
Precision in vector documents:
a spatial approach

David Gow

This report is submitted as partial fulfilment of
the requirements for the Software Engineering Programmme of the

School of Computer Science and Software Engineering,
The University of Western Australia,

2014

October 21, 2014 David Gow (20513694)

Contents

1 Introduction 1

2 Background 2

2.1 Rendering . 2

2.1.1 Rasterizing Vector Graphics . 3

2.1.2 GPU Rendering . 3

2.2 Numeric formats . 4

2.3 Document Formats . 6

2.3.1 A Taxonomy of Document formats 6

2.3.2 Precision in Document Formats 8

2.4 Quadtrees . 9

3 IPDF: A Document Precision Playground 10

3.1 GPU Floating Point Rounding Behaviour 10

3.2 Distortion and Quantisation at the limits of precision 12

4 View Reparenting and the Quadtree 13

4.1 Clipping cubic Béziers . 14

4.2 Implementation Details . 15

5 Experimental Results 16

5.1 Performance per object . 16

5.2 Performance per onscreen object . 16

5.3 Performance per zoom-level . 16

5.4 Stability of performance . 16

6 Further Work and Conclusion 17

ii of 21 DRAFT

October 21, 2014 David Gow (20513694)

CHAPTER 1

Introduction

Documents are an important part of day-to-day life: we use them for business and
pleasure, to inform and entertain. We often use images or diagrams to illustrate our
ideas, and to convey spatial or visual information.

On the printed page, there is a practical limit to the size and resolution of these
images. In order to store, for example, maps of large areas with fine detail, we resort
to an atlas: splitting the map up into several pages, each of which covers a different
part of the map.

With the advent of computers, we can begin to alleviate these problems. The fixed
size and resolution of the screen is worked around by having the screen be a viewport
into a larger document, letting the document be panned (translated laterally) and
zoomed (scaled to a particular magnification).

However, limits in the range and precision of the numbers used to store and ma-
nipulate documents artificially restrict the size and zoom-level of documents. While
changing the numeric types used can solve these issues, here we investigate the use
of a quadtree to take advantage of the spatial nature of the data. This is akin to
maintaining the atlas of several different pages with different views of the map, but
with the advantage of greater ease-of-use and continuity.

1 of 21 DRAFT

October 21, 2014 David Gow (20513694)

CHAPTER 2

Background

2.1 Rendering

Computer graphics comes in two forms: bit-mapped (or raster) graphics, which is
defined by an array of pixel colours; and vector graphics, defined by mathematical
descriptions of objects. Bit-mapped graphics are well suited to photographs and
match how cameras, printers and monitors work.

Vector Image Raster Image

Figure 2.1: A circle as a vector image and a 32× 32 pixel raster image

However, bitmap devices do not handle zooming beyond their “native” resolution
(the resolution where one document pixel maps to one display pixel), exhibiting an
artefact called pixelation (see Figure 2.1) where the pixel structure becomes evident.
Attempts to use interpolation to hide this effect are never entirely successful, and
sharp edges, such as those found in text and diagrams, are particularly affected.

Vector graphics avoid many of these problems: the representation is independent
of the output resolution, and rather an abstract description of what is being rendered,
typically as a combination of simple geometric shapes like lines, arcs and glyphs.

As existing displays (and printers) are bit-mapped devices, vector documents
must be rasterized into a bitmap at a given resolution. The resulting bitmap is
then an approximation of the vector image at that resolution. This bitmap is then
displayed or printed.

We will discuss the use of vector graphics, as they lend themselves more natu-
rally to scaling, though many of the techniques will also apply to raster graphics.

2 of 21 DRAFT

October 21, 2014 David Gow (20513694)

Indeed, the use of quadtrees to compress bitmapped data is well established[44], and
the view-reparenting techniques have been used to facilitate an infinite zoom into a
(procedurally generated) document[38].

2.1.1 Rasterizing Vector Graphics

Before an vector document can be rasterized, the co-ordinates of any shapes must
be transformed into screen space or viewport space[6]. On a typical display, many
of these screen-space coordinates require very little precision or range. However, the
co-ordinate transform must take care to ensure that precision is preserved during
this transform.

After this transformation, the image is decomposed into its separate shapes, which
are rasterized and then composited together. Most graphics formats support Porter-
Duff compositing[41]. Porter-Duff compositing gives each element (typically a pixel)
a “coverage” value, denoted α which represents the contribution of that element to
the final scene. Completely transparent elements would have an α value of 0, and
completely opaque elements have an α of 1. This permits arbitrary shapes to be
layered over one another in the raster domain, while retaining soft-edges.

The rasterization process may then proceed on one object (or shape) at a time.
There are special algorithms for rasterizing different shapes.

Line Segment Straight lines between two points are easily rasterized using Bresen-
ham’s algorithm[8]. Bresenham’s algorithm draws a pixel for every point along
the long axis of the line, moving along the short axis when the error exceeds 1

2
a pixel.

