
OpenVG Specification
Version 1.1

Version 1.0 – August 1, 2005
Version 1.0.1 – January 26, 2007
Version 1.1 – December 3, 2008

Editors: Daniel Rice, Google, Inc.
Robert J. Simpson, AMD

“ ”

For Ilise – DSR

Copyright © 2005-2008 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material
proprietary to the Khronos Group, Inc. It or any components may not be
reproduced, republished, distributed, transmitted, displayed, broadcast or
otherwise exploited in any manner without the express prior written permission
of Khronos Group. You may use this specification for implementing the
functionality therein, without altering or removing any trademark, copyright or
other notice from the specification, but the receipt or possession of this
specification does not convey any rights to reproduce, disclose, or distribute its
contents, or to manufacture, use, or sell anything that it may describe, in whole
or in part.

Khronos Group grants express permission to any current Promoter, Contributor
or Adopter member of Khronos to copy and redistribute UNMODIFIED versions
of this specification in any fashion, provided that NO CHARGE is made for the
specification and the latest available update of the specification for any version of
the API is used whenever possible. Such distributed specification may be re-
formatted AS LONG AS the contents of the specification are not changed in any
way. The specification may be incorporated into a product that is sold as long as
such product includes significant independent work developed by the seller. A
link to the current version of this specification on the Khronos Group web-site
should be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or
warranties, express or implied, regarding this specification, including, without
limitation, any implied warranties of merchantability or fitness for a particular
purpose or non-infringement of any intellectual property.

Khronos Group makes no, and expressly disclaims any, warranties, express or
implied regarding the correctness, accuracy, completeness, timeliness, and
reliability of the specification. Under no circumstances will the Khronos Group,
or any of its Promoters, Contributors or Members or their respective partners,
officers, directors, employees, agents or representatives be liable for any
damages, whether direct, indirect, special or consequential damages for lost
revenues, lost profits, or otherwise, arising from or in connection with these
materials.

Khronos and OpenVG are trademarks of The Khronos Group Inc. OpenGL is a
registered trademark, and OpenGL ES is a trademark, of Silicon Graphics, Inc.

Table of Contents
1Introduction..10

1.1Feature Set..10
1.2Target Applications..10

SVG and Adobe Flash Viewers ...10
Portable Mapping Applications..10
E-book Readers..11
Games...11
Scalable User Interfaces...11
Low-Level Graphics Device Interface..11

1.3Target Devices...11
1.4Design Philosophy...11
1.5Naming and Typographical Conventions...12
1.6Library Naming..12

2The OpenVG Pipeline..13
2.1Stage 1: Path, Transformation, Stroke, and Paint...14
2.2Stage 2: Stroked Path Generation...14
2.3Stage 3: Transformation..14
2.4Stage 4: Rasterization...14
2.5Stage 5: Clipping and Masking..15
2.6Stage 6: Paint Generation...15
2.7Stage 7: Image Interpolation...15
2.8Stage 8: Color Transformation, Blending, and Antialiasing..16
2.9Multisampling..16

3Constants, Functions and Data Types...16
3.1Versioning..17

OPENVG_VERSION_1_1..17
3.2Primitive Data Types..17

VGbyte..17
VGubyte...17
VGshort..17
VGint...18
VGuint..18
VGbitfield...18
VGboolean...18
VGfloat...18

3.3Floating-Point and Integer Representations..18
VG_MAXSHORT..19
VG_MAXINT...19
VG_MAX_FLOAT...19

3.4Colors..19
3.4.1Linear and Non-Linear Color Representations..20

i

3.4.2Color Space Definitions...21
3.4.3Premultiplied Alpha..23
3.4.4Color Format Conversion..23

3.5Enumerated Data Types..24
3.6Handle-based Data Types...25

VGHandle..25
VG_INVALID_HANDLE..26

4The Drawing Context...27
4.1Errors..29

VGErrorCode...29
vgGetError...30

4.2Manipulating the Context Using EGL ..30
4.2.1EGLConfig Attributes...30

EGL_OPENVG_BIT..30
EGL_ALPHA_MASK_SIZE...31

4.2.2EGL Functions...31
eglBindAPI...31
eglCreateContext...31
eglCreateWindowSurface..31
eglCreatePbufferFromClientBuffer..32
eglMakeCurrent..32
eglGetCurrentContext..32
eglDestroyContext..32
eglSwapBuffers..32

4.3Forcing Drawing to Complete..33
vgFlush...33
vgFinish..33

5Setting API Parameters...34
5.1Context Parameter Types..34

VGParamType...34
5.2Setting and Querying Context Parameter Values..36

vgSet..36
vgGet and vgGetVectorSize ...37

5.2.1Default Context Parameter Values..38
5.3Setting and Querying Object Parameter Values..40

vgSetParameter...40
vgGetParameter and vgGetParameterVectorSize ..41

6Rendering Quality and Antialiasing..44
6.1Rendering Quality..45

VGRenderingQuality...45
6.2Additional Quality Settings...46

VGPixelLayout..46
6.3Coordinate Systems and Transformations...47
6.4Coordinate Systems..47
6.5Transformations...48

ii

6.5.1Homogeneous Coordinates...48
6.5.2Affine Transformations...49
6.5.3Projective (Perspective) Transformations..49

6.6Matrix Manipulation...50
VGMatrixMode...51
vgLoadIdentity..51
vgLoadMatrix..51
vgGetMatrix...52
...52
vgMultMatrix..53
vgTranslate...53
vgScale..54
vgShear...54
vgRotate...54

7Scissoring, Masking, and Clearing..55
7.1Scissoring..55

VG_MAX_SCISSOR_RECTS...55
Specifying Scissoring Rectangles..55

7.2Masking ..56
VGMaskOperation..57
vgMask...58
vgRenderToMask..60
VGMaskLayer..61
vgCreateMaskLayer...61
vgDestroyMaskLayer...62
vgFillMaskLayer...62
vgCopyMask...63

7.3Fast Clearing...64
vgClear...64

8Paths...64
8.1Moves..65
8.2Straight Line Segments...65
8.3Bézier Curves..65

8.3.1Quadratic Bézier Curves...65
8.3.2Cubic Bézier Curves..66
8.3.3G1 Smooth Segments...66
8.3.4C1 Smooth Segments...67
8.3.5C2 Smooth Segments...68
8.3.6Converting Segments From Quadratic to Cubic Form...68

8.4Elliptical Arcs...68
8.5The Standard Path Format..69

VG_PATH_FORMAT_STANDARD...70
8.5.1Path Segment Command Side Effects..70
8.5.2Segment Commands...71
8.5.3Coordinate Data Formats..73

iii

VGPathDatatype...74
8.5.4Segment Type Marker Definitions...74

VGPathAbsRel...75
VGPathSegment..75
VGPathCommand...75

8.5.5Path Example..76
8.6Path Operations..77

8.6.1Storage of Paths..78
VGPath...79

8.6.2Creating and Destroying Paths..79
VGPathCapabilities..79
vgCreatePath...80
vgClearPath...82
vgDestroyPath...82

8.6.3Path Queries...82
VGPathParamType...82
Path Format..83
Path Datatype..83
Path Scale...84
Path Bias...84
Number of Segments..84
Number of Coordinates...84

8.6.4Querying and Modifying Path Capabilities...84
vgGetPathCapabilities..84
vgRemovePathCapabilities...85

8.6.5Copying Data Between Paths..85
vgAppendPath..85

8.6.6Appending Data to a Path...86
vgAppendPathData..86

8.6.7Modifying Path Data..87
vgModifyPathCoords...87

8.6.8Transforming a Path..88
vgTransformPath...88

8.6.9Interpolating Between Paths..89
vgInterpolatePath...90

8.6.10Length of a Path..91
vgPathLength..91

8.6.11Position and Tangent Along a Path..92
The Tangents of a Path Segment...92
vgPointAlongPath...93

8.6.12Querying the Bounding Box of a Path...95
vgPathBounds...96
vgPathTransformedBounds...96

8.7Interpretation of Paths...97
8.7.1Filling Paths...97

iv

Creating Holes in Paths..98
Implicit Closure of Filled Subpaths..100

8.7.2Stroking Paths...101
8.7.3Stroke Parameters...102

End Cap Styles..102
Line Join Styles..103
Miter Length..104
Dashing..104

8.7.4Stroke Generation...106
8.7.5Setting Stroke Parameters...107

VGCapStyle...107
VGJoinStyle..108
VG_MAX_DASH_COUNT...108
Setting the Dash Pattern...109

8.7.6Non-Scaling Strokes..109
8.8Filling or Stroking a Path..110

VGFillRule..110
VGPaintMode..111
vgDrawPath...111
Filling a Path..111
Stroking a Path..112
Filling and Stroking a Path..113

9Paint..114
9.1Paint Definitions...114

VGPaint..114
9.1.1Creating and Destroying Paint Objects..115

vgCreatePaint..115
vgDestroyPaint..115

9.1.2Setting the Current Paint...115
vgSetPaint..115
vgGetPaint...117

9.1.3Setting Paint Parameters...117
VGPaintParamType..117
VGPaintType..119

9.2Color Paint...119
Setting Color Paint Parameters...119
vgSetColor..120
vgGetColor...121

9.3Gradient Paint..122
9.3.1Linear Gradients..122

Setting Linear Gradient Parameters...123
9.3.2Radial Gradients..123

Setting Radial Gradient Parameters...125
9.3.3Color Ramps..126

VG_MAX_COLOR_RAMP_STOPS...127

v

VGColorRampSpreadMode..127
Setting Color Ramp Parameters..128
Formal Definition of Spread Modes...129

9.3.4Gradient Examples..130
9.4Pattern Paint..131

vgPaintPattern...132
9.4.1Pattern Tiling..132

VGTilingMode...133
Setting the Pattern Tiling Mode..133

10Images...135
10.1Image Coordinate Systems...135
10.2Image Formats..135

VGImageFormat..135
10.3Creating and Destroying Images...139

VGImage..139
VGImageQuality...139
VG_MAX_IMAGE_WIDTH..140
VG_MAX_IMAGE_HEIGHT..140
VG_MAX_IMAGE_PIXELS...140
VG_MAX_IMAGE_BYTES..140
vgCreateImage..141
vgDestroyImage..142

10.4Querying Images...142
VGImageParamType..142
Image Format..142
Image Width..143
Image Height...143

10.5Reading and Writing Image Pixels...143
vgClearImage..143
vgImageSubData...144
vgGetImageSubData..145

10.6Child Images..146
vgChildImage..147
vgGetParent...148

10.7Copying Pixels Between Images...148
vgCopyImage..148

10.8Drawing Images to the Drawing Surface...149
VGImageMode..149
vgDrawImage..150
VG_DRAW_IMAGE_NORMAL...151
VG_DRAW_IMAGE_MULTIPLY...151
VG_DRAW_IMAGE_STENCIL..152

10.9Reading and Writing Drawing Surface Pixels..153
10.9.1Writing Drawing Surface Pixels...154

vgSetPixels...154

vi

vgWritePixels...154
10.9.2Reading Drawing Surface Pixels...156

vgGetPixels..156
vgReadPixels...156

10.10Copying Portions of the Drawing Surface..158
vgCopyPixels...158

11Text..160
11.1Text Rendering...160
11.2Font Terminology...161
11.3Glyph Positioning and Text Layout...161
11.4Fonts in OpenVG...164

11.4.1VGFont Objects and Glyph Mapping...164
VGFont...164
Glyph Mapping...164

11.4.2Managing VGFont Objects ...165
vgCreateFont...165
vgDestroyFont...166

11.4.3Querying VGFont Objects ..166
VGFontParamType ..166
Number of Glyphs..167

11.4.4Adding and Modifying Glyphs in VGFonts...167
vgSetGlyphToPath..168
vgSetGlyphToImage...169
vgClearGlyph..170

11.4.5Font Sharing..170
11.5Text Layout and Rendering..171

vgDrawGlyph..171
vgDrawGlyphs..172

12Image Filters..174
12.1Format Normalization..174
12.2Channel Masks..175

VGImageChannel...175
12.3Color Combination...176

vgColorMatrix...176
12.4Convolution..177

VG_MAX_KERNEL_SIZE...177
VG_MAX_SEPARABLE_KERNEL_SIZE..177
VG_MAX_GAUSSIAN_STD_DEVIATION..178
vgConvolve..178
vgSeparableConvolve...180
vgGaussianBlur...181

12.5Lookup Tables...183
vgLookup...183
vgLookupSingle..184

13Color Transformation and Blending...185

vii

13.1Color Transformation...185
Setting the Color Transformation...186

13.2Blending Equations..186
13.3Porter-Duff Blending..187
13.4Additional Blending Modes..188
13.5Additive Blending...189
13.6Setting the Blend Mode...189

VGBlendMode...189
14Querying Hardware Capabilities..191

VGHardwareQueryType...191
VGHardwareQueryResult...191
vgHardwareQuery...191

15Extending the API..193
15.1Extension Naming Conventions...193
15.2The Extension Registry..193
15.3Using Extensions...193

15.3.1Accessing Extensions Statically..194
15.3.2Accessing Extensions Dynamically...194

VGStringID..194
vgGetString..194
eglGetProcAddress...195

15.4Creating Extensions..195
16API Conformance..196

16.1Conformance Test Principles...196
16.1.1Window System Independence...196
16.1.2Antialiasing Algorithm Independence...196
16.1.3On-Device and Off-Device Testing...196

16.2Types of Conformance Tests...197
16.2.1Pipeline Tests..197
16.2.2Self-Consistency Tests..197
16.2.3Matrix Tests...197
16.2.4Interior/Exterior Tests...197
16.2.5Positional Invariance...197
16.2.6Image Comparison Tests...197

17The VGU Utility Library..199
VGU_VERSION_1_1..199
VGUErrorCode..199

17.1Higher-level Geometric Primitives...200
17.1.1Lines..200

vguLine...200
17.1.2Polylines and Polygons...200

vguPolygon..200
17.1.3Rectangles...201

vguRect...201
17.1.4Round-Cornered Rectangles...202

viii

vguRoundRect...202
17.1.5Ellipses..204

vguEllipse..204
17.1.6Arcs...205

VGUArcType...205
vguArc..206

17.2Image Warping..207
vguComputeWarpQuadToSquare..208
vguComputeWarpSquareToQuad..208
vguComputeWarpQuadToQuad..209

18Appendix A: Mathematics of Ellipses...210
18.1The Center Parameterization...210
18.2The Endpoint Parameterization...211
18.3Converting from Center to Endpoint Parameterization..212
18.4Converting from Endpoint to Center Parameterization..212
18.5Implicit Representation of an Ellipse ..215
18.6Transformation of Ellipses...216

19Appendix B: Header Files..218
openvg.h...218
vgu.h...232

20Bibliography...235
21Document History..236
22Acknowledgments...238
23Indices...240

Index of Tables...240
Index of Figures..240

ix

Introduction 10

1 Introduction
OpenVG is an application programming interface (API) for hardware-accelerated two-
dimensional vector and raster graphics developed under the auspices of the Khronos
Group (www.khronos.org). It provides a device-independent and vendor-neutral interface
for sophisticated 2D graphical applications, while allowing device manufacturers to
provide hardware acceleration where appropriate.

This document defines the C language binding to OpenVG. Other language bindings
may be defined by Khronos in the future. We use the term “implementation” to refer to
the software and/or hardware that implements OpenVG functionality, and the term
“application” to refer to any software that makes use of OpenVG.

1.1 Feature Set
OpenVG provides a drawing model similar to those of existing two-dimensional drawing
APIs and formats, such as Adobe PostScript [ADOB99], PDF [ADOB06a], Adobe
(formerly MacroMedia) Flash [ADOB06b]; Sun Microsystems Java2D [SUN04]; and
W3C SVG [SVGF05][SVGT06]. Version 1.1 is specifically intended to support all
drawing features required by a SVG Tiny 1.2 renderer or an Adobe Flash Lite renderer
(implementing the Flash 7 feature set), and additionally to support functions that may be
of use for implementing an SVG Basic renderer.

1.2 Target Applications
Several classes of target applications were used to define requirements for the design of
the OpenVG API.

SVG and Adobe Flash Viewers
OpenVG must provide the drawing functionality required for a high-performance SVG
document viewer that is conformant with version 1.2 of the SVG Tiny profile. It does not
need to provide a one-to-one mapping between SVG syntactic features and API calls, but
it must provide efficient ways of implementing all SVG Tiny features.

Adobe Flash version 7 must also be supported with high performance and full
compliance.

Portable Mapping Applications
OpenVG can provide dynamic features for map display that would be difficult or
impossible to do with an SVG or Flash viewer alone, such as dynamic placement and
sizing of street names and markers, and efficient viewport culling.

Version 1.1 Revision 1 (December 3, 2008)

Introduction 11

E-book Readers
The OpenVG API must provide fast rendering of readable text in Western, Asian, and
other scripts. It does not need to provide advanced text layout features. Font hinting and
efficient glyph rendering must be supported by the API.

Games
The OpenVG API must be useful for defining sprites, backgrounds, and textures for use
in both 2D and 3D games. It must be able to provide two-dimensional overlays (e.g., for
maps or scores) on top of 3D content.

Scalable User Interfaces
OpenVG may be used to render scalable user interfaces, particularly for applications that
wish to present users with a unique look and feel that is consistent across different screen
resolutions.

Low-Level Graphics Device Interface
OpenVG may be used as a low-level graphics device interface. Other graphical toolkits,
such as windowing systems, may be implemented above OpenVG.

1.3 Target Devices
OpenVG is designed to run on devices ranging from wrist watches to full
microprocessor-based desktop and server machines. Over time, it is expected that
OpenGL ES hardware manufacturers will be able to provide inexpensive incremental
acceleration for OpenVG functionality.

Realistically, to obtain the full benefit of OpenVG, a device should provide a display
with at least 128 x 128 non-indexed RGB color pixels with 4 or more bits per channel.

1.4 Design Philosophy
OpenVG is intended to provide a hardware abstraction layer that will allow accelerated
performance on a variety of application platforms. Functions that are not expected to be
amenable to hardware acceleration in the near future were either not included, or
included as part of the optional VGU utility library.

Where possible, the syntax of OpenVG is intended to be reminiscent of that of OpenGL,
in order to make learning OpenVG as easy as possible for OpenGL developers. Most of
the OpenVG state is encapsulated in a set of primitive-valued variables that are
manipulated using the vgSet and vgGet functions. Extensions may add new state

Version 1.1 Revision 1 (December 3, 2008)

Introduction 12

variables in order to add new features to the pipeline without needing to add new
functions.

Paint, path, and image objects in OpenVG are referenced using opaque handles. This
allows implementations to store such objects using their own preferred representation, in
whatever form of memory they choose. This is intended to simplify hardware design, and
to minimize processing and bus traffic for frequently-used objects.

1.5 Naming and Typographical Conventions
OpenVG uses a consistent set of conventions for API names and symbols. In this
document, additional typographic conventions are used to help indicate the type of each
symbol, as shown in Table 1 below.

Symbol Type Name/Case Type Style Example

API Function vgXxxYyy Boldface vgLoadMatrix

API Function with
Varying Parameter
Types

vgXxx{f,i,fv,iv} Boldface vgSetfv

Utility Function vguXxxYyy Boldface vguRoundRect

Primitive Datatype VGxxx Typewriter VGfloat

Enumerated
Datatype VGXxxYyy Typewriter VGCapStyle

Enumerated Value VG_XXX_YYY Typewriter VG_BLEND_MODE

Utility
Enumerated Value VGU_XXX_YYY Typewriter VGU_ARC_CHORD

Function
Argument xxxYyy Typewriter paintMode

Table 1: Naming and Typographical Conventions

1.6 Library Naming
The library name is defined as libOpenVG.z where z is a platform-specific
library suffix (i.e., .a, .so, .lib, .dll, etc.).

Version 1.1 Revision 1 (December 3, 2008)

The OpenVG Pipeline 13

2 The OpenVG Pipeline
This section defines the OpenVG pipeline mechanism by which primitives are rendered.
Implementations are not required to match the ideal pipeline stage-for-stage; they may
take any approach to rendering so long as the final results match the results of the ideal
pipeline within the tolerances defined by the conformance testing process. The OpenVG
pipeline supports both single-sampled and multisampled surfaces (see Section 2.9).

Figure 1 below provides an overview of the OpenVG pipeline, focusing on the various
steps involved in drawing a thick, dashed line into a scene using a radial gradient paint.

Figure 1: The OpenVG Pipeline

Version 1.1 Revision 1 (December 3, 2008)

*

Stage 1:
Path,
Transformation,
Stroke, and Paint

Stage 2:
Stroked Path
Generation

Stage 3:
Transformation

Stage 4:
Rasterization

Stage 6:
Paint Generation

Stage 5:
Clipping and
Masking

Stage 8:
Color Transform,
Blending, AA

Stage 7:
Image Interpolation

T
T

The OpenVG Pipeline 14

2.1 Stage 1: Path, Transformation, Stroke, and Paint
The application defines the path to be drawn, and sets any transformation, stroke, and
paint parameters or leaves them at their default settings. When all parameters have been
set, the application initiates the rendering process by calling vgDrawPath, indicating
whether the path is to be filled, stroked, or both. If the path is to be both filled and
stroked, the remainder of the pipeline is invoked twice in a serial fashion, first to fill and
then to stroke the path.

If an image is being drawn (via the vgDrawImage function), the current path is set to a
rectangle bounding the image.

2.2 Stage 2: Stroked Path Generation
If the path is to be stroked, the stroke parameters are applied in the user coordinate
system to generate a new path that describes the stroked geometry. This path is then
substituted for the original path in the remainder of the pipeline, and the fill rule is set to
non-zero.

2.3 Stage 3: Transformation
The current path-user-to-surface transformation is applied to the geometry of the current
path, producing drawing surface coordinates. For an image, the outline of the image is
transformed using the image-user-to-surface transformation. Non-uniform
transformations may result in skewed stroke outlines.

2.4 Stage 4: Rasterization
A coverage value is computed at pixels affected by the current path using a filtering
process, and saved for use in the antialiasing step.

Conceptually, a set of sample positions are evaluated for inclusion within the path. At
each pixel center that is no more than 1½ pixels away from some portion of the path
geometry, a reconstruction filter is applied to the binary inclusion values at nearby
sample points to obtain a filtered coverage value for the pixel. If only a single sample per
pixel is evaluated, the sample position must be coincident with the pixel center.

Note that for a box filter (a filter that gives equal positive weight to all samples within a
rectangle centered on the pixel center, and zero weight elsewhere), this filtering process
amounts to estimating the area of the intersection of the path geometry with the filter
rectangle.

For a single-sampled surface, if antialiasing is disabled only pixel centers are used as
sample points and the reconstruction filter has value 1 at the pixel center and 0
elsewhere.

Version 1.1 Revision 1 (December 3, 2008)

The OpenVG Pipeline 15

In the case where a sample point lies exactly on the boundary of a path, the
implementation must enforce a consistent “tie-breaking” rule. For any two paths that
share a common boundary segment, but whose interiors lie on opposite sides of the
segment, a sample point that lies exactly on the boundary must be considered to be
included in exactly one of the two paths. If the interiors of the two paths lie on the same
side of the common segment, the sample point must belong to both paths, or neither path.
Note that the common boundary segment must be specified in exactly the same manner
for both paths (i.e., with bit-for-bit identical control point values, scale and bias, and
transformation matrix settings, but possibly with control points in reverse order) for this
guarantee to hold.

2.5 Stage 5: Clipping and Masking
Pixels not lying within the bounds of the drawing surface, and (if scissoring is enabled)
within the union of the current set of scissor rectangles are assigned a coverage value of
0.

 An application-specified mask image is used to modify the coverage values generated by
the previous stage. Each coverage value is multiplied by the mask value for the
corresponding pixel to obtain a masked coverage value. If the resulting coverage value is
zero, the remainder of the pipeline is skipped.

2.6 Stage 6: Paint Generation
At each pixel of the drawing surface, the relevant current paint (depending on whether
the original path was to be filled or stroked) is used to define a color and an alpha value.
For gradient and pattern paints, the paint-to-user transformation is concatenated with the
path-user-to-surface transformation to define the paint transformation that will
geometrically transform the paint. Paint generation may be skipped for operations that do
not utilize paint values.

For multisampled drawing surfaces, implementations may perform paint generation
either at every sample, or once per pixel at the pixel center. The same approach must be
used for every primitive drawn to a given drawing surface.

2.7 Stage 7: Image Interpolation
If an image is being drawn, an image color and alpha value is computed at each pixel by
interpolating image values using the inverse of the current image-user-to-surface
transformation. The results are combined with the paint color and alpha values according
to the current image drawing mode. If image drawing is not taking place, the results from
the preceding stage are passed through unchanged.

Version 1.1 Revision 1 (December 3, 2008)

The OpenVG Pipeline 16

2.8 Stage 8: Color Transformation, Blending, and Antialiasing
At each pixel, the source color and alpha values from the preceding stage (which may be
the paint color and alpha values when drawing path data or when using the “stencil”
image drawing mode, or interpolated image color and alpha values when drawing an
image in any of the other drawing modes) are passed through an optional color
transformation and converted into the destination color space. The resulting colors are
blended with the corresponding destination color and alpha values according to the
current blending rule. A special blending rule is used when drawing an image using the
“stencil” image drawing mode. The computed coverage value from stage 5 is used to
interpolate between the blended result and the previously assigned color at the pixel
(preferably in a linear color space) to produce an antialiased result.

2.9 Multisampling
Some implementations may provide the option to obtain drawing surfaces that support
antialiasing using multisampling. For multisampled surfaces, rasterization occurs at a
number of sample points within each pixel. Rather than applying a filter to resolve the
coverage at various sample points into a single value once a single primitive has been
fully rasterized, the coverage values at each sample point are stored until all primitives
for the current frame are complete. When the application requests a buffer swap, the
multisampled buffer is resolved into a buffer with a single color per pixel in an
implementation-dependent manner.

The determination of whether a sample falls inside a geometric primitive when rendering
to a multisampled surface is performed in the same manner as for pixel rendering in non-
antialiased mode, only with inclusion evaluated at multiple subpixel sample positions
rather than at pixel centers only. This ensures that rendered geometry affects samples in a
consistent manner. In particular, geometric primitives that collectively cover an entire
pixel must result in all subpixel samples belonging to that pixel being assigned to one of
the primitives.

Multisampling may allow for more accurate computation of the coverage across multiple
primitives. In particular, for primitives that abut one another, multisampling avoids any
possibility of background color “bleeding through,”which may be important for
applications such as Adobe Flash players. Adobe Flash player implementations may also
require that the samples be resolved using a single-pixel wide box filter; the choice of
filter is outside of the scope of this specification, but may be possible using platform
APIs such as EGL.

3 Constants, Functions and Data Types
OpenVG type definitions and function prototypes are found in an openvg.h header

Version 1.1 Revision 1 (December 3, 2008)

Constants, Functions and Data Types 17

file, located in a VG subdirectory of a platform-specific header file location. OpenVG
makes use of 8-, 16-, and 32-bit data types. A 64-bit data type is not required. If the
khronos_types.h header file is provided, the primitive data types will be
compatible across all Khronos APIs on the same platform.

3.1 Versioning
The openvg.h header file defines constants indicating the version of the specification.
Future versions will continue to define the constants for all previous versions with which
they are backward compatible.

OPENVG_VERSION_1_1
 For the current specification, the constant OPENVG_VERSION_1_1 is defined. The
older version OPENVG_VERSION_1_0 continues to be defined for backwards
compatibility. The version may be queried at runtime using the vgGetString function
(see Section 15.3.2).
#define OPENVG_VERSION_1_0 1
#define OPENVG_VERSION_1_1 2

3.2 Primitive Data Types
OpenVG defines a number of primitive data types by means of C typedefs. The
actual data types used are platform-specific.

VGbyte
VGbyte defines an 8-bit two’s complement signed integer, which may contain values
between -128 and 127, inclusive. If khronos_types.h is defined, VGbyte will be
defined as khronos_int8_t.

VGubyte
VGubyte defines an 8-bit unsigned integer, which may contain values between 0 and
255, inclusive. If khronos_types.h is defined, VGubyte will be defined as
khronos_uint8_t.

VGshort
VGshort defines a 16-bit two’s complement signed integer, which may contain values
between -32768 and 32767, inclusive. If khronos_types.h is defined, VGshort
will be defined as khronos_int16_t.

Version 1.1 Revision 1 (December 3, 2008)

Constants, Functions and Data Types 18

VGint
VGint defines a 32-bit two’s complement signed integer. If khronos_types.h is
defined, VGint will be defined as khronos_int32_t.

VGuint
VGuint defines a 32-bit unsigned integer. Overflow behavior is undefined. If
khronos_types.h is defined, VGuint will be defined as khronos_uint32_t.

VGbitfield
VGbitfield defines a 32-bit unsigned integer value, used for parameters that may
combine a number of independent single-bit values. A VGbitfield must be able to
hold at least 32 bits. If khronos_types.h is defined, VGbitfield will be defined
as khronos_uint32_t.

VGboolean
VGboolean is an enumeration that only takes on the values of VG_FALSE (0) or
VG_TRUE (1). Any non-zero value used as a VGboolean will be interpreted as
VG_TRUE.
typedef enum {
 VG_FALSE = 0,
 VG_TRUE = 1
} VGboolean;

VGfloat
VGfloat defines a 32-bit IEEE 754 floating-point value. If khronos_types.h is
defined, VGfloat will be defined as khronos_float_t.

3.3 Floating-Point and Integer Representations
All floating-point values are specified in standard IEEE 754 format. However,
implementations may clamp extremely large or small values to a restricted
range, and internal processing may be performed with lesser precision. At least
16 bits of mantissa, 6 bits of exponent, and a sign bit must be present, allowing
values from ± 2-30 to ±231 to be represented with a fractional precision of at least 1
in 216.

Path data (i.e., vertex and control point coordinates and ellipse parameters) may be

Version 1.1 Revision 1 (December 3, 2008)

Constants, Functions and Data Types 19

specified in one of four formats: 8-, 16-, or 32-bit signed integers, or floating-point.
Floating-point scale and bias factors are used to map the incoming integer and floating-
point values into a desired range when path processing occurs.

 Handling of special values is as follows. Positive and negative 0 values must be treated
identically. Values of +Infinity, -Infinity, or NaN (not a number) yield unspecified results.
Optionally, incoming floating-point values of NaN may be treated as 0, and values of
+Infinity and -Infinity may be clamped to the largest and smallest available values within
the implementation, respectively. Denormalized numbers may be truncated to 0. Passing
any arbitrary value as input to any floating-point argument must not lead to
OpenVG interruption or termination.

VG_MAXSHORT
The macro VG_MAXSHORT contains the largest positive value that may be represented
by a VGshort. VG_MAXSHORT is defined to be equal to 215 – 1, or 32,767. The
smallest negative value that may be represented by a VGshort is given by (–
VG_MAXSHORT – 1), or -32,768.

VG_MAXINT
The macro VG_MAXINT contains the largest positive value that may be
represented by a VGint. VG_MAXINT is defined to be equal to 231 – 1, or
2,147,483,647. The smallest negative value that may be represented by a VGint is
given by (–VG_MAXINT – 1), or -2,147,483,648.

VG_MAX_FLOAT
The parameter VG_MAX_FLOAT contains the largest floating-point number that
will be accepted by an implementation. To query the parameter, use the vgGetf
function with a paramType argument of VG_MAX_FLOAT (see Section 5.2). All
implementations must define VG_MAX_FLOAT to be at least 1010.

3.4 Colors
Colors in OpenVG other than those stored in image pixels (e.g., colors for clearing,
painting, and edge extension for convolution) are represented as non-premultiplied (see
Section 3.4.3) sRGBA [sRGB99] color values. Image pixels may be defined in a number
of color spaces, including sRGB, linear RGB, linear grayscale (or luminance) and non-
linearly coded, perceptually-uniform grayscale, in premultiplied or non-premultiplied
form. Color and alpha values lie in the range [0,1] unless otherwise noted. This applies to

Version 1.1 Revision 1 (December 3, 2008)

Constants, Functions and Data Types 20

intermediate values in the pixel pipeline as well as to application-specified values. If an
alpha channel is present but has a bit depth of zero, the alpha value of each pixel is taken
to be 1.

Non-linear quantities are denoted using primed (’) symbols below. [POYN03] contains
an excellent discussion of the use of non-linear coding to achieve perceptual uniformity.

3.4.1 Linear and Non-Linear Color Representations
In a linear color representation, the numeric values associated with a color channel

value measure the rate at which light is emitted by an object, multiplied by some
constant scale factor. Informally, it can be thought of as counting the number of photons
emitted in a given amount of time. Linear representations are useful for computation,
since light values may be added together in a physically meaningful way.

However, the human visual system responds non-linearly to the light power
(“intensity”) of an image. Accordingly, many common image coding standards (e.g., the
EXIF JPEG format used by many digital still cameras and the MPEG format used for
video) utilize non-linear relationships between light power and code values. This allows
a larger number of distinguishable colors to be represented in a given number of bits than
is possible with a linear encoding. Common display devices such as CRTs and LCDs also
emit light whose power at each pixel component is proportional to a non-linear power
function (i.e., a function of the form xa where a is constant) of the applied code value,
whether due to the properties of analog CRT electronics or to the deliberate application
of a non-linear transfer function elsewhere in the signal path. The exponent, or gamma,
of this power function is typically between 2.2 and 2.5. OpenVG makes use of the non-
linear sRGB color specification described below.

Because linear coding of intensity fails to optimize the number of distinguishable
values, 8-bit linear pixel formats suffer from poor contrast ratios and banding artifacts;
their use with photographic imagery is not recommended. However, synthetic imagery
generated by other APIs such as OpenGL ES that make use of linear light may require
the use of linear formats. 8-bit linear coding is also appropriate for representing pseudo-
images such as coverage masks that are not based on perceptual light intensity.

Although computing directly with non-linear representations may lead to significant
errors compared with the results of first converting to a linear representation, it is
common industry practice in many imaging domains to do so. Because the cost of
performing linearization on pixel values to be interpolated or blended is considered
prohibitive for mobile devices in the near future, OpenVG may perform these operations
directly on non-linear code values. A future version of this specification may introduce
flags to force values to be converted to a linear representation prior to interpolation and
blending.

Version 1.1 Revision 1 (December 3, 2008)

Constants, Functions and Data Types 21

3.4.2 Color Space Definitions
The linear lRGB color space is defined in terms of the standard CIE XYZ color
space [WYSZ00], following ITU Rec. 709 [ITU90] using a D65 white point:

R = 3.240479 X –1.537150 Y – 0.498535 Z
G =-0.969256 X +1.875992 Y +0.041556 Z
B = 0.055648 X –0.204043 Y +1.057311 Z

The sRGB color space defines values R’sRGB, G’sRGB, B’sRGB in terms of the linear
lRGB primaries by applying a gamma (γ) mapping consisting of a linear segment
and an offset power function:

If x ≤ 0.00304

γ(x) = 12.92 x

else

γ(x) = 1.0556 x1/2.4 – 0.0556

The inverse mapping γ-1 is defined as:

If x ≤ 0.03928

 γ-1(x) = x / 12.92

else

γ-1(x) = [(x + 0.0556) / 1.0556]2.4

To convert from lRGB to sRGB, the gamma mapping is used:

R’sRGB = γ(R)

G’sRGB = γ(G) (1)

B’sRGB = γ(B)

Version 1.1 Revision 1 (December 3, 2008)

Constants, Functions and Data Types 22

To convert from sRGB to lRGB, the inverse gamma mapping is used:

R = γ-1(R’sRGB)

G = γ-1(G’sRGB) (2)

B = γ-1(B’sRGB)

Because the gamma function involves offset and scaling factors, it behaves similarly to a
pure power function with an exponent of 1/2.2 (or approximately 0.45) rather than the
“advertised” exponent of 1/2.4, (or approximately 0.42).

The linear grayscale (luminance) color space (which we denote as lL) is related to the
linear lRGB color space by the equations:

L = 0.2126 R + 0.7152 G + 0.0722 B (3)

R = G = B = L (4)

The perceptually-uniform grayscale color space (which we denote as sL) is related to the
linear grayscale (luminance) color space by the gamma mapping:

L’ = γ(L) (5)

L = γ-1(L’) (6)

Conversion from perceptually-uniform grayscale to sRGB is performed by replication:

R’ = G’ = B’ = L’ (7)

The remaining conversions take place in multiple steps, as shown in Table 2 below. The
source format is indicated by the left column, and the destination format is indicated by
the top row. The numbers indicate the equations from this section that are to be applied,
in left-to-right order.

Version 1.1 Revision 1 (December 3, 2008)

Constants, Functions and Data Types 23

Source/Dest lRGB sRGB lL sL

lRGB — 1 3 3,5

sRGB 2 — 2,3 2,3,5

lL 4 4,1 — 5

sL 7,2 7 6 —

Table 2: Pixel Format Conversions

3.4.3 Premultiplied Alpha
 In premultiplied alpha (or simply premultiplied) formats, a pixel (R, G, B, α) is
represented as (α*R, α*G, α*B, α). Alpha is always coded linearly, regardless of the color
space. The terms associated alpha and premultiplied alpha are synonymous.

In OpenVG, color interpolation takes place in premultiplied format in order to obtain
correct results for translucent pixels.

3.4.4 Color Format Conversion
Color values are converted between different formats and bit depths as follows. First,
premultiplied color values are clamped to the range [0, alpha] and non-zero alpha values
are divided out to obtain a non-premultiplied representation for the color.

If the source and destination color formats are of differing color spaces (i.e., linear RGB,
sRGB, linear grayscale, perceptually-uniform grayscale), each source channel is divided
by the maximum channel value to produce a number between 0 and 1. The color space
conversion is performed as described above. The resulting values are then scaled by the
maximum value for each destination channel.

If the source and destination formats have the same color format, but differ in the number
of bits per color channel, the source value is multiplied by the quotient (2d – 1)/(2s – 1)
(where d is the number of bits in the destination and s is the number of bits in the source)
and rounded to the nearest integer.

The following approximation may be used in place of exact multiplication: If the source
channel has a greater number of bits than the destination, the most significant bits are
preserved and the least significant bits are discarded. If the source channel has a lesser
number of bits than the destination, the value is shifted left and the most significant bits
are replicated in the less significant bit positions. For example, a 5-bit source value

Version 1.1 Revision 1 (December 3, 2008)

Constants, Functions and Data Types 24

b4b3b2b1b0 will be converted to an 8-bit destination value b4b3b2b1b0b4b3b2. This rule
approximates the correct result since if d = k*s for some integer k > 1 the quotient (2d –
1)/(2s – 1) will be an integer of the form 2(k-1)*s + 2(k-2)*s + ... + 2s + 1, and multiplication
of an s-bit value by this value will be exactly equivalent to bit replication. When the
destination bit depth is not an integer multiple of the source bit depth, this rule still
provides greater accuracy than other possible approximations such as padding the source
with zeros or with copies of the rightmost bit.

Note that converting from a lesser to a greater number of bits and back again using
either exact scaling or the approximation will result in an unchanged value.

If the destination format has stored alpha, the previously saved alpha value is stored into
the destination. If the destination format has premultiplied alpha, each color channel
value is multiplied by the corresponding alpha value and the resulting values are clamped
to the range [0, alpha].

3.5 Enumerated Data Types
A number of data types are defined using the C enum keyword. In all cases, this
specification assigns each enumerated constant a particular integer value. Extensions to
the specification wishing to add new enumerated values must register with the Khronos
Group to receive a unique value (see Section 15).

Applications making use of extensions should cast the extension-defined integer value to
the proper enumerated type.

The enumerated types (apart from VGboolean) defined by OpenVG are:

• VGBlendMode
• VGCapStyle
• VGColorRampSpreadMode
• VGErrorCode
• VGFillRule
• VGFontParamType
• VGHardwareQueryResult
• VGHardwareQueryType
• VGImageChannel
• VGImageFormat
• VGImageMode
• VGImageParamType
• VGImageQuality
• VGJoinStyle
• VGMaskOperation

• VGMatrixMode
• VGPaintMode
• VGPaintParamType
• VGPaintType
• VGParamType
• VGPathAbsRel
• VGPathCapabilities
• VGPathCommand
• VGPathDatatype
• VGPathParamType
• VGPathSegment
• VGPixelLayout
• VGRenderingQuality
• VGStringID
• VGTilingMode

Version 1.1 Revision 1 (December 3, 2008)

Constants, Functions and Data Types 25

The VGU utility library defines the enumerated types:

• VGUArcType • VGUErrorCode

3.6 Handle-based Data Types
Images, paint objects, and paths are accessed using opaque handles. The use of
handles allows these potentially large and complex objects to be stored under
API control. For example, they may be stored in special memory and/or
formatted in a way that is suitable for use by a hardware implementation.
Handles are created relative to the current context, and may only be used as
OpenVG function parameters when that context or one of its shared contexts is
current.

Handles employ reference count semantics; if a handle is in use by the
implementation, a request to destroy the handle prevents the handle from being
used further by the application, but allows it to continue to be used internally by
the implementation until it is no longer referenced.

VGHandle
Handles make use of the VGHandle data type. For reasons of binary compatibility
between different OpenVG implementations on a given platform, a VGHandle is
defined as a VGuint.
typedef VGuint VGHandle;

Live handles to distinct objects must compare as unequal using the C == (double equals)
operator.

The VGHandle subtypes defined in the API are:

• VGFont – a reference to font data (see Section 11)
• VGImage – a reference to image data (see Section 10)
• VGMaskLayer – a reference to mask data (see Section 7.2)
• VGPaint – a reference to a paint specification (see Section 9)
• VGPath – a reference to path data (see Section 8)

Version 1.1 Revision 1 (December 3, 2008)

Constants, Functions and Data Types 26

VG_INVALID_HANDLE
The symbol VG_INVALID_HANDLE represents an invalid VGHandle that is used as an
error return value from functions that return a VGHandle. VG_INVALID_HANDLE is
defined as (VGHandle)0.
#define VG_INVALID_HANDLE ((VGHandle)0)

Version 1.1 Revision 1 (December 3, 2008)

The Drawing Context 27

4 The Drawing Context
OpenVG functions that perform drawing, or that modify or query drawing state make use
of an implicit drawing context (or simply a context). A context is created, attached to a
drawing surface, and bound to a running application thread outside the scope of the
OpenVG API, for example by the Khronos EGL API. OpenVG API calls are executed
with respect to the context currently bound to the thread in which they are executed. A
call to any OpenVG API function when no drawing context is bound to the current thread
has no effect. The drawing context currently bound to a running thread is referred to as
the current context.
When an image, paint, path, font, or mask handle is defined, it is permanently attached to
the context that is current at that time. It is an error to use the handle as an argument to
any OpenVG function when a different context is active, unless that context has been
designated as a shared context of the original context by the API responsible for context
creation (usually EGL).

Images created by OpenVG may be used as the rendering target of a drawing context. All
drawing performed by any API that makes use of that context will use that image as the
drawing surface.

Passing an image that is currently the rendering target of a drawing context to
any OpenVG function (excluding vgGetParameter and vgDestroyImage) will
result in a VG_IMAGE_IN_USE_ERROR. The image may once again be used by
OpenVG when it is no longer in use as a rendering target.

An image that is related to any other image (as defined in Section 10.6), or that is
set as a paint pattern image on a paint object or a glyph image on a font object,
may not be used as a rendering target. A parent image (one that was created by
vgCreateImage) may be used as a rendering target when all other images that
are related to it have been destroyed and it is not being used as a paint pattern
image on any paint object or as a glyph image on any font object.

It is possible to provide OpenVG on a platform without supporting EGL. In this case, the
host operating system must provide some alternative means of creating a context and
binding it to a drawing surface and a rendering thread.

The context is responsible for maintaining the API state, as shown in Table 3.

State Element Description

Drawing Surface Surface for drawing

Matrix Mode Transformation to be manipulated

Version 1.1 Revision 1 (December 3, 2008)

The Drawing Context 28

State Element Description

Path user-to-surface

Transformation
Affine transformation for filled and stroked
geometry

Image user-to-surface

Transformation
Affine or projective transformation for
images

Paint-to-user

Transformations
Affine transformations for paint applied to
geometry

Glyph user-to-surface Transformation Affine transformation for glyphs

Glyph origin (X,Y) origin of a glyph to be drawn

Fill Rule Rule for filling paths

Quality Settings Image and rendering quality, pixel layout

Color Transformation Color Transformation Function

Blend Mode Pixel blend function

Image Mode Image/paint combination function

Scissoring Current scissoring rectangles and
enable/disable

Stroke Stroke parameters

Pixel and Screen layout Pixel layout information

Tile fill color Color for FILL tiling mode

Clear color Color for fast clear

Filter Parameters Image filtering parameters

Paint Paint definitions

Mask Coverage mask and enable/disable

Version 1.1 Revision 1 (December 3, 2008)

The Drawing Context 29

State Element Description

Error Oldest unreported error code

Table 3: State Elements of a Context

4.1 Errors
Some OpenVG functions may encounter errors. Unless otherwise specified, any
value returned from a function following an error is undefined.

All OpenVG functions may signal VG_OUT_OF_MEMORY_ERROR. This allows
implementations to defer memory allocation until it is needed, rather than
requiring them to proactively allocate memory only in certain functions that are
allowed to generate an error. Such an error may occur midway through the
execution of an OpenVG function, in which case the function may have caused
changes to the state of OpenVG or to drawing surface pixels prior to failure.

When an OpenVG function encounters an error other than a
VG_OUT_OF_MEMORY_ERROR, the context state is not modified and no drawing
takes place.

An error condition within an OpenVG function must never result in process termination,
with the exception of illegal memory accesses taking place within functions that accept
an application-provided pointer. Applications should take care to check return values
where provided. Functions that do not provide return values may still flag errors that
may be retrieved using the vgGetError function described below. Errors are stored
in the context in which the function was called.

All pointer arguments must be aligned according to their datatype, e.g., a VGfloat *
argument must be a multiple of 4 bytes.

VGErrorCode
The error codes and their numerical values are defined by the VGErrorCode
enumeration:

Version 1.1 Revision 1 (December 3, 2008)

The Drawing Context 30

typedef enum {
 VG_NO_ERROR = 0,
 VG_BAD_HANDLE_ERROR = 0x1000,
 VG_ILLEGAL_ARGUMENT_ERROR = 0x1001,
 VG_OUT_OF_MEMORY_ERROR = 0x1002,
 VG_PATH_CAPABILITY_ERROR = 0x1003,
 VG_UNSUPPORTED_IMAGE_FORMAT_ERROR = 0x1004,
 VG_UNSUPPORTED_PATH_FORMAT_ERROR = 0x1005,
 VG_IMAGE_IN_USE_ERROR = 0x1006,
 VG_NO_CONTEXT_ERROR = 0x1007
} VGErrorCode;

vgGetError
vgGetError returns the oldest error code provided by an API call on the current
context since the previous call to vgGetError on that context (or since the
creation of the context). No error is indicated by a return value of 0 (VG_NO_ERROR).
After the call, the error code is cleared to 0. The possible errors that may be generated by
each OpenVG function (apart from VG_OUT_OF_MEMORY_ERROR) are shown below
the definition of the function.

If no context is current at the time vgGetError is called, the error code
VG_NO_CONTEXT_ERROR is returned. Pending error codes on existing contexts are not
affected by the call.
VGErrorCode vgGetError(void)

4.2 Manipulating the Context Using EGL
Most OpenVG implementations are expected to make use of version 1.2 or later of the
EGL API to obtain drawing contexts. This section provides only a partial, non-normative
description of some aspects of the use of EGL that are specific to OpenVG. Refer to the
EGL 1.2 specification for more details.

4.2.1 EGLConfig Attributes
An EGLConfig describes the capabilities of a configuration. Each EGLConfig
encapsulates a set of attributes and their values.

EGL_OPENVG_BIT
EGLConfigs that may be used with OpenVG will have the bit EGL_OPENVG_BIT set
in their EGL_RENDERABLE_TYPE attribute.

Version 1.1 Revision 1 (December 3, 2008)

The Drawing Context 31

EGL_ALPHA_MASK_SIZE
The EGL_ALPHA_MASK_SIZE attribute contains the bit depth of the mask associated
with a configuration. Masking will take place in the OpenVG pipeline only if the bit
depth for the drawing surface mask is greater than zero.

4.2.2 EGL Functions

eglBindAPI
EGL has a notion of the current rendering API. This setting acts as an implied parameter
to some EGL functions. To set OpenVG as the current rendering API in EGL, it is
necessary to call eglBindAPI with an api argument of EGL_OPENVG_API:
EGLBoolean eglBindAPI(EGLenum api)

eglCreateContext
Once eglBindAPI has been called to set OpenVG as the current rendering API, an EGL
context that is suitable for use with OpenVG may be obtained by calling
eglCreateContext. An existing OpenVG context may be passed in as the
share_context parameter; any VGPath and VGImage objects defined in
share_context will be accessible from the new context, and vice versa. If no sharing
is desired, the value EGL_NO_CONTEXT should be used.
EGLContext eglCreateContext(EGLDisplay dpy,
 EGLConfig config,
 EGLContext share_context,
 const EGLint * attrib_list)

eglCreateWindowSurface
Drawing takes place onto an EGLSurface. An EGLSurface may be created from a
platform native window using eglCreateWindowSurface. It is possible to request
single-buffered rendering, in which drawing takes place directly to the visible window,
using the attrib_list parameter to set the EGL_RENDER_BUFFER attribute to a
value of EGL_SINGLE_BUFFER. Implementations that do not support single-buffered
rendering may ignore this setting. Applications should query the returned surface to
determine if it is single- or double-buffered.
EGLSurface eglCreateWindowSurface(EGLDisplay dpy,
 EGLConfig config,
 NativeWindowType win,
 const EGLint *attrib list);

Version 1.1 Revision 1 (December 3, 2008)

The Drawing Context 32

eglCreatePbufferFromClientBuffer
An EGLSurface that allows rendering into a VGImage (see Section 10) may be created
by binding the VGImage to a Pbuffer (off-screen buffer). EGL defines the function
eglCreatePbufferFromClientBuffer, which may be used with a buftype argument of
EGL_OPENVG_IMAGE. The VGImage to be targeted is cast to the
EGLClientBuffer type and passed as the buffer parameter.

If EGL is used with OpenVG, the version of EGL used must support the creation of a
Pbuffer from a VGImage either as part of its core functionality or by means of an
extension.
EGLSurface eglCreatePbufferFromClientBuffer(EGLDisplay dpy,
 EGLenum buftype,
 EGLClientBuffer buffer,
 EGLConfig config,
 const EGLint *attrib_list)

eglMakeCurrent
The eglMakeCurrent function causes a given context to become current on the running
thread. Any context that is current on the thread prior to the call is flushed and marked as
no longer current.
EGLBoolean eglMakeCurrent(EGLDisplay dpy,
 EGLSurface draw,
 EGLSurface read,
 EGLContext ctx)

eglGetCurrentContext
The OpenVG context for the current rendering API that is bound to the current thread
may be retrieved by calling eglGetCurrentContext:
EGLContext eglGetCurrentContext()

eglDestroyContext
An EGL context is destroyed by calling eglDestroyContext.
EGLBoolean eglDestroyContext(EGLDisplay display, EGLContext context)

eglSwapBuffers
When drawing occurs in double-buffered mode, all drawing takes place into an invisible
back buffer, and it is necessary to call eglSwapBuffers to force the buffer contents to be
copied to the visible window. If the visible buffer has a lesser color bit depth than the

Version 1.1 Revision 1 (December 3, 2008)

The Drawing Context 33

back buffer, dithering may be performed as part of the buffer copy operation.
EGLBoolean eglSwapBuffers(EGLDisplay dpy,
 EGLSurface surface);

4.3 Forcing Drawing to Complete
OpenVG provides functions to force the completion of rendering, in order to allow
applications to synchronize between multiple rendering APIs.

vgFlush
The vgFlush function ensures that all outstanding requests on the current context will
complete in finite time. vgFlush may return prior to the actual completion of all requests.
void vgFlush(void)

vgFinish
The vgFinish function forces all outstanding requests on the current context to
complete, returning only when the last request has completed.
void vgFinish(void)

Version 1.1 Revision 1 (December 3, 2008)

Setting API Parameters 34

5 Setting API Parameters
API parameters may be set and retrieved using generic get and set functions. The use of
generic functions allows for extensibility of the API without the addition of additional
functions. Extensions may receive unique identifier values for new parameter types by
registering with the Khronos group.

Parameters take two forms: some are set relative to a rendering context, and others are
set on a particular VGHandle-based object. The former make use of the vgSet and
vgGet functions and the latter make use of the vgSetParameter and vgGetParameter
functions.

5.1 Context Parameter Types
Parameter types that are set on a rendering context are defined in the VGParamType
enumeration. The datatype and default value associated with each parameter is shown in
Table 4.

