Y b
)3 g i e
L 3 I r i
>
J
Por___1 oo Por___|

For Ilise — DSR

Copyright © 2005-2008 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material
proprietary to the Khronos Group, Inc. It or any components may not be
reproduced, republished, distributed, transmitted, displayed, broadcast or
otherwise exploited in any manner without the express prior written permission
of Khronos Group. You may use this specification for implementing the
functionality therein, without altering or removing any trademark, copyright or
other notice from the specification, but the receipt or possession of this
specification does not convey any rights to reproduce, disclose, or distribute its
contents, or to manufacture, use, or sell anything that it may describe, in whole
or in part.

Khronos Group grants express permission to any current Promoter, Contributor
or Adopter member of Khronos to copy and redistribute UNMODIFIED versions
of this specification in any fashion, provided that NO CHARGE is made for the
specification and the latest available update of the specification for any version of
the API is used whenever possible. Such distributed specification may be re-
formatted AS LONG AS the contents of the specification are not changed in any
way. The specification may be incorporated into a product that is sold as long as
such product includes significant independent work developed by the seller. A
link to the current version of this specification on the Khronos Group web-site
should be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or
warranties, express or implied, regarding this specification, including, without
limitation, any implied warranties of merchantability or fitness for a particular
purpose or non-infringement of any intellectual property.

Khronos Group makes no, and expressly disclaims any, warranties, express or
implied regarding the correctness, accuracy, completeness, timeliness, and
reliability of the specification. Under no circumstances will the Khronos Group,
or any of its Promoters, Contributors or Members or their respective partners,
officers, directors, employees, agents or representatives be liable for any
damages, whether direct, indirect, special or consequential damages for lost
revenues, lost profits, or otherwise, arising from or in connection with these
materials.

Khronos and OpenVG are trademarks of The Khronos Group Inc. OpenGL is a
registered trademark, and OpenGL ES is a trademark, of Silicon Graphics, Inc.

Table of Contents

o] [l (o Yo [N o3 i o) o PO PSSO PR 10
Il TSY= (=0 1< 10
1.2Target APPIICAtIONS.ooii ittt 10

SVG and Adobe FIaSh VIEWETS........coeievieeueieeieeteeeee ettt e eeveeeaeeeteeeveenaeeee e e aneeas 10
Portable Mapping APDLCATIONS.cuveevvieereieeeeeeecceeeeteeete et e eee et s eeeeereeeeeeeseeeseeesseserasennreneees 10
E-DOOK REAETS.cceveeneiiieiieeieeteeeteeeee ettt ettt ettt e et e et s sateeae e satesaesenasesasesnsesseesnseenneas 11
(GAIMNIES. ..t eeeeetee ettt et et e et e e te e et e eeteeeaveeetseeaseeteeesseeseesabeesseetssebsaesssenbeeeasseteesabeenntreeeeenraeeas 11
Scalable UsSer INTEIACES.c...ooveieuieeieeereeeteeeeeeetee et et e eeteeeteeereeeteeeaeeeteeesseeaneeeeeeareeeeennaneens 11
Low-Level Graphics Device TNtEIface.......ccivvuiiiviieeeieiiieieeeeeetec ettt eaeessee s eennes 11
1.3TArQEE DEVICES. ...ceiiiiiiiiee ettt e et e e e e e e e e e e e e e e e e e e et a b e r e e e e e e eeaeaaaaaaaaaaaeas 11
1.4Design PhilOSOPRY......ccoiiiiii et e e e e e e e e e e e e e e e e 11
1.5Naming and Typographical CoONVENLIONS..........ooiiiiiiiiiiiiiiii e 12
T I o = VA A = 0 T T SRS 12

2The OPENVG PIPEIINE.oeeeeeeteeee ettt ettt e e e e e e e e e e e e e e e s et aeeaeeeeeaeeeeessssanan 13
2.1Stage 1: Path, Transformation, Stroke, and Paint..............cccoeeeeiiiiiiiiiiiiiii e 14
2.2Stage 2: Stroked Path Generation........ ..o 14
ARCIS] =To (YRS T I = 015 011 1 7= 11 0V 14
2.4Stage 4: RAStENHZALION. . ..ceiiiiiiiiiiieee e 14
2.5S8tage 5: Clipping @and MaskKiNg........c.coiiuuriiiiee i e e e e s ennrae e e e e e e e e 15
2.6Stage 6: Paint Generation..............ooo i 15
2.7Stage 7: Image INterpolation............eeeereiiiiieeeee e 15
2.8Stage 8: Color Transformation, Blending. and Antialiasing..............c.cevvvieeeieeeeeiieiieeiiiiies 16
P Y [0 11571 001 o) 110 e USSP 16

3Constants, Functions and Data TYPeS......ccooeiiiiiiiiiiee e 16
R TRt /=Y 7 a1 T P 17

OPENVG VERSION T Toiiioieieieieieeeieeeestesressessessessessessessessessessessssassessassessessessesssesssesssssns 17
3.2Primitive Data TYPES. . .ceeiieieeii ettt e e e e e e e et eeeaeeaaeas 17
VIGDVLE ... 17
VGUDYL. ... 17
VGO . tveetieteeete ettt ettt e te e e e e teeetae e beesebeebeesebaesaessseebeeesseeabaeeabaensbaeeeanraaeeeannes 17
VG 1ttt ettt ettt etteteeteeteeteeteebe et e e teste st et enbessessessessessesserserserseteebeebeeteabesbensanes 18

VI GUINE ettt et e ee e et te e eeaae e eetaeeeeaseeeesaeeeeaneeeesseeeeseeeeenntnnnnraaaaaaens 18
VGDIIEIA. ... eueeereeieieieieiseeese ettt et et e st et et e e e s sesse st essessessessessessensessensassessesseseesenseenns 18

V GDOOLEAN.eveveeeeeeteeeeetece ettt ettt et et et et et e e ete e s e eseesseebeenseessenseesseseersenseeeenseeeenseeennrens 18
VIGHIOAE 1t iteeeteeeteeeete ettt et e ettt e e e e eteeetaeeeteeeaae e beeease e beeeabeensseeassensseesse e baeentbaeeeennraaeeeennnes 18
3.3Floating-Point and Integer Representations................eeiiiiiiiiiiiiiiiceee e 18
VG MAXSHORT......coetesteieieieteieteestesessessessessessessessessessessessessessessesessessessessessessesssesssesssesnns 19

VG MAXINT ..o ctieteetietietestestestetetesteteae st esaeseesessassessessessassassessessassassassessessessasessessessessessessessennen 19

VG MAX FLOAT ..ottt et e et teste st e b e s et essessessessessessessesaesessessessessessensessensassennes 19

B T @ 0] [=R 19
3.4.1Linear and Non-Linear Color Representations................oooeeieiiiciiiiiiiiieieeiiee e 20

3.4.2Color Space DefinitionsS.uuuiiiiiiiiiiiiiieieeee e 21

3.4.3Premultiplied AIDNA....... e 23
3.4.4C0lor FOrmat CONVEISION..........ooiiiiiiiiieee e et e e e e e e e et eeenanns 23
3.5Enumerated Data TYPES......uuuuuiiiii it e e ee ettt e e e s e e e e e e e e e e et e e e e e e aeeanaaaa 24
3.6Handle-based Dat@ TYPES.uuuuuueueieieiiiiieieee ettt e e e e e e e e e e e e e e e e e e eeaa s 25
VI GHANALE.oiteeeteceeeteeeee ettt ettt ettt e e be e b e sbeessesssessesasensesssenseesasaeesseesarens 25

VG INVALID HANDLE.. ..o iteteieieietetetstesestestestestesaessesesessessessesassassesssesssesssessssesssesnes 26

ATHE Drawing CONtEXE.....ccoiieeeiiieeeeeetcee et et e e e e e e e e e e e ettt e e e e e e e e e e e e eeese b e e eeeaeeeeeannns 27
g o =N 29
VGEITOTCOE.c.ueeutieteeieeteeie ettt ettt et e et et e s teeteeseebeesaesseesseseessesesssenseessenseessenseensesseansens 29
VEGOEEITOT .. .cviiiiiiiiict s 30
4.2Manipulating the Context USING EGL...........ccooiiiiiiiiiiiiiiieie e 30
4.2 1EGLCONFIG AHIDULES.coi ittt e e e e et e e e e s e sneeeeeeeeeeeees 30
EGL OPENVG BIT ...ttt ettt et ettt sa e eas s eeasesseseetsesseseeteesesenseesnsennas 30

EGL ALPHA MASK SIZE.....coo i eteieieeeietesestestestestestesesessesaesssssssessessessessessessessensessensesseses 31
R = © I VT o (o) Y= TN 31
EZIBINA AP ...ttt et 31
EZLCTEALECONEEX L. uvieveeiieeieeiecteetecte et ete et et e te et e be et e e e e beese e beeseesseessesseessesseensesseessesseensenseensens 31
eZlCreateWINAOWSUIFACE.ooviiveiceiieeeeee ettt e et st eeeaeeeaee e s enraneees 31
eglCreatePbufferFromCHentBULfer.coiviiviieieieiceeeceeee ettt 32
EZIMAKECUITEONLcuveevieeeee ettt ettt et cteeeteeeteeeteeeaeesteeeaseeeteeseseeesseeassensseeaseenseesnseesesenaraneens 32
EZlGEtCUITENTCONEEX . ..vveeveeereeereeetee et ettt ete et e ereeeteeeareeeteeeseeenteeenseenseeenseenseeesseensseensraneees 32

[yl 1D 0 01 4 e 1< SRS 32
EZISWAPBULLETS. ... 32
4.3Forcing Drawing 0 COMPIETE.coiviiiiie ettt e et e e e e e e e e e e e e e e e 33
VEEIUSRL ... e 33
VEEFINISI. ... 33
T LT a e I d I = 1= 10 A=) (=) = TR 34
5.1CoNteEXt PArameter TYDES.c.icueiiiiiee ittt e e e ettt e e e e ettt e e e e e st e e e e s et e e e e e e snbaeeaaeaaeeeeens 34
VGParamTVYPe.cueueuiiriiieneiiietciittcic et b e 34
5.2Setting and Querying Context Parameter Values...............ccoeeieiiiiiiiiiiiiiiicicee e 36
VESEE et 36
VEGet AN VEGEEVECLOTSIZE.ueeeueeerieeeieeieeeee et eeee et ete et e eveeeteeeveeetreessenseeeseenseesaseenseennns 37
5.2.1Default Context Parameter ValUES............cooooveeeieiieeee e 38
5.3Setting and Querying Object Parameter ValUues...............uuueeeiiiiiiiiiiieicceee e 40
VESetParameter.........ocoiuiiiiiiiiiiiic s 40
vgGetParameter and vgGetParameterVectOrSize........c.uovvveeuveeeiiceeeeeieeieecceeeeieeeeeecireee e 41
6Rendering Quality and Antiali@Sing.eceeeeieiiiiieiaeeae e 44
LS I =Y o 1= o T T =1 45
VGREeNAEINGOUALILYcveevierieiecteeeeeceeeeteee ettt ete et ereeaeereeseereesseerseereeesareeeesneeenees 45
6.2Additional QUALItY SENGS.ccoveeiiieiee e e e e e e e e 46
VGPIXOILAYOUL......cvviiiiiiiiiiii bbb 46
6.3Coordinate Systems and Transformations..............cevevviiieiieeieei e 47
6.4C00rdiNAtE SYSIEMIS. .. .uviiiiiiiiiiiiiiieee e e e e e e e e e 47
B.5TraNSTOMMIALIONS.ccoeeeiieeeeee et e e e e e e e e e e et e e e e ee e e e rena s 48

i1

6.5.1THOmMOgeNeoUS COOIAINALES.ceieeiiiiiiiiee e ettt e e e ettt e e e e e e e e e e e e e e e enrreeaeeaee s 48

6.5.2Affine TransformMations............oouiiiiiiiii e 49
6.5.3Projective (Perspective) Transformations..............cccceeeiieiiiiiiiiiiiiiiiiii e 49
6.6MatriX ManipUIGtioN............coiiiiiiiiiee e e e e e e e e e e e eaa e 50
VGMALTIXIMOQE.ccveieiietieetee et ettt eete et e e et e e aeeeteeeveeesseeaseensseesssenseeeaseeeseeseseesennssseesennnes 51
VZLOAAIAEN Y. ...cvcviviiiiiiiiii e 51
VZLOAAMAETIX. .. .ceuimiiiiiiiiiccc e 51
VEGOEMALTIX. . .vviiiiiiiiiicc s 52
... 52
VEMUIMAETIX. ..o 53
VETTANSIALE. ... 53
VESCALE.....iiiiiii s 54
VESIEAT. ...t bbb 54
VEROLAE. ...ttt s 54
7Scissoring, Masking, @and ClEAING.coeieiiiiiiiiieece e e e e e e e e e e e e et eeeees 55
4 1S Yol 1T 1 o 1T 55
VG MAX SCISSOR RECTS......cocietietiieieieeeteeestevteeeeveereeteeseesessessessessessessessessessesssssseesesnns 55
Specifying Scissoring RECLANZIES........c.cceeveerieriierieiieieeteeeeere e et e ete e eveeseseesesseenesareeens 55
48721, = Y= <12 T 1P 56
VGMaSKOPETAION. ... uveeveeireeieeetieeeteeeteeireeeteeeteeseaeesseesseesssessseesseesssaesssesseesssessssesssesseesseesnnen 57
VEIMASK. ...t 58
VIRENAEITOMEASK.cccviieeeietiicieceteeeee et e etee et eteeeteeeaeeeseeeseeeeseeesssessesesseensesesssensseesssensseeesennnes 60
VGMaASKLAYETcviiiiiiiiiirie et 61
VECTEAtEIMASKILLAVETccueeveeeeeteeieeeteceeete ettt ettt eete et e te et eeteeasesteesebeeaseeseenseeenseeesnseeensseesreas 61
VEDEStIOVIMASKILAVET....c.vecieeeeiieiieeteeteeieeteeteeteesteeseessesseesseessesseessesseessessesssesssessassaessasessessnsnes 62
VEEIIIMASKILAVETcctieeiiiieieeieceeteeteete ettt ettt st ettt ebeeea e beess e baess e beessesseensaeesssaeesseesasens 62
VZCOPYMASK. ...t 63
AT o= 1S O 1= T o PRSP RPPPPPTR PR 64
VGCIEAT. ... bbb 64
BPaALNS. ... e e e e e e e e e e e e — et aaaaaeataaaaataaaeaan 64
BLAIMOVES. ...t e e e ettt aeeeeeaeeeeeae—————————aaaaaaeereraaa——————_- 65
8.2Straight Line SEAMENES......coiiiiiiiiieieee e e e 65
B.BBEZIEI CUIVES.ottt e e et e e e et e e e e e et e e e e eaa e seeeaaaaesaeeaaneenannns 65
8.3.1QUAdratiC BEZIEI CUIVES.........coeeeeeeeeeeeeeeee et e 65
8.3.2CUDIC BEZIEI CUIVES.uuiieii it e e e e e e et e e e e e e e e e e e eaebaaans 66
8.3.3G1 SMOOth SEAMENTS......uvuiiieeiie et e et e e eeaaans 66
8.3.4C1 SMOOth SEGMENTS.......uiiiiieiiiiiiiie e e e e s e e e e e e e e e e e e aaaaaaeas 67
8.3.5C2 SMOOth SEGMENLS.......eeiiiiieeiee et e e e e eeeenans 68
8.3.6Converting Segments From Quadratic to Cubic FOrmM...........covvvvieeeeeeiiiiiiiiiiee, 68

R [T o) o7 I TN 68
8.5The Standard Path FOrMaL..............eiiiiiieiiiieee et e e e 69
VG PATH FORMAT STANDARD.cotiteteteeteeteeteeteeteeteeteeseeeeesesessesessesseseseessessessesseeseeens 70
8.5.1Path Segment Command Side EffeCtS........coviviiiiiiiiiiiii e 70
8.5.2SedMeENt COMMEANGS.uiiiiiiiieeeieeeeetieee e e e e e e e e et ee et e e e e e e e e e e e e eee b et eseeeeeaeseeeessrannns 71
8.5.3Co0rdinate Data FOrMALS............ooiiiiueiieeiee et e e e e e 73

111

VG PathDAtatV €. eecuveevieeiiieteeetee ettt ete et e teeeteeeteeesteeeaeeeseeeaseesseeaseessseesssenteeesennssseseennnes 74

8.5.4Segment Type Marker Definitions.eeeeiiiiiiiiiii e 74
VGPAtNADSREL........veeeteieeieceeeete ettt ettt eat e e teeeaee e teeesteeeaeserteeesesensseeseseneeensessnnnes 75

V GPatNSEIIMENE.cvieveerietiereceieete ettt ettt et ettt teete e beeteeebeeaseeseeseeseenseessensesasenseeesnseeennrens 75
VGPathCOmMmMANGd.........cooiieieeiiieeieeeieeeee et ettt e eteeeteeeeveeeteeeaveeesseesseesteeeseessesseseesssessssenssennnes 75
8.5.5Path EXAMPIE.ccooeiiiiiiiei ettt a e e 76
8.6Path OPEIAtiIONS..... ..ot e e e e e e e e et e e e e e e e 77
8.6.1St0rage Of Paths........uuuiiiiiiiieeeee e 78
VIGPAN.....octietieteetieteeteeeeet ettt ettt ettt teete et e et e e be et et e be b esbasbesbessessessersetaerseabe e beanreearaeenbeenes 79
8.6.2Creating and Destroying Paths.coooiiiiiiiiiiiiii e 79
V GPathCapabilities.cveeeveeereiieieieieieeteeeeeeetee et eteeeeteeereeesteseaeeseeeseeeseeenseesenseeessssnseeessennnes 79
VZCTEAtEPAtN. ... e 80
VECIEArPath......c.oiiiiiii s 82
VEDEStroyPath......c.coiiiiiiiiii s 82
8.6.3Path QUEKIES...... oot e e e e e s 82
VGPathParam TV PE. .. .ccuvecveeeeericeiereeeeeeteeteeteeete et esteeteeeteeasesseessesseessesseesseeseesseeseesesesnreeensseesses 82
Path FOTTNAL. .. .ccoviicieceeecee ettt ettt ettt et et e e te e te e sabeeetaeetseeesaeesseenseeeaseeseesaseenseees 83
Path DatatyPe......ccccoiiiiiiiiiiic s 83
=14 (T or= 1 (<RSP 84
22N d a0 35 = 1= TSRS 84
NUMDET Of SEZIMENES.cvvieerietieeie ettt ettt et ete et e ete e teeeveeetreeseeetaesassebeesaseenaraaeens 84
NUMDEr Of COOTAINATES.......vieeueieerieereeeieeeteeeteeetee ettt e eteeeteeeteeeteeeseeetesereeesseeseeeesareeeeenssneens 84
8.6.4Querying and Modifying Path Capabilities...............uuueeiiiiiiiiiiieeieee e, 84
VEGetPathCapabilities.......coveveeriereereereereereereereeteereereeereereeeseesesseesesseessesseesesseeseeseeseeseesens 84
VERemMOVEPathCapabilities......cc.eevuiieiiieiieeieeieeeeeeeteecte e eee e e eeeeeteeeveeeteeeeeasveeeeeesaeeaeennnes 85
8.6.5Copying Data Between Paths............ooo it 85
VZAPPENAPAtN.....ooviiiiiiii e 85
8.6.6Appending Data to a Path............oooomiiiiii 86
VEADPPENAPATNDIALA.eeevieiiecieeie ettt ettt ettt eteeeteeeteeeteeebeeeteesbeeesseeaseenseseeeennnes 86
8.6.7Modifying Path Data........cccoiiiiiiiieeeieeie e e 87
72=4\Y] (e 1T .74 5= 1@ o o) e IV ORRORRRROY 87
8.6.8Transforming @ Path........ccooooi i 88
VETTaNSfOIMPAtR....c.eociiiiiecee ettt ettt et reeetreeae e beeeareeteesbeeeaeennns 88
8.6.9Interpolating Between Paths.......... ..o 89
1254 QNS g 07e) F=Nu<) 2214 o VOO RURRUORRRROR 90
8.6.10Length Of @ Path...........uuuiiiiiiiiieeee e 91
VEPAthLENGHN......cviiiiii 91
8.6.11Position and Tangent Along a Path.............oooiiiieee e, 92
The Tangents of @ Path SEEIMENT........ccceevuiiiiiieicce et eeteeeaeeereseaaee e e eennes 92
VEPOINEATIONGPATRN.....veeviceictece ettt ettt ettt et re e te e esaeeseebeesseebeenseeseenseereenseas 93
8.6.12Querying the Bounding Box of @ Path..............ccccciiiiiiiiiiiii e, 95
VEPathBOUNS........cooviiiiiiiiiii s 96
vePathTransformedBOUNS...........coviveiiiiieiicieceeeeeeeee et ettt e e ere e e s esaeeennees 96
8.7Interpretation Of Paths.............oiiiiiiiicee e 97
8.7 AFIING PAtNS.coiiiiiiiiiiiee et e e e e e e e e e e e e eeeaas 97

iv

Creating Holes iN PathiS........ocviiuiieiieiee ettt ettt et et veeetae e v eteeeaeeeteesaveenne s 98

Implicit Closure of Filled SUDPAtRS.........ccieiiiiieieiecieteetecteetee ettt 100
8.7.2StroKING PathiS. e e e e aeaes 101
IR IS (0 (ol = L= 1= 1 =) T 102

ENd Cap SEYIES.....cuuiiiiiiiiicci s 102

Line JOIN SEYIES......cuimiuimiiiiiiiicic e 103

Miter LENGHN. ... 104

Dashing......ccovuiuiiiiiiiiii s 104
A 8 (o) G CI=Ta1=) =11 10] A FUTTT TR 106
8.7.5Setting Stroke Parameters............oooii oo 107

VGCAPSEYIE....umiiiiiiiii s 107

VGIOINSEYIE. ...ttt 108

VG MAX DASH COUNT....oooiietieieeeesieetesteeteseeteseesesseessesseessesssessesssessessssssssesssssesessseens 108

Setting the Dash PatteIN........ccccuevuieieirieiieeeeieeeee ettt ettt e e reeseereesaeeasesseernenseenes 109
8.7.6NON-SCAlNG SIrOKES. ... uuuuiieiii ettt e e e et e e e e e e e e 109

8.8Filling or Stroking @ Path............oooiiiiiiii e 110

VI GFIIIRUIE.ccveeeteeete ettt ettt et et ete et e eteeeteeeebeeesseebeeesseenssessseessensesssaeesseenseesssennseens 110

VGPAINEIMOAE.oivieiietieiicieeteete et ete et ettt te et e e et esbeesaeseebesseensesssesesssesseesseseessenssesesseens 111

VEDIaWPath......c.coiiiiiii e 111

FAlliNg @ Path.....ccoveveeeeeeeeeee e 111

Stroking a Path........ccccoiiiiiii 112

Filling and Stroking @ Path...........coveeiiieiieeeeeiecceecee ettt et eeve e e eereeeesee e eeaaeeeeenns 113

1S = 110 SRR 114
L IR I = 1T A L= T T (o) 1= N 114

VI GPAINT. .ecvvieteeetee ettt ettt et eete et e eete e e e e eeteeetseesseesesebeeesseeabeessseenssessseebsennsssseeeesrseaeanns 114
9.1.1Creating and Destroying Paint ObJectS..........oooiiiiiiiiiiii e 115

VECreatePaint.o 115

VEDESIIOYPAINt.....c.cviviiiiiiiiiiii 115
9.1.28etting the Current Paint............coooiiiiiiiiiie e 115

VESOtPAINE.veiiitcic s 115

VEGOPAINE. c...vvieiiiiciiic s 117
9.1.3Setting Paint Parameters.............uuciieiiiieeeieeeeeeee e 117

VGPaINtParamM TV PO .ccveieveeeiieereeeeeecteeette et et eeteeeteeeeteeeaeeeveeeteeessesseeeseessseereesssssseeesraseeenn 117

VGPaAINETYPE. c..vvieiiiitiriiietctc sttt 119

9.2C0l0F PAINT.......oeiiiiiiiiee i e e e e e e e e e e e e e e e e e ————————————————— 119

Setting Color Paint Parameters........c..coeeeieeeeeeieeiieeeeeecreeeeeesreesveecreesveeereessseeeseessansaeeesennes 119

VESEECOLOT. ...ttt bbb s 120

VGGOCOIOT. ... e 121

9.3Gradient Paint...........oooviiiiiiiiii e ————— 122
L TG e [T= Y= T € = Lo =) L (= 122

Setting Linear Gradient Parameters..........coveeveeereeeiieiieeeeeeeteeeeeeeteeeeeeereeeeeeevsesaeeeeaneeeeeenes 123
LI I - Yo [=Y I €T 7= To [=Y 01 £ 123

Setting Radial Gradient Parameters..........ccuvvivieereiireiieieceeeeeteeeee et e et eeeeesreeesesesreeeeeeanes 125
9.3.3C 000N RAMIPS. .. .uuutuuiiiiiiieie ittt e et e e e e e e e et e e e e e e et e e e eeeeeeaaaaaaaeeeeaesaaesaasasnsssnssssnnnes 126

VG MAX COLOR RAMP STOPS......ooecteetieieereeteetesteeeesteeeesseesaesseessessaesesssssesssnesssseeens 127

VGColorRampPSPreadMOde.ocveereeeeerieiieeeeeeeeeeeteeeeeteeteeteesveeseesseeseessesseessesseeseseensesens 127

Setting Color Ramp Parameters.........cocveeueeieiieeieiieeiecieeteereereereereereeseereessessesseessessesssennns 128
Formal Definition of Spread MOES.oovivvieeeeeeeeeiiieeeeeee ettt eereseaee e 129
9.3.4Gradient EXAmMPIES..........coooiiiiiieee et aaaaaes 130

LI o (= o AT = 11| N 131
VEPAINEPAttOIN....cvveiiiii s 132

8 I N =Y (=Y o o T 1o USRS 132
VGTINGIMOME.eviiiicieieiicieieieeeie ettt 133
Setting the Pattern Tiling MOAE........cccueeeueieeeiiieeeieeteeeee et eeeeereeeteeeereeeaeeeeveeesseeereeesneeeeennnes 133

0] 00 =TT 135
10.1Image Coordinate SYSEMS.......cccooiiiiiiieicee e et 135
10.2IMAGE FOIMALS. .. uueiieiiiiiiiiiie et e e e e e e e e e e e e e e e e e s e s e e e e e e a e e e e e e eaaaan s 135
VGIMAZEFOIMIAL...cuvievieeiieeiieetee ettt ettt et et eete e teeeeaeeeteeebeeeseeebeeesseessessssenssensesenseensneees 135
10.3Creating and Destroying IMaQES. e eeeiiiiieeaaee et e e e e e e e e e eeeeennnes 139
VGIMAGE.cuiiiiiriiiitcc e 139
VGIMAZEOUALILY...c.eeievieiiirietectiieiestet et et et eete et tes e e e stesbesbess e sesbessessessessessessaseaseesanseesssensses 139

VG MAX IMAGE WIDTH.....coviiiiiieiieiieeetieteeeetesr ettt esa et eveeveess s esesssssesvessessesseseseenss 140

VG MAX IMAGE HEIGHT......oou oottt ettt ettt et eve v v et e 140

VG MAX IMAGE PIXELS.....coisteirterteieieieieteteeeeestssessessessassessessessessessessessessessessessessenses 140

VG MAX IMAGE BYTES......cctioteieieieeeteetieeetestestestestessesessessessessessessssessessessessessessessssessnes 140
VECTeatelMAZE.cucueiiiiiiiic s 141
VEDEStIOYIMAGE.cveuiiiriniiicictct s 142
10.4QUEIVING IMAGES. ... uutuiieie ittt e e e e e e e e e e e et e et e e e e e e e et e e e et e e eaannns 142
VGIMageParam T PE.cccuveeieeiiecieeeieeeieeeeteeeteeeteeeeeereestaeeeseesseeeseessseeseessseesseesssseeesesseseeanes 142
Image FOrmMat. ..ot 142
Image WIdth........ccoiiiiiiiii s 143
Image Height......cccocuiiiiiiiiccc s 143
10.5Reading and Writing IMage PiXeIS.............uvuuuiiieiiiie e 143
VECIEATTMAZE.cuiiiiiiiic e b 143
VEIMAgeSUDDIALA. ..ot 144
VEGEIMAZESUDDIALA.eiccviecviicteeete ettt et ettt ettt eaeeeteeeree e eeatne e e s enaeeeeenns 145
TO.BCRNIIA IMAGES. ..o i i e e e e e e e et e e e e e et r e e e e e e e e eaaaaaaaaaeeeaeeaeeaaannnnas 146
VEChIlAIMAZE.coviiiiiiiiiiciiic e e 147
VEGOPATONL.ovvieiiictceict e 148
10.7Copying Pixels BetWEEN IMAGES.uvuiiiiiiiiieieeeeee et e e e e e e e e e e e eeennnas 148
VECOPYIMAZE.vviiiiiiiiiiic e 148
10.8Drawing Images to the Drawing SUMaCe.cccuuiiiiiiiiiiiiieee e 149
VGIMAGEMOME........oiiiniiiiiiiii s 149
VEDTAWIMAZE.ooviiiiiiiiiicc s 150

VG DRAW IMAGE NORMAL....cocoitieteietieeeeerieeste st estesaessessessessessessessesasssssessessessessenses 151

VG DRAW IMAGE MULTIPLY....cccoiiteieieietiereeeeteeteetestestessessessessessessessessessessessesssessessnns 151

VG DRAW IMAGE STENCIL......coiiiiieteeierierieteeteeteeteeseeteeeeseseseseessesseseessessessesseeseesseeeses 152
10.9Reading and Writing Drawing Surface PixXels.............ccooooiiiiiiiiiiiiiiieeeeeee e 153
10.9.1Writing Drawing SUrface PiXeIS..........ccooiviiiiiiiiiiiie e 154
VESEEPIXEIS.....cveiiiiii s 154

Vi

VEWIIEEPIXEIS. ..ot 154

10.9.2Reading Drawing Surface PiXelS...........coooiiiiiiiiiiiiiiee et 156
VZGEEPIXELS. ...ttt 156
VEREAAPIXELS. ...ttt 156

10.10Copying Portions of the Drawing SUMaCEe...........c..ueiiiiiiiiiiiiee et 158
VECOPYPIXEIS......oiiiiiiiiiiiiii e 158

T 160
L Byl =T e [=T T T OO SOPUR 160

L 24 o] | K= 0 1T) [o AP P 161
11.3Glyph Positioning and Text LayOut...............eeeiiiiiiiiiiiiieaaa e e e 161
T1.4F0NtS IN OPENVG.... ..ttt e e e e e e e e e e e ee bt e e et eeeaanns 164