Bresenham’s algorithm only operates on lines whose endpoints lie on integer
pixel coordinates. Due to this, line “clipping” may be performed to find end-
points of the line segment such that the entire line will be on-screen. However,
if line clipping is performed näıvely without also setting the error accumulator
correctly, the line’s slope will be altered slightly, becoming dependent on the
viewport.

Bézier Curve A Bézier curve is a smooth (i.e. infinitely differentiable) curve be-
tween two points, represented by a Bernstein polynomial. The coefficients of
this Bernstein polynomial are known as the “control points.”

Bézier curves are typically rasterized using De Casteljau’s algorithm[19] Line
Segments are a first-order Bézier curve.

2.1.2 GPU Rendering

While traditionally, rasterization was done entirely in software, modern computers
and mobile devices have hardware support for rasterizing lines and triangles designed
for use rendering 3D scenes. This hardware is usually programmed with an API like
OpenGL[46].

More complex shapes like Bézier curves can be rendered by combining the use of
bitmapped textures (possibly using signed-distance fields[34][20][25]) strtched over a
triangle mesh approximating the curve’s shape[35][36].

3 of 21 DRAFT

October 21, 2014 David Gow (20513694)

Indeed, there are several implementations of entire vector graphics systems using
OpenGL:

• The OpenVG standard[43] has been implemented on top of OpenGL ES[40];

• the Cairo[48] library, based around the PostScript/PDF rendering model, has
the “Glitz” OpenGL backend[39]

• and the SVG/PostScript GPU renderer by nVidia[31] as an OpenGL extension[30].

2.2 Numeric formats

On modern computer architectures, there are two basic number formats supported:
fixed-width integers and floating-point numbers. Typically, computers natively sup-
port integers of up to 64 bits, capable of representing all integers between 0 and
264 − 1, inclusive1.

By introducing a fractional component (analogous to a decimal point), we can
convert integers to fixed-point numbers, which have a more limited range, but a fixed,
greater precision. For example, a number in 4.4 fixed-point format would have four
bits representing the integer component, and four bits representing the fractional
component:

0101︸︷︷︸
integer component

. 1100︸︷︷︸
fractional component

= 5.75 (2.1)

Floating-point numbers[24, 33] are a superset of scientific notation, originally
used by the Babylonians (in base 60) perhaps as early as 1750 BC. Each number n
(in a base β) consists of integers e (the exponent) and m (the mantissa) such that

n = βe ×mf (2.2)

Both e and m typically have a fixed width q and p respectively in base β. For
notational convenience, we also represent m as a fraction mf = β−pm so |mf | < 1.
We further call a floating point number normalised if the first digit of m is nonzero.
The exponent e is usually allowed to be either positive or negative (either by having
a sign bit, or being offset a fixed amount). The value of a floating point number
n must therefore be −βemax < n < βemax. The smallest possible magnitude of
a normalised floating point number is βemin−1, as mf must be at least 0.1. Non-
normalised numbers may represent 0, and many normalised floating-point include
zero in some way, too.

The IEEE 754 standard[1] defines several floating-point data types which are
used2 by most computer systems. The standard defines 32-bit (8-bit exponent, 23-
bit mantissa, 1 sign bit) and 64-bit (11-bit exponent, 53-bit mantissa, 1 sign bit)

1Most machines also support signed integers, which have the same cardinality as their unsigned
counterparts, but which represent integers in the range [−(263), 263 − 1]

2Many systems implement the IEEE 754 standard’s storage formats, but do not implement
arithmetic operations in accordance with this standard[46, 29].

4 of 21 DRAFT

October 21, 2014 David Gow (20513694)

formats3, which can store approximately 7 and 15 decimal digits of precision re-
spectively. The IEEE 754 standard also introduces an implicit 1 bit in the most
significant place of the mantissa when the exponent is not emin.

Floating-point numbers behave quite differently to integers or fixed-point num-
bers, as the representable numbers are not evenly distributed. Large numbers are
stored to a lesser precision than numbers close to zero. This can present problems
in documents when zooming in on objects far from the origin. Furthermore, due
to the limited precision, and the different “alignment” of operands in arithmetic,
several algebraic properties of rings we take for granted in the integers do not exist,
including the property of assosciativity[33].

IEEE floating-point has some interesting features as well, including values for
negative zero, positive and negative infinity, the “Not a Number” (NaN) value and
subnormal values, which trade precision for range when dealing with very small
numbers by not normalising numbers when the exponent is emin. Indeed, with these
values, IEEE 754 floating-point equality does not form an equivalence relation, which
can cause issues when not considered carefully[23].

There also exist formats for storing numbers with arbitrary precising and/or
range. Some programming languages support “big integer”[14] types which can rep-
resent any integer that can fit in the system’s memory. Similarly, there are arbitrary-
precision floating-point data types[13][37] which can represent any number of the
form

n

2d
n, d ∈ Z (2.3)

These types are typically built from several native data types such as integers and
floats, paired with custom routines implementing arithmetic primitives.[42] Opera-
tions on these types, therefore, are usually slower than those performed on native
types.

