cecma

aNGalf ECMA-262
-- 5.1 Edition / June 2011

ECMAScript Language
Specification

=

Rue du Rhone 114 CH-1204 Geneva T. +41 22 849 6000 F: +41 22 849 6001

eCma

INTERNATIONAL
is the registered trademark of Ecma International

A_ COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2011

patrick
Stamp

Copyright notice
Copyright © 2011 Ecma International

Ecma International

Rue du Rhone 114

CH-1204 Geneva

Tel: +41 22 849 6000

Fax: +41 22 849 6001

Web: http://www.ecma-international.org

This document and possible translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to Ecma International, except as
needed for the purpose of developing any document or deliverable produced by Ecma International (in which
case the rules applied to copyrights must be followed) or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

Software License

All Software contained in this document ("Software)" is protected by copyright and is being made available
under the "BSD License", included below. This Software may be subject to third party rights (rights from
parties other than Ecma International), including patent rights, and no licenses under such third party rights
are granted under this license even if the third party concerned is a member of Ecma International. SEE THE
ECMA CODE OF CONDUCT IN PATENT MATTERS AVAILABLE AT http://www.ecma-
international.org/memento/codeofconduct.htm FOR INFORMATION REGARDING THE LICENSING OF
PATENT CLAIMS THAT ARE REQUIRED TO IMPLEMENT ECMA INTERNATIONAL STANDARDS*.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the authors nor Ecma International may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE ECMA INTERNATIONAL "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL ECMA INTERNATIONAL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

http://www.ecma-international.org/

eCma

INTERNATIONAL
is the registered trademark of Ecma International

A_ COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2011

patrick
Stamp

secmd

Contents Page
1] 4 o To [UYox 110] o HA PSR SR vii
S T o] 0] o 1 = PP PUPPPPPPPPRINN 1
A ©70] o) (o] 4 1 F=T o ot =IO PP PO PPPPPPRTPPPPP 1
3 NOrMaAtiVe ref@rENCES ..o 1
. OVEBIVIEW .oetieerireeereeeeereeeseeesesessasssssssssssssssasssssssssssssssssssssssesssssssssssnsnssnnnes 1
o V= o IS Tod] o)] oo PSP PP PP OPPPPPROPPP 2
4.2 LANQUAGE OVEIVIEW ...eiiiiiiiiiieitieie ettt e sttt e e sate et e e s be et e e aabt et e e 4k e e et a4k b et e e ek b et e e s bbbt e e e ambe et e e aabbe e e s anbbeeesannneee s 2
N R ©] 1= To] £ PSP PP OPTPPPOPPP 3
4.2.2 The Strict Variant 0f ECMASCIIPT ...ooiiiiiiiiiiiie ittt sttt e et e e saneeee s 4
4.3 Terms and efiNITIONS ...ttt e e e e e e sttt e e e e s s e kb be e et e e e e e e e e anbbereeeeeeeaanne 4
5 NOTAtioNaAl CONVENTIONS ...ttt e ettt e e e e e e s s bbb e e et e e e e e s abbbe et e e e e e e s anbbbbeeeeeeseaannnrnnees 7
5.1 Syntactic and Lexical GrammarS.........ccooviiiiiiiiii e, 7
0 I R o | g (=) B e f =T] =10 1 = TP 7
5.1.2 The Lexical and REGEXP GramMmMarS......ccccccciiiiiiiii et 8
5.1.3 The NUMEriC StriNg GramMIMarccociiiiiii e 8
5.1 4 The SYNTACTIC GIaMIMATiueiiiiiiiiee it e ettt e ettt e ettt et e e e st et e e e sabb e e e e sttt e e e aabbeeeeanbbeeeesbbeeeesnbbeeeeane 8
5.1.5 The JSON GramMMarcoooiiiiiiiieeeeeeeeeee e 9
5.1.6 Grammar NOTAtiONoooiiiiii 9
5.2 AIGOTIithm CONVENTIONS ...oiiiiiiiiiii ittt b bt e e s bbbt e s bbbt e e s anbe e e e e anbbeeesannneee s 11
(SIS Yo 1 U T o = I =g (PN 13
7 LeXical CONVENLIONS ..o 13
7.1 Unicode FOrmat-Control ChAraCIEIScooi ittt e et e e e e e enbaae e 14
7.2 WHhIte SPACE .o 14
RS I I 1 (o =T 0 YT P o TP PPPPPT PP 15
T4 COMIMENES . 16
S T e] =T o ST PPPPPT PP 17
7.6 Identifier Names and Identifiers...... ... 17
7.6.1 RESErved WOIAS ...coooiiiiiii 18
8 A ¥ 1 1o A1 =L o) =N 19
T8 LITEIaAlS oo 19
T.8.1 NUILILEIAIS oo 19
7.8.2 B00IEaAN LITEIAlS .coooeieiieee 20
7.8.3 NUMEKIC LItEralS c.cooooiiiii 20
T.8.4 SEING LITEIAIS ..eeeeiiiiiii ittt e oottt e et e e o4 oo ha b ettt e e e e e e e ababe et e e e e e e s annbbbeeeeaeeeeannbbnneeas 22
7.8.5 Regular EXPresSion LITEIalS. ... i ittt e e e e e e e e e e e e e e e anbneneeas 24
7.9 Automatic SEMICOION INSEItION ..occiiiiiiii 26
7.9.1 Rules of Automatic SEmIcolon INSErtioN ... 26
7.9.2 Examples of Automatic SEmMICcoloN INSErtiONcooiiiiiiiiii e 27
8 T PO 28
S I o L= U Yo [T g T=To B I o L= PP UPUPRP 28
S 2 I 4 T= T N LU R IV o PSPPI 28
S B I g = = Yo o[- o T Y/ o 1= PP UUUPRRP 28
S I A T= S (] oo B 1Y/ o 1= PSP OUU PR 28
S I A= N[0T o] o T=T i Y/ o 1= PP 29
ST I =T @ oY= Tox A 157/ o 1= R 30
8.6.1 Property ALIFIDULES ...ttt e e e e e et e e e e e e e e s s bbb b e ee e e e e e e annaaeneeas 30
8.6.2 Object Internal Properties and MethodsSooiii i 31
8.7 The Reference SPeCifiCAtiON TYP@ ... it e e e e e e st e e e e e e e e snnnaeeeeas 35