VGParamType
The VGParamType enumeration defines the parameter type of the value to be
set or retrieved using vgSet and vgGet:

typedef enum {
 /* Mode settings */
 VG_MATRIX_MODE = 0x1100,
 VG_FILL_RULE = 0x1101,
 VG_IMAGE_QUALITY = 0x1102,
 VG_RENDERING_QUALITY = 0x1103,
 VG_BLEND_MODE = 0x1104,
 VG_IMAGE_MODE = 0x1105,

 /* Scissoring rectangles */
 VG_SCISSOR_RECTS = 0x1106,

 /* Color Transformation */
 VG_COLOR_TRANSFORM = 0x1170,
 VG_COLOR_TRANSFORM_VALUES = 0x1171,

Version 1.1 Revision 1 (December 3, 2008)

Setting API Parameters 35

 /* Stroke parameters */
 VG_STROKE_LINE_WIDTH = 0x1110,
 VG_STROKE_CAP_STYLE = 0x1111,
 VG_STROKE_JOIN_STYLE = 0x1112,
 VG_STROKE_MITER_LIMIT = 0x1113,
 VG_STROKE_DASH_PATTERN = 0x1114,
 VG_STROKE_DASH_PHASE = 0x1115,
 VG_STROKE_DASH_PHASE_RESET = 0x1116,

 /* Edge fill color for VG_TILE_FILL tiling mode */
 VG_TILE_FILL_COLOR = 0x1120,

 /* Color for vgClear */
 VG_CLEAR_COLOR = 0x1121,

 /* Glyph origin */
 VG_GLYPH_ORIGIN = 0x1122,

 /* Enable/disable masking and scissoring */
 VG_MASKING = 0x1130,
 VG_SCISSORING = 0x1131,

 /* Pixel layout information */
 VG_PIXEL_LAYOUT = 0x1140,
 VG_SCREEN_LAYOUT = 0x1141,

 /* Source format selection for image filters */
 VG_FILTER_FORMAT_LINEAR = 0x1150,
 VG_FILTER_FORMAT_PREMULTIPLIED = 0x1151,

 /* Destination write enable mask for image filters */
 VG_FILTER_CHANNEL_MASK = 0x1152,

 /* Implementation limits (read-only) */
 VG_MAX_SCISSOR_RECTS = 0x1160,
 VG_MAX_DASH_COUNT = 0x1161,
 VG_MAX_KERNEL_SIZE = 0x1162,
 VG_MAX_SEPARABLE_KERNEL_SIZE = 0x1163,
 VG_MAX_COLOR_RAMP_STOPS = 0x1164,
 VG_MAX_IMAGE_WIDTH = 0x1165,
 VG_MAX_IMAGE_HEIGHT = 0x1166,
 VG_MAX_IMAGE_PIXELS = 0x1167,
 VG_MAX_IMAGE_BYTES = 0x1168,
 VG_MAX_FLOAT = 0x1169,
 VG_MAX_GAUSSIAN_STD_DEVIATION = 0x116A
} VGParamType;

Version 1.1 Revision 1 (December 3, 2008)

Setting API Parameters 36

5.2 Setting and Querying Context Parameter Values
Each vgGet/vgGetParameter or vgSet/vgSetParameter function has four variants,
depending on the data type of the value being set, differentiated by a suffix: i for scalar
integral values, f for scalar floating-point values, and iv and fv for vectors of integers and
floating-point values, respectively. The vector variants may also be used to set scalar
values using a count of 1. When setting a value of integral type using a floating-point
vgSet variant (ending with f or fv), or retrieving a floating-point value using an integer
vgGet function (ending with i or iv), the value is converted to an integer using a
mathematical floor operation. If the resulting value is outside the range of integer values,
the closest valid integer value is substituted.

The count parameter used by the array variants (ending with iv or fv) limits the number
of values that are read from the values array parameter. For parameters that require a
fixed number of values (e.g., color values of type VGfloat[4]), count must have the
appropriate value. For parameters that place restrictions on the number of values that
may be accepted (e.g., that it be a multiple of a specific number, as for scissor rectangles
which are specified as a set of 4-tuples), count must obey the restriction. For
parameters that accept an arbitrary number of values up to some maximum number (e.g.,
dash patterns) , all count specified values up to the maximum are used and values
beyond the maximum are ignored. If the count parameter is 0, the pointer argument is not
dereferenced. For example, the call vgSet(VG_STROKE_DASH_PATTERN, 0,
(void *) 0) sets the dash pattern to a zero-length array (which has the effect of
disabling dashing) without dereferencing the third parameter. If an error occurs due to an
inappropriate value of count, the call has no effect on the parameter value.

Certain parameter values are read-only. Calling vgSet or vgSetParameter on these
values has no effect.

vgSet
The vgSet functions set the value of a parameter on the current context.
void vgSetf (VGParamType paramType, VGfloat value)
void vgSeti (VGParamType paramType, VGint value)
void vgSetfv(VGParamType paramType, VGint count,
 const VGfloat * values)
void vgSetiv(VGParamType paramType, VGint count,
 const VGint * values)

Version 1.1 Revision 1 (December 3, 2008)

Setting API Parameters 37

ERRORS
VG_ILLEGAL_ARGUMENT_ERROR
– if paramType is not a valid value from the VGParamType enumeration

– if paramType refers to a vector parameter in vgSetf or vgSeti

– if paramType refers to a scalar parameter in vgSetfv or vgSetiv and count is
not equal to 1

– if value is not a legal enumerated value for the given parameter in vgSetf or
vgSeti, or if values[i] is not a legal enumerated value for the given parameter
in vgSetfv or vgSetiv for 0 ≤ i < count

– if values is NULL in vgSetfv or vgSetiv and count is greater than 0

– if values is not properly aligned in vgSetfv or vgSetiv

– if count is less than 0 in vgSetfv or vgSetiv

– if count is not a valid value for the given parameter
For example, to set the blending mode to the integral value VG_BLEND_SRC_OVER
(see Section 13.6), the application would call:
vgSeti(VG_BLEND_MODE, VG_BLEND_SRC_OVER);

vgGet and vgGetVectorSize
The vgGet functions return the value of a parameter on the current context.

The vgGetVectorSize function returns the maximum number of elements in the vector
that will be retrieved by the vgGetiv or vgGetfv functions if called with the given
paramType argument. For scalar values, 1 is returned. If vgGetiv or vgGetfv is
called with a smaller value for count than that returned by vgGetVectorSize,
only the first count elements of the vector are retrieved. Use of a greater value
for count will result in an error.

The original value passed to vgSet (except as specifically noted, and provided the call to
vgSet completed without error) is returned by vgGet, even if the implementation makes
use of a truncated or quantized value internally. This rule ensures that OpenVG state may
be saved and restored without degradation.

If an error occurs during a call to vgGetf, vgGeti, or vgGetVectorSize, the return value
is undefined. If an error occurs during a call to vgGetfv or vgGetiv, nothing is

Version 1.1 Revision 1 (December 3, 2008)

Setting API Parameters 38

written to values.
VGfloat vgGetf (VGParamType paramType)
VGint vgGeti (VGParamType paramType)

VGint vgGetVectorSize(VGParamType paramType)

void vgGetfv(VGParamType paramType, VGint count, VGfloat * values)
void vgGetiv(VGParamType paramType, VGint count, VGint * values)

ERRORS
VG_ILLEGAL_ARGUMENT_ERROR
– if paramType is not a valid value from the VGParamType enumeration

– if paramType refers to a vector parameter in vgGetf or vgGeti

– if values is NULL in vgGetfv or vgGetiv

– if values is not properly aligned in vgGetfv or vgGetiv

– if count is less than or equal to 0 in vgGetfv or vgGetiv

– if count is greater than the value returned by vgGetVectorSize for the
given parameter in vgGetfv or vgGetiv

5.2.1 Default Context Parameter Values
When a new OpenVG context is created, it contains default values as shown in Table 4.
Note that some tokens have been split across lines for reasons of space.

Parameter Datatype Default Value

VG_MATRIX_MODE VGMatrixMode VG_MATRIX_PATH_USER_
TO_SURFACE

VG_FILL_RULE VGFillRule VG_EVEN_ODD

VG_IMAGE_QUALITY VGImageQuality VG_IMAGE_QUALITY_FASTER

VG_RENDERING_QUALITY VGRendering
Quality VG_RENDERING_QUALITY_BETTER

VG_BLEND_MODE VGBlendMode VG_BLEND_SRC_OVER

VG_IMAGE_MODE VGImageMode VG_DRAW_IMAGE_NORMAL

Version 1.1 Revision 1 (December 3, 2008)

Setting API Parameters 39

Parameter Datatype Default Value

VG_SCISSOR_RECTS VGint * { } (array of length 0)

VG_COLOR_TRANSFORM VGboolean VG_FALSE (disabled)

VG_COLOR_TRANSFORM_VALUES VGfloat[8] { 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f,
0.0f }

VG_STROKE_LINE_WIDTH VGfloat 1.0f

VG_STROKE_CAP_STYLE VGCapStyle VG_CAP_BUTT

VG_STROKE_JOIN_STYLE VGJoinStyle VG_JOIN_MITER

VG_STROKE_MITER_LIMIT VGfloat 4.0f

VG_STROKE_DASH_PATTERN VGfloat * { } (array of length 0) (disabled)

VG_STROKE_DASH_PHASE VGfloat 0.0f

VG_STROKE_DASH_PHASE_
RESET VGboolean VG_FALSE (disabled)

VG_TILE_FILL_COLOR VGfloat[4] { 0.0f, 0.0f, 0.0f, 0.0f }

VG_CLEAR_COLOR VGfloat[4] { 0.0f, 0.0f, 0.0f, 0.0f }

VG_GLYPH_ORIGIN VGfloat[2] { 0.0f, 0.0f }

VG_MASKING VGboolean VG_FALSE (disabled)

VG_SCISSORING VGboolean VG_FALSE (disabled)

VG_PIXEL_LAYOUT VGPixelLayout VG_PIXEL_LAYOUT_UNKNOWN

VG_SCREEN_LAYOUT VGPixelLayout Layout of the drawing surface

VG_FILTER_FORMAT_LINEAR VGboolean VG_FALSE (disabled)

VG_FILTER_FORMAT_
PREMULTIPLIED VGboolean VG_FALSE (disabled)

VG_FILTER_CHANNEL_MASK VGbitfield (VG_RED | VG_GREEN |
 VG_BLUE | VG_ALPHA)

Table 4: Default Parameter Values for a Context

The read-only parameter values VG_MAX_SCISSOR_RECTS,

Version 1.1 Revision 1 (December 3, 2008)

Setting API Parameters 40

VG_MAX_DASH_COUNT, VG_MAX_KERNEL_SIZE,
VG_MAX_SEPARABLE_KERNEL_SIZE, VG_MAX_GAUSSIAN_STD_DEVIATION,
VG_MAX_COLOR_RAMP_STOPS, VG_MAX_IMAGE_WIDTH,
VG_MAX_IMAGE_HEIGHT, VG_MAX_IMAGE_PIXELS, VG_MAX_IMAGE_BYTES,
and VG_MAX_FLOAT are initialized to implementation-defined values.

The VG_SCREEN_LAYOUT parameter is initialized to the current layout of the
display device containing the current drawing surface, if applicable.

The matrices for matrix modes VG_MATRIX_PATH_USER_TO_SURFACE,
VG_MATRIX_IMAGE_USER_TO_SURFACE,
VG_MATRIX_GLYPH_USER_TO_SURFACE,
VG_MATRIX_FILL_PAINT_TO_USER, and
VG_MATRIX_STROKE_PAINT_TO_USER are initialized to the identity matrix
(see Section 6.5):

By default, no paint object is set for filling or stroking paint modes. The default
paint parameter values are used instead, as described in Section 9.1.3.

5.3 Setting and Querying Object Parameter Values
Objects that are referenced using a VGHandle (i.e., VGImage, VGPaint, VGPath,
VGFont, and VGMaskLayer objects) may have their parameters set and queried using
a number of vgSetParameter and vgGetParameter functions. The semantics of these
functions (including the handling of invalid count values) are similar to those of the
vgGet and vgSet functions.

vgSetParameter
The vgSetParameter functions set the value of a parameter on a given VGHandle-
based object.

Version 1.1 Revision 1 (December 3, 2008)

[sx shx tx
shy sy ty
w0 w1 w2

]=[1 0 0
0 1 0
0 0 1]

Setting API Parameters 41

void vgSetParameterf (VGHandle object, VGint paramType,
 VGfloat value)
void vgSetParameteri (VGHandle object, VGint paramType,
 VGint value)
void vgSetParameterfv(VGHandle object, VGint paramType,
 VGint count, const VGfloat * values)
void vgSetParameteriv(VGHandle object, VGint paramType,
 VGint count, const VGint * values)

ERRORS
VG_BAD_HANDLE_ERROR
– if object is not a valid handle, or is not shared with the current context
VG_ILLEGAL_ARGUMENT_ERROR
– if paramType is not a valid value from the appropriate enumeration

– if paramType refers to a vector parameter in vgSetParameterf or
vgSetParameteri

– if paramType refers to a scalar parameter in vgSetParameterfv or
vgSetParameteriv and count is not equal to 1

– if value is not a legal enumerated value for the given parameter in
vgSetParameterf or vgSetParameteri, or if values[i] is not a legal
enumerated value for the given parameter in vgSetParameterfv or
vgSetParameteriv for 0 ≤ i < count

– if values is NULL in vgSetParameterfv or vgSetParameteriv and count is
greater than 0

– if values is not properly aligned in vgSetParameterfv or vgSetParameteriv

– if count is less than 0 in vgSetParameterfv or vgSetParameteriv

– if count is not a valid value for the given parameter

vgGetParameter and vgGetParameterVectorSize
The vgGetParameter functions return the value of a parameter on a given VGHandle-
based object.

The vgGetParameterVectorSize function returns the number of elements in the vector

Version 1.1 Revision 1 (December 3, 2008)

Setting API Parameters 42

that will be returned by the vgGetParameteriv or vgGetParameterfv functions if called
with the given paramType argument. For scalar values, 1 is returned. If
vgGetParameteriv or vgGetParameterfv is called with a smaller value for
count than that returned by vgGetParameterVectorSize, only the first count
elements of the vector are retrieved. Use of a greater value for count will result
in an error.

The original value passed to vgSetParameter (provided the call to
vgSetParameter completed without error) should be returned by
vgGetParameter (except where specifically noted), even if the implementation
makes use of a truncated or quantized value internally.

If an error occurs during a call to vgGetParameterf, vgGetParameteri, or
vgGetParameterVectorSize, the return value is undefined. If an error occurs
during a call to vgGetParameterfv or vgGetParameteriv, nothing is written to
values.
VGfloat vgGetParameterf (VGHandle object,
 VGint paramType)
VGint vgGetParameteri (VGHandle object,
 VGint paramType)

VGint vgGetParameterVectorSize (VGHandle object,
 VGint paramType)

void vgGetParameterfv(VGHandle object,
 VGint paramType,
 VGint count, VGfloat * values)
void vgGetParameteriv(VGHandle object,
 VGint paramType,
 VGint count, VGint * values)

Version 1.1 Revision 1 (December 3, 2008)

Setting API Parameters 43

ERRORS

VG_BAD_HANDLE_ERROR

– if object is not a valid handle, or is not shared with the current context

VG_ILLEGAL_ARGUMENT_ERROR

– if paramType is not a valid value from the appropriate enumeration

– if paramType refers to a vector parameter in vgGetParameterf or
vgGetParameteri

– if values is NULL in vgGetParameterfv or vgGetParameteriv

– if values is not properly aligned in vgGetParameterfv or vgGetParameteriv

– if count is less than or equal to 0 in vgGetParameterfv or vgGetParameteriv

– if count is greater than the value returned by vgGetParameterVectorSize for
the given parameter in vgGetParameterfv or vgGetParameteriv

Version 1.1 Revision 1 (December 3, 2008)

Rendering Quality and Antialiasing 44

6 Rendering Quality and Antialiasing
Rendering quality settings are available to control implementation-specific trade-offs
between quality and performance. For example, an application might wish to use the
highest quality setting for still images, and the fastest setting during UI operations or
animation. The implementation must satisfy conformance requirements regardless of the
quality setting.

A non-antialiased mode is provided for single-sampled drawing surfaces in which pixel
coverage is always assigned to be 0 or 1, based on the inclusion of the pixel center in the
geometry being rendered. When antialiasing is disabled, a coverage value of 1 will be
assigned to each pixel whose center lies within the estimated path geometry, and a
coverage value of 0 will be assigned otherwise. A consistent tie-breaking rule must be
used for paths that pass through pixel centers.

For purposes of estimating whether a pixel center is included within a path,
implementations may make use of approximations to the exact path geometry, providing
that the following constraints are met. Conceptually, draw a disc D around each pixel
center with a radius of just under ½ a pixel (in topological terms, an open disc of radius
½) and consider its intersection with the exact path geometry:

 1. If D is entirely inside the path, the coverage at the pixel center must be
estimated as 1;

 2. If D is entirely outside the path, the coverage at the pixel center must be
estimated as 0;

 3. If D lies partially inside and partially outside the path, the coverage may
be estimated as either 0 or 1 subject to the additional constraints that:
a. The estimation is deterministic and invariant with respect to state
variables apart from the current user-to-surface transformation, path
coordinate geometry, and clipping due to different drawing surface
dimensions; and
b. For two disjoint paths that share a common segment, if D is partially
covered by each path and completely covered by the union of the paths,
the coverage must be estimated as 1 for exactly one of the paths. A
segment is considered common to two paths if and only if both paths
have the same path format, path datatype, scale, and bias, and the
segments have bit-for-bit identical segment types and coordinate values,
possibly in flipped order. If the segment is specified using relative
coordinates, any preceding segments that may influence the segment
must also have identical segment types and coordinate values.

Version 1.1 Revision 1 (December 3, 2008)

Rendering Quality and Antialiasing 45

Non-antialiased rendering may be useful for previewing results or for techniques such as
picking (selecting the geometric primitive that appears at a given screen location) that
require a single geometric entity to be associated with each pixel after rendering has
completed.

Applications may indicate the sub-pixel color layout of the display in order to optimize
rendering quality.

6.1 Rendering Quality
The overall rendering quality may be set to one of three settings: non-antialiased, faster,
or better. These settings do not affect rendering to multisampled surfaces; for such
surfaces, each sample is evaluated independently and antialiasing occurs automatically as
part of the process of resolving multiple samples into pixels.

VGRenderingQuality
The VGRenderingQuality enumeration defines the values for setting the rendering
quality:
typedef enum {
 VG_RENDERING_QUALITY_NONANTIALIASED = 0x1200,
 VG_RENDERING_QUALITY_FASTER = 0x1201,
 VG_RENDERING_QUALITY_BETTER = 0x1202 /* Default */
} VGRenderingQuality;

The VG_RENDERING_QUALITY_NONANTIALIASED setting disables antialiasing
when used with a single-sampled drawing surface.

 The VG_RENDERING_QUALITY_FASTER setting causes rendering to be done at the
highest available speed, while still satisfying all API conformance criteria. The
VG_RENDERING_QUALITY_BETTER setting, which is the default, causes rendering to
be done with the highest available quality.

The vgSet function is used to control the quality setting to one of
VG_RENDERING_QUALITY_NONANTIALIASED,
VG_RENDERING_QUALITY_FASTER, or VG_RENDERING_QUALITY_BETTER:
vgSeti(VG_RENDERING_QUALITY, VG_RENDERING_QUALITY_NONANTIALIASED);
vgSeti(VG_RENDERING_QUALITY, VG_RENDERING_QUALITY_FASTER);
vgSeti(VG_RENDERING_QUALITY, VG_RENDERING_QUALITY_BETTER);

Version 1.1 Revision 1 (December 3, 2008)

Rendering Quality and Antialiasing 46

6.2 Additional Quality Settings

VGPixelLayout
The VGPixelLayout enumeration describes a number of possible geometric layouts
of the red, green, and blue emissive or reflective elements within a pixel. This
information may be used as a hint to the rendering engine to improve rendering
quality. The supported pixel layouts are illustrated in Figure 2.
typedef enum {
 VG_PIXEL_LAYOUT_UNKNOWN = 0x1300,
 VG_PIXEL_LAYOUT_RGB_VERTICAL = 0x1301,
 VG_PIXEL_LAYOUT_BGR_VERTICAL = 0x1302,
 VG_PIXEL_LAYOUT_RGB_HORIZONTAL = 0x1303,
 VG_PIXEL_LAYOUT_BGR_HORIZONTAL = 0x1304
} VGPixelLayout;

The pixel layout of the display device associated with the current drawing
surface may be queried using vgGeti with a paramType value of
VG_SCREEN_LAYOUT. The value VG_PIXEL_LAYOUT_UNKNOWN may indicate
that the color elements of a pixel are geometrically coincident, or that no layout
information is available to the implementation.

To provide the renderer with a pixel layout hint, use vgSeti with a paramType
value of VG_PIXEL_LAYOUT and a value from the VGPixelLayout
enumeration. The value VG_PIXEL_LAYOUT_UNKNOWN disables any
optimizations based on pixel layout, treating the color elements of a pixel as
geometrically coincident. Reading back the value of VG_PIXEL_LAYOUT with
vgGet simply returns the value set by the application or the default value and
does not reflect the properties of the drawing surface.

Version 1.1 Revision 1 (December 3, 2008)

Rendering Quality and Antialiasing 47

Figure 2: VGPixelLayout Values

6.3 Coordinate Systems and Transformations
Geometry is defined in a two-dimensional coordinate system that may or may not
correspond to pixel coordinates. Drawing may be performed independently of the details
of screen size, resolution, and drawing area by establishing suitable transformations
between coordinate systems.

6.4 Coordinate Systems
Geometric coordinates are specified in the user coordinate system. The path-user-to-
surface and image-user-to-surface transformations map between the user coordinate
system and pixel coordinates on the destination drawing surface. This pixel-based
coordinate system is known as the surface coordinate system. The relationship between
the user and surface coordinate systems and the transformations that map between them
is shown in Figure 3 below.

The user coordinate system is oriented such that values along the X axis increase from
left to right and values along the Y axis increase from bottom to top, as in OpenGL.
When the user-to-surface transformation is the identity transformation, a change of 1 unit
along the X axis corresponds to moving by one pixel.

In the surface coordinate system, pixel (0, 0) is located at the lower-left corner of the
drawing surface. The pixel (x, y) has its center at the point (x + ½, y + ½). Antialiasing
filters used to evaluate the color or coverage of a pixel are centered at the pixel center. If

Version 1.1 Revision 1 (December 3, 2008)

R G B B G R

R
G
B

B
G
R

RGB_VERTICAL BGR_VERTICAL

RGB_HORIZONTA
L

BGR_HORIZONTAL

Rendering Quality and Antialiasing 48

antialiasing is disabled, the evaluation of each pixel occurs at its center.

6.5 Transformations
Geometry is defined in the user coordinate system, and is ultimately transformed into
surface coordinates and assigned colors by means of a set of user-specified
transformations that apply to geometric path data and to paint.

6.5.1 Homogeneous Coordinates
Homogeneous coordinates are used in order to allow translation factors to be included in
the affine matrix formulation, as well as to allow perspective effects for images. In
homogeneous coordinates, a two-dimensional point (x, y) is represented by the three-
dimensional column vector [x, y, 1]T. The same point may be equivalently represented by
the vector [s*x, s*y, s]T for any non-zero scale factor s. More detailed explanations of the
use of homogeneous coordinates may be found in most standard computer graphics
textbooks, for example [FvDFH95].

Figure 3: Coordinates, Transformation, Clipping, and Scissoring

Version 1.1 Revision 1 (December 3, 2008)

T
u

User Coordinates

Surface Coordinates

Scissoring
Rectangles

Clipping and Scissoring

Scissoring
Rectangles

Drawing
Surface
Bounds

Rendering Quality and Antialiasing 49

6.5.2 Affine Transformations
Geometric objects to be drawn are transformed from user coordinates to surface
coordinates as they are drawn by means of a 3x3 affine transformation matrix with the
following entries:

The entries may be divided by their function:

• sx and sy define scaling in the x and y directions, respectively;
• shx and shy define shearing in the x and y directions, respectively;
• tx and ty define translation in the x and y directions, respectively.

An affine transformation maps a point (x, y) (represented using homogeneous
coordinates as the column vector [x, y, 1]T) into the point (x*sx + y*shx + tx, x*shy + y*sy
+ ty) using matrix multiplication:

Affine transformations allow any combination of scaling, rotation, shearing, and
translation. The concatenation of two affine transformations is an affine transformation,
whose matrix form is the product of the matrices of the original transformations.

Gradients and patterns are subject to an additional affine transformation mapping the
coordinate system used to specify the gradient parameters into user coordinates. The
path-user-to-surface transformation is then applied to yield surface coordinates.

 OpenVG does not provide the notion of a hierarchy of transformations; applications
must maintain their own matrix stacks if desired.

6.5.3 Projective (Perspective) Transformations
The vgDrawImage function uses a 3x3 projective (or perspective) transformation
matrix (representing the image-user-to-surface transformation) with the following entries
to transform from user coordinates to surface coordinates:

Version 1.1 Revision 1 (December 3, 2008)

[sx shx tx
shy sy ty
0 0 1]

[sx shx tx
shy sy ty
0 0 1]⋅[x

y
1]=[x∗sx + y∗shx + tx

x∗shy + y∗sy + ty
1]

Rendering Quality and Antialiasing 50

A projective transformation maps a point (x, y) into the point:

using matrix multiplication and division by the third homogeneous coordinate:

The concatenation of two projective transformations is a projective transformation,
whose matrix form is the product of the matrices of the original transformations.

Both affine and projective transformations map straight lines to straight lines. However,
affine transformations map evenly spaced points along a source line to evenly spaced
points in the destination, whereas projective transformations allow the distance between
points to vary due to the effect of division by the denominator d = (x*w0 + y*w1 + w2).
Although OpenVG does not provide support for three-dimensional coordinates, proper
setting of the w matrix entries can simulate the effect of placement of images in three
dimensions, as well as other warping effects.

6.6 Matrix Manipulation
Transformation matrices are manipulated using the vgLoadIdentity, vgLoadMatrix,
and vgMultMatrix functions. For convenience, the vgTranslate, vgScale, vgShear,
and vgRotate functions may be used to concatenate common types of transformations.

The matrix conventions used by OpenVG are similar to those of OpenGL. A point to be
transformed is given by a homogeneous column vector [x, y, 1]T. Transformation of a
point p by a matrix M is defined as the product M∙p. Concatenation of transformations is
performed using right-multiplication of matrices.

In the following sections, the matrix being updated by each call will be represented by

Version 1.1 Revision 1 (December 3, 2008)

[sx shx tx
shy sy ty
w0 w1 w2

]

[sx shx tx
shy sy ty
w0 w1 w2

]⋅[x
y
1]=[x∗sx y∗shxtx

x∗shy y∗syty
x∗w0 y∗w1w2

]≡[
x∗sx y∗shxtx
x∗w0 y∗w1w2

x∗shy y∗syty
x∗w0 y∗w1w2

1
]

 x∗sx y∗shxtx
x∗w0 y∗w1w2

, x∗shy y∗syty
x∗w0 y∗w 1w 2

Rendering Quality and Antialiasing 51

the symbol M.

VGMatrixMode
The current matrix to be manipulated is specified by setting the matrix mode. Separate
matrices are maintained for transforming paths, images, and paint (gradients and
patterns). The matrix modes are defined in the VGMatrixMode enumeration:
typedef enum {
 VG_MATRIX_PATH_USER_TO_SURFACE = 0x1400,
 VG_MATRIX_IMAGE_USER_TO_SURFACE = 0x1401,
 VG_MATRIX_FILL_PAINT_TO_USER = 0x1402,
 VG_MATRIX_STROKE_PAINT_TO_USER = 0x1403,
 VG_MATRIX_GLYPH_USER_TO_SURFACE = 0x1404
} VGMatrixMode;

To set the matrix mode, call vgSeti with a type of VG_MATRIX_MODE and a value of
VG_MATRIX_*. For example, to set the matrix mode to allow manipulation of the path-
user-to-surface transformation, call:
vgSeti(VG_MATRIX_MODE, VG_MATRIX_PATH_USER_TO_SURFACE);

vgLoadIdentity
The vgLoadIdentity function sets the current matrix M to the identity matrix:

void vgLoadIdentity(void)

vgLoadMatrix
The vgLoadMatrix function loads an arbitrary set of matrix values into the current
matrix. Nine matrix values are read from m, in the order:

{ sx, shy, w0, shx, sy, w1, tx, ty, w2 }
defining the matrix:

Version 1.1 Revision 1 (December 3, 2008)

M=[1 0 0
0 1 0
0 0 1]

M=[sx shx tx
shy sy ty
w0 w1 w2

]

Rendering Quality and Antialiasing 52

However, if the targeted matrix is affine (i.e., the matrix mode is not
VG_MATRIX_IMAGE_USER_TO_SURFACE), the values { w0, w1, w2 } are ignored and
replaced by the values { 0, 0, 1 }, resulting in the affine matrix:

void vgLoadMatrix(const VGfloat * m)

ERRORS
VG_ILLEGAL_ARGUMENT_ERROR
– if m is NULL
– if m is not properly aligned

vgGetMatrix
It is possible to retrieve the value of the current transformation by calling vgGetMatrix.
Nine values are written to m in the order:

{ sx, shy, w0, shx, sy, w1, tx, ty, w2 }

For an affine matrix, w0 and w1 will always be 0 and w2 will always be 1.
void vgGetMatrix(VGfloat * m)

ERRORS
VG_ILLEGAL_ARGUMENT_ERROR
– if m is NULL
– if m is not properly aligned

Version 1.1 Revision 1 (December 3, 2008)

M=[sx shx tx
shy sy ty
0 0 1]

Rendering Quality and Antialiasing 53

vgMultMatrix
The vgMultMatrix function right-multiplies the current matrix M by a given matrix:

Nine matrix values are read from m in the order:

{ sx, shy, w0, shx, sy, w1, tx, ty, w2 }

and the current matrix is multiplied by the resulting matrix. However, if the
targeted matrix is affine (i.e., the matrix mode is not
VG_MATRIX_IMAGE_USER_TO_SURFACE), the values { w0, w1, w2 } are ignored
and replaced by the values { 0, 0, 1 } prior to multiplication.
void vgMultMatrix(const VGfloat * m)

ERRORS
VG_ILLEGAL_ARGUMENT_ERROR
– if m is NULL
– if m is not properly aligned

vgTranslate
The vgTranslate function modifies the current transformation by appending a
translation. This is equivalent to right-multiplying the current matrix M by a translation
matrix:

void vgTranslate(VGfloat tx, VGfloat ty)

Version 1.1 Revision 1 (December 3, 2008)

M M⋅[1 0 tx
0 1 ty
0 0 1]

M M⋅[sx shx tx
shy sy ty
w0 w1 w2

]

Rendering Quality and Antialiasing 54

vgScale
The vgScale function modifies the current transformation by appending a scale. This is
equivalent to right-multiplying the current matrix M by a scale matrix:

void vgScale(VGfloat sx, VGfloat sy)

vgShear
The vgShear function modifies the current transformation by appending a shear. This is
equivalent to right-multiplying the current matrix M by a shear matrix:

void vgShear(VGfloat shx, VGfloat shy)

vgRotate
The vgRotate function modifies the current transformation by appending a counter-
clockwise rotation by a given angle (expressed in degrees) about the origin. This is
equivalent to right-multiplying the current matrix M by the following matrix (using the
symbol a to represent the value of the angle parameter):

To rotate about a center point (cx, cy) other than the origin, the application may perform
a translation by (cx, cy), followed by the rotation, followed by a translation by (-cx, -cy).
void vgRotate(VGfloat angle)

Version 1.1 Revision 1 (December 3, 2008)

M M⋅[sx 0 0
0 sy 0
0 0 1]

M M⋅[cosa −sin a 0
sin a cos a 0

0 0 1]

M M⋅[1 shx 0
shy 1 0
0 0 1]

Scissoring, Masking, and Clearing 55

7 Scissoring, Masking, and Clearing
All drawing is clipped (restricted) to the bounds of the drawing surface, and may be
further clipped to the interior of a set of scissoring rectangles. If available, a mask is
applied for further clipping and to create soft edge and partial transparency effects.

Pixels outside the drawing surface bounds, or (when scissoring is enabled) not in any
scissoring rectangle are not affected by any drawing operation. For any drawing
operation, each pixel will receive the same value for any setting of the scissoring
rectangles that contains the pixel. That is, the placement of the scissoring rectangles, and
whether scissoring is enabled, affects only whether a given pixel will be written, without
affecting what value it will receive.

7.1 Scissoring
Drawing may be restricted to the union of a set of scissoring rectangles. Scissoring is
enabled when the parameter VG_SCISSORING has the value VG_TRUE. Scissoring
may be disabled by calling vgSeti with a paramType argument of VG_SCISSORING
and a value of VG_FALSE.

VG_MAX_SCISSOR_RECTS
The VG_MAX_SCISSOR_RECTS parameter contains the maximum number of
scissoring rectangles that may be supplied for the VG_SCISSOR_RECTS parameter. All
implementations must support at least 32 scissor rectangles. If there is no
implementation-defined limit, a value of VG_MAXINT may be returned. The value may
be retrieved by calling vgGeti with a paramType argument of
VG_MAX_SCISSOR_RECTS:
VGint maxScissorRects = vgGeti(VG_MAX_SCISSOR_RECTS);

Specifying Scissoring Rectangles
Each scissoring rectangle is specified as an integer 4-tuple of the form (minX, minY,
width, height), where minX and minY are inclusive. A rectangle with width ≤ 0 or height
≤ 0 is ignored. The scissoring region is defined as the union of all the specified
rectangles. The rectangles as specified need not be disjoint. If scissoring is enabled and
no valid scissoring rectangles are present, no drawing occurs. If more than
VG_MAX_SCISSOR_RECTS rectangles are specified, those beyond the first
VG_MAX_SCISSOR_RECTS are discarded immediately (and will not be returned by
vgGet).

Version 1.1 Revision 1 (December 3, 2008)

Scissoring, Masking, and Clearing 56

#define NUM_RECTS 2
/* { Min X, Min Y, Width, Height } 4-Tuples */
VGint coords[4*NUM_RECTS] = { 20, 30, 100, 200,
 50, 70, 80, 80 };
vgSetiv(VG_SCISSOR_RECTS, 4*NUM_RECTS, coords)

7.2 Masking
All drawing operations may be modified by a drawing surface mask (also known as an
alpha mask for historical reasons), which is a separate implementation-internal buffer
defining an additional coverage value at each sample of the drawing surface. The
values from this buffer modify the coverage value computed by the rasterization
stage of the pipeline.

Masking is enabled when a mask is present for the drawing surface (e.g., by specifying
an EGLConfig with an EGL_ALPHA_MASK_SIZE attribute having a value greater
than zero) and the VG_MASKING parameter has the value VG_TRUE. Masking may be
disabled by calling vgSeti with a parameter of VG_MASKING and a value of
VG_FALSE. If a drawing surface mask is present, it may be manipulated by the
vgMask function regardless of the value of VG_MASKING at the time of the call.
If a drawing surface mask is not present, the behavior is the same as though
there were a mask having a value of 1 at every pixel; functions that manipulate
the mask values have no effect.

In addition to the drawing surface mask, OpenVG applications may manipulate
mask layer objects, which are application-level objects accessed via handles. The
term layer is not meant to imply any ordering between such objects; rather, it is
up to the application to modify the drawing surface mask using mask layer
objects in order to affect the rendering process. A mask layer that is created
when a multisampled drawing surface is current may only be used to modify
that drawing surface's mask or other drawing surface masks that share the same
bit depth and subpixel sample layout.

In this section, we will describe coverage values as ranging from 0 to 1. The
actual bit depth used for computation is implementation-dependent. For single-
sampled surfaces, it must be possible to obtain configurations supporting a mask
with at least 1 bit for 1-bit black and white drawing surfaces, a mask with at least
4 bits for 16-bit color drawing surfaces, and a mask with at least 8 bits for 8-bit
grayscale and 24-bit color drawing surfaces. For multi-sampled surfaces,
implementations are only required to provide 1 mask bit per sample.

Version 1.1 Revision 1 (December 3, 2008)

Scissoring, Masking, and Clearing 57

The drawing surface mask may be thought of as a single-channel image with the
same size as the current drawing surface. Initially, the mask has the value of 1 at
every pixel. Changes to the mask outside of its bounds are ignored. If the
drawing surface size changes, the drawing surface mask associated with it is
resized accordingly, with new pixels being initialized to a coverage value of 1. If
the context acquires a new drawing surface, the drawing surface mask is reset.
Some implementations may modify primitive drawing using the path geometry
used to generate the mask directly, without first rasterizing such geometry into a
pixel-based representation.

A mask defines a stencil area through which primitives are placed before being
drawn. The union, intersection, and subtraction operations on masks are defined
by analogy with the corresponding operations on the stencil areas.

The mask coverage values are multiplied by the corresponding coverage values
of each primitive being drawn in the clipping and masking stage (stage 5) of the
rendering pipeline (see Section 2.5). The masking step is equivalent (except for
color space conversions that may occur) to replacing the source image with the
result of the Porter-Duff operation “Src in Mask” (see Section 13.3).

VGMaskOperation
The VGMaskOperation enumeration defines the set of possible operations that may
be used to modify a mask, possibly making use of a new mask image. Each operation
occurs within a rectangular region of interest.

The VG_CLEAR_MASK operation sets all mask values in the region of interest to 0,
ignoring the new mask image.

The VG_FILL_MASK operation sets all mask values in the region of interest to 1,
ignoring the new mask image.

The VG_SET_MASK operation copies values in the region of interest from the new mask
image, overwriting the previous mask values.

The VG_UNION_MASK operation replaces the previous mask in the region of interest by
its union with the new mask image. The resulting values are always greater than or equal
to their previous value.

The VG_INTERSECT_MASK operation replaces the previous mask in the region of
interest by its intersection with the new mask image. The resulting mask values are
always less than or equal to their previous value.

Version 1.1 Revision 1 (December 3, 2008)

Scissoring, Masking, and Clearing 58

The VG_SUBTRACT_MASK operation subtracts the new mask from the previous mask
and replaces the previous mask in the region of interest by the resulting mask. The
resulting values are always less than or equal to their previous value.

Table 5 gives the equations defining the new mask value for each mask operation in
terms of the previous mask value μprev and the newly supplied mask value μmask.

Operation Mask Equation

VG_CLEAR_MASK μnew = 0

VG_FILL_MASK μnew = 1

VG_SET_MASK μnew = μmask

VG_UNION_MASK μnew = 1 – (1 – μmask)*(1 – μprev)

VG_INTERSECT_MASK μnew = μmask *μprev

VG_SUBTRACT_MASK μnew = μprev*(1 – μmask)

Table 5: VGMaskOperation Equations
typedef enum {
 VG_CLEAR_MASK = 0x1500,
 VG_FILL_MASK = 0x1501,
 VG_SET_MASK = 0x1502,
 VG_UNION_MASK = 0x1503,
 VG_INTERSECT_MASK = 0x1504,
 VG_SUBTRACT_MASK = 0x1505
} VGMaskOperation;

vgMask
The vgMask function modifies the drawing surface mask values according to a given
operation, possibly using coverage values taken from a mask layer or bitmap image
given by the mask parameter. If no mask is configured for the current drawing surface,
vgMask has no effect.

The affected region is the intersection of the drawing surface bounds with the rectangle
extending from pixel (x, y) of the drawing surface and having the given width and
height in pixels. For operations that make use of the mask parameter (i.e., operations

Version 1.1 Revision 1 (December 3, 2008)

Scissoring, Masking, and Clearing 59

other than VG_CLEAR_MASK and VG_FILL_MASK), mask pixels starting at (0, 0) are
used, and the region is further limited to the width and height of mask. For the
VG_CLEAR_MASK and VG_FILL_MASK operations, the mask parameter is ignored
and does not affect the region being modified. The value VG_INVALID_HANDLE may
be supplied in place of an actual image handle.

If mask is a VGImage handle, the image defines coverage values at each of its
pixels as follows. If the image pixel format includes an alpha channel, the alpha
channel is used. Otherwise, values from the red (for color image formats) or
grayscale (for grayscale formats) channel are used. The value is divided by the
maximum value for the channel to obtain a value between 0 and 1. If the image is
bi-level (black and white), black pixels receive a value of 0 and white pixels
receive a value of 1.

If mask is a VGMaskLayer handle, it must be compatible with the current
drawing surface mask.

If the drawing surface mask is multisampled, this operation may perform
dithering. That is, it may assign different values to different drawing surface
mask samples within a pixel so that the average mask value for the pixel will
match the incoming value more accurately.
void vgMask(VGHandle mask, VGMaskOperation operation,
 VGint x, VGint y, VGint width, VGint height)

Version 1.1 Revision 1 (December 3, 2008)

Scissoring, Masking, and Clearing 60

ERRORS
VG_BAD_HANDLE_ERROR
– if operation is not VG_CLEAR_MASK or VG_FILL_MASK, and mask is not a

valid mask layer or image handle, or is not shared with the current context
VG_IMAGE_IN_USE_ERROR
– if mask is a VGImage that is currently a rendering target
VG_ILLEGAL_ARGUMENT_ERROR
– if operation is not a valid value from the VGMaskOperation

enumeration

– if width or height is less than or equal to 0

– if mask is a VGMaskLayer and is not compatible with the current surface
mask

vgRenderToMask
The vgRenderToMask function modifies the current surface mask by applying the
given operation to the set of coverage values associated with the rendering of the
given path. If paintModes contains VG_FILL_PATH, the path is filled; if it
contains VG_STROKE_PATH, the path is stroked. If both are present, the mask
operation is performed in two passes, first on the filled path geometry, then on the
stroked path geometry.

Conceptually, for each pass, an intermediate single-channel image is initialized to 0, then
filled with those coverage values that would result from the first four stages of the
OpenVG pipeline (i.e., state setup, stroked path generation if applicable, transformation,
and rasterization) when drawing a path with vgDrawPath using the given set of paint
modes and all current OpenVG state settings that affect path rendering (scissor
rectangles, rendering quality, fill rule, stroke parameters, etc.). Paint settings (e.g., paint
matrices) are ignored. Finally, the drawing surface mask is modified as though vgMask
were called using the intermediate image as the mask parameter. Changes to path
following this call do not affect the mask. If operation is VG_CLEAR_MASK or
VG_FILL_MASK, path is ignored and the entire mask is affected.

An implementation that supports geometric clipping of primitives may cache the
contents of path and make use of it directly when primitives are drawn, without
generating a rasterized version of the clip mask. Other implementation-specific
optimizations may be used to avoid materializing a full intermediate mask image.

Version 1.1 Revision 1 (December 3, 2008)

Scissoring, Masking, and Clearing 61

void vgRenderToMask(VGPath path, VGbitfield paintModes,
 VGMaskOperation operation)

ERRORS
VG_BAD_HANDLE_ERROR
– if path is not a valid path handle
VG_ILLEGAL_ARGUMENT_ERROR
– if paintModes is not a valid bitwise OR of values from the VGPaintMode

enumeration

– if operation is not a valid value from the VGMaskOperation
enumeration

VGMaskLayer
Mask layers may be stored and manipulated using opaque handles of type
VGMaskLayer. When a mask layer is created, it is assigned a fixed size and a subpixel
layout determined by the multisampling properties of the current drawing surface. A
mask layer may only be used with the surface that was current at the time it was created
or with another surface with the same multisampling properties.
typedef VGHandle VGMaskLayer;

vgCreateMaskLayer
vgCreateMaskLayer creates an object capable of storing a mask layer with the given
width and height and returns a VGMaskLayer handle to it. The mask layer is
defined to be compatible with the format and multisampling properties of the
current drawing surface. If there is no current drawing surface, no mask is
configured for the current drawing surface, or an error occurs,
VG_INVALID_HANDLE is returned. All mask layer values are initially set to one.
VGMaskLayer vgCreateMaskLayer(VGint width, VGint height)

Version 1.1 Revision 1 (December 3, 2008)

Scissoring, Masking, and Clearing 62

ERRORS
VG_ILLEGAL_ARGUMENT_ERROR
– if width or height are less than or equal to 0

– if width is greater than VG_MAX_IMAGE_WIDTH
– if height is greater than VG_MAX_IMAGE_HEIGHT
– if width*height is greater than VG_MAX_IMAGE_PIXELS

vgDestroyMaskLayer
The resources associated with a mask layer may be deallocated by calling
vgDestroyMaskLayer. Following the call, the maskLayer handle is no longer
valid in the current context.
void vgDestroyMaskLayer(VGMaskLayer maskLayer)

ERRORS
VG_BAD_HANDLE_ERROR
– if maskLayer is not a valid mask handle

vgFillMaskLayer
The vgFillMaskLayer function sets the values of a given maskLayer within a given
rectangular region to a given value. The floating-point value value must be between 0
and 1. The value is rounded to the closest available value supported by the mask layer. If
two values are equally close, the larger value is used.
void vgFillMaskLayer(VGMaskLayer maskLayer,
 VGint x, VGint y, VGint width, VGint height,
 VGfloat value)

Version 1.1 Revision 1 (December 3, 2008)

Scissoring, Masking, and Clearing 63

ERRORS
VG_BAD_HANDLE_ERROR
– if maskLayer is not a valid mask layer handle, or is not shared with the

current context
VG_ILLEGAL_ARGUMENT_ERROR
– if value is less than 0 or greater than 1

– if width or height is less than or equal to 0

– if x or y is less than 0

– if x + width is greater than the width of the mask

– if y + height is greater than the height of the mask

vgCopyMask
vgCopyMask copies a portion of the current surface mask into a VGMaskLayer object.
The source region starts at (sx, sy) in the surface mask, and the destination region starts
at (dx, dy) in the destination maskLayer. The copied region is clipped to the given
width and height and the bounds of the source and destination. If the current context
does not contain a surface mask, vgCopyMask does nothing.
void vgCopyMask(VGMaskLayer maskLayer,
 VGint dx, VGint dy, VGint sx, VGint sy,
 VGint width, VGint height)

ERRORS
VG_BAD_HANDLE_ERROR
– if maskLayer is not a valid mask layer handle
VG_ILLEGAL_ARGUMENT_ERROR
– if width or height are less than or equal to 0

– if maskLayer is not compatible with the current surface mask

Version 1.1 Revision 1 (December 3, 2008)

Scissoring, Masking, and Clearing 64

7.3 Fast Clearing
The vgClear function allows a region of pixels to be set to a single color with a single
call.

vgClear
The vgClear function fills the portion of the drawing surface intersecting the rectangle
extending from pixel (x, y) and having the given width and height with a constant
color value, taken from the VG_CLEAR_COLOR parameter. The color value is expressed
in non-premultiplied sRGBA (sRGB color plus alpha)format. Values outside the [0, 1]
range are interpreted as the nearest endpoint of the range. The color is converted to the
destination color space in the same manner as if a rectangular path were being filled.
Clipping and scissoring take place in the usual fashion, but antialiasing, masking, and
blending do not occur.
void vgClear(VGint x, VGint y, VGint width, VGint height)

ERRORS
VG_ILLEGAL_ARGUMENT_ERROR
– if width or height is less than or equal to 0

For example, to set the entire drawing surface with dimensions WIDTH and HEIGHT to
an opaque yellow color, the following code could be used:
VGfloat color[4] = { 1.0f, 1.0f, 0.0f, 1.0f }; /* Opaque yellow */

vgSeti(VG_SCISSORING, VG_FALSE);
vgSetfv(VG_CLEAR_COLOR, 4, color);
vgClear(0, 0, WIDTH, HEIGHT);

8 Paths
Paths are the heart of the OpenVG API. All geometry to be drawn must be defined in
terms of one or more paths. Paths are defined by a sequence of segment commands (or
segments). Each segment command in the standard format may specify a move, a straight
line segment, a quadratic or cubic Bézier segment, or an elliptical arc. Extensions may
define other segment types.

Version 1.1 Revision 1 (December 3, 2008)

Paths 65

8.1 Moves
A path segment may consist of a “move to” segment command that causes the path to
jump directly to a given point, starting a new subpath without drawing.

8.2 Straight Line Segments
Paths may contain horizontal, vertical, or arbitrary line segment commands. A special
“close path” segment command may be used to generate a straight line segment joining
the current vertex of a path to the vertex that began the current portion of the path.

8.3 Bézier Curves
Bézier curves are polynomial curves defined using a parametric representation.
That is, they are defined as the set of points of the form (x(t), y(t)), where x(t) and
y(t) are polynomials of t and t varies continuously from 0 to 1. Paths may contain
quadratic or cubic Bézier segment commands.

8.3.1 Quadratic Bézier Curves
A quadratic Bézier segment is defined by three control points, (x0, y0), (x1, y1), and (x2,
y2). The curve starts at (x0, y0) and ends at (x2, y2). The shape of the curve is influenced by
the placement of the internal control point (x1, y1), but the curve does not usually pass
through that point. Assuming non-coincident control points, the tangent of the curve at
the initial point x0 is aligned with and has the same direction as the vector x1 – x0 and the
tangent at the final point x2 is aligned with and has the same direction as the vector x2 –
x1. The curve is defined by the set of points (x(t), y(t)) as t varies from 0 to 1, where:

Version 1.1 Revision 1 (December 3, 2008)

x t =x 0∗1−t 22∗x1∗1−t ∗tx2∗t2

y t = y0∗1−t 22∗y1∗1−t ∗t y2∗t 2

Paths 66

8.3.2 Cubic Bézier Curves
Cubic Bézier segments are defined by four control points (x0, y0), (x1, y1), (x2, y2), and (x3,
y3). The curve starts at (x0, y0) and ends at (x3, y3). The shape of the curve is influenced by
the placement of the internal control points (x1, y1) and (x2, y2), but the curve does not
usually pass through those points. Assuming non-coincident control points, the tangent of
the curve at the initial point x0 is aligned with and has the same direction as the vector x1

– x0 and the tangent at the final point x3 is aligned with and has the same direction as the
vector x3 – x2. The curve is defined by the set of points (x(t), y(t)) as t varies from 0 to 1,
where:

8.3.3 G1 Smooth Segments
G1 Smooth quadratic or cubic segments implicitly define their first internal control point
in such a manner as to guarantee a continuous tangent direction at the join point when
they are joined to a preceding quadratic or cubic segment. Geometrically, this ensures
that the two segments meet without a sharp corner. However, the length of the
unnormalized tangent vector may experience a discontinuity at the join point.

G1 smoothness at the initial point of a quadratic or cubic segment may be guaranteed by
suitable placement of the first internal control point (x1, y1) of the following segment.
Given a previous quadratic or cubic segment with an internal control point (px, py) and
final endpoint (ox, oy), we compute (x1, y1) as (2*ox – px, 2*oy – py) (i.e., the reflection
of the point (px, py) about the point (ox, oy)). For segments of the same type, this will
provide C1 smoothness (see the next section).

Version 1.1 Revision 1 (December 3, 2008)

x t = x0∗1−t 33∗x1∗1−t 2∗t3∗x2∗1−t∗t 2x3∗t3

y t = y0∗1−t 33∗ y1∗1−t 2∗t3∗y2∗1−t ∗t 2 y3∗t3

Paths 67

Figure 4: Smooth Curve Construction

8.3.4 C1 Smooth Segments
[Note: this section is informative only.]

C1 smooth quadratic or cubic segments define their first internal control point (x1, y1) in
such a manner as to guarantee a continuous first derivative at the join point when they
are joined to a preceding quadratic or cubic segment. Geometrically, this ensures that the
two segments meet with continuous parametric velocity at the join point. This is a
stronger condition than G1 continuity.

Note that joining a C1 smooth segment to a preceding line segment will not produce a
smooth join. To guarantee a smooth join, convert line segments to equivalent quadratic
or cubic curves whose internal control points all lie along the line segment.

Given a previous quadratic or cubic segment with an internal control point (px, py) and
final endpoint (ox, oy), (x1, y1) is computed as follows:

• When joining a previous quadratic or cubic segment to a following segment of the
same type (quadratic or cubic):

(x1, y1) = (2*ox – px, 2*oy – py)

• When joining a previous quadratic segment to a following cubic segment:

(x1, y1) = (5*ox – 2*px, 5*oy – 2*py)/3

Version 1.1 Revision 1 (December 3, 2008)

(px,py)

(ox,oy)

(x
1
,y

1
)=(2*ox-px,2*oy-py)

Paths 68

• When joining a previous cubic segment to a following quadratic segment:

(x1, y1) = (5*ox – 3*px, 5*oy – 3*py)/2

8.3.5 C2 Smooth Segments
[Note: this section is informative only.]

C2 smooth cubic segments implicitly define both of their internal control points (x1, y1)
and (x2, y2) in such a manner as to guarantee continuous first and second derivatives at
the join point when they are joined to a preceding quadratic or cubic segment.
Geometrically, this ensures that the two segments meet with continuous velocity and
acceleration at the join point.