Pairs of integers (a ∈ Z, b ∈ Z \ 0) can be used to represent rationals. This allows
values such as 1

3 to be represented exactly, whereas in fixed or floating-point formats,
this would have a recurring representation:

0︸︷︷︸
integer part

. 01︸︷︷︸
recurring part

01 01 01 . . . (2.4)

Whereas with a rational type, this is simply 1
3 . Rationals do not have a unique

representation for each value, typically the reduced fraction is used as a characteristic
element.

While traditionally, GPUs have supported some approximation of IEEE 754’s
32-bit floats, modern graphics processors also support 16-bit[9] and 64-bit[10] IEEE
floats, though some features of IEEE floats, like denormals and NaNs are not always
supported. Note, however, that some parts of the GPU are not able to use all formats,
so precision will likely be truncated at some point before display. Higher precision
numeric types can be implemented or used on the GPU, but are slow.[17]

3The 2008 revision to this standard[2] adds some additional formats, but is less widely supported
in hardware.

5 of 21 DRAFT

October 21, 2014 David Gow (20513694)

Document
Description

Typeset
Document

ImageLayout Render

Figure 2.2: The lifecycle of a document

2.3 Document Formats

Most existing document formats — such as the venerable PostScript and PDF —
are, however, designed to imitate existing paper documents, largely to allow for easy
printing. In order to truly take advantage of the possibilities operating in the digital
domain opens up to us, we must look to new formats.

Formats such as HTML allow for a greater scope of interactivity and for a more
data-driven model, allowing the content of the document to be explored in ways
that perhaps the author had not anticipated.[26] However, these data-driven for-
mats typically do not support fixed layouts, and the display differs from renderer to
renderer.

2.3.1 A Taxonomy of Document formats

The process of creating and displaying a document is a rather universal one (??),
though different document formats approach it slightly differently. A document often
begins as raw content: text and images (be they raster or vector) and it must end
up as a stream of photons flying towards the reader’s eyes.

There are two fundamental stages (as shown in Figure 2.2) by which all docu-
ments — digital or otherwise — are produced and displayed: layout and rendering.
The layout stage is where the positions and sizes of text and other graphics are de-
termined. The text will be flowed around graphics, the positions of individual glyphs
will be placed, ensuring that there is no undesired overlap and that everything will
fit on the page or screen.

The display stage actually produces the final output, whether as ink on paper or
pixels on a computer monitor. Each graphical element is rasterized and composited
into a single image of the target resolution.

Different document formats cover documents in different stages of this project.
Bitmapped images, for example, would represent the output of the final stage of the
process, whereas markup languages typically specify a document which has not yet
been processed, ready for the layout stage.

Furthermore, some document formats treat the document as a program, written in
a (usually Turing complete) document language with instructions which emit shapes
to be displayed. These shapes are either displayed immediately, as in PostScript, or
stored in another file, such as with TEXor LATEX, which emit a DVI file. Most other
forms of document use a Document Object Model, being a list or tree of objects to be

6 of 21 DRAFT

October 21, 2014 David Gow (20513694)

rendered. DVI, PDF, HTML4 and SVG[15]. Of these, only HTML and TEXtypically store
documents in pre-layout stages, whereas even Turing complete document formats
such as PostScript typically encode documents which already have their elements
placed.

TEX and LATEX Donald Knuth’s typesetting language TEX is one of the older
computer typesetting systems, originally conceived in 1977[32]. It implements
a Turing-complete language and is human-readable and writable, and is still
popular due to its excellent support for typesetting mathematics. TEXonly
implements the “layout” stage of document display, and produces a typeset
file, traditionally in DVI format, though modern implementations will often
target PDF instead.

This document was prepared in LATEX 2ε.

DVI TEX traditionally outputs to the DVI (“DeVice Independent”) format: a binary
format which consists of a simple stack machine with instructions for drawing
glyphs and curves[21].

A DVI file is a representation of a document which has been typeset, and DVI

viewers will rasterize this for display or printing, or convert it to another similar
format like PostScript to be rasterized.

HTML The Hypertext Markup Language (HTML)[5] is the widely used document
format which underpins the world wide web. In order for web pages to adapt
appropriately to different devices, the HTML format simply defined semantic
parts of a document, such as headings, phrases requiring emphasis, references
to images or links to other pages, leaving the layout up to the browser, which
would also rasterize the final document.

The HTML format has changed significantly since its introduction, and most
of the layout and styling is now controlled by a set of style sheets in the CSS[7]
format.

PostScript Much like DVI, PostScript[27] is a stack-based format for drawing vec-
tor graphics, though unlike DVI (but like TEX), PostScript is text-based and
Turing complete. PostScript was traditionally run on a control board in laser
printers, rasterizing pages at high resolution to be printed, though PostScript
interpreters for desktop systems also exist, and are often used with printers
which do not support PostScript natively.[47]

PostScript programs typically embody documents which have been typeset,
though as a Turing-complete language, some layout can be performed by the
document.