© Ecma International 2011 i

secmd

A R 1= Y =1L U = (Y PSRRI 35
8.7.2 PULVAIUE (W, W) ittt ekttt e skttt e ekt e sk bt e e s bbbt e e sk bb et e s bbb e e e s anbee e e s annreeas 36
8.8 The LiSt SPECITICAION TY P ...ttt et e bbb e e s bbb e e s bb e e e s anbre e e e annreeas 36
8.9 The Completion SPeCifiCAtION TYPE ..ooiieiiiiiiiiii ittt e e s s e e s ennneeas 36
8.10 The Property Descriptor and Property Identifier Specification TYpes.......cccoocviiiiiieiniiee e, 37
8.10.1 ISACCESSOIDESCIIPLON ([DESC).uueiiiiiiiiiiie ittt ettt ettt e bbb e s bbe e e s bt e e e e s anb e e e e s annneeas 37
8.10.2 ISDAtADESCIIPTON (DESC) cuvieeieiiiiiee ittt ettt ettt ettt e bttt e skttt e e s bbb e e e s bbb et e s bt ne e e s anbneeesannreeas 37
8.10.3 ISGENEIICDESCIIPION (DESC) 1iiiiiiiiiiiiiei e e e e e ettt e e e e e e e e e e st e e e e e e s e s s e aereeeeessaanteereaeeeesaasnrenes 37
8.10.4 FromPropertyDeSCIPIOr (DESC) uuuuuiiiiiei ittt e e ettt e e e e s s e e e e s e s e e e e e e s s annbr e e e e aeeesannnnrnees 38
8.10.5 TOPropertyDeSCIPLOr (OD]) .o e e e e s e s e e e e e s s a b r e e e e e e e e e annraees 38
8.11 The Lexical Environment and Environment Record Specification TYPeS ...cccccceevvvvvivieireeeeevecennnn, 39
8.12 Algorithms for Object Internal MethodS..........uuiiiiiiii i 39
8.12.1 [[GELOWNPIOPEITY]] (P).uetttteieieeiiiiiiiieiee e e e s i e sttt e e e e e e s et e e e e e e e s st taeeeaeesassstaeeeeeaeesaanssreneeeeaeesannnnenes 39
o A | [C1= 4 o (o] o 1= 4 4 VA | [I ST U PP UPPPRUTPN 39
LS 2 I 1 LT) (0 T ST RROPRRTIN 39
8.12.4 [[CANPUL]] (P) -eeeetiutteteeittite ettt ettt ettt sttt e sttt e e e bbbt e e s bbbt e e e bbb et e e s be et e e bbb e e e e nbn e e e nannreeas 39
8.12.5 [[PUL]] (P, V, TRIOW) oeeeiiiiiiiieei ittt ettt e s bbbt e e s bttt e s bt a e e e s bbn e e e s nnnneeas 40
8.12.6 [[HASPIOPEITY]] (P) ceeeiiiiiiiiiiiiie ittt ettt ettt e e st e e s bbbt e e s bbb e e e s nbe e e e s annreeas 40
8.12.7 [[Delet]] (P, TRFIOW) . iteiieiitiiee ettt e bttt sttt e s bb et e e s ebe e e e s bbb e e e s bbn e e e s nnneeas 40
8.12.8 [[DefaultValue]] (NINT) ..ottt 41
8.12.9 [[DefineOwnProperty]] (P, DESC, TRIOW) ..ccciiiiiiiiiiiiieeeee ettt 41
9 Type ConVersion @nd TESTINGuuiiiriiiiiiiieii ettt e e e s s e e e s s n e e e s annre e e s nnnrees 42
LS A oY 1 1 VL0 Y= PP PTPRPP 43
LS 0 = Yo T o] 1= o PSSO PTPR TP 43