Note that joining a C2 smooth segment to a preceding line segment will not produce a
smooth join. To guarantee a smooth join, convert line segments to equivalent quadratic
or cubic curves whose internal control points all lie along the line segment.

Given three previous control points (qx, qy), (px, py), and (ox, oy) (for a quadratic
segment, (qx, qy) is the initial endpoint, (px, py) is the internal control point and (ox, oy)
is the final endpoint; for a cubic segment, (qx, qy), and (px, py) are the first and second
internal control points, respectively, and (ox, oy) is the final endpoint), (x1, y1) is
computed as described in the preceding section, and (x2, y2) is computed as follows.

• When joining a previous quadratic segment to a following cubic segment:

(x2, y2) = (8*ox – 6*px + qx, 8*oy – 6*py + qy)/3

• When joining a previous cubic segment to a following cubic segment:

(x2, y2) = (4*(ox – px) + qx, 4*(oy – py) + qy)

8.3.6 Converting Segments From Quadratic to Cubic Form
[Note: This section is informative only.]

Given a quadratic Bézier curve with control points (x0, y0), (x1, y1), and (x2, y2), an
identical cubic Bézier curve may be formed using the control points (x0, y0), (x0 + 2*x1,
y0 + 2*y1)/3, (x2 + 2*x1, y2 + 2*y1)/3, (x2, y2).

8.4 Elliptical Arcs
Elliptical arc segments join a pair of points with a section of an ellipse with given
horizontal and vertical axes and a rotation angle (in degrees). Given these parameters,

Version 1.1 Revision 1 (December 3, 2008)

Paths 69

there are four possible arcs distinguished by their direction around the ellipse (clockwise
or counter-clockwise) and whether they take the smaller or larger path around the ellipse.

Figure 5 below shows the two possible ellipses with horizontal axis rh, vertical axis rv,
and counter-clockwise rotation angle rot (shown as the angle between the vertical line
labeled rot and the line labeled rv) passing through the points (x0, y0) and (x1, y1). The
four arcs connecting the points are labeled L and S for large and small, and CW and
CCW for clockwise and counter-clockwise.

Negative values of rh and rv are replaced with their absolute values. If exactly one of rh
and rv is 0, and the arc endpoints are not coincident, the arc is drawn as if it were
projected onto the line containing the endpoints. If both rh and rv are 0, or if the arc
endpoints are coincident, the arc is drawn as a line segment between its endpoints. The
rot parameter is taken modulo 360 degrees.

If no elliptical arc exists with the given parameters because the endpoints are too far
apart (as detailed in the next section), the arc is drawn as if the radii were scaled up
uniformly by the smallest factor that permits a solution.

Notes on the mathematics of ellipses are provided in Appendix A (Section 18).

Figure 5: Elliptical Arcs

8.5 The Standard Path Format
Complex paths may be constructed in application memory and passed into OpenVG to
define a VGPath object. Such path data is defined by a sequence of segment commands
referencing a separate sequence of geometric coordinates and parameters.

Version 1.1 Revision 1 (December 3, 2008)

LCCW

SCCW

SCW

LCW

rv
rh

rot

(x
0
, y

0
)

(x
1
, y

1
)

Paths 70

In this section, we define the standard data format for paths that may be used to define
sequences of various types of path segments. Extensions may define other path data
formats.

VG_PATH_FORMAT_STANDARD
The VG_PATH_FORMAT_STANDARD macro defines a constant to be used as an
argument to vgCreatePath to indicate that path data are stored using the standard
format. As this API is revised, the lower 16 bits of version number may increase. Each
version of OpenVG will accept formats defined in all prior specification versions with
which it is backwards-compatible.

Extensions wishing to define additional path formats may register for format identifiers
that will differ in their upper 16 bits; the lower 16 bits may be used by the extension
vendor for versioning purposes.
#define VG_PATH_FORMAT_STANDARD 0

8.5.1 Path Segment Command Side Effects
In order to define the semantics of each segment command type, we define three
reference points (all are initially (0, 0)):

• (sx, sy): the beginning of the current subpath, i.e., the position of the last MOVE_TO
segment.

• (ox, oy): the last point of the previous segment.

• (px, py): the last internal control point of the previous segment, if the segment was a
(regular or smooth) quadratic or cubic Bézier, or else the last point of the previous
segment.

Figure 6 illustrates the locations of these points at the end of a sequence of segment
commands { MOVE_TO, LINE_TO, CUBIC_TO }.

Version 1.1 Revision 1 (December 3, 2008)

Paths 71

Figure 6: Segment Reference Points

We define points (x0, y0), (x1, y1), and (x2, y2) in the discussion below as absolute
coordinates. For segments defined using relative coordinates, (x0, y0), etc., are defined as
the incoming coordinate values added to (ox, oy). Ellipse rh, rv, and rot parameters are
unaffected by the use of relative coordinates.

Each segment (except for MOVE_TO segments) begins at the point (ox, oy) defined by
the previous segment.

A path consists of a sequence of subpaths. As path segment commands are encountered,
each segment is appended to the current subpath. The current subpath is ended by a
MOVE_TO or CLOSE_PATH segment, and a new current subpath is begun. The end of
the path data also ends the current subpath.

8.5.2 Segment Commands
The following table describes each segment command type along with its prefix, the
number of specified coordinates and parameters it requires, the numerical value of the
segment command, the formulas for any implicit coordinates, and the side effects of the
segment command on the points (ox, oy), (sx, sy), and (px, py) and on the termination of
the current subpath.

Version 1.1 Revision 1 (December 3, 2008)

CUBIC_TO

LINE_TO

MOVE_T
O

(sx, sy)

(px, py)

(ox, oy)

Paths 72

Type VGPathSegment Coordinates Value Implicit
Points Side Effects

Close Path CLOSE_PATH none 0 (px,py)=(ox,oy)=(sx,sy)
End current subpath

Move MOVE_TO x0,y0 2
(sx,sy)=(px,py)=
(ox,oy)=(x0,y0)

End current subpath

Line LINE_TO x0,y0 4 (px,py)=(ox,oy)=(x0,y0)

Horiz. Line HLINE_TO x0 6 y0=oy
(px,py)=(x0,oy)

ox=x0

Vertical Line VLINE_TO y0 8 x0=ox
(px,py)=(ox,y0)

oy=y0

Quadratic QUAD_TO x0,y0,x1,y1 10 (px,py)=(x0,y0)
(ox,oy)=(x1,y1)

Cubic CUBIC_TO
x0,y0,x1,y1,

x2,y2
12 (px,py)=(x1,y1)

(ox,oy)=(x2,y2)

G1 Smooth
Quad SQUAD_TO x1,y1 14

(x0,y0)=
(2*ox-px,
2*oy-py)

(px,py)=
(2*ox-px, 2*oy-py)

(ox,oy)=(x1,y1)

G1 Smooth
Cubic SCUBIC_TO x1,y1,x2,y2 16

(x0,y0)=
(2*ox-px,
2*oy-py)

(px,py)=(x1,y1)
(ox,oy)=(x2,y2)

Small CCW
Arc SCCWARC_TO rh,rv,rot,x0,y0 18 (px,py)=(ox,oy)=(x0,y0)

Small CW
Arc SCWARC_TO rh,rv,rot,x0,y0 20 (px,py)=(ox,oy)=(x0,y0)

Large CCW LCCWARC_TO rh,rv,rot,x0,y0 22 (px,py)=(ox,oy)=(x0,y0)

Version 1.1 Revision 1 (December 3, 2008)

Paths 73

Type VGPathSegment Coordinates Value Implicit
Points Side Effects

Arc

Large CW
Arc LCWARC_TO rh,rv,rot,x0,y0 24 (px,py)=(ox,oy)=(x0,y0)

Reserved Reserved 26,28,30

Table 6: Path Segment Commands

Each segment type may be defined using either absolute or relative coordinates. A
relative coordinate (x, y) is added to (ox, oy) to obtain the corresponding absolute
coordinate (ox + x, oy + y). Relative coordinates are converted to absolute coordinates
immediately as each segment is encountered during rendering.

The HLINE_TO and VLINE_TO segment types are provided in order to avoid the need
for an SVG viewing application (for example) to perform its own relative to absolute
conversions when parsing path data.

In SVG, the behavior of smooth quadratic and cubic segments differs slightly from the
behavior defined above. If a smooth quadratic segment does not follow a quadratic
segment, or a smooth cubic segment does not follow a cubic segment, the initial control
point (x0, y0) is placed at (ox, oy) instead of being computed as the reflection of (px, py).
This behavior may be emulated by converting an SVG smooth segment into a regular
segment with all of its control points specified when the preceding segment is of a
different degree.

Note that the coordinates of a path are defined even if the path begins with a segment
type other than MOVE_TO (including HLINE_TO, VLINE_TO, or relative segment
types) since the coordinates are based on the initial values of (ox, oy), (sx, sy), and (px,
py) which are each defined as (0, 0).

8.5.3 Coordinate Data Formats
Coordinate and parameter data (henceforth called simply coordinate data) may be
expressed in the set of formats shown in Table 7 below. Multi-byte coordinate data (i.e.,
S_16, S_32 and F datatypes) are represented in application memory using the native
byte order (endianness) of the platform. Implementations may quantize incoming data in
the S_32 and F formats to a lesser number of bits, provided at least 16 bits of precision
are maintained.

Judicious use of smooth curve segments and 8- and 16-bit datatypes can result in

Version 1.1 Revision 1 (December 3, 2008)

Paths 74

substantial memory savings for common path data, such as font glyphs. Using smaller
datatypes also conserves bus bandwidth when transferring paths from application
memory to OpenVG.

Datatype VG_PATH_DATATYPE Suffix Bytes Value

8-bit signed integer S_8 1 0

16-bit signed integer S_16 2 1

32-bit signed integer S_32 4 2

IEEE 754 floating-point F 4 3

Table 7: Path Coordinate Datatypes

VGPathDatatype
The VGPathDatatype enumeration defines values describing the possible numerical
datatypes for path coordinate data.
typedef enum {
 VG_PATH_DATATYPE_S_8 = 0,
 VG_PATH_DATATYPE_S_16 = 1,
 VG_PATH_DATATYPE_S_32 = 2,
 VG_PATH_DATATYPE_F = 3
} VGPathDatatype;

8.5.4 Segment Type Marker Definitions
Segment type markers are defined as 8-bit integers, with the leading 3 bits reserved for

future use, the next 4 bits containing the segment command type, and the least significant
bit indicating absolute vs. relative coordinates (0 for absolute, 1 for relative). The
reserved bits must be set to 0.

For the CLOSE_PATH segment command, the value of the Abs/Rel bit is ignored.

Figure 7: Segment Type Marker Layout

Version 1.1 Revision 1 (December 3, 2008)

Abs/
Rel

7 0
Command TypeReserved

Paths 75

VGPathAbsRel
The VGPathAbsRel enumeration defines values indicating absolute (VG_ABSOLUTE)
and relative (VG_RELATIVE) values.
typedef enum {
 VG_ABSOLUTE = 0,
 VG_RELATIVE = 1
} VGPathAbsRel;

VGPathSegment
The VGPathSegment enumeration defines values for each segment command type.
The values are pre-shifted by 1 bit to allow them to be combined easily with values from
VGPathAbsRel.
typedef enum {
 VG_CLOSE_PATH = (0 << 1),
 VG_MOVE_TO = (1 << 1),
 VG_LINE_TO = (2 << 1),
 VG_HLINE_TO = (3 << 1),
 VG_VLINE_TO = (4 << 1),
 VG_QUAD_TO = (5 << 1),
 VG_CUBIC_TO = (6 << 1),
 VG_SQUAD_TO = (7 << 1),
 VG_SCUBIC_TO = (8 << 1),
 VG_SCCWARC_TO = (9 << 1),
 VG_SCWARC_TO = (10 << 1),
 VG_LCCWARC_TO = (11 << 1),
 VG_LCWARC_TO = (12 << 1)
} VGPathSegment;

VGPathCommand
The VGPathCommand enumeration defines combined values for each segment
command type and absolute/relative value. The values are shifted left by one bit and
ORed bitwise (i.e., using the C | operator) with the appropriate value from
VGPathAbsRel to obtain a complete segment command value.

Version 1.1 Revision 1 (December 3, 2008)

Paths 76

typedef enum {
 VG_MOVE_TO_ABS = VG_MOVE_TO | VG_ABSOLUTE,
 VG_MOVE_TO_REL = VG_MOVE_TO | VG_RELATIVE,
 VG_LINE_TO_ABS = VG_LINE_TO | VG_ABSOLUTE,
 VG_LINE_TO_REL = VG_LINE_TO | VG_RELATIVE,
 VG_HLINE_TO_ABS = VG_HLINE_TO | VG_ABSOLUTE,
 VG_HLINE_TO_REL = VG_HLINE_TO | VG_RELATIVE,
 VG_VLINE_TO_ABS = VG_VLINE_TO | VG_ABSOLUTE,
 VG_VLINE_TO_REL = VG_VLINE_TO | VG_RELATIVE,
 VG_QUAD_TO_ABS = VG_QUAD_TO | VG_ABSOLUTE,
 VG_QUAD_TO_REL = VG_QUAD_TO | VG_RELATIVE,
 VG_CUBIC_TO_ABS = VG_CUBIC_TO | VG_ABSOLUTE,
 VG_CUBIC_TO_REL = VG_CUBIC_TO | VG_RELATIVE,
 VG_SQUAD_TO_ABS = VG_SQUAD_TO | VG_ABSOLUTE,
 VG_SQUAD_TO_REL = VG_SQUAD_TO | VG_RELATIVE,
 VG_SCUBIC_TO_ABS = VG_SCUBIC_TO | VG_ABSOLUTE,
 VG_SCUBIC_TO_REL = VG_SCUBIC_TO | VG_RELATIVE,
 VG_SCCWARC_TO_ABS = VG_SCCWARC_TO | VG_ABSOLUTE,
 VG_SCCWARC_TO_REL = VG_SCCWARC_TO | VG_RELATIVE,
 VG_SCWARC_TO_ABS = VG_SCWARC_TO | VG_ABSOLUTE,
 VG_SCWARC_TO_REL = VG_SCWARC_TO | VG_RELATIVE,
 VG_LCCWARC_TO_ABS = VG_LCCWARC_TO | VG_ABSOLUTE,
 VG_LCCWARC_TO_REL = VG_LCCWARC_TO | VG_RELATIVE,
 VG_LCWARC_TO_ABS = VG_LCWARC_TO | VG_ABSOLUTE,
 VG_LCWARC_TO_REL = VG_LCWARC_TO | VG_RELATIVE
} VGPathCommand;

8.5.5 Path Example
The following code example shows how to traverse path data stored in application
memory using the standard representation. A byte is read containing a segment
command, and the segment command type and relative/absolute flag are extracted by
application-defined SEGMENT_COMMAND and SEGMENT_ABS_REL macros. The
number of coordinates and number of bytes per coordinate (for the given data format) are
also determined using lookup tables. Finally, the relevant portion of the path data stream
representing the current segment is copied into a temporary buffer and used as an
argument to a user-defined processSegment function that may perform further
processing.

Version 1.1 Revision 1 (December 3, 2008)

Paths 77

#define PATH_MAX_COORDS 6 /* Maximum number of coordinates/command */
#define PATH_MAX_BYTES 4 /* Bytes in largest data type */
#define SEGMENT_COMMAND(command) /* Extract segment type */ \
 ((command) & 0x1e)
#define SEGMENT_ABS_REL(command) /* Extract absolute/relative bit */ \
 ((command) & 0x1)

/* Number of coordinates for each command */
static const VGint numCoords[] = {0,2,2,1,1,4,6,2,4,5,5,5,5};
/* Number of bytes for each datatype */
static const VGint numBytes[] = {1,2,4,4};

/* User-defined function to process a single segment */
extern void
processSegment(VGPathSegment command, VGPathAbsRel absRel,
 VGPathDatatype datatype,
 void * segmentData);

/* Process a path in the standard format, one segment at a time. */
void
processPath(const VGubyte * pathSegments, const void * pathData,
 int numSegments, VGPathDatatype datatype)
{
 VGubyte segmentType, segmentData[PATH_MAX_COORDS*PATH_MAX_BYTES];
 VGint segIdx = 0, dataIdx = 0;
 VGint command, absRel, numBytes;

 while (segIdx < numSegments) {
 segmentType = pathSegments[segIdx++];
 command = SEGMENT_COMMAND(segmentType);
 absRel = SEGMENT_ABS_REL(segmentType);
 numBytes = numCoords[command]*numBytes[datatype];

 /* Copy segment data for further processing */
 memcpy(segmentData, &pathData[dataIdx], numBytes);

 /* Process command */
 processSegment(command, absRel, datatype, (void *) segmentData);
 dataIdx += numBytes;
 }
}

8.6 Path Operations
In addition to filling or stroking a path, the API allows the following basic operations on
paths:

• Create a path with a given set of capabilities (vgCreatePath)
• Remove data from a path (vgClearPath)

Version 1.1 Revision 1 (December 3, 2008)

Paths 78

• Deallocate a path (vgDestroyPath)
• Query path information (using vgGetParameter)
• Query the set of capabilities for a path (vgGetPathCapabilities)
• Reduce the set of capabilities for a path (vgRemovePathCapabilities)
• Append data from one path onto another (vgAppendPath)
• Append data onto a path (vgAppendPathData)
• Modify coordinates stored in a path (vgModifyPathCoords)
• Transform a path (vgTransformPath)
• Interpolate between two paths (vgInterpolatePath)
• Determine the geometrical length of a path (vgPathLength)
• Get position and tangent information for a point at a given geometric distance

along path (vgPointAlongPath)
• Get an axis-aligned bounding box for a path (vgPathBounds,

vgTransformedPathBounds)

Higher-level geometric primitives are defined in the optional VGU utility library (see
Section 17):

• Append a line to a path (vguLine)
• Append a polyline (connected sequence of line segments) or polygon to a

path (vguPolygon)
• Append a rectangle to a path (vguRect)
• Append a round-cornered rectangle to a path (vguRoundRect)
• Append an ellipse to a path (vguEllipse)
• Append a circular arc to a path (vguArc)

8.6.1 Storage of Paths
OpenVG stores path data internally to the implementation. Paths are referenced via
opaque VGPath handles. Applications may initialize paths using the memory
representation defined above or other representations defined by extensions.

It is possible for an implementation to store path data in hardware-accelerated memory.
Implementations may also make use of their own internal representation of path
segments. The intent is for applications to be able to define a set of paths, for example
one for each glyph in the current typeface, and to be able to re-render each previously
defined path with maximum efficiency.

Version 1.1 Revision 1 (December 3, 2008)

Paths 79

VGPath
VGPath represents an opaque handle to a path.
typedef VGHandle VGPath;

8.6.2 Creating and Destroying Paths
Paths are created and destroyed using the vgCreatePath and vgDestroyPath functions.
During the lifetime of a path, an application may indicate which path operations it plans
to perform using path capability flags defined by the VGPathCapabilities
enumeration.

VGPathCapabilities
The VGPathCapabilities enumeration defines a set of constants specifying which
operations may be performed on a given path object. At the time a path is defined, the
application specifies which operations it wishes to be able to perform on the path. Over
time, the application may disable previously enabled capabilities, but it may not re-
enable capabilities once they have been disabled. This feature allows OpenVG
implementations to make use of internal path representations that may not support all
path operations, possibly resulting in higher performance on paths where those
operations will not be performed.

The capability bits and the functionality they allow are described below:
• VG_PATH_CAPABILITY_APPEND_FROM – use path as the srcPath argument to

vgAppendPath
• VG_PATH_CAPABILITY_APPEND_TO – use path as the dstPath argument to

vgAppendPath and vgAppendPathData
• VG_PATH_CAPABILITY_MODIFY – use path as the dstPath argument to

vgModifyPathCoords
• VG_PATH_CAPABILITY_TRANSFORM_FROM – use path as the srcPath argument to

vgTransformPath
• VG_PATH_CAPABILITY_TRANSFORM_TO – use path as the dstPath argument to

vgTransformPath
• VG_PATH_CAPABILITY_INTERPOLATE_FROM – use path as the startPath or endPath

argument to vgInterpolatePath
• VG_PATH_CAPABILITY_INTERPOLATE_TO – use path as the dstPath argument to

vgInterpolatePath
• VG_PATH_CAPABILITY_PATH_LENGTH – use path as the path argument to vgPathLength
• VG_PATH_CAPABILITY_POINT_ALONG_PATH – use path as the path argument to

vgPointAlongPath
• VG_PATH_CAPABILITY_TANGENT_ALONG_PATH – use path as the path argument to

vgPointAlongPath with non-NULL tangentX and tangentY arguments

Version 1.1 Revision 1 (December 3, 2008)

Paths 80

• VG_PATH_CAPABILITY_PATH_BOUNDS – use path as the path argument to vgPathBounds
• VG_PATH_CAPABILITY_PATH_TRANSFORMED_BOUNDS – use path as the path argument to

vgPathTransformedBounds
• VG_PATH_CAPABILITY_ALL – a bitwise OR of all the defined path capabilities

typedef enum {
 VG_PATH_CAPABILITY_APPEND_FROM = (1 << 0),
 VG_PATH_CAPABILITY_APPEND_TO = (1 << 1),
 VG_PATH_CAPABILITY_MODIFY = (1 << 2),
 VG_PATH_CAPABILITY_TRANSFORM_FROM = (1 << 3),
 VG_PATH_CAPABILITY_TRANSFORM_TO = (1 << 4),
 VG_PATH_CAPABILITY_INTERPOLATE_FROM = (1 << 5),
 VG_PATH_CAPABILITY_INTERPOLATE_TO = (1 << 6),
 VG_PATH_CAPABILITY_PATH_LENGTH = (1 << 7),
 VG_PATH_CAPABILITY_POINT_ALONG_PATH = (1 << 8),
 VG_PATH_CAPABILITY_TANGENT_ALONG_PATH = (1 << 9),
 VG_PATH_CAPABILITY_PATH_BOUNDS = (1 << 10),
 VG_PATH_CAPABILITY_PATH_TRANSFORMED_BOUNDS = (1 << 11),
 VG_PATH_CAPABILITY_ALL = (1 << 12) - 1
} VGPathCapabilities;

It is legal to call vgCreatePath, vgClearPath, and vgDestroyPath regardless of the
current setting of the path’s capability bits, as these functions discard the existing path
definition.

vgCreatePath
vgCreatePath creates a new path that is ready to accept segment data and returns a
VGPath handle to it. The path data will be formatted in the format given by
pathFormat, typically VG_PATH_FORMAT_STANDARD. The datatype parameter
contains a value from the VGPathDatatype enumeration indicating the datatype that
will be used for coordinate data. The capabilities argument is a bitwise OR of the
desired VGPathCapabilities values. Bits of capabilities that do not
correspond to values from VGPathCapabilities have no effect. If an error occurs,
VG_INVALID_HANDLE is returned.

The scale and bias parameters are used to interpret each coordinate of the
path data; an incoming coordinate value v will be interpreted as the value
(scale*v + bias). scale must not equal 0. The datatype, scale, and bias together
define a valid coordinate data range for the path; segment commands that
attempt to place a coordinate in the path that is outside this range will overflow
silently, resulting in an undefined coordinate value. Functions that query a path

Version 1.1 Revision 1 (December 3, 2008)

Paths 81

containing such values, such as vgPathLength and vgPointAlongPath, also
return undefined results.

The segmentCapacityHint parameter provides a hint as to the total number
of segments that will eventually be stored in the path. The
coordCapacityHint parameter provides a hint as to the total number of
specified coordinates (as defined in the “Coordinates” column of Table 6) that
will eventually be stored in the path. A value less than or equal to 0 for either
hint indicates that the capacity is unknown. The path storage space will in any
case grow as needed, regardless of the hint values. However, supplying hints
may improve performance by reducing the need to allocate additional space as
the path grows. Implementations should allow applications to append segments
and coordinates up to the stated capacity in small batches without degrading
performance due to excessive memory reallocation.
VGPath vgCreatePath(VGint pathFormat,
 VGPathDatatype datatype,
 VGfloat scale, VGfloat bias,
 VGint segmentCapacityHint,
 VGint coordCapacityHint,
 VGbitfield capabilities)

ERRORS
VG_UNSUPPORTED_PATH_FORMAT_ERROR
– if pathFormat is not a supported format
VG_ILLEGAL_ARGUMENT_ERROR
– if datatype is not a valid value from the VGPathDatatype enumeration

– if scale is equal to 0

Version 1.1 Revision 1 (December 3, 2008)

Paths 82

vgClearPath
vgClearPath removes all segment command and coordinate data associated with a
path. The handle continues to be valid for use in the future, and the path format and
datatype retain their existing values. The capabilities argument is a bitwise OR of
the desired VGPathCapabilities values. Bits of capabilities that do not
correspond to values from VGPathCapabilities have no effect. Using
vgClearPath may be more efficient than destroying and re-creating a path for short-lived
paths.
void vgClearPath(VGPath path, VGbitfield capabilities)

ERRORS
VG_BAD_HANDLE_ERROR
– if path is not a valid path handle, or is not shared with the current context

vgDestroyPath
vgDestroyPath releases any resources associated with path, and makes the handle
invalid in all contexts that shared it.
void vgDestroyPath(VGPath path)

ERRORS
VG_BAD_HANDLE_ERROR
– if path is not a valid path handle, or is not shared with the current context

8.6.3 Path Queries

VGPathParamType
Values from the VGPathParamType enumeration may be used as the paramType
argument to vgGetParameter to query various features of a path. All of the parameters
defined by VGPathParamType are read-only. Table 8 shows the datatypes for each
parameter type.

Version 1.1 Revision 1 (December 3, 2008)

Paths 83

typedef enum {
 VG_PATH_FORMAT = 0x1600,
 VG_PATH_DATATYPE = 0x1601,
 VG_PATH_SCALE = 0x1602,
 VG_PATH_BIAS = 0x1603,
 VG_PATH_NUM_SEGMENTS = 0x1604,
 VG_PATH_NUM_COORDS = 0x1605
} VGPathParamType;

Parameter Datatype

VG_PATH_FORMAT VGint
VG_PATH_DATATYPE VGint
VG_PATH_SCALE VGfloat
VG_PATH_BIAS VGfloat
VG_PATH_NUM_SEGMENTS VGint
VG_PATH_NUM_COORDS VGint

Table 8: VGPathParamType Datatypes

Path Format
The command format of a path is queried as an integer value using the
VG_PATH_FORMAT parameter:
VGPath path;
VGint pathFormat = vgGetParameteri(path, VG_PATH_FORMAT);

Path Datatype
The coordinate datatype of a path is queried as an integer value using the
VG_PATH_DATATYPE parameter. The returned integral value should be cast to
the VGPathDatatype enumeration:
VGPath path;
VGPathDatatype pathDatatype =
 (VGPathDatatype)vgGetParameteri(path, VG_PATH_DATATYPE);

Version 1.1 Revision 1 (December 3, 2008)

Paths 84

Path Scale
The scale factor of the path is queried as a floating-point value using the
VG_PATH_SCALE parameter:
VGPath path;
VGfloat pathScale = vgGetParameterf(path, VG_PATH_SCALE);

Path Bias
The bias of the path is queried as a floating-point value using the
VG_PATH_BIAS parameter:
VGPath path;
VGfloat pathBias = vgGetParameterf(path, VG_PATH_BIAS);

Number of Segments
The number of segments stored in the path is queried as an integer value using
the VG_PATH_NUM_SEGMENTS parameter:
VGPath path;
VGint pathNumSegments = vgGetParameteri(path, VG_PATH_NUM_SEGMENTS);

Number of Coordinates
The total number of specified coordinates (i.e., those defined in the
“Coordinates” column of Table 6) stored in the path is queried as an integer
value using the VG_PATH_NUM_COORDS parameter:
VGPath path;
VGint pathNumCoords = vgGetParameteri(path, VG_PATH_NUM_COORDS);

8.6.4 Querying and Modifying Path Capabilities

vgGetPathCapabilities
The vgGetPathCapabilities function returns the current capabilities of the path,
as a bitwise OR of VGPathCapabilities constants. If an error occurs, 0 is
returned.
VGbitfield vgGetPathCapabilities(VGPath path)

Version 1.1 Revision 1 (December 3, 2008)

Paths 85

ERRORS
VG_BAD_HANDLE_ERROR
– if path is not a valid path handle, or is not shared with the current context

vgRemovePathCapabilities
The vgRemovePathCapabilities function requests the set of capabilities specified in
the capabilities argument to be disabled for the given path. The
capabilities argument is a bitwise OR of the VGPathCapabilities values
whose removal is requested. Attempting to remove a capability that is already
disabled has no effect. Bits of capabilities that do not correspond to values
from VGPathCapabilities have no effect.

An implementation may choose to ignore the request to remove a particular capability if
no significant performance improvement would result. In this case,
vgGetPathCapabilities will continue to report the capability as enabled.

void vgRemovePathCapabilities(VGPath path, VGbitfield capabilities)

ERRORS
VG_BAD_HANDLE_ERROR
– if path is not a valid path handle, or is not shared with the current context

8.6.5 Copying Data Between Paths

vgAppendPath
vgAppendPath appends a copy of all path segments from srcPath onto the end of
the existing data in dstPath. It is legal for srcPath and dstPath to be handles
to the same path object, in which case the contents of the path are duplicated. If
srcPath and dstPath are handles to distinct path objects, the contents of
srcPath will not be affected by the call.

 The VG_PATH_CAPABILITY_APPEND_FROM capability must be enabled for
srcPath, and the VG_PATH_CAPABILITY_APPEND_TO capability must be
enabled for dstPath.

Version 1.1 Revision 1 (December 3, 2008)

Paths 86

If the scale and bias of dstPath define a narrower range than that of srcPath,
overflow may occur silently.
void vgAppendPath(VGPath dstPath, VGPath srcPath)

ERRORS
VG_BAD_HANDLE_ERROR
– if either dstPath or srcPath is not a valid path handle, or is not shared

with the current context
VG_PATH_CAPABILITY_ERROR
– if VG_PATH_CAPABILITY_APPEND_FROM is not enabled for srcPath

– if VG_PATH_CAPABILITY_APPEND_TO is not enabled for dstPath

8.6.6 Appending Data to a Path

vgAppendPathData
vgAppendPathData appends data taken from pathData to the given path
dstPath. The data are formatted using the path format of dstPath (as returned by
querying the path’s VG_PATH_FORMAT parameter using vgGetParameteri). The
numSegments parameter gives the total number of entries in the pathSegments
array, and must be greater than 0. Legal values for the pathSegments array are the
values from the VGPathCommand enumeration as well as VG_CLOSE_PATH and
(VG_CLOSE_PATH | VG_RELATIVE) (which are synonymous).

The pathData pointer must be aligned on a 1-, 2-, or 4-byte boundary (as defined in
the “Bytes” column of Table 7) depending on the size of the coordinate datatype (as
returned by querying the path’s VG_PATH_DATATYPE parameter using
vgGetParameteri). The VG_PATH_CAPABILITY_APPEND_TO capability must be
enabled for path.

Each incoming coordinate value, regardless of datatype, is transformed by the scale
factor and bias of the path.
void vgAppendPathData(VGPath dstPath,
 VGint numSegments,
 const VGubyte * pathSegments,
 const void * pathData)

Version 1.1 Revision 1 (December 3, 2008)

Paths 87

ERRORS
VG_BAD_HANDLE_ERROR
– if dstPath is not a valid path handle, or is not shared with the current

context
VG_PATH_CAPABILITY_ERROR
– if VG_PATH_CAPABILITY_APPEND_TO is not enabled for dstPath
VG_ILLEGAL_ARGUMENT_ERROR
– if pathSegments or pathData is NULL
– if pathData is not properly aligned

– if numSegments is less than or equal to 0

– if pathSegments contains an illegal command

8.6.7 Modifying Path Data
Coordinate data in an existing path may be modified, for example to create animation
effects. Implementations should choose an internal representation for paths that have the
VG_PATH_CAPABILITY_MODIFY capability enabled that allows for efficient
modification of the coordinate data.

vgModifyPathCoords
vgModifyPathCoords modifies the coordinate data for a contiguous range of segments
of dstPath, starting at startIndex (where 0 is the index of the first path segment)
and having length numSegments. The data in pathData must be formatted in exactly
the same manner as the original coordinate data for the given segment range, unless the
path has been transformed using vgTransformPath or interpolated using
vgInterpolatePath. In these cases, the path will have been subject to the segment
promotion rules specified in those functions.

The pathData pointer must be aligned on a 1-, 2-, or 4-byte boundary
depending on the size of the coordinate datatype (as returned by querying the
path’s VG_PATH_DATATYPE parameter using vgGetParameteri). The
VG_PATH_CAPABILITY_MODIFY capability must be enabled for path.

Version 1.1 Revision 1 (December 3, 2008)

Paths 88

Each incoming coordinate value, regardless of datatype, is transformed by the
scale factor and bias of the path.
void vgModifyPathCoords(VGPath dstPath,
 VGint startIndex, VGint numSegments,
 const void * pathData)

ERRORS
VG_BAD_HANDLE_ERROR
– if dstPath is not a valid path handle, or is not shared with the current

context
VG_PATH_CAPABILITY_ERROR
– if VG_PATH_CAPABILITY_MODIFY is not enabled for dstPath
VG_ILLEGAL_ARGUMENT_ERROR
– if pathData is NULL
– if pathData is not properly aligned

– if startIndex is less than 0

– if numSegments is less than or equal to 0

– if startIndex + numSegments is greater than the number of segments in
the path

8.6.8 Transforming a Path

vgTransformPath
vgTransformPath appends a transformed copy of srcPath to the current contents of
dstPath. The appended path is equivalent to the results of applying the current path-
user-to-surface transformation (VG_MATRIX_PATH_USER_TO_
SURFACE) to srcPath.

It is legal for srcPath and dstPath to be handles to the same path object, in
which case the transformed path will be appended to the existing path. If
srcPath and dstPath are handles to distinct path objects, the contents of
srcPath will not be affected by the call.

Version 1.1 Revision 1 (December 3, 2008)

Paths 89

All HLINE_TO_* and VLINE_TO_* segments present in srcPath are implicitly
converted to LINE_TO_* segments prior to applying the transformation. The original
copies of these segments in srcPath remain unchanged.

Any *ARC_TO segments are transformed, but the endpoint parametrization of the
resulting arc segments are implementation-dependent. The results of calling
vgInterpolatePath on a transformed path that contains such segments are undefined.

The VG_PATH_CAPABILITY_TRANSFORM_FROM capability must be enabled for
srcPath, and the VG_PATH_CAPABILITY_TRANSFORM_TO capability must be
enabled for dstPath.

Overflow may occur silently if coordinates are transformed outside the datatype range of
dstPath.
void vgTransformPath(VGPath dstPath, VGPath srcPath)

ERRORS
VG_BAD_HANDLE_ERROR
– if either dstPath or srcPath is not a valid path handle, or is not shared with

the current context
VG_PATH_CAPABILITY_ERROR
– if VG_PATH_CAPABILITY_TRANSFORM_FROM is not enabled for srcPath

– if VG_PATH_CAPABILITY_TRANSFORM_TO is not enabled for dstPath

8.6.9 Interpolating Between Paths
Interpolation takes two compatible paths, in a sense described below, and defines a new
path that interpolates between them by a parameter amount. When amount is equal to
0, the result is equivalent to the first path; when amount is equal to 1, the result is
equivalent to the second path. Values between 0 and 1 produce paths that smoothly
interpolate between the two extremes. Values outside the [0, 1] range produce
extrapolated paths. Conceptually, interpolation occurs as follows. First, the two path
parameters are copied and the copies are normalized by:
• Converting all coordinates to floating-point format, applying the path scale and bias

parameters
• Converting all relative segments to absolute form
• Converting {H,V}LINE_TO_* segments to LINE_TO form

Version 1.1 Revision 1 (December 3, 2008)

Paths 90

• Converting (S)QUAD_TO_*/SCUBIC_TO_* segments to CUBIC_TO form
• Retaining all *ARC_TO_* and CLOSE_PATH segments
If, following normalization, both paths have the same sequence of segment types
(treating all forms of arc as the same), interpolation proceeds by linearly interpolating
between each corresponding pair of segment parameters in the normalized paths. If the
starting arc type differs from the final arc type, the starting arc type is used for values of
amount less than 0.5, and the final arc type is used for values greater than or equal to
0.5. Finally, the coordinates are converted to the data type of the destination.

vgInterpolatePath
The vgInterpolatePath function appends a path, defined by interpolation (or
extrapolation) between the paths startPath and endPath by the given amount, to
the path dstPath. It returns VG_TRUE if interpolation was successful (i.e., the paths
had compatible segment types after normalization), and VG_FALSE otherwise. If
interpolation is unsuccessful, dstPath is left unchanged.

It is legal for dstPath to be a handle to the same path object as either
startPath or endPath or both, in which case the contents of the source path
or paths referenced by dstPath will have the interpolated path appended. If
dstPath is not the a handle to the same path object as either startPath or
endPath, the contents of startPath and endPath will not be affected by the
call.

Overflow may occur silently if the datatype of dstPath has insufficient range to store
an interpolated coordinate value.

The VG_PATH_CAPABILITY_INTERPOLATE_FROM capability must be enabled
for both of startPath and endPath, and the INTERPOLATE_TO capability
must be enabled for dstPath.
VGboolean vgInterpolatePath(VGPath dstPath,
 VGPath startPath,
 VGPath endPath,
 VGfloat amount)

Version 1.1 Revision 1 (December 3, 2008)

Paths 91

ERRORS
VG_BAD_HANDLE_ERROR
– if any of dstPath, startPath, or endPath is not a valid path handle, or is

not shared with the current context
VG_PATH_CAPABILITY_ERROR
– if VG_PATH_CAPABILITY_PATH_INTERPOLATE_TO is not enabled for
dstPath

– if VG_PATH_CAPABILITY_PATH_INTERPOLATE_FROM is not enabled for
startPath or endPath

8.6.10 Length of a Path
An approximation to the geometric length of a portion of a path may be obtained by
calling the vgPathLength function. MOVE_TO segments and implicit path closures (see
Section 8.7.1) do not contribute to the path length. CLOSE_PATH segments have the
same length as a LINE_TO segment with the same endpoints.

vgPathLength
The vgPathLength function returns the length of a given portion of a path in the user
coordinate system (that is, in the path’s own coordinate system, disregarding any matrix
settings). Only the subpath consisting of the numSegments path segments beginning
with startSegment (where the initial path segment has index 0) is used. If an
error occurs, -1.0f is returned.

The VG_PATH_CAPABILITY_PATH_LENGTH capability must be enabled for path.
VGfloat vgPathLength(VGPath path,
 VGint startSegment, VGint numSegments);

Version 1.1 Revision 1 (December 3, 2008)

Paths 92

ERRORS
VG_BAD_HANDLE_ERROR
– if path is not a valid path handle, or is not shared with the current context
VG_PATH_CAPABILITY_ERROR
– if VG_PATH_CAPABILITY_PATH_LENGTH is not enabled for path
VG_ILLEGAL_ARGUMENT_ERROR
– if startSegment is less than 0 or greater than the index of the final path

segment

– if numSegments is less than or equal to 0

– if (startSegment + numSegments – 1) is greater than the index of the final
path segment

8.6.11 Position and Tangent Along a Path
Some path operations, such as the placement and orientation of text along a path, require
the computation of a set of points along a path as well as a normal (perpendicular) vector
at each point. The vgPointAlongPath function provides points along the path as well
as normalized tangent vectors (from which normals may easily be derived).

The Tangents of a Path Segment
The tangent at a given point along a path is defined as a vector pointing in the same
direction as the path at that point. The tangent at any point of a line segment is parallel to
the line segment; the tangent at any point along a Bézier curve or elliptical arc segment
may be defined using the derivatives of the parametric equations x(t) and y(t) that define
the curve. The incoming tangent at a point is defined using the direction in which the
curve is “traveling” prior to arriving at the point; the outgoing tangent is defined using
the direction the curve is traveling as it leaves the point. The incoming and outgoing
tangents may differ at a vertex joining different curve segments, or at a sharp “cusp” in a
curve.

If a point along a path segment has no tangent defined, for example where a path
segment has collapsed to a single point, the following algorithm is used to define
incoming and outgoing tangents at the point. Search backwards until a segment is found
with a tangent defined at its end point, or the start of the current path is reached; if a
tangent is found, use it as the incoming tangent. Search forwards until a segment is found
with a tangent defined at its starting point, or the end of the current path is reached; if a

Version 1.1 Revision 1 (December 3, 2008)

Paths 93

tangent is found, use it as the outgoing tangent. If these searches produce exactly one
defined tangent, that tangent is used as both the incoming and outgoing tangent. If the
searches produced no defined tangent, the incoming and outgoing tangents are both
assigned the value (1, 0). Tangent vectors are normalized to have unit length.

vgPointAlongPath
The vgPointAlongPath function returns the point lying a given distance along a given
portion of a path and the unit-length tangent vector at that point. Only the subpath
consisting of the numSegments path segments beginning with startSegment
(where the initial path segment has index 0) is used. For the remainder of this
section we refer only to this subpath when discussing paths.

If distance is less than or equal to 0, the starting point of the path is used. If
distance is greater than or equal to the path length (i.e., the value returned by
vgPathLength when called with the same startSegment and numSegments
parameters), the visual ending point of the path is used.

Intermediate values return the (x, y) coordinates and tangent vector of the point at the
given distance along the path. Because it is not possible in general to compute exact
distances along a path, an implementation is not required to use exact
computation even for segments where such computation would be possible. For
example, the path:
MOVE_TO 0, 0; LINE_TO 10, 0 // draw a line of length 10
MOVE_TO 10, 10 // create a discontinuity
LINE_TO 10, 20 // draw a line of length 10
may return either (10, 0) or (10, 10) (or points nearby) as the point at distance
10.0. Implementations are not required to compute distances exactly, as long as
they satisfy the constraint that as distance increases monotonically the
returned point and tangent move forward monotonically along the path.

Where the implementation is able to determine that the point being queried
lies exactly at a discontinuity or cusp, the incoming point and tangent should be
returned. In the example above, returning the pre-discontinuity point (10, 0) and
incoming tangent (1, 0) is preferred to returning the post-discontinuity point (10,
10) and outgoing tangent (0, 1).

The VG_PATH_CAPABILITY_POINT_ALONG_PATH capability must be enabled for
path.

If the reference arguments x and y are both non-NULL, and the

Version 1.1 Revision 1 (December 3, 2008)

Paths 94

VG_PATH_CAPABILITY_POINT_ALONG_PATH capability is enabled for path, the
point (x, y) is returned in x and y. Otherwise the variables referenced by x and y are not
written.

If the reference arguments tangentX and tangentY are both non-NULL, and the
VG_PATH_CAPABILITY_TANGENT_ALONG_PATH capability is enabled for path,
the geometric tangent vector at the point (x, y) is returned in tangentX and
tangentY. Otherwise the variables referenced by tangentX and tangentY are not
written.

Where the incoming tangent is defined, vgPointAlongPath returns it. Where only the
outgoing tangent is defined, the outgoing tangent is returned.

The points returned by vgPointAlongPath are not guaranteed to match the path as
rendered; some deviation is to be expected.

void vgPointAlongPath(VGPath path,
 VGint startSegment, VGint numSegments,
 VGfloat distance,
 VGfloat * x, VGfloat * y,
 VGfloat * tangentX, VGfloat * tangentY)

Version 1.1 Revision 1 (December 3, 2008)

Paths 95

ERRORS
VG_BAD_HANDLE_ERROR
– if path is not a valid path handle, or is not shared with the current context
VG_PATH_CAPABILITY_ERROR
– If x and y are both non-NULL, and the
VG_PATH_CAPABILITY_POINT_ALONG_PATH is not enabled for path

– If tangentX and tangentY are both non-NULL, and the
VG_PATH_CAPABILITY_TANGENT_ALONG_PATH capability is not enabled
for path

VG_ILLEGAL_ARGUMENT_ERROR
– if startSegment is less than 0 or greater than the index of the final path

segment

– if numSegments is less than or equal to 0

– if (startSegment + numSegments – 1) is less than 0 or greater than the index
of the final path segment

– if x, y, tangentX or tangentY is not properly aligned

8.6.12 Querying the Bounding Box of a Path
To draw complex scenes efficiently, it is important to avoid drawing objects that do not
appear in the region being drawn. A simple way to determine whether an object may be
visible is to determine whether its bounding box – an axis-aligned rectangle that is
guaranteed to contain the entire object – intersects the drawn region. The
vgPathBounds and vgPathTransformedBounds functions provide bounding box
information.

Two types of bounding boxes may be obtained for a path. The first, obtained by calling
vgPathBounds, returns a tight axis-aligned bounding box for the area contained within
the path in its own coordinate system. The second, obtained by calling
vgPathTransformedBounds, returns an axis-aligned bounding box for the path as it
will appear when drawn on the drawing surface (i.e., following application of the
current path-user-to-surface transform). The latter function does not guarantee to bound
the shape tightly, but still may provide tighter bounds than those obtained by
transforming the result of vgPathBounds, at a lower cost.

Version 1.1 Revision 1 (December 3, 2008)

Paths 96

The bounding box of a path is defined to contain all points along the path, including
isolated points created by MOVE_TO segments. The fill rule has no effect on the
determination of the bounding box. If the path is to be stroked, the application must
adjust the bounding box to take the stroking parameters into account. Note that Miter
joins in particular may extend far outside the bounding box.

vgPathBounds
The vgPathBounds function returns an axis-aligned bounding box that tightly
bounds the interior of the given path. Stroking parameters are ignored. If path is
empty, minX and minY are set to 0 and width and height are set to -1. If path
contains a single point, minX and minY are set to the coordinates of the point and
width and height are set to 0.

The VG_PATH_CAPABILITY_PATH_BOUNDS capability must be enabled for
path.
void vgPathBounds(VGPath path,
 VGfloat * minX, VGfloat * minY,
 VGfloat * width, VGfloat * height)

ERRORS
VG_BAD_HANDLE_ERROR
– if path is not a valid path handle, or is not shared with the current context
VG_ILLEGAL_ARGUMENT_ERROR
– if minX, minY, width, or height is NULL

– if minX, minY, width, or height is not properly aligned
VG_PATH_CAPABILITY_ERROR
– if VG_PATH_CAPABILITY_PATH_BOUNDS is not enabled for path

vgPathTransformedBounds
The vgPathTransformedBounds function returns an axis-aligned bounding box
that is guaranteed to enclose the geometry of the given path following
transformation by the current path-user-to-surface transform. The returned
bounding box is not guaranteed to fit tightly around the path geometry. If path
is empty, minX and minY are set to 0 and width and height are set to -1. If

Version 1.1 Revision 1 (December 3, 2008)

Paths 97

path contains a single point, minX and minY are set to the transformed
coordinates of the point and width and height are set to 0.

The VG_PATH_CAPABILITY_PATH_TRANSFORMED_BOUNDS capability must be
enabled for path.
void vgPathTransformedBounds(VGPath path,
 VGfloat * minX, VGfloat * minY,
 VGfloat * width, VGfloat * height)

ERRORS
VG_BAD_HANDLE_ERROR
– if path is not a valid path handle, or is not shared with the current context
VG_ILLEGAL_ARGUMENT_ERROR
– if minX, minY, width, or height is NULL

– if minX, minY, width, or height is not properly aligned
VG_PATH_CAPABILITY_ERROR
– if VG_PATH_CAPABILITY_PATH_TRANSFORMED_BOUNDS is not enabled

for path

8.7 Interpretation of Paths
The interpretation of a path, composed of a sequence of one or more subpaths, depends
on whether it is to be stroked or filled. For stroked paths, each subpath has stroking
parameters applied to it separately, with the dash phase at the end of each subpath used at
the beginning of the next subpath. This process results in a set of stroked shapes. The
union of these shapes then defines the outline path to be filled. For filled paths, the
interior of the path (as defined below) is filled.

8.7.1 Filling Paths
A simple, non-self-intersecting closed path divides the plane into two regions, a bounded
inside region and an unbounded outside region. Note that knowing the orientation of the
outermost path (i.e., clockwise or counter-clockwise) is not necessary to differentiate
between the inside and outside regions.

A path that self-intersects, or that has multiple overlapping subpaths, requires additional
information in order to define the inside region. Two rules that provide different

Version 1.1 Revision 1 (December 3, 2008)

Paths 98

definitions for the area enclosed by such paths, known as the non-zero and even/odd fill
rules, are supported by OpenVG. To determine whether any point in the plane is
contained in the inside region, imagine drawing a line from that point out to infinity in
any direction such that the line does not cross any vertex of the path. For each edge that
is crossed by the line, add 1 to the counter if the edge crosses from left to right, as seen
by an observer walking along the line towards infinity, and subtract 1 if the edge crosses
from right to left. In this way, each region of the plane will receive an integer value.

The non-zero fill rule says that the point is inside the shape if the resulting sum is not
equal to 0. The even/odd rule says that the point is inside the shape if the resulting sum is
odd, regardless of sign (e.g., -7 is odd, 0 is even). Consider the star-shaped path shown in
Figure 8 below, indicated with solid lines. The orientation of the lines making up the path
is indicated with arrows. An imaginary line to infinity starting in the central region of the
star is shown as a dashed line pointing to the right. Two edges of the star cross the line to
infinity going left to right, indicated by the downward-pointing arrows. The central
region therefore has a count of +2. According to the even/odd rule, it is outside the path,
whereas according to the non-zero rule it is inside. Implementations must be able to deal
with paths having up to 255 crossings along any line. The behavior of more complex
paths is undefined.

Figure 8: Even/Odd Fill Rule

Creating Holes in Paths
The fill rule is applied with respect to all subpaths simultaneously during filling. Thus,
one subpath may be used to create a hole inside an enclosing subpath by defining the two

Version 1.1 Revision 1 (December 3, 2008)

1
2

1

0

1

1 1

Paths 99

subpaths with opposing orientations (clockwise versus counter-clockwise). Note that the
orientation of extremely small paths may depend on the numerical precision of the
internal representation of points. Care should be taken to avoid the use of paths that have
nearly collapsed to a line or a point.

The relative orientation of subpaths, along with the fill rule, determines whether
overlapping subpaths will result in holes, as shown in Figure 9 below.

Even/Odd Fill Rule Non-Zero Fill Rule

Same
Orientation

Opposing
Orientation

Figure 9: Creating Holes with Subpaths

Version 1.1 Revision 1 (December 3, 2008)

0 +1 0 +10 +1 0 +1

0 +1 +2 +10 +1 +2 +1

Paths 100

Implicit Closure of Filled Subpaths
When filling a path, any subpaths that do not end with a CLOSE_PATH segment
command (i.e., that are terminated with a MOVE_TO_ABS or MOVE_TO_REL segment
command, or that contain the final segment of the path) are implicitly closed, without
affecting the position of any other vertices of the path or the (sx, sy), (px, py) or (ox, oy)
variables. For example, consider the sequence of segment commands:
MOVE_TO_ABS 0, 0; LINE_TO_ABS 10, 10; LINE_TO_ABS 10, 0
MOVE_TO_REL 10, 2; LINE_TO_ABS 30, 12; LINE_TO_ABS 30, 2

If filled, this sequence will result in one filled triangle with vertices (0, 0), (10, 10), and
(10, 0) and another filled triangle with vertices (20, 2), (30, 12), and (30, 2). Note that the
implicit closure of the initial subpath prior to the MOVE_TO_REL segment command has
no effect on the starting coordinate of the second triangle; it is computed by adding the
relative offset (10, 2) to the final coordinate of the previous segment (10, 0) to obtain
(20, 2) and is not altered by the (virtual) insertion of the line connecting the first
subpath’s final vertex (10, 0) to its initial vertex (0, 0)). Figure 10 illustrates this
process, with the resulting filled areas highlighted. When stroking a path, no
implicit closure takes place, as shown in Figure 11. Implicit closure affects only
the output when filling a path, and does not alter the path data in any way.

Figure 10: Implicit Closure of Filled Paths

Figure 11: Stroked Paths Have No Implicit Closure

Version 1.1 Revision 1 (December 3, 2008)

M
O

V
E_TO

 0,0 LIN
E_T0 10,10

LIN
E_TO

 10,0

MOVE_TO_REL 10,2
LIN

E_TO 30,12

LIN
E_TO

 30,2

(implicit closure)
(implicit closure)

LIN
E_TO 30,12

LIN
E_T0 10,10

LIN
E_TO

 10,0

LIN
E_TO

 30,2

MOVE_TO_REL 10,2

Paths 101

8.7.2 Stroking Paths
Stroking a path consists of “widening” the edges of the path using a straight-line pen
held perpendicularly to the path. At the start and end vertices of the path, an additional
end-cap style is applied. At interior vertices of the path, a line join style is applied. At a
cusp of a Bézier segment, the pen is rotated smoothly between the incoming and
outgoing tangents.