PDF Adobe’s Portable Document Format (PDF)[28] takes the PostScript rendering
model, but does not implement a Turing-complete language. Later versions of
PDF also extend the PostScript rendering model to support translucent regions
via Porter-Duff compositing[41].

PDF documents represent a particular layout, and must be rasterized before
display.

4Some of these formats — most notably HTML — implement a scripting lanugage such as
JavaScript, which permit the DOM to be modified while the document is being viewed.

7 of 21 DRAFT

October 21, 2014 David Gow (20513694)

SVG Scalable Vector Graphics (SVG) is a vector graphics document format[15]
which uses the Document Object Model. It consists of a tree of matrix trans-
forms, with objects such as vector paths (made up of Bézier curves) and text
at the leaves.

2.3.2 Precision in Document Formats

Existing document formats — typically due to having been designed for documents
printed on paper, which of course has limited size and resolution — use numeric
types which can only represent a fixed range and precision. While this works fine
with printed pages, users reading documents on computer screens using programs
with “zoom” functionality are prevented from working beyond a limited scale factor,
lest artefacts appear due to issues with numeric precision.

TEXuses a 14.16 bit fixed point type (implemented as a 32-bit integer type, with
one sign bit and one bit used to detect overflow)[3]. This can represent values in the
range [−(214), 214 − 1] with 16 binary digits of fractional precision.

The DVI files TEX produces may use “up to” 32-bit signed integers[21] to specify
the document, but there is no requirement that implementations support the full
32-bit type. It would be permissible, for example, to have a DVI viewer support
only 24-bit signed integers, though many files which require greater range may fail
to render correctly.

PostScript[27] supports two different numeric types: integers and reals, both
of which are specified as strings. The interpreter’s representation of numbers is
not exposed, though the representation of integers can be divined by a program
by the use of bitwise operations. The PostScript specification lists some “typical
limits” of numeric types, though the exact limits may differ from implementation
to implementation. Integers typically must fall in the range [−231, 231 − 1], and
reals are listed to have largest and smallest values of ±1038, values closest to 0 of
±10−38 and approximately 8 decimal digits of precision, derived from the IEEE 754
single-precision floating-point specification.

Similarly, the PDF specification[28] stores integers and reals as strings, though
in a more restricted format than PostScript. The PDF specification gives limits
for the internal representation of values. Integer limits have not changed from the
PostScript specification, but numbers representable with the real type have been
specified differently: the largest representable values are ±3.403× 1038, the smallest
non-zero representable values are ±1.175×10−38 with approximately 5 decimal digits
of precision in the fractional part. 5 Adobe’s implementation of PDF uses both
IEEE 754 single precision floating-point numbers and (for some calculations, and in
previous versions) 16.16 bit fixed-point values.

The SVG specification[15] specifies numbers as strings with a decimal represen-
tation of the number. It is stated that a “Conforming SVG Viewer” must have “all
visual rendering accurate to within one device pixel to the mathematically correct
result at the initial 1:1 zoom ratio” and that “it is suggested that viewers attempt to
keep a high degree of accuracy when zooming.” A “Conforming High-Quality SVG
Viewer” must use “double-precision floating point6” for computations involving co-

5The PDF specification mistakenly leaves out the negative in the exponent here.
6Presumably the 64-bit IEEE 754 “double” type.

8 of 21 DRAFT

October 21, 2014 David Gow (20513694)

ordinate system transformations.

2.4 Quadtrees

When viewing or processing a small part of a large document, it may be helpful to
only process — or cull — parts of the document which are not on-screen.

Figure 2.3: A simple quadtree.

The quadtree[18]is a data structure — one of a family of spatial data structures —
which recursively breaks down space into smaller subregions which can be processed
independently. Points (or other objects) are added to a single node which (if certain
criteria are met) is split into four equal-sized subregions, and points attached to the
region which contains them.

Quadtrees have been used in computer graphics for both culling — excluding
objects in nodes which are not visible — and “level of detail”, where different levels
of the quadtree store different quality versions of objects or data[49]. Typically the
number of points in a node exceeding a maximum triggers this split, though in our
case likely the level of precision required exceeding that supported by the data type
in use.

In this project, we will be experimenting with a form of quadtree in which each
node has its own independent coordinate system, allowing us to store some spatial in-
formation7 within the quadtree structure, eliminating redundancy in the coordinates
of nearby objects.

Other spatial data structures exist, such as the KD-tree[4], which partitions the
space on any axis-aligned line; or the BSP tree[22], which splits along an arbitrary
line which need not be axis aligned. We believe, however, that the simpler conversion
from binary coordinates to the quadtree’s binary split make it a better avenue for
initial research to explore.

7One bit per-coordinate, per-level of the quadtree

9 of 21 DRAFT

October 21, 2014 David Gow (20513694)

CHAPTER 3

IPDF: A Document Precision
Playground

In order to investigate the precision issues present in document formats and view-
ers, we developed a document viewer IPDF. IPDF is a C++ program which supports
rendering TrueType font outlines and a subset of the SVG format.