LS R B o1\ U] 4 o1 =] PSP PRR P TPUPR TP 43
9.3.1 ToNumber Applied t0 the StrHNG TYP .. it eaneees 44
LS I o][=T 1= PO TP RTPPR PPN 46
9.5 ToINt32: (SIGNEA 32 Bit INTEIET) .ueiiiieiiiiei ettt e bbb e e et b e e s nbbe e e e s nnnreeas a7
9.6 ToUint32: (UNSIgNed 32 Bil INTEGET) .ooiiuiiiiiitiiiie ittt ettt e et e e nb e e e s nnaneeas a7
9.7 ToUintl6: (UNSIigNed 16 Bil INTEGET) .ooiiuiiiiiiiiiii ittt et e e b e e e s nnaeeeas a7
LSS B 0 1514 11 o RS PSR UUUPRTT 48
9.8.1 ToString Applied to the NUMbBer TYPe. ... 48
0.9 TOODJECT i 49
9.10 CheckODbjJeCtCOEICIDIE ...ciiiiiiieeeeeeee e 49
.11 ISCAIADIE ..t e s 49
9.12 The SameValue AlGOrithm ... 50
10 Executable Code and EXECULION CONTEXEScoiiiiiiiiiiieeiiriie ettt 50
10.1 Types Of EXECULANIE COU ... et 50
0B O S o 1, o Yo L= @ Yo =SSP 51
O B2 I g o= L =t A VAT oY =T o S 51
O B2 R Y o AV AT Y oY 4 =T o 0= oo o £ S 51
10.2.2 Lexical ENVIroNmMENnt OPEIatiONSciiiiiiiieiiiiie ettt ettt e et e e e e snbe e e e s anbe e e e e anbe e e e e snbeeeeenneee 56
10.2.3 The Global ENVIFONMENT ...ttt e e e s e s e e e e e e s e et e e e e e e e s asntanereeeeesssnnnsannnenees 56
10.3 EXECULION COMEEXES ..utttiiiiaiiiiiitiiiee e e e ettt et e e e e ettt et e e e e e s s et bttt e e e e e s e e anbeeeeeeaeeaeannbbaeeeeeeeseannbneeeaaaeas 56
10.3.1 1dentifier RESOIULION ...eeiiiiiiee ittt e e e e s ettt e e e e e e e e s aab b e e e e e e e e s e annbneeeaaaeas 57
10.4 Establishing an EXeCULION CONTEXT ..ot e et e e e e e s e eeeeae s 57
10.4.1 ENtering GlODAl COTE ..ottt e e ettt e e e e e e e et a e e e e e e e e e anbaeeeeae s 58
10.4.2 ENLEIING EVAI COO@ ...uiiiiiiiiiiiiiiiiiie ettt ettt et e e e e e s ettt e e e e e e e s nnbb e e e e e e e e e e annbaeeeaaaeas 58
10.4.3 ENtering FUNCLION COO@ ...ttt e e e e ettt e e e e e e e st b e e e e e e e e e e e annbraneaaaeas 58
10.5 Declaration Binding INSLANTIALIONoiiiiiiiiiiiee et 59
10.6 AFQUMENTS ODJECT ..ttt e bt e e e st e e e s a bt e e e e abe e e e e anbe e e e s anbe e e e e snbeeeeeanbeeeeenees 60
5 R b o =T o 10 = S 63
5 O R = 1 0 P TV b eq o] ==Y Lo S 63
0 O A I g = ot o = =) AV 0] o PP 63
11.2.2 1dentifier REFEIENCE ..ottt e e e ettt e e e e e e e e st b e e e e e e e e e e annbneeeaaaeas 63
11.0.3 LIteral REFBIBINMCE ... ettt e e e e e e s b et e e e e e e e s s aab b e e e e e e e e e e annbaaeeaaaeas 63
O R S AN =V [T = L= SO TSP EUP TR 63
5 00 T @ o] 1= L = = P 65