11.4.1VGFont Objects and Glyph Mapping........cccccceurrmiimiiiiieiiiee e e e e e e e e e e e e e e eeenaanns 164
VIGEONL ..ttt ettt et e e e et e et e eeveeetae e beeeaseesseetseesssensseebeesseeaseeesseennsssseeeesreeaeanns 164
GIYPh MaPPINE....cooviiiiiiiiiiiiiiiiiiiiii st 164

11.4.2Managing VGFONt ObJECES.........cooeiiiiiicece e 165
VECreateFONL. ... 165
VEDESIIOYFONL. ..ot 166

11.4.3Querying VGFONt ODJECES.uuueiiiiieieeeeeee e 166
VGEONIPATAMTY IO ..veeviiiiieiieiie ettt et e eteete et e ete e teeeveestaesseesssesseesssesssaeseesnssseessssssaseennn 166
NUIMDET Of GIYPRS. ..cuvietiiiieeeiereeeeete ettt ettt e ete v e eteeseereeseeasesseessesseessesseensesnsesensseean 167

11.4.4Adding and Modifying Glyphs in VGFONES.......ccccoiiiiiiiiee e 167
VESetGIYPhTOPAth........cuoviieci s 168
g see o1 1874 0) ¥ KoY 50 =T =< PSRN 169
VZCIEATGLYPR. ...ttt et 170

11.4.5F0NE SNAMNG.eiiiiieei i e e r e e e e et e e e e e e e e e e e e e e e e e e aaaaaaeas 170

11.5Text Layout and RENAEING.eiieeieeeeieeeie ettt e e e e e e e e e e e e eeennn s 171
VEDIaWGIYPR. ..o 171
VEDIaWGIYPRS. ..ottt 172

2 =T o L Y PP 174

12.1Format NOrmMaliZatioN...........cuuuniiieeieee e e e e e e e e e e e ean 174

12.2CNaANNEIIMASKS.uuuiiiiiiiiiieeee ettt e e ettt e e e e e e e e e e e e e et eaanns 175
VGIMAZECRANNEL......couievetiereeteeieeteeteee ettt ettt ettt eeteete e seeseeebeesseeseesseesseeeetseesreeeenreeens 175

12.3C010r COMBDINALION.ueniiieet et e e e e e e e e e e e e e ee e e e eees 176
VZCOIOTMALTIX. ..o 176

T2.4C0NVOIULION.ottt ettt e e e e e e e e e e e et aeeeeeaeeeeeaeebabaananes 177
VG MAX KERNEL SIZE......ocoiiiiieietisreriestesieieiesteteteseereesssseesessessessessessessessessessesssssssessnes 177
VG MAX SEPARABLE KERNEL SIZE........ccociiiietieieeteieeerereeeseeeseeeseeseesseseesseesseesveennns 177
VG MAX GAUSSIAN STD DEVIATION......ccoieieieteeteereereereeteereereeseseeeeseseseereeeseeeseennes 178
VZCONVOIVE. ...ttt 178
VESePArableCONVOIVE......cueeevieeeeteceeeeteeeeete ettt ettt et eeteeeeeseeveeaeenseessenseessenseessereensenn 180
VEGAUSSIANBIUL . ..ot s 181

T12.5L00KUD TADIES.uuueiiiiieeeeeeeee ettt e e et e e e e e e et e e e e e et aeaanas 183
VZLOOKUD. ..o 183
VELOOKUDSINEGIE.....cvveteeeeeteeeeeteceeete ettt ettt et ev et et eteeaseeseenbeeseeseeasenseensenseesnreeeenreeens 184

13Color Transformation and BIENAING..........coiiuiiiiiiiiiiiiiiiee e ee e 185

vii

13.1C0I0r TranSfOrMEAtION.unieeiee ettt e e e e e e e e e e e e e e e e eaneaens 185

Setting the Color TransSfOrmMation...........cceeeecieeierieeieeeteeeeeteeee e et eeetesreesteeeesseesveeesaseeenns 186
13.2BIending EQUALIONS.uuvuiiiiee ittt e et e e e e e e e e eeaaaa s 186
13.3Porter-DUff BIENAING.ooeeeeieiiiiee ettt e e e e e e e e e e e e et e e era e e eaanns 187
13.4Additional BIending MOGES...........uuuuiiiiiiiiiiiiiiiie et ee e e e e e eeennas 188
RS RN Lo 111V =TH =1 1= o |1 o SRR 189
13.6Setting the BIENA IMOAE........ciiiiiiiieeeeeece et e e et e e s 189

VGBIENAMOAE.eiieiieeiiieeeeeeeeee ettt ettt ettt s et e et esabesnteesssesnssesaessnsessnsesntaseeenn 189

14Querying Hardware Capabilifies............cooouuiiiiiiiiiiiiiii e 191

VGHardwareQUETVTYDE.ccueuieiierieeeeieeieeeeete et ectesteevesteesesseeseeseesseessesseesnsesesssesensseens 191

VGHardwareQuUerVRESUIL.........cooviiiiieiieiieeeeeeeeectee ettt ettt ee e e eaeeeaeeereseaeeeneeeeeenns 191

VEHAIAWATEQUETV....c.veeevetieeieeteereete ettt eete et eteete e e esteetseseesseseesseeseesseeseeeensesennsesennseenn 191

EeY =t (=T o [T IR 1 1= Y TR 193
15.1Extension Naming CONVENTIONS.coieiiiiiiiiiiie e e e e e e e e 193
15.2The EXteNnSiON REQISIIY.......cooeiiiiiiiieee e e 193
15.3USING EXEENSIONS.ccce i ittt e e e e e e e e e e e e e e e et e e e e e e e e aaaaaeeeeenaan s 193

15.3.1Accessing Extensions Statically............ccooiiiiiieeiiiiiiiiie e 194
15.3.2Accessing Extensions DynamiCally............c.oeeioiiiiiiiiiiaiaaiiiie e 194

VGSHINGID ...ttt 194

VEGOESHIINE. ...t 194

CZLGEIPTOCAAAIESS. ...uvieeveeeeeeetieeee ettt ettt ee e et e eaeeeteestaeeessestseeseeessseseessseeseeesseeeennnnes 195
15.4Creating EXIENSIONS.coo it e e e e eeenan s 195

TOAPI] CONFOMMANCE.ceiiiiiiiei ettt e e e et e e e e e e e e et e e e eaae e e e et 196
16.1Conformance TeSt PrINCIPIES.cccovviieeeiiieiee et e eaaaes 196
16.1.1Window System INdEPENAENCE..........cccuviiiiee ettt e e 196
16.1.2Antialiasing Algorithm Independence............cccccuuuiiiiiiiiiiiiieeeee e 196
16.1.30n-Device and Off-Device TeStING.........ccceereeiieiiiiicccieeeeeee e 196
16.2Types of ConformManCe TESES.........couvvuiiiiieie et e s 197
16.2. 1PIPEINE TESES. .uuutiie it e e e e e aaan 197
16.2.2Self-ConSiSteNCY TESES.coiiiiiieeeee it 197
16.2.3MALFIX TESES . ..uvuuiiie it e e eaaas 197
16.2. 41Nt/ EXIEIION TESES.....vnn it e e e e e e e ea e eaaas 197
16.2.5P0SitioNal INVAMIANCE.........euiieiieiee et e e e e e et e e et e e e e eaas 197
16.2.6lmage CompariSON TESES........ceeiiiiiieeii e e e e e eeeeenns 197

17The VGU ULlity LIDFArY........ccuvveiiieiieiiiiiee ettt e e e e e e e e s 199

VGU VERSION T Tuioiioiiiieieieieieieteeeeeeeestessesressessessessessessessessessessessesssssssssssesssessssssssesnses 199

V GUETITOTCOAEC.ectieeteeeteeetee ettt eeteeete ettt eetveeeteeeteeeeteeesseeeseessseeessessssessensssssssessseenreesssesnssenn 199
17.1Higher-level Geometric PrimitiVes.ueueiiiiiiiiiiiieiie e 200

2% B I T 200
VEULINC. c..viiiiiiiiiiii s 200
17.1.2P0lylin€S and POIYGONS.uuuuiiiiiiiiiieeieeeee et e e e e et e e e eeeeeanes 200
VGUPOIVGON. ... e 200
LA T (=Y = T | =Y 201
VEURECE. ..ottt 201
17.1.4Round-Cornered RECIANGIES..........coiiuiiiiiee i e e e e e e 202

VSUROUNARECE. ...t 202

T A BEIPSES. ...ttt e e e e et e e e e e e e e a e eaaas 204
VGUEITIDSE. ..o 204

L TN TSP 205
VGUATCTTPE. ...ttt bbb 205

VGUATC oottt bbbt 206

LA 10T [T AT = 14 01T 207
veuComputeWarpQuadTOSGUATE..........ceeeveereeereereereetreereee et eeeeteeeeeereesaeeasesseesesseersenseennens 208
veuComputeWarpSquareToOQUA..........ovevveeueerecreerieeeeereeeeeee ettt ettt esre e esveerseereeneens 208
veuComputeWarpQuadToQUAd.........cceereeiriereeirieieeteeeeeteete ettt re s reeseebeeens 209
18Appendix A: Mathematics Of EIlIPSES........eeeviiiieeeeeeeeee e 210
18.1The Center Parameterization.............oooevueiiiiiiiee e 210
18.2The Endpoint Parameterization...........cccoooeieiiiiiiiiieiiece e 211
18.3Converting from Center to Endpoint Parameterization...........ccccccooveeiiiiiiiiiii e, 212
18.4Converting from Endpoint to Center Parameterization...............cccoovvviiieiiiiiie e 212
18.5Ilmplicit Representation of an ElPSE.........cccccuuuiiiiiiiiiiieiiieeeeeee e 215
18.6Transformation Of ENlIPSES.ueviiiiiiiiiiiee ettt e e e e e eaaaas 216
19ApPENdiX B: HEAdEI FIlES......ccccoiiiiieeeee e e e e e et e e e 218
OPENVEZ. N 218

VBN ot 232

(0] 11 o] oY =T o] 0 /U URPUPOPRT 235
21D0CUMENE HISTOIY. ...ttt eeeeennnes 236
22 ACKNOWIEAGMENTS......ciiiiieeiie et e e e e e e e e e e e e e e e e e e e s e e e s neeneen e e e e eeesnnneeeeeennnnnns 238
P22][o [T == 240
INAEX Of TADLES. ...eccuvieveeeiiieieeeee ettt ettt et eete e et e eeteeeaeeeteeetseeebsestseeseensssesseesseereesssennnes 240

INAEX Of FIGUIES. ...ccveeceeieieeeie ettt ettt e e et e e e teeesaeeeteeeaseeseeeseeesessseeeeensneeseennnes 240

ix

Introduction 10

1 Introduction

OpenVG is an application programming interface (API) for hardware-accelerated two-
dimensional vector and raster graphics developed under the auspices of the Khronos
Group (www.khronos.org). It provides a device-independent and vendor-neutral interface
for sophisticated 2D graphical applications, while allowing device manufacturers to
provide hardware acceleration where appropriate.

This document defines the C language binding to OpenVG. Other language bindings
may be defined by Khronos in the future. We use the term “implementation” to refer to
the software and/or hardware that implements OpenVG functionality, and the term
“application” to refer to any software that makes use of OpenVG.

1.1 Feature Set

OpenVG provides a drawing model similar to those of existing two-dimensional drawing
APIs and formats, such as Adobe PostScript [ADOB99], PDF [ADOBO06a], Adobe
(formerly MacroMedia) Flash [ADOBO06b]; Sun Microsystems Java2D [SUNO04]; and
W3C SVG [SVGFO05][SVGTO06]. Version 1.1 is specifically intended to support all
drawing features required by a SVG Tiny 1.2 renderer or an Adobe Flash Lite renderer
(implementing the Flash 7 feature set), and additionally to support functions that may be
of use for implementing an SVG Basic renderer.

1.2 Target Applications

Several classes of target applications were used to define requirements for the design of
the OpenVG APL.

SVG and Adobe Flash Viewers

OpenVG must provide the drawing functionality required for a high-performance SVG
document viewer that is conformant with version 1.2 of the SVG Tiny profile. It does not
need to provide a one-to-one mapping between SVG syntactic features and API calls, but
it must provide efficient ways of implementing all SVG Tiny features.

Adobe Flash version 7 must also be supported with high performance and full
compliance.

Portable Mapping Applications

OpenVG can provide dynamic features for map display that would be difficult or
impossible to do with an SVG or Flash viewer alone, such as dynamic placement and
sizing of street names and markers, and efficient viewport culling.

Version 1.1 Revision 1 (December 3, 2008)

Introduction 11

E-book Readers

The OpenVG API must provide fast rendering of readable text in Western, Asian, and
other scripts. It does not need to provide advanced text layout features. Font hinting and
efficient glyph rendering must be supported by the API.

Games

The OpenVG API must be useful for defining sprites, backgrounds, and textures for use
in both 2D and 3D games. It must be able to provide two-dimensional overlays (e.g., for
maps or scores) on top of 3D content.

Scalable User Interfaces

OpenVG may be used to render scalable user interfaces, particularly for applications that
wish to present users with a unique look and feel that is consistent across different screen
resolutions.

Low-Level Graphics Device Interface

OpenVG may be used as a low-level graphics device interface. Other graphical toolkits,
such as windowing systems, may be implemented above OpenVG.

1.3 Target Devices

OpenVG is designed to run on devices ranging from wrist watches to full
microprocessor-based desktop and server machines. Over time, it is expected that
OpenGL ES hardware manufacturers will be able to provide inexpensive incremental
acceleration for OpenVG functionality.

Realistically, to obtain the full benefit of OpenVG, a device should provide a display
with at least 128 x 128 non-indexed RGB color pixels with 4 or more bits per channel.

1.4 Design Philosophy

OpenVG is intended to provide a hardware abstraction layer that will allow accelerated
performance on a variety of application platforms. Functions that are not expected to be
amenable to hardware acceleration in the near future were either not included, or
included as part of the optional VGU utility library.

Where possible, the syntax of OpenVG is intended to be reminiscent of that of OpenGL,
in order to make learning OpenVG as easy as possible for OpenGL developers. Most of
the OpenVG state is encapsulated in a set of primitive-valued variables that are
manipulated using the vgSet and vgGet functions. Extensions may add new state

Version 1.1 Revision 1 (December 3, 2008)

Introduction 12

variables in order to add new features to the pipeline without needing to add new
functions.

Paint, path, and image objects in OpenVG are referenced using opaque handles. This
allows implementations to store such objects using their own preferred representation, in
whatever form of memory they choose. This is intended to simplify hardware design, and
to minimize processing and bus traffic for frequently-used objects.

1.5 Naming and Typographical Conventions

OpenVG uses a consistent set of conventions for API names and symbols. In this
document, additional typographic conventions are used to help indicate the type of each
symbol, as shown in Table 1 below.

Symbol Type Name/Case Type Style Example
API Function vgXxxYyy Boldface |vgLoadMatrix
API Function with
Varying Parameter | vgXxx {f,i,fv,iv} Boldface |vgSetfv
Types
Utility Function | vguXxxYyy Boldface |vguRoundRect
Primitive Datatype | VGxxx Typewriter |VGfloat
Enumerated VGXxxY Typewriter | VGCapStyle
Datatype Yy yp
Enumerated Value | VG_XXX YYY Typewriter |VG_BLEND_MODE
Utility VGU XXX YYY Typewriter |VGU ARC_CHORD
Enumerated Value - - - =
Function . .

tMod
Argument xxxYyy Typewriter |paintMode

Table 1: Naming and Typographical Conventions

1.6 Library Naming

The library name is defined as 1ibOpenVG.z where z is a platform-specific
library suffix (i.e., .a, .so, .1ib, .d11, etc.).

Version 1.1 Revision 1 (December 3, 2008)

The OpenVG Pipeline 13

2 The OpenVG Pipeline

This section defines the OpenVG pipeline mechanism by which primitives are rendered.
Implementations are not required to match the ideal pipeline stage-for-stage; they may
take any approach to rendering so long as the final results match the results of the ideal
pipeline within the tolerances defined by the conformance testing process. The OpenVG
pipeline supports both single-sampled and multisampled surfaces (see Section 2.9).

Figure 1 below provides an overview of the OpenVG pipeline, focusing on the various
steps involved in drawing a thick, dashed line into a scene using a radial gradient paint.

T —

|

. N

N "
_- "l" ¢
| aad
A 4
Stage 1:
Path, Stage 2:
Transformation, Stroked Path Stage 4:
Stroke, and Paint Generation Rasterization

>

Stage 5: Stage 8:
Clipping and Color Transform,
Maskin Paint Generation Image Interpolatio ;

Figure 1: The OpenVG Pipeline

Version 1.1 Revision 1 (December 3, 2008)

The OpenVG Pipeline 14

2.1 Stage 1: Path, Transformation, Stroke, and Paint

The application defines the path to be drawn, and sets any transformation, stroke, and
paint parameters or leaves them at their default settings. When all parameters have been
set, the application initiates the rendering process by calling vgDrawPath, indicating
whether the path is to be filled, stroked, or both. If the path is to be both filled and
stroked, the remainder of the pipeline is invoked twice in a serial fashion, first to fill and
then to stroke the path.

If an image is being drawn (via the vgDrawlImage function), the current path is set to a
rectangle bounding the image.

2.2 Stage 2: Stroked Path Generation

If the path is to be stroked, the stroke parameters are applied in the user coordinate
system to generate a new path that describes the stroked geometry. This path is then
substituted for the original path in the remainder of the pipeline, and the fill rule is set to
non-zero.

2.3 Stage 3: Transformation

The current path-user-to-surface transformation is applied to the geometry of the current
path, producing drawing surface coordinates. For an image, the outline of the image is
transformed using the image-user-to-surface transformation. Non-uniform
transformations may result in skewed stroke outlines.

2.4 Stage 4: Rasterization

A coverage value is computed at pixels affected by the current path using a filtering
process, and saved for use in the antialiasing step.

Conceptually, a set of sample positions are evaluated for inclusion within the path. At
each pixel center that is no more than 172 pixels away from some portion of the path
geometry, a reconstruction filter is applied to the binary inclusion values at nearby
sample points to obtain a filtered coverage value for the pixel. If only a single sample per
pixel is evaluated, the sample position must be coincident with the pixel center.

Note that for a box filter (a filter that gives equal positive weight to all samples within a
rectangle centered on the pixel center, and zero weight elsewhere), this filtering process
amounts to estimating the area of the intersection of the path geometry with the filter
rectangle.

For a single-sampled surface, if antialiasing is disabled only pixel centers are used as
sample points and the reconstruction filter has value 1 at the pixel center and 0
elsewhere.

Version 1.1 Revision 1 (December 3, 2008)

The OpenVG Pipeline 15

In the case where a sample point lies exactly on the boundary of a path, the
implementation must enforce a consistent “tie-breaking” rule. For any two paths that
share a common boundary segment, but whose interiors lie on opposite sides of the
segment, a sample point that lies exactly on the boundary must be considered to be
included in exactly one of the two paths. If the interiors of the two paths lie on the same
side of the common segment, the sample point must belong to both paths, or neither path.
Note that the common boundary segment must be specified in exactly the same manner
for both paths (i.e., with bit-for-bit identical control point values, scale and bias, and
transformation matrix settings, but possibly with control points in reverse order) for this
guarantee to hold.

2.5 Stage 5: Clipping and Masking

Pixels not lying within the bounds of the drawing surface, and (if scissoring is enabled)
within the union of the current set of scissor rectangles are assigned a coverage value of
0.

An application-specified mask image is used to modify the coverage values generated by
the previous stage. Each coverage value is multiplied by the mask value for the
corresponding pixel to obtain a masked coverage value. If the resulting coverage value is
zero, the remainder of the pipeline is skipped.

2.6 Stage 6: Paint Generation

At each pixel of the drawing surface, the relevant current paint (depending on whether
the original path was to be filled or stroked) is used to define a color and an alpha value.
For gradient and pattern paints, the paint-to-user transformation is concatenated with the
path-user-to-surface transformation to define the paint transformation that will
geometrically transform the paint. Paint generation may be skipped for operations that do
not utilize paint values.

For multisampled drawing surfaces, implementations may perform paint generation
either at every sample, or once per pixel at the pixel center. The same approach must be
used for every primitive drawn to a given drawing surface.

2.7 Stage 7: Image Interpolation

If an image is being drawn, an image color and alpha value is computed at each pixel by
interpolating image values using the inverse of the current image-user-to-surface
transformation. The results are combined with the paint color and alpha values according
to the current image drawing mode. If image drawing is not taking place, the results from
the preceding stage are passed through unchanged.

Version 1.1 Revision 1 (December 3, 2008)

The OpenVG Pipeline 16

2.8 Stage 8: Color Transformation, Blending, and Antialiasing

At each pixel, the source color and alpha values from the preceding stage (which may be
the paint color and alpha values when drawing path data or when using the “stencil”
image drawing mode, or interpolated image color and alpha values when drawing an
image in any of the other drawing modes) are passed through an optional color
transformation and converted into the destination color space. The resulting colors are
blended with the corresponding destination color and alpha values according to the
current blending rule. A special blending rule is used when drawing an image using the
“stencil” image drawing mode. The computed coverage value from stage 5 is used to
interpolate between the blended result and the previously assigned color at the pixel
(preferably in a linear color space) to produce an antialiased result.

2.9 Multisampling

Some implementations may provide the option to obtain drawing surfaces that support
antialiasing using multisampling. For multisampled surfaces, rasterization occurs at a
number of sample points within each pixel. Rather than applying a filter to resolve the
coverage at various sample points into a single value once a single primitive has been
fully rasterized, the coverage values at each sample point are stored until all primitives
for the current frame are complete. When the application requests a buffer swap, the
multisampled buffer is resolved into a buffer with a single color per pixel in an
implementation-dependent manner.

The determination of whether a sample falls inside a geometric primitive when rendering
to a multisampled surface is performed in the same manner as for pixel rendering in non-
antialiased mode, only with inclusion evaluated at multiple subpixel sample positions
rather than at pixel centers only. This ensures that rendered geometry affects samples in a
consistent manner. In particular, geometric primitives that collectively cover an entire
pixel must result in all subpixel samples belonging to that pixel being assigned to one of
the primitives.

Multisampling may allow for more accurate computation of the coverage across multiple
primitives. In particular, for primitives that abut one another, multisampling avoids any
possibility of background color “bleeding through,”which may be important for
applications such as Adobe Flash players. Adobe Flash player implementations may also
require that the samples be resolved using a single-pixel wide box filter; the choice of
filter is outside of the scope of this specification, but may be possible using platform
APIs such as EGL.

3 Constants, Functions and Data Types

OpenVG type definitions and function prototypes are found in an openvg. h header

Version 1.1 Revision 1 (December 3, 2008)

Constants, Functions and Data Types 17

file, located in a VG subdirectory of a platform-specific header file location. OpenVG
makes use of 8-, 16-, and 32-bit data types. A 64-bit data type is not required. If the
khronos_ types.h header file is provided, the primitive data types will be
compatible across all Khronos APIs on the same platform.

3.1 Versioning

The openvg. h header file defines constants indicating the version of the specification.
Future versions will continue to define the constants for all previous versions with which
they are backward compatible.

OPENVG_VERSION_1_1

For the current specification, the constant OPENVG_VERSION 1 1 is defined. The
older version OPENVG VERSION 1 O continues to be defined for backwards

compatibility. The version may be queried at runtime using the vgGetString function
(see Section 15.3.2).

#define OPENVG_VERSION 1 0 1
#define OPENVG _VERSION 1 1 2 I

3.2 Primitive Data Types

OpenVG defines a number of primitive data types by means of C typedefs. The
actual data types used are platform-specific.

VGbyte

VGbyte defines an 8-bit two’s complement signed integer, which may contain values
between -128 and 127, inclusive. If khronos types.h is defined, VGbyte will be
defined as khronos int8 t.

VGubyte

VGubyte defines an 8-bit unsigned integer, which may contain values between 0 and
255, inclusive. If khronos_types.h is defined, VGubyte will be defined as
khronos uint8 t.

VGshort

VGshort defines a 16-bit two’s complement signed integer, which may contain values
between -32768 and 32767, inclusive. If khronos types.h is defined, VGshort
will be defined as khronos intl6 t.

Version 1.1 Revision 1 (December 3, 2008)

Constants, Functions and Data Types 18

VGint

VGint defines a 32-bit two’s complement signed integer. If khronos types.his
defined, VGint will be defined as khronos int32 t.

VGuint

VGuint defines a 32-bit unsigned integer. Overflow behavior is undefined. If
khronos types.hisdefined, VGuint will be defined as khronos uint32 t.

VGbitfield

VGbitfield defines a 32-bit unsigned integer value, used for parameters that may
combine a number of independent single-bit values. A VGbit field must be able to
hold at least 32 bits. If khronos types.h is defined, VGbitfield will be defined
as khronos uint32 t.

VGboolean

VGboolean is an enumeration that only takes on the values of VG FALSE (0) or
VG TRUE (1). Any non-zero value used as a VGboolean will be interpreted as
VG_TRUE.

typedef enum
VG _FALSE
VG_TRUE
} VGboolean;

{
0,
1

VGfloat

VGfloat defines a 32-bit IEEE 754 floating-point value. If khronos types.his
defined, VGfloat will be defined as khronos float t.

3.3 Floating-Point and Integer Representations

All floating-point values are specified in standard IEEE 754 format. However,
implementations may clamp extremely large or small values to a restricted
range, and internal processing may be performed with lesser precision. At least
16 bits of mantissa, 6 bits of exponent, and a sign bit must be present, allowing
values from + 2™ to 2”' to be represented with a fractional precision of at least 1
in 2'°.

Path data (i.e., vertex and control point coordinates and ellipse parameters) may be

Version 1.1 Revision 1 (December 3, 2008)

Constants, Functions and Data Types 19

specified in one of four formats: 8-, 16-, or 32-bit signed integers, or floating-point.
Floating-point scale and bias factors are used to map the incoming integer and floating-
point values into a desired range when path processing occurs.

Handling of special values is as follows. Positive and negative 0 values must be treated
identically. Values of +Infinity, -Infinity, or NaN (not a number) yield unspecified results.
Optionally, incoming floating-point values of NaN may be treated as 0, and values of
+Infinity and -Infinity may be clamped to the largest and smallest available values within
the implementation, respectively. Denormalized numbers may be truncated to 0. Passing
any arbitrary value as input to any floating-point argument must not lead to
OpenVG interruption or termination.

VG_MAXSHORT

The macro VG MAXSHORT contains the largest positive value that may be represented
by a VGshort. VG_MAXSHORT is defined to be equal to 2°~ 1, or 32,767. The
smallest negative value that may be represented by a VGshort is given by (-
VG MAXSHORT — 1), or -32,768.

VG_MAXINT

The macro VG MAXINT contains the largest positive value that may be
represented by a VGint. VG_MAXINT is defined to be equal to 2°' -1, or
2,147,483,647. The smallest negative value that may be represented by a VGint is
given by (-VG_MAXINT - 1), or -2,147,483,648.

VG_MAX_FLOAT

The parameter VG_MAX FLOAT contains the largest floating-point number that
will be accepted by an implementation. To query the parameter, use the vgGetf
function with a paramType argument of VG_MAX FLOAT (see Section 5.2). All
implementations must define VG_MAX_FLOAT to be at least 10".

3.4 Colors

Colors in OpenVG other than those stored in image pixels (e.g., colors for clearing,
painting, and edge extension for convolution) are represented as non-premultiplied (see
Section 3.4.3) SRGBA [sRGB99] color values. Image pixels may be defined in a number
of color spaces, including sRGB, linear RGB, linear grayscale (or luminance) and non-
linearly coded, perceptually-uniform grayscale, in premultiplied or non-premultiplied
form. Color and alpha values lie in the range [0,1] unless otherwise noted. This applies to

Version 1.1 Revision 1 (December 3, 2008)

Constants, Functions and Data Types 20

intermediate values in the pixel pipeline as well as to application-specified values. If an
alpha channel is present but has a bit depth of zero, the alpha value of each pixel is taken
to be 1.

Non-linear quantities are denoted using primed () symbols below. [POYNO3] contains
an excellent discussion of the use of non-linear coding to achieve perceptual uniformity.

3.4.1 Linear and Non-Linear Color Representations

In a linear color representation, the numeric values associated with a color channel
value measure the rate at which light is emitted by an object, multiplied by some
constant scale factor. Informally, it can be thought of as counting the number of photons
emitted in a given amount of time. Linear representations are useful for computation,
since light values may be added together in a physically meaningful way.

However, the human visual system responds non-linearly to the light power
(“intensity”) of an image. Accordingly, many common image coding standards (e.g., the
EXIF JPEG format used by many digital still cameras and the MPEG format used for
video) utilize non-linear relationships between light power and code values. This allows
a larger number of distinguishable colors to be represented in a given number of bits than
is possible with a linear encoding. Common display devices such as CRTs and LCDs also
emit light whose power at each pixel component is proportional to a non-linear power
function (i.e., a function of the form x" where a is constant) of the applied code value,
whether due to the properties of analog CRT electronics or to the deliberate application
of a non-linear transfer function elsewhere in the signal path. The exponent, or gamma,
of this power function is typically between 2.2 and 2.5. OpenVG makes use of the non-
linear SRGB color specification described below.

Because linear coding of intensity fails to optimize the number of distinguishable
values, 8-bit linear pixel formats suffer from poor contrast ratios and banding artifacts;
their use with photographic imagery is not recommended. However, synthetic imagery
generated by other APIs such as OpenGL ES that make use of linear light may require
the use of linear formats. 8-bit linear coding is also appropriate for representing pseudo-
images such as coverage masks that are not based on perceptual light intensity.

Although computing directly with non-linear representations may lead to significant
errors compared with the results of first converting to a linear representation, it is
common industry practice in many imaging domains to do so. Because the cost of
performing linearization on pixel values to be interpolated or blended is considered
prohibitive for mobile devices in the near future, OpenVG may perform these operations
directly on non-linear code values. A future version of this specification may introduce
flags to force values to be converted to a linear representation prior to interpolation and
blending.

Version 1.1 Revision 1 (December 3, 2008)

Constants, Functions and Data Types 21

3.4.2 Color Space Definitions

The linear IRGB color space is defined in terms of the standard CIE XYZ color
space [WYSZ00], following ITU Rec. 709 [ITU90] using a D65 white point:

R = 3.240479 X —1.537150 Y —0.498535 Z
G =-0.969256 X +1.875992 Y +0.041556 Z
B = 0.055648 X—-0.204043 Y +1.057311 Z

The sRGB color space defines values R’;kgs, G'srcs, B'sres in terms of the linear
IRGB primaries by applying a gamma ()) mapping consisting of a linear segment
and an offset power function:

Ifx <0.00304
Ux)=12.92x
else
Yx) = 1.0556 x"** — 0.0556

The inverse mapping y' is defined as:

Ifx<0.03928
y'l(x) =x/12.92
else

y(x) = [(x + 0.0556) / 1.0556]**

To convert from IRGB to sRGB, the gamma mapping is used:

R,SRGB = KR)
G'srep = KG) (1)
B’sRGB = KB)

Version 1.1 Revision 1 (December 3, 2008)

Constants, Functions and Data Types 22

To convert from sSRGB to IRGB, the inverse gamma mapping is used:

R = V1 (RsraB)
G = V(G sres) (2)
B = V1 (B’sraB)

Because the gamma function involves offset and scaling factors, it behaves similarly to a
pure power function with an exponent of 1/2.2 (or approximately 0.45) rather than the
“advertised” exponent of 1/2.4, (or approximately 0.42).