At its core, IPDF breaks documents down into a set of objects, each with rectan-
gular bounds (x, y, w, h) and with several types:

1. Rectangle: A simple, axis-aligned rectangle (either filled with a solid colour
or left as an outline) covering the object bounds.

2. Ellipse: A filled, axis-aligned ellipse, rendered parametrically.

3. Bézier Curve: A cubic Bézier curve. Bézier curve control points are stored
relative to the coordinate system provided by the document bounds, and several
objects can share these coefficients.

IPDF can be compiled using different number representations, to allow for compar-
ison between not only different-precision floating point numbers, but also arbitrary-
precision types such as rationals.

Documents in IPDF may be rendered either on the CPU, using a custom software
rasterizer built on the numeric types supported, or on the GPU with OpenGL 3.2
shaders, using the GPU’s default numeric representation.

Furthermore, IPDF allows SVG files (and text rendered with TrueType fonts) to
be inserted at any point and scale in the document, allowing for the same images to
be compared at different scales.

3.1 GPU Floating Point Rounding Behaviour

While the IEEE-754 standard specifies both the format of floating-point numbers and
the operations they perform. However, the OpenGL specification[46], while requiring
the same basic format for single-precision floats, does not specify the behaviour of
denormals, nor requires any support for NaN or infinite values. Similarly, no support
for floating point exceptions is required, with the note that no operation should ever
halt the GPU.

10 of 21 DRAFT

October 21, 2014 David Gow (20513694)

However, an extension to the specification, GL ARB shader precision[29] in 2010
allows programs to require stricter precision requirements. Notably, support for
infinite values is required and maximum relative error in ULPs.

Different GPU vendors and drivers have different rounding behaviour, and most
hardware (both CPU and GPU) provide ways of disabling support for some IEEE
features to improve performance[12, 16].

x86-64 CPU nVidia shader

fglrx shader intel shader

Figure 3.1: The edges of a unit circle viewed through bounds (x,y,w,h) =
(0.0869386,0.634194,2.63295e-07,2.63295e-07)

11 of 21 DRAFT

October 21, 2014 David Gow (20513694)

Many GPUs now support double-precision floating-point numbers1 as specified
in the GL ARB gpu shader fp64[10] OpenGL extension. However, many of the fixed-
function parts of the GPU do not support double-precision floats, making it imprac-
tical to use them.

To see the issues, we rendered the edge of a circle (calculated by discarding
pixels with x2 + y2 > 1) on several GPUs, as well as an x86-64 CPU, as seen in
Figure 3.1. Of these, the nVidia GPU came closest to the CPU rendering, whereas
Intel’s hardware clearly performs some optimisation which produces quite different
artefacts. The diagonal distortion in the AMD rendering may be a result of different
rounding across the two triangles across which the circle was rendered.

3.2 Distortion and Quantisation at the limits of precision

TODO: Fix these figures, explain properly.

(a) Intended rendering (b) With artefacts

Figure 3.2: Floating point errors affecting the rendering of an image

When trying to insert fine detail into a document using fixed-width floats, some
precision is lost. In particular, the control points of the curves making up the image
get rounded to the nearest2 representable point. Figure 3.2 shows what happens
when an image is small enough to be affected by this quantisation. The grid structure
becomes very apparent.

These artefacts also become prevalent when an object is far from the origin, as
more bits would be required to store the position, so the lower order bits of the
position must be discarded. As the position of the viewport and the object will
share many of the same initial digits, catastrophic cancellation[23] can occur.

1Some drivers, however, do not yet support this feature, including one of our test machines.
2Other rounding modes are available, but they all suffer from similar artefacts.

12 of 21 DRAFT

October 21, 2014 David Gow (20513694)

CHAPTER 4

View Reparenting and the Quadtree

One of the important parts of document rendering is that of coordinate transforms.

Traditionally, the document exists in its own coordinate system, b. We then
define a coordinate system v to represent the view.

To eliminate visible error due to floating point precision, we need to ensure that
any point (including control points) must be representable as a float both in the
document and in view coordinates, i.e:

1. have a limited magnitude,

2. be precise enough to uniquely identify a pixel on the display.

Despite a point not being representable with floats in one coordinate system, it
may be representable in another. We can therefore split a document up into several
coordinate systems, such that each point is completely representable.

Similarly, the points making up the visible document need to all be representable
(to at least one pixel’s worth of precision). To achieve this, we use a quadtree where
each node stores points within its bounds in its own coordinate system. Objects
which span multiple nodes are clipped, such that no points1 lie outside the quadtree
node.

Setting aside the possibility that an object might span multiple nodes for the
time being, let’s investigate how the coordinates of a point are affected by placing it
in the quadtree.