ii © Ecma International 2011

secmd

5 Y ST I o T T o 10T o1 Yo @ 1T = Lo 1 RS 67
11.2 Left-Hand-Side EXPrESSIONS ..ooiuiiiii ittt ettt ettt et e e st e e e st e e e e e st b e e e e sabe e e e e sabneeeesbrneeeane 67
L11.2.1 PrOPEITY ACCESSOIS .uuuitiiiiiieeiiiittre et e e ettt ettt e e e s e s ettt e e et e s e E e ettt e e e s e s s b e ae e et e e e s e s e s rn e e e e eee e e e annernnneees 67
11.2.2 THE NEW OPBIATOT .. itieee ettt ettt ettt e e bt e e e st et e e st et e e e st b e e e e aabe e e e e aab b et e e sabbeeeeabbeeeeabreeeeaae 68
121.2.3 FUNCHION CAlIS oeiiiiiiiiiieiee ittt ettt et s et s e e et e et e e e s re e e smn e e anr e e e nne e e snreeennneenn 68
2 A N o LU 4 Y=o A I = SRR 69
11.2.5 FUNCHON EXPIrESSIONS .uutiiiiiiiiiiiiitiieieee e e ettt et e e e s s sttt e e e e e e s s st e e e eeeaessaaastaseeeeeeeaesanntaseeeeeeeseaansnnnnnees 69
G T oo 1 1 D T o T =11 [0 SRR 69
11.3.1 POStfiX INCrEMENT OPEIALONeiiiieeieee ettt e r e e e e e s s e e e e e s s s st e e e e e e s s sssntareeeeaeeeeaannnenneees 70
11.3.2 POStfiX DECIEMENT OPEIALOTeeiieiiitiiee ittt sttt e et e e e st e e e st b e e e e aabe e e e e sabe e e e e snbnreeeabreeeeane 70
114 UNGIY OPEIALOIS cooeiiiiiiiiiitii e et ettt e e ettt e e e s e sttt e e e e e s ettt e e e s e e b e ettt e e e e e e asrne e e et e e e s e annnrnnnee s 70
1141 THE AELEt@ OPEIALON ..eeiiiutiiii i ittiee ettt ettt e e s b e e e e st e e e e aa b e e e e e sabe e e e e aabe e e e e aabe e e e e aabbeeeesbbeeeeabrneeeaae 70
B I =R % e N @] oY= = (o) SRR 71
11.4.3 THe tYPEOE OPEIALON . eiiiiuiiiii ittt ettt ettt et e e e st e e e e sa b et e e e sabb e e e e aabb e e e e aabb e e e e sabbeeeesbbeeeeabreeeeane 71
11.4.4 PrefiX INCremMeENnt OPEIALON ...coi ittt ettt ettt ettt e e st e e e st b e e e e sabe e e e e aabb e e e e sabbeeeeaabbeeeesnbreeeeane 71
11.4.5 Prefix Decrement OPeratOr. ... 72
R I O L =T Y S @ =T =1 {0] TR PTRT RSP 72
L1147 UNGBIY = OPEIALOL .ciiiiitieiiiee e ettt e e e ettt e e e s e sttt e e e e e s e e et e e e s e e b e e ettt e e e e e s s rn e e e et e e e s e aannrnnneees 72
11.4.8 BitWiSE NOT OPEIALOT (&)ereeetitrieeeittieeeitteeeerteeeeeatteeeeabe e e e e sbeeeeesbaeeeeasbseeeeabeeeeesbeeeeeabbeeeesasreeeeanes 72
11.4.9 Logical NOT OpPErator (1). 73
115 MUILIPHCALIVE OPEIALOTS ...iuteeiiiiiiiie ettt ettt e e st e e e st b e e e e sabb e e e e aabb e e e e anbbeeeesbbeeeeabreeeeanes 73
11.5.1 APPIYING the % OPEIALOT ...eeiiiiiiiiiee ittt ettt e e e et b e e e sbb e e e e sabb e e e e sbbeeeeabreeeeanes 73
11.5.2 ApPIYING the / OPEIratOr ..o, 74
11.5.3 APPIYING the % OPEIALOT ...eeiiiiiiiiiee ittt e et e e e st b e e e st b e e e e saba e e e e sbbeeeeabreeeeanes 74