The linear grayscale (luminance) color space (which we denote as IL) is related to the
linear IRGB color space by the equations:

L=02I26R+0.7152 G + 0.0722 B 3)
R=G=B=L (4)

The perceptually-uniform grayscale color space (which we denote as sL) is related to the
linear grayscale (luminance) color space by the gamma mapping:

L"=KL) ()
L=y'(L) (©)

Conversion from perceptually-uniform grayscale to sSRGB is performed by replication:
R=G'=B"=L (7)

The remaining conversions take place in multiple steps, as shown in Table 2 below. The
source format is indicated by the left column, and the destination format is indicated by
the top row. The numbers indicate the equations from this section that are to be applied,
in left-to-right order.

Version 1.1 Revision 1 (December 3, 2008)

Constants, Functions and Data Types 23

Source/Dest IRGB SRGB IL sL
IRGB — 1 3 3,5
sRGB 2 — 2,3 2,35
IL 4 4,1 — 5
sL 7.2 7 6 —

Table 2: Pixel Format Conversions

3.4.3 Premultiplied Alpha

In premultiplied alpha (or simply premultiplied) formats, a pixel (R, G, B, a) is
represented as (a*R, a*G, a*B, a). Alpha is always coded linearly, regardless of the color
space. The terms associated alpha and premultiplied alpha are synonymous.

In OpenVG, color interpolation takes place in premultiplied format in order to obtain
correct results for translucent pixels.

3.4.4 Color Format Conversion

Color values are converted between different formats and bit depths as follows. First,
premultiplied color values are clamped to the range [0, alpha] and non-zero alpha values
are divided out to obtain a non-premultiplied representation for the color.

If the source and destination color formats are of differing color spaces (i.e., linear RGB,
sRGB, linear grayscale, perceptually-uniform grayscale), each source channel is divided
by the maximum channel value to produce a number between 0 and 1. The color space
conversion is performed as described above. The resulting values are then scaled by the
maximum value for each destination channel.

If the source and destination formats have the same color format, but differ in the number
of bits per color channel, the source value is multiplied by the quotient (2¢ — 1)/(2° - I)
(where d is the number of bits in the destination and s is the number of bits in the source)
and rounded to the nearest integer.

The following approximation may be used in place of exact multiplication: If the source
channel has a greater number of bits than the destination, the most significant bits are
preserved and the least significant bits are discarded. If the source channel has a lesser
number of bits than the destination, the value is shifted left and the most significant bits
are replicated in the less significant bit positions. For example, a 5-bit source value

Version 1.1 Revision 1 (December 3, 2008)

Constants, Functions and Data Types 24

b4b3b2b1b0 will be converted to an 8-bit destination value b4b3b2b1b0b4b3b2. This rule
approximates the correct result since if d = k*s for some integer k > I the quotient (27—
/(2° — 1) will be an integer of the form 2% + 202 4+ 2¢ 4+] and multiplication
of an s-bit value by this value will be exactly equivalent to bit replication. When the
destination bit depth is not an integer multiple of the source bit depth, this rule still
provides greater accuracy than other possible approximations such as padding the source
with zeros or with copies of the rightmost bit.

Note that converting from a lesser to a greater number of bits and back again using
either exact scaling or the approximation will result in an unchanged value.

If the destination format has stored alpha, the previously saved alpha value is stored into
the destination. If the destination format has premultiplied alpha, each color channel
value is multiplied by the corresponding alpha value and the resulting values are clamped
to the range [0, alpha].

3.5 Enumerated Data Types

A number of data types are defined using the C enum keyword. In all cases, this
specification assigns each enumerated constant a particular integer value. Extensions to
the specification wishing to add new enumerated values must register with the Khronos
Group to receive a unique value (see Section 15).

Applications making use of extensions should cast the extension-defined integer value to
the proper enumerated type.

The enumerated types (apart from VGboolean) defined by OpenVG are:

+ VGBlendMode + VGMatrixMode

- VGCapStyle - VGPaintMode
VGColorRampSpreadMode VGPaintParamType
VGErrorCode VGPaintType
VGFillRule VGParamType
VGFontParamType VGPathAbsRel
VGHardwareQueryResult VGPathCapabilities
VGHardwareQueryType VGPathCommand
VGImageChannel VGPathDatatype
VGImageFormat VGPathParamType
VGImageMode VGPathSegment
VGImageParamType VGPixelLayout
VGImageQuality VGRenderingQuality
VGJoinStyle VGStringID
VGMaskOperation VGTilingMode

Version 1.1 Revision 1 (December 3, 2008)

Constants, Functions and Data Types 25

The VGU utility library defines the enumerated types:

« VGUArcType « VGUErrorCode

3.6 Handle-based Data Types

Images, paint objects, and paths are accessed using opaque handles. The use of
handles allows these potentially large and complex objects to be stored under
API control. For example, they may be stored in special memory and/or
formatted in a way that is suitable for use by a hardware implementation.
Handles are created relative to the current context, and may only be used as
OpenVG function parameters when that context or one of its shared contexts is
current.

Handles employ reference count semantics; if a handle is in use by the
implementation, a request to destroy the handle prevents the handle from being
used further by the application, but allows it to continue to be used internally by
the implementation until it is no longer referenced.

VGHandle

Handles make use of the VGHand1e data type. For reasons of binary compatibility
between different OpenVG implementations on a given platform, a VGHandle is
defined as a VGuint.

‘typedef VGuint VGHandle; I

Live handles to distinct objects must compare as unequal using the C == (double equals)
operator.

The VGHand1e subtypes defined in the API are:

- VGFont — a reference to font data (see Section 11)

+ VGImage — a reference to image data (see Section 10)

- VGMaskLayer — a reference to mask data (see Section 7.2)

+ VGPaint —a reference to a paint specification (see Section 9)
« VGPath — areference to path data (see Section 8)

Version 1.1 Revision 1 (December 3, 2008)

Constants, Functions and Data Types 26

VG_INVALID_HANDLE

The symbol VG_INVALID HANDLE represents an invalid VGHandle that is used as an
error return value from functions that return a VGHandle. VG_INVALID HANDLE is
defined as (VGHandle) 0.

#define VG_INVALID_HANDLE ((VGHandle)O0) |

Version 1.1 Revision 1 (December 3, 2008)

The Drawing Context 27

4 The Drawing Context

OpenVG functions that perform drawing, or that modify or query drawing state make use
of an implicit drawing context (or simply a context). A context is created, attached to a
drawing surface, and bound to a running application thread outside the scope of the
OpenVG API, for example by the Khronos EGL API. OpenVG API calls are executed
with respect to the context currently bound to the thread in which they are executed. A
call to any OpenVG API function when no drawing context is bound to the current thread
has no effect. The drawing context currently bound to a running thread is referred to as
the current context.

When an image, paint, path, font, or mask handle is defined, it is permanently attached to
the context that is current at that time. It is an error to use the handle as an argument to
any OpenVG function when a different context is active, unless that context has been
designated as a shared context of the original context by the API responsible for context
creation (usually EGL).

Images created by OpenVG may be used as the rendering target of a drawing context. All
drawing performed by any API that makes use of that context will use that image as the
drawing surface.

Passing an image that is currently the rendering target of a drawing context to
any OpenVG function (excluding vgGetParameter and vgDestroylmage) will
resultina VG_IMAGE IN USE ERROR. The image may once again be used by
OpenVG when it is no longer in use as a rendering target.

An image that is related to any other image (as defined in Section 10.6), or that is
set as a paint pattern image on a paint object or a glyph image on a font object,
may not be used as a rendering target. A parent image (one that was created by
vgCreateImage) may be used as a rendering target when all other images that
are related to it have been destroyed and it is not being used as a paint pattern
image on any paint object or as a glyph image on any font object.

It is possible to provide OpenVG on a platform without supporting EGL. In this case, the
host operating system must provide some alternative means of creating a context and
binding it to a drawing surface and a rendering thread.

The context is responsible for maintaining the API state, as shown in Table 3.

State Element Description
Drawing Surface Surface for drawing
Matrix Mode Transformation to be manipulated

Version 1.1 Revision 1 (December 3, 2008)

The Drawing Context

28

State Element

Description

Path user-to-surface

Transformation

Affine transformation for filled and stroked
geometry

Image user-to-surface

Transformation

Affine or projective transformation for
images

Paint-to-user

Transformations

Affine transformations for paint applied to
geometry

Glyph user-to-surface Transformation

Affine transformation for glyphs

Glyph origin

(X,Y) origin of a glyph to be drawn

Fill Rule

Rule for filling paths

Quality Settings

Image and rendering quality, pixel layout

Color Transformation

Color Transformation Function

Blend Mode Pixel blend function

Image Mode Image/paint combination function

Scissoring Current §cissoring rectangles and
enable/disable

Stroke Stroke parameters

Pixel and Screen layout

Pixel layout information

Tile fill color

Color for FILL tiling mode

Clear color

Color for fast clear

Filter Parameters

Image filtering parameters

Paint

Paint definitions

Mask

Coverage mask and enable/disable

Version 1.1 Revision 1 (December 3, 2008)

The Drawing Context 29

State Element Description

Error Oldest unreported error code

Table 3: State Elements of a Context

4.1 Errors

Some OpenVG functions may encounter errors. Unless otherwise specified, any
value returned from a function following an error is undefined.

All OpenVG functions may signal VG OUT OF MEMORY ERROR. This allows
implementations to defer memory allocation until it is needed, rather than
requiring them to proactively allocate memory only in certain functions that are
allowed to generate an error. Such an error may occur midway through the
execution of an OpenVG function, in which case the function may have caused
changes to the state of OpenVG or to drawing surface pixels prior to failure.

When an OpenVG function encounters an error other than a
VG_OUT_OF MEMORY ERROR, the context state is not modified and no drawing
takes place.

An error condition within an OpenVG function must never result in process termination,
with the exception of illegal memory accesses taking place within functions that accept
an application-provided pointer. Applications should take care to check return values
where provided. Functions that do not provide return values may still flag errors that
may be retrieved using the vgGetError function described below. Errors are stored
in the context in which the function was called.

All pointer arguments must be aligned according to their datatype, e.g., a VGfloat *
argument must be a multiple of 4 bytes.

VGErrorCode

The error codes and their numerical values are defined by the VGErrorCode
enumeration:

Version 1.1 Revision 1 (December 3, 2008)

The Drawing Context 30

typedef enum {

VG_NO_ERROR =0,

VG_BAD_ HANDLE ERROR = 0x1000,
VG_ILLEGAL ARGUMENT ERROR = 0x1001,
VG_OUT OF MEMORY ERROR = 0x1002,
VG _PATH CAPABILITY ERROR = 0x1003,
VG_UNSUPPORTED IMAGE FORMAT ERROR = 0x1004,
VG_UNSUPPORTED PATH FORMAT ERROR = 0x1005,
VG _IMAGE IN USE_ERROR = 0x1006,
VG_NO_CONTEXT ERROR = 0x1007

} VGErrorCode;

vgGetError

vgGetError returns the oldest error code provided by an API call on the current
context since the previous call to vgGetError on that context (or since the
creation of the context). No error is indicated by a return value of 0 (VG_NO ERROR).
After the call, the error code is cleared to 0. The possible errors that may be generated by
each OpenVG function (apart from VG_OUT_ OF MEMORY ERROR) are shown below
the definition of the function.

If no context is current at the time vgGetError is called, the error code
VG_NO_CONTEXT ERROR is returned. Pending error codes on existing contexts are not

affected by the call.

VGErrorCode vgGetError (void)

4.2 Manipulating the Context Using EGL

Most OpenVG implementations are expected to make use of version 1.2 or later of the
EGL API to obtain drawing contexts. This section provides only a partial, non-normative
description of some aspects of the use of EGL that are specific to OpenVG. Refer to the
EGL 1.2 specification for more details.

4.2.1 EGLConfig Attributes

An EGLConfig describes the capabilities of a configuration. Each EGLConfig
encapsulates a set of attributes and their values.

EGL_OPENVG_BIT

EGLConfigs that may be used with OpenVG will have the bit EGL OPENVG BIT set
in their EGL RENDERABLE TYPE attribute.

Version 1.1 Revision 1 (December 3, 2008)

The Drawing Context 31

EGL_ALPHA_MASK_SIZE

The EGL ALPHA MASK SIZE attribute contains the bit depth of the mask associated
with a configuration. Masking will take place in the OpenVG pipeline only if the bit
depth for the drawing surface mask is greater than zero.

4.2.2 EGL Functions

eg/BindAPI

EGL has a notion of the current rendering API. This setting acts as an implied parameter
to some EGL functions. To set OpenVG as the current rendering API in EGL, it is
necessary to call eglBindAPI with an api argument of EGL_OPENVG API:

‘EGLBoolean eglBindAPI (EGLenum api) I

eglCreateContext

Once eglBindAPI has been called to set OpenVG as the current rendering API, an EGL
context that is suitable for use with OpenVG may be obtained by calling
eglCreateContext. An existing OpenVG context may be passed in as the

share context parameter; any VGPath and VGImage objects defined in

share context will be accessible from the new context, and vice versa. If no sharing
1s desired, the value EGL NO CONTEXT should be used.

EGLContext eglCreateContext (EGLDisplay dpy,
EGLConfig config,
EGLContext share context,
const EGLint * attrib list)

eglCreateWindowSurface

Drawing takes place onto an EGLSurface. An EGLSurface may be created from a
platform native window using eglCreateWindowSurface. It is possible to request
single-buffered rendering, in which drawing takes place directly to the visible window,
using the attrib 1ist parameter to set the EGL RENDER BUFFER attribute to a
value of EGL SINGLE BUFFER. Implementations that do not support single-buffered
rendering may ignore this setting. Applications should query the returned surface to
determine if it is single- or double-buffered.

EGLSurface eglCreateWindowSurface (EGLDisplay dpy,
EGLConfig config,
NativeWindowType win,

const EGLint *attrib list);

Version 1.1 Revision 1 (December 3, 2008)

The Drawing Context 32

eglCreatePbufferFromClientBuffer

An EGLSurface that allows rendering into a VGImage (see Section 10) may be created
by binding the VGImage to a Pbuffer (off-screen buffer). EGL defines the function
eglCreatePbufferFromClientBuffer, which may be used with a buftype argument of
EGL OPENVG IMAGE. The VGImage to be targeted is cast to the
EGLClientBuffer type and passed as the buf fer parameter.

If EGL is used with OpenVG, the version of EGL used must support the creation of a
Pbuffer from a VGImage either as part of its core functionality or by means of an
extension.

EGLSurface eglCreatePbufferFromClientBuffer (EGLDisplay dpy,
EGLenum buftype,
EGLClientBuffer buffer,
EGLConfig config,

const EGLint *attrib list)

eglMakeCurrent

The eglMakeCurrent function causes a given context to become current on the running
thread. Any context that is current on the thread prior to the call is flushed and marked as
no longer current.

EGLBoolean eglMakeCurrent (EGLDisplay dpy,
EGLSurface draw,
EGLSurface read,
EGLContext ctx)

eglGetCurrentContext

The OpenVG context for the current rendering API that is bound to the current thread
may be retrieved by calling eglGetCurrentContext:

EGLContext eglGetCurrentContext ()

eglDestroyContext
An EGL context is destroyed by calling eglDestroyContext.

‘EGLBoolean eglDestroyContext (EGLDisplay display, EGLContext context) I

eglSwapBuffers

When drawing occurs in double-buffered mode, all drawing takes place into an invisible
back buffer, and it is necessary to call eglSwapBuffers to force the buffer contents to be
copied to the visible window. If the visible buffer has a lesser color bit depth than the

Version 1.1 Revision 1 (December 3, 2008)

The Drawing Context 33

back buffer, dithering may be performed as part of the buffer copy operation.

EGLBoolean eglSwapBuffers (EGLDisplay dpy,
EGLSurface surface);

4.3 Forcing Drawing to Complete

OpenVG provides functions to force the completion of rendering, in order to allow
applications to synchronize between multiple rendering APIs.

vgFlush

The vgFlush function ensures that all outstanding requests on the current context will
complete in finite time. vgFlush may return prior to the actual completion of all requests.

void vgFlush (void)

vgFinish

The vgFinish function forces all outstanding requests on the current context to
complete, returning only when the last request has completed.

void vgFinish (void)

Version 1.1 Revision 1 (December 3, 2008)

Setting API Parameters 34

5 Setting APl Parameters

API parameters may be set and retrieved using generic get and set functions. The use of
generic functions allows for extensibility of the API without the addition of additional
functions. Extensions may receive unique identifier values for new parameter types by
registering with the Khronos group.

Parameters take two forms: some are set relative to a rendering context, and others are
set on a particular VGHand1e-based object. The former make use of the vgSet and
vgGet functions and the latter make use of the vgSetParameter and vgGetParameter
functions.

5.1 Context Parameter Types

Parameter types that are set on a rendering context are defined in the VGParamType

enumeration. The datatype and default value associated with each parameter is shown in
Table 4.

VGParamType

The VGParamType enumeration defines the parameter type of the value to be
set or retrieved using vgSet and vgGet:

typedef enum {
/* Mode settings */

VG_MATRIX MODE = 0x1100,
VG_FILL RULE = 0x1101,
VG_IMAGE QUALITY = 0x1102,
VG_RENDERING QUALITY = 0x1103,
VG_BLEND MODE = 0x1104,
VG_IMAGE MODE = 0x1105,
/* Scissoring rectangles */

VG_SCISSOR RECTS = 0x1106,
/* Color Transformation */

VG_COLOR TRANSFORM = 0x1170,
VG _COLOR TRANSFORM VALUES = 0x1171,

Version 1.1 Revision 1 (December 3, 2008)

Setting API Parameters

35

/* Stroke parameters */
VG_STROKE LINE WIDTH
VG_STROKE CAP_STYLE
VG_STROKE_JOIN STYLE
VG_STROKE MITER LIMIT
VG_STROKE DASH PATTERN
VG_STROKE DASH PHASE

VG _STROKE DASH PHASE RESET

/* Edge fill color for VG TILE

VG_TILE FILL COLOR

/* Color for vgClear */
VG CLEAR COLOR

/* Glyph origin */
VG_GLYPH ORIGIN

/* Enable/disable masking and s
VG_MASKING
VG _SCISSORING

/* Pixel layout information */
VG_PIXEL_LAYOUT
VG_SCREEN_ LAYOUT

/* Source format selection for
VG_FILTER FORMAT LINEAR
VG_FILTER_FORMAT_PREMULTIPLIED

/* Destination write enable mas
VG_FILTER_CHANNEL_MASK

/* Implementation limits (read-

VG_MAX SCISSOR_RECTS

VG_MAX DASH COUNT

VG_MAX KERNEL SIZE

VG _MAX SEPARABLE KERNEL SIZE

VG_MAX COLOR RAMP STOPS

VG_MAX IMAGE WIDTH

VG_MAX IMAGE HEIGHT

VG MAX IMAGE PIXELS

VG _MAX IMAGE BYTES

VG_MAX_ FLOAT

VG _MAX GAUSSIAN STD DEVIATION
} VGParamType;

= 0x1110,
0x1111,
= 0x1112,
0x1113,
0x1114,
0x1115,
= 0Ox1l1l1le,

FILL tiling mode */
= 0x1120,

= 0x1121,

= 0x1122,

cissoring */
= 0x1130,
= 0x1131,

0x1140),
= 0x1141,

image filters */
= 0x1150,
= 0x1151,

k for image filters */
= 0x1152,

only) */
= 0x1160,
= 0x1161,
0x1162,
= 0x1163,
Ox1l64,
0x1165,
0x1166,
= 0x1167,
0x1168,
0x1169,
= 0x116A

Version 1.1 Revision 1 (December 3, 2008)

Setting API Parameters 36

5.2 Setting and Querying Context Parameter Values

Each vgGet/vgGetParameter or vgSet/vgSetParameter function has four variants,
depending on the data type of the value being set, differentiated by a suffix: i for scalar
integral values, f for scalar floating-point values, and iv and fv for vectors of integers and
floating-point values, respectively. The vector variants may also be used to set scalar
values using a count of 1. When setting a value of integral type using a floating-point
vgSet variant (ending with f or fv), or retrieving a floating-point value using an integer
vgGet function (ending with i or iv), the value is converted to an integer using a
mathematical floor operation. If the resulting value is outside the range of integer values,
the closest valid integer value is substituted.

The count parameter used by the array variants (ending with iv or fv) limits the number
of values that are read from the values array parameter. For parameters that require a
fixed number of values (e.g., color values of type VGfloat [4]), count must have the
appropriate value. For parameters that place restrictions on the number of values that
may be accepted (e.g., that it be a multiple of a specific number, as for scissor rectangles
which are specified as a set of 4-tuples), count must obey the restriction. For
parameters that accept an arbitrary number of values up to some maximum number (e.g.,
dash patterns), all count specified values up to the maximum are used and values
beyond the maximum are ignored. If the count parameter is 0, the pointer argument is not
dereferenced. For example, the call vgSet (VG_STROKE DASH PATTERN, 0,
(void *) 0) sets the dash pattern to a zero-length array (which has the effect of
disabling dashing) without dereferencing the third parameter. If an error occurs due to an
inappropriate value of count, the call has no effect on the parameter value.

Certain parameter values are read-only. Calling vgSet or vgSetParameter on these
values has no effect.

vgSet
The vgSet functions set the value of a parameter on the current context.

void vgSetf (VGParamType paramType, VGfloat value)

void vgSeti (VGParamType paramType, VGint value)

void vgSetfv (VGParamType paramType, VGint count,
const VGfloat * values)

void vgSetiv (VGParamType paramType, VGint count,

const VGint * values)

Version 1.1 Revision 1 (December 3, 2008)

Setting API Parameters 37

ERRORS
VG_ILLEGAL ARGUMENT ERROR

- if paramType is not a valid value from the VGParamType enumeration
- if paramType refers to a vector parameter in vgSetf or vgSeti

- if paramType refers to a scalar parameter in vgSetfv or vgSetiv and count is
not equal to 1

- if value is not a legal enumerated value for the given parameter in vgSetf or
vgSeti, or if values[i] is not a legal enumerated value for the given parameter
in vgSetfv or vgSetiv for 0 <i < count

- if values is NULL in vgSetfv or vgSetiv and count is greater than 0
- if values is not properly aligned in vgSetfv or vgSetiv
- if count is less than 0 in vgSetfv or vgSetiv

if count is not a valid value for the given parameter

For example, to set the blending mode to the integral value VG_BLEND SRC OVER
(see Section 13.6), the application would call:

vgSeti (VG_BLEND_MODE, VG_BLEND_SRC_OVER) ; 1

vgGet and vgGetVectorSize

The vgGet functions return the value of a parameter on the current context.

The vgGetVectorSize function returns the maximum number of elements in the vector
that will be retrieved by the vgGetiv or vgGetfv functions if called with the given
paramType argument. For scalar values, 1 is returned. If vgGetiv or vgGetfv is
called with a smaller value for count than that returned by vgGetVectorSize,
only the first count elements of the vector are retrieved. Use of a greater value
for count will result in an error.

The original value passed to vgSet (except as specifically noted, and provided the call to
vgSet completed without error) is returned by vgGet, even if the implementation makes
use of a truncated or quantized value internally. This rule ensures that OpenVG state may
be saved and restored without degradation.

If an error occurs during a call to vgGetf, vgGeti, or vgGetVectorSize, the return value
is undefined. If an error occurs during a call to vgGetfv or vgGetiv, nothing is

Version 1.1 Revision 1 (December 3, 2008)

Setting API Parameters 38

written to values.

VGfloat vgGetf (VGParamType paramType)
VGint vgGeti (VGParamType paramType)

VGint vgGetVectorSize (VGParamType paramType)

void vgGetfv (VGParamType paramType, VGint count, VGfloat * wvalues)
void vgGetiv (VGParamType paramType, VGint count, VGint * values)

ERRORS
VG _ILLEGAL ARGUMENT ERROR

- if paramType refers to a vector parameter in vgGetf or vgGeti

if paramType is not a valid value from the VGParamType enumeration

- if values is NULL in vgGetfv or vgGetiv
- if values is not properly aligned in vgGetfv or vgGetiv
- if count is less than or equal to 0 in vgGetfv or vgGetiv

- if count is greater than the value returned by vgGetVectorSize for the
given parameter in vgGetfv or vgGetiv

5.2.1 Default Context Parameter Values

When a new OpenVG context is created, it contains default values as shown in Table 4.
Note that some tokens have been split across lines for reasons of space.

Parameter Datatype Default Value
. VG MATRIX PATH USER
VG MATRIX MODE VGMatrixMode IO SURFACE
VG FILL RULE VGFillRule VG _EVEN_ODD
VG IMAGE QUALITY VGImageQuality |VG IMAGE QUALITY FASTER
VG RENDERING QUALITY VGRendering VG RENDERING QUALITY BETTER
— — Quality — — —
VG_BLEND_ MODE VGBlendMode VG BLEND SRC_OVER
VG IMAGE MODE VGImageMode VG DRAW IMAGE NORMAL

Version 1.1 Revision 1 (December 3, 2008)

Setting API Parameters 39

Parameter Datatype Default Value
VG_SCISSOR _RECTS VGint * { } (array of length 0)
VG _COLOR TRANSFORM VGboolean VG FALSE (disabled)
VG _COLOR TRANSFORM VALUES |VGfloat[8] ({)(l)f}f’ 1.0f, 1.0f, 1.0f, 0.0, 0.0f, 0.0f,
VG_STROKE LINE WIDTH VGfloat 1.0f
VG_STROKE CAP STYLE VGCapStyle VG_CAP BUTT
VG_STROKE JOIN STYLE VGJoinStyle VG_JOIN MITER
VG_STROKE MITER LIMIT VGfloat 4.0f
VG _STROKE DASH PATTERN VGfloat * { } (array of length 0) (disabled)
VG _STROKE DASH PHASE VGfloat 0.0f
VG _STROKE DASH PHASE 4
RESET VGboolean VG_FALSE (disabled)
VG _TILE FILL COLOR VGfloat [4] { 0.0f, 0.0f, 0.0f, 0.0f }
VG CLEAR COLOR VGfloat [4] { 0.0f, 0.0f, 0.0f, 0.0f }
VG_GLYPH ORIGIN VGfloat[2] {0.0f, 0.0f }
VG MASKING VGboolean VG_FALSE (disabled)
VG_SCISSORING VGboolean VG FALSE (disabled)
VG _PIXEL LAYOUT VGPixelLayout |VG PIXEL LAYOUT UNKNOWN
VG _SCREEN LAYOUT VGPixelLayout Layout of the drawing surface
VG _FILTER FORMAT LINEAR |VGboolean VG_FALSE (disabled)
VG _FILTER FORMAT .
PREMULTIPLIED VGboolean VG_FALSE (disabled)

e (VG_RED | VG GREEN |

VG_FILTER CHANNEL MASK VGbitfield VG BLUE | VG ALPHA)

Table 4: Default Parameter Values for a Context

The read-only parameter values VG MAX SCISSOR RECTS,

Version 1.1 Revision 1 (December 3, 2008)

Setting API Parameters 40

VG _MAX DASH COUNT, VG MAX KERNEL STZE,

VG _MAX SEPARABLE KERNEL SIZE, VG MAX GAUSSIAN STD DEVIATION,
VG _MAX COLOR RAMP STOPS, VG MAX IMAGE WIDTH,

VG _MAX IMAGE HEIGHT, VG_MAX IMAGE PIXELS, VG MAX IMAGE BYTES,
and VG_MAX FLOAT are initialized to implementation-defined values.

The VG_SCREEN_ LAYOUT parameter is initialized to the current layout of the
display device containing the current drawing surface, if applicable.

The matrices for matrix modes VG MATRIX PATH USER TO SURFACE,

VG MATRIX IMAGE USER TO_ SURFACE,
VG_MATRIX GLYPH USER TO SURFACE,

VG _MATRIX FILL PAINT TO USER, and

VG_MATRIX STROKE PAINT TO USER are initialized to the identity matrix
(see Section 6.5):

sx shx 1x 1 00

shy sy t|=0 1 0

w, W, W, 0 0 1
By default, no paint object is set for filling or stroking paint modes. The default
paint parameter values are used instead, as described in Section 9.1.3.

5.3 Setting and Querying Object Parameter Values

Objects that are referenced using a VGHandle (i.e., VGImage, VGPaint, VGPath,
VGFont, and VGMaskLayer objects) may have their parameters set and queried using
a number of vgSetParameter and vgGetParameter functions. The semantics of these
functions (including the handling of invalid count values) are similar to those of the

vgGet and vgSet functions.

vgSetParameter

The vgSetParameter functions set the value of a parameter on a given VGHandle-
based object.

Version 1.1 Revision 1 (December 3, 2008)

Setting API Parameters 41

void vgSetParameterf (VGHandle object, VGint paramType,
VGfloat value)

void vgSetParameteri (VGHandle object, VGint paramType,
VGint value)

void vgSetParameterfv (VGHandle object, VGint paramType,
VGint count, const VGfloat * values)

void vgSetParameteriv (VGHandle object, VGint paramType,
VGint count, const VGint * values)

ERRORS
VG_BAD_ HANDLE_ ERROR

- if object is not a valid handle, or is not shared with the current context

VG ILLEGAL ARGUMENT ERROR
- if paramType is not a valid value from the appropriate enumeration

- if paramType refers to a vector parameter in vgSetParameterf or
vgSetParameteri

- if paramType refers to a scalar parameter in vgSetParameterfv or
vgSetParameteriv and count is not equal to 1

- if value is not a legal enumerated value for the given parameter in
vgSetParameterf or vgSetParameteri, or if values [i] is not a legal
enumerated value for the given parameter in vgSetParameterfv or
vgSetParameteriv for 0 <i<count

- if values is NULL in vgSetParameterfv or vgSetParameteriv and count is
greater than 0

- if values is not properly aligned in vgSetParameterfv or vgSetParameteriv

- if count is less than 0 in vgSetParameterfv or vgSetParameteriv

if count is not a valid value for the given parameter

vgGetParameter and vgGetParameterVectorSize

The vgGetParameter functions return the value of a parameter on a given VGHandle-
based object.

