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1 Introduction

Since mankind first climbed down from the trees, it is our ability to communicate
that has made us unique. Once ideas could be passed from person to person, it
made sense to have a permanent record of them; one which could be passed on
from person to person without them ever meeting.

And thus the document was born.
Traditionally, documents have been static: just marks on paper, but with

the advent of computers many more possibilities open up.

2 Document Formats

Most existing document formats — such as the venerable PostScript and PDF
— are, however, designed to imitate existing paper documents, largely to allow
for easy printing. In order to truly take advantage of the possibilities operating
in the digital domain opens up to us, we must look to new formats.

Formats such as HTML allow for a greater scope of interactivity and for a
more data-driven model, allowing the content of the document to be explored
in ways that perhaps the author had not anticipated.[1] However, these data-
driven formats typically do not support fixed layouts, and the display differs
from renderer to renderer.

Ultimately, there are two fundamental stages by which all documents —
digital or otherwise — are produced and displayed: layout and display. The
layout stage is where the positions and sizes of text and other graphics are
determined, while the display stage actually produces the final output, whether
as ink on paper or pixels on a computer monitor.

Existing document formats, due to being designed to model paper, have
limited precision (8 decimal digits for PostScript[2], 5 decimal digits for PDF[3]).
This matches the limited resolution of printers and ink, but is limited when
compared to what aught to be possible with “zoom” functionality, which is
prevent from working beyond a limited scale factor, lest artefacts appear due to
issues with numeric precision.

3 Rendering

Computer graphics comes in two forms: bit-mapped (or raster) graphics, which
is defined by an array of pixel colours, and vector graphics, defined by math-
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ematical descriptions of objects. Bit-mapped graphics are well suited to pho-
tographs and are match how cameras, printers and monitors work. However,
bitmap devices do not handle zooming beyond their “native” resolution — the
resolution where one document pixel maps to one display pixel —, exhibiting an
artefact called pixelation where the pixel structure becomes evident. Attempts
to use interpolation to hide this effect are never entirely successful, and sharp
edges, such as those found in text and diagrams, are particularly effected.

Vector graphics lack many of these problems: the representation is indepen-
dent of the output resolution, and rather an abstract description of what it is
being rendered, typically as a combination of simple geometric shapes like lines,
arcs and “Bézier curves”. As existing displays (and printers) are bit-mapped
devices, vector documents must be rasterized into a bitmap at a given resolu-
tion. This bitmap is then displayed or printed. The resulting bitmap is then an
approximation of the vector image at that resolution.

This project will be based around vector graphics, as these properties make
it more suited to experimenting with zoom quality.

The rasterization process typically operates on an individual “object” or
“shape” at a time: there are special algorithms for rendering lines[4], triangles[5],
polygons[6] and Bézier Curves[7]. Typically, these are rasterized independently
and composited in the bitmap domain using Porter-Duff compositing[8] into a
single image. This allows complex images to be formed from many simple pieces,
as well as allowing for layered translucent objects, which would otherwise require
the solution of some very complex constructive geometry problems.

While traditionally, rasterization was done entirely in software, modern com-
puters and mobile devices have hardware support for rasterizing some basic
primitives — typically lines and triangles —, designed for use rendering 3D
scenes. This hardware is usually programmed with an API like OpenGL[9].

More complex shapes like Bézier curves can be rendered by combining the
use of bitmapped textures (possibly using signed-distance fields[10][11][12]) with
polygons approximating the curve’s shape[13][14].

Indeed, there are several implementations of entire vector graphics sys-
tems using OpenGL: OpenVG[15] on top of OpenGL ES[16]; the Cairo[17]
library, based around the PostScript/PDF rendering model, has the “Glitz”
OpenGL backend[18] and the SVG/PostScript GPU renderer by nVidia[19] as
an OpenGL extension[20].

4 Floating-Point Precision

On modern computer architectures, there are two basic number formats sup-
ported: fixed-width integers and floating-point numbers. Typically, computers
natively support integers of up to 64 bits, capable of representing all integers
between 0 and 264 − 11.

Floating-point numbers[21] are the binary equivalent of scientific notation:
each number consisting of an exponent (e) and a mantissa (m) such that a
number is given by

n = 2e ×m (1)

1Most machines also support signed integers, which have the same cardinality as their
unsigned counterparts, but which represent integers between −(263) and 263 − 1
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The IEEE 754 standard[22] defines several floating-point data types which
are used2 by most computer systems. The standard defines 32-bit (8-bit expo-
nent, 23-bit mantissa) and 64-bit (11-bit exponent, 53-bit mantissa) formats3

How floating-point works and what its behaviour is w/r/t range and precision
[21] [24]

Arb. precision exists
Higher precision numeric types can be implemented or used on the GPU,

but are slow. [25]

5 Quadtrees

When viewing or processing a small part of a large document, it may be helpful
to only processs — or cull — parts of the document which are not on-screen.

Figure 1: A simple quadtree.

The quadtree[26]is a data structure — one of a family of spatial data struc-
tures — which recursively breaks down space into smaller subregions which can
be processed independently. Points (or other objects) are added to a single
node, which if certain criteria are met — typically the number of points in a
node exceeding a maximum, though in our case likely the level of precision re-
quired exceeding that supported by the data type in use — is split into four
equal-sized subregions, and points attached to the region which contains them.

In this project, we will be experimenting with a form of quadtree in which
each node has its own independent coordinate system, allowing us to store some
spatial information4 within the quadtree structure, eliminating redundancy in
the coordinates of nearby objects.

Other spatial data structures exist, such as the KD-tree[27], which partitions
the space on any axis-aligned line; or the BSP tree[28], which splits along an
arbitrary line which need not be axis aligned. We believe, however, that the
simpler conversion from binary coordinates to the quadtree’s binary split make
it a better avenue for initial research to explore.

2Many systems’ implement the IEEE 754 standard’s storage formats, but do not implement
arithmetic operations in accordance with this standard.

3The 2008 revision to this standard[23] adds some additional formats, but is less widely
supported in hardware.

4One bit per-coordinate, per-level of the quadtree
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