0 I AN o L AV O o 1= = (o] = RSP SRRR 75
11.6.1 The Addition OPErator (4) oo, 75
11.6.2 The SUDLraction OPEIALOT (=) .eeeeeiiiiieeiiiiiee ittt ettt e et e e et bt e e e sbb e e e sabb e e e e sabbeeeesbreeeeanes 75
11.6.3 Applying the Additive Operators to Numbers ... 75
11.7 Bitwise Shift OPerators ... 76
11.7.1 The Left Shift Operator (<<). 76
11.7.2 The Signed Right Shift OPErator (>3) .cicuuiiiiiiiieii ittt e e e sbreeeeaaes 76
11.7.3 The Unsigned Right Shift Operator (>>>) ..o 77
11.8 Relational OpPeratorSccoco i, 77
11.8.1 The LeSS-than OPEIatOr () «iiuueeeiiiieeeeitiieeeittteeeattee e e ste e e e e sbee e e e sbaeeeeaabeeeeeabeeeeesabaeeeeabbeeeeanbbeeeeanes 77
11.8.2 The Greater-than OPErator (3). ittt e et e e e st e e e sbb e e e e abbeeeeabreeeeaaes 78
11.8.3 The Less-than-or-equal Operator (=) ..., 78
11.8.4 The Greater-than-or-equal OPErator (3=) .ciiiiiiiiiiiiiee ettt e et e e e sbbeeeeaaes 78
11.8.5 The Abstract Relational Comparison Algorithm ... 78
11.8.6 The instanCeof OPerator......oooo i 79
11.8.7 THEIN OPEIrALOr ..o 79
R I o [U= 111 AV ©] o1=T =1] £ TP ETPP PP 80
11.9.1 The EQUAIS OPEIALOF (S2) .iiiiiiiiieiiiiiee s iieie ettt e sttt e sttt e sttt e e e s bt e e e snbb e e e e snbeeeeesnbeeeeesnbbeeeeanbeeeeeane 80
11.9.2 The D0oes-N0ot-eqUAIS OPEIrAtOr (15) ittt ettt ettt e et e e e sttt e e sbbeeeesbbeeeesbreeeeanes 80
11.9.3 The Abstract Equality Comparison AIGOrithm ... 80
11.9.4 The Strict EQUAIS OPEratOr (==) ciiiiiiiiiiiiiiiiit ettt ettt e e e e ettt e e e e e e e s nbb e e e e e e e e e e s annneeneeas 81
11.9.5 The Strict Does-not-equal OPErator (1==) .ot e e et e e e sbeeeeeanes 81
11.9.6 The Strict Equality Comparison AlQOTthmM ... 82
11.10 BiNAry BitWiSE O IatOrS . ..cci i iiiiiiiiiee ettt e e e ettt ettt e e e e e s bbbt e et e e e s e e bbb beeeeaaeaaaannbebeeeeaaeseaannranneeas 82
I I R =Y o = A I Yo [Tt LI @] o 1= =1 o] £ PP UPTPP R 83
11.12 ConditioNal OPEIALOT (2 2) tioeieeiiitiiee it e ettt e e sttt e e st e e e s be e e e s bteeeeanbeeeeeanbeeeeesnbaeeeeanbaeeeeanbeeeeeanes 84
11.13 ASSIGNMENT OPEIALOTS .oitiiieiitiiee e itete e et ee ettt e e st e e e st e e s s be e e e e sbeeeeeanbbeeeeanbeeeeesnbeeeeeabaeeeesnbreeeeane 84
11.13.1 SIMPIE ASSTIONIMENT (5) eeiiiiiiiiiiiiiiiii ettt ettt e et e e e s e s abebe e e e e e e s e e aabebeeeeaeeaeaannbebeeeeaaeseaannranneeas 85
11.13.2 ComMPOoUNd ASSIGNMENT (0P) terteiirieeeiitiiee ettt ee ettt e et e e s e e e st e e e st e e e e abe e e e s sbr e e e s abaeeessbreeeeaans 85
5 I A oY 0 ¢ = W@ o 1= = o) (T T PR 85
S - 11T £ 1= o S S USSP PP PP 86
2 T = o Yod TP O TP OUPPOUPPRTR 86
12.2 Variable STAtEMENTttt e ettt et e e e e e e bbbt e et e e e e e e e bbb e e e e e e e e e e nnrbneeeas 87