The vgGetParameterVectorSize function returns the number of elements in the vector

Version 1.1 Revision 1 (December 3, 2008)

Setting API Parameters 42

that will be returned by the vgGetParameteriv or vgGetParameterfv functions if called
with the given paramType argument. For scalar values, 1 is returned. If
vgGetParameteriv or vgGetParameterfv is called with a smaller value for

count than that returned by vgGetParameterVectorSize, only the first count
elements of the vector are retrieved. Use of a greater value for count will result
in an error.

The original value passed to vgSetParameter (provided the call to
vgSetParameter completed without error) should be returned by
vgGetParameter (except where specifically noted), even if the implementation
makes use of a truncated or quantized value internally.

If an error occurs during a call to vgGetParameterf, vgGetParameteri, or
vgGetParameterVectorSize, the return value is undefined. If an error occurs
during a call to vgGetParameterfv or vgGetParameteriv, nothing is written to
values.

VGfloat vgGetParameterf (VGHandle object,
VGint paramType)
VGint vgGetParameteri (VGHandle object,
VGint paramType)

VGint vgGetParameterVectorSize (VGHandle object,
VGint paramType)

void vgGetParameterfv (VGHandle object,

VGint paramType,

VGint count, VGfloat * values)
void vgGetParameteriv (VGHandle object,

VGint paramType,

VGint count, VGint * wvalues)

Version 1.1 Revision 1 (December 3, 2008)

Setting API Parameters 43

ERRORS
VG_BAD_HANDLE_ERROR

if object is not a valid handle, or is not shared with the current context

VG_ILLEGAL_ARGUMENT_ERROR

if paramType is not a valid value from the appropriate enumeration

if paramType refers to a vector parameter in vgGetParameterf or
vgGetParameteri

if values is NULL in vgGetParameterfv or vgGetParameteriv
if values is not properly aligned in vgGetParameterfv or vgGetParameteriv
if count is less than or equal to 0 in vgGetParameterfv or vgGetParameteriv

if count is greater than the value returned by vgGetParameterVectorSize for
the given parameter in vgGetParameterfv or vgGetParameteriv

Version 1.1 Revision 1 (December 3, 2008)

Rendering Quality and Antialiasing 44

6 Rendering Quality and Antialiasing

Rendering quality settings are available to control implementation-specific trade-offs
between quality and performance. For example, an application might wish to use the
highest quality setting for still images, and the fastest setting during UI operations or
animation. The implementation must satisfy conformance requirements regardless of the
quality setting.

A non-antialiased mode is provided for single-sampled drawing surfaces in which pixel
coverage is always assigned to be 0 or 1, based on the inclusion of the pixel center in the
geometry being rendered. When antialiasing is disabled, a coverage value of 1 will be
assigned to each pixel whose center lies within the estimated path geometry, and a
coverage value of 0 will be assigned otherwise. A consistent tie-breaking rule must be
used for paths that pass through pixel centers.

For purposes of estimating whether a pixel center is included within a path,
implementations may make use of approximations to the exact path geometry, providing
that the following constraints are met. Conceptually, draw a disc D around each pixel
center with a radius of just under 'z a pixel (in topological terms, an open disc of radius
’2) and consider its intersection with the exact path geometry:

1. If D is entirely inside the path, the coverage at the pixel center must be
estimated as 1;

2. If D is entirely outside the path, the coverage at the pixel center must be
estimated as 0O;

3. If D lies partially inside and partially outside the path, the coverage may
be estimated as either 0 or 1 subject to the additional constraints that:
a. The estimation is deterministic and invariant with respect to state
variables apart from the current user-to-surface transformation, path
coordinate geometry, and clipping due to different drawing surface
dimensions; and
b. For two disjoint paths that share a common segment, if D is partially
covered by each path and completely covered by the union of the paths,
the coverage must be estimated as 1 for exactly one of the paths. A
segment is considered common to two paths if and only if both paths
have the same path format, path datatype, scale, and bias, and the
segments have bit-for-bit identical segment types and coordinate values,
possibly in flipped order. If the segment is specified using relative
coordinates, any preceding segments that may influence the segment
must also have identical segment types and coordinate values.

Version 1.1 Revision 1 (December 3, 2008)

Rendering Quality and Antialiasing 45

Non-antialiased rendering may be useful for previewing results or for techniques such as
picking (selecting the geometric primitive that appears at a given screen location) that
require a single geometric entity to be associated with each pixel after rendering has
completed.

Applications may indicate the sub-pixel color layout of the display in order to optimize
rendering quality.

6.1 Rendering Quality

The overall rendering quality may be set to one of three settings: non-antialiased, faster,
or better. These settings do not affect rendering to multisampled surfaces; for such
surfaces, each sample is evaluated independently and antialiasing occurs automatically as
part of the process of resolving multiple samples into pixels.

VGRenderingQuality

The VGRenderingQuality enumeration defines the values for setting the rendering
quality:

typedef enum {
VG_RENDERING QUALITY NONANTIALIASED = 0x1200,
VG RENDERING QUALITY FASTER 0x1201,
VG _RENDERING QUALITY BETTER 0x1202 /* Default */
VGRenderingQuality;

The VG_RENDERING QUALITY NONANTIALIASED setting disables antialiasing
when used with a single-sampled drawing surface.

The VG RENDERING QUALITY FASTER setting causes rendering to be done at the
highest available speed, while still satisfying all API conformance criteria. The
VG_RENDERING QUALITY BETTER setting, which is the default, causes rendering to
be done with the highest available quality.

The vgSet function is used to control the quality setting to one of
VG _RENDERING QUALITY NONANTIALIASED,

VG _RENDERING QUALITY FASTER, Oor VG RENDERING QUALITY BETTER:
vgSeti (VG_RENDERING QUALITY, VG RENDERING QUALITY NONANTIALIASED) ;

vgSeti (VG_RENDERING QUALITY, VG RENDERING QUALITY FASTER):;
vgSeti (VG_RENDERING QUALITY, VG RENDERING QUALITY BETTER) ;

Version 1.1 Revision 1 (December 3, 2008)

Rendering Quality and Antialiasing 46

6.2 Additional Quality Settings

VGPixelLayout

The VGPixelLayout enumeration describes a number of possible geometric layouts
of the red, green, and blue emissive or reflective elements within a pixel. This
information may be used as a hint to the rendering engine to improve rendering
quality. The supported pixel layouts are illustrated in Figure 2.

typedef enum {

VG_PIXEL LAYOUT UNKNOWN = 0x1300,
VG_PIXEL LAYOUT RGB VERTICAL = 0x1301,
VG_PIXEL LAYOUT BGR VERTICAL = 0x1302,
VG_PIXEL LAYOUT RGB HORIZONTAL = 0x1303,
VG_PIXEL LAYOUT BGR HORIZONTAL = 0x1304

} VGPixelLayout;

The pixel layout of the display device associated with the current drawing
surface may be queried using vgGeti with a paramType value of

VG_SCREEN LAYOUT. The value VG_PIXEL LAYOUT UNKNOWN may indicate
that the color elements of a pixel are geometrically coincident, or that no layout
information is available to the implementation.

To provide the renderer with a pixel layout hint, use vgSeti with a paramType
value of VG_PIXEL LAYOUT and a value from the VGPixelLayout
enumeration. The value VG_PIXEL LAYOUT UNKNOWN disables any
optimizations based on pixel layout, treating the color elements of a pixel as
geometrically coincident. Reading back the value of VG PIXEL LAYOUT with
vgGet simply returns the value set by the application or the default value and
does not reflect the properties of the drawing surface.

Version 1.1 Revision 1 (December 3, 2008)

Rendering Quality and Antialiasing 47

RGB_VERTICAL BGR VERTICAL

RGB_HORIZONTA
L

BGR_ HORIZONTAL

Figure 2: VGPixelLayout Values

6.3 Coordinate Systems and Transformations

Geometry is defined in a two-dimensional coordinate system that may or may not
correspond to pixel coordinates. Drawing may be performed independently of the details
of screen size, resolution, and drawing area by establishing suitable transformations
between coordinate systems.

6.4 Coordinate Systems

Geometric coordinates are specified in the user coordinate system. The path-user-to-
surface and image-user-to-surface transformations map between the user coordinate
system and pixel coordinates on the destination drawing surface. This pixel-based
coordinate system is known as the surface coordinate system. The relationship between
the user and surface coordinate systems and the transformations that map between them
is shown in Figure 3 below.

The user coordinate system is oriented such that values along the X axis increase from
left to right and values along the Y axis increase from bottom to top, as in OpenGL.
When the user-to-surface transformation is the identity transformation, a change of 1 unit
along the X axis corresponds to moving by one pixel.

In the surface coordinate system, pixel (0, 0) is located at the lower-left corner of the

drawing surface. The pixel (x, y) has its center at the point (x + %, y + /). Antialiasing
filters used to evaluate the color or coverage of a pixel are centered at the pixel center. If

Version 1.1 Revision 1 (December 3, 2008)

Rendering Quality and Antialiasing 48

antialiasing is disabled, the evaluation of each pixel occurs at its center.

6.5 Transformations

Geometry is defined in the user coordinate system, and is ultimately transformed into
surface coordinates and assigned colors by means of a set of user-specified
transformations that apply to geometric path data and to paint.

6.5.1 Homogeneous Coordinates

Homogeneous coordinates are used in order to allow translation factors to be included in
the affine matrix formulation, as well as to allow perspective effects for images. In
homogeneous coordinates, a two-dimensional point (x, y) is represented by the three-
dimensional column vector [x, y, I]". The same point may be equivalently represented by
the vector [s*x, s*y, s]” for any non-zero scale factor s. More detailed explanations of the

use of homogeneous coordinates may be found in most standard computer graphics
textbooks, for example [FVDFH95].

Surface Coordinates

u

Usé“r\C‘c’jb}&‘ifnates Clipping and Scissoring
Drawing

Surface

Scissoring Bounds

|

Rectangles

~

Figure 3: Coordinates, Transformation, Clipping, and Scissoring

Version 1.1 Revision 1 (December 3, 2008)

Rendering Quality and Antialiasing 49

6.5.2 Affine Transformations

Geometric objects to be drawn are transformed from user coordinates to surface
coordinates as they are drawn by means of a 3x3 affine transformation matrix with the
following entries:

sx shx tx

shy sy ty
0 0 1

The entries may be divided by their function:

+ sx and sy define scaling in the x and y directions, respectively;
+ shx and shy define shearing in the x and y directions, respectively;
« tx and ¢y define translation in the x and y directions, respectively.

An affine transformation maps a point (x, y) (represented using homogeneous
coordinates as the column vector [x, y, /]7) into the point (x*sx + y*shx + tx, x*shy + y*sy

+ ty) using matrix multiplication:

sx shx tx X*s5x + y*shx +ix

X
shy sy ty|| y|=| xxshy + y*sy +iy
0 0 1|1 1

Affine transformations allow any combination of scaling, rotation, shearing, and
translation. The concatenation of two affine transformations is an affine transformation,
whose matrix form is the product of the matrices of the original transformations.

Gradients and patterns are subject to an additional affine transformation mapping the
coordinate system used to specify the gradient parameters into user coordinates. The
path-user-to-surface transformation is then applied to yield surface coordinates.

OpenVG does not provide the notion of a hierarchy of transformations; applications
must maintain their own matrix stacks if desired.

6.5.3 Projective (Perspective) Transformations

The vgDrawlImage function uses a 3x3 projective (or perspective) transformation
matrix (representing the image-user-to-surface transformation) with the following entries
to transform from user coordinates to surface coordinates:

Version 1.1 Revision 1 (December 3, 2008)

Rendering Quality and Antialiasing 50

shy sy ty
Wy W, W,

A projective transformation maps a point (x, y) into the point:

X*8X +y*shx +ix x*shy+ y*sy+ty

X*kW,+y*kw, +w, xkw,+ yEw, +w
0 1 2 0 1 2

using matrix multiplication and division by the third homogeneous coordinate:

X*85x+ y*shx+ix
sx shx x| | x x*sx+ y*shx +1x Xkw,+ykw, +w,
shy sy || y|=| xxshy+yxsy+ty |S| x*shy+y*sy+ty
w, w, w,| |1 X*Wot+ y*Ew,+w, X*W,+y*w,+w,

1

The concatenation of two projective transformations is a projective transformation,
whose matrix form is the product of the matrices of the original transformations.

Both affine and projective transformations map straight lines to straight lines. However,
affine transformations map evenly spaced points along a source line to evenly spaced
points in the destination, whereas projective transformations allow the distance between

points to vary due to the effect of division by the denominator d = (x*w, + y*w; + w»).

Although OpenVG does not provide support for three-dimensional coordinates, proper
setting of the w matrix entries can simulate the effect of placement of images in three
dimensions, as well as other warping effects.

6.6 Matrix Manipulation

Transformation matrices are manipulated using the vgLoadIdentity, vgLoadMatrix,
and vgMultMatrix functions. For convenience, the vgTranslate, vgScale, vgShear,
and vgRotate functions may be used to concatenate common types of transformations.

The matrix conventions used by OpenVG are similar to those of OpenGL. A point to be
transformed is given by a homogeneous column vector [x, y, /]". Transformation of a
point p by a matrix M is defined as the product M-p. Concatenation of transformations is
performed using right-multiplication of matrices.

In the following sections, the matrix being updated by each call will be represented by

Version 1.1 Revision 1 (December 3, 2008)

Rendering Quality and Antialiasing 51

the symbol M.

VGMatrixMode

The current matrix to be manipulated is specified by setting the matrix mode. Separate
matrices are maintained for transforming paths, images, and paint (gradients and
patterns). The matrix modes are defined in the VGMatrixMode enumeration:

typedef enum {
VG _MATRIX PATH USER TO SURFACE
VG_MATRIX IMAGE USER TO SURFACE

0x1400,
0x1401,

VG_MATRIX FILL PAINT TO USER = 0x1402,
0x1403,
0x1404

VG_MATRIX STROKE PAINT TO USER
VG_MATRIX GLYPH USER TO SURFACE
} VGMatrixMode;

To set the matrix mode, call vgSeti with a type of VG MATRIX MODE and a value of
VG _MATRIX *.Forexample, to set the matrix mode to allow manipulation of the path-
user-to-surface transformation, call:

vgSeti (VG_MATRIX MODE, VG _MATRIX PATH USER TO_ SURFACE) ;

vglLoadldentity

The vgLoadldentity function sets the current matrix M to the identity matrix:

1]
e
= =)
—_ O O

void vgLoadIdentity (void)

vgLoadMatrix

The vgLoadMatrix function loads an arbitrary set of matrix values into the current
matrix. Nine matrix values are read from m, in the order:

{ sx, shy, wy, shx, sy, wi, tx, ty, w, }

defining the matrix:

sx shx tx
M= shy sy ty

Version 1.1 Revision 1 (December 3, 2008)

Rendering Quality and Antialiasing 52

However, if the targeted matrix is affine (i.e., the matrix mode is not
VG _MATRIX IMAGE USER TO SURFACE), the values { wy w;, w, } are ignored and
replaced by the values { 0, 0, 1 }, resulting in the affine matrix:

sx shx tx
M= shy sy v
0 0 1

void vgLoadMatrix (const VGfloat * m)

ERRORS
VG _ILLEGAL ARGUMENT ERROR

- ifmis NULL

- if mis not properly aligned

vgGetMatrix

It is possible to retrieve the value of the current transformation by calling vgGetMatrix.
Nine values are written to m in the order:

{ sx, shy, wy, shx, sy, wy, tx, ty, w, }

For an affine matrix, wy and w; will always be 0 and w, will always be 1.

void vgGetMatrix (VGfloat * m)

ERRORS
VG ILLEGAL ARGUMENT ERROR

- ifmis NULL

- if mis not properly aligned

Version 1.1 Revision 1 (December 3, 2008)

Rendering Quality and Antialiasing 53

vgMultMatrix

The vgMultMatrix function right-multiplies the current matrix M by a given matrix:

s shx ix
Me—M:\shy sy ty

Wy Wi W,
Nine matrix values are read from m in the order:
{ sx, shy, wy, shx, sy, wy, tx, ty, w, }

and the current matrix is multiplied by the resulting matrix. However, if the
targeted matrix is affine (i.e., the matrix mode is not

VG MATRIX IMAGE USER TO SURFACE), the values { w, w; w,} are ignored
and replaced by the values { 0, 0, 1 } prior to multiplication.

void vgMultMatrix (const VGfloat * m)

ERRORS
VG _ILLEGAL ARGUMENT ERROR

- ifmis NULL

- if m is not properly aligned

vgTranslate

The vgTranslate function modifies the current transformation by appending a
translation. This is equivalent to right-multiplying the current matrix M by a translation
matrix:

M M-

S O~
S~ O

ix
ty
1

‘void vgTranslate (VGfloat tx, VGfloat ty) I

Version 1.1 Revision 1 (December 3, 2008)

Rendering Quality and Antialiasing 54

vgScale

The vgScale function modifies the current transformation by appending a scale. This is
equivalent to right-multiplying the current matrix M by a scale matrix:

sx 0 O
MeM-{0 sy 0
0 0 1

void vgScale (VGfloat sx, VGfloat sy)

vgShear

The vgShear function modifies the current transformation by appending a shear. This is
equivalent to right-multiplying the current matrix M by a shear matrix:

1 shx O
Me~M-shy 1 0
0 0 1

‘void vgShear (VGfloat shx, VGfloat shy) I

vgRotate

The vgRotate function modifies the current transformation by appending a counter-
clockwise rotation by a given angle (expressed in degrees) about the origin. This is
equivalent to right-multiplying the current matrix M by the following matrix (using the
symbol a to represent the value of the angle parameter):

cos(a) —sin(a) O
M«~M-|sin(a) cos(a) 0
0 0 1

To rotate about a center point (cx, c¢y) other than the origin, the application may perform
a translation by (cx, cy), followed by the rotation, followed by a translation by (-cx, -cy).

void vgRotate (VGfloat angle)

Version 1.1 Revision 1 (December 3, 2008)

Scissoring, Masking, and Clearing 55

7 Scissoring, Masking, and Clearing

All drawing is clipped (restricted) to the bounds of the drawing surface, and may be
further clipped to the interior of a set of scissoring rectangles. If available, a mask is
applied for further clipping and to create soft edge and partial transparency effects.

Pixels outside the drawing surface bounds, or (when scissoring is enabled) not in any
scissoring rectangle are not affected by any drawing operation. For any drawing
operation, each pixel will receive the same value for any setting of the scissoring
rectangles that contains the pixel. That is, the placement of the scissoring rectangles, and
whether scissoring is enabled, affects only whether a given pixel will be written, without
affecting what value it will receive.

7.1 Scissoring

Drawing may be restricted to the union of a set of scissoring rectangles. Scissoring is
enabled when the parameter VG_SCISSORING has the value VG_TRUE. Scissoring
may be disabled by calling vgSeti with a paramType argument of VG SCISSORING
and a value of VG_FALSE.

VG_MAX_SCISSOR_RECTS

The VG_MAX SCISSOR_RECTS parameter contains the maximum number of
scissoring rectangles that may be supplied for the VG SCISSOR RECTS parameter. All
implementations must support at least 32 scissor rectangles. If there is no
implementation-defined limit, a value of VG_MAXINT may be returned. The value may
be retrieved by calling vgGeti with a paramType argument of

VG_MAX_ SCISSOR_RECTS:

VGint maxScissorRects = vgGeti (VG MAX SCISSOR RECTS) ;

Specifying Scissoring Rectangles

Each scissoring rectangle is specified as an integer 4-tuple of the form (minX, min?,
width, height), where minX and minY are inclusive. A rectangle with width < 0 or height
< 0 is ignored. The scissoring region is defined as the union of all the specified
rectangles. The rectangles as specified need not be disjoint. If scissoring is enabled and
no valid scissoring rectangles are present, no drawing occurs. If more than

VG_MAX SCISSOR_RECTS rectangles are specified, those beyond the first
VG_MAX SCISSOR_RECTS are discarded immediately (and will not be returned by
vgGet).

Version 1.1 Revision 1 (December 3, 2008)

Scissoring, Masking, and Clearing 56

#define NUM RECTS 2

/* { Min X, Min Y, Width, Height } 4-Tuples */

VGint coords[4*NUM RECTS] = { 20, 30, 100, 200,
50, 70, 80, 80 };

vgSetiv (VG _SCISSOR RECTS, 4*NUM RECTS, coords)

7.2 Masking

All drawing operations may be modified by a drawing surface mask (also known as an
alpha mask for historical reasons), which is a separate implementation-internal buffer
defining an additional coverage value at each sample of the drawing surface. The
values from this buffer modify the coverage value computed by the rasterization
stage of the pipeline.

Masking is enabled when a mask is present for the drawing surface (e.g., by specifying
an EGLConfig with an EGL ALPHA MASK SIZE attribute having a value greater

than zero) and the VG_MASKING parameter has the value VG TRUE. Masking may be
disabled by calling vgSeti with a parameter of VG MASKING and a value of
VG_FALSE. If a drawing surface mask is present, it may be manipulated by the
vgMask function regardless of the value of VG MASKING at the time of the call.
If a drawing surface mask is not present, the behavior is the same as though
there were a mask having a value of 1 at every pixel; functions that manipulate
the mask values have no effect.

In addition to the drawing surface mask, OpenVG applications may manipulate
mask layer objects, which are application-level objects accessed via handles. The
term layer is not meant to imply any ordering between such objects; rather, it is
up to the application to modify the drawing surface mask using mask layer
objects in order to affect the rendering process. A mask layer that is created
when a multisampled drawing surface is current may only be used to modity
that drawing surface's mask or other drawing surface masks that share the same
bit depth and subpixel sample layout.

In this section, we will describe coverage values as ranging from 0 to 1. The
actual bit depth used for computation is implementation-dependent. For single-
sampled surfaces, it must be possible to obtain configurations supporting a mask
with at least 1 bit for 1-bit black and white drawing surfaces, a mask with at least
4 bits for 16-bit color drawing surfaces, and a mask with at least 8 bits for 8-bit
grayscale and 24-bit color drawing surfaces. For multi-sampled surfaces,
implementations are only required to provide 1 mask bit per sample.

Version 1.1 Revision 1 (December 3, 2008)

Scissoring, Masking, and Clearing 57

The drawing surface mask may be thought of as a single-channel image with the
same size as the current drawing surface. Initially, the mask has the value of 1 at
every pixel. Changes to the mask outside of its bounds are ignored. If the
drawing surface size changes, the drawing surface mask associated with it is
resized accordingly, with new pixels being initialized to a coverage value of 1. If
the context acquires a new drawing surface, the drawing surface mask is reset.
Some implementations may modify primitive drawing using the path geometry
used to generate the mask directly, without first rasterizing such geometry into a
pixel-based representation.

A mask defines a stencil area through which primitives are placed before being
drawn. The union, intersection, and subtraction operations on masks are defined
by analogy with the corresponding operations on the stencil areas.

The mask coverage values are multiplied by the corresponding coverage values
of each primitive being drawn in the clipping and masking stage (stage 5) of the
rendering pipeline (see Section 2.5). The masking step is equivalent (except for
color space conversions that may occur) to replacing the source image with the
result of the Porter-Duff operation “Src in Mask” (see Section 13.3).

VGMaskOperation

The VGMaskOperation enumeration defines the set of possible operations that may
be used to modify a mask, possibly making use of a new mask image. Each operation
occurs within a rectangular region of interest.

The VG CLEAR MASK operation sets all mask values in the region of interest to 0,
ignoring the new mask image.

The VG_FILL MASK operation sets all mask values in the region of interest to 1,
ignoring the new mask image.

The VG_SET MASK operation copies values in the region of interest from the new mask
image, overwriting the previous mask values.
The VG_UNION MASK operation replaces the previous mask in the region of interest by

its union with the new mask image. The resulting values are always greater than or equal
to their previous value.

The VG INTERSECT MASK operation replaces the previous mask in the region of
interest by its intersection with the new mask image. The resulting mask values are
always less than or equal to their previous value.

Version 1.1 Revision 1 (December 3, 2008)

Scissoring, Masking, and Clearing 58

The VG_SUBTRACT MASK operation subtracts the new mask from the previous mask
and replaces the previous mask in the region of interest by the resulting mask. The
resulting values are always less than or equal to their previous value.

Table 5 gives the equations defining the new mask value for each mask operation in

terms of the previous mask value [prev and the newly supplied mask value JUmask.

Operation Mask Equation
VG CLEAR MASK _
— — Mnew = 0
VG FILL MASK _
— — Mnew = 1
VG_SET MASK Linew = Limask

VG _UNION MASK Mnew = 1 — (1 — Pmask)*(1 — Pprev)

VG_INTERSECT MASK Hnew = Himask *|prev

VG _SUBTRACT MASK Linew = pprev+(1 — Limask)

Table 5: VGMaskOperation Equations

typedef enum {

VG_CLEAR MASK = 0x1500,
VG_FILL MASK = 0x1501,
VG_SET MASK = 0x1502,
VG_UNION MASK = 0x1503,
VG_INTERSECT MASK = 0x1504,
VG_SUBTRACT MASK = 0x1505

} VGMaskOperation;

vgMask

The vgMask function modifies the drawing surface mask values according to a given
operation, possibly using coverage values taken from a mask layer or bitmap image
given by the ma sk parameter. If no mask is configured for the current drawing surface,
vgMask has no effect.

The affected region is the intersection of the drawing surface bounds with the rectangle
extending from pixel (x, y) of the drawing surface and having the given width and
height in pixels. For operations that make use of the mask parameter (i.e., operations

Version 1.1 Revision 1 (December 3, 2008)

Scissoring, Masking, and Clearing 59

other than VG CLEAR MASK and VG_FILL MASK), mask pixels starting at (0, 0) are
used, and the region is further limited to the width and height of mask. For the

VG CLEAR MASKand VG FILL MASK operations, the mask parameter is ignored
and does not affect the region being modified. The value VG INVALID HANDLE may
be supplied in place of an actual image handle.

If mask is a VGImage handle, the image defines coverage values at each of its
pixels as follows. If the image pixel format includes an alpha channel, the alpha
channel is used. Otherwise, values from the red (for color image formats) or
grayscale (for grayscale formats) channel are used. The value is divided by the
maximum value for the channel to obtain a value between 0 and 1. If the image is
bi-level (black and white), black pixels receive a value of 0 and white pixels
receive a value of 1.

If mask is a VGMaskLayer handle, it must be compatible with the current
drawing surface mask.

If the drawing surface mask is multisampled, this operation may perform
dithering. That is, it may assign different values to different drawing surface
mask samples within a pixel so that the average mask value for the pixel will
match the incoming value more accurately.

void vgMask (VGHandle mask, VGMaskOperation operation,
VGint x, VGint y, VGint width, VGint height) I

Version 1.1 Revision 1 (December 3, 2008)

Scissoring, Masking, and Clearing 60

ERRORS
VG_BAD_HANDLE ERROR

- if operation is not VG_CLEAR MASK or VG_FILL MASK, and maskisnota
valid mask layer or image handle, or is not shared with the current context

VG_IMAGE IN USE_ERROR

- if mask is a VGImage that is currently a rendering target

VG ILLEGAL ARGUMENT ERROR

- if operation is not a valid value from the VGMaskOperation
enumeration

- if width or height is less than or equal to 0

- if maskis a VGMaskLayer and is not compatible with the current surface
mask

vgRenderToMask

The vgRenderToMask function modifies the current surface mask by applying the
given operation to the set of coverage values associated with the rendering of the
given path. If paintModes contains VG FILL PATH, the path is filled; if it
contains VG STROKE PATH, the path is stroked. If both are present, the mask
operation is performed in two passes, first on the filled path geometry, then on the
stroked path geometry.

Conceptually, for each pass, an intermediate single-channel image is initialized to 0, then
filled with those coverage values that would result from the first four stages of the
OpenVG pipeline (i.e., state setup, stroked path generation if applicable, transformation,
and rasterization) when drawing a path with vgDrawPath using the given set of paint
modes and all current OpenVG state settings that affect path rendering (scissor
rectangles, rendering quality, fill rule, stroke parameters, etc.). Paint settings (e.g., paint
matrices) are ignored. Finally, the drawing surface mask is modified as though vgMask
were called using the intermediate image as the ma sk parameter. Changes to path
following this call do not affect the mask. If operation is VG_CLEAR MASK or

VG FILL MASK, path isignored and the entire mask is affected.

An implementation that supports geometric clipping of primitives may cache the
contents of path and make use of it directly when primitives are drawn, without
generating a rasterized version of the clip mask. Other implementation-specific

optimizations may be used to avoid materializing a full intermediate mask image.

Version 1.1 Revision 1 (December 3, 2008)

Scissoring, Masking, and Clearing 61

void vgRenderToMask (VGPath path, VGbitfield paintModes,
VGMaskOperation operation)

ERRORS
VG_BAD_HANDLE ERROR

- if pathisnot a valid path handle
VG ILLEGAL ARGUMENT ERROR

- if paintModes is not a valid bitwise OR of values from the VGPaintMode
enumeration

- if operation is not a valid value from the VGMaskOperation
enumeration

VGMaskLayer

Mask layers may be stored and manipulated using opaque handles of type
VGMaskLayer. When a mask layer is created, it is assigned a fixed size and a subpixel

layout determined by the multisampling properties of the current drawing surface. A
mask layer may only be used with the surface that was current at the time it was created
or with another surface with the same multisampling properties.

‘typedef VGHandle VGMaskLayer; I

vgCreateMaskLayer

vgCreateMaskLayer creates an object capable of storing a mask layer with the given
width and height and returns a VGMaskLayer handle to it. The mask layer is
defined to be compatible with the format and multisampling properties of the
current drawing surface. If there is no current drawing surface, no mask is
configured for the current drawing surface, or an error occurs,

VG_INVALID HANDLE is returned. All mask layer values are initially set to one.