Suppose p = (px, py) is a point in a global document coordinate system, which
we’ll consider the root node of our quadtree. px and py are represented by a finite
list of binary digits x0 . . . xn, y0 . . . yn. Consider now the pair (x0, y0):

x0 =

{
0 if px is in the left half of d

1 if px is in the right half of d

y0 =

{
0 if py is in the bottom half of d

1 if py is in the top half of d

We have therefore found which child node of our quadtree contains p. The coordi-
nates of p within that node are (x1 . . . xn, y1 . . . yn). By the principle of mathematical

1except some control points

13 of 21 DRAFT

October 21, 2014 David Gow (20513694)

induction, we can repeat the process to move more bits from the coordinates of p
into the structure of the quadtree, until the remaining coordinates may be precisely
represented.

This implies that the quadtree is equivalent to an arbitrary precision integer
datatype. By reversing the process, any point representable in the quadtree can be
stored as a fixed-length bit string.

Furthermore, we can get approximations of points by inserting them into higher
levels of the quadtree, with their coordinates rounded. By then viewing the document
at a certain level of the quadtree, we then not only do not need to consider bits of
precision which are not required to represent the point to pixel resolution, we can
also cull objects outside the visible nodes at that level.

Indeed, we can guarantee that, by selecting the level of the quadtree we view such
that the view width and height lie within the range (0.5, 1], we can ensure that at
most four nodes need to be rendered.

4.1 Clipping cubic Béziers

In order to ensure that the quadtree maintains precision in this fashion, we need to
ensure that all objects are entirely contained within a quadtree node. This is not
always the case and, indeed, when zooming in on any object, eventually the object
will span multiple quadtree nodes.

TODO: We can show this by showing that, given (a, b) ∈ R,∃ binary
fraction c such that a < c < b.

We therefore need a way to subdivide objects into several objects, each of which
is contained within one node. To do this, we need to clip the cubic Bézier curves
from which our document is formed to a rectangle.

Cubic Bézier curves are defined parametrically as two cubics: x(t) and y(t), with
0 ≤ t ≤ 1. We clip these to a rectangular bounding box in stages. We first find
the intersections of the curve with the clipping rectangle by finding the roots2 of the
cubic shifted to match the corners of the rectangle. This produces some spurious
points, as it assumes the edges of the clipping rectangle are lines with infinite extent,
but this at worst introduces some minor inefficiency in the process and does not
affect the result.

Once the values of the parameter t which intersect the clipping rectangle have
been determined, the curve is split into segments. To do this, the values 0 and 1
(representing the endpoints) are added to the list of intersecting t values, which is
then sorted. Adjacent values t0 and t1 form a segment. The midpoint of that segment
(with the value t0+t1

2) is evaluate and if it falls outside the clipping rectangle, the
segment is discarded.

Finally, the segments are re-parametrised by subdividing the curve using De
Casteljau’s algorithm[45]. By re-parameterising the curves such that 0 ≤ t ≤ 1,

2While there is a method for solving cubics exactly[11], we instead use numeric methods to avoid
the need for square root operations, which cannot be done exactly on some of the numeric types we
used.

14 of 21 DRAFT

October 21, 2014 David Gow (20513694)

we ensure that the first and last coefficients have the endpoints’ coodinates, and
therefore lie in the quadtree node.

TODO: Prove that the other control points’ magnitude is reduced, and
try to quantify it, prove that it will never overflow.

4.2 Implementation Details

• Store object ID ranges.

• Pointers to children and parent.

• Linked-list of “overlay” nodes for mutation.

• Have billions of bugs.

15 of 21 DRAFT

October 21, 2014 David Gow (20513694)

CHAPTER 5

Experimental Results

These are all iPython-y at the moment.

Roughly 3s/frame for GMP rationals, 16ms for Quadtree which is still slightly
broken.

5.1 Performance per object

5.2 Performance per onscreen object

5.3 Performance per zoom-level

5.4 Stability of performance

16 of 21 DRAFT

October 21, 2014 David Gow (20513694)

CHAPTER 6

Further Work and Conclusion

The use of spatial data structures to specify documents with arbitrary precision has
been validated as a viable alternative to the use of arbitrary precision numeric types
where an arbitrary (rather than infinite) amount of precision is needed. Once con-
structed, they are faster in many circumstanced, and the structure can also be used
for culling. When the viewport moves and scales smoothly, the cost of construct-
ing new nodes is amortised over the movement. Unfortunately, the mutation of the
quadtree is difficult and slow, and discontinuous movement can result in a large
number of nodes needing to be created.

Quadtree seems to be viable and is really performant.

Loop-blinn shading.

17 of 21 DRAFT

October 21, 2014 David Gow (20513694)

Bibliography

[1] IEEE standard for binary floating-point arithmetic. ANSI/IEEE Std 754-1985
(1985).

[2] IEEE standard for floating-point arithmetic. IEEE Std 754-2008 (Aug 2008),
1–70.

[3] Beebe, N. Extending TEX and METAFONT with floating-point arithmetic.
TUGboat 28, 3 (2007).

[4] Bentley, J. L. Multidimensional binary search trees used for associative
searching. Commun. ACM 18, 9 (Sept. 1975), 509–517.

[5] Berners-Lee, T., and Connolly, D. Hypertext markup language – 2.0.
Internet RFC 1866 (1995).