Conceptually, stroking of a path is performed in two steps. First, the stroke parameters
are applied in the user coordinate system to form a new shape representing the end result
of dashing, widening the path, and applying the end cap and line join styles. Second, a
path is created that defines the outline of this stroked shape. This path is transformed
using the path-user-to-surface transformation (possibly involving shape distortions due to
non-uniform scaling or shearing). Finally, the resulting path is filled with paint in exactly
the same manner as when filling a user-defined path using the non-zero fill rule.

Stroking a path applies a single “layer” of paint, regardless of any intersections between
portions of the thickened path. Figure 12 illustrates this principle. A single stroke (above)
is drawn with a black color and an alpha value of 50%, compared with two separate
strokes (below) drawn with the same color and alpha values. The single stroke produces
a shape with a uniform color of 50% gray, as if a single layer of translucent paint has
been applied, even where portions of the path overlap one another. By contrast, the
separate strokes produce two applications of the translucent paint in the area of overlap,
resulting in a darkened area.

Figure 12: Each Stroke Applies a Single Layer of Paint

Version 1.1 Revision 1 (December 3, 2008)

Single Stroke

Separate Strokes

Paths 102

8.7.3 Stroke Parameters
Stroking a path involves the following parameters, set on a context:

• Line width in user coordinate system units
• End cap style – one of Butt, Round, or Square
• Line join style – one of Miter, Round, or Bevel
• Miter limit – if using Miter join style
• Dash pattern – array of dash on/off lengths in user units
• Dash phase – initial offset into the dash pattern

These parameters are set on the current context using the variants of the vgSet
function. The values most recently set prior to calling vgDrawPath (see Section 8.8)
are applied to generate the stroke.

End Cap Styles
Figure 13 illustrates the Butt (top), Round (center), and Square (bottom) end cap styles
applied to a path consisting of a single line segment. Figure 14 highlights the additional
geometry created by the end caps. The Butt end cap style terminates each segment with a
line perpendicular to the tangent at each endpoint. The Round end cap style appends a
semicircle with a diameter equal to the line width centered around each endpoint. The
Square end cap style appends a rectangle with two sides of length equal to the line width
perpendicular to the tangent, and two sides of length equal to half the line width parallel
to the tangent, at each endpoint. The outgoing tangent is used at the left endpoint and the
incoming tangent is used at the right endpoint.

Figure 13: End Cap Styles

Version 1.1 Revision 1 (December 3, 2008)

Butt

Round

Square

Paths 103

Figure 14: End Cap Styles with Additional Geometry Highlighted

Line Join Styles
Figure 15 illustrates the Bevel (left), Round (center), and Miter (right) line join styles
applied to a pair of line segments. Figure 16 highlights the additional geometry created
by the line joins. The Bevel join style appends a triangle with two vertices at the outer
endpoints of the two “fattened” lines and a third vertex at the intersection point of the
two original lines. The Round join style appends a wedge-shaped portion of a circle,
centered at the intersection point of the two original lines, having a radius equal to half
the line width. The Miter join style appends a trapezoid with one vertex at the
intersection point of the two original lines, two adjacent vertices at the outer endpoints of
the two “fattened” lines and a fourth vertex at the extrapolated intersection point of the
outer perimeters of the two “fattened” lines.

When stroking using the Miter join style, the miter length (i.e., the length between the
intersection points of the inner and outer perimeters of the two “fattened” lines) is
compared to the product of the user-set miter limit and the line width. If the miter length
exceeds this product, the Miter join is not drawn and a Bevel join is substituted.

Figure 15: Line Join Styles

Version 1.1 Revision 1 (December 3, 2008)

Bevel Round Miter

Paths 104

Figure 16: Line Join Styles with Additional Geometry Highlighted

Miter Length
The ratio of miter length to line width may be computed directly from the angle θ
between the two line segments being joined as 1/sin(θ/2). A number of angles with their
corresponding miter limits for a line width of 1 are shown in Table 9.

Angle (degrees) Miter Limit Angle (degrees) Miter Limit

10 11.47 45 2.61

11.47 10 60 2

23 5 90 1.41

28.95 4 120 1.15

30 3.86 150 1.03

38.94 3 180 1

Table 9: Corresponding Angles and Miter Limits

Dashing
The dash pattern consists of a sequence of lengths of alternating “on” and “off” dash
segments. The first value of the dash array defines the length, in user coordinates, of the
first “on” dash segment. The second value defines the length of the following “off”
segment. Each subsequent pair of values defines one “on” and one “off” segment.

The dash phase defines the starting point in the dash pattern that is associated with the
start of the first segment of the path. For example, if the dash pattern is [10 20 30 40]

Version 1.1 Revision 1 (December 3, 2008)

Miter Length

Paths 105

and the dash phase is 35, the path will be stroked with an “on” segment of length 25
(skipping the first “on” segment of length 10, the following “off” segment of length 20,
and the first 5 units of the next “on” segment), followed by an “off” segment of length
40. The pattern will then repeat from the beginning, with an “on” segment of length 10,
an “off” segment of length 20, an “on” segment of length 30, etc. Figure 17 illustrates
this dash pattern.

Conceptually, dashing is performed by breaking the path into a set of subpaths according
to the dash pattern. Each subpath is then drawn independently using the end cap, line join
style, and miter limit that were set for the path as a whole.

Dashes of length 0 are drawn only if the end cap style is VG_CAP_ROUND or
VG_CAP_SQUARE. The incoming and outgoing tangents (which may differ if the dash
falls at a vertex of the path) are evaluated at the point, using the vgPointAlongPath
algorithm. The end caps are drawn using the orientation of each tangent, and a join is
drawn between them if the tangent directions differ. If the end cap style is
VG_CAP_BUTT, nothing will be drawn.

A dash, or space between dashes, with length less than 0 is treated as having a length of
0.

A negative dash phase is equivalent to the positive phase obtained by adding a suitable
multiple of the dash pattern length.

Version 1.1 Revision 1 (December 3, 2008)

Paths 106

Figure 17: Dash Pattern and Phase Example

8.7.4 Stroke Generation
The algorithm for generating a stroke is as follows. The steps described in this section
conceptually take place in user coordinates, on a copy of the path being stroked in which
all relative and implicit coordinates have been converted to absolute coordinates. An
initial MOVE_TO 0,0 segment is added if the path does not begin with a MOVE_TO.

The path to be stroked is divided into subpaths, each ending with a MOVE_TO or
CLOSE_PATH segment command or with the final path segment. Subpaths consisting of
only a single MOVE_TO segment are discarded.

A subpath consisting of a single point (i.e., a MOVE_TO segment followed by a
sequence of LINE_TO, QUAD_TO, CUBIC_TO, and/or ARC_TO segments with all
control points equal to the current point, possibly followed by a CLOSE_PATH
segment) is collapsed to a lone vertex, which is marked as an END vertex (for later
generation of end caps). A tangent vector of (1, 0) is used for Square end caps.

Subpaths that do not consist only of a single point have any zero-length segments
removed.

Version 1.1 Revision 1 (December 3, 2008)

Dash Phase=35

25 10 30 10 30 10 30 ...

Dash Pattern:

Resulting Line:

10

20

30

40

Paths 107

If a subpath does not end with a CLOSE_PATH segment command, its first and last
vertices are marked as END vertices. All the internal vertices that begin or end path
segments within the subpath, as well as the initial/final vertex if the subpath ends with a
CLOSE_PATH segment, are marked as JOIN vertices (for later generation of line joins).

Each subpath is processed in turn as described below until all subpaths have been
stroked.

If dashing is enabled, the dash pattern and phase are used to break the subpath into a
series of smaller subpaths representing the “on” portions of the dash pattern. New
vertices are created at the endpoints of each dash subpath and marked as END vertices.
The old subpath is discarded and replaced with the dash subpaths for the remainder of
the stroke processing. The dash phase is advanced for each subsequent segment by the
length of the previous segment (where CLOSE_PATH segments are treated as LINE_TO
segments). If VG_DASH_PHASE_RESET is disabled (set to VG_FALSE), the final dash
phase at the end of the subpath is used as the initial dash phase for the next subpath.
Otherwise, the original dash phase is used for all subpaths.

For each END vertex, an end cap is created (if Square or Round end caps have been
requested) using the orientation given by the tangent vector. The tangent vector is
defined in the same manner as for the vgPointAlongPath function (see p. 92).

For each JOIN vertex, a line join is created using the orientations given by the tangent
vectors of the two adjacent path segments. If Miter joins are being used, the length of the
miter is computed and compared to the product of the line width and miter limit; if the
miter would be too long, a Bevel join is substituted.

8.7.5 Setting Stroke Parameters
Setting the line width of a stroke is performed using vgSetf with a paramType
argument of VG_STROKE_LINE_WIDTH. A line width less than or equal to 0
prevents stroking from taking place.
VGfloat lineWidth;
vgSetf(VG_STROKE_LINE_WIDTH, lineWidth);

VGCapStyle
The VGCapStyle enumeration defines constants for the Butt, Round, and Square end
cap styles:

Version 1.1 Revision 1 (December 3, 2008)

Paths 108

typedef enum {
 VG_CAP_BUTT = 0x1700,
 VG_CAP_ROUND = 0x1701,
 VG_CAP_SQUARE = 0x1702
} VGCapStyle;

Setting the end cap style is performed using vgSeti with a paramType argument of
VG_STROKE_CAP_STYLE and a value from the VGCapStyle enumeration.
VGCapStyle capStyle;
vgSeti(VG_STROKE_CAP_STYLE, capStyle);

VGJoinStyle
The VGJoinStyle enumeration defines constants for the Miter, Round, and Bevel line
join styles:
typedef enum {
 VG_JOIN_MITER = 0x1800,
 VG_JOIN_ROUND = 0x1801,
 VG_JOIN_BEVEL = 0x1802
} VGJoinStyle;

Setting the line join style is performed using vgSeti with a paramType argument of
VG_STROKE_JOIN_STYLE and a value from the VGJoinStyle enum.
VGJoinStyle joinStyle;
vgSeti(VG_STROKE_JOIN_STYLE, joinStyle);

Setting the miter limit is performed using vgSetf with a paramType argument of
VG_STROKE_MITER_LIMIT:
VGfloat miterLimit;
vgSetf(VG_STROKE_MITER_LIMIT, miterLimit);
Miter limit values less than 1 are silently clamped to 1.

VG_MAX_DASH_COUNT
The VG_MAX_DASH_COUNT parameter contains the maximum number of dash
segments that may be supplied for the VG_STROKE_DASH_PATTERN parameter. All
implementations must must support at least 16 dash segments (8 on/off pairs). If there is
no implementation-defined limit, a value of VG_MAXINT may be returned. The value
may be retrieved by calling vgGeti:
VGint maxDashCount = vgGeti(VG_MAX_DASH_COUNT);

Version 1.1 Revision 1 (December 3, 2008)

Paths 109

Setting the Dash Pattern
The dash pattern is set using vgSetfv with a paramType argument of
VG_STROKE_DASH_PATTERN:
VGfloat dashPattern[DASH_COUNT];
VGint count = DASH_COUNT;
vgSetfv(VG_STROKE_DASH_PATTERN, count, dashPattern);

Dashing may be disabled by calling vgSetfv with a count of 0:
vgSetfv(VG_STROKE_DASH_PATTERN, 0, NULL);

The dash phase is set using vgSetf with a paramType argument of
VG_STROKE_DASH_PHASE. The resetting behavior of the dash phase when
advancing to a new subpath is set using vgSeti with a paramType argument of
VG_STROKE_DASH_PHASE_RESET:
VGfloat dashPhase;
VGboolean dashPhaseReset;
vgSetf(VG_STROKE_DASH_PHASE, dashPhase);
vgSeti(VG_STROKE_DASH_PHASE_RESET, dashPhaseReset);
If the dash pattern has length 0, dashing is not performed. If the dash pattern has an odd
number of elements, the final element is ignored. Note that this behavior is different from
that defined by SVG; the SVG behavior may be implemented by duplicating the odd-
length dash pattern to obtain one with even length.

If more than VG_MAX_DASH_COUNT dashes are specified, those beyond the first
VG_MAX_DASH_COUNT are discarded immediately (and will not be returned by vgGet).

8.7.6 Non-Scaling Strokes
In some cases, applications may wish stroked geometry to appear with a particular stroke
width in the surface coordinate system, independent of the current user-to-surface
transformation. For example, a stroke representing a road on a map might stay the same
width as the user zooms in and out of the map, since the stroke width is intended to
indicate the type of road (e.g., one-way street, divided road, interstate highway or
Autobahn) rather than its true width on the ground.

OpenVG does not provide direct support for this “non-scaling stroke” behavior.
However, the behavior may be obtained relatively simply using a combination of
features.

If the current user-to-surface transformation consists only of uniform scaling, rotation,
and translation (i.e., no shearing or non-uniform scaling), then the stroke width may be

Version 1.1 Revision 1 (December 3, 2008)

Paths 110

set to the desired stroke width in drawing surface coordinates, divided by the scaling
factor introduced by the transformation. This scaling factor may be known to the
application a priori, or else it may be computed as the square root of the absolute value
of the determinant (sx*sy – shx*shy) of the user-to-surface transformation.

If the user-to-surface transformation includes shearing or non-uniform scaling, the
geometry to be stroked must be transformed into surface coordinates prior to stroking.
The paint transformation must also be set to the concatenation of the paint-to-user and
user-to-surface transformations in order to allow correct painting of the stroked
geometry. The following code illustrates this technique:
VGPath srcPath; /* Path to be drawn with non-scaling stroke */
VGPath dstPath; /* Path in drawing surface coordinates */
VGfloat strokePaintToUser[9]; /* Paint-to-user transformation */
VGfloat pathUserToSurface[9]; /* User-to-surface transformation */

/* Transform the geometry into surface coordinates. */
vgSeti(VG_MATRIX_MODE, VG_MATRIX_PATH_USER_TO_SURFACE);
vgLoadMatrix(pathUserToSurface);
vgTransformPath(dstPath, srcPath);

/* Use the identity matrix for drawing the stroked path. */
vgLoadIdentity();

/* Set the paint transformation to the concatenation of the
 * paint-to-user and user-to-surface transformations.
 */
vgSeti(VG_MATRIX_MODE, VG_MATRIX_FILL_PAINT_TO_USER);
vgLoadMatrix(pathUserToSurface);
vgMultMatrix(strokePaintToUser);

/* Stroke the transformed path. */
vgDrawPath(dstPath, VG_STROKE_PATH);

8.8 Filling or Stroking a Path

VGFillRule
The VGFillRule enumeration defines constants for the even/odd and non-zero fill
rules.
typedef enum {
 VG_EVEN_ODD = 0x1900,
 VG_NON_ZERO = 0x1901
} VGFillRule;

Version 1.1 Revision 1 (December 3, 2008)

Paths 111

To set the rule for filling, call vgSeti with a type parameter value of
VG_FILL_RULE and a value parameter defined using a value from the
VGFillRule enumeration. When the path is filled, the most recent setting of the fill
rule on the current context is used. The fill rule setting has no effect on stroking.
VGFillRule fillRule;
vgSeti(VG_FILL_RULE, fillRule);

VGPaintMode
The VGPaintMode enumeration defines constants for stroking and filling paths, to be
used by the vgDrawPath, vgSetPaint, and vgGetPaint functions.
typedef enum {
 VG_STROKE_PATH = (1 << 0),
 VG_FILL_PATH = (1 << 1)
} VGPaintMode;

vgDrawPath
Filling and stroking are performed by the vgDrawPath function. The paintModes
argument is a bitwise OR of values from the VGPaintMode enumeration, determining
whether the path is to be filled (VG_FILL_PATH), stroked (VG_STROKE_PATH), or
both (VG_FILL_PATH | VG_STROKE_PATH). If both filling and stroking are to be
performed, the path is first filled, then stroked.
void vgDrawPath(VGPath path, VGbitfield paintModes)

ERRORS
VG_BAD_HANDLE_ERROR
– if path is not a valid path handle, or is not shared with the current context
VG_ILLEGAL_ARGUMENT_ERROR
– if paintModes is not a valid bitwise OR of values from the VGPaintMode

enumeration

Filling a Path
Calling vgDrawPath with a paintModes argument of VG_FILL_PATH causes the
given path to be filled, using the paint defined for the VG_FILL_PATH paint mode and
the current fill rule.

Version 1.1 Revision 1 (December 3, 2008)

Paths 112

The matrix currently set for the VG_MATRIX_FILL_PAINT_TO_USER matrix mode
is applied to the paint used to fill the path outline. The matrix currently set for the
VG_MATRIX_PATH_USER_TO_SURFACE matrix mode is used to transform the
outline of the path and the paint into surface coordinates.
vgDrawPath(VGPath path, VG_FILL_PATH);

Stroking a Path
Calling vgDrawPath with a paintModes argument of VG_STROKE_PATH
causes the given path to be stroked, using the paint defined for the VG_STROKE_PATH
paint mode and the current set of stroke parameters.

The matrix currently set for the VG_MATRIX_STROKE_PAINT_TO_USER matrix
mode is applied to the paint used to fill the stroked path outline. The matrix currently set
for the VG_MATRIX_PATH_USER_TO_SURFACE matrix mode is used to transform
the outline of the stroked path and the paint into surface coordinates.
vgDrawPath(VGPath path, VG_STROKE_PATH);

The following code sample shows how an application might set stroke parameters using
variants of vgSet, and stroke a path object (defined elsewhere):
VGPath path;

/* Set the line width to 2.5 */
vgSetf(VG_STROKE_LINE_WIDTH, 2.5f);
/* Set the miter limit to 10.5 */
vgSetf(VG_STROKE_MITER_LIMIT, 10.5f);
/* Set the cap style to CAP_SQUARE */
vgSeti(VG_STROKE_CAP_STYLE, VG_CAP_SQUARE);
/* Set the join style to JOIN_MITER */
vgSeti(VG_STROKE_JOIN_STYLE, VG_JOIN_MITER);

/* Set the dash pattern */
VGfloat dashes[] = { 1.0f, 2.0f, 2.0f, 2.0f };
vgSetfv(VG_STROKE_DASH_PATTERN, 4, dashes);

/* Set the dash phase to 0.5 and reset it for every subpath */
vgSetf(VG_STROKE_DASH_PHASE, 0.5f);
vgSeti(VG_STROKE_DASH_PHASE_RESET, VG_TRUE);

/* Stroke the path */
vgDrawPath(path, VG_STROKE_PATH);

Version 1.1 Revision 1 (December 3, 2008)

Paths 113

Filling and Stroking a Path
Calling vgDrawPath with a paintModes argument of (VG_FILL_PATH |
VG_STROKE_PATH) causes the given path to be first filled, then stroked, exactly as if
vgDrawPath were called twice in succession, first with a paintModes argument of
VG_FILL_PATH and second with a paintModes argument of VG_STROKE_PATH.
vgDrawPath(VGPath path, VG_FILL_PATH | VG_STROKE_PATH);

Version 1.1 Revision 1 (December 3, 2008)

Paint 114

9 Paint
Paint defines a color and an alpha value for each pixel being drawn. Color paint defines
a constant color for all pixels; gradient paint defines a linear or radial pattern of
smoothly varying colors; and pattern paint defines a possibly repeating rectangular
pattern of colors based on a source image. It is possible to define new types of paint as
extensions.

Paint is defined in its own coordinate system, which is transformed into user coordinates
by means of the fill-paint-to-user and stroke-paint-to-user transformations (set using the
VG_MATRIX_FILL_PAINT_TO_USER and
VG_MATRIX_STROKE_PAINT_TO_USER matrix modes) depending on whether the
current geometry is being filled or stroked.

Given a (fill or stroke) paint-to-user transformation Tp and user-to-surface transformation
Tu, the paint color and alpha of a pixel to be drawn with surface coordinates (x, y) is
defined by mapping its center point (x + ½, y + ½) through the inverse transformation
(Tu ◦ Tp)-1, resulting in a sample point in the paint coordinate space. This transformation
must be evaluated with sufficient accuracy to ensure a deviation from the ideal of no
more than 1/8 of a pixel along either axis. The paint value nearest that point may be used
(point sampling), or paint values from multiple points surrounding the central sample
point may be combined to produce an interpolated paint value. Paint color values are
processed in premultiplied alpha format during interpolation. The user-to-surface
transformation Tu is taken from the path-user-to-surface transformation when fulfilling a
vgDrawPath call, from the image-user-to-surface transformation when fulfilling a
vgDrawImage call, or from the glyph-user-to-surface transformation when fulfilling a
vgDrawGlyph or vgDrawGlyphs call.

If the inverse transformation cannot be computed due to a (near-)singularity, no drawing
occurs.

9.1 Paint Definitions
The OpenVG context stores two paint definitions at a time, one to be applied to stroked
shapes and one for filled shapes. This allows the interior of a path to be filled using one
type of paint and its outline to be stroked with another kind of paint in a single
vgDrawPath operation. Initially, default values are used.

VGPaint
VGPaint represents an opaque handle to a paint object. A VGPaint object is live;
changes to a VGPaint object (using vgSetParameter, or by altering an attached

Version 1.1 Revision 1 (December 3, 2008)

Paint 115

pattern image) attached to a context will immediately affect drawing calls on that
context. If a VGPaint object is accessed from multiple threads, the application must
ensure (using vgFinish along with application-level synchronization primitives) that the
paint definition is not altered from one context while another context may still be using it
for drawing.
typedef VGHandle VGPaint;

9.1.1 Creating and Destroying Paint Objects

vgCreatePaint
vgCreatePaint creates a new paint object that is initialized to a set of default values and
returns a VGPaint handle to it. If insufficient memory is available to allocate a
new object, VG_INVALID_HANDLE is returned.
VGPaint vgCreatePaint(void)

vgDestroyPaint
The resources associated with a paint object may be deallocated by calling
vgDestroyPaint. Following the call, the paint handle is no longer valid in any
of the contexts that shared it. If the paint object is currently active in a drawing
context, the context continues to access it until it is replaced or the context is
destroyed.
void vgDestroyPaint(VGPaint paint)

ERRORS
VG_BAD_HANDLE_ERROR
– if paint is not a valid paint handle, or is not shared with the current context

9.1.2 Setting the Current Paint

vgSetPaint
Paint definitions are set on the current context using the vgSetPaint function. The
paintModes argument is a bitwise OR of values from the VGPaintMode
enumeration, determining whether the paint object is to be used for filling

Version 1.1 Revision 1 (December 3, 2008)

Paint 116

(VG_FILL_PATH), stroking (VG_STROKE_PATH), or both (VG_FILL_PATH |
VG_STROKE_PATH). The current paint replaces the previously set paint object, if
any, for the given paint mode or modes. If paint is equal to VG_INVALID_HANDLE,
the previously set paint object for the given mode (if present) is removed and the paint
settings are restored to their default values.
void vgSetPaint(VGPaint paint, VGbitfield paintModes)

Version 1.1 Revision 1 (December 3, 2008)

Paint 117

ERRORS
VG_BAD_HANDLE_ERROR
– if paint is neither a valid paint handle nor equal to VG_INVALID_HANDLE,

or is not shared with the current context
VG_ILLEGAL_ARGUMENT_ERROR
– if paintModes is not a valid bitwise OR of values from the VGPaintMode

enumeration

vgGetPaint
The vgGetPaint function returns the paint object currently set for the given
paintMode, or VG_INVALID_HANDLE if an error occurs or if no paint object is set
(i.e., the default paint is present) on the given context with the given paintMode.
VGPaint vgGetPaint(VGPaintMode paintMode)

ERRORS
VG_ILLEGAL_ARGUMENT_ERROR
– if paintMode is not a valid value from the VGPaintMode enumeration

9.1.3 Setting Paint Parameters
Paint functionality is controlled by a number of paint parameters that are stored in each
paint object.

VGPaintParamType
Values from the VGPaintParamType enumeration may be used as the paramType
argument to vgSetParameter and vgGetParameter to set and query various features of
a paint object:

Version 1.1 Revision 1 (December 3, 2008)

Paint 118

typedef enum {
 /* Color paint parameters */
 VG_PAINT_TYPE = 0x1A00,
 VG_PAINT_COLOR = 0x1A01,
 VG_PAINT_COLOR_RAMP_SPREAD_MODE = 0x1A02,
 VG_PAINT_COLOR_RAMP_STOPS = 0x1A03,
 VG_PAINT_COLOR_RAMP_PREMULTIPLIED = 0x1A07,

 /* Linear gradient paint parameters */
 VG_PAINT_LINEAR_GRADIENT = 0x1A04,

 /* Radial gradient paint parameters */
 VG_PAINT_RADIAL_GRADIENT = 0x1A05,

 /* Pattern paint parameters */
 VG_PAINT_PATTERN_TILING_MODE = 0x1A06
} VGPaintParamType;

The default values that are used when no paint object is present (i.e., in a newly-created
context or following a call to vgSetPaint with a paint value of
VG_INVALID_HANDLE) are shown in Table 10. These values are also used as the
initial parameter value for a newly created paint object.

Version 1.1 Revision 1 (December 3, 2008)

Paint 119

Parameter Datatype Default Value

VG_PAINT_TYPE VGPaintType VG_PAINT_TYPE_COLOR

VG_PAINT_COLOR VGfloat[4] { 0.0f, 0.0f, 0.0f, 1.0f }

VG_PAINT_COLOR_RAMP_
SPREAD_MODE VGColorRampSpreadMode VG_COLOR_RAMP_SPREAD_PAD

VG_PAINT_COLOR_RAMP_
STOPS VGfloat * Array of Length 0

VG_PAINT_COLOR_RAMP_
PREMULTIPLIED VGboolean VG_TRUE

VG_PAINT_LINEAR_
GRADIENT VGfloat[4] { 0.0f, 0.0f, 1.0f, 0.0f }

VG_PAINT_RADIAL_
GRADIENT VGfloat[5] { 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }

VG_PAINT_PATTERN_
TILING_MODE VGTilingMode VG_TILE_FILL

Table 10: VGPaintParamType Defaults

VGPaintType
The VGPaintType enumeration is used to supply values for the
VG_PAINT_TYPE paint parameter to determine the type of paint to be applied.
typedef enum {
 VG_PAINT_TYPE_COLOR = 0x1B00,
 VG_PAINT_TYPE_LINEAR_GRADIENT = 0x1B01,
 VG_PAINT_TYPE_RADIAL_GRADIENT = 0x1B02,
 VG_PAINT_TYPE_PATTERN = 0x1B03
} VGPaintType;

9.2 Color Paint
Color paint uses a fixed color and alpha for all pixels. An alpha value of 1 produces a
fully opaque color. Colors are specified in non-premultiplied sRGBA format.

Setting Color Paint Parameters
To enable color paint, use vgSetParameteri to set the paint type to
VG_PAINT_TYPE_COLOR.

Version 1.1 Revision 1 (December 3, 2008)

Paint 120

The vgSetParameterfv function allows the color and alpha values to be set using the
VG_PAINT_COLOR paint parameter to values between 0 and 1. Values outside this
range are interpreted as the nearest endpoint of the range.
VGfloat fill_red, fill_green, fill_blue, fill_alpha;
VGfloat stroke_red, stroke_green, stroke_blue, stroke_alpha;
VGPaint myFillPaint, myStrokePaint;

VGfloat * fill_RGBA = {
 fill_red, fill_green, fill_blue, fill_alpha
};

VGfloat * stroke_RGBA = {
 stroke_red, stroke_green, stroke_blue, stroke_alpha
};

/* Fill with color paint */
vgSetParameteri(myFillPaint, VG_PAINT_TYPE, VG_PAINT_TYPE_COLOR);
vgSetParameterfv(myFillPaint, VG_PAINT_COLOR, 4, fill_RGBA);

/* Stroke with color paint */
vgSetParameteri(myStrokePaint, VG_PAINT_TYPE, VG_PAINT_TYPE_COLOR);
vgSetParameterfv(myStrokePaint, VG_PAINT_COLOR, 4, stroke_RGBA);

vgSetColor
As a shorthand, the vgSetColor function allows the VG_PAINT_COLOR parameter of a
given paint object to be set using a 32-bit non-premultiplied sRGBA_8888
representation (see Section 10.210.2). The rgba parameter is a VGuint with 8 bits of
red starting at the most significant bit, followed by 8 bits each of green, blue, and alpha.
Each color or alpha channel value is conceptually divided by 255.0f to obtain a value
between 0 and 1.
void vgSetColor(VGPaint paint, VGuint rgba)

ERRORS
VG_BAD_HANDLE_ERROR
– if paint is not a valid paint handle, or is not shared with the current context

The code:
VGPaint paint;
VGuint rgba;
vgSetColor(paint, rgba)

Version 1.1 Revision 1 (December 3, 2008)

Paint 121

is equivalent to the code:
VGfloat rgba_f[4];
rgba_f[0] = ((rgba >> 24) & 0xff)/255.0f;
rgba_f[1] = ((rgba >> 16) & 0xff)/255.0f;
rgba_f[2] = ((rgba >> 8) & 0xff)/255.0f;
rgba_f[3] = (rgba & 0xff)/255.0f;
vgSetParameterfv(paint, VG_PAINT_COLOR, 4, rgba_f);

vgGetColor
The current setting of the VG_PAINT_COLOR parameter on a given paint object may
be queried as a 32-bit non-premultiplied sRGBA_8888 value. Each color channel or
alpha value is clamped to the range [0, 1] , multiplied by 255, and rounded to obtain an
8-bit integer; the resulting values are packed into a 32-bit value in the same format as for
vgSetColor.
VGuint vgGetColor(VGPaint paint)

ERRORS
VG_BAD_HANDLE_ERROR
– if paint is not a valid paint handle, or is not shared with the current context

Version 1.1 Revision 1 (December 3, 2008)

Paint 122

The code:
VGPaint paint;
VGuint rgba;
rgba = vgGetColor(paint);
is equivalent to the code:
#define CLAMP(x) ((x) < 0.0f ? 0.0f : ((x) > 1.0f ? 1.0f : (x)))

VGfloat rgba_f[4];
int red, green, blue, alpha;

vgGetParameterfv(paint, VG_PAINT_COLOR, 4, rgba_f);

/*
 * Clamp color and alpha values from vgGetParameterfv to the
 * [0, 1] range, scale to 8 bits, and round to integer.
 */
red = (int)(CLAMP(rgba_f[0])*255.0f + 0.5f);
green = (int)(CLAMP(rgba_f[1])*255.0f + 0.5f);
blue = (int)(CLAMP(rgba_f[2])*255.0f + 0.5f);
alpha = (int)(CLAMP(rgba_f[3])*255.0f + 0.5f);
rgba = (red << 24) | (green << 16) | (blue << 8) | alpha;

9.3 Gradient Paint
Gradients are patterns used for filling or stroking. They are defined
mathematically in two parts; a scalar-valued gradient function defined at every
point in the two-dimensional plane (in paint coordinates), followed by a color
ramp mapping.

9.3.1 Linear Gradients
Linear gradients define a scalar-valued gradient function based on two points (x0, y0)
and (x1, y1) (in the paint coordinate system) with the following properties:

• It is equal to 0 at (x0, y0)
• It is equal to 1 at (x1, y1)
• It increases linearly along the line from (x0, y0) to (x1, y1)
• It is constant along lines perpendicular to the line from (x0, y0) to (x1, y1)

An expression for the gradient function is:

Version 1.1 Revision 1 (December 3, 2008)

Paint 123

where Δx = x1 – x0 and Δy = y1 – y0. If the points (x0, y0) and (x1, y1) are coincident
(and thus Δx2 + Δy2 = 0), the function is given the value 1 everywhere.

Setting Linear Gradient Parameters
To enable linear gradient paint, use vgSetParameteri to set the paint type to
VG_PAINT_TYPE_LINEAR_GRADIENT.

The linear gradient parameters are set using vgSetParameterfv with a paramType
argument of VG_PAINT_LINEAR_GRADIENT. The gradient values are supplied as
a vector of 4 floats in the order { x0, y0, x1, y1 }.
VGfloat fill_x0, fill_y0, fill_x1, fill_y1;
VGfloat stroke_x0, stroke_y0, stroke_x1, stroke_y1;
VGPaint myFillPaint, myStrokePaint;
VGfloat * fill_linear_gradient = {
 fill_x0, fill_y0, fill_x1, fill_y1
};
VGfloat * stroke_linear_gradient = {
 stroke_x0, stroke_y0, stroke_x1, stroke_y1
};

/* Fill with linear gradient paint */
vgSetParameteri(myFillPaint, VG_PAINT_TYPE,
 VG_PAINT_TYPE_LINEAR_GRADIENT);
vgSetParameterfv(myFillPaint, VG_PAINT_LINEAR_GRADIENT,
 4, fill_linear_gradient);
/* Stroke with linear gradient paint */
vgSetParameteri(myStrokePaint, VG_PAINT_TYPE,
 VG_PAINT_TYPE_LINEAR_GRADIENT);
vgSetParameterfv(myStrokePaint, VG_PAINT_LINEAR_GRADIENT,
 4, stroke_linear_gradient);

9.3.2 Radial Gradients
Radial gradients define a scalar-valued gradient function based on a gradient circle
defined by a center point (cx, cy), a radius r, and a focal point (fx, fy) that is forced to lie
within the circle. All parameters are given in the paint coordinate system.

The computation of the radial gradient function is illustrated in Figure 18. The function
is equal to 0 at the focal point and 1 along the circumference of the gradient circle.

Version 1.1 Revision 1 (December 3, 2008)

g x , y =
 x x−x0 y y− y0

 x2 y2

Paint 124

Elsewhere, it is equal to the distance between (x, y) and (fx, fy) (shown as d
1
) divided by

the length of the line segment starting at (fx, fy), passing through (x, y), and ending on the
circumference of the gradient circle (shown as d2). If the radius is less than or equal to 0,
the function is given the value 1 everywhere.

An expression for the gradient function may be derived by defining the line between (fx,
fy) and (x, y) by the parametric expression (fx, fy) + t*(x – fx, y – fy) and determining the
positive value of t at which the line intersects the circle (x – cx)2 + (y – cy)2 = r2. Figure
18 illustrates the construction. The gradient value g(x, y) is then given by 1/t. The
resulting expression is:

where fx' = fx – cx, fy' = fy – cy, dx = x – fx and dy = y – fy.

This may be rearranged and simplified to obtain a formula that does not require per-pixel
division:

One way to evaluate the gradient function efficiently is to rewrite it in the form:

and to use forward differencing of Ax + B and Cx2 + Dx + E to evaluate it incrementally
along a scanline with several additions and a single square root per pixel.

Version 1.1 Revision 1 (December 3, 2008)

g x , y =dx fx 'dy fy' r2dx 2dy2−dx fy'−dy fx' 2

r 2− fx ' 2 fy ' 2

g x , y = dx2dy2

 r 2dx2dy2−dx fy'−dy fx ' 2−dx fx 'dy fy'

g y x =A xB C x2D xE

Paint 125

Figure 18: Radial Gradient Function

Setting Radial Gradient Parameters
To enable radial gradient paint, use vgSetParameteri to set the paint type to
VG_PAINT_TYPE_RADIAL_GRADIENT. The radial gradient parameters are set using
vgSetParameterfv with a paramType argument of
VG_PAINT_RADIAL_GRADIENT. The gradient values are supplied as a vector of
5 floats in the order { cx, cy, fx, fy, r }.

If (fx, fy) lies outside the circumference of the circle, the intersection of the line
from the center to the focal point with the circumference of the circle is used as
the focal point in place of the specified point. To avoid a division by 0, the
implementation may move the focal point along the line towards the center of
the circle by an amount sufficient to avoid numerical instability, provided the
new location lies at a distance of at least .99r from the circle center. The following
code illustrates the setting of radial gradient parameters:

Version 1.1 Revision 1 (December 3, 2008)

(cx, cy)

(fx, fy)

r

(x, y)

d
2

d
1

gradient(x, y) = d
1
/d

2

(fx, fy)

(x-cx)2+(y-cy)2=r2

x'=fx+t*(x-fx)
y'=fy+t*(y-fy)

Paint 126

VGPaint myFillPaint, myStrokePaint;
VGfloat fill_cx, fill_cy, fill_fx, fill_fy, fill_r;
VGfloat stroke_cx, stroke_cy, stroke_fx, stroke_fy, stroke_r;
VGfloat * fill_radial_gradient = { fill_cx, fill_cy,
 fill_fx, fill_fy, fill_r };
VGfloat * stroke_radial_gradient = { stroke_cx, stroke_cy,
 stroke_fx, stroke_fy, stroke_r };
vgSetParameteri(myFillPaint, VG_PAINT_TYPE, /* Fill */
 VG_PAINT_TYPE_RADIAL_GRADIENT);
vgSetParameterfv(myFillPaint, VG_PAINT_RADIAL_GRADIENT,
 5, fill_radial_gradient);
vgSetParameteri(myStrokePaint, VG_PAINT_TYPE, /* Stroke */
 VG_PAINT_TYPE_RADIAL_GRADIENT);
vgSetParameterfv(myStrokePaint, VG_PAINT_RADIAL_GRADIENT,
 5, stroke_radial_gradient);

9.3.3 Color Ramps
Color ramps map the scalar values produced by gradient functions to colors. The
application defines the non-premultiplied sRGBA color and alpha value associated with
each of a number of values, called stops. A stop is defined by an offset between 0 and 1,
inclusive, and a color value. Stops must be specified in increasing order; if they are not,
the entire sequence is ignored. It is legal to have multiple stops with the same offset
value, which will result in a discontinuity in the color ramp, with the first stop with a
given offset value defining the right endpoint of one interval and the last stop with the
same offset value defining the left endpoint of the next interval. At an offset value equal
to that of a stop, the color value is that of the last stop with the given offset. Intermediate
stops with the same offset value have no effect. Stops with offsets less than 0 or greater
than 1 are ignored.

If no valid stops have been specified (e.g., due to an empty input array, out-of-range,
or out-of-order stops), a stop at 0 with (R, G, B, α) color (0.0, 0.0, 0.0, 1.0) (opaque
black) and a stop at 1 with color (1.0, 1.0, 1.0, 1.0) (opaque white) are implicitly defined.
If at least one valid stop has been specified, but none has been defined with an offset of
0, an implicit stop is added with an offset of 0 and the same color as the first user-defined
stop. If at least one valid stop has been specified, but none has been defined with an
offset of 1, an implicit stop is added with an offset of 1 and the same color as the last
user-defined stop.

If a color or alpha value of a given stop falls outside of the range [0, 1], the closest
endpoint of the range is used instead.

If the paint’s VG_PAINT_COLOR_RAMP_PREMULTIPLIED flag is set to
VG_TRUE, color and alpha values at each gradient stop are multiplied together to form
premultiplied sRGBA values prior to interpolation. Otherwise, color and alpha values are
processed independently.

Version 1.1 Revision 1 (December 3, 2008)

Paint 127

Color and alpha values at offset values between the stops are defined by means of
linear interpolation between the premultiplied or non-premultiplied color values defined
at the nearest stops above and below the given offset value.

VG_MAX_COLOR_RAMP_STOPS
The VG_MAX_COLOR_RAMP_STOPS parameter contains the maximum number of
gradient stops supported by the OpenVG implementation. All implementations must
support at least 32 stops. If there is no implementation-defined limit, a value of
VG_MAXINT may be returned. Implicitly defined stops at offsets 0 and 1 are not counted
against this maximum. The value may be retrieved by calling vgGeti:
VGint maxStops = vgGeti(VG_MAX_COLOR_RAMP_STOPS);

VGColorRampSpreadMode
The application may only define stops with offsets between 0 and 1. Spread modes
define how the given set of stops are repeated or extended in order to define interpolated
color values for arbitrary input values outside the [0,1] range. The
VGColorRampSpreadMode enumeration defines three modes:

• VG_COLOR_RAMP_SPREAD_PAD – extend stops
• VG_COLOR_RAMP_SPREAD_REPEAT – repeat stops
• VG_COLOR_RAMP_SPREAD_REFLECT – repeat stops in reflected order

typedef enum {
 VG_COLOR_RAMP_SPREAD_PAD = 0x1C00,
 VG_COLOR_RAMP_SPREAD_REPEAT = 0x1C01,
 VG_COLOR_RAMP_SPREAD_REFLECT = 0x1C02
} VGColorRampSpreadMode;

In pad mode, the colors defined at 0 and 1 are used for all stop values less than 0 or
greater than 1, respectively.

In repeat mode, the color values defined between 0 and 1 are repeated indefinitely in
both directions. Gradient values outside the [0, 1] range are shifted by an integer amount
to place them into that range. For example, a gradient value of 5.6 will receive the same
color as a gradient value of 0.6. A gradient value of -5.6 will receive the same color as a
gradient value of 0.4 (since 0.4 = -5.6 + 6).

In reflect mode, the color values defined between 0 and 1 are repeated indefinitely in
both directions, but with alternate copies of the range reversed. A gradient value of 1.2
will receive the same color as a gradient value of 0.8, since 0.8 = 1.0 – 0.2 and 1.2
= 1.0 + 0.2. A gradient value of 2.4 will receive the same color as a gradient value

Version 1.1 Revision 1 (December 3, 2008)

Paint 128

of 0.4.

The color ramp pad modes are illustrated schematically in Figure 19.

Figure 19: Color Ramp Pad Modes

Setting Color Ramp Parameters
Color ramp parameters are set using vgSetParameter. The
VG_PAINT_COLOR_RAMP_SPREAD_MODE parameter controls the spread mode
using a value from the VGColorRampSpreadMode enumeration. The
VG_PAINT_COLOR_RAMP_PREMULTIPLIED parameter takes a VGboolean
value and controls whether color and alpha values are interpolated in
premultiplied or non-premultiplied form. The VG_PAINT_COLOR_RAMP_STOPS
parameter takes an array of floating-point values giving the offsets and colors of
the stops, in order. Each stop is defined by a floating-point offset value and four
floating-point values containing the sRGBA color and alpha value associated
with each stop, in the form of a non-premultiplied (R, G, B, α) quad. The
vgSetParameter function will generate an error if the number of values
submitted is not a multiple of 5 (zero is acceptable). Up to
VG_MAX_COLOR_RAMP_STOPS 5-tuples may be set. If more than
VG_MAX_COLOR_RAMP_STOPS 5-tuples are specified, those beyond the first
VG_MAX_COLOR_RAMP_STOPS are discarded immediately (and will not be

Version 1.1 Revision 1 (December 3, 2008)

0 10 1

Pad

Repeat

Reflect

Paint 129

returned by vgGetParameter).
VGPaint myFillPaint, myStrokePaint;

VGColorRampSpreadMode fill_spreadMode;
VGboolean fill_premultiplied;
VGfloat fill_stops[5*FILL_NUM_STOPS];

VGColorRampSpreadMode stroke_spreadMode;
VGboolean stroke_premultiplied;
VGfloat stroke_stops[5*STROKE_NUM_STOPS];

vgSetParameteri(myFillPaint, VG_PAINT_COLOR_RAMP_SPREAD_MODE,
 fill_spreadMode);
vgSetParameteri(myFillPaint, VG_PAINT_COLOR_RAMP_PREMULTIPLIED,
 fill_premultiplied);
vgSetParameterfv(myFillPaint, VG_PAINT_COLOR_RAMP_STOPS,
 5*FILL_NUM_STOPS, fill_stops);

vgSetParameteri(myStrokePaint, VG_PAINT_COLOR_RAMP_SPREAD_MODE,
 stroke_spreadMode);
vgSetParameteri(myStrokePaint, VG_PAINT_COLOR_RAMP_PREMULTIPLIED,
 stroke_premultiplied);
vgSetParameterfv(myStrokePaint, VG_PAINT_COLOR_RAMP_STOPS,
 5*STROKE_NUM_STOPS, stroke_stops);

A common set of color ramp settings are used for both linear and radial
gradients defined on a given paint object.

Formal Definition of Spread Modes
This section provides a formal definition of the color ramp spread modes.

In the following, assume that a sequence of stops {S0, S1, ..., SN-1} have been defined by
the application, and/or by default or implicit values. The stop Si is defined to have offset
xi and color ci. The stops are assumed to be ordered by offset but may have duplicate
offsets; that is, for all i < j, xi ≤ xj. To determine the interpolated color value at a given
offset value v, determine the smallest i such that xi+1 > v. If xi = v, use the color ci,
otherwise perform linear interpolation between the stops Si and Si+1 to produce the color
ci + (ci+1 – ci)(v – xi)/(xi+1 – xi).

In pad mode, values smaller than 0 are assigned the color c0 and values greater than or
equal to 1 are assigned the color cN-1.

In repeat mode, the offset value v is mapped to a new value v´ that is guaranteed to lie
between 0 and 1. Following this mapping, the color is defined as for pad mode:

Version 1.1 Revision 1 (December 3, 2008)

Paint 130

In reflect mode, the offset value v is mapped to a new value v´ that is guaranteed to lie
between 0 and 1. Following this mapping, the color is defined as for pad mode:

9.3.4 Gradient Examples
Figure 20 shows a square from (0, 0) to (400, 400) painted with a set of linear gradients
with (x0, y0) = (100, 100), (x1, y1) = (300, 300).

 Figure 21 shows the same square painted with radial gradients with centered and non-
centered focal points. The centered gradient, shown in the top row, has its center (cx, cy)
and focal point (fx, fy) both at (200, 200). The non-centered gradient, shown in the
bottom row, has its center (cx, cy) at (200, 200) and its focal point (fx, fy) at (250, 250).
The radius r for both gradients is equal to 100.

All the gradients shown in this section utilize a color ramp with stops at offsets 0.0,
0.33, 0.66, and 1.0 colored white, red, green, and blue, respectively, as shown in Figure
22.

Pad Repeat Reflect

Figure 20: Linear Gradients

Version 1.1 Revision 1 (December 3, 2008)

v ' reflect={ v−⌊v ⌋ , if ⌊v ⌋is even
1− v−⌊v⌋ , if ⌊v ⌋ is odd

v ' repeat=v−⌊v ⌋

Paint 131

Pad Repeat Reflect

Figure 21: Centered and Non-Centered Radial Gradients

Figure 22: Color Ramp used for Gradient Examples

9.4 Pattern Paint
Pattern paint defines a rectangular pattern of colors based on the pixel values of an
image. Images are described below in Section 10. Each pixel (x, y) of the pattern image
defines a point of color at the pixel center (x + ½, y + ½).

Filtering may be used to construct an interpolated pattern value at the sample point,
based on the pattern image pixel values. The pattern tiling mode is used to define values

Version 1.1 Revision 1 (December 3, 2008)

Paint 132

for pixel centers in the pattern space that lie outside of the bounds of the pattern.

Interpolation may be performed between multiple pixels of the pattern image to produce
an antialiased pattern value. The image quality setting at the time of drawing (determined
by the VG_IMAGE_QUALITY parameter) is used to control the quality of pattern
interpolation. If the image quality is set to
VG_IMAGE_QUALITY_NONANTIALIASED, nearest-neighbor interpolation (point
sampling) is used. If the image quality is set to VG_IMAGE_QUALITY_FASTER or
VG_IMAGE_QUALITY_BETTER, higher-quality interpolation will be used if available.
Interpolation is done in the color space of the image using a premultiplied representation.

vgPaintPattern
The vgPaintPattern function replaces any previous pattern image defined on the
given paint object for the given set of paint modes with a new pattern image. A
value of VG_INVALID_HANDLE for the pattern parameter removes the current
pattern image from the paint object.

If the current paint object has its VG_PAINT_TYPE parameter set to
VG_PAINT_TYPE_PATTERN, but no pattern image is set, the paint object behaves as if
VG_PAINT_TYPE were set to VG_PAINT_TYPE_COLOR.

While an image is set as the paint pattern for any paint object, it may not be used as a
rendering target. Conversely, an image that is currently a rendering target may not be set
as a paint pattern.
void vgPaintPattern(VGPaint paint, VGImage pattern)

ERRORS
VG_BAD_HANDLE_ERROR
– if paint is not a valid paint handle, or is not shared with the current context

– if pattern is neither a valid image handle nor equal to
VG_INVALID_HANDLE, or is not shared with the current context

VG_IMAGE_IN_USE_ERROR
– if pattern is currently a rendering target

9.4.1 Pattern Tiling
Patterns may be extended (tiled) using one of four possible tiling modes, defined by the
VGTilingMode enumeration.

Version 1.1 Revision 1 (December 3, 2008)

Paint 133

VGTilingMode
The VGTilingMode enumeration defines possible methods for defining colors for
source pixels that lie outside the bounds of the source image.

The VG_TILE_FILL condition specifies that pixels outside the bounds of the source
image should be taken as the color VG_TILE_FILL_COLOR. The color is expressed as
a non-premultiplied sRGBA color and alpha value. Values outside the [0, 1] range are
interpreted as the nearest endpoint of the range.

The VG_TILE_PAD condition specifies that pixels outside the bounds of the source
image should be taken as having the same color as the closest edge pixel of the source
image. That is, a pixel (x, y) has the same value as the image pixel (max(0, min(x, width
– 1)), max(0, min(y, height – 1))).

The VG_TILE_REPEAT condition specifies that the source image should be repeated
indefinitely in all directions. That is, a pixel (x, y) has the same value as the image pixel
(x mod width, y mod height) where the operator ‘a mod b’ returns a value between 0 and
(b – 1) such that a = k*b + (a mod b) for some integer k.

The VG_TILE_REFLECT condition specifies that the source image should be reflected
indefinitely in all directions. That is, a pixel (x, y) has the same value as the image pixel
(x’, y’) where:

x’ = x mod width if floor(x/width) is even,

 width – 1 – (x mod width) otherwise.

y’ = y mod height if floor(y/height) is even,

 height – 1 – (y mod height) otherwise.

typedef enum {
 VG_TILE_FILL = 0x1D00,
 VG_TILE_PAD = 0x1D01,
 VG_TILE_REPEAT = 0x1D02,
 VG_TILE_REFLECT = 0x1D03,
} VGTilingMode;

Setting the Pattern Tiling Mode
The pattern tiling mode is set using vgSetParameteri with a paramType argument of
VG_PAINT_PATTERN_TILING_MODE.

Version 1.1 Revision 1 (December 3, 2008)

Paint 134

VGPaint myFillPaint, myStrokePaint;
VGImage myFillPaintPatternImage, myStrokePaintPatternImage;

VGTilingMode fill_tilingMode, stroke_tilingMode;

vgSetParameteri(myFillPaint, VG_PAINT_TYPE,
 VG_PAINT_TYPE_PATTERN);
vgSetParameteri(myFillPaint, VG_PAINT_PATTERN_TILING_MODE,
 fill_tilingMode);
vgPaintPattern(myFillPaint, myFillPaintPatternImage);

vgSetParameteri(myStrokePaint, VG_PAINT_TYPE,
 VG_PAINT_TYPE_PATTERN);
vgSetParameteri(myStrokePaint, VG_PAINT_PATTERN_TILING_MODE,
 stroke_tilingMode);
vgPaintPattern(myStrokePaint, myStrokePaintPatternImage);

Version 1.1 Revision 1 (December 3, 2008)

Images 135

10 Images
Images are rectangular collections of pixels. Image data may be inserted or extracted in a
variety of formats with varying bit depths, color spaces, and alpha channel types. The
actual storage format of an image is implementation-dependent, and may be optimized
for a given device, but must allow pixels to be read and written losslessly. Images may be
drawn to a drawing surface, used to define paint patterns, or operated on directly by
image filter operations.

10.1 Image Coordinate Systems
An image defines a coordinate system in which pixels are indexed using integer
coordinates, with each integer corresponding to a distinct pixel. The lower-left pixel has
a coordinate of (0, 0), the x coordinate increases horizontally from left to right, and the y
coordinate increases vertically from bottom to top. Note that this orientation is consistent
with the other coordinate systems used in the OpenVG API, but differs from the top-to-
bottom orientation used by many other imaging systems.

The “energy” of a pixel is located at the pixel center; that is, the pixel with coordinate (x,
y) has its energy at the point (x + ½, y + ½). The color at a point not located at a pixel
center may be defined by applying a suitable filter to the colors defined at a set of nearby
pixel centers.