VGMaskLayer vgCreateMaskLayer (VGint width, VGint height)

Version 1.1 Revision 1 (December 3, 2008)

Scissoring, Masking, and Clearing 62

ERRORS
VG_ILLEGAL ARGUMENT ERROR

- if width or height are less than or equal to 0
- if width is greater than VG_MAX IMAGE WIDTH
- if height is greater than VG_MAX IMAGE HEIGHT

- if width*height is greater than VG_MAX IMAGE PIXELS

vgDestroyMaskLayer

The resources associated with a mask layer may be deallocated by calling
vgDestroyMaskLayer. Following the call, the maskLayer handle is no longer

valid in the current context.

void vgDestroyMaskLayer (VGMaskLayer maskLayer)

ERRORS
VG_BAD HANDLE ERROR

- if maskLayer is not a valid mask handle

vgFillMaskLayer

The vgFillMaskLayer function sets the values of a given maskLayer within a given
rectangular region to a given value. The floating-point value value must be between 0
and 1. The value is rounded to the closest available value supported by the mask layer. If
two values are equally close, the larger value is used.

void vgFillMaskLayer (VGMaskLayer maskLayer,
VGint x, VGint y, VGint width, VGint height,

VGfloat value)

Version 1.1 Revision 1 (December 3, 2008)

Scissoring, Masking, and Clearing 63

ERRORS
VG_BAD_HANDLE ERROR

- if maskLayer is not a valid mask layer handle, or is not shared with the
current context

VG _ILLEGAL ARGUMENT ERROR

- if value isless than 0 or greater than 1

- if width or height is less than or equal to 0

- if x or y isless than 0

- if x + width is greater than the width of the mask

- if y + height is greater than the height of the mask

vgCopyMask

vgCopyMask copies a portion of the current surface mask into a VGMaskLayer object.
The source region starts at (sx, sy) in the surface mask, and the destination region starts
at (dx, dy) in the destination maskLayer. The copied region is clipped to the given
width and height and the bounds of the source and destination. If the current context
does not contain a surface mask, vgCopyMask does nothing.

void vgCopyMask (VGMaskLayer maskLayer,
VGint dx, VGint dy, VGint sx, VGint sy,
VGint width, VGint height)

ERRORS
VG_BAD_HANDLE ERROR

- if maskLayer is not a valid mask layer handle

VG ILLEGAL ARGUMENT ERROR
- if width or height are less than or equal to 0

- if maskLayer is not compatible with the current surface mask

Version 1.1 Revision 1 (December 3, 2008)

Scissoring, Masking, and Clearing 64

7.3 Fast Clearing

The vgClear function allows a region of pixels to be set to a single color with a single
call.

vgClear

The vgClear function fills the portion of the drawing surface intersecting the rectangle
extending from pixel (x, y) and having the given width and height with a constant

color value, taken from the VG CLEAR COLOR parameter. The color value is expressed
in non-premultiplied SRGBA (sRGB color plus alpha)format. Values outside the [0, 1]
range are interpreted as the nearest endpoint of the range. The color is converted to the
destination color space in the same manner as if a rectangular path were being filled.
Clipping and scissoring take place in the usual fashion, but antialiasing, masking, and
blending do not occur.

void vgClear (VGint x, VGint y, VGint width, VGint height)

ERRORS
VG_ILLEGAL ARGUMENT ERROR

- if width or height is less than or equal to 0

For example, to set the entire drawing surface with dimensions WIDTH and HEIGHT to
an opaque yellow color, the following code could be used:

VGfloat color[4] = { 1.0f, 1.0f, 0.0f, 1.0f }; /* Opaque yellow */

vgSeti (VG_SCISSORING, VG FALSE) ;
vgSetfv (VG _CLEAR COLOR, 4, color);
vgClear (0, 0, WIDTH, HEIGHT) ;

8 Paths

Paths are the heart of the OpenVG API. All geometry to be drawn must be defined in
terms of one or more paths. Paths are defined by a sequence of segment commands (or
segments). Each segment command in the standard format may specify a move, a straight
line segment, a quadratic or cubic Bézier segment, or an elliptical arc. Extensions may
define other segment types.

Version 1.1 Revision 1 (December 3, 2008)

Paths 65

8.1 Moves

A path segment may consist of a “move to” segment command that causes the path to
jump directly to a given point, starting a new subpath without drawing.

8.2 Straight Line Segments

Paths may contain horizontal, vertical, or arbitrary line segment commands. A special
“close path” segment command may be used to generate a straight line segment joining
the current vertex of a path to the vertex that began the current portion of the path.

8.3 Bézier Curves

Bézier curves are polynomial curves defined using a parametric representation.
That is, they are defined as the set of points of the form (x(t), y(t)), where x(t) and
y(t) are polynomials of t and t varies continuously from 0 to 1. Paths may contain
quadratic or cubic Bézier segment commands.

8.3.1 Quadratic Bézier Curves

A quadratic Bézier segment is defined by three control points, (xo, o), (x1, y1), and (x;,
¥2). The curve starts at (x4, yy) and ends at (x,, y>). The shape of the curve is influenced by
the placement of the internal control point (x,, y;), but the curve does not usually pass
through that point. Assuming non-coincident control points, the tangent of the curve at
the initial point x, is aligned with and has the same direction as the vector x; — x, and the
tangent at the final point x; is aligned with and has the same direction as the vector x, —

x;. The curve is defined by the set of points (x(¢), y(¢)) as ¢ varies from 0 to 1, where:

x(t)=x (1=t +2%x % (1—1) %t +x, %1
yox(1=t)+2% y % (1 —t)xt+ y 1

<

=
~

=
!

Version 1.1 Revision 1 (December 3, 2008)

Paths 66

8.3.2 Cubic Bézier Curves

Cubic Bézier segments are defined by four control points (xg, o), (x1, 1), (x2, ¥2), and (x;,
v3). The curve starts at (x,, yy) and ends at (x3, y;). The shape of the curve is influenced by
the placement of the internal control points (x,, y;) and (x,), but the curve does not
usually pass through those points. Assuming non-coincident control points, the tangent of
the curve at the initial point x, is aligned with and has the same direction as the vector x;
— xo and the tangent at the final point x; is aligned with and has the same direction as the

vector x; — x. The curve is defined by the set of points (x(¢), y(¢)) as ¢ varies from 0 to 1,
where:

x (£)=xgk(1—1) +3xx % (1—1) %t +3%x,% (1 —1) %"+ x %1
y(0)= yox(1=1) +3% y (1=t Pt 43 %y, 5 (1=t x4y ot
8.3.3 G’ Smooth Segments

G’ Smooth quadratic or cubic segments implicitly define their first internal control point
in such a manner as to guarantee a continuous tangent direction at the join point when
they are joined to a preceding quadratic or cubic segment. Geometrically, this ensures
that the two segments meet without a sharp corner. However, the length of the
unnormalized tangent vector may experience a discontinuity at the join point.

G' smoothness at the initial point of a quadratic or cubic segment may be guaranteed by
suitable placement of the first internal control point (x;, y;) of the following segment.
Given a previous quadratic or cubic segment with an internal control point (px, py) and
final endpoint (ox, oy), we compute (x;, y;) as (2*ox — px, 2*oy — py) (i.e., the reflection

of the point (px, py) about the point (ox, 0y)). For segments of the same type, this will
provide C' smoothness (see the next section).

Version 1.1 Revision 1 (December 3, 2008)

Paths 67

o(px,py)

\(0x,0Y)

o
(x,y)=(2%0x-px,2*oy-py) o

Figure 4: Smooth Curve Construction

8.3.4 C' Smooth Segments
[Note: this section is informative only. |

C' smooth quadratic or cubic segments define their first internal control point (x;, y;) in
such a manner as to guarantee a continuous first derivative at the join point when they
are joined to a preceding quadratic or cubic segment. Geometrically, this ensures that the
two segments meet with continuous parametric velocity at the join point. This is a
stronger condition than G' continuity.

Note that joining a C' smooth segment to a preceding line segment will not produce a
smooth join. To guarantee a smooth join, convert line segments to equivalent quadratic
or cubic curves whose internal control points all lie along the line segment.

Given a previous quadratic or cubic segment with an internal control point (px, py) and
final endpoint (ox, oy), (x;, y;) is computed as follows:

« When joining a previous quadratic or cubic segment to a following segment of the
same type (quadratic or cubic):

(x1, y1) = (2%0x — px, 2*0y — py)
« When joining a previous quadratic segment to a following cubic segment:

(x1, 1) = (5*ox — 2#px, 5*0y — 2*py)/3

Version 1.1 Revision 1 (December 3, 2008)

Paths 68

« When joining a previous cubic segment to a following quadratic segment:

(x1, ¥1) = (5*ox — 3*px, 5*0y — 3*py)/2

8.3.5 C? Smooth Segments
[Note: this section is informative only. |

C? smooth cubic segments implicitly define both of their internal control points (x;, y;)
and (x,, y>) in such a manner as to guarantee continuous first and second derivatives at
the join point when they are joined to a preceding quadratic or cubic segment.
Geometrically, this ensures that the two segments meet with continuous velocity and
acceleration at the join point.

Note that joining a C* smooth segment to a preceding line segment will not produce a
smooth join. To guarantee a smooth join, convert line segments to equivalent quadratic
or cubic curves whose internal control points all lie along the line segment.

Given three previous control points (gx, qy), (px, py), and (ox, oy) (for a quadratic
segment, (gx, gv) is the initial endpoint, (px, py) is the internal control point and (ox, 0y)
is the final endpoint; for a cubic segment, (gx, gy), and (px, py) are the first and second
internal control points, respectively, and (ox, oy) is the final endpoint), (x;, y;) is
computed as described in the preceding section, and (x, .) is computed as follows.

« When joining a previous quadratic segment to a following cubic segment:
(x2, ¥2) = (8*0x — 6%*px + gx, 8*oy — 6*py + qv)/3
« When joining a previous cubic segment to a following cubic segment:

(x2, y2) = (4*(ox — px) + gx, 4*(oy — py) + qp)

8.3.6 Converting Segments From Quadratic to Cubic Form
[Note: This section is informative only. |

Given a quadratic Bézier curve with control points (xy, o), (x5, y1), and (x2, ¥»), an
identical cubic Bézier curve may be formed using the control points (xg, o), (xo + 2%x,,

Yo+ 2%9,)/3, (x2+ 2%x;, yo+ 2%9))/3, (X2, ¥2).

8.4 Elliptical Arcs

Elliptical arc segments join a pair of points with a section of an ellipse with given
horizontal and vertical axes and a rotation angle (in degrees). Given these parameters,

Version 1.1 Revision 1 (December 3, 2008)

Paths 69

there are four possible arcs distinguished by their direction around the ellipse (clockwise
or counter-clockwise) and whether they take the smaller or larger path around the ellipse.

Figure 5 below shows the two possible ellipses with horizontal axis rh, vertical axis v,
and counter-clockwise rotation angle rot (shown as the angle between the vertical line
labeled rot and the line labeled »v) passing through the points (x,, ys) and (x;, y;). The
four arcs connecting the points are labeled L and S for large and small, and CW and
CCW for clockwise and counter-clockwise.

Negative values of v/ and rv are replaced with their absolute values. If exactly one of 74
and rv is 0, and the arc endpoints are not coincident, the arc is drawn as if it were
projected onto the line containing the endpoints. If both 7% and »v are 0, or if the arc
endpoints are coincident, the arc is drawn as a line segment between its endpoints. The
rot parameter is taken modulo 360 degrees.

If no elliptical arc exists with the given parameters because the endpoints are too far
apart (as detailed in the next section), the arc is drawn as if the radii were scaled up
uniformly by the smallest factor that permits a solution.

Notes on the mathematics of ellipses are provided in Appendix A (Section 18).

Leew 53, Lew

L

(x,y,)

Figure 5: Elliptical Arcs

8.5 The Standard Path Format

Complex paths may be constructed in application memory and passed into OpenVG to
define a VGPath object. Such path data is defined by a sequence of segment commands
referencing a separate sequence of geometric coordinates and parameters.

Version 1.1 Revision 1 (December 3, 2008)

Paths 70

In this section, we define the standard data format for paths that may be used to define
sequences of various types of path segments. Extensions may define other path data
formats.

VG_PATH_FORMAT_STANDARD

The VG_PATH FORMAT STANDARD macro defines a constant to be used as an
argument to vgCreatePath to indicate that path data are stored using the standard
format. As this API is revised, the lower 16 bits of version number may increase. Each
version of OpenVG will accept formats defined in all prior specification versions with
which it is backwards-compatible.

Extensions wishing to define additional path formats may register for format identifiers
that will differ in their upper 16 bits; the lower 16 bits may be used by the extension
vendor for versioning purposes.

#define VG_PATH_FORMAT STANDARD 0 1

8.5.1 Path Segment Command Side Effects

In order to define the semantics of each segment command type, we define three
reference points (all are initially (0, 0)):

(sx, sy): the beginning of the current subpath, i.e., the position of the last MOVE TO
segment.

(ox, oy): the last point of the previous segment.

(px, py): the last internal control point of the previous segment, if the segment was a
(regular or smooth) quadratic or cubic Bézier, or else the last point of the previous
segment.

Figure 6 illustrates the locations of these points at the end of a sequence of segment
commands { MOVE_TO, LINE_TO, CUBIC TO }.

Version 1.1 Revision 1 (December 3, 2008)

Paths 71

xc‘}O (ox, oy)

%
oy

Figure 6: Segment Reference Points

We define points (x0, y0), (x1, yI), and (x2, y2) in the discussion below as absolute
coordinates. For segments defined using relative coordinates, (x0, y0), etc., are defined as

the incoming coordinate values added to (ox, oy). Ellipse 74, rv, and rot parameters are
unaffected by the use of relative coordinates.

Each segment (except for MOVE TO segments) begins at the point (ox, 0y) defined by
the previous segment.

A path consists of a sequence of subpaths. As path segment commands are encountered,
each segment is appended to the current subpath. The current subpath is ended by a
MOVE TO or CLOSE PATH segment, and a new current subpath is begun. The end of
the path data also ends the current subpath.

8.5.2 Segment Commands

The following table describes each segment command type along with its prefix, the
number of specified coordinates and parameters it requires, the numerical value of the
segment command, the formulas for any implicit coordinates, and the side effects of the
segment command on the points (ox, oy), (sx, sy), and (px, py) and on the termination of
the current subpath.

Version 1.1 Revision 1 (December 3, 2008)

Paths 72
Type VGPathSegment | Coordinates Value Imp.ltat Side Effects
Points
Close Path | CLOSE_PATH none 0 (px,py)=(ox,0y)=(sx,5Y)
End current subpath
(sx,sy)=(px,py)=
Move MOVE_TO x0,y0 2 (ox,0y)=(x0,y0)
End current subpath
Line LINE TO x0,y0 4 (px,py)=(ox,0y)=(x0,y0)
L (px,py)=(x0,0y)
Horiz. Line |HLINE TO x0 6 y0=oy
ox=x0
(px,py)=(0x,y0)
Vertical Line | VLINE_TO y0 8 x0=0x
oy=y0
Quadratic | QUAD_TO x0,0,x1,y1 10 (px,py)=(x0,y0)
(ox,0y)=(x1,y1)
x0,y0,x1,y1,
Cubic CUBIC_TO 12 (px,py)=(x1,y1)
x2,y2 (ox,0y)=(x2,y2)
G' Smooth (x0,y0)= (px,py)=
Quad SQUAD TO x1,yl 14 (2%0x-px, (20 xX-px, 2 *Oy'P]/)
2%0y-py) (ox,0y)=(x1,y1)
| (x0,y0)=
G Smooth SCUBIC TO Lyl x2y? 16 (Dvox-px (px,py)=(x1,y1)
Cubic P (ox,0y)=(x2,y2)
2+0y-py)
Small CCW
Arc SCCWARC_TO rh,rv,rot,x0,y0 18 (px,py)=(0x,0y)=(x0,0)
Small CW
Arc SCWARC_TO rh,rv,rot,x0,y0 20 (px,py)=(0x,0y)=(x0,0)
Large CCW |LCCWARC_TO | rhmrotx0,y0 22

(px,py)=(ox,0y)=(x0,y0)

Version 1.1 Revision 1 (December 3, 2008)

Paths 73

Implicit

T '‘Path] ide E

ype VGPathSegment | Coordinates Value Points Side Effects

Arc

Large CW

Arc LCWARC_TO rh,rv,rot,x0,y0 24 (px,py)=(0x,0y)=(x0,0)
Reserved Reserved 26,28,30

Table 6: Path Segment Commands

Each segment type may be defined using either absolute or relative coordinates. A
relative coordinate (x, y) is added to (ox, oy) to obtain the corresponding absolute
coordinate (ox + x, oy + y). Relative coordinates are converted to absolute coordinates
immediately as each segment is encountered during rendering.

The HLINE TO and VLINE TO segment types are provided in order to avoid the need
for an SVG viewing application (for example) to perform its own relative to absolute
conversions when parsing path data.

In SVG, the behavior of smooth quadratic and cubic segments differs slightly from the
behavior defined above. If a smooth quadratic segment does not follow a quadratic
segment, or a smooth cubic segment does not follow a cubic segment, the initial control
point (x0, y0) is placed at (ox, oy) instead of being computed as the reflection of (px, py).
This behavior may be emulated by converting an SVG smooth segment into a regular
segment with all of its control points specified when the preceding segment is of a
different degree.

Note that the coordinates of a path are defined even if the path begins with a segment
type other than MOVE TO (including HLINE TO, VLINE TO, or relative segment
types) since the coordinates are based on the initial values of (ox, oy), (sx, sy), and (px,
py) which are each defined as (0, 0).

8.5.3 Coordinate Data Formats

Coordinate and parameter data (henceforth called simply coordinate data) may be
expressed in the set of formats shown in Table 7 below. Multi-byte coordinate data (i.e.,
S 16, S 32 and F datatypes) are represented in application memory using the native
byte order (endianness) of the platform. Implementations may quantize incoming data in
the S 32 and F formats to a lesser number of bits, provided at least 16 bits of precision
are maintained.

Judicious use of smooth curve segments and 8- and 16-bit datatypes can result in

Version 1.1 Revision 1 (December 3, 2008)

Paths

74

substantial memory savings for common path data, such as font glyphs. Using smaller
datatypes also conserves bus bandwidth when transferring paths from application

memory to OpenVG.
Datatype VG_PATH DATATYPE Suffix Bytes Value
8-bit signed integer S_8 1 0
16-bit signed integer S 16 2 1
32-bit signed integer S 32 4 2
IEEE 754 floating-point F 4 3

Table 7: Path Coordinate Datatypes

VGPathDatatype

The VGPathDatatype enumeration defines values describing the possible numerical

datatypes for path coordinate data.

typedef enum {
VG_PATH DATATYPE S 8
VG_PATH DATATYPE S 16
VG _PATH DATATYPE S 32
VG _PATH DATATYPE F

} VGPathDatatype;

~ N~ 0~

([| R
w NP O

8.5.4 Segment Type Marker Definitions

Segment type markers are defined as 8-bit integers, with the leading 3 bits reserved for
future use, the next 4 bits containing the segment command type, and the least significant
bit indicating absolute vs. relative coordinates (0 for absolute, 1 for relative). The

reserved bits must be set to 0.

For the CLOSE _PATH segment command, the value of the Abs/Rel bit is ignored.

7

0

Reserved

Command Type
| | |

Abs/
Rel

Figure 7: Segment Type Marker Layout

Version 1.1 Revision 1 (December 3, 2008)

Paths 75

VGPathAbsRel

The VGPathAbsRel enumeration defines values indicating absolute (VG ABSOLUTE)
and relative (VG_RELATIVE) values.

typedef enum {
VG_ABSOLUTE = O,
VG _RELATIVE = 1
} VGPathAbsRel;

VGPathSegment

The VGPathSegment enumeration defines values for each segment command type.
The values are pre-shifted by 1 bit to allow them to be combined easily with values from
VGPathAbsRel.

typedef enum {
VG _CLOSE PATH (0 << 1),
VG_MOVE_TO (1 << 1),
VG_LINE TO = (2 << 1),
VG_HLINE TO = (3 << 1),
VG_VLINE TO (4 << 1),
VG _QUAD TO (5 << 1),
VG _CUBIC TO (6 << 1),
VG_SQUAD TO = (7 << 1),
VG_SCUBIC TO = (8 1),
VG _SCCWARC_TO = (9 << 1),
VG _SCWARC TO = (10 << 1),
VG _LCCWARC TO = (11 << 1),
VG_LCWARC_TO = (12 << 1)

} VGPathSegment;

VGPathCommand

The VGPathCommand enumeration defines combined values for each segment
command type and absolute/relative value. The values are shifted left by one bit and
ORed bitwise (i.e., using the C | operator) with the appropriate value from
VGPathAbsRel to obtain a complete segment command value.

Version 1.1 Revision 1 (December 3, 2008)

Paths

76

typedef enum {

VG_MOVE_TO ABS
VG_MOVE_TO REL
VG_LINE TO ABS
VG_LINE_TO REL
VG_HLINE TO ABS
VG_HLINE TO REL
VG_VLINE TO ABS
VG_VLINE TO REL
VG_QUAD_TO_ABS
VG_QUAD TO REL
VG_CUBIC_TO ABS
VG_CUBIC_TO REL
VG_SQUAD_TO ABS
VG_SQUAD TO REL

VG_MOVE_TO
VG_MOVE_TO
VG_LINE_TO
VG_LINE TO
VG_HLINE TO
VG_HLINE_ TO
VG_VLINE_ TO
VG_VLINE TO
VG_QUAD_TO
VG_QUAD_TO
VG_CUBIC_TO
VG_CUBIC_TO
VG_SQUAD_TO
VG_SQUAD_TO

VG _ABSOLUTE,
VG _RELATIVE,
VG_ABSOLUTE,
VG RELATIVE,
VG ABSOLUTE,
VG _RELATIVE,
VG _ABSOLUTE,
VG _RELATIVE,
VG _ABSOLUTE,
VG _RELATIVE,
VG _ABSOLUTE,
VG _RELATIVE,
VG _ABSOLUTE,
VG _RELATIVE,

VG_SCUBIC TO ABS
VG _SCUBIC TO REL
VG_SCCWARC TO ABS
VG_SCCWARC TO REL -
VG_SCWARC_TO_ABS VG_SCWARC_TO
VG _SCWARC TO REL VG _SCWARC_ TO
VG_LCCWARC TO_ABS = VG_LCCWARC_TO
VG_LCCWARC_TO_REL VG_LCCWARC_TO
VG_LCWARC_TO_ABS VG_LCWARC_TO
VG_LCWARC TO_REL = VG_LCWARC_TO
} VGPathCommand;

VG_SCUBIC_TO
VG_SCUBIC_TO

VG_SCCWARC_TO
VG_SCCWARC_TO

VG ABSOLUTE,
VG _RELATIVE,
VG _ABSOLUTE,
VG RELATIVE,
VG _ABSOLUTE,
VG_RELATIVE,
VG _ABSOLUTE,
VG RELATIVE,
VG _ABSOLUTE,
VG _RELATIVE

8.5.5 Path Example

The following code example shows how to traverse path data stored in application
memory using the standard representation. A byte is read containing a segment
command, and the segment command type and relative/absolute flag are extracted by
application-defined SEGMENT COMMAND and SEGMENT ABS REL macros. The
number of coordinates and number of bytes per coordinate (for the given data format) are
also determined using lookup tables. Finally, the relevant portion of the path data stream
representing the current segment is copied into a temporary buffer and used as an
argument to a user-defined processSegment function that may perform further
processing.

Version 1.1 Revision 1 (December 3, 2008)

Paths 77

#define PATH MAX COORDS 6 /* Maximum number of coordinates/command */

#define PATH MAX BYTES 4 /* Bytes in largest data type */

#define SEGMENT COMMAND (command) /* Extract segment type */ \
((command) & Oxle)

#define SEGMENT ABS REL (command) /* Extract absolute/relative bit */ \
((command) & 0x1)

/* Number of coordinates for each command */

static const VGint numCoords|[] = {0,2,2,1,1,4,6,2,4,5,5,5,5};
/* Number of bytes for each datatype */
static const VGint numBytes[] = {1,2,4,4};

/* User-defined function to process a single segment */
extern void
processSegment (VGPathSegment command, VGPathAbsRel absRel,
VGPathDatatype datatype,
void * segmentData) ;

/* Process a path in the standard format, one segment at a time. */

void

processPath (const VGubyte * pathSegments, const void * pathData,

int numSegments, VGPathDatatype datatype)

{
VGubyte segmentType, segmentData[PATH MAX COORDS*PATH MAX BYTES];
VGint seglIdx = 0, datalIdx = 0;

VGint command, absRel, numBytes;

while (seglIdx < numSegments) {
segmentType = pathSegments|[segldx++];
command = SEGMENT COMMAND (segmentType) ;
absRel = SEGMENT ABS REL (segmentType) ;
numBytes = numCoords[command] *numBytes [datatype];

/* Copy segment data for further processing */
memcpy (segmentData, &pathDatal[dataldx], numBytes);

/* Process command */
processSegment (command, absRel, datatype, (void *) segmentData);
dataldx += numBytes;

8.6 Path Operations

In addition to filling or stroking a path, the API allows the following basic operations on
paths:

+ Create a path with a given set of capabilities (vgCreatePath)
- Remove data from a path (vgClearPath)

Version 1.1 Revision 1 (December 3, 2008)

Paths 78

Deallocate a path (vgDestroyPath)

Query path information (using vgGetParameter)

Query the set of capabilities for a path (vgGetPathCapabilities)
Reduce the set of capabilities for a path (vgRemovePathCapabilities)
Append data from one path onto another (vgAppendPath)

Append data onto a path (vgAppendPathData)

Modify coordinates stored in a path (vgModifyPathCoords)
Transform a path (vgTransformPath)

Interpolate between two paths (vgInterpolatePath)

Determine the geometrical length of a path (vgPathLength)

Get position and tangent information for a point at a given geometric distance
along path (vgPointAlongPath)

Get an axis-aligned bounding box for a path (vgPathBounds,
vgTransformedPathBounds)

Higher-level geometric primitives are defined in the optional VGU utility library (see
Section 17):

Append a line to a path (vguLine)

Append a polyline (connected sequence of line segments) or polygon to a
path (vguPolygon)

Append a rectangle to a path (vguRect)

Append a round-cornered rectangle to a path (vguRoundRect)

Append an ellipse to a path (vguEllipse)

Append a circular arc to a path (vguArc)

8.6.1 Storage of Paths

OpenVG stores path data internally to the implementation. Paths are referenced via
opaque VGPath handles. Applications may initialize paths using the memory
representation defined above or other representations defined by extensions.

It is possible for an implementation to store path data in hardware-accelerated memory.
Implementations may also make use of their own internal representation of path
segments. The intent is for applications to be able to define a set of paths, for example
one for each glyph in the current typeface, and to be able to re-render each previously
defined path with maximum efficiency.

Version 1.1 Revision 1 (December 3, 2008)

Paths 79

VGPath
VGPath represents an opaque handle to a path.

‘typedef VGHandle VGPath; I
8.6.2 Creating and Destroying Paths

Paths are created and destroyed using the vgCreatePath and vgDestroyPath functions.
During the lifetime of a path, an application may indicate which path operations it plans
to perform using path capability flags defined by the VGPathCapabilities
enumeration.

VGPathCapabilities

The VGPathCapabilities enumeration defines a set of constants specifying which
operations may be performed on a given path object. At the time a path is defined, the
application specifies which operations it wishes to be able to perform on the path. Over
time, the application may disable previously enabled capabilities, but it may not re-
enable capabilities once they have been disabled. This feature allows OpenVG
implementations to make use of internal path representations that may not support all
path operations, possibly resulting in higher performance on paths where those
operations will not be performed.

The capability bits and the functionality they allow are described below:

*+ VG _PATH CAPABILITY APPEND FROM — use path as the srcPath argument to
vgAppendPath

* VG _PATH CAPABILITY APPEND TO —use path as the dstPath argument to
vgAppendPath and vgAppendPathData

* VG PATH CAPABILITY MODIFY —use path asthe dstPath argument to
vgModifyPathCoords

*+ VG PATH CAPABILITY TRANSFORM FROM - use path as the srcPath argument to
vgTransformPath

* VG PATH CAPABILITY TRANSFORM TO —use path asthe dstPath argument to
vgTransformPath

¢ VG _PATH CAPABILITY INTERPOLATE FROM —use path asthe startPath or endPath
argument to vginterpolatePath

* VG PATH CAPABILITY INTERPOLATE TO - use path asthe dstPath argument to
vglnterpolatePath

* VG _PATH CAPABILITY PATH LENGTH - use path as the path argument to vgPathLength

*+ VG_PATH CAPABILITY POINT ALONG_ PATH —use path as the path argument to
vgPointAlongPath

* VG _PATH CAPABILITY TANGENT ALONG_ PATH - use path as the path argument to
vgPointAlongPath with non-NULL tangentX and tangentY arguments

Version 1.1 Revision 1 (December 3, 2008)

Paths 80

* VG PATH CAPABILITY PATH BOUNDS —use path as the path argument to vgPathBounds

*+ VG PATH CAPABILITY PATH TRANSFORMED BOUNDS - use path as the path argument to
vgPathTransformedBounds

* VG_PATH CAPABILITY ALL —a bitwise OR of all the defined path capabilities

typedef enum {
VG_PATH CAPABILITY APPEND FROM = (1 << 0),
VG_PATH CAPABILITY APPEND TO = (1 << 1),
VG_PATH_CAPABILITY_MODIFY = (1 << 2),
VG_PATH CAPABILITY TRANSFORM FROM = (1 << 3),
VG _PATH CAPABILITY TRANSFORM TO = (1 << 4),
VG_PATH_CAPABILITY_INTERPOLATE_FROM = (1 << 5),
VG PATH CAPABILITY INTERPOLATE TO = (1 << 0),
VG _PATH CAPABILITY PATH LENGTH = (1 << 7),
VG _PATH CAPABILITY POINT ALONG PATH = (1 << 8),
VG PATH CAPABILITY TANGENT ALONG PATH (1 << 9),
VG PATH CAPABILITY PATH BOUNDS = (1 << 10),
VG_PATH CAPABILITY PATH TRANSFORMED BOUNDS = (1 << 11),
VG_PATH CAPABILITY ALL = (1 << 12) -1

} VGPathCapabilities;

It is legal to call vgCreatePath, vgClearPath, and vgDestroyPath regardless of the
current setting of the path’s capability bits, as these functions discard the existing path
definition.

vgCreatePath

vgCreatePath creates a new path that is ready to accept segment data and returns a
VGPath handle to it. The path data will be formatted in the format given by
pathFormat, typically VG PATH FORMAT STANDARD. The datatype parameter
contains a value from the VGPathDatatype enumeration indicating the datatype that
will be used for coordinate data. The capabilities argument is a bitwise OR of the
desired VGPathCapabilities values. Bits of capabilities that do not

correspond to values from VGPathCapabilities have no effect. If an error occurs,
VG_INVALID HANDLE is returned.

The scale and bias parameters are used to interpret each coordinate of the
path data; an incoming coordinate value v will be interpreted as the value
(scale*v + bias). scale must not equal 0. The datatype, scale, and bias together
define a valid coordinate data range for the path; segment commands that
attempt to place a coordinate in the path that is outside this range will overflow
silently, resulting in an undefined coordinate value. Functions that query a path

Version 1.1 Revision 1 (December 3, 2008)

Paths 81

containing such values, such as vgPathLength and vgPointAlongPath, also
return undefined results.

The segmentCapacityHint parameter provides a hint as to the total number
of segments that will eventually be stored in the path. The
coordCapacityHint parameter provides a hint as to the total number of
specified coordinates (as defined in the “Coordinates” column of Table 6) that
will eventually be stored in the path. A value less than or equal to O for either
hint indicates that the capacity is unknown. The path storage space will in any
case grow as needed, regardless of the hint values. However, supplying hints
may improve performance by reducing the need to allocate additional space as
the path grows. Implementations should allow applications to append segments
and coordinates up to the stated capacity in small batches without degrading
performance due to excessive memory reallocation.