[6] Blinn, J. A trip down the graphics pipeline: Grandpa, what does “viewport”
mean? Computer Graphics and Applications, IEEE 12, 1 (Jan 1992), 83–87.

[7] Bos, B., Wium Lie, H., Lilley, C., and Ian, J. Cascading style sheets, level
2, CSS2 specification. http://www.w3.org/TR/1998/REC-CSS2-19980512/.
Retrieved 2014-05-22.

[8] Bresenham, J. E. Algorithm for computer control of a digital plotter. IBM
Systems journal 4, 1 (1965), 25–30.

[9] Brown, P. NV half float. http://www.opengl.org/registry/specs/NV/

half_float.txt, 2002. Retrieved 2014-05-20.

[10] Brown, P., Lichtenbelt, B., Licea-Kane, B., Merry, B., Dodd, C.,
Werness, E., Sellers, G., Roth, G., Bolz, J., Haemel, N., Boudier, P.,
and Daniell, P. ARB gpu shader fp64. http://www.opengl.org/registry/
specs/ARB/gpu_shader_fp64.txt, 2010. Retrieved 2014-05-20.

[11] Cardano, G. Artis magnae sive de regulis agebraicis: liber unus, 1545.

[12] Corporation, I. 3D/Media — 3D Pipeline (Ivy Bridge). Intel OpenSource
HD Graphics Programmer’s Reference Manual (PRM) 2, 1 (2012).

[13] Corporation, O. java.math.BigDecimal. http://docs.oracle.com/javase/
7/docs/api/java/math/BigDecimal.html. Retrieved 2014-05-19.

[14] Corporation, O. java.math.BigInteger. http://docs.oracle.com/javase/

6/docs/api/java/math/BigInteger.html. Retrieved 2014-05-19.

[15] Dahlstóm, E., Dengler, P., Grasso, A., Lilley, C., McCormack, C.,
Schepers, D., Watt, J., Ferraiolo, J., Jun, F., and Jackson, D. Scal-
able vector graphics (svg) 1.1 (second edition). W3C Recommendation (August
2011). Retrieved 2014-05-23.

18 of 21 DRAFT

http://www.w3.org/TR/1998/REC-CSS2-19980512/
http://www.opengl.org/registry/specs/NV/half_float.txt
http://www.opengl.org/registry/specs/NV/half_float.txt
http://www.opengl.org/registry/specs/ARB/gpu_shader_fp64.txt
http://www.opengl.org/registry/specs/ARB/gpu_shader_fp64.txt
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html
http://docs.oracle.com/javase/6/docs/api/java/math/BigInteger.html
http://docs.oracle.com/javase/6/docs/api/java/math/BigInteger.html

October 21, 2014 David Gow (20513694)

[16] Dawson, B. That’s Not Normal — the Performance of
Odd Floats. https://randomascii.wordpress.com/2012/05/20/

thats-not-normalthe-performance-of-odd-floats/ accessed 2014-10-
18, 2012.

[17] Emmart, N., and Weems, C. High precision integer multiplication with a
graphics processing unit. In 2010 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum (IPDPSW) (2010), IEEE,
pp. 1–6.

[18] Finkel, R. A., and Bentley, J. L. Quad trees a data structure for retrieval
on composite keys. Acta informatica 4, 1 (1974), 1–9.

[19] Foley, J. Computer Graphics: Principles and Practice. Addison-Wesley sys-
tems programming series. Addison-Wesley, 1996.

[20] Frisken, S. F., Perry, R. N., Rockwood, A. P., and Jones, T. R. Adap-
tively sampled distance fields: a general representation of shape for computer
graphics. In Proceedings of the 27th annual conference on Computer graphics
and interactive techniques (2000), ACM Press/Addison-Wesley Publishing Co.,
pp. 249–254.

[21] Fuchs, D. The format of TEX’s DVI files. TUGBoat 3, 2 (1982).

[22] Fuchs, H., Kedem, Z. M., and Naylor, B. F. On visible surface generation
by a priori tree structures. In Proceedings of the 7th Annual Conference on
Computer Graphics and Interactive Techniques (New York, NY, USA, 1980),
SIGGRAPH ’80, ACM, pp. 124–133.

[23] Goldberg, D. What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv. 23, 1 (Mar. 1991), 5–48.

[24] Goldberg, D. The design of floating-point data types. ACM Lett. Program.
Lang. Syst. 1, 2 (June 1992), 138–151.

[25] Green, C. Improved alpha-tested magnification for vector textures and special
effects. In ACM SIGGRAPH 2007 courses (2007), ACM, pp. 9–18.

[26] Hayes, B. Pixels or perish. American Scientist 100, 2 (2012), 106 – 111.

[27] Incorporated, A. S. PostScript Language Reference, 3rd ed. Addison-Wesley
Publishing Company, 1985 - 1999.

[28] Incorporated, A. S. PDF Reference, 6th ed. Adobe Systems Incorporated,
2006.