© Ecma International 2011 iii

secmd

12.2.1 Strict MOAE RESIIICIONS ..oiiiiiiiieiiie ittt e s nn e sne e e nnn e e e 88
12.3 EMPLY SEALEMENT ...t e et e e e e s e s ettt e e et e s et et e e e r s e e ene s 88
12,4 EXPreSSION STABMIENToc.iiii ittt e e e et e e e e bt e e e an b et e e e anbe e e e e anbe e e e e anbeeeeennes 89
2 S N V=T B ST = 1] 1 1= o L SRR 89
12,6 ILEration STALEMENTSoiiiii ittt ss e e st st e sr e e sen e snr e e e r e e e snre e e ann e e e 90
12.6.1 The do-while StAtEMENT......coiiiiiiiie et e e nr e sre e nnn e e e 90
12.6.2 The while STAtEMIENT ..ottt e et e e e e e s e st e e et e e e s e snnbe et e e eeeeseannbneeeaaaeas 90
12.6.3 The £Or SEALEIMENT.....oiiiiiiiii et r et r e s e smn e s e e s re e e snre e e nnne e e 90
12.6.4 The £Or-in StAtEMENTcoiiiiiii et e et sr e s e s e e nnn e e sne e e nnn e e e 91
12.7 The continue SLAEMENT i e et e e e e e st e e e e e e s e aaabe e e e e e e e e e s aannrreeeeeaeas 92
12.8 The break StAtEMENTii it ss e e n e s e sr et e smn e e s r e e e ne e e snre e e nnne e e 93
12,9 The return STALEMENT . ..o et e et e e e e e e e st e et e e e e e e s e aanbb et e e eeeeseannraeeeaaaeas 93
12.10 The With STAIEMENT ..ocoi e e e e e e e e e e e e e e ssre e e e e e e e e ennes 93
12.10.1 Strict MOAE RESIIICIIONS ..eiiiiiiiiiiiitiie ettt ettt e e sa bt e e e anb e e e e anbe e e e e sabre e e e eneee 94
12,11 The sWiteh SEAEMENT ..o e e e s e e e e e e e e st eeeeaeeassnsbeaeeeeeeesssnnntanneeeaeas 94
12.12 Labelled StAtEMENTS ...ccooieiii ettt e s e e e e e e e an e e e e s e e e e e e 96
12.13 The throw STALEMENT . ..ot s e e e e e e e e e e as e e e e e anne e e e ennes 96
1214 THE £Y SEALEMEBNT ..ottt e e e s b et e e e e b et e e e aa b et e e e anbe e e e e anbe e e e e anbeeeeenees 96
12.14.1 Strict MOAE RESIIICIIONS ..oiiieiiiiiiie ettt e e e e et e e e e e e e e st eeeaeeaesnnbeaeeeeeeesssanntenneeeaens 97
12.15 The debugger STAtEMENTcccii i 97
13 FUNCHON DEFINITION coiiiiiie et e e e e et e e e e e e e e as e e e e e e e e ennes 98
13,1 SHriCt MOAE RESTIICTIONS ...eeiiiiiiiie ittt e bt e e e sa bt e e e anb e e e e e anbne e e e aabneeeenneee 99
13.2 Creating FUNCLION ODJECTS ..ottt ettt e ettt e e s an b e e e e st et e e s aabne e e e neee 99
R T2 R | (= 11 RSP SUPURRTRTIN 100
R T | (10T =11 VL] | | IO TP PP PP PPPPPPPPPPRR 100
13.2.3 The [[ThrowTypeError]] FUNCLION ODJECTeiiiiiiiiii ettt 100
I e o T =T o T 101
14.1 Directive Prologues and the Use StriCt Dir€CtiVe....cccocieie i 102
15 Standard Built-in ECMASCIIPT ODJECES ... 102
ST A I a YT] Fo o = U o] = o 103
15.1.1 Value Properties of the Global ODjJECT ... 103
15.1.2 Function Properties of the Global ODJECTcccooeiii i 104
15.1.3 URIHandling FUNCLION PrOPertiES ...ttt 106
15.1.4 Constructor Properties of the Global ODJECTc..iiiiiiiiiii e 110
15.1.5 Other Properties of the Global ODJECT ... 111
(ST O o][=Tot @] oY1= o] £ T PR P PP PPPPPTPPPPRR 111
15.2.1 The Object Constructor Called as a FUNCLIONcoiiiiiiiiiiiiiee et 111
15.2.2 The ODJECT CONSIIUCTON ...ueiiiiiiiiiie ettt ettt e ettt e e e st bt e e e s be e e e e sbbeeeeabneeeean 112
15.2.3 Properties of the ODJECt CONSTIUCTONuiiiiiiiiii ettt sbree e 112
15.2.4 Properties of the Object Prototype ODJECTccuiiiiiieieee e 115
15.2.5 Properties Of ODJECT INSTANCESccooiiiiieeie et e e e e e e e eeeeee s 117
15.3 FUNCHON ODJECES ...ttt ettt e e e e oo e bbbttt e e e e e o e a b e be e e e e e e e e s anbbeeeeeeeeeeannbneeaaeaeas 117
15.3.1 The Function Constructor Called as a FUNCLIONooiiiiiiiiiiiiii e 117
15.3.2 The FUNCLION CONSIIUCTOTuitiiiiiie ettt ettt e ettt et e e e e e s bbbt e e e e e e e s anbbbee e e e e e s e aannbnneeaeaens 117
15.3.3 Properties of the FUNCHION CONSIIUCTON ...coiiiiiiiiiiiiiieee e 118
15.3.4 Properties of the Function Prototype ODJECTcuiiiiiiiiiiii e 118
15.3.5 Properties of FUNCLION INSTANCESccoiiiiiiiiiiiie ettt e et e e e sbaeeeean 121
L N o =\ VA O o] 1= ot £ PP PPPPRTUPTPRR 122
15.4.1 The Array Constructor Called as @ FUNCLIONcuiiiiiiiiiiiiiiee et 122
15.4.2 THe ArraY CONSIIUCTON .utiiiiiiiiiie ettt ettt ettt e e e sttt e e e s bt e e e snbb e e e e aabb e e e e sabbeeeesbbeeeeabbeeeeans 122
15.4.3 Properties of the Array CONSIIUCTOTiuuiii ittt e et e e e abaeeeeans 123
15.4.4 Properties of the Array Prototype ODJECT ... i 123
15.4.5 Properties Of Array INSTANCEScoii it e e e e e e st b e e e e e e e e e aanbraeeaaaeas 140
ST S (] g o T @ o =T o £ TP TT TP 141
15.5.1 The String Constructor Called as a FUNCLIONiiiiiiiiiiiii e 141
15.5.2 The StrHNG CONSTIUCTON oottt et e e e e e e e bbbttt e e e e e s e a b b be e e e e e e e e aaanbebee et aaeseaannbbneeaeaens 142
15.5.3 Properties of the String CONSIIUCTONuuiiiiii e e e 142