VGPath vgCreatePath (VGint pathFormat,
VGPathDatatype datatype,
VGfloat scale, VGfloat bias,
VGint segmentCapacityHint,
VGint coordCapacityHint,
VGbitfield capabilities)

ERRORS
VG _UNSUPPORTED PATH FORMAT ERROR

- if pathFormat is not a supported format

VG _ILLEGAL ARGUMENT ERROR
- if datatype is not a valid value from the VGPathDatatype enumeration

- if scaleisequal to 0

Version 1.1 Revision 1 (December 3, 2008)

Paths 82

vgClearPath

vgClearPath removes all segment command and coordinate data associated with a
path. The handle continues to be valid for use in the future, and the path format and
datatype retain their existing values. The capabilities argument is a bitwise OR of
the desired VGPathCapabilities values. Bits of capabilities that do not
correspond to values from VGPathCapabilities have no effect. Using
vgClearPath may be more efficient than destroying and re-creating a path for short-lived
paths.

void vgClearPath (VGPath path, VGbitfield capabilities)

ERRORS
VG_BAD_HANDLE ERROR

- if pathis not a valid path handle, or is not shared with the current context

vgDestroyPath

vgDestroyPath releases any resources associated with path, and makes the handle
invalid in all contexts that shared it.

void vgDestroyPath (VGPath path)

ERRORS
VG_BAD_ HANDLE_ ERROR

- if pathisnot a valid path handle, or is not shared with the current context

8.6.3 Path Queries

VGPathParamType

Values from the VGPathParamType enumeration may be used as the paramType
argument to vgGetParameter to query various features of a path. All of the parameters
defined by VGPathParamType are read-only. Table 8 shows the datatypes for each

parameter type.

Version 1.1 Revision 1 (December 3, 2008)

Paths 83

typedef enum {

VG_PATH FORMAT = 0x1600,
VG_PATH DATATYPE = 0x1601,
VG_PATH SCALE = 0x1602,
VG_PATH BIAS = 0x1603,
VG_PATH NUM SEGMENTS = 0x1604,
VG_PATH NUM COORDS = 0x1605

} VGPathParamType;

Parameter Datatype
VG_PATH FORMAT VGint
VG _PATH DATATYPE VGint
VG_PATH_SCALE VGfloat
VG_PATH BIAS VGfloat
VG _PATH NUM SEGMENTS VGint
VG_PATH NUM COORDS VGint

Table 8: VGPathParamType Datatypes

Path Format

The command format of a path is queried as an integer value using the
VG _PATH FORMAT parameter:

VGPath path;
VGint pathFormat = vgGetParameteri (path, VG PATH FORMAT) ; I

Path Datatype

The coordinate datatype of a path is queried as an integer value using the
VG_PATH DATATYPE parameter. The returned integral value should be cast to
the VGPathDatatype enumeration:

VGPath path;
VGPathDatatype pathDatatype =
(VGPathDatatype) vgGetParameteri (path, VG PATH DATATYPE) ;

Version 1.1 Revision 1 (December 3, 2008)

Paths 84

Path Scale

The scale factor of the path is queried as a floating-point value using the
VG _PATH SCALE parameter:

VGPath path;
VGfloat pathScale = vgGetParameterf (path, VG PATH SCALE) ;

Path Bias

The bias of the path is queried as a floating-point value using the
VG_PATH BIAS parameter:

VGPath path;
VGfloat pathBias = vgGetParameterf (path, VG PATH BIAS);
Number of Segments

The number of segments stored in the path is queried as an integer value using
the VG_PATH NUM SEGMENTS parameter:

VGPath path;
VGint pathNumSegments = vgGetParameteri (path, VG _PATH NUM SEGMENTS) ;

Number of Coordinates

The total number of specified coordinates (i.e., those defined in the
“Coordinates” column of Table 6) stored in the path is queried as an integer
value using the VG PATH NUM COORDS parameter:

VGPath path;
VGint pathNumCoords = vgGetParameteri (path, VG PATH NUM COORDS) ;

8.6.4 Querying and Modifying Path Capabilities

vgGetPathCapabilities

The vgGetPathCapabilities function returns the current capabilities of the path,
as a bitwise OR of VGPathCapabilities constants. If an error occurs, 0 is
returned.

VGbitfield vgGetPathCapabilities (VGPath path)

Version 1.1 Revision 1 (December 3, 2008)

Paths 85

ERRORS
VG_BAD_HANDLE ERROR

- if pathis not a valid path handle, or is not shared with the current context

vgRemovePathCapabilities

The vgRemovePathCapabilities function requests the set of capabilities specified in
the capabilities argument to be disabled for the given path. The
capabilities argument is a bitwise OR of the VGPathCapabilities values
whose removal is requested. Attempting to remove a capability that is already
disabled has no effect. Bits of capabilities that do not correspond to values
from VGPathCapabilities have no effect.

An implementation may choose to ignore the request to remove a particular capability if

no significant performance improvement would result. In this case,
vgGetPathCapabilities will continue to report the capability as enabled.

void vgRemovePathCapabilities (VGPath path, VGbitfield capabilities)

ERRORS
VG_BAD HANDLE ERROR

- if pathisnot a valid path handle, or is not shared with the current context

8.6.5 Copying Data Between Paths

vgAppendPath

vgAppendPath appends a copy of all path segments from srcPath onto the end of
the existing data in dstPath. It is legal for srcPath and dstPath to be handles
to the same path object, in which case the contents of the path are duplicated. If
srcPath and dstPath are handles to distinct path objects, the contents of
srcPath will not be affected by the call.

The VG_PATH CAPABILITY APPEND FROM capability must be enabled for
srcPath, and the VG PATH CAPABILITY APPEND TO capability must be
enabled for dstPath.

Version 1.1 Revision 1 (December 3, 2008)

Paths 86

If the scale and bias of dstPath define a narrower range than that of srcPath,
overflow may occur silently.

‘void vgAppendPath (VGPath dstPath, VGPath srcPath) I

ERRORS
VG_BAD HANDLE ERROR

- if either dstPath or srcPath is not a valid path handle, or is not shared
with the current context

VG PATH CAPABILITY ERROR
- if VG_PATH CAPABILITY APPEND FROM is not enabled for srcPath

- if VG_PATH CAPABILITY APPEND TO is notenabled for dstPath

8.6.6 Appending Data to a Path

vgAppendPathData

vgAppendPathData appends data taken from pathData to the given path
dstPath. The data are formatted using the path format of dstPath (as returned by
querying the path’s VG PATH FORMAT parameter using vgGetParameteri). The
numSegments parameter gives the total number of entries in the pathSegments
array, and must be greater than 0. Legal values for the pathSegments array are the
values from the VGPathCommand enumeration as well as VG_CLOSE_PATH and

(VG_CLOSE_PATH | VG RELATIVE) (which are synonymous).

The pathData pointer must be aligned on a 1-, 2-, or 4-byte boundary (as defined in
the “Bytes” column of Table 7) depending on the size of the coordinate datatype (as
returned by querying the path’s VG PATH DATATYPE parameter using
vgGetParameteri). The VG PATH CAPABILITY APPEND_ TO capability must be
enabled for path.

Each incoming coordinate value, regardless of datatype, is transformed by the scale
factor and bias of the path.

void vgAppendPathData (VGPath dstPath,
VGint numSegments,
const VGubyte * pathSegments,
const void * pathData)

Version 1.1 Revision 1 (December 3, 2008)

Paths 87

ERRORS

VG _BAD HANDLE ERROR

- if dstPath is not a valid path handle, or is not shared with the current
context

VG _PATH CAPABILITY ERROR

- if VG_PATH CAPABILITY APPEND TO isnotenabled for dstPath
VG _ILLEGAL ARGUMENT ERROR

- if pathSegments or pathData is NULL
- if pathData is not properly aligned
- if numSegments is less than or equal to 0

- if pathSegments contains an illegal command

8.6.7 Modifying Path Data

Coordinate data in an existing path may be modified, for example to create animation
effects. Implementations should choose an internal representation for paths that have the
VG _PATH CAPABILITY MODIFY capability enabled that allows for efficient
modification of the coordinate data.

vgModifyPathCoords

vgModifyPathCoords modifies the coordinate data for a contiguous range of segments
of dstPath, starting at startIndex (where 0 is the index of the first path segment)
and having length numSegments. The data in pathData must be formatted in exactly
the same manner as the original coordinate data for the given segment range, unless the
path has been transformed using vgTransformPath or interpolated using
vglnterpolatePath. In these cases, the path will have been subject to the segment
promotion rules specified in those functions.

The pathData pointer must be aligned on a 1-, 2-, or 4-byte boundary
depending on the size of the coordinate datatype (as returned by querying the
path’s VG PATH DATATYPE parameter using vgGetParameteri). The

VG _PATH CAPABILITY MODIFY capability must be enabled for path.

Version 1.1 Revision 1 (December 3, 2008)

Paths 88

Each incoming coordinate value, regardless of datatype, is transformed by the
scale factor and bias of the path.

void vgModifyPathCoords (VGPath dstPath,
VGint startIndex, VGint numSegments,
const void * pathData)

ERRORS
VG_BAD_HANDLE ERROR

- if dstPath is not a valid path handle, or is not shared with the current
context

VG_PATH CAPABILITY ERROR

- if VG PATH CAPABILITY MODIFY isnotenabled for dstPath
VG ILLEGAL ARGUMENT ERROR

- if pathData is NULL

- if pathData is not properly aligned

- if startIndex isless than 0

- if numSegments is less than or equal to 0

- if startIndex + numSegments is greater than the number of segments in
the path

8.6.8 Transforming a Path

vgTransformPath

vgTransformPath appends a transformed copy of srcPath to the current contents of

dstPath. The appended path is equivalent to the results of applying the current path-
user-to-surface transformation (VG MATRIX PATH USER TO

SURFACE) to srcPath.

Itis legal for srcPath and dstPath to be handles to the same path object, in
which case the transformed path will be appended to the existing path. If
srcPath and dstPath are handles to distinct path objects, the contents of
srcPath will not be affected by the call.

Version 1.1 Revision 1 (December 3, 2008)

Paths 89

Al HLINE TO * and VLINE TO_ * segments present in srcPath are implicitly
converted to LINE TO_* segments prior to applying the transformation. The original
copies of these segments in srcPath remain unchanged.

Any *ARC TO segments are transformed, but the endpoint parametrization of the
resulting arc segments are implementation-dependent. The results of calling
vginterpolatePath on a transformed path that contains such segments are undefined.

The VG_PATH CAPABILITY TRANSFORM FROM capability must be enabled for
srcPath, and the VG PATH CAPABILITY TRANSFORM TO capability must be
enabled for dstPath.

Overflow may occur silently if coordinates are transformed outside the datatype range of
dstPath.

void vgTransformPath (VGPath dstPath, VGPath srcPath)

ERRORS
VG_BAD_HANDLE ERROR

- if either dstPath or srcPath is not a valid path handle, or is not shared with
the current context

VG _PATH CAPABILITY ERROR
- if VG_PATH CAPABILITY TRANSFORM FROM is notenabled for srcPath

- if VG_PATH CAPABILITY TRANSFORM TO is not enabled for dstPath

8.6.9 Interpolating Between Paths

Interpolation takes two compatible paths, in a sense described below, and defines a new
path that interpolates between them by a parameter amount. When amount is equal to
0, the result is equivalent to the first path; when amount is equal to 1, the result is
equivalent to the second path. Values between 0 and 1 produce paths that smoothly
interpolate between the two extremes. Values outside the [0, 1] range produce
extrapolated paths. Conceptually, interpolation occurs as follows. First, the two path
parameters are copied and the copies are normalized by:

« Converting all coordinates to floating-point format, applying the path scale and bias
parameters

« Converting all relative segments to absolute form
« Converting {H,V}LINE TO * segments to LINE TO form

Version 1.1 Revision 1 (December 3, 2008)

Paths 90

+ Converting (S)QUAD_TO_ */SCUBIC_TO_* segments to CUBIC TO form

- Retaining all *ARC_TO_* and CLOSE PATH segments

If, following normalization, both paths have the same sequence of segment types
(treating all forms of arc as the same), interpolation proceeds by linearly interpolating
between each corresponding pair of segment parameters in the normalized paths. If the
starting arc type differs from the final arc type, the starting arc type is used for values of
amount less than 0.5, and the final arc type is used for values greater than or equal to
0.5. Finally, the coordinates are converted to the data type of the destination.

vginterpolatePath

The vgInterpolatePath function appends a path, defined by interpolation (or
extrapolation) between the paths startPath and endPath by the given amount, to
the path dstPath. It returns VG_TRUE if interpolation was successful (i.e., the paths
had compatible segment types after normalization), and VG FALSE otherwise. If
interpolation is unsuccessful, dstPath is left unchanged. B

It is legal for dstPath to be a handle to the same path object as either
startPath or endPath or both, in which case the contents of the source path
or paths referenced by dstPath will have the interpolated path appended. If
dstPath is not the a handle to the same path object as either startPath or
endPath, the contents of startPath and endPath will not be affected by the
call.

Overflow may occur silently if the datatype of dstPath has insufficient range to store
an interpolated coordinate value.

The VG_PATH CAPABILITY INTERPOLATE FROM capability must be enabled
for both of startPath and endPath, and the INTERPOLATE TO capability
must be enabled for dstPath.

VGboolean vglInterpolatePath (VGPath dstPath,
VGPath startPath,
VGPath endPath,
VGfloat amount)

Version 1.1 Revision 1 (December 3, 2008)

Paths 91

ERRORS

VG_BAD HANDLE ERROR

- if any of dstPath, startPath, or endPath is not a valid path handle, or is
not shared with the current context

VG _PATH CAPABILITY ERROR

- if VG_PATH CAPABILITY PATH INTERPOLATE TO is notenabled for
dstPath

- if VG_PATH CAPABILITY PATH INTERPOLATE FROM isnot enabled for
startPath or endPath

8.6.10 Length of a Path

An approximation to the geometric length of a portion of a path may be obtained by
calling the vgPathLength function. MOVE TO segments and implicit path closures (see
Section 8.7.1) do not contribute to the path length. CLOSE PATH segments have the
same length as a LINE TO segment with the same endpoints.

vgPathLength

The vgPathLength function returns the length of a given portion of a path in the user
coordinate system (that is, in the path’s own coordinate system, disregarding any matrix
settings). Only the subpath consisting of the numSegments path segments beginning

with startSegment (where the initial path segment has index 0) is used. If an
error occurs, -1.0f is returned.

The VG_PATH CAPABILITY PATH LENGTH capability must be enabled for path.

VGfloat vgPathLength (VGPath path,
VGint startSegment, VGint numSegments) ; I

Version 1.1 Revision 1 (December 3, 2008)

Paths 92

ERRORS
VG_BAD_HANDLE ERROR

- if pathis not a valid path handle, or is not shared with the current context

VG _PATH CAPABILITY ERROR

- if VG_PATH CAPABILITY PATH LENGTH is not enabled for path
VG _ILLEGAL ARGUMENT ERROR

- if startSegment is less than 0 or greater than the index of the final path
segment

- if numSegments is less than or equal to 0

- if (startSegment + numSegments — 1) is greater than the index of the final
path segment

8.6.11 Position and Tangent Along a Path

Some path operations, such as the placement and orientation of text along a path, require
the computation of a set of points along a path as well as a normal (perpendicular) vector
at each point. The vgPointAlongPath function provides points along the path as well
as normalized tangent vectors (from which normals may easily be derived).

The Tangents of a Path Segment

The tangent at a given point along a path is defined as a vector pointing in the same
direction as the path at that point. The tangent at any point of a line segment is parallel to
the line segment; the tangent at any point along a Bézier curve or elliptical arc segment

may be defined using the derivatives of the parametric equations x(¢) and y(¢) that define
the curve. The incoming tangent at a point is defined using the direction in which the
curve is “traveling” prior to arriving at the point; the outgoing tangent is defined using
the direction the curve is traveling as it leaves the point. The incoming and outgoing
tangents may differ at a vertex joining different curve segments, or at a sharp “cusp” in a
curve.

If a point along a path segment has no tangent defined, for example where a path
segment has collapsed to a single point, the following algorithm is used to define
incoming and outgoing tangents at the point. Search backwards until a segment is found
with a tangent defined at its end point, or the start of the current path is reached; if a
tangent is found, use it as the incoming tangent. Search forwards until a segment is found
with a tangent defined at its starting point, or the end of the current path is reached; if a

Version 1.1 Revision 1 (December 3, 2008)

Paths 93

tangent is found, use it as the outgoing tangent. If these searches produce exactly one
defined tangent, that tangent is used as both the incoming and outgoing tangent. If the
searches produced no defined tangent, the incoming and outgoing tangents are both
assigned the value (1, 0). Tangent vectors are normalized to have unit length.

vgPointAlongPath

The vgPointAlongPath function returns the point lying a given distance along a given
portion of a path and the unit-length tangent vector at that point. Only the subpath
consisting of the numSegments path segments beginning with startSegment
(where the initial path segment has index 0) is used. For the remainder of this
section we refer only to this subpath when discussing paths.

If distance is less than or equal to 0, the starting point of the path is used. If
distance is greater than or equal to the path length (i.e., the value returned by
vgPathLength when called with the same startSegment and numSegments
parameters), the visual ending point of the path is used.

Intermediate values return the (x, y) coordinates and tangent vector of the point at the
given distance along the path. Because it is not possible in general to compute exact
distances along a path, an implementation is not required to use exact
computation even for segments where such computation would be possible. For
example, the path:

MOVE TO 0, O0; LINE TO 10, O // draw a line of length 10

MOVE TO 10, 10 // create a discontinuity

LINE TO 10, 20 // draw a line of length 10

may return either (10, 0) or (10, 10) (or points nearby) as the point at distance
10.0. Implementations are not required to compute distances exactly, as long as
they satisfy the constraint that as distance increases monotonically the
returned point and tangent move forward monotonically along the path.

Where the implementation is able to determine that the point being queried
lies exactly at a discontinuity or cusp, the incoming point and tangent should be
returned. In the example above, returning the pre-discontinuity point (10, 0) and
incoming tangent (1, 0) is preferred to returning the post-discontinuity point (10,
10) and outgoing tangent (0, 1).

The VG_PATH CAPABILITY POINT ALONG_PATH capability must be enabled for
path.

If the reference arguments x and y are both non-NULL, and the

Version 1.1 Revision 1 (December 3, 2008)

Paths 94

VG_PATH CAPABILITY POINT ALONG_PATH capability is enabled for path, the
point (x,) is returned in x and y. Otherwise the variables referenced by x and y are not
written.

If the reference arguments tangentX and tangentY are both non-NULL, and the

VG PATH CAPABILITY TANGENT ALONG PATH capability is enabled for path,
the geometric tangent vector at the point (x,) is returned in tangentX and
tangentY. Otherwise the variables referenced by tangentX and tangentY are not
written.

Where the incoming tangent is defined, vgPointAlongPath returns it. Where only the
outgoing tangent is defined, the outgoing tangent is returned.

The points returned by vgPointAlongPath are not guaranteed to match the path as
rendered; some deviation is to be expected.

void vgPointAlongPath (VGPath path,

VGint startSegment, VGint numSegments,
VGfloat distance,

VGfloat * x, VGfloat * vy,

VGfloat * tangentX, VGfloat * tangentY)

Version 1.1 Revision 1 (December 3, 2008)

Paths 95

ERRORS
VG_BAD_HANDLE ERROR

- if pathis not a valid path handle, or is not shared with the current context
VG_PATH CAPABILITY ERROR

- If x and y are both non-NULL, and the
VG PATH CAPABILITY POINT ALONG PATH is not enabled for path

- If tangentX and tangentY are both non-NULL, and the
VG_PATH CAPABILITY TANGENT ALONG_PATH capability is not enabled
for path

VG ILLEGAL ARGUMENT ERROR

if startSegment is less than 0 or greater than the index of the final path
segment

- if numSegments is less than or equal to 0

- if (startSegment + numSegments — 1) is less than 0 or greater than the index
of the final path segment

- if x, y, tangentX or tangentY is not properly aligned

8.6.12 Querying the Bounding Box of a Path

To draw complex scenes efficiently, it is important to avoid drawing objects that do not
appear in the region being drawn. A simple way to determine whether an object may be
visible is to determine whether its bounding box — an axis-aligned rectangle that is
guaranteed to contain the entire object — intersects the drawn region. The
vgPathBounds and vgPathTransformedBounds functions provide bounding box
information.

Two types of bounding boxes may be obtained for a path. The first, obtained by calling
vgPathBounds, returns a tight axis-aligned bounding box for the area contained within
the path in its own coordinate system. The second, obtained by calling
vgPathTransformedBounds, returns an axis-aligned bounding box for the path as it
will appear when drawn on the drawing surface (i.e., following application of the
current path-user-to-surface transform). The latter function does not guarantee to bound
the shape tightly, but still may provide tighter bounds than those obtained by
transforming the result of vgPathBounds, at a lower cost.

Version 1.1 Revision 1 (December 3, 2008)

Paths 96

The bounding box of a path is defined to contain all points along the path, including
isolated points created by MOVE TO segments. The fill rule has no effect on the
determination of the bounding box. If the path is to be stroked, the application must
adjust the bounding box to take the stroking parameters into account. Note that Miter
joins in particular may extend far outside the bounding box.

vgPathBounds

The vgPathBounds function returns an axis-aligned bounding box that tightly

bounds the interior of the given path. Stroking parameters are ignored. If path is
empty, minX and minY are set to 0 and width and height are set to -1. If path
contains a single point, ninX and minY are set to the coordinates of the point and
width and height are set to 0.

The VG_PATH CAPABILITY PATH BOUNDS capability must be enabled for
path.

void vgPathBounds (VGPath path,
VGfloat * minX, VGfloat * minY,
VGfloat * width, VGfloat * height)

ERRORS
VG_BAD_HANDLE ERROR

- if path is not a valid path handle, or is not shared with the current context
VG ILLEGAL ARGUMENT ERROR

- if minX, minY, width, or height is NULL

- if minX, minY, width, or height is not properly aligned

VG_PATH CAPABILITY ERROR

- if VG_PATH CAPABILITY PATH BOUNDS is not enabled for path

vgPathTransformedBounds

The vgPathTransformedBounds function returns an axis-alighed bounding box
that is guaranteed to enclose the geometry of the given path following
transformation by the current path-user-to-surface transform. The returned
bounding box is not guaranteed to fit tightly around the path geometry. If path
is empty, minX and minY are set to 0 and width and height are set to -1. If

Version 1.1 Revision 1 (December 3, 2008)

Paths 97

path contains a single point, minX and minY are set to the transformed
coordinates of the point and width and height are set to 0.

The VG_PATH CAPABILITY PATH TRANSFORMED BOUNDS capability must be
enabled for path.

void vgPathTransformedBounds (VGPath path,
VGfloat * minX, VGfloat * minY,
VGfloat * width, VGfloat * height)

ERRORS
VG_BAD_HANDLE ERROR

- if path is not a valid path handle, or is not shared with the current context

VG ILLEGAL ARGUMENT ERROR

- if minX, minY, width, or height is NULL

- if minX, minY, width, or height is not properly aligned
VG _PATH CAPABILITY ERROR

- if VG_PATH CAPABILITY PATH TRANSFORMED BOUNDS is not enabled
for path

8.7 Interpretation of Paths

The interpretation of a path, composed of a sequence of one or more subpaths, depends
on whether it is to be stroked or filled. For stroked paths, each subpath has stroking
parameters applied to it separately, with the dash phase at the end of each subpath used at
the beginning of the next subpath. This process results in a set of stroked shapes. The
union of these shapes then defines the outline path to be filled. For filled paths, the
interior of the path (as defined below) is filled.

8.7.1 Filling Paths

A simple, non-self-intersecting closed path divides the plane into two regions, a bounded
inside region and an unbounded outside region. Note that knowing the orientation of the
outermost path (i.e., clockwise or counter-clockwise) is not necessary to differentiate
between the inside and outside regions.

A path that self-intersects, or that has multiple overlapping subpaths, requires additional
information in order to define the inside region. Two rules that provide different

Version 1.1 Revision 1 (December 3, 2008)

Paths 98

definitions for the area enclosed by such paths, known as the non-zero and even/odd fill
rules, are supported by OpenVG. To determine whether any point in the plane is
contained in the inside region, imagine drawing a line from that point out to infinity in
any direction such that the line does not cross any vertex of the path. For each edge that
is crossed by the line, add 1 to the counter if the edge crosses from left to right, as seen
by an observer walking along the line towards infinity, and subtract 1 if the edge crosses
from right to left. In this way, each region of the plane will receive an integer value.

The non-zero fill rule says that the point is inside the shape if the resulting sum is not
equal to 0. The even/odd rule says that the point is inside the shape if the resulting sum is
odd, regardless of sign (e.g., -7 is odd, 0 is even). Consider the star-shaped path shown in
Figure 8 below, indicated with solid lines. The orientation of the lines making up the path
is indicated with arrows. An imaginary line to infinity starting in the central region of the
star is shown as a dashed line pointing to the right. Two edges of the star cross the line to
infinity going left to right, indicated by the downward-pointing arrows. The central
region therefore has a count of +2. According to the even/odd rule, it is outside the path,
whereas according to the non-zero rule it is inside. Implementations must be able to deal
with paths having up to 255 crossings along any line. The behavior of more complex
paths is undefined.

Figure 8: Even/Odd Fill Rule

Creating Holes in Paths

The fill rule is applied with respect to all subpaths simultaneously during filling. Thus,
one subpath may be used to create a hole inside an enclosing subpath by defining the two

Version 1.1 Revision 1 (December 3, 2008)

Paths

subpaths with opposing orientations (clockwise versus counter-clockwise). Note that the

99

orientation of extremely small paths may depend on the numerical precision of the

internal representation of points. Care should be taken to avoid the use of paths that have

nearly collapsed to a line or a point.

The relative orientation of subpaths, along with the fill rule, determines whether
overlapping subpaths will result in holes, as shown in Figure 9 below.

Even/Odd Fill Rule

Non-Zero Fill Rule

Same

Orientation

Opposing

Orientation

Figure 9: Creating Holes with Subpaths

Version 1.1 Revision 1 (December 3, 2008)

Paths 100

Implicit Closure of Filled Subpaths

When filling a path, any subpaths that do not end with a CLOSE PATH segment
command (i.e., that are terminated with a MOVE TO ABS or MOVE TO REL segment
command, or that contain the final segment of the path) are implicitly closed, without
affecting the position of any other vertices of the path or the (sx, sy), (px, py) or (ox, 0y)
variables. For example, consider the sequence of segment commands:

MOVE_TO_ABS 0, 0; LINE TO ABS 10, 10; LINE TO ABS 10, O
MOVE_TO REL 10, 2; LINE TO ABS 30, 12; LINE TO ABS 30, 2

If filled, this sequence will result in one filled triangle with vertices (0, 0), (10, 10), and
(10, 0) and another filled triangle with vertices (20, 2), (30, 12), and (30, 2). Note that the
implicit closure of the initial subpath prior to the MOVE TO REL segment command has
no effect on the starting coordinate of the second triangle; it is computed by adding the
relative offset (10, 2) to the final coordinate of the previous segment (70, 0) to obtain
(20, 2) and is not altered by the (virtual) insertion of the line connecting the first
subpath’s final vertex (10, 0) to its initial vertex (0, 0)). Figure 10 illustrates this
process, with the resulting filled areas highlighted. When stroking a path, no
implicit closure takes place, as shown in Figure 11. Implicit closure affects only
the output when filling a path, and does not alter the path data in any way.

0€ OL HANI'T

Figure 10: Implicit Closure of Filled Paths

©
7
2,
V)
2°0¢ OL ANI'1

2

OU UL OL ANI'L
<
%

Z
)
)
‘a

O

\
)
~

Figure 11: Stroked Paths Have No Implicit Closure

Version 1.1 Revision 1 (December 3, 2008)

Paths 101

8.7.2 Stroking Paths

Stroking a path consists of “widening” the edges of the path using a straight-line pen
held perpendicularly to the path. At the start and end vertices of the path, an additional
end-cap style is applied. At interior vertices of the path, a line join style is applied. Ata
cusp of a Bézier segment, the pen is rotated smoothly between the incoming and
outgoing tangents.

Conceptually, stroking of a path is performed in two steps. First, the stroke parameters
are applied in the user coordinate system to form a new shape representing the end result
of dashing, widening the path, and applying the end cap and line join styles. Second, a
path is created that defines the outline of this stroked shape. This path is transformed
using the path-user-to-surface transformation (possibly involving shape distortions due to
non-uniform scaling or shearing). Finally, the resulting path is filled with paint in exactly
the same manner as when filling a user-defined path using the non-zero fill rule.

Stroking a path applies a single “layer” of paint, regardless of any intersections between
portions of the thickened path. Figure 12 illustrates this principle. A single stroke (above)
is drawn with a black color and an alpha value of 50%, compared with two separate
strokes (below) drawn with the same color and alpha values. The single stroke produces
a shape with a uniform color of 50% gray, as if a single layer of translucent paint has
been applied, even where portions of the path overlap one another. By contrast, the
separate strokes produce two applications of the translucent paint in the area of overlap,
resulting in a darkened area.

Single Stroke

Separate Strokes

Figure 12: Each Stroke Applies a Single Layer of Paint

Version 1.1 Revision 1 (December 3, 2008)

Paths 102

8.7.3 Stroke Parameters
Stroking a path involves the following parameters, set on a context:

Line width in user coordinate system units

End cap style — one of Butt, Round, or Square

Line join style — one of Miter, Round, or Bevel

Miter limit — if using Miter join style

Dash pattern — array of dash on/off lengths in user units
Dash phase — initial offset into the dash pattern

These parameters are set on the current context using the variants of the vgSet
function. The values most recently set prior to calling vgDrawPath (see Section 8.8)
are applied to generate the stroke.

End Cap Styles

Figure 13 illustrates the Butt (top), Round (center), and Square (bottom) end cap styles
applied to a path consisting of a single line segment. Figure 14 highlights the additional
geometry created by the end caps. The Butt end cap style terminates each segment with a
line perpendicular to the tangent at each endpoint. The Round end cap style appends a
semicircle with a diameter equal to the line width centered around each endpoint. The
Square end cap style appends a rectangle with two sides of length equal to the line width
perpendicular to the tangent, and two sides of length equal to half the line width parallel
to the tangent, at each endpoint. The outgoing tangent is used at the left endpoint and the
incoming tangent is used at the right endpoint.

e
e *on
ey Squore

Figure 13: End Cap Styles

Version 1.1 Revision 1 (December 3, 2008)

Paths 103

Figure 14: End Cap Styles with Additional Geometry Highlighted

Line Join Styles

Figure 15 illustrates the Bevel (left), Round (center), and Miter (right) line join styles
applied to a pair of line segments. Figure 16 highlights the additional geometry created
by the line joins. The Bevel join style appends a triangle with two vertices at the outer
endpoints of the two “fattened” lines and a third vertex at the intersection point of the
two original lines. The Round join style appends a wedge-shaped portion of a circle,
centered at the intersection point of the two original lines, having a radius equal to half
the line width. The Miter join style appends a trapezoid with one vertex at the
intersection point of the two original lines, two adjacent vertices at the outer endpoints of
the two “fattened” lines and a fourth vertex at the extrapolated intersection point of the
outer perimeters of the two “fattened” lines.