[29] Kessenich, J. GL ARB shader precision. https://www.opengl.org/

registry/specs/ARB/shader_precision.txt accessed 2014-10-17, 2010.

[30] Kilgard, M. J. Programming with NV path rendering: An annex to the
SIGGRAPH paper GPU-accelerated path rendering. heart 300 , 300.

[31] Kilgard, M. J., and Bolz, J. GPU-accelerated path rendering. ACM Trans-
actions on Graphics (TOG) 31, 6 (2012), 172.

19 of 21 DRAFT

https://randomascii.wordpress.com/2012/05/20/thats-not-normalthe-performance-of-odd-floats/
https://randomascii.wordpress.com/2012/05/20/thats-not-normalthe-performance-of-odd-floats/
https://www.opengl.org/registry/specs/ARB/shader_precision.txt
https://www.opengl.org/registry/specs/ARB/shader_precision.txt

October 21, 2014 David Gow (20513694)

[32] Knuth, D. Preliminary preliminary description of TEX. http://www.

saildart.org/TEXDR.AFT[1,DEK]1, 1977. Retrieved 2014-05-20.

[33] Knuth, D. Seminumerical Algorithms, 3rd ed., vol. 2 of The Art of Computer
Programming. Addison–Wesley, 1998.

[34] Leymarie, F., and Levine, M. D. Fast raster scan distance propagation on
the discrete rectangular lattice. CVGIP: Image Understanding 55, 1 (1992),
84–94.

[35] Loop, C., and Blinn, J. Resolution independent curve rendering using pro-
grammable graphics hardware. ACM Transactions on Graphics (TOG) 24, 3
(2005), 1000–1009.

[36] Loop, C., and Blinn, J. Rendering vector art on the gpu. GPU gems 3
(2007), 543–562.

[37] Maddock, J., and Kormanyos, C. Boost multiprecision li-
brary. http://www.boost.org/doc/libs/1_53_0/libs/multiprecision/

doc/html/boost_multiprecision/.

[38] Munroe, R. Pixels. http://xkcd.com/1416/ accessed 2014-09-03.

[39] Nilsson, P., and Reveman, D. Glitz: Hardware accelerated image composit-
ing using OpenGL. In USENIX Annual Technical Conference, FREENIX Track
(2004), pp. 29–40.

[40] Oh, A., Sung, H., Lee, H., Kim, K., and Baek, N. Implementation of
OpenVG 1.0 using OpenGL ES. In Proceedings of the 9th international confer-
ence on Human computer interaction with mobile devices and services (2007),
ACM, pp. 326–328.

[41] Porter, T., and Duff, T. Compositing digital images. In ACM SIGGRAPH
Computer Graphics (1984), vol. 18, ACM, pp. 253–259.

[42] Priest, D. Algorithms for arbitrary precision floating point arithmetic. In
Computer Arithmetic, 1991. Proceedings., 10th IEEE Symposium on (Jun 1991),
pp. 132–143.

[43] Robart, M. OpenVG paint subsystem over OpenGL ES shaders. In Consumer
Electronics, 2009. ICCE’09. Digest of Technical Papers International Confer-
ence on (2009), IEEE, pp. 1–2.

[44] Salomon, D., Motta, G., and Bryant, D. Data Compression: The Com-
plete Reference. Molecular biology intelligence unit. Springer, 2007.

[45] Sederberg, T. W. Computer aided geometric design course notes, 2007.

[46] Segal, M., Akely, K., and Leech, J. The OpenGL R©Graphics System: A
Specification. The Kronos Group, Inc, 2014.

[47] Software, A. Ghostscript, an interpreter for the postscript language and pdf.
http://www.ghostscript.com/, 1988. Retrieved 2014-05-21.

[48] Worth, C., and Packard, K. Xr: Cross-device rendering for vector graphics.
In Linux Symposium (2003), p. 480.

20 of 21 DRAFT

http://www.saildart.org/TEXDR.AFT[1,DEK]1
http://www.saildart.org/TEXDR.AFT[1,DEK]1
http://www.boost.org/doc/libs/1_53_0/libs/multiprecision/doc/html/boost_multiprecision/
http://www.boost.org/doc/libs/1_53_0/libs/multiprecision/doc/html/boost_multiprecision/
http://xkcd.com/1416/
http://www.ghostscript.com/

October 21, 2014 David Gow (20513694)

[49] Zerbst, S., and Düvel, O. 3D Game Engine Programming. Premier Press,
2004.

21 of 21 DRAFT

	Introduction
	Background
	Rendering
	Rasterizing Vector Graphics
	GPU Rendering

	Numeric formats
	Document Formats
	A Taxonomy of Document formats
	Precision in Document Formats

	Quadtrees

	IPDF: A Document Precision Playground
	GPU Floating Point Rounding Behaviour
	Distortion and Quantisation at the limits of precision

	View Reparenting and the Quadtree
	Clipping cubic Béziers
	Implementation Details

	Experimental Results
	Performance per object
	Performance per onscreen object
	Performance per zoom-level
	Stability of performance

	Further Work and Conclusion