10.2 Image Formats

VGImageFormat
The VGImageFormat enumeration defines the set of supported pixel formats and color
spaces for images:

Version 1.1 Revision 1 (December 3, 2008)

Images 136

typedef enum {
 /* RGB{A,X} channel ordering */
 VG_sRGBX_8888 = 0,
 VG_sRGBA_8888 = 1,
 VG_sRGBA_8888_PRE = 2,
 VG_sRGB_565 = 3,
 VG_sRGBA_5551 = 4,
 VG_sRGBA_4444 = 5,
 VG_sL_8 = 6,
 VG_lRGBX_8888 = 7,
 VG_lRGBA_8888 = 8,
 VG_lRGBA_8888_PRE = 9,
 VG_lL_8 = 10,
 VG_A_8 = 11,
 VG_BW_1 = 12,
 VG_A_1 = 13,
 VG_A_4 = 14,

 /* {A,X}RGB channel ordering */
 VG_sXRGB_8888 = 0 | (1 << 6),
 VG_sARGB_8888 = 1 | (1 << 6),
 VG_sARGB_8888_PRE = 2 | (1 << 6),
 VG_sARGB_1555 = 4 | (1 << 6),
 VG_sARGB_4444 = 5 | (1 << 6),
 VG_lXRGB_8888 = 7 | (1 << 6),
 VG_lARGB_8888 = 8 | (1 << 6),
 VG_lARGB_8888_PRE = 9 | (1 << 6),

 /* BGR{A,X} channel ordering */
 VG_sBGRX_8888 = 0 | (1 << 7),
 VG_sBGRA_8888 = 1 | (1 << 7),
 VG_sBGRA_8888_PRE = 2 | (1 << 7),
 VG_sBGR_565 = 3 | (1 << 7),
 VG_sBGRA_5551 = 4 | (1 << 7),
 VG_sBGRA_4444 = 5 | (1 << 7),
 VG_lBGRX_8888 = 7 | (1 << 7),
 VG_lBGRA_8888 = 8 | (1 << 7),
 VG_lBGRA_8888_PRE = 9 | (1 << 7),

 /* {A,X}BGR channel ordering */
 VG_sXBGR_8888 = 0 | (1 << 6) | (1 << 7),
 VG_sABGR_8888 = 1 | (1 << 6) | (1 << 7),
 VG_sABGR_8888_PRE = 2 | (1 << 6) | (1 << 7),
 VG_sABGR_1555 = 4 | (1 << 6) | (1 << 7),
 VG_sABGR_4444 = 5 | (1 << 6) | (1 << 7),
 VG_lXBGR_8888 = 7 | (1 << 6) | (1 << 7),
 VG_lABGR_8888 = 8 | (1 << 6) | (1 << 7),
 VG_lABGR_8888_PRE = 9 | (1 << 6) | (1 << 7)
} VGImageFormat;

Version 1.1 Revision 1 (December 3, 2008)

Images 137

The letter A denotes an alpha (α) channel , R denotes red, G denotes green, and B
denotes blue. X denotes a padding byte that is ignored. L denotes grayscale, and BW
denotes (linear) bi-level grayscale (black-and-white), with 0 representing black and 1
representing white in either case. A lower-case letter s represents a non-linear,
perceptually-uniform color space, as in sRGB and sL; a lower-case letter l represents a
linear color space using the sRGB primaries. Formats with a suffix of _PRE store pixel
values in premultiplied format.

Bit 6 of the numeric values of the enumeration indicates the position of the alpha channel
(or unused byte for formats that do not include alpha). If bit 6 is disabled, the alpha or
unused channel appears as the last channel, otherwise it appears as the first channel. Bit 7
indicates the ordering of the RGB color channels. If bit 7 is disabled, the color channels
appear in RGB order, otherwise they appear in BGR order.

The VG_A_8 format is treated as though it were VG_lRGBA_8888, with
R=G=B=1. Color information is discarded when placing an RGBA value into a
VG_A_8 pixel.

Abbreviated names such as lL or sRGBA_PRE are used in this document where the
exact number of bits per channel is not relevant, such as when pixel values are
considered to have been remapped to a [0, 1] range. Such abbreviated names are not an
official part of the API.

The bits for each color channel are stored within a machine word representing a single
pixel from left to right (MSB to LSB) in the order indicated by the pixel format name.
For example, in a pixel with a format of VG_sRGB_565, the bits representing the red
channel may be obtained by shifting right by 11 bits (to remove 6 bits of green and 5 bits
of blue) and masking with the 5-bit wide mask value 0x1f. Note that this definition is
independent of the endianness of the underlying platform as sub-word memory addresses
are not involved.

Table 11 summarizes the symbols used in image format names.

Table 12 lists the size of a single pixel for each image format, in terms of bytes and bits.
Note that all formats other than VG_BW_1, VG_A_1, and VG_A_4 use a whole number
of bytes per pixel.

Formats having linear-light coding (VG_lRGBX_8888, VG_lRGBA_8888,
VG_lRGBA_8888_PRE, and VG_lL8) are liable to exhibit banding (or contouring)
artifacts when viewed with a contrast ratio greater than about 10:1 [POYN03] and are
intended mainly for inputting existing linearly-coded imagery. For high-quality imaging,
consider using one of the non-linear, perceptually uniform image formats such as
VG_sRGBX_8888, VG_sRGBA_8888, VG_sRGBA_8888_PRE, and VG_sL_8.

Version 1.1 Revision 1 (December 3, 2008)

Images 138

Symbol Interpretation

A Alpha channel

R Red color channel

G Green color channel

B Blue color channel

X Uninterpreted padding byte

L Grayscale

BW 1-bit Black and White

l Linear color space

s Non-linear (sRGB) color space

PRE Alpha values are premultiplied

Table 11: Symbols Used in Image Format Names

Format Bytes Per Pixel Bits Per Pixel

VG_sRGBX_8888 4 32

VG_sRGBA_8888 4 32

VG_sRGBA_8888_PRE 4 32

VG_sRGB_565 2 16

VG_sRGBA_5551 2 16

VG_sRGBA_4444 2 16

VG_sL_8 1 8

VG_lRGBX_8888 4 32

VG_lRGBA_8888 4 32

Version 1.1 Revision 1 (December 3, 2008)

Images 139

Format Bytes Per Pixel Bits Per Pixel

VG_lRGBA_8888_PRE 4 32

VG_lL_8 1 8

VG_A_1 n/a 1

VG_A_4 n/a 4

VG_A_8 1 8

VG_BW_1 n/a 1

Table 12: Image Format Pixel Sizes

10.3 Creating and Destroying Images

VGImage
Images are accessed using opaque handles of type VGImage.
typedef VGHandle VGImage;

VGImageQuality
The VGImageQuality enumeration defines varying levels of resampling
quality to be used when drawing images.

The VG_IMAGE_QUALITY_NONANTIALIASED setting disables resampling;
images are drawn using point sampling (also known as nearest-neighbor
interpolation) only. VG_IMAGE_QUALITY_FASTER enables low-to-medium
quality resampling that does not require extensive additional resource allocation.
VG_IMAGE_QUALITY_BETTER enables high-quality resampling that may allocate
additional memory for pre-filtering, tables, and the like. Implementations are not
required to provide three distinct resampling algorithms, but the non-antialiased (point
sampling) mode must be supported.

Version 1.1 Revision 1 (December 3, 2008)

Images 140

typedef enum {
 VG_IMAGE_QUALITY_NONANTIALIASED = (1 << 0),
 VG_IMAGE_QUALITY_FASTER = (1 << 1),
 VG_IMAGE_QUALITY_BETTER = (1 << 2)
} VGImageQuality;

Use vgSeti with a parameter type of VG_IMAGE_QUALITY to set the filter type to be
used for image drawing:
VGImageQuality quality;
vgSeti(VG_IMAGE_QUALITY, quality);

VG_MAX_IMAGE_WIDTH
The VG_MAX_IMAGE_WIDTH read-only parameter contains the largest legal value
of the width parameter to the vgCreateImage and vgCreateMask functions. All
implementations must define VG_MAX_IMAGE_WIDTH to be an integer no smaller
than 256. If there is no implementation-defined limit, a value of VG_MAXINT may be
returned. The value may be retrieved by calling vgGeti:
VGint imageMaxWidth = vgGeti(VG_MAX_IMAGE_WIDTH);

VG_MAX_IMAGE_HEIGHT
The VG_MAX_IMAGE_HEIGHT read-only parameter contains the largest legal value
of the height parameter to the vgCreateImage and vgCreateMask functions. All
implementations must define VG_MAX_IMAGE_HEIGHT to be an integer no smaller
than 256. If there is no implementation-defined limit, a value of VG_MAXINT may be
returned. The value may be retrieved by calling vgGeti:
VGint imageMaxHeight = vgGeti(VG_MAX_IMAGE_HEIGHT);

VG_MAX_IMAGE_PIXELS
The VG_MAX_IMAGE_PIXELS read-only parameter contains the largest legal value
of the product of the width and height parameters to the vgCreateImage and
vgCreateMask functions. All implementations must define VG_MAX_IMAGE_PIXELS
to be an integer no smaller than 65536. If there is no implementation-defined limit, a
value of VG_MAXINT may be returned. The value may be retrieved by calling vgGeti:
VGint imageMaxPixels = vgGeti(VG_MAX_IMAGE_PIXELS);

VG_MAX_IMAGE_BYTES
The VG_MAX_IMAGE_BYTES read-only parameter contains the largest number of

Version 1.1 Revision 1 (December 3, 2008)

Images 141

bytes that may make up the image data passed to the vgCreateImage function. All
implementations must define VG_MAX_IMAGE_BYTES to be an integer no smaller than
65536. If there is no implementation-defined limit, a value of VG_MAXINT may be
returned. The value may be retrieved by calling vgGeti:
VGint imageMaxBytes = vgGeti(VG_MAX_IMAGE_BYTES);

vgCreateImage
vgCreateImage creates an image with the given width, height, and pixel format
and returns a VGImage handle to it. If an error occurs, VG_INVALID_HANDLE is
returned. All color and alpha channel values are initially set to zero. The format
parameter must contain a value from the VGImageFormat enumeration.

The allowedQuality parameter is a bitwise OR of values from the
VGImageQuality enumeration, indicating which levels of resampling quality may be
used to draw the image. It is always possible to draw an image using the
VG_IMAGE_QUALITY_NONANTIALIASED quality setting even if it is not explicitly
specified.
VGImage vgCreateImage(VGImageFormat format,
 VGint width, VGint height,
 VGbitfield allowedQuality)

ERRORS
VG_UNSUPPORTED_IMAGE_FORMAT_ERROR
– if format is not a valid value from the VGImageFormat enumeration
VG_ILLEGAL_ARGUMENT_ERROR
– if width or height are less than or equal to 0

– if width is greater than VG_MAX_IMAGE_WIDTH
– if height is greater than VG_MAX_IMAGE_HEIGHT
– if width*height is greater than VG_MAX_IMAGE_PIXELS
– if width*height*(pixel size of format) is greater than
VG_MAX_IMAGE_BYTES

– if allowedQuality is not a bitwise OR of values from the
VGImageQuality enumeration

Version 1.1 Revision 1 (December 3, 2008)

Images 142

vgDestroyImage
The resources associated with an image may be deallocated by calling
vgDestroyImage. Following the call, the image handle is no longer valid in any
context that shared it. If the image is currently in use as a rendering target, is the
ancestor of another image (see vgChildImage), is set as a paint pattern image on
a VGPaint object, or is set as a glyph an a VGFont object, its definition remains
available to those consumers as long as they remain valid, but the handle may no
longer be used. When those uses cease, the image’s resources will automatically
be deallocated.
void vgDestroyImage(VGImage image);

ERRORS
VG_BAD_HANDLE_ERROR
– if image is not a valid image handle, or is not shared with the current

context

10.4 Querying Images

VGImageParamType
Values from the VGImageParamType enumeration may be used as the paramType
argument to vgGetParameter to query various features of an image. All of the
parameters defined by VGImageParamType have integer values and are read-only.
typedef enum {
 VG_IMAGE_FORMAT = 0x1E00,
 VG_IMAGE_WIDTH = 0x1E01,
 VG_IMAGE_HEIGHT = 0x1E02
} VGImageParamType;

Image Format
The value of the format parameter that was used to define the image may be queried
using the VG_IMAGE_FORMAT parameter. The returned integral value should be
cast to the VGImageFormat enumeration:

Version 1.1 Revision 1 (December 3, 2008)

Images 143

VGImage image;
VGImageFormat imageFormat =
 (VGImageFormat)vgGetParameteri(image, VG_IMAGE_FORMAT);

Image Width
The value of the width parameter that was used to define the image may be queried
using the VG_IMAGE_WIDTH parameter:
VGImage image;
VGint imageWidth = vgGetParameteri(image, VG_IMAGE_WIDTH);

Image Height
The value of the height parameter that was used to define the image may be queried
using the VG_IMAGE_HEIGHT parameter:
VGImage image;
VGint imageHeight = vgGetParameteri(image, VG_IMAGE_HEIGHT);

10.5 Reading and Writing Image Pixels

vgClearImage
The vgClearImage function fills a given rectangle of an image with the color specified
by the VG_CLEAR_COLOR parameter. The rectangle to be cleared is given by x, y,
width, and height, which must define a positive region. The rectangle is
clipped to the bounds of the image.
void vgClearImage(VGImage image,
 VGint x, VGint y, VGint width, VGint height)

Version 1.1 Revision 1 (December 3, 2008)

Images 144

ERRORS
VG_BAD_HANDLE_ERROR
– if image is not a valid image handle, or is not shared with the current

context
VG_IMAGE_IN_USE_ERROR
– if image is currently a rendering target
VG_ILLEGAL_ARGUMENT_ERROR
– if width or height is less than or equal to 0

vgImageSubData
The vgImageSubData function reads pixel values from memory, performs format
conversion if necessary, and stores the resulting pixels into a rectangular portion of an
image.

Pixel values are read starting at the address given by the pointer data; adjacent
scanlines are separated by dataStride bytes. Negative or zero values of
dataStride are allowed. The region to be written is given by x, y, width, and
height, which must define a positive region. Pixels that fall outside the bounds
of the image are ignored.

Pixel values in memory are formatted according to the dataFormat parameter, which
must contain a value from the VGImageFormat enumeration. The data pointer must
be aligned according to the number of bytes of the pixel format specified by
dataFormat, unless dataFormat is equal to VG_BW_1, VG_A_1, or VG_A_4, in
which case 1 byte alignment is sufficient. Each pixel is converted into the format of
the destination image as it is written.

If dataFormat is not equal to VG_BW_1, VG_A_1, or VG_A_4, the destination image
pixel (x + i, y + j) for 0 ≤ i < width and 0 ≤ j < height is taken from the N bytes of
memory starting at data + j*dataStride + i*N, where N is the number of bytes per pixel
given in Table 12. For multi-byte pixels, the bits are arranged in the same order used to
store native multi-byte primitive datatypes. For example, a 16-bit pixel would be written
to memory in the same format as when writing through a pointer with a native 16-bit
integral datatype.

If dataFormat is equal to VG_BW_1 or VG_A_1, pixel (x + i, y + j) of the
destination image is taken from the bit at position (i % 8) within the byte at data +

Version 1.1 Revision 1 (December 3, 2008)

Images 145

j*dataStride + floor(i/8) where the least significant bit (LSB) of a byte is considered to
be at position 0 and the most significant bit (MSB) is at position 7. Each scanline must
be padded to a multiple of 8 bits. Note that dataStride is always given in terms of
bytes, not bits.

If dataFormat is equal to VG_A_4, pixel (x + i, y + j) of the destination image is
taken from the 4 bits from position (4*(i % 2)) to (4*(i % 2) + 3) within the byte at data
+ j*dataStride + floor(i/2). Each scanline must be padded to a multiple of 8 bits.

If dataFormat specifies a premultiplied format (VG_sRGBA_8888_PRE or
VG_lRGBA_8888_PRE), color channel values of a pixel greater than their
corresponding alpha value are clamped to the range [0, alpha].
void vgImageSubData(VGImage image,
 const void * data, VGint dataStride,
 VGImageFormat dataFormat,
 VGint x, VGint y, VGint width, VGint height)

ERRORS
VG_BAD_HANDLE_ERROR
– if image is not a valid image handle, or is not shared with the current

context
VG_IMAGE_IN_USE_ERROR
– if image is currently a rendering target
VG_UNSUPPORTED_IMAGE_FORMAT_ERROR
– if dataFormat is not a valid value from the VGImageFormat enumeration
VG_ILLEGAL_ARGUMENT_ERROR
– if width or height is less than or equal to 0

– if data is NULL
– if data is not properly aligned

vgGetImageSubData
The vgGetImageSubData function reads pixel values from a rectangular portion of an
image, performs format conversion if necessary, and stores the resulting pixels into
memory.

Version 1.1 Revision 1 (December 3, 2008)

Images 146

Pixel values are written starting at the address given by the pointer data; adjacent
scanlines are separated by dataStride bytes. Negative or zero values of
dataStride are allowed. The region to be read is given by x, y, width, and
height, which must define a positive region. Pixels that fall outside the bounds
of the image are ignored.

Pixel values in memory are formatted according to the dataFormat parameter, which
must contain a value from the VGImageFormat enumeration. If dataFormat
specifies a premultiplied format (VG_sRGBA_8888_PRE or VG_lRGBA_8888_PRE),
color channel values of a pixel that are greater than their corresponding alpha value are
clamped to the range [0, alpha]. The data pointer alignment and the pixel layout in
memory are as described in the vgImageSubData section.
void vgGetImageSubData(VGImage image,
 void * data, VGint dataStride,
 VGImageFormat dataFormat,
 VGint x, VGint y, VGint width, VGint height)

ERRORS
VG_BAD_HANDLE_ERROR
– if image is not a valid image handle, or is not shared with the current context
VG_IMAGE_IN_USE_ERROR
– if image is currently a rendering target
VG_UNSUPPORTED_IMAGE_FORMAT_ERROR
– if dataFormat is not a valid value from the VGImageFormat enumeration
VG_ILLEGAL_ARGUMENT_ERROR
– if width or height is less than or equal to 0

– if data is NULL

– if data is not properly aligned

10.6 Child Images
A child image is an image that shares physical storage with a portion of an existing
image, known as its parent. An image may have any number of children, but each image
has only one parent (that may be itself). An ancestor of an image is defined as the image
itself, its parent, its parent’s parent, etc. By definition, a pair of images are said to be

Version 1.1 Revision 1 (December 3, 2008)

Images 147

related if and only if they have a common ancestor. Specifically, two images that are
children of a common parent are considered to be related even if their respective pixel
areas within the parent do not overlap. Changes to an image are immediately reflected in
all other images to which it is related.

A child image remains valid even following a call to vgDestroyImage on one of its
ancestors (other than itself). When the last image of a set of related images is destroyed,
the entire storage will be reclaimed. Implementations may use a reference count to
determine when image storage may be reclaimed.

A child image may not be used as a rendering target. A parent image may not be used as
a rendering target until all the child images derived from it have been destroyed.

vgChildImage
The vgChildImage function returns a new VGImage handle that refers to a portion of
the parent image. The region is given by the intersection of the bounds of the parent
image with the rectangle beginning at pixel (x, y) with dimensions width and
height, which must define a positive region contained entirely within parent.
VGImage vgChildImage(VGImage parent,
 VGint x, VGint y, VGint width, VGint height)

ERRORS
VG_BAD_HANDLE_ERROR
– if parent is not a valid image handle, or is not shared with the current

context
VG_IMAGE_IN_USE_ERROR
– if parent is currently a rendering target
VG_ILLEGAL_ARGUMENT_ERROR
– if x is less than 0 or greater than or equal to the parent width

– if y is less than 0 or greater than or equal to the parent height

– if width or height is less than or equal to 0

– if x + width is greater than the parent width

– if y + height is greater than the parent height

Version 1.1 Revision 1 (December 3, 2008)

Images 148

vgGetParent
The vgGetParent function returns the closest valid ancestor (i.e., one that has not been
the target of a vgDestroyImage call) of the given image. If image has no ancestors,
image is returned. The following pseudocode sequence illustrates this behavior.
VGImage A = vgCreateImage(...); // Create a new image A
VGImage B = vgChildImage(A, ...); // Make B a child of A
VGImage C = vgChildImage(B, ...); // Make C a child of B
VGImage parentA = vgGetParent(A); // A has no ancestors, parentA == A
VGImage parentB = vgGetParent(B); // A is B's parent, parentB == A
VGImage parentC1 = vgGetParent(C); // B is C's parent, parentC1 == B
vgDestroyImage(B); // Destroy B
VGImage parentC2 = vgGetParent(C); // B is not valid, parentC2 == A
vgDestroyImage(A); // Destroy A
VGImage parentC3 = vgGetParent(C); // A, B are not valid, parentC3 ==
C

VGImage vgGetParent(VGImage image)

ERRORS
VG_BAD_HANDLE_ERROR
– if image is not a valid image handle, or is not shared with the current

context
VG_IMAGE_IN_USE_ERROR
– if image is currently a rendering target

10.7 Copying Pixels Between Images

vgCopyImage
Pixels may be copied between images using the vgCopyImage function. The source
image pixel (sx + i, sy + j) is copied to the destination image pixel
(dx + i, dy + j), for 0 ≤ i < width and 0 ≤ j < height. Pixels whose source or
destination lie outside of the bounds of the respective image are ignored. Pixel
format conversion is applied as needed.

If the dither flag is equal to VG_TRUE, an implementation-dependent dithering
algorithm may be applied. This may be useful when copying into a destination

Version 1.1 Revision 1 (December 3, 2008)

Images 149

image with a smaller color bit depth than that of the source image.
Implementations should choose an algorithm that will provide good results
when the output images are displayed as successive frames in an animation.

If src and dst are the same image, or are related, the copy will occur in a
consistent fashion as though the source pixels were first copied into a temporary
buffer and then copied from the temporary buffer to the destination.
void vgCopyImage(VGImage dst, VGint dx, VGint dy,
 VGImage src, VGint sx, VGint sy,
 VGint width, VGint height,
 VGboolean dither)

ERRORS
VG_BAD_HANDLE_ERROR
– if either dst or src is not a valid image handle, or is not shared with the

current context
VG_IMAGE_IN_USE_ERROR
– if either dst or src is currently a rendering target
VG_ILLEGAL_ARGUMENT_ERROR
– if width or height is less than or equal to 0

10.8 Drawing Images to the Drawing Surface
Images may be drawn onto a drawing surface. An affine or projective transformation
may be applied while drawing. The current image and blending modes are used to
control how image pixels are combined with the current paint and blended into the
destination. Conversion between the image and destination pixel formats is applied
automatically.

VGImageMode
The VGImageMode enumeration is used to select between several styles of image
drawing, described in the vgDrawImage section below.

Version 1.1 Revision 1 (December 3, 2008)

Images 150

typedef enum {
 VG_DRAW_IMAGE_NORMAL = 0x1F00,
 VG_DRAW_IMAGE_MULTIPLY = 0x1F01,
 VG_DRAW_IMAGE_STENCIL = 0x1F02
} VGImageMode;

To set the mode, use vgSeti with a paramType value of VG_IMAGE_MODE:
VGImageMode drawImageMode;
vgSeti(VG_IMAGE_MODE, drawImageMode);

vgDrawImage
An image may be drawn to the current drawing surface using the vgDrawImage
function. The current image-user-to-surface transformation Ti is applied to the image, so
that the image pixel centered at (px + ½, py + ½) is mapped to the point (Ti)(px + ½, py
+ ½). In practice, backwards mapping may be used. That is, a sample located at (x, y) in
the surface coordinate system is colored according to an interpolated image pixel value
at the point (Ti)-1(x, y) in the image coordinate system. If Ti is non-invertible (or nearly
so, within the limits of numerical accuracy), no drawing occurs.

Interpolation is done in the color space of the image. Image color values are processed in
premultiplied alpha format during interpolation. Color channel values are clamped to the
range [0, alpha] before interpolation.

When a projective transformation is used (i.e., the bottom row of the image-user-to-
surface transformation contains values [w0 w1 w2] different from [0 0 1]), each corner
point (x, y) of the image must result in a positive value of d = (x*w0 + y*w1 + w2), or else
nothing is drawn. This rule prevents degeneracies due to transformed image points
passing through infinity, which occurs when d passes through 0. By requiring d to be
positive at the corners, it is guaranteed to be positive at all interior points as well.

When a projective transformation is used, the value of the VG_IMAGE_MODE parameter
is ignored and the behavior of VG_DRAW_IMAGE_NORMAL is substituted. This avoids
the need to generate paint pixels in perspective.

The set of pixels affected consists of the quadrilateral with vertices (Ti)(0, 0), (Ti)(w, 0),
(Ti)(w, h), and (Ti)(0, h) (where w and h are respectively the width and height of the
image), plus a boundary of up to 1½ pixels for filtering purposes.

Clipping, masking, and scissoring are applied in the same manner as with vgDrawPath.
To limit drawing to a subregion of the image, create a child image using
vgChildImage.

The image quality will be the maximum quality allowed by the image (as determined by
the allowedQuality parameter to vgCreateImage) that is not higher than the current

Version 1.1 Revision 1 (December 3, 2008)

Images 151

setting of VG_IMAGE_QUALITY.
void vgDrawImage(VGImage image)

ERRORS
VG_BAD_HANDLE_ERROR
– if image is not a valid image handle, or is not shared with the current

context
VG_IMAGE_IN_USE_ERROR
– if image is currently a rendering target

The effects of vgDrawImage depend on the current setting of the VG_IMAGE_MODE
parameter:

VG_DRAW_IMAGE_NORMAL
When the VG_IMAGE_MODE parameter is set to VG_DRAW_IMAGE_NORMAL, the
image is drawn. If the image contains an alpha channel, the alpha values associated with
each pixel are used as the source alpha values. Otherwise, the source alpha is taken to be
1 at each pixel. No paint generation takes place. When a projective transformation is
used, this mode is used regardless of the setting of the VG_IMAGE_MODE parameter.

VG_DRAW_IMAGE_MULTIPLY
When the VG_IMAGE_MODE parameter is set to VG_DRAW_IMAGE_MULTIPLY, the
image being drawn is multiplied by the paint color and alpha values. This allows the
image to be drawn translucently (by setting the paint color to R=G=B=1 and A=opacity),
or to be modulated in other ways. For example, a gradient paint could be used to create a
fading effect, or a pattern paint could be used to vary the opacity on a pixel-by-pixel
basis. If the paint color is opaque white (R=G=B=A=1) everywhere, the results are
equivalent to those of VG_DRAW_IMAGE_NORMAL.

Paint generation (using the VGPaint object defined for the VG_FILL_PATH paint
mode) occurs at each pixel, and the interpolated image and paint color and alpha values
are multiplied channel-by-channel. The result (considered to be in the same color space
as the image) is used as the input to the color transform stage, the output of which is used
as the input to the current blend function, and normal blending takes place. Luminance
formats are expanded to RGB using formula (4) of section 3.4.2.

Note that the use of a source image having a linear pixel format (e.g., lRGB_888) will

Version 1.1 Revision 1 (December 3, 2008)

Images 152

result in a brightened output due to the fact that the paint values are not converted from
sRGB to linear, yet the results are treated as linear. Therefore the use of a linear source
image in this mode is recommended only for special effects.

VG_DRAW_IMAGE_STENCIL
When the VG_IMAGE_MODE parameter is set to VG_DRAW_IMAGE_STENCIL, the
image being drawn acts as a stencil through which the current paint is applied. This
allows an image to take the place of a geometric path definition in some cases, such as
drawing text glyphs. A special set of blending equations allows the red, green, and blue
channels to be blended using distinct alpha values taken from the image. This feature
allows stencils to take advantage of sub-pixel effects on LCD displays.

Paint generation (using the VGPaint object defined for the VG_FILL_PATH paint
mode) occurs at each pixel. The interpolated image and paint color and alpha values are
combined at each pixel as follows. Each image color channel value is multiplied by its
corresponding alpha value (if the image has an alpha channel) and by the paint alpha
value to produce an alpha value associated with that color channel. The current blending
equation (see Section 13) is applied separately for each destination color channel, using
the alpha value computed above as the source alpha value for the blend; the paint color
value is used as input to the color transform stage, the output of which is used as the
source color value for blending.

In terms of the blending functions α(αsrc, αdst) and c(csrc, cdst, αsrc, αdst) defined in
Section 13.2, the stenciled output color and alpha values for an RGB destination
are:

αtmp = α(αimage*αpaint, αdst)

Rdst ← c(Rpaint, Rdst, Rimage*αimage*αpaint, αdst) / αtmp

Gdst ← c(Gpaint, Gdst, Gimage*αimage*αpaint, αdst) / αtmp

Bdst ← c(Bpaint, Bdst, Bimage*αimage*αpaint, αdst) / αtmp

αdst ← αtmp

For example, if Porter-Duff “Src over Dst” blending is enabled (see Section 13.3), the
destination alpha and color values are computed as:

αtmp = (αimage*αpaint + αdst*(1 – αimage*αpaint))

Rdst ← (αimage*αpaint *Rimage*Rpaint + αdst*Rdst*(1 – αimage*αpaint *Rimage)) / αtmp

Gdst ← (αimage*αpaint *Gimage*Gpaint + αdst*Gdst*(1 – αimage*αpaint *Gimage)) / αtmp

Version 1.1 Revision 1 (December 3, 2008)

Images 153

Bdst ← (αimage*αpaint *Bimage*Bpaint + αdst*Bdst*(1 – αimage*αpaint *Bimage)) / αtmp

αdst ← αtmp

If the drawing surface has a luminance-only format, the pixels of the image being drawn
are each converted to luminance format using formula (3) of section 3.4.2 prior to
applying the stencil equations. In terms of the blending functions α(αsrc, αdst) and
c(csrc, cdst, αsrc, αdst) defined in Section 13.2, the stenciled output luminance and
alpha values for an luminance-only destination are:

αtmp = α(αimage*αpaint, αdst)

Ldst ← c(Lpaint, Ldst, Limage*αimage*αpaint, αdst) / αtmp

αdst ← αtmp

10.9 Reading and Writing Drawing Surface Pixels
Several functions are provided to read and write pixels on the drawing surface directly,
without applying transformations, masking, or blending. Table 13 below summarizes the
OpenVG functions that copy between sources and destinations in application memory,
VGImage handles, and the drawing surface.

When the source of a pixel copy operation is multisampled, and the destination is either
single sampled or multisampled with a different sample layout, each source pixel is
resolved to a single average value prior to being written to the destination.

If the destination of a pixel copy operation is multisampled, and the source is either
single-sampled or multisampled with a different sample layout, the source value is either
copied to each sample within the destination pixel, or the implementation may perform
dithering, i.e., write different values to each destination sample in order to ensure that the
average value within the destination is as close as possible to the incoming value.

Source/Dest Memory VGImage Surface

Memory n/a vgImageSubData vgWritePixels

VGImage vgGetImageSubData vgCopyImage vgSetPixels

Surface vgReadPixels vgGetPixels vgCopyPixels

Table 13: Pixel Copy Functions

Version 1.1 Revision 1 (December 3, 2008)

Images 154

10.9.1 Writing Drawing Surface Pixels

vgSetPixels
The vgSetPixels function copies pixel data from the image src onto the drawing
surface. The image pixel (sx + i, sy + j) is copied to the drawing surface pixel (dx + i,
dy + j), for 0 ≤ i < width and 0 ≤ j < height. Pixels whose source lies outside of
the bounds of src or whose destination lies outside the bounds of the drawing surface
are ignored. Pixel format conversion is applied as needed. Scissoring takes place
normally. Transformations, masking, and blending are not applied.
void vgSetPixels(VGint dx, VGint dy,
 VGImage src, VGint sx, VGint sy,
 VGint width, VGint height)

ERRORS
VG_BAD_HANDLE_ERROR
– if src is not a valid image handle, or is not shared with the current context
VG_IMAGE_IN_USE_ERROR
– if src is currently a rendering target
VG_ILLEGAL_ARGUMENT_ERROR
– if width or height is less than or equal to 0

vgWritePixels
The vgWritePixels function allows pixel data to be copied to the drawing surface
without the creation of a VGImage object. The pixel values to be drawn are taken from
the data pointer at the time of the vgWritePixels call, so future changes to the data have
no effect. The effects of changes to the data by another thread at the time of the call to
vgWritePixels are undefined.

The dataFormat parameter must contain a value from the VGImageFormat
enumeration. The alignment and layout of pixels is the same as for
vgImageSubData.

If dataFormat specifies a premultiplied format (VG_sRGBA_8888_PRE or
VG_lRGBA_8888_PRE), color channel values of a pixel greater than their

Version 1.1 Revision 1 (December 3, 2008)

Images 155

corresponding alpha value are clamped to the range [0, alpha].

Pixels whose destination coordinate lies outside the bounds of the drawing
surface are ignored. Pixel format conversion is applied as needed. Scissoring
takes place normally. Transformations, masking, and blending are not applied.
void vgWritePixels(const void * data, VGint dataStride,
 VGImageFormat dataFormat,
 VGint dx, VGint dy,
 VGint width, VGint height)

ERRORS
VG_UNSUPPORTED_IMAGE_FORMAT_ERROR
– if dataFormat is not a valid value from the VGImageFormat enumeration
VG_ILLEGAL_ARGUMENT_ERROR
– if width or height is less than or equal to 0

– if data is NULL
– if data is not properly aligned

The code:
void * data;
VGImageFormat dataFormat;
VGint dataStride;
VGint dx, dy, width, height;

vgWritePixels(data, dataStride, dataFormat, dx, dy, width, height);
is equivalent to the code:
VGImage image;
void * data;
VGImageFormat dataFormat;
VGint dataStride;
VGint dx, dy, width, height;

image = vgCreateImage(dataFormat, width, height, 0);
vgImageSubData(image, data, dataStride, dataFormat,
 0, 0, width, height);
vgSetPixels(dx, dy, image, width, height);
vgDestroyImage(image);

Version 1.1 Revision 1 (December 3, 2008)

Images 156

10.9.2 Reading Drawing Surface Pixels

vgGetPixels
The vgGetPixels function retrieves pixel data from the drawing surface into the image
dst. The drawing surface pixel (sx + i, sy + j) is copied to pixel (dx + i, dy + j) of
the image dst, for 0 ≤ i < width and 0 ≤ j < height. Pixels whose source lies
outside of the bounds of the drawing surface or whose destination lies outside the bounds
of dst are ignored. Pixel format conversion is applied as needed. The scissoring region
does not affect the reading of pixels.
void vgGetPixels(VGImage dst, VGint dx, VGint dy,
 VGint sx, VGint sy,
 VGint width, VGint height)

ERRORS
VG_BAD_HANDLE_ERROR
– if dst is not a valid image handle, or is not shared with the current context
VG_IMAGE_IN_USE_ERROR
– if dst is currently a rendering target
VG_ILLEGAL_ARGUMENT_ERROR
– if width or height is less than or equal to 0

vgReadPixels
The vgReadPixels function allows pixel data to be copied from the drawing surface
without the creation of a VGImage object.

Pixel values are written starting at the address given by the pointer data; adjacent
scanlines are separated by dataStride bytes. Negative or zero values of
dataStride are allowed. The region to be read is given by x, y, width, and
height, which must define a positive region.

Pixel values in memory are formatted according to the dataFormat parameter, which
must contain a value from the VGImageFormat enumeration. The data pointer
alignment and the pixel layout in memory is as described in the vgImageSubData
section.

Version 1.1 Revision 1 (December 3, 2008)

Images 157

Pixels whose source lies outside of the bounds of the drawing surface are
ignored. Pixel format conversion is applied as needed. The scissoring region
does not affect the reading of pixels.
void vgReadPixels(void * data, VGint dataStride,
 VGImageFormat dataFormat,
 VGint sx, VGint sy,
 VGint width, VGint height)

ERRORS
VG_UNSUPPORTED_IMAGE_FORMAT_ERROR
– if dataFormat is not a valid value from the VGImageFormat enumeration
VG_ILLEGAL_ARGUMENT_ERROR
– if width or height is less than or equal to 0

– if data is NULL
– if data is not properly aligned

Version 1.1 Revision 1 (December 3, 2008)

Images 158

The code:
void * data;
VGImageFormat dataFormat;
VGint dataStride;
VGint sx, sy, width, height;

vgReadPixels(data, dataStride, dataFormat, sx, sy, width, height);
is equivalent to the following code, assuming the specified rectangle lies completely
within the drawing surface bounds :
VGImage image;
void * data;
VGint dataStride;
VGImageFormat dataFormat;
VGint sx, sy, width, height;

image = vgCreateImage(dataFormat, width, height, 0);
vgGetPixels(image, 0, 0, sx, sy, width, height);
vgGetImageSubData(image, data, dataStride, dataFormat, width, height);
vgDestroyImage(image);

10.10 Copying Portions of the Drawing Surface

vgCopyPixels
The vgCopyPixels function copies pixels from one region of the drawing surface to
another. Copies between overlapping regions are allowed and always produce consistent
results identical to copying the entire source region to a scratch buffer followed by
copying the scratch buffer into the destination region.

 The drawing surface pixel (sx + i, sy + j) is copied to pixel (dx + i, dy + j) for 0 ≤ i <
width and 0 ≤ j < height. Pixels whose source or destination lies outside of the
bounds of the drawing surface are ignored. Transformations, masking, and blending are
not applied. Scissoring is applied to the destination, but does not affect the reading of
pixels.
void vgCopyPixels(VGint dx, VGint dy,
 VGint sx, VGint sy,
 VGint width, VGint height)

Version 1.1 Revision 1 (December 3, 2008)

Images 159

ERRORS
VG_ILLEGAL_ARGUMENT_ERROR
– if width or height is less than or equal to 0

Version 1.1 Revision 1 (December 3, 2008)

Text 160

11 Text
Several classes of applications were considered in order to determining the set of
features supported by the OpenVG text rendering API. E-book readers, scalable
user interfaces with text-driven menus, and SVG viewers used to display text-
intensive content rely on high-quality text rendering using well-hinted fonts. For
these applications, the use of unhinted outlines, or the use of hardware-
accelerated glyph scaling that does not support hints, would be detrimental to
application rendering quality. Gaming applications that use special custom fonts,
applications where text is rotated or placed along a path, or SVG viewers where
unhinted SVG fonts are specified are less sensitive to the use of unhinted fonts
for text rendering and may benefit from hardware-accelerated glyph scaling.

These application requirements made it clear that OpenVG must provide a fast, low-level
hardware-accelerated API that is capable of supporting both hinted and unhinted vector
glyph outlines, as well as glyphs represented as bitmaps.

11.1 Text Rendering
The process of text rendering involves the following steps:

• selection of a font, font style and size;
• scaling of glyphs used in a text fragment, including hint processing;
• composing the text on a page or within a text box;
• rendering of glyph outlines into bitmap images; and
• blitting of bitmap images to a frame buffer or a screen.

Font and glyph scaling is usually done once for each selected text size; however, the
rendering of glyph outlines and blitting of bitmaps is repeated routinely. While caching
of rendered bitmaps may improve performance of software rendering solutions, hardware
acceleration of routine and repetitive tasks may significantly improve the overall
performance of applications.

OpenVG provides a mechanism to allow applications to define a VGFont object
as a collection of glyphs, where each glyph can be represented as either a
VGPath representing either an original unhinted outline that can be scaled and
rendered, or a scaled and hinted outline; or a VGImage representing a scaled,
optionally hinted, and rendered image of a glyph. Use of a VGImage provides
the opportunity to use hardware acceleration with bitmap fonts, or when a font
size or rendering quality requirement cannot be satisfied by generic outline

Version 1.1 Revision 1 (December 3, 2008)

Text 161

rendering. No further hinting is applied to image glyphs.

OpenVG can assist applications in text composition by hardware-accelerating
glyph positioning calculations; however, the text layout and positioning are the
responsibilities of the application.

11.2 Font Terminology
In typesetting literature, and throughout this chapter, the terms character and glyph are
sometimes used interchangeably to refer to a single letter, number, punctuation mark,
accent, or symbol in a string of text, or in a font or a typeface. In strict terms, the term
“character” refers to a computer code representing the unit of text content (e.g., a symbol
from a particular alphabet – a Latin character, Chinese character, etc.) while the term
“glyph” refers to the unit of text display defining an image of a character or group of
characters (ligature). Each character may be represented by many different glyphs from
multiple typefaces having different styles. In complex scripts, a character can change its
appearance depending on its position in a word and on adjacent characters, and can be
associated with more than one glyph of the same font.

When fonts are scaled to a small size, there may not be enough pixels to display all the
subtleties of the typeface design. Some features of the glyphs may be severely distorted,
or may even completely disappear at small sizes. In order to make sure that the original
design and legibility of a typeface is preserved, fonts typically contain additional data – a
set of special instructions that are executed when a font is scaled to a particular size,
known as hints. In TrueType and OpenType font formats, the hints are special byte-code
instructions that are interpreted and executed by the rasterizer. Hints allow font
developers to control the alignment of the outline data points with the pixel grid of the
output device to ensure that glyph outlines are always rendered faithfully to the original
design.

11.3 Glyph Positioning and Text Layout
Scalable fonts define glyphs using vector outlines and additional set of data,
such as hinting instructions, font and glyph metrics, etc. A typical glyph would
be defined as presented in Figure 23 below:

Version 1.1 Revision 1 (December 3, 2008)

Text 162

Figure 23: Implicit Closure of Filled Paths

The glyph origin is not always located at the glyph boundary. Glyphs from various
custom or script fonts may have swashes and ornamental design with the glyph origin
located inside the bounding box, as can be seen (see letter 'p') in the following

The complexity of text rendering and composition depends on language scripts.
In many simple scripts (such as western and eastern European languages) text is
composed by simply planking glyphs next to each other along the horizontal
baseline. Each scaled and rendered glyph is positioned in such a way that the
current glyph origin is located at the same point that is defined by the “advance
width”, or escapement of the previous character (see Figure 24 below).

Figure 24: Glyph Positioning

Version 1.1 Revision 1 (December 3, 2008)

Text 163

The next glyph origin must be calculated using the escapement for the current
glyph. Note that vector defined by two points [glyph_origin, escapement] must
be subjected to the same matrix transformation that is applied to a glyph outline
when the glyph is scaled. This operation is equivalent to calling the function:
vgTranslate(escapement.x, escapement.y);

The glyph origin is stored in the VG_GLYPH_ORIGIN parameter of the OpenVG
state, and is updated after drawing each glyph of sequence of glyphs.

In some cases, the text composition requires that glyph layout and positioning be
adjusted along the baseline (using kerning) to account for the difference in
appearance of different glyphs and to achieve uniform typographic color (optical
density) of the text (see Figure 25 below).

Figure 25: Glyph Positioning With Kerning

When two or more language scripts are used in the same text fragment, multiple
adjustments for glyph positioning may be required. For example, Latin scripts have
lowercase characters that have features descending below the text baseline, while Asian
scripts typically have glyphs positioned on the baseline. When combining characters
from these two scripts the position of the baseline for Asian characters should be
adjusted.

Some complex scripts require glyph positioning be adjusted in both directions. Figure 26
below demonstrates text layout in a complex (Arabic) script, involving diagonal writing,
ligatures and glyph substitutions. A sequence of characters (right, reading right to

Version 1.1 Revision 1 (December 3, 2008)

Text 164

left) is combined to form a resulting Urdu word (left) which is displayed in the
“Nastaliq” style.

Figure 26: Text Layout in a Complex Script

Therefore, when a text composition involves support for complex scripts, the
inter-character spacing between each pair of glyphs in a text string may have to
be defined using the escapement for the current glyph [i], and the additional
adjustment vector for the pair of glyphs [i, i+1]. The new glyph origin calculation
for the glyph [i+1] is equivalent to performing the following operation:

vgTranslate((escapement.x[i] + adjustment.x[i]),
 (escapement.y[i] + adjustment.y[i]));

11.4 Fonts in OpenVG

11.4.1 VGFont Objects and Glyph Mapping
OpenVG provides VGFont objects to assist applications with text rendering.

Each VGFont object defines a collection of glyphs. Glyphs in OpenVG can be
represented either using VGPath or VGImage data. VGFont objects are created
by an application, and can contain either a full set of glyphs or a subset of glyphs
of an original font. VGFont objects do not contain any metric or layout
information; instead, applications are responsible for all text layout operations
using the information provided by the original fonts.

VGFont
A VGFont is an opaque handle to a font object.

typedef VGHandle VGFont;

Glyph Mapping
Glyphs in a VGFont are identified by a glyph index, which is an arbitrary

number assigned to a glyph when it is created. This mapping mechanism is
similar to the glyph mapping used in standard font formats, such as TrueType or

Version 1.1 Revision 1 (December 3, 2008)

Text 165

OpenType fonts, where each glyph is assigned an index that is mapped to a
particular character code using a separate mapping table. The semantics of the
mapping are application-dependent. Possible mappings include:

• Unicode character codes
When a VGFont is created as a subset that supports only simple
language scripts (e.g., Latin, with simple one-to-one character-to-
glyph mapping), the character code values may be used as glyph
indices. This eliminates the need for an additional mapping table
and simplifies text rendering – a text string may be passed directly
as an argument (as an array of glyph indices) to OpenVG API call
for text rendering.
• Native font glyph indices
OpenVG applications may re-use native glyph indices from an
original TrueType or OpenType font when VGFont object is
created – this simplifies text composition and layout decisions by
re-using OpenType/TrueType layout and character-to-glyph
mapping tables (and any platform-supplied text composition
engine).
• Application-defined (custom) glyph indices
OpenVG applications may assign arbitrary numbers as glyph
indices. This may be beneficial for special purpose fonts that have a
limited number of glyphs (e.g., SVG fonts).

11.4.2 Managing VGFont Objects
VGFont objects are created and destroyed using the vgCreateFont and

vgDestroyFont functions. Font glyphs may be added, deleted, or replaced after
the font has been created.

vgCreateFont
vgCreateFont creates a new font object and returns a VGFont handle to it. The

glyphCapacityHint argument provides a hint as to the capacity of a VGFont,
i.e., the total number of glyphs that this VGFont object will be required to accept.
A value of 0 indicates that the value is unknown. If an error occurs during
execution, VG_INVALID_HANDLE is returned.
VGFont vgCreateFont (VGint glyphCapacityHint);

Version 1.1 Revision 1 (December 3, 2008)

Text 166

ERRORS
VG_ILLEGAL_ARGUMENT_ERROR
– if glyphCapacityHint is negative

vgDestroyFont
vgDestroyFont destroys the VGFont object pointed to by the font argument.
Note that vgDestroyFont will not destroy underlying objects that were used to

define glyphs in the font. It is the responsibility of an application to destroy all
VGPath or VGImage objects that were used in a VGFont, if they are no longer in
use.
void vgDestroyFont (VGFont font);

ERRORS
VG_BAD_HANDLE_ERROR
– if font is not a valid font handle, or is not shared with the current context

11.4.3 Querying VGFont Objects

VGFontParamType
Values from the VGFontParamType enumeration can be used as the

paramType argument to vgGetParameter to query font features. All of the
parameters defined by VGFontParamType are read-only. In the current
specification, the single value VG_FONT_NUM_GLYPHS is defined.
typedef enum {
 VG_FONT_NUM_GLYPHS = 0x2F00
} VGFontParamType;

Parameter Datatype

VG_FONT_NUM_GLYPHS VGint

Table 14: VGFontParamType Datatypes

Version 1.1 Revision 1 (December 3, 2008)

Text 167

Number of Glyphs
The actual number of glyphs in a font (not the hinted capacity) is queried

using the VG_FONT_NUM_GLYPHS parameter.
VGFont font;
VGint numGlyphs = vgGetParameteri(font, VG_FONT_NUM_GLYPHS);

11.4.4 Adding and Modifying Glyphs in VGFonts
VGFonts are collections of glyph data and may have glyphs represented using

VGPath objects (for vector outline fonts) or VGImage objects (for bitmap fonts).
VGFont may be created for a particular target text size, where the glyphs can be defined
using either scaled and hinted outlines or embedded bitmaps. The vgSetGlyphToPath,
vgSetGlyphToImage, and vgClearGlyph functions are provided to add and/or modify
glyphs in a VGFont.

A call to vgSetGlyphToPath or vgSetGlyphToImage increases the reference
count of the provided VGPath or VGImage if the function call completes
without producing an error. A call to vgClearGlyph, setting an existing glyph to
a different VGPath or VGImage, or destroying the VGFont decreases the
reference count for the referenced object. When the reference count of an object
falls to 0, the resources of the object are released.

Applications are responsible for destroying path or image objects they have
assigned as font glyphs. It is recommended that applications destroy the path or
image using vgDestroyPath or vgDestroyImage immediately after setting the
object as a glyph. Since path and image objects are reference counted, destroying
the object will mark its handle as invalid while leaving the resource available to
the VGFont object. This usage model will prevent inadvertent modification of
path and image objects, and may allow implementations to optimize the storage
and rendering of the referenced data. Applications can re-assign a new path
object to the same glyphIndex in a font by simply calling vgSetGlyphToPath
with the new path argument, in which case the number of glyphs remains the
same.

A VGFont may have glyphs defined as a mix of vector outlines and bitmaps. The
VG_MATRIX_GLYPH_USER_TO_SURFACE matrix controls the mapping from glyph
coordinates to drawing surface coordinates.

Implementations may improve the quality of text rendering by applying
optional auto-hinting of unhinted glyph outlines. Glyph outlines that are scaled
and hinted at very small sizes may exhibit missing pixels (dropouts) when
rendered in B/W mode without antialiasing. OpenVG implementations may
attempt to improve the quality of B/W glyph rendering at small sizes by

Version 1.1 Revision 1 (December 3, 2008)

Text 168

identifying and drawing such pixels.
It is recommended that when a path object defines the original unhinted glyph

outline, the scale parameter of the path object should be set to a value of
1/units-per-EM to achieve the effective size of 1 pixel per EM. This allows path
data to be independent of the design unit metrics and original font format, and
simplifies affine transformations applied to a glyph. For example, applying an
affine transform with the matrix elements sx = sy = 12 would result in scaling the
glyph to 12 pixels (or 12 units in the surface coordinate system). Both the
glyphOrigin and escapement values are scaled identically.

Original font glyphs that are vector outlines are designed in a device-
independent coordinate system (design units). The scale of the design
coordinates is determined by the EM size (defined as “units-per-EM”) – a
number that represents the distance between two adjacent, non-adjusted
baselines of text.

If a path object defines a scaled and hinted glyph outline, its scale parameter
should be set to 1. Since the process of scaling and hinting of original glyph
outlines is based on fitting the outline contour's control points to the pixel grid of
the destination surface, applying affine transformations to a path (other than
translations mapped to the pixel grid in surface coordinate system) may reduce
glyph legibility and should be avoided as much as possible.

vgSetGlyphToPath
vgSetGlyphToPath creates a new glyph and assigns the given path to a glyph

associated with the glyphIndex in a font object. The glyphOrigin argument
defines the coordinates of the glyph origin within the path, and the
escapement parameter determines the advance width for this glyph (see Figure
24). Both glyphOrigin and escapement coordinates are defined in the same
coordinate system as the path. For glyphs that have no visual representation
(e.g., the <space> character), a value of VG_INVALID_HANDLE is used for path.
The reference count for the path is incremented.

The path object may define either an original glyph outline, or an outline that
has been scaled and hinted to a particular size (in surface coordinate units); this
is defined by the isHinted parameter, which can be used by implementation
for text-specific optimizations (e.g., heuristic auto-hinting of unhinted outlines).
When isHinted is equal to VG_TRUE, the implementation will never apply
auto-hinting; otherwise, auto hinting will be applied at the implementation's
discretion.
void vgSetGlyphToPath(VGFont font,
 VGuint glyphIndex,
 VGPath path,
 VGboolean isHinted,
 const VGfloat glyphOrigin[2],

Version 1.1 Revision 1 (December 3, 2008)

Text 169

 const VGfloat escapement[2]);

ERRORS
VG_BAD_HANDLE_ERROR
– if font is not a valid font handle, or is not shared with the current context

– if path is not a valid font handle or VG_INVALID_HANDLE, or is not shared
with the current context

VG_ILLEGAL_ARGUMENT_ERROR
– if the pointer to glyphOrigin or escapement is NULL or is not properly

aligned

vgSetGlyphToImage
vgSetGlyphToImage creates a new glyph and assigns the given image into a

glyph associated with the glyphIndex in a font object. The glyphOrigin
argument defines the coordinates of the glyph origin within the image, and the
escapement parameter determines the advance width for this glyph (see Figure
24). Both glyphOrigin and escapement coordinates are defined in the image
coordinate system. Applying transformations to an image (other than
translations mapped to pixel grid in surface coordinate system) should be
avoided as much as possible. For glyphs that have no visual representation (e.g.,
the <space> character), a value of VG_INVALID_HANDLE is used for image. The
reference count for the image is incremented.
void vgSetGlyphToImage(VGFont font,
 VGuint glyphIndex,
 VGImage image,
 const VGfloat glyphOrigin[2],
 const VGfloat escapement[2]);

Version 1.1 Revision 1 (December 3, 2008)

Text 170

ERRORS
VG_BAD_HANDLE_ERROR
– if font is not a valid font handle, or is not shared with the current context

– if image is not a valid font handle or VG_INVALID_HANDLE, or is not
shared with the current context

VG_ILLEGAL_ARGUMENT_ERROR
– if the pointer to glyphOrigin or escapement is NULL or is not properly

aligned
VG_IMAGE_IN_USE_ERROR
– if image is currently a rendering target

vgClearGlyph
vgClearGlyph deletes the glyph defined by a glyphIndex parameter from a

font. The reference count for the VGPath or VGImage object to which the glyph
was previously set is decremented, and the object's resources are released if the
count has fallen to 0.
void vgClearGlyph (VGFont font, VGuint glyphIndex);

ERRORS
VG_BAD_HANDLE_ERROR
– if font is not a valid font handle, or is not shared with the current context
VG_ILLEGAL_ARGUMENT_ERROR
– if glyphIndex is not defined for the font

11.4.5 Font Sharing
Mobile platforms usually provide a limited number of resident fonts. These

fonts are available for use by any application that is running on a device, and the
same font could be used by more than one application utilizing OpenVG. The
sharing of VGFont objects may increase the efficiency of using OpenVG memory
and other resources.