When stroking using the Miter join style, the miter length (i.e., the length between the
intersection points of the inner and outer perimeters of the two “fattened” lines) is
compared to the product of the user-set miter limit and the line width. If the miter length
exceeds this product, the Miter join is not drawn and a Bevel join is substituted.

Bevel Round Miter

Figure 15: Line Join Styles

Version 1.1 Revision 1 (December 3, 2008)

Paths 104

/ Miter Length

Figure 16: Line Join Styles with Additional Geometry Highlighted

Miter Length

The ratio of miter length to line width may be computed directly from the angle O
between the two line segments being joined as //sin(6/2). A number of angles with their
corresponding miter limits for a line width of 1 are shown in Table 9.

Angle (degrees) Miter Limit Angle (degrees) Miter Limit
10 11.47 45 2.61
11.47 10 60 2
23 5 90 1.41
28.95 4 120 1.15
30 3.86 150 1.03
38.94 3 180 1

Table 9: Corresponding Angles and Miter Limits

Dashing

The dash pattern consists of a sequence of lengths of alternating “on” and “off” dash
segments. The first value of the dash array defines the length, in user coordinates, of the
first “on” dash segment. The second value defines the length of the following “off”
segment. Each subsequent pair of values defines one “on” and one “off” segment.

The dash phase defines the starting point in the dash pattern that is associated with the
start of the first segment of the path. For example, if the dash pattern is [10 20 30 40]

Version 1.1 Revision 1 (December 3, 2008)

Paths 105

and the dash phase is 35, the path will be stroked with an “on” segment of length 25
(skipping the first “on” segment of length 10, the following “off” segment of length 20,
and the first 5 units of the next “on” segment), followed by an “off”” segment of length
40. The pattern will then repeat from the beginning, with an “on” segment of length 10,
an “off” segment of length 20, an “on” segment of length 30, etc. Figure 17 illustrates
this dash pattern.

Conceptually, dashing is performed by breaking the path into a set of subpaths according
to the dash pattern. Each subpath is then drawn independently using the end cap, line join
style, and miter limit that were set for the path as a whole.

Dashes of length 0 are drawn only if the end cap style is VG _CAP ROUND or

VG CAP_SQUARE. The incoming and outgoing tangents (which may differ if the dash
falls at a vertex of the path) are evaluated at the point, using the vgPointAlongPath
algorithm. The end caps are drawn using the orientation of each tangent, and a join is
drawn between them if the tangent directions differ. If the end cap style is

VG_CAP BUTT, nothing will be drawn.

A dash, or space between dashes, with length less than 0 is treated as having a length of
0.

A negative dash phase is equivalent to the positive phase obtained by adding a suitable
multiple of the dash pattern length.

Version 1.1 Revision 1 (December 3, 2008)

Paths 106

Dash Phase=35

40

Dash Pattern:

A E—
30

10

CEE N EEE BN ERE I

25 10 30 10 30 10 30 .. ’

Resulting Line:)
2

Figure 17: Dash Pattern and Phase Example

8.7.4 Stroke Generation

The algorithm for generating a stroke is as follows. The steps described in this section
conceptually take place in user coordinates, on a copy of the path being stroked in which
all relative and implicit coordinates have been converted to absolute coordinates. An
initial MOVE_TO 0, O segment is added if the path does not begin with a MOVE_TO.

The path to be stroked is divided into subpaths, each ending with a MOVE TO or
CLOSE_PATH segment command or with the final path segment. Subpaths consisting of
only a single MOVE TO segment are discarded.

A subpath consisting of a single point (i.e., a MOVE TO segment followed by a
sequence of LINE TO, QUAD TO, CUBIC_TO, and/or ARC_TO segments with all
control points equal to the current point, possibly followed by a CLOSE PATH
segment) is collapsed to a lone vertex, which is marked as an END vertex (for later
generation of end caps). A tangent vector of (1, 0) is used for Square end caps.

Subpaths that do not consist only of a single point have any zero-length segments
removed.

Version 1.1 Revision 1 (December 3, 2008)

Paths 107

If a subpath does not end with a CLOSE PATH segment command, its first and last
vertices are marked as END vertices. All the internal vertices that begin or end path
segments within the subpath, as well as the initial/final vertex if the subpath ends with a
CLOSE_PATH segment, are marked as JOIN vertices (for later generation of line joins).

Each subpath is processed in turn as described below until all subpaths have been
stroked.

If dashing is enabled, the dash pattern and phase are used to break the subpath into a
series of smaller subpaths representing the “on” portions of the dash pattern. New
vertices are created at the endpoints of each dash subpath and marked as END vertices.
The old subpath is discarded and replaced with the dash subpaths for the remainder of
the stroke processing. The dash phase is advanced for each subsequent segment by the
length of the previous segment (where CLOSE PATH segments are treated as LINE TO
segments). If VG_DASH PHASE RESET is disabled (set to VG_FALSE), the final dash
phase at the end of the subpath is used as the initial dash phase for the next subpath.
Otherwise, the original dash phase is used for all subpaths.

For each END vertex, an end cap is created (if Square or Round end caps have been
requested) using the orientation given by the tangent vector. The tangent vector is
defined in the same manner as for the vgPointAlongPath function (see p. 92).

For each JOIN vertex, a line join is created using the orientations given by the tangent
vectors of the two adjacent path segments. If Miter joins are being used, the length of the

miter is computed and compared to the product of the line width and miter limit; if the
miter would be too long, a Bevel join is substituted.

8.7.5 Setting Stroke Parameters

Setting the line width of a stroke is performed using vgSetf with a paramType
argument of VG_STROKE LINE WIDTH. A line width less than or equal to 0
prevents stroking from taking place.

VGfloat lineWidth;
vgSetf (VG_STROKE_LINE_WIDTH, lineWidth) ;

VGCapStyle

The VGCapStyle enumeration defines constants for the Butt, Round, and Square end
cap styles:

Version 1.1 Revision 1 (December 3, 2008)

Paths 108

typedef enum {

VG_CAP BUTT = 0x1700,
VG_CAP_ROUND = 0x1701,
VG_CAP_SQUARE = 0x1702

} VGCapStyle;

Setting the end cap style is performed using vgSeti with a paramType argument of
VG_STROKE CAP_ STYLE and a value from the VGCapStyle enumeration.

VGCapStyle capStyle;
vgSeti (VG_STROKE CAP STYLE, capStyle);

VGJoinStyle

The VGJoinStyle enumeration defines constants for the Miter, Round, and Bevel line
join styles:

typedef enum {
VG_JOIN MITER = 0x1800,
VG_JOIN ROUND = 0x1801,
VG _JOIN BEVEL = 0x1802
} VGJoinStyle;

Setting the line join style is performed using vgSeti with a paramType argument of
VG_STROKE JOIN STYLE and a value from the VGJoinStyle enum.

VGJoinStyle joinStyle;
vgSeti (VG_STROKE JOIN STYLE, joinStyle); I

Setting the miter limit is performed using vgSetf with a paramType argument of
VG _STROKE MITER LIMIT:

VGfloat miterLimit;
vgSetf (VG_STROKE_MITER_LIMIT, miterLimit) ;

Miter limit values less than 1 are silently clamped to 1.

VG_MAX_DASH_COUNT

The VG_MAX DASH COUNT parameter contains the maximum number of dash
segments that may be supplied for the VG STROKE DASH PATTERN parameter. All
implementations must must support at least 16 dash segments (8 on/off pairs). If there is
no implementation-defined limit, a value of VG MAXINT may be returned. The value
may be retrieved by calling vgGeti:

‘VGint maxDashCount = vgGeti (VG _MAX DASH COUNT) ; I

Version 1.1 Revision 1 (December 3, 2008)

Paths 109

Setting the Dash Pattern

The dash pattern is set using vgSetfv with a paramType argument of
VG _STROKE DASH PATTERN:

VGfloat dashPattern[DASH COUNT];
VGint count = DASH COUNT;
VgSeth(VG_STROKE_DASH_PATTERN,

count, dashPattern);

Dashing may be disabled by calling vgSetfv with a count of 0:

vgSetfv (VG_STROKE DASH PATTERN, 0, NULL);

The dash phase is set using vgSetf with a paramType argument of

VG STROKE DASH PHASE. The resetting behavior of the dash phase when
advancing to a new subpath is set using vgSeti with a paramType argument of
VG_STROKE DASH PHASE RESET:

VGfloat dashPhase;

VGboolean dashPhaseReset;
ngetf(VG_STROKE_DASH_PHASE, dashPhase) ;

vgSeti (VG_STROKE DASH PHASE RESET, dashPhaseReset);

If the dash pattern has length 0, dashing is not performed. If the dash pattern has an odd
number of elements, the final element is ignored. Note that this behavior is different from
that defined by SVG; the SVG behavior may be implemented by duplicating the odd-
length dash pattern to obtain one with even length.

If more than VG_MAX DASH COUNT dashes are specified, those beyond the first
VG MAX DASH COUNT are discarded immediately (and will not be returned by vgGet).

8.7.6 Non-Scaling Strokes

In some cases, applications may wish stroked geometry to appear with a particular stroke
width in the surface coordinate system, independent of the current user-to-surface
transformation. For example, a stroke representing a road on a map might stay the same
width as the user zooms in and out of the map, since the stroke width is intended to
indicate the type of road (e.g., one-way street, divided road, interstate highway or
Autobahn) rather than its true width on the ground.

OpenVG does not provide direct support for this “non-scaling stroke” behavior.
However, the behavior may be obtained relatively simply using a combination of
features.

If the current user-to-surface transformation consists only of uniform scaling, rotation,
and translation (i.e., no shearing or non-uniform scaling), then the stroke width may be

Version 1.1 Revision 1 (December 3, 2008)

Paths 110

set to the desired stroke width in drawing surface coordinates, divided by the scaling
factor introduced by the transformation. This scaling factor may be known to the
application a priori, or else it may be computed as the square root of the absolute value
of the determinant (sx*sy — shx*shy) of the user-to-surface transformation.

If the user-to-surface transformation includes shearing or non-uniform scaling, the
geometry to be stroked must be transformed into surface coordinates prior to stroking.
The paint transformation must also be set to the concatenation of the paint-to-user and
user-to-surface transformations in order to allow correct painting of the stroked
geometry. The following code illustrates this technique:

VGPath srcPath; /* Path to be drawn with non-scaling stroke */
VGPath dstPath; /* Path in drawing surface coordinates */

VGfloat strokePaintToUser[9]; /* Paint-to-user transformation */
VGfloat pathUserToSurface[9]; /* User-to-surface transformation */

/* Transform the geometry into surface coordinates. */
vgSeti (VG_MATRIX MODE, VG MATRIX PATH USER TO SURFACE) ;
vgLoadMatrix (pathUserToSurface) ;

vgTransformPath (dstPath, srcPath);

/* Use the identity matrix for drawing the stroked path. */
vgLoadIdentity () ;

/* Set the paint transformation to the concatenation of the
* paint-to-user and user-to-surface transformations.
%)
vgSeti (VG MATRIX MODE, VG MATRIX FILL PAINT TO USER);
vgLoadMatrix (pathUserToSurface) ;
vgMultMatrix (strokePaintToUser) ;

/* Stroke the transformed path. */
vgDrawPath (dstPath, VG STROKE PATH) ;

8.8 Filling or Stroking a Path

VGFillRule

The VGFil1lRule enumeration defines constants for the even/odd and non-zero fill
rules.

typedef enum {
VG_EVEN ODD = 0x1900,
VG_NON_ZERO = 0x1901
} VGFillRule;

Version 1.1 Revision 1 (December 3, 2008)

Paths 111

To set the rule for filling, call vgSeti with a t ype parameter value of
VG _FILL RULE and a value parameter defined using a value from the
VGF1illRule enumeration. When the path is filled, the most recent setting of the fill

rule on the current context is used. The fill rule setting has no effect on stroking.

VGFillRule fillRule;
vgSeti (VG _FILL RULE, fillRule);

VGPaintMode

The VGPaintMode enumeration defines constants for stroking and filling paths, to be
used by the vgDrawPath, vgSetPaint, and vgGetPaint functions.

typedef enum {
VG _STROKE PATH
VG_FILL_ PATH

} VGPaintMode;

(1 << 0),
(1 << 1)

vgDrawPath

Filling and stroking are performed by the vgDrawPath function. The paintModes
argument is a bitwise OR of values from the VGPaintMode enumeration, determining
whether the path is to be filled (VG_FILL PATH), stroked (VG_STROKE PATH), or
both (VG_FILL PATH | VG _STROKE PATH). If both filling and stroking are to be
performed, the path is first filled, then stroked.

void vgDrawPath (VGPath path, VGbitfield paintModes)

ERRORS
VG_BAD HANDLE ERROR

- if path is not a valid path handle, or is not shared with the current context

VG ILLEGAL ARGUMENT ERROR

- if paintModes is not a valid bitwise OR of values from the VGPaintMode
enumeration

Filling a Path

Calling vgDrawPath with a paintModes argument of VG_FILL PATH causes the
given path to be filled, using the paint defined for the VG_FILL PATH paint mode and
the current fill rule.

Version 1.1 Revision 1 (December 3, 2008)

Paths 112

The matrix currently set for the VG MATRIX FILL PAINT TO USER matrix mode

is applied to the paint used to fill the path outline. The matrix currently set for the
VG _MATRIX PATH USER _TO SURFACE matrix mode is used to transform the
outline of the path and the paint into surface coordinates.

vgDrawPath (VGPath path, VG FILL PATH);

Stroking a Path

Calling vgDrawPath with a paintModes argument of VG_STROKE PATH
causes the given path to be stroked, using the paint defined for the VG STROKE PATH
paint mode and the current set of stroke parameters.

The matrix currently set for the VG MATRIX STROKE PAINT TO USER matrix

mode is applied to the paint used to fill the stroked path outline. The matrix currently set
for the VG MATRIX PATH USER TO SURFACE matrix mode is used to transform

the outline of the stroked path and the paint into surface coordinates.

vgDrawPath (VGPath path, VG _STROKE PATH) ;

The following code sample shows how an application might set stroke parameters using
variants of vgSet, and stroke a path object (defined elsewhere):

VGPath path;

/* Set the line width to 2.5 */

vgSetf (VG_STROKE LINE WIDTH, 2.5f);

/* Set the miter limit to 10.5 */

vgSetf (VG_STROKE MITER LIMIT, 10.5f);

/* Set the cap style to CAP SQUARE */

vgSeti (VG_STROKE CAP STYLE, VG _CAP_SQUARE) ;
/* Set the join style to JOIN MITER */
vgSeti (VG_STROKE JOIN STYLE, VG _JOIN MITER);

/* Set the dash pattern */
VGfloat dashes[] = { 1.0f, 2.0f, 2.0f, 2.0f };
vgSetfv (VG _STROKE DASH PATTERN, 4, dashes);

/* Set the dash phase to 0.5 and reset it for every subpath */
vgSetf (VG_STROKE DASH PHASE, 0.5f);
vgSeti (VG_STROKE DASH PHASE RESET, VG TRUE) ;

/* Stroke the path */
vgDrawPath (path, VG STROKE PATH) ;

Version 1.1 Revision 1 (December 3, 2008)

Paths 113

Filling and Stroking a Path

Calling vgDrawPath with a paintModes argument of (VG FILL PATH |

VG _STROKE PATH) causes the given path to be first filled, then stroked, exactly as if
vgDrawPath were called twice in succession, first with a paintModes argument of
VG FILL PATH and second with a paintModes argument of VG STROKE PATH.

vgDrawPath (VGPath path, VG _FILL PATH | VG_STROKE PATH);

Version 1.1 Revision 1 (December 3, 2008)

Paint 114

9 Paint

Paint defines a color and an alpha value for each pixel being drawn. Color paint defines
a constant color for all pixels; gradient paint defines a linear or radial pattern of
smoothly varying colors; and pattern paint defines a possibly repeating rectangular
pattern of colors based on a source image. It is possible to define new types of paint as
extensions.

Paint is defined in its own coordinate system, which is transformed into user coordinates
by means of the fill-paint-to-user and stroke-paint-to-user transformations (set using the
VG _MATRIX FILL PAINT TO USER and

VG _MATRIX STROKE PAINT TO USER matrix modes) depending on whether the
current geometry is being filled or stroked.

Given a (fill or stroke) paint-to-user transformation 7p and user-to-surface transformation
Tu, the paint color and alpha of a pixel to be drawn with surface coordinates (x, y) is
defined by mapping its center point (x + %, y + %) through the inverse transformation
(Tu ° Tp)”, resulting in a sample point in the paint coordinate space. This transformation
must be evaluated with sufficient accuracy to ensure a deviation from the ideal of no
more than 1/8 of a pixel along either axis. The paint value nearest that point may be used
(point sampling), or paint values from multiple points surrounding the central sample
point may be combined to produce an interpolated paint value. Paint color values are
processed in premultiplied alpha format during interpolation. The user-to-surface
transformation 7u is taken from the path-user-to-surface transformation when fulfilling a
vgDrawPath call, from the image-user-to-surface transformation when fulfilling a
vgDrawlImage call, or from the glyph-user-to-surface transformation when fulfilling a
vgDrawGlyph or vgDrawGlyphs call.

If the inverse transformation cannot be computed due to a (near-)singularity, no drawing
occurs.

9.1 Paint Definitions

The OpenVG context stores two paint definitions at a time, one to be applied to stroked
shapes and one for filled shapes. This allows the interior of a path to be filled using one
type of paint and its outline to be stroked with another kind of paint in a single
vgDrawPath operation. Initially, default values are used.

VGPaint

VGPaint represents an opaque handle to a paint object. A VGPaint object is live;
changes to a VGPaint object (using vgSetParameter, or by altering an attached

Version 1.1 Revision 1 (December 3, 2008)

Paint 115

pattern image) attached to a context will immediately affect drawing calls on that
context. If a VGPaint object is accessed from multiple threads, the application must
ensure (using vgFinish along with application-level synchronization primitives) that the
paint definition is not altered from one context while another context may still be using it
for drawing.

typedef VGHandle VGPaint; !

9.1.1 Creating and Destroying Paint Objects

vgCreatePaint

vgCreatePaint creates a new paint object that is initialized to a set of default values and
returns a VGPaint handle to it. If insufficient memory is available to allocate a
new object, VG_INVALTD HANDLE is returned.

VGPaint vgCreatePaint (void)

vgDestroyPaint

The resources associated with a paint object may be deallocated by calling
vgDestroyPaint. Following the call, the paint handle is no longer valid in any
of the contexts that shared it. If the paint object is currently active in a drawing
context, the context continues to access it until it is replaced or the context is
destroyed.

‘Void vgDestroyPaint (VGPaint paint) I

ERRORS
VG_BAD_ HANDLE_ ERROR

- if paint is not a valid paint handle, or is not shared with the current context

9.1.2 Setting the Current Paint

vgSetPaint

Paint definitions are set on the current context using the vgSetPaint function. The
paintModes argument is a bitwise OR of values from the VGPaintMode
enumeration, determining whether the paint object is to be used for filling

Version 1.1 Revision 1 (December 3, 2008)

Paint 116

(VG_FILL_PATH), stroking (VG_STROKE_PATH), or both (VG_FILL PATH |
VG_STROKE_PATH). The current paint replaces the previously set paint object, if
any, for the given paint mode or modes. If paint is equal to VG INVALID HANDLE,

the previously set paint object for the given mode (if present) is removed and the paint
settings are restored to their default values.

void vgSetPaint (VGPaint paint, VGbitfield paintModes)

Version 1.1 Revision 1 (December 3, 2008)

Paint 117

ERRORS
VG_BAD HANDLE ERROR

- if paint is neither a valid paint handle nor equal to VG INVALID HANDLE,
or is not shared with the current context
VG ILLEGAL ARGUMENT ERROR

- if paintModes is not a valid bitwise OR of values from the VGPaintMode
enumeration

vgGetPaint

The vgGetPaint function returns the paint object currently set for the given
paintMode, or VG_INVALID HANDLE if an error occurs or if no paint object is set
(i.e., the default paint is present) on the given context with the given paintMode.

VGPaint vgGetPaint (VGPaintMode paintMode)

ERRORS
VG ILLEGAL ARGUMENT ERROR

- if paintMode is not a valid value from the VGPaintMode enumeration

9.1.3 Setting Paint Parameters

Paint functionality is controlled by a number of paint parameters that are stored in each
paint object.

VGPaintParamType

Values from the VGPaintParamType enumeration may be used as the paramType
argument to vgSetParameter and vgGetParameter to set and query various features of
a paint object:

Version 1.1 Revision 1 (December 3, 2008)

Paint 118

typedef enum {
/* Color paint parameters */

VG_PAINT TYPE = 0x1A00,
VG_PAINT COLOR = 0x1A01,
VG_PAINT COLOR RAMP SPREAD MODE = 0x1A02,
VG_PAINT COLOR RAMP STOPS = 0x1A03,
VG_PAINT COLOR RAMP PREMULTIPLIED = 0x1A07,

/* Linear gradient paint parameters */
VG _PAINT LINEAR GRADIENT = 0x1A04,

/* Radial gradient paint parameters */
VG PAINT RADIAL GRADIENT = 0x1A05,

/* Pattern paint parameters */
VG_PAINT PATTERN TILING MODE = 0x1A06
} VGPaintParamType;

The default values that are used when no paint object is present (i.e., in a newly-created
context or following a call to vgSetPaint with a paint value of

VG_INVALID HANDLE) are shown in Table 10. These values are also used as the
initial parameter value for a newly created paint object.

Version 1.1 Revision 1 (December 3, 2008)

Paint 119
Parameter Datatype Default Value

VG_PAINT TYPE VGPaintType VG_PAINT TYPE COLOR

VG_PAINT COLOR VGfloat[4] { 0.0f, 0.0f, 0.0f, 1.0f }

VG_PAINT COLOR RAMP
SPREAD MODE

VGColorRampSpreadMode

VG_COLOR RAMP SPREAD PAD

VG_PAINT COLOR RAMP

TILING MODE

STOPS VGfloat * Array of Length 0

e AR VGEloat [4] { 0.0f, 0.0f, 1.0f, 0.0 }
e g DAL VGfloat [5] {0.0£, 0.0f, 0.0f, 0.0f, 1.0f }
VG _PAINT PATTERN VGTilingMode VG_TILE_FILL

VGPaintType

Table 10: VGPaintParamType Defaults

The VGPaintType enumeration is used to supply values for the

VG_PAINT TYPE paint parameter to determine the type of paint to be applied.

typedef enum {
VG_PAINT TYPE COLOR

VG_PAINT TYPE LINEAR GRADIENT
VG_PAINT TYPE RADIAL GRADIENT
VG_PAINT TYPE PATTERN

} VGPaintType;

9.2 Color Paint

Color paint uses a fixed color and alpha for all pixels. An alpha value of 1 produces a

= 0x1BO0O,
0x1BO01,
0x1B02Z2,
0x1B03

fully opaque color. Colors are specified in non-premultiplied sSRGBA format.

Setting Color Paint Parameters

To enable color paint, use vgSetParameteri to set the paint type to
VG_PAINT TYPE COLOR.

Version 1.1 Revision 1 (December 3, 2008)

Paint 120

The vgSetParameterfv function allows the color and alpha values to be set using the
VG_PAINT COLOR paint parameter to values between 0 and 1. Values outside this
range are interpreted as the nearest endpoint of the range.

VGfloat fill red, fill green, fill blue, fill alpha;
VGfloat stroke red, stroke green, stroke blue, stroke alpha;
VGPaint myFillPaint, myStrokePaint;

VGfloat * fill RGBA = {
fill red, fill green, fill blue, fill alpha
b

VGfloat * stroke RGBA = ({
stroke red, stroke green, stroke blue, stroke alpha
bi

/* Fill with color paint */
vgSetParameteri (myFillPaint, VG PAINT TYPE, VG PAINT TYPE COLCR) ;
vgSetParameterfv (myFillPaint, VG PAINT COLOR, 4, fill RGBA);

/* Stroke with color paint */
vgSetParameteri (myStrokePaint, VG PAINT TYPE, VG PAINT TYPE COLOR);
vgSetParameterfv (myStrokePaint, VG PAINT COLOR, 4, stroke RGBA);

vgSetColor

As a shorthand, the vgSetColor function allows the VG PAINT COLOR parameter of a
given paint object to be set using a 32-bit non-premultiplied SRGBA 8888
representation (see Section 10.210.2). The rgba parameter is a VGuint with 8 bits of
red starting at the most significant bit, followed by 8 bits each of green, blue, and alpha.
Each color or alpha channel value is conceptually divided by 255.0f to obtain a value
between 0 and 1.

void vgSetColor (VGPaint paint, VGuint rgba)

ERRORS
VG_BAD HANDLE_ ERROR

- if paint is not a valid paint handle, or is not shared with the current context

The code:

VGPaint paint;
VGuint rgba;
vgSetColor (paint,

rgba)

Version 1.1 Revision 1 (December 3, 2008)

Paint 121

is equivalent to the code:

VGfloat rgba f[4];

rgba f£[0] = ((rgba >> 24) & Oxff)/255.0f;
rgba f[1] = ((rgba >> 16) & 0xff)/255.0f;
rgba f[2] = ((rgba >> 8) & O0xff)/255.0f;
rgba f[3] = (rgba & Oxff)/255.0f;

vgSetParameterfv (paint, VG PAINT COLOR, 4, rgba f);

vgGetColor

The current setting of the VG PAINT COLOR parameter on a given paint object may
be queried as a 32-bit non-premultiplied sRGBA 8888 value. Each color channel or
alpha value is clamped to the range [0, 1], multiplied by 255, and rounded to obtain an
8-bit integer; the resulting values are packed into a 32-bit value in the same format as for
vgSetColor.

VGuint vgGetColor (VGPaint paint)

ERRORS
VG_BAD_ HANDLE_ ERROR

- if paint is not a valid paint handle, or is not shared with the current context

Version 1.1 Revision 1 (December 3, 2008)

Paint 122

The code:

VGPaint paint;
VGuint rgba;
rgba = vgGetColor (paint) ;

is equivalent to the code:

#define CLAMP (x) ((x) < 0.0f 2 0.0f : ((x) > 1.0f 2 1.0f : (x)))

VGfloat rgba f[4];
int red, green, blue, alpha;

vgGetParameterfv (paint, VG PAINT COLOR, 4, rgba f);

/%
* Clamp color and alpha values from vgGetParameterfv to the
* [0, 1] range, scale to 8 bits, and round to integer.

)
red (int) (CLAMP (rgba f[0])*255.0f + 0.5f);
green = (int) (CLAMP (rgba f[1])*255.0f + 0.5f);
blue = (int) (CLAMP(rgba f[2])*255.0f + 0.5f);
alpha = (int) (CLAMP (rgba f[3])*255.0f + 0.5f);
rgba = (red << 24) | (green << 16) | (blue << 8) | alpha;

9.3 Gradient Paint

Gradients are patterns used for filling or stroking. They are defined
mathematically in two parts; a scalar-valued gradient function defined at every
point in the two-dimensional plane (in paint coordinates), followed by a color
ramp mapping.

9.3.1 Linear Gradients

Linear gradients define a scalar-valued gradient function based on two points (x0, y0)
and (x/, y1) (in the paint coordinate system) with the following properties:

- Itis equal to O at (x0, y0)

- Itisequalto 1 at(x/, yI)

- It increases linearly along the line from (x0, y0) to (x1, yI)

- It is constant along lines perpendicular to the line from (x0, y0) to (xI, y1I)

An expression for the gradient function is:

Version 1.1 Revision 1 (December 3, 2008)

Paint 123

Ax(x—x0)+A y(y—y0)
AxX*+A Y

glx,y)=

where Ax = x1 —x0 and Ay = y1 — y0. If the points (x0, y0) and (xI, yI) are coincident
(and thus Ax”+ Ay’ = 0), the function is given the value 1 everywhere.

Setting Linear Gradient Parameters

To enable linear gradient paint, use vgSetParameteri to set the paint type to
VG_PAINT TYPE LINEAR GRADIENT.

The linear gradient parameters are set using vgSetParameterfv with a paramType
argument of VG_PAINT LINEAR GRADIENT. The gradient values are supplied as
a vector of 4 floats in the order { x0, y0, x1, y1 }.

VGfloat fill x0, fill yO0, £fill x1, fill yl1;
VGfloat stroke x0, stroke y0, stroke x1, stroke yl;
VGPaint myFillPaint, myStrokePaint;
VGfloat * fill linear gradient = {
fill x0, fill yO0, £fill x1, fill yil
i
VGfloat * stroke linear gradient = {
stroke x0, stroke y0, stroke x1, stroke yl

g

/* Fill with linear gradient paint */
vgSetParameteri (myFillPaint, VG PAINT TYPE,
VG_PAINT TYPE LINEAR GRADIENT) ;
vgSetParameterfv (myFillPaint, VG PAINT LINEAR GRADIENT,
4, fill linear gradient);
/* Stroke with linear gradient paint */
vgSetParameteri (myStrokePaint, VG PAINT TYPE,
VG_PAINT TYPE LINEAR GRADIENT) ;
vgSetParameterfv (myStrokePaint, VG PAINT LINEAR GRADIENT,
4, stroke linear gradient);

9.3.2 Radial Gradients

Radial gradients define a scalar-valued gradient function based on a gradient circle
defined by a center point (cx, cy), a radius r, and a focal point (fx, fy) that is forced to lie
within the circle. All parameters are given in the paint coordinate system.

The computation of the radial gradient function is illustrated in Figure 18. The function
is equal to O at the focal point and 1 along the circumference of the gradient circle.

Version 1.1 Revision 1 (December 3, 2008)

Paint 124

Elsewhere, it is equal to the distance between (x, y) and (fx, fy) (shown as d) divided by

the length of the line segment starting at (fx, /), passing through (x, y), and ending on the
circumference of the gradient circle (shown as d). If the radius is less than or equal to 0,

the function is given the value 1 everywhere.