iv © Ecma International 2011

secma

15.5.4 Properties of the String Prototype ODBJECTcooiiiiiiiieiee e e 142
15.5.5 Properties Of StriNg INSTANCEScooiiuiiiiiiiiiii e e e e s abne e e e anreee s 151
ST I = Te o] [=T: 1o O o] [Tt £ T O PO PP PP OPTPPTOPPI 152
15.6.1 The Boolean Constructor Called as a FUNCLIONuuiiiiiiiiiiiiiiee e 152
15.6.2 The BOOIEAN CONSIIUCTON «iiiiiiiiiiiiiieie ettt e e e e e ettt e e e e e e s nbb e e e e e e e e sannbtteeeeeeeseannnreeeeens 152
15.6.3 Properties of the BOOIean CONSIIUCTOLciiiiuiiiiiiiiiiie et 153
15.6.4 Properties of the Boolean Prototype ODJECT........coiuiiiiiiiiiieiieeee et 153
15.6.5 Properties 0f BOOIEAN INSTANCEScccoiiiiiiiiiieie ettt e e et e e e e e s st e e e e e e s e aanreanees 153
T A V10T 4] oY= S @ o] =3 £ PSSR 154
15.7.1 The Number Constructor Called as a FUNCLIONoiiiiiiiieiiiiic e 154
15.7.2 The NUMDBDEI CONSIIUCTOT .vviiiiiiiiii ittt ettt sttt sttt e e s nabe e e s anbe e e e s anbeeeesannreeeas 154
15.7.3 Properties of the NUMDBDEr CONSTIUCTOTuuiiiiie i e e e e e e e e e e e e nnreneees 154
15.7.4 Properties of the Number Prototype ODjJECToociiiiiiiiee e 155
15.7.5 Properties of NUMDEr INSTANCESuiiiiiiiiiieii et ennee s 159
15.8 THE MAN ODJECT ...eiiiiiiiiii ittt e sttt e s bbbt e s aabb e e e s aab b e e e s anbbeeesannreee s 159
15.8.1 Value Properties of the Math ODJECT...........ooiiiiiiii e 159
15.8.2 Function Properties of the Math ODJECTcooiiiiiiii e 160
SIS T B -1 = @]] 1=Tod £ O TP SOPU PP PPPPPI 165
15.9.1 Overview of Date Objects and Definitions of Abstract Operatorscccvuveveiniiiieiniieee e, 165
15.9.2 The Date Constructor Called as @ FUNCHIONooiuuiiiiiiii e 170
15.9.3 THE DAt@ CONSIIUCTON ..uuiiiiiieiiiiiitte ettt e e e e e sttt e e e e e e e s bbb e e et e e e e e s nnbbbreeeeaeeeaannennneeas 170
15.9.4 Properties of the Date CONSTIUCIONccooii i, 171
15.9.5 Properties of the Date Prototype ObjecCt ... 172
15.9.6 Properties of Date INStANCESccooeii i 180
15.10 RegExp (Regular EXpression) ObjJeCtS. ... 180
D500, 0 PAULEINS oo a e e e e e e e e 180
15.10.2 PAtEEIN SEMANTICS .iuiiiiiiiiee ittt e e e e et te e e e e e s ettt e e aeeesaanee e e e eeaeeeaaasesbeeeraeesesanssteeeeeeessannnsennens 182
15.10.3 The RegExp Constructor Called as @ FUNCLIONiiiiiiiiiiiiiicc e 194
15.10.4 The REGEXP CONSIIUCTON ..ueiiiiiiiiiieiiiiee ettt ettt ettt e e skt et e e s bt e e e e s bbb e e e s anbee e e s annreee s 194
15.10.5 Properties of the REGEXP CONSIIUCTONuiiiiiiiiiieiiieie ettt nnaee s 195
15.10.6 Properties of the RegEXpP Prototype OBJECTooi i 195
15.10.7 Properties of REgEXP INStANCEScoooiiiiiei e 197
15,11 ErrOr OB JECES i 197
15.11.1 The Error Constructor Called as @ FUNCHIONooiuiiiiiiiiee et 198
15.12.2 THE ErTOr CONSIIUCTON ..eeiiiiie ittt ettt ettt e e e e e s eb bt et e e e e e e s b bbb e e e e e e e e s nnbbbbeeeeeeeeaannbnnneeas 198
15.11.3 Properties of the Error CONSIIUCLONcooeiiiiie e, 198
15.11.4 Properties of the Error Prototype ObjecCt ... 198
15.11.5 Properties Of ErrOr INSTANCESoiiiiiiiiie ittt sttt ettt e et e s nbbe e e e s sanneee s 199
15.11.6 Native Error Types Used in This Standardcocueeiiiiiiiiiiiiie e 199
15.11.7 NatiVEEITOr ODJECT STIUCTUIEiiii ittt st e bt e e s bbe e e e s sanneee s 200
1512 THE JSON OBJECT ..ottt b et b bt e e s bbb et e s bbbt e e e eab e e e e s eabbe e e s nnnteee s 201
15.12.1 The JSON GIaMMA ...uuuiiiiieeeieiieiiieeeteeeaasttteereeeesssaateraeeeeaesesaasstaeereaeseaaassssaeereaesssaansssneeeeeesssnsssssneees 202
15.12.2 PArSE (TEXE [, FEVIVET]) tiiiiiiiiiitiiie ettt ettt et e e st e e s bbbt e e sttt e e s ab e e e e s anbbeeesannreeens 203
15.12.3 stringify (value [, replacer [, SPACE]] - e e ettt e e et e e e e e e e aneeeeeeas 205
G = £ 0] £ S PP PPPPPPPPR 208
Annex A (informative) Grammar SUMMAIYoeiiiooiiiiiieeeaa ettt ee e e e s aebeeeeeaaeeaaaaenbeeeeeaaassaabnrreeeaaaaas 211
Annex B (informative) COomMPatiDilityoooooiiiiii et e e e e e 231
Annex C (informative) The Strict Mode Of ECMASCIIPTveiiiiiiiiiiiiiieee et 235
Annex D (informative) Corrections and Clarifications in the 5™ Edition with Possible 3" Edition