In order for VGFont objects to be shared, the VGFont (and underlying
VGPath and VGImage objects) must be bound to a shared context. In addition,

Version 1.1 Revision 1 (December 3, 2008)

Text 171

applications that create a font must share the following additional information
about the font object:

• the relationship between original fonts and VGFont objects
created by the application;
• the character subset for which a particular VGFont object was
created (if applicable);
• the point or "pixels per EM" size (if applicable), for which a
VGFont object was created; and
• the custom mapping between character codes and glyph indices
in the VGFont object.

In order to avoid additional complexity associated with character-to-glyph
mapping, it is recommended that shared VGFont objects utilize character-to-
glyph mappings based on either Unicode or native OpenType/TrueType glyph
indices., as the use of custom glyph indices requires maintaining a standalone
character-to glyph mapping table for each VGFont object.

11.5 Text Layout and Rendering
OpenVG provides a dedicated glyph rendering API to assist applications in

compositing, layout, and rendering of text. Implementations may apply specific
optimizations for rendering of glyphs. For example, auto-hinting algorithms that
attempt to “snap” glyph outlines to the pixel grid may be used to improve the
quality of text rendering for VGFont objects that contain unhinted glyph
outlines. Autohinting may not be appropriate for animated text or when precise
glyph placement is required.

vgDrawGlyph
vgDrawGlyph renders a glyph defined by the glyphIndex using the given

font object. The user space position of the glyph (the point where the glyph
origin will be placed) is determined by value of VG_GLYPH_ORIGIN.

vgDrawGlyph calculates the new text origin by translating the glyph origin
by the escapement vector of the glyph defined by glyphIndex. Following the
call, the VG_GLYPH_ORIGIN parameter will be updated with the new origin.

The paintModes parameter controls how glyphs are rendered. If
paintModes is 0, neither VGImage-based nor VGPath-based glyphs are drawn.
This mode is useful for determining the metrics of the glyph sequence. If
paintModes is equal to one of VG_FILL_PATH, VG_STROKE_PATH, or
(VG_FILL_PATH | VG_STROKE_PATH), path-based glyphs are filled, stroked
(outlined), or both, respectively, and image-based glyphs are drawn.

When the allowAutoHinting flag is set to VG_FALSE, rendering occurs

Version 1.1 Revision 1 (December 3, 2008)

Text 172

without hinting. If allowAutoHinting is equal to VG_TRUE, autohinting may
be optionally applied to alter the glyph outlines slightly for better rendering
quality. In this case, the escapement values will be adjusted to match the effects
of hinting. Autohinting is not applied to image-based glyphs or path-based
glyphs marked as isHinted in vgSetGlyphToPath.
void vgDrawGlyph(VGFont font, VGuint glyphIndex,
 VGbitfield paintModes,
 VGboolean allowAutoHinting);

ERRORS
VG_BAD_HANDLE_ERROR
– if font is not a valid font handle, or is not shared with the current context
VG_ILLEGAL_ARGUMENT_ERROR
– if glyphIndex has not been defined for a given font object

– if paintModes is not a valid bitwise OR of values from the VGPaintMode
enumeration, or 0

vgDrawGlyphs
vgDrawGlyphs renders a sequence of glyphs defined by the array pointed to

by glyphIndices using the given font object. The values in the
adjustments_x and adjustments_y arrays define positional adjustment
values for each pair of glyphs defined by the glyphIndices array. The
glyphCount parameter defines the number of elements in the glyphIndices
and adjustments_x and adjustments_y arrays. The adjustment values
defined in these arrays may represent kerning or other positional adjustments
required for each pair of glyphs. If no adjustments for glyph positioning in a
particular axis are required (all horizontal and/or vertical adjustments are zero),
NULL pointers may be passed for either or both of adjustment_x and
adjustment_y. The adjustments values should be defined in the same
coordinate system as the font glyphs; if the glyphs are defined by path objects
with path data scaled (e.g., by a factor of 1/units-per-EM), the values in the
adjustment_x and adjustment_y arrays are scaled using the same scale
factor.

The user space position of the first glyph (the point where the glyph origin
will be placed) is determined by the value of VG_GLYPH_ORIGIN.

vgDrawGlyphs calculates a new glyph origin for every glyph in the
glyphIndices array by translating the glyph origin by the escapement vector

Version 1.1 Revision 1 (December 3, 2008)

Text 173

of the current glyph, and applying the necessary positional adjustments (see
Section 11.3), taking into account both the escapement values associated with the
glyphs as well as the adjustments_x and adjustments_y parameters.
Following the call, the VG_GLYPH_ORIGIN parameter will be updated with the
new origin.

The paintModes parameter controls how glyphs are rendered. If
paintModes is 0, neither VGImage-based nor VGPath-based glyphs are drawn.
This mode is useful for determining the metrics of the glyph sequence. If
paintModes equals VG_FILL_PATH, VG_STROKE_PATH, or VG_FILL_PATH |
VG_STROKE_PATH, path-based glyphs are filled, stroked (outlined), or both,
respectively, and image-based glyphs are drawn.

When the allowAutoHinting flag is set to VG_FALSE, rendering occurs
without hinting. If allowAutoHinting is equal to VG_TRUE, autohinting may
be optionally applied to alter the glyph outlines slightly for better rendering
quality. In this case, the escapement values will be adjusted to match the effects
of hinting.
void vgDrawGlyphs(VGFont font,
 VGint glyphCount,
 const VGuint * glyphIndices,
 const VGfloat * adjustments_x,
 const VGfloat * adjustments_y,
 VGbitfield paintModes,
 VGboolean allowAutoHinting);

ERRORS
VG_BAD_HANDLE_ERROR
– if font is not a valid font handle, or is not shared with the current context
VG_ILLEGAL_ARGUMENT_ERROR
– if glyphCount is zero or a negative value

– if the pointer to the glyphIndices array is NULL or is not properly
aligned

– if a pointer to either of the adjustments_x or adjustments_y arrays are
non-NULL and are not properly aligned

– if any of the glyphIndices has not been defined in a given font object

– if paintModes is not a valid bitwise OR of values from the VGPaintMode
enumeration, or 0

Version 1.1 Revision 1 (December 3, 2008)

Image Filters 174

12 Image Filters
Image filters allow images to be modified and/or combined using a variety of imaging
operations. Operations are carried out using a bit depth greater than or equal to the
largest bit depth of the supplied images. The lower-left corners of all source and
destination images are aligned. The destination area to be written is the intersection of
the source and destination image areas. The entire source image area is used as the filter
input. The source and destination images involved in the filter operation must not overlap
(i.e., have any pixels in common within any common ancestor image). Source and
destination images may have a common ancestor as long as they occupy disjoint areas
within that area.

12.1 Format Normalization
A series of steps are carried out on application-supplied source images in order to
produce normalized source images for filtering. In practice, these normalizations may be
combined with the filter operations themselves for efficiency.

The source pixels are converted to one of sRGBA, sRGBA_PRE, lRGBA, or
lRGBA_PRE formats, as determined by the current values of the
VG_FILTER_FORMAT_PREMULTIPLIED and VG_FILTER_FORMAT_LINEAR
parameters. The conversions take place in the following order (equivalent to the
conversion rules defined in Section 3.4):

1) Source color and alpha values are scaled linearly to lie in a [0, 1] range. The exact
precision of the internal representation is implementation-dependent.

2) If the source image has premultiplied alpha, the alpha values are divided out of each
source color channel, and stored for later use. If the source image has no alpha
channel, an alpha value of 1 is added to each pixel.

3) If the source pixel is in a grayscale format (lL or sL), it is converted to an RGB
format (lRGB or sRGB, respectively) by replication.

4) If the VG_FILTER_FORMAT_LINEAR parameter is set to VG_TRUE, and the source
pixel is in non-linear format, it is converted into the corresponding linear format
(sRGBA→lRGBA). If the VG_FILTER_FORMAT_LINEAR parameter is set to
VG_FALSE, and the source pixel is in linear format, it is converted into the
corresponding non-linear format (lRGBA→sRGBA).

5) If the VG_FILTER_FORMAT_PREMULTIPLIED parameter is equal to VG_TRUE,
each source color channel is multiplied by the corresponding alpha value. Otherwise,
the color channels are left undisturbed.

An implementation may collapse steps algebraically; for example, if no conversion is to

Version 1.1 Revision 1 (December 3, 2008)

Image Filters 175

take place in step 4, the division and multiplication by alpha in steps 2 and 5 may be
implemented as a no-op.

The resulting pixel will be in sRGBA, sRGBA_PRE, lRGBA, or lRGBA_PRE format.
The image filter then processes each of the four source channels in an identical manner,
resulting in a set of filtered pixels in the same pixel format as the incoming pixels.

Finally, the filtered pixels are converted into the destination format using the normal
pixel format conversion rules, as described in section 3.4. Premultiplied alpha values are
divided out prior to color-space conversion, and restored afterwards if necessary. The
destination channels specified by the VG_FILTER_CHANNEL_MASK parameter (see
below) are written into the destination image.

12.2 Channel Masks

VGImageChannel
All image filter functions make use of the VG_FILTER_CHANNEL_MASK parameter
that specifies which destination channels are to be written. The parameter is supplied as
a bitwise OR of values from the VGImageChannel enumeration. If the destination
pixel format is one of VG_sL_8, VG_lL_8 or VG_BW_1 pixel format, the parameter is
ignored. If the destination pixel format does not contain an alpha channel, the
VG_ALPHA bit is ignored. Bits other than those defined by the VGImageChannel
enumeration are ignored.

VG_FILTER_CHANNEL_MASK controls which color channels of the filtered image are
written into the destination image. In the case where the destination image is
premultiplied, and VG_FILTER_CHANNEL_MASK does not specify that all channels are
to be written, the following steps are taken to ensure consistency:

1. If VG_FILTER_FORMAT_PREMULTIPLIED is enabled, the filtered color
channels are clamped to the range [0, alpha], and converted into non-
premultiplied form (as described in Section 3.4)

2. The resulting color is converted into the destination color space
3. The destination is read and converted into non-premultiplied form

4. The destination channels specified by VG_FILTER_CHANNEL_MASK are
replaced by the corresponding filtered values

5. The results are converted into premultiplied form and written to the destination
image

Version 1.1 Revision 1 (December 3, 2008)

Image Filters 176

typedef enum {
 VG_RED = (1 << 3),
 VG_GREEN = (1 << 2),
 VG_BLUE = (1 << 1),
 VG_ALPHA = (1 << 0)
} VGImageChannel;

12.3 Color Combination
Color channel values may be combined using the vgColorMatrix function, which
computes output colors as linear combinations of input colors.

vgColorMatrix
The vgColorMatrix function computes a linear combination of color and alpha values
(Rsrc, Gsrc, Bsrc, αsrc) from the normalized source image src at each pixel:

or:

Rdst = m00 Rsrc + m01 Gsrc + m02 Bsrc + m03 αsrc + m04

Gdst = m10 Rsrc + m11 Gsrc + m12 Bsrc + m13 αsrc + m14

Bdst = m20 Rsrc + m21 Gsrc + m22 Bsrc + m23 αsrc + m24

αdst = m30 Rsrc + m31 Gsrc + m32 Bsrc + m33 αsrc + m34

The matrix entries are supplied in the matrix argument in the order { m00, m10, m20, m30,
m01, m11, m21, m31, m02, m12, m22, m32, m03, m13, m23, m33, m04, m14, m24, m34 }.
void vgColorMatrix(VGImage dst, VGImage src,
 const VGfloat * matrix)

Version 1.1 Revision 1 (December 3, 2008)

[Rdst

Gdst

Bdst

α dst
]=[m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33
]⋅[R src

G src

B src

α src
][m04

m14

m24

m34
]

Image Filters 177

ERRORS
VG_BAD_HANDLE_ERROR
– if either dst or src is not a valid image handle, or is not shared with the

current context
VG_IMAGE_IN_USE_ERROR
– if either dst or src is currently a rendering target
VG_ILLEGAL_ARGUMENT_ERROR
– if src and dst overlap

– if matrix is NULL
– if matrix is not properly aligned

12.4 Convolution
The vgConvolve, vgSeparableConvolve, and vgGaussianBlur functions define
destination pixels based on a weighted average of neighboring source pixels, a process
known as convolution. The set of weights, along with their relative locations, is known as
the convolution kernel. In the discussion below, width and height refer to the dimensions
of the source image.

VG_MAX_KERNEL_SIZE
The VG_MAX_KERNEL_SIZE parameter contains the largest legal value of the
width and height parameters to the vgConvolve function. All implementations must
define VG_MAX_KERNEL_SIZE to be an integer no smaller than 7. If there is no
implementation-defined limit, a value of VG_MAXINT may be returned. The value may
be retrieved by calling vgGeti:
VGint maxKernelSize = vgGeti(VG_MAX_KERNEL_SIZE);

VG_MAX_SEPARABLE_KERNEL_SIZE
The VG_MAX_SEPARABLE_KERNEL_SIZE parameter contains the largest legal value
of the size parameter to the vgSeparableConvolve function. All implementations must
define VG_MAX_SEPARABLE_KERNEL_SIZE to be an integer no smaller than 15. If
there is no implementation-defined limit, a value of VG_MAXINT may be returned. The
value may be retrieved by calling vgGeti:

Version 1.1 Revision 1 (December 3, 2008)

Image Filters 178

VGint maxSeparableKernelSize = vgGeti(VG_MAX_SEPARABLE_KERNEL_SIZE);

VG_MAX_GAUSSIAN_STD_DEVIATION
The VG_MAX_GAUSSIAN_STD_DEVIATION parameter contains the largest legal
value of the stdDeviationX and stdDeviationY parameters to the
vgGaussianBlur function. All implementations must define
VG_MAX_GAUSSIAN_STD_DEVIATION to be an integer no smaller than 16. If there
is no implementation-defined limit, a value of VG_MAXINT may be returned. The value
may be retrieved by calling vgGeti:
VGint maxGaussianStdDeviation = vgGeti(VG_MAX_GAUSSIAN_STD_DEVIATION);

vgConvolve
The vgConvolve function applies a user-supplied convolution kernel to a normalized
source image src. The dimensions of the kernel are given by kernelWidth and
kernelHeight; the kernel values are specified as kernelWidth*kernelHeight
VGshorts in column-major order. That is, the kernel entry (i, j) is located at position
i*kernelHeight + j in the input sequence. The shiftX and shiftY parameters specify
a translation between the source and destination images. The result of the convolution is
multiplied by a scale factor, and a bias is added.

The output pixel (x, y) is defined as:

where w = kernelWidth, h = kernelHeight, ki,j is the kernel element at position (i,
j), s is the scale, b is the bias, and p(x, y) is the source pixel at (x, y), or the result of
source edge extension defined by tilingMode, which takes a value from the
VGTilingMode enumeration (see Section 9.4.1). Note that the use of the kernel index
(w–i–1, h–j–1) implies that the kernel is rotated 180 degrees relative to the source image
in order to conform to the mathematical definition of convolution when shiftX = w – 1
and shiftY = h - 1. Figure 27 depicts the flipping of the kernel relative to the image
pixels for a 3x3 kernel.

The operation is applied to all channels (color and alpha) independently.

Version 1.1 Revision 1 (December 3, 2008)

s∑0≤iw∑0≤ jh k w−i−1 ,h− j−1 pxi – shiftX , y j – shiftY b ,

Image Filters 179

void vgConvolve(VGImage dst, VGImage src,
 VGint kernelWidth, VGint kernelHeight,
 VGint shiftX, VGint shiftY,
 const VGshort * kernel,
 VGfloat scale,
 VGfloat bias,
 VGTilingMode tilingMode)

Figure 27: Convolution With a Flipped Kernel

Version 1.1 Revision 1 (December 3, 2008)

*

k20 k10 k00

k21 k11 k01

k22 k12 k02

px,y+2 px+1,y+2 px+2,y+2

px+1,y+1 px+2,y+1

px+2,y

px,y+1

px,y px+1,y

Image Filters 180

ERRORS
VG_BAD_HANDLE_ERROR
– if either dst or src is not a valid image handle, or is not shared with the

current context
VG_IMAGE_IN_USE_ERROR
– if either dst or src is currently a rendering target
VG_ILLEGAL_ARGUMENT_ERROR
– if src and dst overlap

– if kernelWidth or kernelHeight is less than or equal to 0 or greater than
VG_MAX_KERNEL_SIZE

– if kernel is NULL
– if kernel is not properly aligned

– if tilingMode is not one of the values from the VGTilingMode
enumeration

vgSeparableConvolve
The vgSeparableConvolve function applies a user-supplied separable convolution
kernel to a normalized source image src. A separable kernel is a two-dimensional kernel
in which each entry kij is equal to a product kxi * kyj of elements from two one-
dimensional kernels, one horizontal and one vertical.
The lengths of the one-dimensional arrays kernelX and kernelY are given by
kernelWidth and kernelHeight, respectively; the kernel values are specified as
arrays of VGshorts. The shiftX and shiftY parameters specify a translation
between the source and destination images. The result of the convolution is multiplied by
a scale factor, and a bias is added.

The output pixel (x, y) is defined as:

where w = kernelWidth, h = kernelHeight, kxi is the one-dimensional horizontal
kernel element at position i, kyj is the one-dimensional vertical kernel element at position
j, s is the scale, b is the bias, and p(x, y) is the source pixel at (x, y), or the result of

Version 1.1 Revision 1 (December 3, 2008)

s∑0≤iw∑0≤ jh kxw−i−1 kyh− j−i p xi – shiftX , y j – shiftY b ,

Image Filters 181

source edge extension defined by tilingMode, which takes a value from the
VGTilingMode enumeration (see Section 9.4.1). Note that the use of the kernel indices
(w–i–1) and (h–j–1) implies that the kernel is rotated 180 degrees relative to the source
image in order to conform to the mathematical definition of convolution.

The operation is applied to all channels (color and alpha) independently.
void vgSeparableConvolve(VGImage dst, VGImage src,
 VGint kernelWidth, VGint kernelHeight,
 VGint shiftX, VGint shiftY,
 const VGshort * kernelX,
 const VGshort * kernelY,
 VGfloat scale,
 VGfloat bias,
 VGTilingMode tilingMode)

ERRORS
VG_BAD_HANDLE_ERROR
– if either dst or src is not a valid image handle, or is not shared with the

current context
VG_IMAGE_IN_USE_ERROR
– if either dst or src is currently a rendering target
VG_ILLEGAL_ARGUMENT_ERROR
– if src and dst overlap

– if kernelWidth or kernelHeight is less than or equal to 0 or greater than
VG_MAX_SEPARABLE_KERNEL_SIZE

– if kernelX or kernelY is NULL
– if kernelX or kernelY is not properly aligned

– if tilingMode is not one of the values from the VGTilingMode
enumeration

vgGaussianBlur
The vgGaussianBlur function computes the convolution of a normalized source image
src with a separable kernel defined in each dimension by the Gaussian function G(x, s):

Version 1.1 Revision 1 (December 3, 2008)

Image Filters 182

where s is the standard deviation.

The two-dimensional kernel is defined by multiplying together two one-dimensional
kernels, one for each axis:

where sx and sy are the (positive) standard deviations in the horizontal and vertical
directions, given by the stdDeviationX and stdDeviationY parameters
respectively. This kernel has special properties that allow for very efficient
implementation; for example, the implementation may use multiple passes with simple
kernels to obtain the same overall result with higher performance than direct
convolution. If stdDeviationX and stdDeviationY are equal, the kernel is
rotationally symmetric.

Source pixels outside the source image bounds are defined by tilingMode, which
takes a value from the VGTilingMode enumeration (see Section 9.4.1)

The operation is applied to all channels (color and alpha) independently.
void vgGaussianBlur(VGImage dst, VGImage src,
 VGfloat stdDeviationX,
 VGfloat stdDeviationY,
 VGTilingMode tilingMode)

Version 1.1 Revision 1 (December 3, 2008)

k x , y =G x , s x∗G y , s y=
1

2 s x s y

e
− x2

2 sx
2

y2

2 s y
2

Gx , s= 1
 2 s2

e
− x2

2 s2

Image Filters 183

ERRORS
VG_BAD_HANDLE_ERROR
– if either dst or src is not a valid image handle, or is not shared with the

current context
VG_IMAGE_IN_USE_ERROR
– if either dst or src is currently a rendering target
VG_ILLEGAL_ARGUMENT_ERROR
– if src and dst overlap

– if stdDeviationX or stdDeviationY is less than or equal to 0 or greater
than VG_MAX_GAUSSIAN_STD_DEVIATION

– if tilingMode is not one of the values from the VGTilingMode
enumeration

12.5 Lookup Tables

vgLookup
The vgLookup function passes each image channel of the normalized source image
src through a separate lookup table.

Each channel of the normalized source pixel is used as an index into the lookup table for
that channel by multiplying the normalized value by 255 and rounding to obtain an 8-bit
integral value. Each LUT parameter should contain 256 VGubyte entries. The
outputs of the lookup tables are concatenated to form an RGBA_8888 pixel
value, which is interpreted as lRGBA_8888, lRGBA_8888_PRE, sRGBA_8888,
or sRGBA_8888_PRE, depending on the values of outputLinear and
outputPremultiplied.

The resulting pixels are converted into the destination format using the normal
pixel format conversion rules.

Version 1.1 Revision 1 (December 3, 2008)

Image Filters 184

void vgLookup(VGImage dst, VGImage src,
 const VGubyte * redLUT,
 const VGubyte * greenLUT,
 const VGubyte * blueLUT,
 const VGubyte * alphaLUT,
 VGboolean outputLinear,
 VGboolean outputPremultiplied)

ERRORS
VG_BAD_HANDLE_ERROR
– if either dst or src is not a valid image handle, or is not shared with the

current context
VG_IMAGE_IN_USE_ERROR
– if either dst or src is currently a rendering target
VG_ILLEGAL_ARGUMENT_ERROR
– if src and dst overlap

– if any pointer parameter is NULL

vgLookupSingle
The vgLookupSingle function passes a single image channel of the normalized
source image src, selected by the sourceChannel parameter, through a combined
lookup table that produces whole pixel values. Each normalized source channel value
is multiplied by 255 and rounded to obtain an 8 bit integral value.

The specified sourceChannel of the normalized source pixel is used as an index
into the lookup table. If the source image is in a single-channel grayscale
(VG_lL_8, VG_sL_8, or VG_BW_1) or alpha-only (VG_A_1, VG_A_4, or VG_A_8)
format, the sourceChannel parameter is ignored and the single channel is
used. The lookupTable parameter should contain 256 4-byte aligned entries in
an RGBA_8888 pixel value, which is interpreted as lRGBA_8888,
lRGBA_8888_PRE, sRGBA_8888, or sRGBA_8888_PRE, depending on the
values of outputLinear and outputPremultiplied.

The resulting pixels are converted into the destination format using the normal
pixel format conversion rules.

Version 1.1 Revision 1 (December 3, 2008)

Image Filters 185

void vgLookupSingle(VGImage dst, VGImage src,
 const VGuint * lookupTable,
 VGImageChannel sourceChannel,
 VGboolean outputLinear,
 VGboolean outputPremultiplied)

ERRORS
VG_BAD_HANDLE_ERROR
– if either dst or src is not a valid image handle, or is not shared with the

current context
VG_IMAGE_IN_USE_ERROR
– if either dst or src is currently a rendering target
VG_ILLEGAL_ARGUMENT_ERROR
– if src and dst overlap

– if src is in an RGB pixel format and sourceChannel is not one of VG_RED,
VG_GREEN, VG_BLUE or VG_ALPHA from the VGImageChannel
enumeration

– if lookupTable is NULL
– if lookupTable is not properly aligned

13 Color Transformation and Blending
In the final pipeline stage, the pixels from the previous pipeline stage (paint generation or
image interpolation) are optionally transformed by a color transformation matrix. If
image drawing is taking place using the VG_DRAW_IMAGE_STENCIL mode, the color
transformation is applied to the incoming paint pixels.

The resulting pixels are converted into the destination color space, and blending is
performed using a subset of the standard Porter-Duff blending rules [PORT84] along
with several additional rules.

13.1 Color Transformation
If the VG_COLOR_TRANSFORM parameter is enabled, each color from the preceding
pipeline stage (or the incoming paint color for the VG_DRAW_IMAGE_STENCIL
computation) is converted to non-premultiplied form. If the color is in a luminance

Version 1.1 Revision 1 (December 3, 2008)

Color Transformation and Blending 186

format, it is converted to a corresponding RGBA format. Each channel is multiplied by a
per-channel scale factor, and a per-channel bias is added:

Scale and bias values are input in floating point format but are then modified as follows:

• Scale parameters are clamped to the range [-127.0, +127.0]. The precision may be
reduced but it must be at least the equivalent of signed 8.8 fixed point (1 sign bit, 7
integer bits and 8 fractional bits).

• Bias parameters are clamped to the range [-1.0, +1.0]. The precision may be reduced
but must be at least the equivalent of 1.8 fixed point (1 sign bit and 8 fractional bits).

The precision of the color transform computations must be at least the equivalent of 8.8
fixed point (1 sign bit, 7 integer bits and 8 fractional bits).

The results for each channel are clamped to the range [0, 1].

Setting the Color Transformation
The color transformation is set as a vector of 8 floats, consisting of the R, G, B, and A
scale factors followed by the R, G, B, and A biases:
/* Sr, Sg, Sb, Sa, Br, Bg, Bb, Ba */
VGfloat values[] = { 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0 };
vgSetfv(VG_COLOR_TRANSFORM_VALUES, 8, values);
vgSeti(VG_COLOR_TRANSFORM, VG_TRUE);

13.2 Blending Equations
A blending mode defines an alpha blending function α(αsrc, αdst) and a color blending
function c(csrc, cdst, αsrc, αdst). Given a non-premultiplied source alpha and color tuple
(Rsrc, Gsrc, Bsrc, αsrc) and a non-premultiplied destination alpha and color tuple (Rdst, Gdst,
Bdst, αdst), blending replaces the destination with the blended tuple (c(Rsrc, Rdst, αsrc, αdst),
c(Gsrc,Gdst, αsrc, αdst), c(Bsrc, Bdst, αsrc, αdst), α(αsrc, αdst)).

If either the source or destination is stored in a premultiplied format (i.e., pixels are
stored as tuples of the form (α*R, α*G, α*B, α)), the alpha value is conceptually

Version 1.1 Revision 1 (December 3, 2008)

A '= A×S aBa

R '=R×S rB r

G '=G×S gB g

B '=B×S bB b

Color Transformation and Blending 187

divided out prior to applying the blending equations described above. If the
destination is premultiplied, the destination color values are clamped to the
range [0, alpha] when read, and the destination alpha value is multiplied into
each color channel prior to storage. If the destination format does not store alpha
values, an alpha value of 1 is used in place of αdst.

13.3 Porter-Duff Blending
Porter-Duff blending defines an alpha value α(αsrc, αdst) = αsrc*Fsrc + αdst*Fdst and color c
´(c´src, c´dst, αsrc, αdst) = c´src*Fsrc + c´dst*Fdst, where Fsrc and Fdst are defined by the blend
mode and the source and destination alpha values according to Table 15 below
and c´ = α*c is a premultiplied color value. For non-premultiplied colors, we
define the equivalent formula c(csrc, cdst, αsrc, αdst) = (αsrc*csrc*Fsrc + αdst*cdst*Fdst)/α(αsrc,

αdst) (taking the value to be 0 where division by 0 would occur).

Porter-Duff blending modes are derived from the assumption that each
additional primitive being drawn is uncorrelated with previous ones. That is, if a
previously drawn primitive p occupies a fraction fp of a pixel, and a new
primitive q occupies a fraction fq, Porter-Duff blending assumes that a fraction
fp*fq of the pixel will be occupied by both primitives, a fraction fp – fp*fq = fp (1 - fq)
will be occupied by p only, and a fraction fq – fp*fq = fq (1 – fp) will be occupied by q
only. A total fraction of fp + fq – fp*fq of the pixel is occupied by the union of the
primitives.

Blend Mode Fsrc Fdst

Src 1 0

Src over Dst 1 1 - αsrc

Dst over Src 1 - αdst 1

Src in Dst αdst 0

Dst in Src 0 αsrc

Table 15: Porter-Duff Blending Modes

Version 1.1 Revision 1 (December 3, 2008)

Color Transformation and Blending 188

13.4 Additional Blending Modes
A number of additional blending modes are available. These modes are a subset of the
SVG image blending modes. Note that the SVG “Normal” blending mode is equivalent
to the Porter-Duff “Src over Dst” mode described above. The additional blend modes
have the following effects:
• VG_BLEND_MULTIPLY – Multiply the source and destination colors together,

producing the effect of placing a transparent filter over a background. A black source
pixel forces the destination to black, while a white source pixel leaves the destination
unchanged. If all alpha values are 1, this reduces to multiplying the source and
destination color values.

• VG_BLEND_SCREEN – The opposite of multiplication, producing the effect of
projecting a slide over a background. A black source pixel leaves the destination
unchanged, while a white source pixel forces the destination to white. If all alpha
values are 1, this reduces to adding the source and destination color values, and
subtracting their product.

• VG_BLEND_DARKEN – Compute (Src over Dst) and (Dst over Src) and take the
smaller (darker) value for each channel. If all alpha values are 1, this reduces to
choosing the smaller value for each color channel.

• VG_BLEND_LIGHTEN – Compute (Src over Dst) and (Dst over Src) and take the
larger (lighter) value for each channel. If all alpha values are 1, this reduces to
choosing the larger value for each color channel.

The new destination alpha value for the blending modes defined in this section
is always equal to α(αsrc, αdst) = αsrc + αdst*(1 – αsrc), as for Porter-Duff “Src over Dst”
blending. The formulas for each additional blending mode are shown in Table
16. The right-hand column contains the pre-multiplied output values, that is, the
products of the new color value c(csrc, cdst, αsrc, αdst) and alpha value α(αsrc, αdst). The
source and destination color values csrc and cdst are given in non-premultiplied
form.

Version 1.1 Revision 1 (December 3, 2008)

Color Transformation and Blending 189

Blend Type c'(csrc, cdst, αsrc, αdst)

VG_BLEND_MULTIPLY αsrc*csrc *(1-αdst) + αdst*cdst*(1–αsrc) + αsrc*csrc*αdst*cdst

VG_BLEND_SCREEN αsrc*csrc + αdst*cdst - αsrc*csrc*αdst*cdst

VG_BLEND_DARKEN min(αsrc*csrc + αdst*cdst *(1–αsrc),
αdst*cdst + αsrc*csrc *(1-αdst))

VG_BLEND_LIGHTEN max(αsrc*csrc + αdst*cdst *(1–αsrc),
αdst*cdst + αsrc*csrc *(1-αdst))

Table 16: Additional Blending Equations

13.5 Additive Blending
The Porter-Duff assumption of uncorrelated alpha described above does not
hold for primitives that are known to be disjoint (for example, a set of triangles
with shared vertices and edges forming a mesh, or a series of text glyphs that
have been spaced according to known metrics). In these cases, we expect no
portion of the pixel to be occupied by both primitives and a total fraction of fp + fq

to be occupied by the union of the primitives. The additive blending rule may be
used in this case. It sets the final alpha value of the blended pixel to the clamped
sum α(αsrc, αdst) = min(αsrc+αdst, 1) and the color to c(csrc, cdst) = min((αsrc*csrc +
αdst*cdst)/min(αsrc + αdst, 1), 1). If all alpha values are 1, this reduces to adding the
values of each source color channel and clamping the result.

13.6 Setting the Blend Mode

VGBlendMode
The VGBlendMode enumeration defines the possible blending modes:

Version 1.1 Revision 1 (December 3, 2008)

Color Transformation and Blending 190

typedef enum {
 VG_BLEND_SRC = 0x2000,
 VG_BLEND_SRC_OVER = 0x2001,
 VG_BLEND_DST_OVER = 0x2002,
 VG_BLEND_SRC_IN = 0x2003,
 VG_BLEND_DST_IN = 0x2004,
 VG_BLEND_MULTIPLY = 0x2005,
 VG_BLEND_SCREEN = 0x2006,
 VG_BLEND_DARKEN = 0x2007,
 VG_BLEND_LIGHTEN = 0x2008,
 VG_BLEND_ADDITIVE = 0x2009
} VGBlendMode;

Use vgSeti with a parameter type of VG_BLEND_MODE to set the blend mode:
VGBlendMode mode;
vgSeti(VG_BLEND_MODE, mode);

Version 1.1 Revision 1 (December 3, 2008)

Querying Hardware Capabilities 191

14 Querying Hardware Capabilities
OpenVG implementations may vary considerably in their performance characteristics. A
simple hardware query mechanism is provided to allow applications to make informed
choices regarding data representations, in order to maximize their chances of obtaining
hardware-accelerated performance. Currently, OpenVG provides hardware queries for
image formats and path datatypes.

VGHardwareQueryType
The VGHardwareQueryType enumeration defines the set of possible hardware
queries. Currently these are restricted to queries regarding image formats and path
datatypes.
typedef enum {
 VG_IMAGE_FORMAT_QUERY = 0x2100,
 VG_PATH_DATATYPE_QUERY = 0x2101
} VGHardwareQueryType;

VGHardwareQueryResult
The VGHardwareQueryResult enumeration defines the return values from a
hardware query, indicating whether or not the item being queried is hardware
accelerated.
typedef enum {
 VG_HARDWARE_ACCELERATED = 0x2200,
 VG_HARDWARE_UNACCELERATED = 0x2201
} VGHardwareQueryResult;

vgHardwareQuery
The vgHardwareQuery function returns a value indicating whether a given setting
of a property of a type given by key is generally accelerated in hardware on the
currently running OpenVG implementation.

The return value will be one of the values VG_HARDWARE_ACCELERATED or
VG_HARDWARE_UNACCELERATED, taken from the VGHardwareQueryResult
enumeration. The legal values for the setting parameter depend on the value of the key
parameter, as indicated by Table 17.

Version 1.1 Revision 1 (December 3, 2008)

Querying Hardware Capabilities 192

Value of key Allowable values for setting
VG_IMAGE_FORMAT_QUERY VGImageFormat (p135: VGImageFormat)

VG_PATH_DATATYPE_QUERY VGPathDatatype (p. 74: VGPathDatatype)

Table 17: Query Key Enumeration Types
VGHardwareQueryResult vgHardwareQuery(VGHardwareQueryType key,
 VGint setting)

ERRORS
VG_ILLEGAL_ARGUMENT_ERROR
– if key is not one of the values from the VGHardwareQueryType

enumeration

– if setting is not one of the values from the enumeration associated with
key

Version 1.1 Revision 1 (December 3, 2008)

Extending the API 193

15 Extending the API
OpenVG is designed to be extended using an extension mechanism modeled after that of
OpenGL and OpenGL ES. An extension may define new state elements, new datatypes,
new values for existing parameter types, and new functions. Use of these features may
alter the operation of the rendering pipeline. However, an extension must have no effect
on programs that do not enable any of its features.

15.1 Extension Naming Conventions
An OpenVG extension is named by a string of the form OVG_type_name, where type is
either the string EXT or a vendor-specific string and name is a name assigned by the
extension author. A letter X added to the end of type indicates that the extension is
experimental.

Values (e.g., enumerated values or preprocessor #defines) defined by an extension
carry the suffix _type. Functions and datatypes carry the suffix type without a separating
underscore.

The openvg.h header file will define a preprocessor macro with the name
OVG_type_name and a value of 1 for each supported extension.

15.2 The Extension Registry
Khronos, or its designee, will maintain a publicly-accessible registry of extensions. This
registry will contain, for each extension, at least the following information:

• The name of the extension in the form OVG_type_name
• An email address of a contact person
• A list of dependencies on other extensions
• A statement on the IP status of the extension
• An overview of the scope and semantics of the extension
• New functions defined by the extension
• New datatypes defined by the extension
• New values to be added to existing enumerated datatypes
• Additions and changes to the OpenVG specification
• New errors generated by functions affected by the extension
• New state defined by the extension
• Authorship information and revision history

15.3 Using Extensions
Extensions may be detected statically, by means of preprocessor symbols, or

Version 1.1 Revision 1 (December 3, 2008)

Extending the API 194

dynamically, by means of the vgGetString function. Extension functions may be
included in application code statically by placing appropriate “#ifdef” directives around
functions that require the presence of a particular extension, and may also be accessed
dynamically through function pointers returned by eglGetProcAddress or by other
platform-specific means.

15.3.1 Accessing Extensions Statically
The extensions defined by a given platform are defined in the openvg.h header file, or
in header files automatically included by openvg.h. In order to write applications that
run on platforms with and without a given extension, conditional compilation based on
the presence of the extension’s preprocessor macro may be used:
#ifdef OVG_EXT_my_extension
 vgMyExtensionFuncEXT(...);
#endif

15.3.2 Accessing Extensions Dynamically
OpenVG contains a mechanism for applications to access information about the runtime
platform, and to access extensions that may not have been present when the application
was compiled.

VGStringID
typedef enum {
 VG_VENDOR = 0x2300,
 VG_RENDERER = 0x2301,
 VG_VERSION = 0x2302,
 VG_EXTENSIONS = 0x2303
} VGStringID;

vgGetString
The vgGetString function returns information about the OpenVG implementation,
including extension information. The values returned may vary according to the display
(e.g., the EGLDisplay when using EGL) associated with the current context. If no
context is current, vgGetString returns NULL.

The combination of VG_VENDOR and VG_RENDERER may be used together as a
platform identifier by applications that wish to recognize a particular platform and adjust
their algorithms based on prior knowledge of platform bugs and performance
characteristics .

If name is VG_VENDOR, the name of company responsible for this OpenVG

Version 1.1 Revision 1 (December 3, 2008)

Extending the API 195

implementation is returned. This name does not change from release to release.

If name is VG_RENDERER, the name of the renderer is returned. This name is typically
specific to a particular configuration of a hardware platform, and does not change from
release to release.

If name is VG_VERSION, the version number of the specification implemented by
the renderer is returned as a string in the form major_number.minor_number. For this
specification, “1.1” is returned.

If name is VG_EXTENSIONS, a space-separated list of supported extensions to
OpenVG is returned.

For other values of name, NULL is returned.
const VGubyte * vgGetString(VGStringID name)

eglGetProcAddress
Functions defined by an extension may be accessed by means of a function pointer
obtained from the EGL function eglGetProcAddress. If EGL is not present, the
platform may define an alternate method of obtaining extension function pointers.

15.4 Creating Extensions
Any vendor may define a vendor-specific extension. Each vendor should apply to
Khronos to obtain a vendor string and any numerical token values required by the
extension.

An OpenVG extension may be deemed a shared extension if two or more vendors agree
in good faith to ship an extension, or the Khronos OpenVG working group determines
that it is in the best interest of its members that the extension be shared. A shared
extension may be adopted (with appropriate naming changes) into a subsequent release
of the OpenVG specification.

Version 1.1 Revision 1 (December 3, 2008)

API Conformance 196

16 API Conformance
All OpenVG implementations are required to pass a conformance test suite. The exact
details of the conformance testing process are available in a separate document. This
chapter outlines the OpenVG conformance test philosophy and provides information that
may be useful in order to ensure conformant implementations.

16.1 Conformance Test Principles
The OpenVG specification attempts to strike a balance between the needs of
implementers and application developers. While application developers desire a stable
platform that delivers predictable results, they also wish to avoid reduced performance
due to an excessively strict API definition. By allowing some flexibility in how the API
is implemented, implementations may be optimized for a wide variety of platforms with
varying price, performance, and power characteristics. The purpose of conformance
testing is to ensure that implementations with different internal approaches produce
similar results.

16.1.1 Window System Independence
Because OpenVG does not mandate a specific window system or display management
API, the conformance test suite will isolate all display dependencies in a module that
may be customized for each platform. An EGL-based implementation of this module will
be provided, but implementers are free to replace this implementation with one that is
specific to their platform.

16.1.2 Antialiasing Algorithm Independence
It is anticipated that a wide variety of antialiasing approaches will be used in the
marketplace. Low-cost antialiasing remains a research topic, and new algorithms
continue to emerge. The conformance suite must allow for this variation, while not
allowing differences in antialiasing to cover up inadequacies in other portions of the
implementation such as matrix transformation or curve subdivision.

16.1.3 On-Device and Off-Device Testing
Certain conformance tests require only a small memory footprint, and may be run
directly on the target device. Other tests operate by generating an image, which must be
copied off-device. A desktop tool is used to compare the generated images against a set
of reference images.

Version 1.1 Revision 1 (December 3, 2008)

API Conformance 197

16.2 Types of Conformance Tests
Conformance tests fall into several classes, outlined below.

16.2.1 Pipeline Tests
A set of tests will be provided that attempt to isolate each pipeline stage by means of
suitable parameter settings. These tests will provide assurance that each stage is
functioning correctly.

16.2.2 Self-Consistency Tests
Certain portions of the API are required to produce exact results. For example, setting
and retrieving API state, image, paint, and path parameters, setting and retrieving matrix
values; error generation; and pixel copies are defined to have exact results. The
conformance suite will provide strict checking for these behaviors.

16.2.3 Matrix Tests
The conformance suite will exercise various matrix operations and compare the results
against double-precision values. The comparison threshold will be set to exclude
implementations with insufficient internal precision.

16.2.4 Interior/Exterior Tests
Although antialiasing may have varying effects on shape boundaries, the portions of the
interior and exterior of shapes that are more than 1 ½ pixels from a geometric boundary
should not be affected by that boundary. If a shape is drawn using color paint, a set of
known interior and exterior pixels may be tested for equality with the paint color.

16.2.5 Positional Invariance
Drawing should not depend on absolute screen coordinates, except for minor differences
due to spatially-variant sampling and dither patterns when copying to the screen. The
conformance suite will include tests that verify the positional independence of drawing.

16.2.6 Image Comparison Tests
To allow for controlled variation, the conformance suite will provide a set of rendering
code fragments, along with reference images that have been generated using a high-
quality implementation. Implementation-generated images will be compared to these
reference images using a fuzzy comparison system. This approach is intended to allow
for small differences in the accuracy of geometry and color processing and antialiasing,

Version 1.1 Revision 1 (December 3, 2008)

API Conformance 198

while rejecting larger differences that are considered visually unacceptable. The
comparison threshold will be determined by generating images with a variety of
acceptable and unacceptable differences and comparing them against the reference
image.

Version 1.1 Revision 1 (December 3, 2008)

The VGU Utility Library 199

17 The VGU Utility Library
For convenience, OpenVG provides an optional utility library known as VGU.
Applications may choose whether to link to VGU at compile time; the library is
not guaranteed to be present on the run-time platform. VGU is designed so it
may be implemented in a portable manner using only the public functionality
provided by the OpenVG library. VGU functions may alter the error state of the
OpenVG context in which they run (i.e., the value returned by vgGetError), but
do not otherwise alter the OpenVG state when they complete without generating
a VGU_OUT_OF_MEMORY_ERROR. VGU functions are defined in a vgu.h header
file.

VGU_VERSION_1_1
Each version of the VGU library will define constants indicating the set of
supported library versions. For the current version, the constant
VGU_VERSION_1_1 is defined. The older version VGU_VERSION_1_0 continues
to be defined for backwards compatibility. Future versions will continue to
define the constants for all previous versions with which they are backward
compatible.
#define VGU_VERSION_1_0 1
#define VGU_VERSION_1_1 2

VGUErrorCode
The VGUErrorCode enumeration contains constants specifying possible errors
generated by VGU functions. Any VGU function may return
VGU_OUT_OF_MEMORY_ERROR, in which case the function may have caused
changes to the state of OpenVG or to drawing surface pixels prior to failure.
typedef enum {
 VGU_NO_ERROR = 0,
 VGU_BAD_HANDLE_ERROR = 0xF000,
 VGU_ILLEGAL_ARGUMENT_ERROR = 0xF001,
 VGU_OUT_OF_MEMORY_ERROR = 0xF002,
 VGU_PATH_CAPABILITY_ERROR = 0xF003,
 VGU_BAD_WARP_ERROR = 0xF004
} VGUErrorCode;

Version 1.1 Revision 1 (December 3, 2008)

The VGU Utility Library 200

17.1 Higher-level Geometric Primitives
The VGU library contains functions that allow applications to specify a number of higher-
level geometric primitives to be appended to a path. Each primitive is immediately
reduced to a series of line segments, Bézier curves, and arcs. Input coordinates are
mapped to input values for the vgAppendPathData command by subtracting the path's
bias and dividing by its scale value. Coordinates may overflow silently if the resulting
values fall outside the range defined by the path datatype.

17.1.1 Lines

vguLine
vguLine appends a line segment to a path. This is equivalent to the following pseudo-
code:
LINE(x0, y0, x1, y1):

MOVE_TO_ABS x0, y0
LINE_TO_ABS x1, y1

VGUErrorCode vguLine(VGPath path,
 VGfloat x0, VGfloat y0,
 VGfloat x1, VGfloat y1)

ERRORS
VGU_BAD_HANDLE_ERROR
– if path is not a valid path handle, or is not shared with the current context
VGU_PATH_CAPABILITY_ERROR
– if VG_PATH_CAPABILITY_APPEND_TO is not enabled for path

17.1.2 Polylines and Polygons

vguPolygon
vguPolygon appends a polyline (connected sequence of line segments) or polygon to a
path. This is equivalent to the following pseudo-code:

Version 1.1 Revision 1 (December 3, 2008)

The VGU Utility Library 201

POLYGON(points, count):

MOVE_TO_ABS points[0], points[1]
for (i = 1; i < count; i++) {
 LINE_TO_ABS points[2*i], points[2*i + 1]
}
if (closed) CLOSE_PATH

There are 2*count coordinates in points.

VGUErrorCode vguPolygon(VGPath path,
 const VGfloat * points, VGint count,
 VGboolean closed)

ERRORS
VGU_BAD_HANDLE_ERROR
– if path is not a valid path handle, or is not shared with the current context
VGU_PATH_CAPABILITY_ERROR
– if VG_PATH_CAPABILITY_APPEND_TO is not enabled for path
VGU_ILLEGAL_ARGUMENT_ERROR
– if points is NULL
– if points is not properly aligned

– if count is less than or equal to 0

17.1.3 Rectangles

vguRect
The vguRect function appends an axis-aligned rectangle with its lower-left corner at (x,
y) and a given width and height to a path. This is equivalent to the following
pseudo-code:

Version 1.1 Revision 1 (December 3, 2008)

The VGU Utility Library 202

RECT(x, y, width, height):

MOVE_TO_ABS x, y
HLINE_TO_REL width
VLINE_TO_REL height
HLINE_TO_REL -width
CLOSE_PATH

VGUErrorCode vguRect(VGPath path,
 VGfloat x, VGfloat y,
 VGfloat width, VGfloat height)

ERRORS
VGU_BAD_HANDLE_ERROR
– if path is not a valid path handle, or is not shared with the current context
VGU_PATH_CAPABILITY_ERROR
– if VG_PATH_CAPABILITY_APPEND_TO is not enabled for path
VGU_ILLEGAL_ARGUMENT_ERROR
– if width or height are less than or equal to 0

17.1.4 Round-Cornered Rectangles

vguRoundRect
The vguRoundRect function appends an axis-aligned round-cornered rectangle with
the lower-left corner of its rectangular bounding box at (x, y) and a given width,
height, arcWidth, and arcHeight to a path. This is equivalent to the following
pseudo-code:

Version 1.1 Revision 1 (December 3, 2008)

The VGU Utility Library 203

ROUNDRECT(x, y, w, h, arcWidth, arcHeight):

MOVE_TO_ABS (x + arcWidth/2), y
HLINE_TO_REL width – arcWidth
SCCWARC_TO_REL arcWidth/2, arcHeight/2, 0, arcWidth/2, arcHeight/2
VLINE_TO_REL height – arcHeight
SCCWARC_TO_REL arcWidth/2, arcHeight/2, 0, -arcWidth/2, arcHeight/2
HLINE_TO_REL -(width – arcWidth)
SCCWARC_TO_REL arcWidth/2, arcHeight/2, 0, -arcWidth/2, -arcHeight/2
VLINE_TO_REL -(height – arcHeight)
SCCWARC_TO_REL arcWidth/2, arcHeight/2, 0, arcWidth/2, -arcHeight/2
CLOSE_PATH

If arcWidth is less than 0, it is clamped to 0. If arcWidth is greater than width, its
value is clamped to that of width. Similarly, arcHeight is clamped to a value
between 0 and height. The arcs are included even when arcWidth and/or
arcHeight is 0.

VGUErrorCode vguRoundRect(VGPath path,
 VGfloat x, VGfloat y,
 VGfloat width, VGfloat height,
 VGfloat arcWidth, VGfloat arcHeight)

ERRORS
VGU_BAD_HANDLE_ERROR
– if path is not a valid path handle, or is not shared with the current context
VGU_PATH_CAPABILITY_ERROR
– if VG_PATH_CAPABILITY_APPEND_TO is not enabled for path
VGU_ILLEGAL_ARGUMENT_ERROR
– if width or height is less than or equal to 0

Version 1.1 Revision 1 (December 3, 2008)

The VGU Utility Library 204

Figure 28: Round Rectangle Parameters

17.1.5 Ellipses

vguEllipse
vguEllipse appends an axis-aligned ellipse to a path. The center of the ellipse is given
by (cx, cy) and the dimensions of the axis-aligned rectangle enclosing the ellipse are
given by width and height. The ellipse begins at (cx + width/2, cy) and is stroked as
two equal counter-clockwise arcs. This is equivalent to the following pseudo-code:
ELLIPSE(cx, cy, width, height):

MOVE_TO_ABS cx + width/2, cy
SCCWARC_TO_REL width/2, height/2, 0, -width, 0
SCCWARC_TO_REL width/2, height/2, 0, width, 0
CLOSE_PATH

VGUErrorCode vguEllipse(VGPath path,
 VGfloat cx, VGfloat cy,
 VGfloat width, VGfloat height)

Version 1.1 Revision 1 (December 3, 2008)

(x, y)

(x+width, y+height)

arcWidth

arcHeight

The VGU Utility Library 205

ERRORS
VGU_BAD_HANDLE_ERROR
– if path is not a valid path handle, or is not shared with the current context
VGU_PATH_CAPABILITY_ERROR
– if VG_PATH_CAPABILITY_APPEND_TO is not enabled for path
VGU_ILLEGAL_ARGUMENT_ERROR
– if width or height is less than or equal to 0

17.1.6 Arcs

VGUArcType
The VGUArcType enumeration defines three values to control the style of arcs
drawn by the vguArc function:

VGU_ARC_OPEN – arc segment only
VGU_ARC_CHORD – arc, plus line between arc endpoints
VGU_ARC_PIE – arc, plus lines from each endpoint to the ellipse center.

Figure 29: VGUArcType Values

Version 1.1 Revision 1 (December 3, 2008)

Arc Chord Pie

The VGU Utility Library 206

vguArc
vguArc appends an elliptical arc to a path, possibly along with one or two line
segments, according to the arcType parameter. The startAngle and
angleExtent parameters are given in degrees, proceeding counter-clockwise
from the positive X axis. The arc is defined on the unit circle, then scaled by the
width and height of the ellipse; thus, the starting point of the arc has coordinates
(x + cos(startAngle)*w/2, y + sin(startAngle)*h/2) and the ending point has
coordinates (x + cos(startAngle + angleExtent)*w/2, y + sin(startAngle +
angleExtent)*h/2).