An expression for the gradient function may be derived by defining the line between (fx,
/fv) and (x,) by the parametric expression (fx, fy) + t*(x — fx, y — f) and determining the
positive value of 7 at which the line intersects the circle (x — cx)’ + (y — ¢y)’ = . Figure

18 illustrates the construction. The gradient value g(x, y) is then given by //¢. The
resulting expression is:

_ i’ +dy’
g(x)y)_g 5 3 3 7 V) ' '
Vri(de +dy”)—(dx fy —dy fx Y —(dx fx +dy fy)

where fx'=fx—cx, ' =fy—cy,dx =x—fxand dy =y — fy.
This may be rearranged and simplified to obtain a formula that does not require per-pixel
division:

(dx fic' +dy)+ 7 (dx>+dv))—(dx i —dy f)
r=(f+ ")

One way to evaluate the gradient function efficiently is to rewrite it in the form:

glx,y)=

g, (x)=(4x+ B)+\ Cx*+Dx+E
and to use forward differencing of Ax + B and Cx’ + Dx + E to evaluate it incrementally
along a scanline with several additions and a single square root per pixel.

Version 1.1 Revision 1 (December 3, 2008)

Paint 125

gradient(x, y)=d /d, (x-cx)*+(y-cy)=r’

x =fx+t*(x-fx)
Y =fy+t*(y-fy)

Figure 18: Radial Gradient Function

Setting Radial Gradient Parameters

To enable radial gradient paint, use vgSetParameteri to set the paint type to
VG _PAINT TYPE RADIAL GRADIENT. The radial gradient parameters are set using

vgSetParameterfv with a paramType argument of
VG_PAINT RADIAL GRADIENT. The gradient values are supplied as a vector of
5 floats in the order { cx, cy, fx, fy, r }.

If (fx, fy) lies outside the circumference of the circle, the intersection of the line
from the center to the focal point with the circumference of the circle is used as
the focal point in place of the specified point. To avoid a division by 0, the
implementation may move the focal point along the line towards the center of
the circle by an amount sufficient to avoid numerical instability, provided the
new location lies at a distance of at least .99r from the circle center. The following
code illustrates the setting of radial gradient parameters:

Version 1.1 Revision 1 (December 3, 2008)

Paint 126

VGPaint myFillPaint, myStrokePaint;
VGfloat fill cx, fill cy, fill fx, fill fy, fill r;
VGfloat stroke cx, stroke cy, stroke fx, stroke fy, stroke r;
VGfloat * fill radial gradient = { fill cx, fill cy,
fill fx, fill fy, fill r };

VGfloat * stroke radial gradient = { stroke cx, stroke cy,
stroke fx, stroke fy, stroke r };
vgSetParameteri (myFillPaint, VG PAINT TYPE, g WL =g

VG_PAINT TYPE RADIAL GRADIENT) ;
vgSetParameterfv (myFillPaint, VG PAINT RADIAL GRADIENT,
5, fill radial gradient);
vgSetParameteri (myStrokePaint, VG PAINT TYPE, /* Stroke */
VG_PAINT TYPE RADIAL GRADIENT) ;
vgSetParameterfv (myStrokePaint, VG PAINT RADIAL GRADIENT,
5, stroke radial gradient);

9.3.3 Color Ramps

Color ramps map the scalar values produced by gradient functions to colors. The
application defines the non-premultiplied SRGBA color and alpha value associated with
each of a number of values, called stops. A stop is defined by an offset between 0 and 1,
inclusive, and a color value. Stops must be specified in increasing order; if they are not,
the entire sequence is ignored. It is legal to have multiple stops with the same offset
value, which will result in a discontinuity in the color ramp, with the first stop with a
given offset value defining the right endpoint of one interval and the last stop with the
same offset value defining the left endpoint of the next interval. At an offset value equal
to that of a stop, the color value is that of the last stop with the given offset. Intermediate
stops with the same offset value have no effect. Stops with offsets less than 0 or greater
than 1 are ignored.

If no valid stops have been specified (e.g., due to an empty input array, out-of-range,
or out-of-order stops), a stop at 0 with (R, G, B, a) color (0.0, 0.0, 0.0, 1.0) (opaque
black) and a stop at 1 with color (1.0, 1.0, 1.0, 1.0) (opaque white) are implicitly defined.
If at least one valid stop has been specified, but none has been defined with an offset of
0, an implicit stop is added with an offset of 0 and the same color as the first user-defined
stop. If at least one valid stop has been specified, but none has been defined with an
offset of 1, an implicit stop is added with an offset of 1 and the same color as the last
user-defined stop.

If a color or alpha value of a given stop falls outside of the range [0, 1], the closest
endpoint of the range is used instead.

If the paint’s VG_ PAINT COLOR_RAMP PREMULTIPLIED flag is set to
VG TRUE, color and alpha values at each gradient stop are multiplied together to form
premultiplied SRGBA values prior to interpolation. Otherwise, color and alpha values are
processed independently.

Version 1.1 Revision 1 (December 3, 2008)

Paint 127

Color and alpha values at offset values between the stops are defined by means of
linear interpolation between the premultiplied or non-premultiplied color values defined
at the nearest stops above and below the given offset value.

VG_MAX_COLOR_RAMP_STOPS

The VG_MAX COLOR RAMP STOPS parameter contains the maximum number of
gradient stops supported by the OpenVG implementation. All implementations must
support at least 32 stops. If there is no implementation-defined limit, a value of
VG_MAXINT may be returned. Implicitly defined stops at offsets 0 and 1 are not counted
against this maximum. The value may be retrieved by calling vgGeti:

VGint maxStops = vgGeti (VG MAX COLOR _RAMP STOPS) ;

VGColorRampSpreadMode

The application may only define stops with offsets between 0 and 1. Spread modes
define how the given set of stops are repeated or extended in order to define interpolated
color values for arbitrary input values outside the [0,1] range. The
VGColorRampSpreadMode enumeration defines three modes:

+ VG_COLOR RAMP_ SPREAD PAD — extend stops

+ VG _COLOR RAMP SPREAD REPEAT - repeat stops
+ VG _COLOR_RAMP_ SPREAD REFLECT —repeat stops in reflected order

typedef enum {

VG_COLOR_RAMP SPREAD PAD = 0x1C00,
VG_COLOR RAMP SPREAD REPEAT = 0x1CO01,
VG_COLOR_RAMP SPREAD REFLECT = 0x1C02

} VGColorRampSpreadMode;

In pad mode, the colors defined at 0 and 1 are used for all stop values less than 0 or
greater than 1, respectively.

In repeat mode, the color values defined between 0 and 1 are repeated indefinitely in
both directions. Gradient values outside the [0, 1] range are shifted by an integer amount
to place them into that range. For example, a gradient value of 5.6 will receive the same
color as a gradient value of 0.6. A gradient value of -5.6 will receive the same color as a
gradient value of 0.4 (since 0.4 = -5.6 + 6).

In reflect mode, the color values defined between 0 and 1 are repeated indefinitely in
both directions, but with alternate copies of the range reversed. A gradient value of 1.2
will receive the same color as a gradient value of 0.8, since 0.8 =1.0 - 0.2 and 1.2
=1.0+0.2. A gradient value of 2.4 will receive the same color as a gradient value

Version 1.1 Revision 1 (December 3, 2008)

Paint 128

of 04.

The color ramp pad modes are illustrated schematically in Figure 19.

C 1

Pad

Repeat

Reflect

Figure 19: Color Ramp Pad Modes

Setting Color Ramp Parameters

Color ramp parameters are set using vgSetParameter. The

VG_PAINT COLOR_RAMP SPREAD MODE parameter controls the spread mode
using a value from the VGColorRampSpreadMode enumeration. The
VG_PAINT COLOR_RAMP PREMULTIPLIED parameter takes a VGboolean
value and controls whether color and alpha values are interpolated in
premultiplied or non-premultiplied form. The VG PAINT COLOR RAMP STOPS
parameter takes an array of floating-point values giving the offsets and colors of
the stops, in order. Each stop is defined by a floating-point offset value and four
floating-point values containing the SRGBA color and alpha value associated
with each stop, in the form of a non-premultiplied (R, G, B, @) quad. The
vgSetParameter function will generate an error if the number of values
submitted is not a multiple of 5 (zero is acceptable). Up to

VG_MAX COLOR_RAMP STOPS 5-tuples may be set. If more than

VG_MAX COLOR_RAMP STOPS 5-tuples are specified, those beyond the first
VG_MAX COLOR_RAMP STOPS are discarded immediately (and will not be

Version 1.1 Revision 1 (December 3, 2008)

Paint 129

returned by vgGetParameter).

VGPaint myFillPaint, myStrokePaint;

VGColorRampSpreadMode fill spreadMode;
VGboolean fill premultiplied;
VGfloat fill stops[5*FILL NUM STOPS];

VGColorRampSpreadMode stroke spreadMode;
VGboolean stroke premultiplied;
VGfloat stroke stops[5*STROKE NUM STOPS];

vgSetParameteri (myFillPaint, VG _PAINT COLOR RAMP SPREAD MODE,
fill spreadMode) ;

vgSetParameteri (myFillPaint, VG PAINT COLOR RAMP PREMULTIPLIED,
fill premultiplied);

vgSetParameterfv (myFillPaint, VG PAINT COLOR_RAMP STOPS,
5*FILL NUM STOPS, fill stops);

vgSetParameteri (myStrokePaint, VG PAINT COLOR RAMP SPREAD MODE,
stroke spreadMode) ;

vgSetParameteri (myStrokePaint, VG PAINT COLOR RAMP PREMULTIPLIED,
stroke premultiplied);

vgSetParameterfv (myStrokePaint, VG PAINT COLOR RAMP STOPS,
5*STROKE NUM STOPS, stroke stops);

A common set of color ramp settings are used for both linear and radial
gradients defined on a given paint object.

Formal Definition of Spread Modes
This section provides a formal definition of the color ramp spread modes.

In the following, assume that a sequence of stops {Sy, S, ..., Sx.;} have been defined by
the application, and/or by default or implicit values. The stop S; is defined to have offset
x; and color ¢;. The stops are assumed to be ordered by offset but may have duplicate
offsets; that is, for all i <, x; <x;. To determine the interpolated color value at a given
offset value v, determine the smallest i such that x;-; > v. If x; = v, use the color ¢;,
otherwise perform linear interpolation between the stops S; and S;:, to produce the color
¢i + (Civr —) (v — xi)Xiv1 — Xi).

In pad mode, values smaller than 0 are assigned the color ¢, and values greater than or
equal to 1 are assigned the color cy.;.

In repeat mode, the offset value v is mapped to a new value v’ that is guaranteed to lie
between 0 and 1. Following this mapping, the color is defined as for pad mode:

Version 1.1 Revision 1 (December 3, 2008)

Paint 130

v’ —v—{vJ

repeat -

In reflect mode, the offset value v is mapped to a new value v’ that is guaranteed to lie
between 0 and 1. Following this mapping, the color is defined as for pad mode:

.| vy if | v |is even
v reflect— . .
1=(v=|v]], if|v]is odd

9.3.4 Gradient Examples

Figure 20 shows a square from (0, 0) to (400, 400) painted with a set of linear gradients
with (x0, y0) = (100, 100), (x/, yI) = (300, 300).

Figure 21 shows the same square painted with radial gradients with centered and non-
centered focal points. The centered gradient, shown in the top row, has its center (cx, cy)
and focal point (fx, /1) both at (200, 200). The non-centered gradient, shown in the
bottom row, has its center (cx, cy) at (200, 200) and its focal point (fx, fy) at (250, 250).
The radius r for both gradients is equal to 100.

All the gradients shown in this section utilize a color ramp with stops at offsets 0.0,
0.33, 0.66, and 1.0 colored white, red, green, and blue, respectively, as shown in Figure
22.

Pad Repeat Reflect

Figure 20: Linear Gradients

Version 1.1 Revision 1 (December 3, 2008)

Paint 131

Pad Repeat Reflect

N\

r
A

<

J

Figure 21: Centered and Non-Centered Radial Gradients

Figure 22: Color Ramp used for Gradient Examples

9.4 Pattern Paint

Pattern paint defines a rectangular pattern of colors based on the pixel values of an
image. Images are described below in Section 10. Each pixel (x, y) of the pattern image
defines a point of color at the pixel center (x + %, y + 7).

Filtering may be used to construct an interpolated pattern value at the sample point,
based on the pattern image pixel values. The pattern tiling mode is used to define values

Version 1.1 Revision 1 (December 3, 2008)

Paint 132

for pixel centers in the pattern space that lie outside of the bounds of the pattern.

Interpolation may be performed between multiple pixels of the pattern image to produce
an antialiased pattern value. The image quality setting at the time of drawing (determined
by the VG IMAGE QUALITY parameter) is used to control the quality of pattern
interpolation. If the image quality is set to

VG IMAGE QUALITY NONANTIALIASED, nearest-neighbor interpolation (point
sampling) is used. If the image quality is set to VG IMAGE QUALITY FASTER or
VG_IMAGE QUALITY BETTER, higher-quality interpolation will be used if available.
Interpolation is done in the color space of the image using a premultiplied representation.

vgPaintPattern

The vgPaintPattern function replaces any previous pattern image defined on the
given paint object for the given set of paint modes with a new pattern image. A
value of VG_INVALID HANDLE for the pattern parameter removes the current
pattern image from the paint object.

If the current paint object has its VG PAINT TYPE parameter set to
VG PAINT TYPE PATTERN, but no pattern image is set, the paint object behaves as if
VG PAINT TYPE were setto VG PAINT TYPE COLOR.

While an image is set as the paint pattern for any paint object, it may not be used as a
rendering target. Conversely, an image that is currently a rendering target may not be set
as a paint pattern.

‘void vgPaintPattern (VGPaint paint, VGImage pattern) I

ERRORS
VG_BAD_HANDLE ERROR

- if paint is not a valid paint handle, or is not shared with the current context

- if pattern is neither a valid image handle nor equal to
VG_INVALID HANDLE, or is not shared with the current context

VG IMAGE IN USE ERROR

- if pattern is currently a rendering target

9.4.1 Pattern Tiling

Patterns may be extended (tiled) using one of four possible tiling modes, defined by the
VGT1ilingMode enumeration.

Version 1.1 Revision 1 (December 3, 2008)

Paint 133

VGTilingMode

The VGT11ingMode enumeration defines possible methods for defining colors for
source pixels that lie outside the bounds of the source image.

The VG_TILE FILL condition specifies that pixels outside the bounds of the source
image should be taken as the color VG TILE FILL COLOR. The color is expressed as
a non-premultiplied SRGBA color and alpha value. Values outside the [0, 1] range are
interpreted as the nearest endpoint of the range.

The VG_TILE PAD condition specifies that pixels outside the bounds of the source
image should be taken as having the same color as the closest edge pixel of the source
image. That is, a pixel (x, y) has the same value as the image pixel (max(0, min(x, width
— 1)), max(0, min(y, height — 1))).

The VG_TILE REPEAT condition specifies that the source image should be repeated
indefinitely in all directions. That is, a pixel (x, y) has the same value as the image pixel
(x mod width, y mod height) where the operator ‘a mod b’returns a value between () and
(b — 1) such that a = k*b + (a mod b) for some integer k.

The VG_TILE REFLECT condition specifies that the source image should be reflected
indefinitely in all directions. That is, a pixel (x, y) has the same value as the image pixel
(x’, »") where:

x’ = x mod width if floor(x/width) is even,
width — 1 — (x mod width) otherwise.

y' = y mod height if floor(y/height) is even,
height — 1 — (y mod height) otherwise.

typedef enum {

VG _TILE FILL = 0x1D00,
VG_TILE_PAD = 0x1D01,
VG_TILE REPEAT = 0x1D02,
VG_TILE REFLECT = 0x1DO03,

VGTilingMode;

Setting the Pattern Tiling Mode

The pattern tiling mode is set using vgSetParameteri with a paramType argument of
VG _PAINT PATTERN TILING MODE.

Version 1.1 Revision 1 (December 3, 2008)

Paint 134

VGPaint myFillPaint, myStrokePaint;
VGImage myFillPaintPatternImage, myStrokePaintPatternImage;

VGTilingMode fill tilingMode, stroke tilingMode;

vgSetParameteri (myFillPaint, VG PAINT TYPE,
VG_PAINT TYPE PATTERN) ;

vgSetParameteri (myFillPaint, VG PAINT PATTERN TILING MODE,
fill tilingMode) ;

vgPaintPattern (myFillPaint, myFillPaintPatternImage) ;

vgSetParameteri (myStrokePaint, VG PAINT TYPE,
VG_PAINT TYPE PATTERN) ;

vgSetParameteri (myStrokePaint, VG PAINT PATTERN TILING MODE,
stroke tilingMode) ;

vgPaintPattern (myStrokePaint, myStrokePaintPatternImage) ;

Version 1.1 Revision 1 (December 3, 2008)

Images 135

10 Images

Images are rectangular collections of pixels. Image data may be inserted or extracted in a
variety of formats with varying bit depths, color spaces, and alpha channel types. The
actual storage format of an image is implementation-dependent, and may be optimized
for a given device, but must allow pixels to be read and written losslessly. Images may be
drawn to a drawing surface, used to define paint patterns, or operated on directly by
image filter operations.

10.1 Image Coordinate Systems

An image defines a coordinate system in which pixels are indexed using integer
coordinates, with each integer corresponding to a distinct pixel. The lower-left pixel has
a coordinate of (0, 0), the x coordinate increases horizontally from left to right, and the y
coordinate increases vertically from bottom to top. Note that this orientation is consistent
with the other coordinate systems used in the OpenVG API, but differs from the top-to-
bottom orientation used by many other imaging systems.

The “energy” of a pixel is located at the pixel center; that is, the pixel with coordinate (x,
) has its energy at the point (x + %, y + %2). The color at a point not located at a pixel

center may be defined by applying a suitable filter to the colors defined at a set of nearby
pixel centers.

10.2 Image Formats

VGImageFormat

The VGImageFormat enumeration defines the set of supported pixel formats and color
spaces for images:

Version 1.1 Revision 1 (December 3, 2008)

Images 136

typedef enum {
/* RGB{A,X} channel ordering */
VG_sRGBX_ 8888 = 0,

VG_SRGBA_ 8888 = 1,

VG_sRGBA_ 8888 PRE = 2,

VG sRGB 565 = 3,

VG_sRGBA 5551 = 4,

VG_sRGBA 4444 = 5,

VG_sL_8 = 6,

VG_1RGBX_ 8888 = 7,

VG _1RGBA 8888 = 8,

VG_1RGBA 8888 PRE 9,

VG 1L _8 = 10,

VG A 8 = 11,

VG_BW_1 = 12,

VG A 1 = 13,

VG A 4 = 14,

/* {A,X}RGB channel ordering */

VG sXRGB 8888 = 0| (1 << 6),

VG _sARGB 8888 = 1 | (1 << 6),
VG_sARGB_8888 PRE = 2| (1 << 6),

VG _sARGB 1555 = 4 | (1 << o),
VG_SARGB_4444 = 5| (1 << 6),

VG _1XRGB 8888 = 7 | (1 << 6),

VG 1ARGB 8888 = 8 | (1 << 6),
VG_1ARGB_8888 PRE = 9] (1 << 6),

/* BGR{A,X} channel ordering */

VG_sBGRX_8888 = 0| (1<<7),

VG _sBGRA 8888 = 1 | (1 << 7),

VG_sBGRA 8888 PRE 2 | (1 << 7),
VG_sBGR_565 = 3| (1<<7),

VG_sBGRA 5551 = 4 | (1 <<7),

VG _sBGRA 4444 = 5 | (1 << 7),
VG_1BGRX_8888 = 7] (1 << 7)),

VG _1BGRA 8888 = 8 | (1 << 7)),

VG_1BGRA 8888 PRE = 9] (1 << 7,

/* {A,X}BGR channel ordering */

VG_sXBGR 8888 = 0| (1<<86) | (1L<<7),
VG_sABGR 8888 = 1] (1<<6) | (1L<<7),
VG _sABGR 8888 PRE = 2 | (1 << 6) | (1 << 7),
VG_sABGR_1555 = 4] (1<<6) | (1L<<7),
VG_sABGR 4444 = 5] (1 <<6) | (1L<<7),
VG_1XBGR_8888 = 7] (1<<6) | (1<<7),
VG _1ABGR 8888 = 8 | (1 << 6) | (1 << 1),
VG_1ABGR 8888 PRE = 9 | (1L << 6) | (1 <<7)

} VGImageFormat;

Version 1.1 Revision 1 (December 3, 2008)

Images 137

The letter A denotes an alpha () channel , R denotes red, G denotes green, and B
denotes blue. X denotes a padding byte that is ignored. L. denotes grayscale, and BW
denotes (linear) bi-level grayscale (black-and-white), with 0 representing black and 1
representing white in either case. A lower-case letter s represents a non-linear,
perceptually-uniform color space, as in SRGB and sL; a lower-case letter 1 represents a
linear color space using the SRGB primaries. Formats with a suffix of PRE store pixel
values in premultiplied format.

Bit 6 of the numeric values of the enumeration indicates the position of the alpha channel
(or unused byte for formats that do not include alpha). If bit 6 is disabled, the alpha or
unused channel appears as the last channel, otherwise it appears as the first channel. Bit 7
indicates the ordering of the RGB color channels. If bit 7 is disabled, the color channels
appear in RGB order, otherwise they appear in BGR order.

The VG_A 8 format is treated as though it were VG_1RGBA 8888, with
R=G=B=1. Color information is discarded when placing an RGBA value into a
VG_A_ 8 pixel.

Abbreviated names such as 11 or sSRGBA PRE are used in this document where the
exact number of bits per channel is not relevant, such as when pixel values are

considered to have been remapped to a [0, 1] range. Such abbreviated names are not an
official part of the API.

The bits for each color channel are stored within a machine word representing a single
pixel from left to right (MSB to LSB) in the order indicated by the pixel format name.
For example, in a pixel with a format of VG sRGB 565, the bits representing the red
channel may be obtained by shifting right by 11 bits (to remove 6 bits of green and 5 bits
of blue) and masking with the 5-bit wide mask value Ox1f. Note that this definition is
independent of the endianness of the underlying platform as sub-word memory addresses
are not involved.

Table 11 summarizes the symbols used in image format names.

Table 12 lists the size of a single pixel for each image format, in terms of bytes and bits.
Note that all formats other than VG BW 1, VG A 1,and VG A 4 use a whole number
of bytes per pixel.

Formats having linear-light coding (VG _1RGBX 8888,VG 1RGBA 8888,

VG _1RGBA 8888 PRE,and VG 1L8) are liable to exhibit banding (or contouring)
artifacts when viewed with a contrast ratio greater than about 10:1 [POYNO3] and are
intended mainly for inputting existing linearly-coded imagery. For high-quality imaging,
consider using one of the non-linear, perceptually uniform image formats such as

VG sRGBX 8888,VG sRGBA 8888,VG sRGBA 8888 PRE,and VG sl 8.

Version 1.1 Revision 1 (December 3, 2008)

Images 138
Symbol Interpretation
A Alpha channel
R Red color channel
G Green color channel
B Blue color channel
X Uninterpreted padding byte
L Grayscale
BW 1-bit Black and White
1 Linear color space
S Non-linear (sSRGB) color space
PRE Alpha values are premultiplied
Table 11: Symbols Used in Image Format Names
Format Bytes Per Pixel Bits Per Pixel
VG_sRGBX_ 8888 4 32
VG_sRGBA 8888 4 32
VG sRGBA 8888 PRE 4 32
VG_SRGB_ 565 2 16
VG_sRGBA 5551 2 16
VG _SRGBA 4444 2 16
VG sL 8 1 8
VG_1RGBX 8888 4 32
VG 1RGBA 8888 4 32

Version 1.1 Revision 1 (December 3, 2008)

Images 139

Format Bytes Per Pixel Bits Per Pixel
VG_1RGBA 8888 PRE 4 32
VG 1L 8 1 8
VG A 1 n/a 1
VG_A 4 n/a 4
VG A 8 1 8
VG BW 1 n/a 1

Table 12: Image Format Pixel Sizes

10.3 Creating and Destroying Images

VGImage

Images are accessed using opaque handles of type VGImage.

‘typedef VGHandle VGImage; I

VGImageQuality

The VGImageQuality enumeration defines varying levels of resampling
quality to be used when drawing images.

The VG_IMAGE QUALITY NONANTIALIASED setting disables resampling;
images are drawn using point sampling (also known as nearest-neighbor
interpolation) only. VG IMAGE QUALITY FASTER enables low-to-medium
quality resampling that does not require extensive additional resource allocation.
VG IMAGE QUALITY BETTER enables high-quality resampling that may allocate
additional memory for pre-filtering, tables, and the like. Implementations are not
required to provide three distinct resampling algorithms, but the non-antialiased (point
sampling) mode must be supported.

Version 1.1 Revision 1 (December 3, 2008)

Images 140

typedef enum {

VG IMAGE QUALITY NONANTIALIASED = (1 << 0),
VG IMAGE QUALITY FASTER = (1 << 1),
VG _IMAGE QUALITY BETTER = (1 << 2)

} VGImageQuality;

Use vgSeti with a parameter type of VG IMAGE QUALITY to set the filter type to be
used for image drawing:

VGImageQuality quality;
vgSeti (VG IMAGE QUALITY, quality);

VG_MAX_IMAGE_WIDTH

The VG_MAX IMAGE WIDTH read-only parameter contains the largest legal value
of the width parameter to the vgCreateImage and vgCreateMask functions. All
implementations must define VG_MAX IMAGE WIDTH to be an integer no smaller
than 256. If there is no implementation-defined limit, a value of VG MAXINT may be
returned. The value may be retrieved by calling vgGeti: a

‘VGint imageMaxWidth = vgGeti (VG MAX IMAGE WIDTH) ; I
VG_MAX_IMAGE_HEIGHT

The VG_MAX IMAGE HEIGHT read-only parameter contains the largest legal value

of the height parameter to the vgCreateImage and vgCreateMask functions. All
implementations must define VG_MAX IMAGE HEIGHT to be an integer no smaller
than 256. If there is no implementation-defined limit, a value of VG MAXINT may be
returned. The value may be retrieved by calling vgGeti:

VGint imageMaxHeight = vgGeti (VG MAX IMAGE HEIGHT) ;

VG_MAX_IMAGE_PIXELS

The VG_MAX IMAGE PIXELS read-only parameter contains the largest legal value
of the product of the width and height parameters to the vgCreateImage and
vgCreateMask functions. All implementations must define VG MAX IMAGE PIXELS
to be an integer no smaller than 65536. If there is no implementation-defined limit, a
value of VG MAXINT may be returned. The value may be retrieved by calling vgGeti:

‘VGint imageMaxPixels = vgGeti (VG _MAX IMAGE PIXELS) ; I

VG_MAX_IMAGE_BYTES

The VG_MAX IMAGE BYTES read-only parameter contains the largest number of

Version 1.1 Revision 1 (December 3, 2008)

Images 141

bytes that may make up the image data passed to the vgCreateImage function. All
implementations must define VG_MAX IMAGE BYTES to be an integer no smaller than
65536. If there is no implementation-defined limit, a value of VG MAXINT may be
returned. The value may be retrieved by calling vgGeti:

VGint imageMaxBytes = vgGeti (VG MAX IMAGE BYTES) ;

vgCreatelmage

vgCreateImage creates an image with the given width, height, and pixel format
and returns a VGImage handle to it. If an error occurs, VG_INVALID HANDLE is
returned. All color and alpha channel values are initially set to zero. The format
parameter must contain a value from the VGImageFormat enumeration.

The allowedQuality parameter is a bitwise OR of values from the
VGImageQuality enumeration, indicating which levels of resampling quality may be
used to draw the image. It is always possible to draw an image using the

VG IMAGE QUALITY NONANTIALIASED quality setting even if it is not explicitly
specified.

VGImage vgCreatelImage (VGImageFormat format,
VGint width, VGint height,
VGbitfield allowedQuality)

ERRORS
VG _UNSUPPORTED IMAGE FORMAT ERROR

- if format is not a valid value from the VGImageFormat enumeration

VG _ILLEGAL ARGUMENT ERROR

if width or height are less than or equal to 0

- if width is greater than VG MAX IMAGE WIDTH

- if height is greater than VG_MAX IMAGE HEIGHT

- if width*height is greater than VG MAX IMAGE PIXELS

- if width*height* (pixel size of format) is greater than
VG_MAX_ IMAGE BYTES

- if allowedQuality is not a bitwise OR of values from the
VGImageQuality enumeration

Version 1.1 Revision 1 (December 3, 2008)

Images 142

vgDestroylmage

The resources associated with an image may be deallocated by calling
vgDestroyImage. Following the call, the image handle is no longer valid in any
context that shared it. If the image is currently in use as a rendering target, is the
ancestor of another image (see vgChildImage), is set as a paint pattern image on
a VGPaint object, or is set as a glyph an a VGFont object, its definition remains
available to those consumers as long as they remain valid, but the handle may no
longer be used. When those uses cease, the image’s resources will automatically
be deallocated.

void vgDestroyImage (VGImage image) ;

ERRORS
VG_BAD HANDLE ERROR

- if image is not a valid image handle, or is not shared with the current

context

10.4 Querying Images

VGImageParamType

Values from the VGImageParamType enumeration may be used as the paramType
argument to vgGetParameter to query various features of an image. All of the
parameters defined by VGImageParamType have integer values and are read-only.

typedef enum {

VG IMAGE FORMAT = 0x1E00,
VG_IMAGE WIDTH = O0x1EO1,
VG_IMAGE HEIGHT = 0x1E02

} VGImageParamType;

Image Format

The value of the format parameter that was used to define the image may be queried
using the VG_IMAGE FORMAT parameter. The returned integral value should be
cast to the VGImageFormat enumeration:

Version 1.1 Revision 1 (December 3, 2008)

Images 143

VGImage image;
VGImageFormat imageFormat =
(VGImageFormat) vgGetParameteri (image, VG IMAGE FORMAT) ;

Image Width

The value of the width parameter that was used to define the image may be queried
using the VG IMAGE WIDTH parameter:

VGImage image;
VGint imageWidth = vgGetParameteri (image, VG IMAGE WIDTH) ;

Image Height

The value of the height parameter that was used to define the image may be queried
using the VG IMAGE HEIGHT parameter:

VGImage image;
VGint imageHeight = vgGetParameteri (image, VG IMAGE HEIGHT) ;

10.5 Reading and Writing Image Pixels

vgClearlmage

The vgClearImage function fills a given rectangle of an image with the color specified
by the VG CLEAR COLOR parameter. The rectangle to be cleared is given by x, v,
width, and height, which must define a positive region. The rectangle is
clipped to the bounds of the image.

void vgClearImage (VGImage image,
VGint x, VGint y, VGint width, VGint height) I

Version 1.1 Revision 1 (December 3, 2008)

Images 144

ERRORS
VG_BAD_HANDLE ERROR

- if image is not a valid image handle, or is not shared with the current
context

VG_IMAGE IN USE_ERROR

- if image is currently a rendering target

VG ILLEGAL ARGUMENT ERROR

- if width or height is less than or equal to 0

vgimageSubData

The vglmageSubData function reads pixel values from memory, performs format
conversion if necessary, and stores the resulting pixels into a rectangular portion of an
image.

Pixel values are read starting at the address given by the pointer data; adjacent
s