If angleExtent is negative, the arc will proceed clockwise; if it is larger than
360 or smaller than -360, the arc will wrap around itself. The following pseudo-
code illustrates the arc path generation:
ARC(x, y, w, h, startAngle, angleExtent, arcType):

last = startAngle + angleExtent
MOVE_TO_ABS x+cos(startAngle)*w/2, y+sin(startAngle)*h/2
if (angleExtent > 0) {
 angle = startAngle + 180
 while (angle < last) {
 SCCWARC_TO_ABS w/2, h/2, 0, x+cos(angle)*w/2, y+sin(angle)*h/2
 angle += 180
 }
 SCCWARC_TO_ABS w/2, h/2, 0, x+cos(last)*w/2, y+sin(last)*h/2
} else {
 angle = startAngle – 180
 while (angle > last) {
 SCWARC_TO_ABS w/2, h/2, 0, x+cos(angle)*w/2, y+sin(angle)*h/2
 angle -= 180
 }
 SCWARC_TO_ABS w/2, h/2, 0, x+cos(last)*w/2, y+sin(last)*h/2
}

if arcType == VGU_ARC_PIE
 LINE_TO_ABS x, y
if arcType == VGU_ARC_PIE || arcType == VGU_ARC_CHORD
 CLOSE_PATH

VGUErrorCode vguArc(VGPath path,
 VGfloat x, VGfloat y,
 VGfloat width, VGfloat height,
 VGfloat startAngle, VGfloat angleExtent,
 VGUArcType arcType)

Version 1.1 Revision 1 (December 3, 2008)

The VGU Utility Library 207

ERRORS
VGU_BAD_HANDLE_ERROR
– if path is not a valid path handle, or is not shared with the current context
VGU_PATH_CAPABILITY_ERROR
– if VG_PATH_CAPABILITY_APPEND_TO is not enabled for path
VGU_ILLEGAL_ARGUMENT_ERROR
– if width or height is less than or equal to 0

– if arcType is not one of the values from the VGUArcType enumeration

Figure 30: vguArc Parameters

17.2 Image Warping
VGU provides three utility functions to compute 3x3 projective transform matrices. The
first two compute the transformation from an arbitrary quadrilateral onto the unit square,
and vice versa. The third computes the transformation from an arbitrary quadrilateral to
an arbitrary quadrilateral. The output transformation is stored into matrix as 9
elements in the order { sx, shy, w0, shx, sy, w1, tx, ty, w2 } (using the nomenclature of

Version 1.1 Revision 1 (December 3, 2008)

(x, y)

startAngle

angleExtent

he
ig

ht

width

unit circle

The VGU Utility Library 208

Section 6.3).

In all cases, if there is no projective mapping that satisfies the given constraints, or the
mapping would be degenerate (i.e., non-invertible), VGU_BAD_WARP_ERROR is
returned and matrix is unchanged.

Formulas for computing projective warps may be found in [HECK89] and [WOLB90].

vguComputeWarpQuadToSquare
The vguComputeWarpQuadToSquare function sets the entries of matrix to a
projective transformation that maps the point (sx0, sy0) to (0, 0); (sx1, sy1) to (1, 0);
(sx2, sy2) to (0, 1); and (sx3, sy3) to (1, 1). If no non-degenerate matrix satisfies the
constraints, VGU_BAD_WARP_ERROR is returned and matrix is unchanged.
VGUErrorCode vguComputeWarpQuadToSquare(VGfloat sx0, VGfloat sy0,
 VGfloat sx1, VGfloat sy1,
 VGfloat sx2, VGfloat sy2,
 VGfloat sx3, VGfloat sy3,
 VGfloat * matrix)

ERRORS
VGU_ILLEGAL_ARGUMENT_ERROR
– if matrix is NULL
– if matrix is not properly aligned
VGU_BAD_WARP_ERROR
– if no non-degenerate transformation satisfies the constraints

vguComputeWarpSquareToQuad
The vguComputeWarpSquareToQuad function sets the entries of matrix to a
projective transformation that maps the point (0, 0) to (dx0, dy0); (1, 0) to (dx1, dy1);
(0, 1) to (dx2, dy2); and (1, 1) to (dx3, dy3). If no non-degenerate matrix satisfies the
constraints, VGU_BAD_WARP_ERROR is returned and matrix is unchanged.
VGUErrorCode vguComputeWarpSquareToQuad(VGfloat dx0, VGfloat dy0,
 VGfloat dx1, VGfloat dy1,
 VGfloat dx2, VGfloat dy2,
 VGfloat dx3, VGfloat dy3,
 VGfloat * matrix)

Version 1.1 Revision 1 (December 3, 2008)

The VGU Utility Library 209

ERRORS
VGU_ILLEGAL_ARGUMENT_ERROR
– if matrix is NULL
– if matrix is not properly aligned
VGU_BAD_WARP_ERROR
– if no non-degenerate transformation satisfies the constraints

vguComputeWarpQuadToQuad
The vguComputeWarpQuadToQuad function sets the entries of matrix to a
projective transformation that maps the point (sx0, sy0) to (dx0, dy0); (sx1, sy1) to (dx1,
dy1); (sx2, sy2) to (dx2, dy2); and (sx3, sy3) to (dx3, dy3). If no non-degenerate matrix
satisfies the constraints, VGU_BAD_WARP_ERROR is returned and matrix is
unchanged.
VGUErrorCode vguComputeWarpQuadToQuad(VGfloat dx0, VGfloat dy0,
 VGfloat dx1, VGfloat dy1,
 VGfloat dx2, VGfloat dy2,
 VGfloat dx3, VGfloat dy3,
 VGfloat sx0, VGfloat sy0,
 VGfloat sx1, VGfloat sy1,
 VGfloat sx2, VGfloat sy2,
 VGfloat sx3, VGfloat sy3,
 VGfloat * matrix)

ERRORS
VGU_ILLEGAL_ARGUMENT_ERROR
– if matrix is NULL
– if matrix is not properly aligned
VGU_BAD_WARP_ERROR
– if no non-degenerate transformation satisfies the constraints

Version 1.1 Revision 1 (December 3, 2008)

Appendix A: Mathematics of Ellipses 210

18 Appendix A: Mathematics of Ellipses
The following sections are informative only. It contains mathematics pertaining to the
representation of ellipses that may be of use to implementers. Some of the material is
adapted from [SVGF04].

18.1 The Center Parameterization
A common parameterization of an ellipse is in terms of the ellipse center point (cx, cy),
horizontal and vertical radii rh and rv, rotation angle ϕ, and starting and ending angles
θ1 and θ2 between 0 and 360 degrees. The parameters are listed in Table 18.

The elliptical arc may be evaluated in terms of an angular parameter θ that ranges from
θ1 to θ2:

An ellipse in the center parameterization may be viewed as a unit circle, parameterized
as (x, y) = (cos(θ), sin(θ)) that has been placed through an affine transformation
consisting of a rotation and a non-uniform scale:

Version 1.1 Revision 1 (December 3, 2008)

f cx , cy , rh , rv , ,=[cos −sin
sin cos]⋅[rh cos

rv sin][cx
cy]

[x
y
1]=[rh cos -rv sin cx

rhsin rv cos cy
0 0 1]⋅[cos

sin
1]

Appendix A: Mathematics of Ellipses 211

(cx, cy) The center point of the ellipse

rh, rv The radii of the unrotated ellipse

ϕ The counter-clockwise angle of the ellipse
relative to the x axis, measured prior to
scaling by (rh, rv)

θ1 Angle of initial point (as measured on the
unscaled circle)

θ2 Angle of final point (as measured on the
unscaled circle)

Table 18: Center Ellipse Parameters

18.2 The Endpoint Parameterization
OpenVG paths use the endpoint parameterization of elliptical arcs as defined in SVG. An
elliptical arc segment is defined in terms of its endpoints (x0, y0), (x1, y1), radii rh and rv,
rotation angle ϕ, large arc flag fA, and sweep flag fS. These parameters are listed in Table
19.

(x0, y0) The initial endpoint of the arc

(x1, y1) The final endpoint of the arc

rh, rv The radii of the unrotated ellipse
rot The counter-clockwise angle of the ellipse

relative to the x axis, measured prior to
scaling by (rh, rv)

fA Large arc flag: 1 if more than 180 degrees
of the arc is to be traversed (as measured
on the unscaled circle), 0 otherwise

fS Sweep flag: 1 if the arc is to be traversed in
the counter-clockwise direction, 0
otherwise

Table 19: Endpoint Ellipse Parameters

Version 1.1 Revision 1 (December 3, 2008)

Appendix A: Mathematics of Ellipses 212

18.3 Converting from Center to Endpoint Parameterization
Conversion from a center parameterization to an endpoint parameterization simply
requires evaluation the initial and final endpoints of the arc, and determining the values
of the large arc and sweep flags:

18.4 Converting from Endpoint to Center Parameterization
Given an endpoint representation of an ellipse as the set of parameters (x0, y0), (x1, y1),
rh, rv, ϕ, fS, and fA, we wish to determine the center point (cx, cy) and the initial and final
angles θ1 and θ2.

An ellipse with center point (cx, cy), radii rh and rv, and rotation angle rot satisfies the
implicit equation (x´)2 + (y´)2 = 1, where x´ = ((x – cx)*cos(rot) + (y – cy)*sin(rot))/rh
and y´ = (-(x – cx)*sin(rot) + (y – cy)*cos(rot))/rv. The transformation from (x, y) to (x´,
y´) simply maps the desired ellipse into a unit circle centered at the origin.

To determine the center points of the pair of ellipses with common radii and rotation
angle that pass through the two given points (x0, y0) and (x1, y1), the plane is first
transformed into a suitably scaled and rotated coordinate system such that the equation of
each ellipse becomes (x´ – cx´)2 + (y´ – cy´)2 = 1. Then the problem is reduced to finding
the centers (cx0´, cy0´) and (cx1´, cy1´) of the two unit circles whose circumferences
pass through two given points. Finally, the center points are placed through an
inverse transformation to obtain solutions in the original coordinate system.

The center points of the two unit circles that pass through points (x0, y0) and (x1,
y1) are given by (xm ± ∆y*d, ym ∓ ∆x*d), where xm = (x0 + x1)/2, ym = (y0 + y1)/2, ∆x =
(x0 – x1) , ∆y = (y0 – y1), and d = √(1/(∆x2 + ∆y2) – ¼). If d is infinite or imaginary, no

Version 1.1 Revision 1 (December 3, 2008)

[x1

y1]= f cx , cy , rh , rv , ,1

[x2

y2]= f cx , cy , rh , rv , ,2

f A={ 1 if ∣2−1∣180degrees
0 otherwise

f S={ 1 if 2−10
0 otherwise

Appendix A: Mathematics of Ellipses 213

solution exists due to the input points being coincident or too far apart,
respectively.

The angles θ1 and θ2 may be found by finding the slope of the endpoints on the
circle and computing arctangents.

The following code illustrates the process of computing the ellipse centers. The
findUnitCircles function is called by findEllipses following inverse
transformation of the original ellipse parameters.

#include <math.h>

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

/* Given: Points (x0, y0) and (x1, y1)
 * Return: TRUE if a solution exists, FALSE otherwise
 * Circle centers are written to (cx0, cy0) and (cx1, cy1)
 */
static VGboolean
findUnitCircles(double x0, double y0, double x1, double y1,
 double *cx0, double *cy0,
 double *cx1, double *cy1)
{
 /* Compute differences and averages */
 double dx = x0 – x1;
 double dy = y0 – y1;
 double xm = (x0 + x1)/2;
 double ym = (y0 + y1)/2;
 double dsq, disc, s, sdx, sdy;

 /* Solve for intersecting unit circles */
 dsq = dx*dx + dy*dy;
 if (dsq == 0.0) return VG_FALSE; /* Points are coincident */
 disc = 1.0/dsq – 1.0/4.0;
 if (disc < 0.0) return VG_FALSE; /* Points are too far apart */
 s = sqrt(disc);
 sdx = s*dx;
 sdy = s*dy;

 *cx0 = xm + sdy;
 *cy0 = ym – sdx;
 *cx1 = xm – sdy;
 *cy1 = ym + sdx;
 return VG_TRUE;
}

Version 1.1 Revision 1 (December 3, 2008)

Appendix A: Mathematics of Ellipses 214

/* Given: Ellipse parameters rh, rv, rot (in degrees),
 * endpoints (x0, y0) and (x1, y1)
 * Return: TRUE if a solution exists, FALSE otherwise
 * Ellipse centers are written to (cx0, cy0) and (cx1, cy1)
 */

VGboolean
findEllipses(double rh, double rv, double rot,
 double x0, double y0, double x1, double y1,
 double *cx0, double *cy0, double *cx1, double *cy1)
{
 double COS, SIN, x0p, y0p, x1p, y1p, pcx0, pcy0, pcx1, pcy1;

 /* Convert rotation angle from degrees to radians */
 rot *= M_PI/180.0;

 /* Pre-compute rotation matrix entries */
 COS = cos(rot); SIN = sin(rot);

 /* Transform (x0, y0) and (x1, y1) into unit space */
 /* using (inverse) rotate, followed by (inverse) scale */

 x0p = (x0*COS + y0*SIN)/rh;
 y0p = (-x0*SIN + y0*COS)/rv;
 x1p = (x1*COS + y1*SIN)/rh;
 y1p = (-x1*SIN + y1*COS)/rv;

 if (!findUnitCircles(x0p, y0p, x1p, y1p,
 &pcx0, &pcy0, &pcx1, &pcy1)) {
 return VG_FALSE;
 }

 /* Transform back to original coordinate space */
 /* using (forward) scale followed by (forward) rotate */

 pcx0 *= rh; pcy0 *= rv;
 pcx1 *= rh; pcy1 *= rv;

 *cx0 = pcx0*COS – pcy0*SIN;
 *cy0 = pcx0*SIN + pcy0*COS;
 *cx1 = pcx1*COS – pcy1*SIN;
 *cy1 = pcx1*SIN + pcy1*COS;

 return VG_TRUE;
}

Version 1.1 Revision 1 (December 3, 2008)

Appendix A: Mathematics of Ellipses 215

18.5 Implicit Representation of an Ellipse
An ellipse (or any conic section) may be written in the implicit form:

This equation describes an ellipse (or circle) if B2 – 4 A C < 0 (and certain other
degeneracies do not occur). The center of the ellipse is located at:

The ellipse may be re-centered about (0, 0) by substituting x ← x + cx, y ← y + cy to
obtain an implicit equation with D = E = 0:

For a centered ellipse, the constant term must be equal to -1 since the entire formula has
the form of (x´)2 + (y´)2 – 1 where x´ and y´ contain no constant terms. Thus in order
to determine the radius and axes of a centered ellipse we only need to be concerned with
equations of the form:

The angle of rotation is given by:

Applying an inverse rotation by substituting x ← x cos(-θ) + y sin(-θ) and y ← y cos(-
θ) − x sin(-θ), we obtain a further simplification to an unrotated form:

where:

Version 1.1 Revision 1 (December 3, 2008)

A x2B x yC y2D xE yF=0

cx , cy= 1
B2−4 A C

2C D−B E ,2 A E−B D

={
0 , if B=0

4

, if B≠0 and A=C

1
2

tan−1 B
A−C , otherwise

A x2B x yC y2 A E2C D2−B D E
B2−4 AC

F=0

A x2B x yC y2−1=0

A' x2C ' y2−1=0

Appendix A: Mathematics of Ellipses 216

The radii of the centered, unrotated ellipse are given by:

18.6 Transformation of Ellipses
As previously noted, an ellipse may be viewed as the result of a scale, rotation, and
translation applied to the unit circle:

The resulting ellipse satisfies an implicit equation generated by placing each point on the
ellipse through an affine transformation M that is the inverse of the transformation above.
The resulting points lie on the unit circle, and therefore satisfy the implicit equation x2 +
y2 = 1.

Version 1.1 Revision 1 (December 3, 2008)

[x
y
1]=[rh cos -rv sin cx

rhsin rv cos cy
0 0 1]⋅[cos

sin
1]

rh= 1
 A'

 rv= 1
 C '

A'={ A , if B=0

A B
2

, if B≠0 and A=C

1
2 ACK A−C , otherwise

C '={
C , if B=0

A− B
2

, if B≠0and A=C

1
2
 AC−K A−C , otherwise

where K=1 B2

A−C 2

Appendix A: Mathematics of Ellipses 217

If M is defined as:

then the implicit equation for the ellipse is:

which may be written in standard form as:

where:

The center, rotation angle, and radii of the ellipse may be determined using the formulas
from the previous section.

In practice, it may be simpler to represent a transformed ellipse as the affine
transformation mapping an arc of the unit circle into it. The ellipse may be rendered by
concatenating its transform with the current transform and rendering the circular arc. It
may be transformed by simply concatenating the transforms.

Version 1.1 Revision 1 (December 3, 2008)

m00 xm01 ym02
2m10 xm11 ym12

2−1=0

A=m00
2 m10

2

B=2m00 m01m10 m11
C=m01

2 m11
2

D=2 m00 m02m10 m12
E=2 m01 m02m11 m12
F=m02

2 m12
2 −1

M=[m00 m01 m02

m10 m11 m12

0 0 1]=[rhcos -rv sin cx
rhsin rv cos cy

0 0 1]
−1

A x2B x yC y2D xE yF=0

Appendix B: Header Files 218

19 Appendix B: Header Files
This section defines minimal C language header files for the type definitions and
functions of OpenVG and the VGU utility library. The actual header files provided by a
platform vendor may differ from those shown here.

openvg.h
/**
 * *
 * Sample implementation of openvg.h, version 1.1 *
 * *
 * Copyright © 2008 The Khronos Group Inc. *
 * *
 * Permission is hereby granted, free of charge, to any person obtaining *
 * a copy of this software and associated documentation files (the *
 * "Software"), to deal in the Software without restriction, including *
 * without limitation the rights to use, copy, modify, merge, publish, *
 * distribute, sublicense, and/or sell copies of the Software, and to *
 * permit persons to whom the Software is furnished to do so, subject *
 * to the following conditions: *
 * The above copyright notice and this permission notice shall be *
 * included in all copies or substantial portions of the Software. *
 * *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, *
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF *
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. *
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY *
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, *
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE *
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
 * *
 **/

#ifndef _OPENVG_H
#define _OPENVG_H

#ifdef __cplusplus
extern "C" {
#endif

#include <khronos_types.h>

#define OPENVG_VERSION_1_0 1
#define OPENVG_VERSION_1_1 2

typedef khronos_float_t VGfloat;
typedef khronos_int8_t VGbyte;
typedef khronos_uint8_t VGubyte;
typedef khronos_int16_t VGshort;
typedef khronos_int32_t VGint;
typedef khronos_uint32_t VGuint;
typedef khronos_uint32_t VGbitfield;

Version 1.1 Revision 1 (December 3, 2008)

Appendix B: Header Files 219

typedef enum {
 VG_FALSE = 0,
 VG_TRUE = 1
} VGboolean;

#define VG_MAXSHORT ((VGshort)((~((unsigned)0)) >> 1))
#define VG_MAXINT ((VGint)((~((unsigned)0)) >> 1))

typedef VGuint VGHandle;

#define VG_INVALID_HANDLE ((VGHandle)0)

typedef enum {
 VG_NO_ERROR = 0,
 VG_BAD_HANDLE_ERROR = 0x1000,
 VG_ILLEGAL_ARGUMENT_ERROR = 0x1001,
 VG_OUT_OF_MEMORY_ERROR = 0x1002,
 VG_PATH_CAPABILITY_ERROR = 0x1003,
 VG_UNSUPPORTED_IMAGE_FORMAT_ERROR = 0x1004,
 VG_UNSUPPORTED_PATH_FORMAT_ERROR = 0x1005,
 VG_IMAGE_IN_USE_ERROR = 0x1006,
 VG_NO_CONTEXT_ERROR = 0x1007
} VGErrorCode;

typedef enum {
 /* Mode settings */
 VG_MATRIX_MODE = 0x1100,
 VG_FILL_RULE = 0x1101,
 VG_IMAGE_QUALITY = 0x1102,
 VG_RENDERING_QUALITY = 0x1103,
 VG_BLEND_MODE = 0x1104,
 VG_IMAGE_MODE = 0x1105,

 /* Scissoring rectangles */
 VG_SCISSOR_RECTS = 0x1106,

 /* Color Transformation */
 VG_COLOR_TRANSFORM = 0x1170,
 VG_COLOR_TRANSFORM_VALUES = 0x1171,

 /* Stroke parameters */
 VG_STROKE_LINE_WIDTH = 0x1110,
 VG_STROKE_CAP_STYLE = 0x1111,
 VG_STROKE_JOIN_STYLE = 0x1112,
 VG_STROKE_MITER_LIMIT = 0x1113,
 VG_STROKE_DASH_PATTERN = 0x1114,
 VG_STROKE_DASH_PHASE = 0x1115,
 VG_STROKE_DASH_PHASE_RESET = 0x1116,

 /* Edge fill color for VG_TILE_FILL tiling mode */
 VG_TILE_FILL_COLOR = 0x1120,

 /* Color for vgClear */
 VG_CLEAR_COLOR = 0x1121,

 /* Glyph origin */

Version 1.1 Revision 1 (December 3, 2008)

Appendix B: Header Files 220

 VG_GLYPH_ORIGIN = 0x1122,

 /* Enable/disable alpha masking and scissoring */
 VG_MASKING = 0x1130,
 VG_SCISSORING = 0x1131,

 /* Pixel layout information */
 VG_PIXEL_LAYOUT = 0x1140,
 VG_SCREEN_LAYOUT = 0x1141,

 /* Source format selection for image filters */
 VG_FILTER_FORMAT_LINEAR = 0x1150,
 VG_FILTER_FORMAT_PREMULTIPLIED = 0x1151,

 /* Destination write enable mask for image filters */
 VG_FILTER_CHANNEL_MASK = 0x1152,

 /* Implementation limits (read-only) */
 VG_MAX_SCISSOR_RECTS = 0x1160,
 VG_MAX_DASH_COUNT = 0x1161,
 VG_MAX_KERNEL_SIZE = 0x1162,
 VG_MAX_SEPARABLE_KERNEL_SIZE = 0x1163,
 VG_MAX_COLOR_RAMP_STOPS = 0x1164,
 VG_MAX_IMAGE_WIDTH = 0x1165,
 VG_MAX_IMAGE_HEIGHT = 0x1166,
 VG_MAX_IMAGE_PIXELS = 0x1167,
 VG_MAX_IMAGE_BYTES = 0x1168,
 VG_MAX_FLOAT = 0x1169,
 VG_MAX_GAUSSIAN_STD_DEVIATION = 0x116A
} VGParamType;

typedef enum {
 VG_RENDERING_QUALITY_NONANTIALIASED = 0x1200,
 VG_RENDERING_QUALITY_FASTER = 0x1201,
 VG_RENDERING_QUALITY_BETTER = 0x1202 /* Default */
} VGRenderingQuality;

typedef enum {
 VG_PIXEL_LAYOUT_UNKNOWN = 0x1300,
 VG_PIXEL_LAYOUT_RGB_VERTICAL = 0x1301,
 VG_PIXEL_LAYOUT_BGR_VERTICAL = 0x1302,
 VG_PIXEL_LAYOUT_RGB_HORIZONTAL = 0x1303,
 VG_PIXEL_LAYOUT_BGR_HORIZONTAL = 0x1304
} VGPixelLayout;

typedef enum {
 VG_MATRIX_PATH_USER_TO_SURFACE = 0x1400,
 VG_MATRIX_IMAGE_USER_TO_SURFACE = 0x1401,
 VG_MATRIX_FILL_PAINT_TO_USER = 0x1402,
 VG_MATRIX_STROKE_PAINT_TO_USER = 0x1403,
 VG_MATRIX_GLYPH_USER_TO_SURFACE = 0x1404
} VGMatrixMode;

typedef enum {
 VG_CLEAR_MASK = 0x1500,
 VG_FILL_MASK = 0x1501,
 VG_SET_MASK = 0x1502,

Version 1.1 Revision 1 (December 3, 2008)

Appendix B: Header Files 221

 VG_UNION_MASK = 0x1503,
 VG_INTERSECT_MASK = 0x1504,
 VG_SUBTRACT_MASK = 0x1505
} VGMaskOperation;

#define VG_PATH_FORMAT_STANDARD 0

typedef enum {
 VG_PATH_DATATYPE_S_8 = 0,
 VG_PATH_DATATYPE_S_16 = 1,
 VG_PATH_DATATYPE_S_32 = 2,
 VG_PATH_DATATYPE_F = 3
} VGPathDatatype;

typedef enum {
 VG_ABSOLUTE = 0,
 VG_RELATIVE = 1
} VGPathAbsRel;

typedef enum {
 VG_CLOSE_PATH = (0 << 1),
 VG_MOVE_TO = (1 << 1),
 VG_LINE_TO = (2 << 1),
 VG_HLINE_TO = (3 << 1),
 VG_VLINE_TO = (4 << 1),
 VG_QUAD_TO = (5 << 1),
 VG_CUBIC_TO = (6 << 1),
 VG_SQUAD_TO = (7 << 1),
 VG_SCUBIC_TO = (8 << 1),
 VG_SCCWARC_TO = (9 << 1),
 VG_SCWARC_TO = (10 << 1),
 VG_LCCWARC_TO = (11 << 1),
 VG_LCWARC_TO = (12 << 1)
} VGPathSegment;

typedef enum {
 VG_MOVE_TO_ABS = VG_MOVE_TO | VG_ABSOLUTE,
 VG_MOVE_TO_REL = VG_MOVE_TO | VG_RELATIVE,
 VG_LINE_TO_ABS = VG_LINE_TO | VG_ABSOLUTE,
 VG_LINE_TO_REL = VG_LINE_TO | VG_RELATIVE,
 VG_HLINE_TO_ABS = VG_HLINE_TO | VG_ABSOLUTE,
 VG_HLINE_TO_REL = VG_HLINE_TO | VG_RELATIVE,
 VG_VLINE_TO_ABS = VG_VLINE_TO | VG_ABSOLUTE,
 VG_VLINE_TO_REL = VG_VLINE_TO | VG_RELATIVE,
 VG_QUAD_TO_ABS = VG_QUAD_TO | VG_ABSOLUTE,
 VG_QUAD_TO_REL = VG_QUAD_TO | VG_RELATIVE,
 VG_CUBIC_TO_ABS = VG_CUBIC_TO | VG_ABSOLUTE,
 VG_CUBIC_TO_REL = VG_CUBIC_TO | VG_RELATIVE,
 VG_SQUAD_TO_ABS = VG_SQUAD_TO | VG_ABSOLUTE,
 VG_SQUAD_TO_REL = VG_SQUAD_TO | VG_RELATIVE,
 VG_SCUBIC_TO_ABS = VG_SCUBIC_TO | VG_ABSOLUTE,
 VG_SCUBIC_TO_REL = VG_SCUBIC_TO | VG_RELATIVE,
 VG_SCCWARC_TO_ABS = VG_SCCWARC_TO | VG_ABSOLUTE,
 VG_SCCWARC_TO_REL = VG_SCCWARC_TO | VG_RELATIVE,
 VG_SCWARC_TO_ABS = VG_SCWARC_TO | VG_ABSOLUTE,
 VG_SCWARC_TO_REL = VG_SCWARC_TO | VG_RELATIVE,
 VG_LCCWARC_TO_ABS = VG_LCCWARC_TO | VG_ABSOLUTE,

Version 1.1 Revision 1 (December 3, 2008)

Appendix B: Header Files 222

 VG_LCCWARC_TO_REL = VG_LCCWARC_TO | VG_RELATIVE,
 VG_LCWARC_TO_ABS = VG_LCWARC_TO | VG_ABSOLUTE,
 VG_LCWARC_TO_REL = VG_LCWARC_TO | VG_RELATIVE
} VGPathCommand;

typedef VGHandle VGPath;

typedef enum {
 VG_PATH_CAPABILITY_APPEND_FROM = (1 << 0),
 VG_PATH_CAPABILITY_APPEND_TO = (1 << 1),
 VG_PATH_CAPABILITY_MODIFY = (1 << 2),
 VG_PATH_CAPABILITY_TRANSFORM_FROM = (1 << 3),
 VG_PATH_CAPABILITY_TRANSFORM_TO = (1 << 4),
 VG_PATH_CAPABILITY_INTERPOLATE_FROM = (1 << 5),
 VG_PATH_CAPABILITY_INTERPOLATE_TO = (1 << 6),
 VG_PATH_CAPABILITY_PATH_LENGTH = (1 << 7),
 VG_PATH_CAPABILITY_POINT_ALONG_PATH = (1 << 8),
 VG_PATH_CAPABILITY_TANGENT_ALONG_PATH = (1 << 9),
 VG_PATH_CAPABILITY_PATH_BOUNDS = (1 << 10),
 VG_PATH_CAPABILITY_PATH_TRANSFORMED_BOUNDS = (1 << 11),
 VG_PATH_CAPABILITY_ALL = (1 << 12) - 1
} VGPathCapabilities;

typedef enum {
 VG_PATH_FORMAT = 0x1600,
 VG_PATH_DATATYPE = 0x1601,
 VG_PATH_SCALE = 0x1602,
 VG_PATH_BIAS = 0x1603,
 VG_PATH_NUM_SEGMENTS = 0x1604,
 VG_PATH_NUM_COORDS = 0x1605
} VGPathParamType;

typedef enum {
 VG_CAP_BUTT = 0x1700,
 VG_CAP_ROUND = 0x1701,
 VG_CAP_SQUARE = 0x1702
} VGCapStyle;

typedef enum {
 VG_JOIN_MITER = 0x1800,
 VG_JOIN_ROUND = 0x1801,
 VG_JOIN_BEVEL = 0x1802
} VGJoinStyle;

typedef enum {
 VG_EVEN_ODD = 0x1900,
 VG_NON_ZERO = 0x1901
} VGFillRule;

typedef enum {
 VG_STROKE_PATH = (1 << 0),
 VG_FILL_PATH = (1 << 1)
} VGPaintMode;

typedef VGHandle VGPaint;

typedef enum {

Version 1.1 Revision 1 (December 3, 2008)

Appendix B: Header Files 223

 /* Color paint parameters */
 VG_PAINT_TYPE = 0x1A00,
 VG_PAINT_COLOR = 0x1A01,
 VG_PAINT_COLOR_RAMP_SPREAD_MODE = 0x1A02,
 VG_PAINT_COLOR_RAMP_PREMULTIPLIED = 0x1A07,
 VG_PAINT_COLOR_RAMP_STOPS = 0x1A03,

 /* Linear gradient paint parameters */
 VG_PAINT_LINEAR_GRADIENT = 0x1A04,

 /* Radial gradient paint parameters */
 VG_PAINT_RADIAL_GRADIENT = 0x1A05,

 /* Pattern paint parameters */
 VG_PAINT_PATTERN_TILING_MODE = 0x1A06
} VGPaintParamType;

typedef enum {
 VG_PAINT_TYPE_COLOR = 0x1B00,
 VG_PAINT_TYPE_LINEAR_GRADIENT = 0x1B01,
 VG_PAINT_TYPE_RADIAL_GRADIENT = 0x1B02,
 VG_PAINT_TYPE_PATTERN = 0x1B03
} VGPaintType;

typedef enum {
 VG_COLOR_RAMP_SPREAD_PAD = 0x1C00,
 VG_COLOR_RAMP_SPREAD_REPEAT = 0x1C01,
 VG_COLOR_RAMP_SPREAD_REFLECT = 0x1C02
} VGColorRampSpreadMode;

typedef enum {
 VG_TILE_FILL = 0x1D00,
 VG_TILE_PAD = 0x1D01,
 VG_TILE_REPEAT = 0x1D02,
 VG_TILE_REFLECT = 0x1D03
} VGTilingMode;

typedef enum {
 /* RGB{A,X} channel ordering */
 VG_sRGBX_8888 = 0,
 VG_sRGBA_8888 = 1,
 VG_sRGBA_8888_PRE = 2,
 VG_sRGB_565 = 3,
 VG_sRGBA_5551 = 4,
 VG_sRGBA_4444 = 5,
 VG_sL_8 = 6,
 VG_lRGBX_8888 = 7,
 VG_lRGBA_8888 = 8,
 VG_lRGBA_8888_PRE = 9,
 VG_lL_8 = 10,
 VG_A_8 = 11,
 VG_BW_1 = 12,
 VG_A_1 = 13,
 VG_A_4 = 14

 /* {A,X}RGB channel ordering */
 VG_sXRGB_8888 = 0 | (1 << 6),

Version 1.1 Revision 1 (December 3, 2008)

Appendix B: Header Files 224

 VG_sARGB_8888 = 1 | (1 << 6),
 VG_sARGB_8888_PRE = 2 | (1 << 6),
 VG_sARGB_1555 = 4 | (1 << 6),
 VG_sARGB_4444 = 5 | (1 << 6),
 VG_lXRGB_8888 = 7 | (1 << 6),
 VG_lARGB_8888 = 8 | (1 << 6),
 VG_lARGB_8888_PRE = 9 | (1 << 6),

 /* BGR{A,X} channel ordering */
 VG_sBGRX_8888 = 0 | (1 << 7),
 VG_sBGRA_8888 = 1 | (1 << 7),
 VG_sBGRA_8888_PRE = 2 | (1 << 7),
 VG_sBGR_565 = 3 | (1 << 7),
 VG_sBGRA_5551 = 4 | (1 << 7),
 VG_sBGRA_4444 = 5 | (1 << 7),
 VG_lBGRX_8888 = 7 | (1 << 7),
 VG_lBGRA_8888 = 8 | (1 << 7),
 VG_lBGRA_8888_PRE = 9 | (1 << 7),

 /* {A,X}BGR channel ordering */
 VG_sXBGR_8888 = 0 | (1 << 6) | (1 << 7),
 VG_sABGR_8888 = 1 | (1 << 6) | (1 << 7),
 VG_sABGR_8888_PRE = 2 | (1 << 6) | (1 << 7),
 VG_sABGR_1555 = 4 | (1 << 6) | (1 << 7),
 VG_sABGR_4444 = 5 | (1 << 6) | (1 << 7),
 VG_lXBGR_8888 = 7 | (1 << 6) | (1 << 7),
 VG_lABGR_8888 = 8 | (1 << 6) | (1 << 7),
 VG_lABGR_8888_PRE = 9 | (1 << 6) | (1 << 7)
} VGImageFormat;

typedef VGHandle VGImage;

typedef enum {
 VG_IMAGE_QUALITY_NONANTIALIASED = (1 << 0),
 VG_IMAGE_QUALITY_FASTER = (1 << 1),
 VG_IMAGE_QUALITY_BETTER = (1 << 2)
} VGImageQuality;

typedef enum {
 VG_IMAGE_FORMAT = 0x1E00,
 VG_IMAGE_WIDTH = 0x1E01,
 VG_IMAGE_HEIGHT = 0x1E02
} VGImageParamType;

typedef enum {
 VG_DRAW_IMAGE_NORMAL = 0x1F00,
 VG_DRAW_IMAGE_MULTIPLY = 0x1F01,
 VG_DRAW_IMAGE_STENCIL = 0x1F02
} VGImageMode;

typedef enum {
 VG_RED = (1 << 3),
 VG_GREEN = (1 << 2),
 VG_BLUE = (1 << 1),
 VG_ALPHA = (1 << 0)
} VGImageChannel;

Version 1.1 Revision 1 (December 3, 2008)

Appendix B: Header Files 225

typedef enum {
 VG_BLEND_SRC = 0x2000,
 VG_BLEND_SRC_OVER = 0x2001,
 VG_BLEND_DST_OVER = 0x2002,
 VG_BLEND_SRC_IN = 0x2003,
 VG_BLEND_DST_IN = 0x2004,
 VG_BLEND_MULTIPLY = 0x2005,
 VG_BLEND_SCREEN = 0x2006,
 VG_BLEND_DARKEN = 0x2007,
 VG_BLEND_LIGHTEN = 0x2008,
 VG_BLEND_ADDITIVE = 0x2009
} VGBlendMode;

typedef enum {
 VG_IMAGE_FORMAT_QUERY = 0x2100,
 VG_PATH_DATATYPE_QUERY = 0x2101
} VGHardwareQueryType;

typedef enum {
 VG_HARDWARE_ACCELERATED = 0x2200,
 VG_HARDWARE_UNACCELERATED = 0x2201
} VGHardwareQueryResult;

typedef enum {
 VG_VENDOR = 0x2300,
 VG_RENDERER = 0x2301,
 VG_VERSION = 0x2302,
 VG_EXTENSIONS = 0x2303
} VGStringID;

typedef enum {
 VG_FONT_NUM_GLYPHS = 0x2F00
} VGFontParamType;

/* Function Prototypes */

#ifndef VG_API_CALL
#define VG_API_CALL extern
#endif
#ifndef VG_APIENTRY
#define VG_APIENTRY /* nothing */
#endif
#ifndef VG_APIEXIT
#define VG_APIEXIT /* nothing */
#endif

VG_API_CALL VGErrorCode VG_APIENTRY
 vgGetError(void) VG_APIEXIT;

VG_API_CALL void VG_APIENTRY
 vgFlush(void) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgFinish(void) VG_APIEXIT;

/* Getters and Setters */
VG_API_CALL void VG_APIENTRY

Version 1.1 Revision 1 (December 3, 2008)

Appendix B: Header Files 226

 vgSetf (VGParamType type, VGfloat value) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgSeti (VGParamType type, VGint value) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgSetfv(VGParamType type, VGint count,
 const VGfloat * values) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgSetiv(VGParamType type, VGint count,
 const VGint * values) VG_APIEXIT;
VG_API_CALL VGfloat VG_APIENTRY
 vgGetf(VGParamType type) VG_APIEXIT;
VG_API_CALL VGint VG_APIENTRY
 vgGeti(VGParamType type) VG_APIEXIT;
VG_API_CALL VGint VG_APIENTRY
 vgGetVectorSize(VGParamType type) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgGetfv(VGParamType type, VGint count,
 VGfloat * values) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgGetiv(VGParamType type, VGint count,
 VGint * values) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgSetParameterf(VGHandle object,
 VGint paramType,
 VGfloat value) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgSetParameteri(VGHandle object,
 VGint paramType,
 VGint value) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgSetParameterfv(VGHandle object,
 VGint paramType,
 VGint count,
 const VGfloat * values) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgSetParameteriv(VGHandle object,
 VGint paramType,
 VGint count,
 const VGint * values) VG_APIEXIT;

VG_API_CALL VGfloat VG_APIENTRY
 vgGetParameterf(VGHandle object,
 VGint paramType) VG_APIEXIT;
VG_API_CALL VGint VG_APIENTRY
 vgGetParameteri(VGHandle object,
 VGint paramType) VG_APIEXIT;
VG_API_CALL VGint VG_APIENTRY
 vgGetParameterVectorSize(VGHandle object,
 VGint paramType) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgGetParameterfv(VGHandle object,
 VGint paramType,
 VGint count,
 VGfloat * values) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgGetParameteriv(VGHandle object,
 VGint paramType,

Version 1.1 Revision 1 (December 3, 2008)

Appendix B: Header Files 227

 VGint count,
 VGint * values) VG_APIEXIT;

/* Matrix Manipulation */
VG_API_CALL void VG_APIENTRY
 vgLoadIdentity(void) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgLoadMatrix(const VGfloat * m) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgGetMatrix(VGfloat * m) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgMultMatrix(const VGfloat * m) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgTranslate(VGfloat tx, VGfloat ty) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgScale(VGfloat sx, VGfloat sy) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgShear(VGfloat shx, VGfloat shy) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgRotate(VGfloat angle) VG_APIEXIT;

/* Masking and Clearing */
typedef VGHandle VGMaskLayer;

VG_API_CALL void VG_APIENTRY
 vgMask(VGHandle mask, VGMaskOperation operation,
 VGint x, VGint y,
 VGint width, VGint height) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgRenderToMask(VGPath path,
 VGbitfield paintModes,
 VGMaskOperation operation) VG_APIEXIT;
VG_API_CALL VGMask VG_APIENTRY
 vgCreateMaskLayer(VGint width, VGint height) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgDestroyMaskLayer(VGMaskLayer maskLayer) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgFillMaskLayer(VGMaskLayer maskLayer,
 VGint x, VGint y,
 VGint width, VGint height,
 VGfloat value) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgCopyMask(VGMaskLayer maskLayer,
 VGint dx, VGint dy,
 VGint sx, VGint sy,
 VGint width, VGint height) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgClear(VGint x, VGint y,
 VGint width, VGint height) VG_APIEXIT;

/* Paths */
VG_API_CALL VGPath VG_APIENTRY
 vgCreatePath(VGint pathFormat,
 VGPathDatatype datatype,
 VGfloat scale, VGfloat bias,
 VGint segmentCapacityHint,
 VGint coordCapacityHint,

Version 1.1 Revision 1 (December 3, 2008)

Appendix B: Header Files 228

 VGbitfield capabilities) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgClearPath(VGPath path, VGbitfield capabilities) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgDestroyPath(VGPath path) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgRemovePathCapabilities(VGPath path,
 VGbitfield capabilities) VG_APIEXIT;
VG_API_CALL VGbitfield VG_APIENTRY
 vgGetPathCapabilities(VGPath path) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgAppendPath(VGPath dstPath, VGPath srcPath) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgAppendPathData(VGPath dstPath,
 VGint numSegments,
 const VGubyte * pathSegments,
 const void * pathData) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgModifyPathCoords(VGPath dstPath,
 VGint startIndex,
 VGint numSegments,
 const void * pathData) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgTransformPath(VGPath dstPath, VGPath srcPath) VG_APIEXIT;
VG_API_CALL VGboolean VG_APIENTRY
 vgInterpolatePath(VGPath dstPath,
 VGPath startPath,
 VGPath endPath,
 VGfloat amount) VG_APIEXIT;
VG_API_CALL VGfloat VG_APIENTRY
 vgPathLength(VGPath path,
 VGint startSegment,
 VGint numSegments) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgPointAlongPath(VGPath path,
 VGint startSegment,
 VGint numSegments,
 VGfloat distance,
 VGfloat * x, VGfloat * y,
 VGfloat * tangentX,
 VGfloat * tangentY) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgPathBounds(VGPath path,
 VGfloat * minX,
 VGfloat * minY,
 VGfloat * width,
 VGfloat * height) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgPathTransformedBounds(VGPath path,
 VGfloat * minX,
 VGfloat * minY,
 VGfloat * width,
 VGfloat * height) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgDrawPath(VGPath path, VGbitfield paintModes) VG_APIEXIT;

/* Paint */

Version 1.1 Revision 1 (December 3, 2008)

Appendix B: Header Files 229

VG_API_CALL VGPaint VG_APIENTRY
 vgCreatePaint(void) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgDestroyPaint(VGPaint paint) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgSetPaint(VGPaint paint, VGbitfield paintModes) VG_APIEXIT;
VG_API_CALL VGPaint VG_APIENTRY
 vgGetPaint(VGPaintMode paintMode) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgSetColor(VGPaint paint, VGuint rgba) VG_APIEXIT;
VG_API_CALL VGuint VG_APIENTRY
 vgGetColor(VGPaint paint) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgPaintPattern(VGPaint paint, VGImage pattern) VG_APIEXIT;

/* Images */
VG_API_CALL VGImage VG_APIENTRY
 vgCreateImage(VGImageFormat format,
 VGint width, VGint height,
 VGbitfield allowedQuality) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgDestroyImage(VGImage image) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgClearImage(VGImage image,
 VGint x, VGint y,
 VGint width, VGint height) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgImageSubData(VGImage image,
 const void * data,
 VGint dataStride,
 VGImageFormat dataFormat,
 VGint x, VGint y,
 VGint width, VGint height) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgGetImageSubData(VGImage image,
 void * data,
 VGint dataStride,
 VGImageFormat dataFormat,
 VGint x, VGint y,
 VGint width, VGint height) VG_APIEXIT;
VG_API_CALL VGImage VG_APIENTRY
 vgChildImage(VGImage parent,
 VGint x, VGint y,
 VGint width, VGint height) VG_APIEXIT;
VG_API_CALL VGImage VG_APIENTRY
 vgGetParent(VGImage image) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgCopyImage(VGImage dst, VGint dx, VGint dy,
 VGImage src, VGint sx, VGint sy,
 VGint width, VGint height,
 VGboolean dither) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgDrawImage(VGImage image) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgSetPixels(VGint dx, VGint dy,
 VGImage src, VGint sx, VGint sy,
 VGint width, VGint height) VG_APIEXIT;

Version 1.1 Revision 1 (December 3, 2008)

Appendix B: Header Files 230

VG_API_CALL void VG_APIENTRY
 vgWritePixels(const void * data, VGint dataStride,
 VGImageFormat dataFormat,
 VGint dx, VGint dy,
 VGint width, VGint height) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgGetPixels(VGImage dst, VGint dx, VGint dy,
 VGint sx, VGint sy,
 VGint width, VGint height) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgReadPixels(void * data, VGint dataStride,
 VGImageFormat dataFormat,
 VGint sx, VGint sy,
 VGint width, VGint height) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgCopyPixels(VGint dx, VGint dy,
 VGint sx, VGint sy,
 VGint width, VGint height) VG_APIEXIT;

/* Text */
typedef VGHandle VGFont;

VG_API_CALL VGFont VG_APIENTRY
 vgCreateFont(VGint glyphCapacityHint) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgDestroyFont(VGFont font) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgSetGlyphToPath(VGFont font,
 VGuint glyphIndex,
 VGPath path,
 VGboolean isHinted,
 const VGfloat glyphOrigin [2],
 const VGfloat escapement[2]) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgSetGlyphToImage(VGFont font,
 VGuint glyphIndex,
 VGImage image,
 const VGfloat glyphOrigin [2],
 const VGfloat escapement[2]) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgClearGlyph(VGFont font,
 VGuint glyphIndex) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgDrawGlyph(VGFont font,
 VGuint glyphIndex,
 VGbitfield paintModes,
 VGboolean allowAutoHinting) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgDrawGlyphs(VGFont font,
 VGint glyphCount,
 const VGuint * glyphIndices,
 const VGfloat * adjustments_x,
 const VGfloat * adjustments_y,
 VGbitfield paintModes,
 VGboolean allowAutoHinting) VG_APIEXIT;

/* Image Filters */

Version 1.1 Revision 1 (December 3, 2008)

Appendix B: Header Files 231

VG_API_CALL void VG_APIENTRY
 vgColorMatrix(VGImage dst, VGImage src,
 const VGfloat * matrix) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgConvolve(VGImage dst, VGImage src,
 VGint kernelWidth, VGint kernelHeight,
 VGint shiftX, VGint shiftY,
 const VGshort * kernel,
 VGfloat scale,
 VGfloat bias,
 VGTilingMode tilingMode) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgSeparableConvolve(VGImage dst, VGImage src,
 VGint kernelWidth,
 VGint kernelHeight,
 VGint shiftX, VGint shiftY,
 const VGshort * kernelX,
 const VGshort * kernelY,
 VGfloat scale,
 VGfloat bias,
 VGTilingMode tilingMode) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgGaussianBlur(VGImage dst, VGImage src,
 VGfloat stdDeviationX,
 VGfloat stdDeviationY,
 VGTilingMode tilingMode) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgLookup(VGImage dst, VGImage src,
 const VGubyte * redLUT,
 const VGubyte * greenLUT,
 const VGubyte * blueLUT,
 const VGubyte * alphaLUT,
 VGboolean outputLinear,
 VGboolean outputPremultiplied) VG_APIEXIT;
VG_API_CALL void VG_APIENTRY
 vgLookupSingle(VGImage dst, VGImage src,
 const VGuint * lookupTable,
 VGImageChannel sourceChannel,
 VGboolean outputLinear,
 VGboolean outputPremultiplied) VG_APIEXIT;

/* Hardware Queries */
VG_API_CALL VGHardwareQueryResult VG_APIENTRY
 vgHardwareQuery
 (VGHardwareQueryType key,
 VGint setting) VG_APIEXIT;

/* Renderer and Extension Information */
VG_API_CALL const VGubyte * VG_APIENTRY
 vgGetString(VGStringID name) VG_APIEXIT;

#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* _OPENVG_H */

Version 1.1 Revision 1 (December 3, 2008)

Appendix B: Header Files 232

vgu.h
/**
 * *
 * Sample implementation of vgu.h, version 1.1 *
 * *
 * Copyright © 2008 The Khronos Group Inc. *
 * *
 * Permission is hereby granted, free of charge, to any person obtaining *
 * a copy of this software and associated documentation files (the *
 * "Software"), to deal in the Software without restriction, including *
 * without limitation the rights to use, copy, modify, merge, publish, *
 * distribute, sublicense, and/or sell copies of the Software, and to *
 * permit persons to whom the Software is furnished to do so, subject *
 * to the following conditions: *
 * The above copyright notice and this permission notice shall be *
 * included in all copies or substantial portions of the Software. *
 * *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, *
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF *
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. *
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY *
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, *
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE *
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *
 * *
 **/

#ifndef _VGU_H
#define _VGU_H

#ifdef __cplusplus
extern "C" {
#endif

#include <VG/openvg.h>

#define VGU_VERSION_1_0 1
#define VGU_VERSION_1_1 2

#ifndef VGU_API_CALL
#define VGU_API_CALL extern
#endif
#ifndef VGU_APIENTRY
#define VGU_APIENTRY /* nothing */
#endif
#ifndef VGU_APIEXIT
#define VGU_APIEXIT /* nothing */
#endif

typedef enum {
 VGU_NO_ERROR = 0,
 VGU_BAD_HANDLE_ERROR = 0xF000,
 VGU_ILLEGAL_ARGUMENT_ERROR = 0xF001,
 VGU_OUT_OF_MEMORY_ERROR = 0xF002,
 VGU_PATH_CAPABILITY_ERROR = 0xF003,
 VGU_BAD_WARP_ERROR = 0xF004

Version 1.1 Revision 1 (December 3, 2008)

Appendix B: Header Files 233

} VGUErrorCode;

typedef enum {
 VGU_ARC_OPEN = 0xF100,
 VGU_ARC_CHORD = 0xF101,
 VGU_ARC_PIE = 0xF102
} VGUArcType;

VGU_API_CALL VGUErrorCode VGU_APIENTRY
 vguLine(VGPath path,
 VGfloat x0, VGfloat y0,
 VGfloat x1, VGfloat y1) VGU_APIEXIT;

VGU_API_CALL VGUErrorCode VGU_APIENTRY
 vguPolygon(VGPath path,
 const VGfloat * points,
 VGint count,
 VGboolean closed) VGU_APIEXIT;

VGU_API_CALL VGUErrorCode VGU_APIENTRY
 vguRect(VGPath path,
 VGfloat x, VGfloat y,
 VGfloat width, VGfloat height) VG_APIEXIT;

VGU_API_CALL VGUErrorCode VGU_APIENTRY
 vguRoundRect(VGPath path,
 VGfloat x, VGfloat y,
 VGfloat width,
 VGfloat height,
 VGfloat arcWidth,
 VGfloat arcHeight) VGU_APIEXIT;

VGU_API_CALL VGUErrorCode VGU_APIENTRY
 vguEllipse(VGPath path,
 VGfloat cx, VGfloat cy,
 VGfloat width,
 VGfloat height) VGU_APIEXIT;

VGU_API_CALL VGUErrorCode VGU_APIENTRY
 vguArc(VGPath path,
 VGfloat x, VGfloat y,
 VGfloat width, VGfloat height,
 VGfloat startAngle,
 VGfloat angleExtent,
 VGUArcType arcType) VGU_APIEXIT;

VGU_API_CALL VGUErrorCode VGU_APIENTRY
 vguComputeWarpQuadToSquare(VGfloat sx0, VGfloat sy0,
 VGfloat sx1, VGfloat sy1,
 VGfloat sx2, VGfloat sy2,
 VGfloat sx3, VGfloat sy3,
 VGfloat * matrix) VGU_APIEXIT;

VGU_API_CALL VGUErrorCode VGU_APIENTRY
 vguComputeWarpSquareToQuad(VGfloat dx0, VGfloat dy0,
 VGfloat dx1, VGfloat dy1,
 VGfloat dx2, VGfloat dy2,

Version 1.1 Revision 1 (December 3, 2008)

Appendix B: Header Files 234

 VGfloat dx3, VGfloat dy3,
 VGfloat * matrix) VGU_APIEXIT;

VGU_API_CALL VGUErrorCode VGU_APIENTRY
 vguComputeWarpQuadToQuad(VGfloat dx0, VGfloat dy0,
 VGfloat dx1, VGfloat dy1,
 VGfloat dx2, VGfloat dy2,
 VGfloat dx3, VGfloat dy3,
 VGfloat sx0, VGfloat sy0,
 VGfloat sx1, VGfloat sy1,
 VGfloat sx2, VGfloat sy2,
 VGfloat sx3, VGfloat sy3,
 VGfloat * matrix) VGU_APIEXIT;

#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* #ifndef _VGU_H */

Version 1.1 Revision 1 (December 3, 2008)

Bibliography 235

20 Bibliography
ADOB99 Adobe Systems Incorporated: PostScript Language Reference Manual
(third edition), Addison-Wesley, Reading, MA, 1999.

ADOB06a Adobe Systems Incorporated: PDF Reference (sixth edition):
http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference.pdf

ADOB06b Adobe Systems Incorporated, Flash Developer Center:
http://www.adobe.com/devnet/flash

FvDFH95 Foley J., A. van Dam, S. Feiner and J. Hughes, Computer Graphics:
Principles and Practice (second edition), Addison-Wesley, Reading, MA, 1995.

HECK89 Heckbert, Paul, Fundamentals of Texture Mapping and Image Warping,
Master’s thesis, UCB/CSD 89/516, CS Division, U.C. Berkeley, June 1989.

ITU90 Recommendation ITU-R BT.709, Basic Parameter Values for the HDTV
Standard for the Studio and for International Programme Exchange (1990), ITU,
Geneva, Switzerland.

PORT84 Porter, T. and T. Duff, “Compositing Digital Images,” Computer Graphics
18(3):253-259 (proc. SIGGRAPH 1984), July 1984.

POYN03 Poynton, Charles, Digital Video and HDTV Algorithms and Interfaces,
Morgan Kaufmann, San Francisco, 2003.

sRGB99 IEC 61966-2-1, Multimedia systems and equipment — Colour
measurement and management — Part 2-1: Default RGB colour space — sRGB:
http://www.w3.org/Graphics/Color/sRGB.html

SUN04 Sun Microsystems, Inc., Java 2D API Home Page:
http://java.sun.com/products/java-media/2D
SVGF05 W3C Recommendation, Scalable Vector Graphics (SVG) Full 1.2
Specification: http://www.w3.org/TR/SVG12

SVGT06 W3C Recommendation, Scalable Vector Graphics (SVG) Tiny 1.2
Specification: http://www.w3.org/TR/SVGMobile12

WOLB90 Wolberg, G., Digital Image Warping, IEEE Computer Society Press,
Washington, D.C., 1990.

WYSZ00 Wyszecki, G. and W. S. Stiles, Color Science: Concepts and
Methods, Quantitative Data and Formulae, Wiley-Interscience, New York, 2000.

Version 1.1 Revision 1 (December 3, 2008)

http://www.w3.org/TR/SVGMobile12/
http://www.w3.org/TR/SVG12
http://java.sun.com/products/java-media/2D/
http://www.w3.org/Graphics/Color/sRGB.html
http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference.pdf

Document History 236

21 Document History
Version 1.1 ratified December 2008

Changes from version 1.0.1 to version 1.1 (by section number):

• 3.4 – intermediate pipeline values are clamped
• 3.5 – add VGFontParamType types
• 3.6 – add VGFont handle type
• 5.2.1 – add VG_GLYPH_ORIGIN and

VG_MATRIX_GLYPH_USER_TO_SURFACE
• 6.6 – add VG_MATRIX_GLYPH_USER_TO_SURFACE to

VGMatrixMode
• 7.2 – add Mask and Mask Layer functions and datatypes
• 9 – glyphs use the glyph-user-to-surface transformation
• 10.2 – add VG_A_1 and VG_A_4 image formats
• 11 – add Text chapter, renumber following chapters
• 12.4 – lower minimum value for

VG_MAX_GAUSSIAN_ST_DEVIATION
• 2.8, 13.1 add Color Transformation pipeline stage

Version 1.0.1 ratified January 2007

Changes from version 1.0 to version 1.0.1 (by section number):

• 3.2 – clarification: VGboolean is an enumeration
• 3.4.1 – provide further explanation of linear pixel formats
• 5.2 – new behavior: restrict values of count parameter in vgGet/Set*v,

vgGet/SetParameter*v; describe error behavior of getters
• 5.2.1 – change default value of VG_FILTER_FORMAT_LINEAR and

VG_RENDERING_QUALITY; add VG_SCREEN_LAYOUT
parameter; add VG_STROKE_DASH_PHASE_RESET
parameter

• 6.2 – define behavior of VG_SCREEN_LAYOUT parameter
• 8.3.4-5 clarify join behavior for smooth segments following line segments
• 8.4 – change behavior of elliptical arcs with one radius equal to 0
• 8.5 – typo: VG_PATH_FORMAT_STANDARD is passed to

vgCreatePath, not vgAppendPathData
• 8.5.2 – clarification: conversion of path segments from relative to absolute

form takes place during rendering
• 8.6.7-8– new behavior: vgTransformPath and vgInterpolatePath

Version 1.1 Revision 1 (December 3, 2008)

Document History 237

promote HLINE and VLINE segments to general (2-
coordinate) form; the parameterization of transformed
elliptical arc segments is undefined

• 8.6.11 – clarification: normalization of tangents; approximate computation
of path length

• 8.7.1 – clarification: implicit closure takes place during rendering
• 8.7.3 – clarification: definition and illustration of the miter length
• 8.7.4 – clarification: stroke generation takes place in user coordinates.
• 8.7.4-5– Add new behavior controlled by

VG_STROKE_DASH_PHASE_RESET
• 9 – paint coordinates must be evaluated within 1/8 of a pixel; clarify

source of user transform Tu
• 9.3.3 – add VG_PAINT_COLOR_RAMP_PREMULTIPLIED flag to

control whether gradient colors are interpolated in premultiplied
form

• 9.3.3 – new behavior: count must be a multiple of 5 in vgSetParameter
for color ramp stops (see 5.2); simplify description of rules for
repeat and reflect pad modes

• 10.2 – add new values to VGImageFormat enumeration
• 10.5 – clarification: vgImageSubData clamps premultiplied color values

to their corresponding alpha values
• 10.8 – clarify behavior of VG_DRAW_IMAGE_NORMAL when the source

has an alpha channel; new behavior: when a projective
transformation is enabled, vgDrawImage always uses
VG_DRAW_IMAGE_NORMAL mode; clarify behavior when a
linear source image is used in VG_DRAW_IMAGE_MULTIPLY
mode

• 10.9.1 – clarification: vgWritePixels clamps premultiplied color values to
their corresponding alpha values

• 12.4 – clarification: input color values are clamped at 1
• 14.3.2 – clarify display dependency of vgGetString
• 14.3.2 – vgGetString(VG_VERSION) returns the specification version.
• 16.1.6 – typo: error in vguArc pseudo-code
• 18 – remove enumerated values VG_PATH_DATATYPE_INVALID

and VG_IMAGE_FORMAT_INVALID

Version 1.0 ratified August 2005

Version 1.1 Revision 1 (December 3, 2008)

Acknowledgments 238

22 Acknowledgments
This specification and the accompanying conformance test suite were developed by the
Khronos OpenVG working group:
• Andrzej Mamona, AMD, Chair
• Daniel Rice, Google, Specification Editor
• Koichi Mori (森 浩一), Nokia, Past Chair
• Neil Trevett, NVIDIA, Past Chair
• Tomi Aarnio, Nokia
• Jay Abbott, Tao Group
• Mike Agar, ALT Software
• Mathias Agopian, PalmSource
• Christofer Åkersten, Ikivo
• Espen Åmodt, ARM
• Ola Andersson, Ikivo
• Michael Antonov, Scaleform
• Rémi Arnaud, SONY
• Ben Bowman, Imagination Technologies
• Mark Callow, HI Corporation
• Chris Campbell, Sun Microsystems
• Tolga Çapın, Nokia
• TK Chan (陳鼎鍵), AMD
• Suresh Chitturi, Nokia

• Hang-Shin Cho (조 항신), LG Electronics
• Angus Dorbie, Qualcomm
• Sean Ellis, Superscape
• Jerry Evans, Sun Microsystems
• Simon Fenney, Imagination Technologies
• Chris Grimm, AMD
• Masaki Hamada (濱田 雅樹), Mitsubishi Electric
• Antti Hätälä, NVIDIA
• Frode Heggelund, ARM
• Toshiki Hijjri (樋尻 利紀), Panasonic
• Harri Holopainen, NVIDIA
• Brendan Iribe, Scaleform
• Rakesh Jain, NVIDIA
• Bryce Johnstone, Texas Instruments
• Kiia Kallio, AMD
• Miikka Kangasluoma, AMD
• Tero Karras, NVIDIA
• Sila Kayo, Nokia
• Petri Kero, NVIDIA

• San-Soo Kim (김 산수), Wow4M

• Sung-Jae Kim (김 성재), Wow4M

• Woo-Seon Kim (김 우섭), LG Electronics

• Yong-Moo Kim (김 용무), LG Electronics
• Keisuke Kiri (桐井 敬祐), DMP
• Kimball, ETRI
• Claude Knaus, Esmertec
• Marko Laiho, AMD

• Hwanyong Lee (이 환용), HUONE

• Junyoung Lee (이 준영), HUONE

• Keechang Lee (이 기창), Samsung
• Jon Leech, EGL Specification Editor
• Vladimir Levantovsky, Monotype Imaging

• Jitaek Lim (임 지택), Samsung
• Borgar Ljosland, ARM
• Axel Mamode, SONY
• Tom McReynolds, NVIDIA
• Mohit Mehta, Imagination Technologies
• Andy Methley
• Ville Miettinen, NVIDIA
• Clay Montgomery, Nokia
• Brian Murray, Freescale
• Hiroyasu Negishi (根岸 博康), Mitsubishi Electric
• Toshio Nishidai, TAKUMI
• Petri Nordlund, AMD
• Eisaku Oobuchi (大渕 栄作), DMP
• Tom Olson, Texas Instruments
• Gary Pallett, NVIDIA
• Robert Palmer, Symbian
• Danilo Pau, STMicro
• Tero Pihlajakoski, Nokia
• Bill Pinnell, Symbian
• Ed Plowman, ARM
• Kari Pulli, Nokia
• Christophe Quarre, STMicroelectronics
• Kalle Raita, NVIDIA
• Jussi Räsänen, NVIDIA
• Allan Ristow, Monotype Imaging
• Lane Roberts, Symbian
• Tero Sarkkinen, Futuremark
• Yoshikazu Saka (坂 義和), Fujitsu
• Kimihiko Sato, AMD
• Thor Arne Gald Semb, ARM
• Maxim Shemanarev, Scaleform

Version 1.1 Revision 1 (December 3, 2008)

Acknowledgments 239

• Robert Simpson, AMD, Specification Editor
• Jacob Ström, Ericsson

• Hyunchan Sung(성 현찬), HUONE
• Thomas Tannert, SGI
• Ray Taylor, NDS
• Chris Tremblay, Motorola
• Mika Tuomi, AMD
• Jani Vaarala, Nokia

• James Walker, NDS
• Alex Walters, Imagination Technologies
• Leon Weng, STMicro
• Chris Wynn, NVIDIA
• Randy Xu, Intel
• Naoya Yamamoto (山本 直也), HI Corporation

• Kwang-Ho Yang (양 광호), ETRI

Special thanks to Vladimir Levantovsky of Monotype Imaging for the design and
specification of the Text API.

Special thanks to Tero Karras and Jussi Räsänen of NVIDIA; Petri Nordlund, Robert
Simpson, and Mika Tuomi of AMD (formerly Bitboys); and Tuomas Lukka, Jarno
Paananen, and Sami Tammilehto of the former Bitboys Technology Research Group for
creating the reference implementations; and to those who contributed to the
conformance test suite: Hwanyong Lee, Junyoung Lee, and Hyunchan Sung of HUONE;
TK Chan, Robert Simpson, Valtteri Rantala, Sami Tammilehto, Mika Tuomi, and Miikka
Kangasluoma of AMD; Tero Karras, Jussi Räsänen and Kalle Raita of NVIDIA, Vladimir
Levantovsky of Monotype Imaging and Toshio Nishidai of TAKUMI

Thanks are also due to the external reviewers who helped to improve the
specification.

Version 1.1 Revision 1 (December 3, 2008)

Indices 240

23 Indices

Index of Tables
Table 1: Naming and Typographical Conventions..12
Table 2: Pixel Format Conversions...23
Table 3: State Elements of a Context..29
Table 4: Default Parameter Values for a Context...39
Table 5: VGMaskOperation Equations..58
Table 6: Path Segment Commands...73
Table 7: Path Coordinate Datatypes...74
Table 8: VGPathParamType Datatypes...83
Table 9: Corresponding Angles and Miter Limits...104
Table 10: VGPaintParamType Defaults...119
Table 11: Symbols Used in Image Format Names...138
Table 12: Image Format Pixel Sizes..139
Table 13: Pixel Copy Functions...153
Table 14: VGFontParamType Datatypes...166
Table 15: Porter-Duff Blending Modes..187
Table 16: Additional Blending Equations...189
Table 17: Query Key Enumeration Types...192
Table 18: Center Ellipse Parameters...211
Table 19: Endpoint Ellipse Parameters..211

Index of Figures
Figure 1: The OpenVG Pipeline...13
Figure 2: VGPixelLayout Values..47
Figure 3: Coordinates, Transformation, Clipping, and Scissoring..........................48
Figure 4: Smooth Curve Construction...67
Figure 5: Elliptical Arcs...69
Figure 6: Segment Reference Points...71
Figure 7: Segment Type Marker Layout..74
Figure 8: Even/Odd Fill Rule..98
Figure 9: Creating Holes with Subpaths...99
Figure 10: Implicit Closure of Filled Paths...100

Version 1.1 Revision 1 (December 3, 2008)

Indices 241

Figure 11: Stroked Paths Have No Implicit Closure...100
Figure 12: Each Stroke Applies a Single Layer of Paint..101
Figure 13: End Cap Styles...102
Figure 14: End Cap Styles with Additional Geometry Highlighted.....................103
Figure 15: Line Join Styles...103
Figure 16: Line Join Styles with Additional Geometry Highlighted....................104
Figure 17: Dash Pattern and Phase Example..106
Figure 18: Radial Gradient Function...125
Figure 19: Color Ramp Pad Modes..128
Figure 20: Linear Gradients..130
Figure 21: Centered and Non-Centered Radial Gradients.....................................131
Figure 22: Color Ramp used for Gradient Examples..131
Figure 23: Implicit Closure of Filled Paths...162
Figure 24: Glyph Positioning..162
Figure 25: Glyph Positioning With Kerning...163
Figure 26: Text Layout in a Complex Script...164
Figure 27: Convolution With a Flipped Kernel..179
Figure 28: Round Rectangle Parameters...204
Figure 29: VGUArcType Values...205
Figure 30: vguArc Parameters..207

Alphabetical Index
Affine transformations...49, 210, 216p.
Alpha masks..56
bitmap..58, 160, 167
character...161p., 164p., 168p., 171
Color paint..119p., 197
Double-buffered rendering...31p.
EGL...2, 16, 27, 30pp., 56, 194pp., 238
EGL_OPENVG_API..31
EGL_OPENVG_BIT..2, 30
EGL_OPENVG_IMAGE..32
eglBindAPI..2, 31
EGLBoolean...31pp.
EGLClientBuffer...32
EGLConfig...30pp., 56
EGLContext...31p.
eglCreateContext...2, 31

Version 1.1 Revision 1 (December 3, 2008)

Indices 242

eglCreatePbufferFromClientBuffer...2, 32
eglCreateWindowSurface..2, 31
eglDestroyContext...2, 32
EGLDisplay..31pp., 194
EGLenum...31p.
eglGetCurrentContext...2, 32
EGLint..31p.
eglMakeCurrent...2, 32
EGLSurface..31pp.
eglSwapBuffers..2, 32p.
Ellipses..9, 18, 64, 68p., 71, 78, 92, 204pp., 210pp., 236p., 240
Endianness...73, 137
escapement..162pp., 168pp., 230
Fill rule...14, 60, 96, 98p., 101, 111
Flash..1, 10, 16, 235
font..25, 27, 74, 160p., 164pp., 230
glyph...11, 27p., 78, 114, 142, 160pp., 167pp., 236
Glyph user-to-surface transformation...114, 236
Gradient paint..13, 114, 118, 123, 125, 151, 223
Handles. .25, 27, 41, 43, 59pp., 79p., 82, 85pp., 95pp., 111, 114p., 117, 120p., 132, 141p.,
144pp., 151, 154, 156, 164pp., 169p., 172p., 177, 180p., 183pp., 200pp., 205, 207, 236
hint...46, 81, 160, 165
Image user-to-surface transformation..14p., 47, 49, 114, 150
Image warping...9, 208p., 233p.
Java2D...10
kerning...163, 172
khronos_float...18, 218
khronos_int16_t...17, 218
khronos_int32_t...18, 218
khronos_int8_t...17, 218
khronos_types.h...17p., 218
khronos_uint32_t...18, 218
khronos_uint8_t...17, 218
ligature...161
mask layers...56, 58, 60pp.
NativeWindowType...31
OpenGL...2, 11, 20, 47, 50, 193
OpenType..161, 165, 171
OPENVG_VERSION_1_0...17, 218
OPENVG_VERSION_1_1...1, 17, 218
openvg.h..9, 16p., 193p., 218, 232
Paint fill transformation..114

Version 1.1 Revision 1 (December 3, 2008)

Indices 243

Paint stroke transformation...114
Path user-to-surface transformation..............................14p., 47, 49, 51, 88, 95p., 101, 114
Pattern paint................15, 27, 36, 102, 104p., 107, 109, 112, 114p., 131pp., 142, 151, 229
PostScript..10, 235
Premultiplied alpha...19, 23p., 35, 64, 114, 119pp., 126pp., 132p., 137p., 145p., 150, 154,
174p., 185pp., 220, 237
Scaling..22, 24, 49, 101, 109p., 160, 168, 211
Scissoring...15, 28, 35, 55, 64, 150, 156p., 220
script...162p.
Shearing..49, 101, 109p.
Single-buffered rendering...31
Smooth segments...67p., 73, 236
Stops...126pp., 237
Surface coordinates..14, 47pp., 109p., 112, 114, 150, 167pp.
SVG...1, 10, 73, 109, 160, 165, 188, 211, 235
text...11, 92, 152, 160pp., 167p., 171, 189
Tiling of images.......................................6, 24, 35, 39, 119, 132pp., 178pp., 219, 223, 231
Transformations.......14pp., 28, 44, 47pp., 60, 88p., 96, 101, 109p., 114, 149pp., 153, 163,
168p., 185p., 196, 207pp., 212p., 216p., 236p.
Translation...48p., 53p., 109, 178, 180, 216
TrueType..161, 164p., 171
typeface...78, 161
Unicode...165, 171
User coordinates..14, 47p., 91, 101p.
VG_A_1...136p., 139, 144, 184, 223, 236
VG_A_4..136p., 139, 144p., 184, 223, 236
VG_A_8...136p., 139, 184, 223
VG_ABSOLUTE..75p., 221p.
VG_ALPHA...39, 175p., 185, 224
VG_BAD_HANDLE_ERROR....30, 41, 43, 60pp., 82, 85pp., 91p., 95pp., 111, 115, 117,
120p., 132, 142, 144pp., 151, 154, 156, 166, 169p., 172p., 177, 180p., 183pp., 219
VG_BLEND_ADDITIVE...190, 225
VG_BLEND_DARKEN..188pp., 225
VG_BLEND_DST_IN..190, 225
VG_BLEND_DST_OVER...190, 225
VG_BLEND_LIGHTEN...188pp., 225
VG_BLEND_MODE...12, 34, 37p., 190, 219
VG_BLEND_MULTIPLY...188pp., 225
VG_BLEND_SCREEN...188pp., 225
VG_BLEND_SRC...37p., 190, 225
VG_BLEND_SRC_IN..190, 225
VG_BLEND_SRC_OVER..37p., 190, 225

Version 1.1 Revision 1 (December 3, 2008)

Indices 244

VG_BLUE...39, 176, 185, 224
VG_BW_1..136p., 139, 144, 175, 184, 223
VG_CAP_BUTT...39, 105, 108, 222
VG_CAP_ROUND...105, 108, 222
VG_CAP_SQUARE...105, 108, 112, 222
VG_CLEAR_COLOR..35, 39, 64, 143, 219
VG_CLEAR_MASK...57pp., 220
VG_CLOSE_PATH................................71p., 74p., 86, 90p., 100, 106p., 201pp., 206, 221
VG_COLOR_RAMP_SPREAD_PAD...119, 127, 223
VG_COLOR_RAMP_SPREAD_REFLECT...127, 223
VG_COLOR_RAMP_SPREAD_REPEAT..127, 223
VG_CUBIC_TO...70, 72, 75p., 90, 106, 221
VG_DRAW_IMAGE_MULTIPLY..6, 150p., 224, 237
VG_DRAW_IMAGE_NORMAL..6, 38, 150p., 224, 237
VG_DRAW_IMAGE_STENCIL..6, 150, 152, 185, 224
VG_EVEN_ODD..38, 110, 222
VG_EXTENSIONS...194p., 225
VG_FALSE..18, 39, 55p., 64, 90, 107, 171, 173p., 213p., 219
VG_FILL_MASK..57pp., 220
VG_FILL_PATH...60, 111pp., 116, 151p., 171, 173, 222
VG_FILL_RULE..34, 38, 111, 219
VG_FILTER_CHANNEL_MASK...35, 39, 175, 220
VG_FILTER_FORMAT_LINEAR...35, 39, 174, 220, 236
VG_FILTER_FORMAT_PREMULTIPLIED..35, 174p., 220
VG_FONT_NUM_GLYPHS...166p., 225
VG_GLYPH_ORIGIN...35, 39, 163, 171pp., 220, 236
VG_GREEN..39, 176, 185, 224
VG_HARDWARE_ACCELERATED..191, 225
VG_HARDWARE_UNACCELERATED..191, 225
VG_HLINE_TO...72p., 75p., 89, 202p., 221
VG_ILLEGAL_ARGUMENT_ERROR 30, 37p., 41, 43, 52p., 60pp., 81, 87p., 92, 95pp.,
111, 117, 141, 144pp., 149, 154pp., 159, 166, 169p., 172p., 177, 180p., 183pp., 192, 219
VG_IMAGE_FORMAT...142p., 191p., 224p., 237
VG_IMAGE_FORMAT_INVALID..237
VG_IMAGE_FORMAT_QUERY...191p., 225
VG_IMAGE_HEIGHT..142p., 224
VG_IMAGE_IN_USE_ERROR..27, 30, 60, 132, 144pp., 151, 154, 156, 170, 177, 180p.,
183pp., 219
VG_IMAGE_MODE...34, 38, 150pp., 219
VG_IMAGE_QUALITY...34, 38, 132, 139pp., 151, 219, 224
VG_IMAGE_QUALITY_BETTER..132, 139p., 224
VG_IMAGE_QUALITY_FASTER...38, 132, 139p., 224

Version 1.1 Revision 1 (December 3, 2008)

Indices 245

VG_IMAGE_QUALITY_NONANTIALIASED......................................132, 139pp., 224
VG_IMAGE_WIDTH..142p., 224
VG_INTERSECT_MASK...57p., 221
VG_INVALID_HANDLE.................2, 26, 59, 61, 80, 115pp., 132, 141, 165, 168pp., 219
VG_JOIN_BEVEL...108, 222
VG_JOIN_MITER..39, 108, 112, 222
VG_JOIN_ROUND..108, 222
VG_LCCWARC_TO..72, 75p., 221p.
VG_LCWARC_TO...73, 75p., 221p.
VG_LINE_TO....................................70, 72, 75p., 89, 91, 93, 100, 106p., 200p., 206, 221
VG_lL_8...136, 139, 175, 184, 223
VG_lRGBA_8888...136pp., 145p., 154, 223
VG_lRGBA_8888_PRE...136p., 139, 145p., 154, 223
VG_lRGBX_8888..136pp., 223
VG_MASKING..35, 39, 56, 220
VG_MATRIX_FILL_PAINT_TO_USER...................................40, 51, 110, 112, 114, 220
VG_MATRIX_GLYPH_USER_TO_SURFACE................................40, 51, 167, 220, 236
VG_MATRIX_IMAGE_USER_TO_SURFACE..40, 51pp., 220
VG_MATRIX_MODE..34, 38, 51, 110, 219
VG_MATRIX_PATH_USER_TO_SURFACE...................................40, 51, 110, 112, 220
VG_MATRIX_STROKE_PAINT_TO_USER....................................40, 51, 112, 114, 220
VG_MAX_COLOR_RAMP_STOPS..5, 35, 40, 127p., 220
VG_MAX_DASH_COUNT..5, 35, 40, 108p., 220
VG_MAX_FLOAT...1, 19, 35, 40, 220
VG_MAX_IMAGE_BYTES...6, 35, 40, 140p., 220
VG_MAX_IMAGE_HEIGHT...6, 35, 40, 62, 140p., 220
VG_MAX_IMAGE_PIXELS..6, 35, 40, 62, 140p., 220
VG_MAX_IMAGE_WIDTH..6, 35, 40, 62, 140p., 220
VG_MAX_KERNEL_SIZE...7, 35, 40, 177, 180, 220
VG_MAX_SCISSOR_RECTS...3, 35, 39, 55, 220
VG_MAX_SEPARABLE_KERNEL_SIZE................................7, 35, 40, 177p., 181, 220
VG_MAXINT...1, 19, 55, 108, 127, 140p., 177p., 219
VG_MAXSHORT...1, 19, 219
VG_MOVE_TO...................................70pp., 75p., 91, 93, 96, 100, 106, 200pp., 206, 221
VG_NO_ERROR..30, 219
VG_NON_ZERO..110, 222
VG_OUT_OF_MEMORY_ERROR..29p., 219
VG_PAINT_COLOR..118pp., 126, 128p., 223, 237
VG_PAINT_COLOR_RAMP_SPREAD_MODE.......................................118, 128p., 223
VG_PAINT_COLOR_RAMP_STOPS..118, 128p., 223
VG_PAINT_LINEAR_GRADIENT...118, 123, 223
VG_PAINT_PATTERN_TILING_MODE..118, 133p., 223

Version 1.1 Revision 1 (December 3, 2008)

Indices 246

VG_PAINT_RADIAL_GRADIENT...118, 125p., 223
VG_PAINT_TYPE..118pp., 123, 125p., 132, 134, 223
VG_PAINT_TYPE_COLOR...119p., 132, 223
VG_PAINT_TYPE_LINEAR_GRADIENT...119, 123, 223
VG_PAINT_TYPE_PATTERN...119, 132, 134, 223
VG_PAINT_TYPE_RADIAL_GRADIENT...119, 125p., 223
VG_PATH_BIAS...83p., 222
VG_PATH_CAPABILITY_ALL..80, 222
VG_PATH_CAPABILITY_APPEND_FROM...79p., 85p., 222
VG_PATH_CAPABILITY_APPEND_TO....................79p., 85pp., 200pp., 205, 207, 222
VG_PATH_CAPABILITY_ERROR..30, 86pp., 91p., 95pp., 219
VG_PATH_CAPABILITY_INTERPOLATE_FROM.....................................79p., 90, 222
VG_PATH_CAPABILITY_INTERPOLATE_TO...79p., 222
VG_PATH_CAPABILITY_MODIFY..79p., 87p., 222
VG_PATH_CAPABILITY_PATH_BOUNDS..80, 96, 222
VG_PATH_CAPABILITY_PATH_LENGTH..79p., 91p., 222
VG_PATH_CAPABILITY_PATH_TRANSFORMED_BOUNDS....................80, 97, 222
VG_PATH_CAPABILITY_POINT_ALONG_PATH.................................79p., 93pp., 222
VG_PATH_CAPABILITY_TANGENT_ALONG_PATH............................79p., 94p., 222
VG_PATH_CAPABILITY_TRANSFORM_FROM.......................................79p., 89, 222
VG_PATH_CAPABILITY_TRANSFORM_TO...79p., 89, 222
VG_PATH_DATATYPE..74, 83, 86p., 191p., 221p., 225, 237
VG_PATH_DATATYPE_F...74, 221
VG_PATH_DATATYPE_INVALID...237
VG_PATH_DATATYPE_QUERY...191p., 225
VG_PATH_DATATYPE_S_16...74, 221
VG_PATH_DATATYPE_S_32...74, 221
VG_PATH_DATATYPE_S_8...74, 221
VG_PATH_FORMAT..3, 70, 80, 83, 86, 221p., 236
VG_PATH_FORMAT_STANDARD..3, 70, 80, 221, 236
VG_PATH_NUM_COORDS...83p., 222
VG_PATH_NUM_SEGMENTS..83p., 222
VG_PATH_SCALE..83p., 222
VG_PIXEL_LAYOUT..35, 39, 46, 220
VG_PIXEL_LAYOUT_BGR_HORIZONTAL..46, 220
VG_PIXEL_LAYOUT_BGR_VERTICAL..46, 220
VG_PIXEL_LAYOUT_RGB_HORIZONTAL..46, 220
VG_PIXEL_LAYOUT_RGB_VERTICAL..46, 220
VG_PIXEL_LAYOUT_UNKNOWN..39, 46, 220
VG_QUAD_TO...72, 75p., 90, 106, 221
VG_RED...39, 176, 185, 224
VG_RELATIVE..75p., 86, 221p.

Version 1.1 Revision 1 (December 3, 2008)

Indices 247

VG_RENDERER...194p., 225
VG_RENDERING_QUALITY...34, 38, 45, 219p., 236
VG_RENDERING_QUALITY_BETTER...38, 45, 220
VG_RENDERING_QUALITY_FASTER..45, 220
VG_RENDERING_QUALITY_NONANTIALIASED...45, 220
VG_RGBA_s8888_PRE...136pp., 145p., 154, 223
VG_SCCWARC_TO...72, 75p., 203p., 206, 221
VG_SCISSOR_RECTS...34, 39, 55p., 219
VG_SCISSORING..35, 39, 55, 64, 220
VG_SCUBIC_TO..72, 75p., 90, 221
VG_SCWARC_TO..72, 75p., 206, 221
VG_SET_MASK...57p., 220
VG_sL_8..136pp., 175, 184, 223
VG_SQUAD_TO...72, 75p., 221
VG_sRGB_565..136pp., 223
VG_sRGBA_4444..136, 138, 223
VG_sRGBA_5551..136, 138, 223
VG_sRGBA_8888..136pp., 145p., 154, 223
VG_sRGBX_8888...136pp., 223
VG_STROKE_CAP_STYLE...35, 39, 108, 112, 219
VG_STROKE_DASH_PATTERN..35p., 39, 108p., 112, 219
VG_STROKE_DASH_PHASE...35, 39, 109, 112, 219, 236p.
VG_STROKE_JOIN_STYLE..35, 39, 108, 112, 219
VG_STROKE_LINE_WIDTH...35, 39, 107, 112, 219
VG_STROKE_MITER_LIMIT..35, 39, 108, 112, 219
VG_STROKE_PATH...60, 110pp., 116, 171, 173, 222
VG_SUBTRACT_MASK...58, 221
VG_TILE_FILL..35, 39, 119, 133, 219, 223
VG_TILE_FILL_COLOR..35, 39, 133, 219
VG_TILE_PAD...133, 223
VG_TILE_REFLECT...133, 223
VG_TILE_REPEAT..133, 223
VG_TRUE..........................18, 55p., 90, 112, 119, 126, 148, 168, 172pp., 186, 213p., 219
VG_UNION_MASK..57p., 221
VG_UNSUPPORTED_IMAGE_FORMAT_ERROR...........30, 141, 145p., 155, 157, 219
VG_UNSUPPORTED_PATH_FORMAT_ERROR...30, 81, 219
VG_VENDOR..194, 225
VG_VERSION...194p., 225, 237
vgAppendPath...4, 78p., 85p., 228
vgAppendPathData..4, 78p., 86, 200, 228, 236
VGbitfield................................1, 18, 39, 61, 81p., 84p., 111, 116, 141, 172p., 218, 227pp.
VGBlendMode...8, 24, 38, 189p., 225

Version 1.1 Revision 1 (December 3, 2008)

Indices 248

VGboolean.....1, 18, 24, 39, 90, 109, 119, 128p., 149, 168, 172p., 184p., 201, 213p., 219,
228pp., 233, 236
VGbyte..1, 17, 218
VGCapStyle...5, 12, 24, 39, 107p., 222
vgChildImage...6, 142, 147p., 150, 229
vgClear..3, 35, 64, 219, 227
vgClearGlyph..7, 167, 170, 230
vgClearImage..6, 143, 229
vgClearPath...4, 77, 80, 82, 228
vgColorMatrix...7, 176, 231
VGColorRampSpreadMode...6, 24, 119, 127pp., 223
vgConvolve..7, 177pp., 231
vgCopyImage...6, 148p., 153, 229
vgCopyMask...3, 63, 227
vgCopyPixels..7, 153, 158, 230
vgCreateFont...7, 165, 230
vgCreateImage...6, 27, 140p., 148, 150, 155, 158, 229
vgCreateMaskLayer..3, 61, 227
vgCreatePaint..5, 115, 229
vgCreatePath..4, 70, 77, 79pp., 227, 236
vgDestroyFont..7, 165p., 230
vgDestroyImage...6, 27, 142, 147p., 155, 158, 167, 229
vgDestroyMaskLayer..3, 62, 227
vgDestroyPaint..5, 115, 229
vgDestroyPath..4, 78pp., 82, 167, 228
vgDrawGlyph...7, 114, 171p., 230
vgDrawGlyphs...7, 114, 172p., 230
vgDrawImage...6, 14, 49, 114, 149pp., 229, 237
vgDrawPath..5, 14, 60, 102, 110pp., 150, 228
VGErrorCode...2, 24, 29p., 219, 225
vgFillMaskLayer...3, 62, 227
VGFillRule...5, 24, 38, 110p., 222
vgFinish...2, 33, 115, 225
VGfloat..1, 12, 18, 29, 36, 38p., 41p., 52pp., 62, 64, 81, 83p., 90p., 94, 96p., 107pp., 112,
119pp., 126, 129, 168p., 173, 176, 179, 181p., 186, 200pp., 206, 208p., 218, 226pp.,
230p., 233p.
vgFlush..2, 33, 225
VGFont...7, 25, 40, 142, 160, 164pp., 230, 236
VGFontParamType..7, 24, 166, 225, 236, 240
vgGaussianBlur...7, 177p., 181p., 231
vgGet...........................2, 11, 19, 34, 36pp., 40, 46, 55, 108p., 127, 140p., 177p., 226, 236
vgGetColor...5, 121p., 229

Version 1.1 Revision 1 (December 3, 2008)

Indices 249

vgGetError..2, 29p., 199, 225
vgGetImageSubData..6, 145p., 153, 158, 229
vgGetMatrix..3, 52, 227
vgGetPaint...5, 111, 117, 229
vgGetParameter..2, 27, 34, 36, 40pp., 78, 82, 117, 129, 142, 166
vgGetParameterf..42p., 84, 226
vgGetParameterfv..42p., 122, 226
vgGetParameteri...42p., 83p., 86p., 143, 167, 226
vgGetParameteriv...42p., 226
vgGetParameterVectorSize..2, 41pp., 226
vgGetParent...6, 148, 229
vgGetPathCapabilities..4, 78, 84p., 228
vgGetPixels...7, 153, 156, 158, 230
vgGetString..8, 17, 194p., 231, 237
vgGetVectorSize...2, 37p., 226
VGHandle.............2, 25p., 34, 40pp., 59, 61, 79, 115, 139, 164, 219, 222, 224, 226p., 230
vgHardwareQuery..8, 191p., 231
VGHardwareQueryResult..8, 24, 191p., 225, 231
VGHardwareQueryType..8, 24, 191p., 225, 231
VGImage.......6, 25, 31p., 40, 59p., 132, 134, 139, 141pp., 145pp., 151, 153pp., 158, 160,
164, 166p., 169pp., 173, 176, 179, 181p., 184p., 224, 229pp.
VGImageChannel...7, 24, 175p., 185, 224, 231
VGImageFormat...................................6, 24, 135p., 141pp., 154pp., 192, 224, 229p., 237
VGImageMode...6, 24, 38, 149p., 224
VGImageParamType...6, 24, 142, 224
VGImageQuality..6, 24, 38, 139pp., 224
vgImageSubData...6, 144pp., 153pp., 229, 237
VGint.......1, 18p., 36, 38p., 41p., 55p., 59, 61pp., 77, 81, 83p., 86, 88, 91, 94, 108p., 127,
140p., 143, 145pp., 149, 154pp., 165pp., 173, 177pp., 181, 192, 201, 218p., 226pp., 233
vgInterpolatePath..4, 78p., 87, 89p., 228, 236
VGJoinStyle..5, 24, 39, 108, 222
vgLoadIdentity...3, 50p., 110, 227
vgLoadMatrix...3, 12, 50pp., 110, 227
vgLookup...7, 183p., 231
vgLookupSingle...7, 184p., 231
vgMask...3, 56, 58pp., 227
VGMaskLayer..3, 25, 40, 59pp., 227
VGMaskOperation...3, 24, 57pp., 221, 227, 240
VGMatrixMode...3, 24, 38, 51, 220, 236
vgModifyPathCoords..4, 78p., 87p., 228
vgMultMatrix...3, 50, 52p., 110, 227
VGPaint......................5, 25, 40, 114pp., 120pp., 126, 129, 132, 134, 142, 151p., 222, 229

Version 1.1 Revision 1 (December 3, 2008)

Indices 250

VGPaintMode...5, 24, 61, 111, 115, 117, 172p., 222, 229
VGPaintParamType..5, 24, 117pp., 223, 240
vgPaintPattern...6, 132, 134, 229
VGPaintType...5, 24, 119, 223
VGParamType..2, 24, 34pp., 220, 226
VGPath.......4, 25, 31, 40, 61, 69, 78pp., 88pp., 94, 96p., 110pp., 160, 164, 166pp., 170p.,
173, 200pp., 206, 222, 227p., 230, 233
VGPathAbsRel..4, 24, 75, 77, 221
vgPathBounds..4, 78, 80, 95p., 228
VGPathCapabilities...4, 24, 79p., 82, 84p., 222
VGPathCommand..4, 24, 75p., 86, 222
VGPathDatatype..4, 24, 74, 77, 80p., 83, 192, 221, 227
vgPathLength...4, 78p., 81, 91, 93, 228
VGPathParamType...4, 24, 82p., 222, 240
VGPathSegment..4, 24, 72, 75, 77, 221
vgPathTransformedBounds..4, 80, 95pp., 228
VGPixelLayout..2, 24, 39, 46p., 220, 240
vgPointAlongPath...4, 78p., 81, 92pp., 105, 107, 228
vgReadPixels..7, 153, 156pp., 230
vgRemovePathCapabilities...4, 78, 85, 228
VGRenderingQuality..2, 24, 45, 220
vgRenderToMask...3, 60p., 227
vgRotate..3, 50, 54, 227
vgScale..3, 50, 54, 227
vgSeparableConvolve..7, 177, 180p., 231
vgSet...........2, 11p., 34, 36p., 40, 45p., 51, 55p., 64, 102, 107pp., 140, 150, 186, 190, 226
vgSetColor..5, 120p., 229
vgSetGlyphToImage..7, 167, 169, 230
vgSetGlyphToPath...7, 167p., 172, 230
vgSetPaint...5, 111, 115p., 118, 229
vgSetParameter..2, 34, 36, 40, 42, 114, 117, 128, 237
vgSetParameterf..41, 226
vgSetParameterfv..41, 120p., 123, 125p., 129, 226
vgSetParameteri...41, 119p., 123, 125p., 129, 133p., 226
vgSetParameteriv..41, 226
vgSetPixels...6, 153pp., 229
vgShear..3, 50, 54, 227
VGshort..1, 17, 19, 179, 181, 218p., 231
VGStringID..8, 24, 194p., 225, 231
VGTilingMode..6, 24, 119, 132pp., 178pp., 223, 231
vgTransformPath...4, 78p., 87pp., 110, 228, 236
vgTranslate...3, 50, 53, 163p., 227

Version 1.1 Revision 1 (December 3, 2008)

Indices 251

VGU_ARC_CHORD...12, 205p., 233
VGU_ARC_OPEN...205, 233
VGU_ARC_PIE...205p., 233
VGU_BAD_HANDLE_ERROR...199pp., 205, 207, 232
VGU_BAD_WARP_ERROR..199, 208p., 232
VGU_ILLEGAL_ARGUMENT_ERROR...........................199, 201pp., 205, 207pp., 232
VGU_NO_ERROR...199, 232
VGU_OUT_OF_MEMORY_ERROR..199, 232
VGU_PATH_CAPABILITY_ERROR...199pp., 205, 207, 232
VGU_VERSION_1_0...199, 232
VGU_VERSION_1_1...8, 199, 232
vgu.h..9, 199, 232
vguArc..9, 78, 205pp., 233, 237, 241
VGUArcType...9, 25, 205pp., 233, 241
VGubyte...1, 17, 77, 86, 183p., 195, 218, 228, 231
vguComputeWarpQuadToQuad..9, 209, 234
vguComputeWarpQuadToSquare..9, 208, 233
vguComputeWarpSquareToQuad..9, 208, 233
vguEllipse..9, 78, 204, 233
VGUErrorCode..8, 25, 199pp., 206, 208p., 233p.
VGuint..1, 18, 25, 120pp., 168pp., 172p., 185, 218p., 229pp.
vguLine...8, 78, 200, 233
vguPolygon..8, 78, 200p., 233
vguRect..8, 78, 201p., 233
vguRoundRect..9, 12, 78, 202p., 233
vgWritePixels...7, 153pp., 230, 237
VLINE_TO...72p., 75p., 89, 202p., 221

Version 1.1 Revision 1 (December 3, 2008)

	1 Introduction
	1.1 Feature Set
	1.2 Target Applications
	SVG and Adobe Flash Viewers
	Portable Mapping Applications
	E-book Readers
	Games
	Scalable User Interfaces
	Low-Level Graphics Device Interface

	1.3 Target Devices
	1.4 Design Philosophy
	1.5 Naming and Typographical Conventions
	1.6 Library Naming

	2 The OpenVG Pipeline
	2.1 Stage 1: Path, Transformation, Stroke, and Paint
	2.2 Stage 2: Stroked Path Generation
	2.3 Stage 3: Transformation
	2.4 Stage 4: Rasterization
	2.5 Stage 5: Clipping and Masking
	2.6 Stage 6: Paint Generation
	2.7 Stage 7: Image Interpolation
	2.8 Stage 8: Color Transformation, Blending, and Antialiasing
	2.9 Multisampling

	3 Constants, Functions and Data Types
	3.1 Versioning
	OPENVG_VERSION_1_1

	3.2 Primitive Data Types
	VGbyte
	VGubyte
	VGshort
	VGint
	VGuint
	VGbitfield
	VGboolean
	VGfloat

	3.3 Floating-Point and Integer Representations
	VG_MAXSHORT
	VG_MAXINT
	VG_MAX_FLOAT

	3.4 Colors
	3.4.1 Linear and Non-Linear Color Representations
	3.4.2 Color Space Definitions
	3.4.3 Premultiplied Alpha
	3.4.4 Color Format Conversion

	3.5 Enumerated Data Types
	3.6 Handle-based Data Types
	VGHandle
	VG_INVALID_HANDLE

	4 The Drawing Context
	4.1 Errors
	VGErrorCode
	vgGetError

	4.2 Manipulating the Context Using EGL
	4.2.1 EGLConfig Attributes
	EGL_OPENVG_BIT
	EGL_ALPHA_MASK_SIZE

	4.2.2 EGL Functions
	eglBindAPI
	eglCreateContext
	eglCreateWindowSurface
	eglCreatePbufferFromClientBuffer
	eglMakeCurrent
	eglGetCurrentContext
	eglDestroyContext
	eglSwapBuffers

	4.3 Forcing Drawing to Complete
	vgFlush
	vgFinish

	5 Setting API Parameters
	5.1 Context Parameter Types
	VGParamType

	5.2 Setting and Querying Context Parameter Values
	vgSet
	vgGet and vgGetVectorSize
	5.2.1 Default Context Parameter Values

	5.3 Setting and Querying Object Parameter Values
	vgSetParameter
	vgGetParameter and vgGetParameterVectorSize

	6 Rendering Quality and Antialiasing
	6.1 Rendering Quality
	VGRenderingQuality

	6.2 Additional Quality Settings
	VGPixelLayout

	6.3 Coordinate Systems and Transformations
	6.4 Coordinate Systems
	6.5 Transformations
	6.5.1 Homogeneous Coordinates
	6.5.2 Affine Transformations
	6.5.3 Projective (Perspective) Transformations

	6.6 Matrix Manipulation
	VGMatrixMode
	vgLoadIdentity
	vgLoadMatrix
	vgGetMatrix
	
	vgMultMatrix
	vgTranslate
	vgScale
	vgShear
	vgRotate

	7 Scissoring, Masking, and Clearing
	7.1 Scissoring
	VG_MAX_SCISSOR_RECTS
	Specifying Scissoring Rectangles

	7.2 Masking
	VGMaskOperation
	vgMask
	vgRenderToMask
	VGMaskLayer
	vgCreateMaskLayer
	vgDestroyMaskLayer
	vgFillMaskLayer
	vgCopyMask

	7.3 Fast Clearing
	vgClear

	8 Paths
	8.1 Moves
	8.2 Straight Line Segments
	8.3 Bézier Curves
	8.3.1 Quadratic Bézier Curves
	8.3.2 Cubic Bézier Curves
	8.3.3 G1 Smooth Segments
	8.3.4 C1 Smooth Segments
	8.3.5 C2 Smooth Segments
	8.3.6 Converting Segments From Quadratic to Cubic Form

	8.4 Elliptical Arcs
	8.5 The Standard Path Format
	VG_PATH_FORMAT_STANDARD
	8.5.1 Path Segment Command Side Effects
	8.5.2 Segment Commands
	8.5.3 Coordinate Data Formats
	VGPathDatatype

	8.5.4 Segment Type Marker Definitions
	VGPathAbsRel
	VGPathSegment
	VGPathCommand

	8.5.5 Path Example

	8.6 Path Operations
	8.6.1 Storage of Paths
	VGPath

	8.6.2 Creating and Destroying Paths
	VGPathCapabilities
	vgCreatePath
	vgClearPath
	vgDestroyPath

	8.6.3 Path Queries
	VGPathParamType
	Path Format
	Path Datatype
	Path Scale
	Path Bias
	Number of Segments
	Number of Coordinates

	8.6.4 Querying and Modifying Path Capabilities
	vgGetPathCapabilities
	vgRemovePathCapabilities

	8.6.5 Copying Data Between Paths
	vgAppendPath

	8.6.6 Appending Data to a Path
	vgAppendPathData

	8.6.7 Modifying Path Data
	vgModifyPathCoords

	8.6.8 Transforming a Path
	vgTransformPath

	8.6.9 Interpolating Between Paths
	vgInterpolatePath

	8.6.10 Length of a Path
	vgPathLength

	8.6.11 Position and Tangent Along a Path
	The Tangents of a Path Segment
	vgPointAlongPath

	8.6.12 Querying the Bounding Box of a Path
	vgPathBounds
	vgPathTransformedBounds

	8.7 Interpretation of Paths
	8.7.1 Filling Paths
	Creating Holes in Paths
	Implicit Closure of Filled Subpaths

	8.7.2 Stroking Paths
	8.7.3 Stroke Parameters
	End Cap Styles
	Line Join Styles
	Miter Length
	Dashing

	8.7.4 Stroke Generation
	8.7.5 Setting Stroke Parameters
	VGCapStyle
	VGJoinStyle
	VG_MAX_DASH_COUNT
	Setting the Dash Pattern

	8.7.6 Non-Scaling Strokes

	8.8 Filling or Stroking a Path
	VGFillRule
	VGPaintMode
	vgDrawPath
	Filling a Path
	Stroking a Path
	Filling and Stroking a Path

	9 Paint
	9.1 Paint Definitions
	VGPaint
	9.1.1 Creating and Destroying Paint Objects
	vgCreatePaint
	vgDestroyPaint

	9.1.2 Setting the Current Paint
	vgSetPaint
	vgGetPaint

	9.1.3 Setting Paint Parameters
	VGPaintParamType
	VGPaintType

	9.2 Color Paint
	Setting Color Paint Parameters
	vgSetColor
	vgGetColor

	9.3 Gradient Paint
	9.3.1 Linear Gradients
	Setting Linear Gradient Parameters

	9.3.2 Radial Gradients
	Setting Radial Gradient Parameters

	9.3.3 Color Ramps
	VG_MAX_COLOR_RAMP_STOPS
	VGColorRampSpreadMode
	Setting Color Ramp Parameters
	Formal Definition of Spread Modes

	9.3.4 Gradient Examples

	9.4 Pattern Paint
	vgPaintPattern
	9.4.1 Pattern Tiling
	VGTilingMode
	Setting the Pattern Tiling Mode

	10 Images
	10.1 Image Coordinate Systems
	10.2 Image Formats
	VGImageFormat

	10.3 Creating and Destroying Images
	VGImage
	VGImageQuality
	VG_MAX_IMAGE_WIDTH
	VG_MAX_IMAGE_HEIGHT
	VG_MAX_IMAGE_PIXELS
	VG_MAX_IMAGE_BYTES
	vgCreateImage
	vgDestroyImage

	10.4 Querying Images
	VGImageParamType
	Image Format
	Image Width
	Image Height

	10.5 Reading and Writing Image Pixels
	vgClearImage
	vgImageSubData
	vgGetImageSubData

	10.6 Child Images
	vgChildImage
	vgGetParent

	10.7 Copying Pixels Between Images
	vgCopyImage

	10.8 Drawing Images to the Drawing Surface
	VGImageMode
	vgDrawImage
	VG_DRAW_IMAGE_NORMAL
	VG_DRAW_IMAGE_MULTIPLY
	VG_DRAW_IMAGE_STENCIL

	10.9 Reading and Writing Drawing Surface Pixels
	10.9.1 Writing Drawing Surface Pixels
	vgSetPixels
	vgWritePixels

	10.9.2 Reading Drawing Surface Pixels
	vgGetPixels
	vgReadPixels

	10.10 Copying Portions of the Drawing Surface
	vgCopyPixels

	11 Text
	11.1 Text Rendering
	11.2 Font Terminology
	11.3 Glyph Positioning and Text Layout
	11.4 Fonts in OpenVG
	11.4.1 VGFont Objects and Glyph Mapping
	VGFont
	Glyph Mapping

	11.4.2 Managing VGFont Objects
	vgCreateFont
	vgDestroyFont

	11.4.3 Querying VGFont Objects
	VGFontParamType
	Number of Glyphs

	11.4.4 Adding and Modifying Glyphs in VGFonts
	vgSetGlyphToPath
	vgSetGlyphToImage
	vgClearGlyph

	11.4.5 Font Sharing

	11.5 Text Layout and Rendering
	vgDrawGlyph
	vgDrawGlyphs

	12 Image Filters
	12.1 Format Normalization
	12.2 Channel Masks
	VGImageChannel

	12.3 Color Combination
	vgColorMatrix

	12.4 Convolution
	VG_MAX_KERNEL_SIZE
	VG_MAX_SEPARABLE_KERNEL_SIZE
	VG_MAX_GAUSSIAN_STD_DEVIATION
	vgConvolve
	vgSeparableConvolve
	vgGaussianBlur

	12.5 Lookup Tables
	vgLookup
	vgLookupSingle

	13 Color Transformation and Blending
	13.1 Color Transformation
	Setting the Color Transformation

	13.2 Blending Equations
	13.3 Porter-Duff Blending
	13.4 Additional Blending Modes
	13.5 Additive Blending
	13.6 Setting the Blend Mode
	VGBlendMode

	14 Querying Hardware Capabilities
	VGHardwareQueryType
	VGHardwareQueryResult
	vgHardwareQuery

	15 Extending the API
	15.1 Extension Naming Conventions
	15.2 The Extension Registry
	15.3 Using Extensions
	15.3.1 Accessing Extensions Statically
	15.3.2 Accessing Extensions Dynamically
	VGStringID
	vgGetString
	eglGetProcAddress

	15.4 Creating Extensions

	16 API Conformance
	16.1 Conformance Test Principles
	16.1.1 Window System Independence
	16.1.2 Antialiasing Algorithm Independence
	16.1.3 On-Device and Off-Device Testing

	16.2 Types of Conformance Tests
	16.2.1 Pipeline Tests
	16.2.2 Self-Consistency Tests
	16.2.3 Matrix Tests
	16.2.4 Interior/Exterior Tests
	16.2.5 Positional Invariance
	16.2.6 Image Comparison Tests

	17 The VGU Utility Library
	VGU_VERSION_1_1
	VGUErrorCode
	17.1 Higher-level Geometric Primitives
	17.1.1 Lines
	vguLine

	17.1.2 Polylines and Polygons
	vguPolygon

	17.1.3 Rectangles
	vguRect

	17.1.4 Round-Cornered Rectangles
	vguRoundRect

	17.1.5 Ellipses
	vguEllipse

	17.1.6 Arcs
	VGUArcType
	vguArc

	17.2 Image Warping
	vguComputeWarpQuadToSquare
	vguComputeWarpSquareToQuad
	vguComputeWarpQuadToQuad

	18 Appendix A: Mathematics of Ellipses
	18.1 The Center Parameterization
	18.2 The Endpoint Parameterization
	18.3 Converting from Center to Endpoint Parameterization
	18.4 Converting from Endpoint to Center Parameterization
	18.5 Implicit Representation of an Ellipse
	18.6 Transformation of Ellipses

	19 Appendix B: Header Files
	openvg.h
	vgu.h

	20 Bibliography
	21 Document History
	22 Acknowledgments
	23 Indices
	Index of Tables
	Index of Figures