ComPAtiDIlITY IMPACT ..ottt e et e e e st b e e e st b e e e e s bbeeeesbbeeeeane 237
Annex E (informative) Additions and Changes in the 5™ Edition that Introduce Incompatibilities

Wt the 3™ EQItION ..c..oveeceeceeciececeeee et 239
Annex F (informative) Technically Significant Corrections and Clarifications in the 5.1 Edition 243

© Ecma International 2011 Y

Vi

secmna

© Ecma International 2011

secma

Introduction

This Ecma Standard is based on several originating technologies, the most well known being JavaScript
(Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first
appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape
and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this Ecma Standard was
adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and
approved as international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998
approved the second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the
first and the second edition are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control
statements, try/catch exception handling, tighter definition of errors, formatting for numeric output and minor
changes in anticipation of forthcoming internationalisation facilities and future language growth. The third
edition of the ECMAScript standard was adopted by the Ecma General Assembly of December 1999 and
published as ISO/IEC 16262:2002 in June 2002.

Since publication of the third edition, ECMAScript has achieved massive adoption in conjunction with the
World Wide Web where it has become the programming language that is supported by essentially all web
browsers. Significant work was done to develop a fourth edition of ECMAScript. Although that work was not
completed and not published! as the fourth edition of ECMAScript, it informs continuing evolution of the
language. The fifth edition of ECMAScript (published as ECMA-262 5" edition) codifies de facto
interpretations of the language specification that have become common among browser implementations and
adds support for new features that have emerged since the publication of the third edition. Such features
include accessor properties, reflective creation and inspection of objects, program control of property
attributes, additional array manipulation functions, support for the JSON object encoding format, and a strict
mode that provides enhanced error checking and program security.

This present edition 5.1 of the ECMAScript Standard is fully aligned with third edition of the international
standard ISO/IEC 16262:2011.

ECMAScript is a vibrant language and the evolution of the language is not complete. Significant technical
enhancement will continue with future editions of this specification.

This Ecma Standard has been adopted by the General Assembly of June 2011.

1 Note: Please note that for ECMAScript Edition 4 the Ecma standard number “ECMA-262 Edition 4” was reserved but not
used in the Ecma publication process. Therefore “ECMA-262 Edition 4” as an Ecma International publication does not
exist.

© Ecma International 2011 Vii

oecma

Viii © Ecma International 2011

secmd

ECMAScript Language Specification

1 Scope

This Standard defines the ECMAScript scripting language.

2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this Standard shall interpret characters in conformance with the Unicode
Standard, Version 3.0 or later and ISO/IEC 10646-1 with either UCS-2 or UTF-16 as the adopted encoding
form, implementation level 3. If the adopted ISO/IEC 10646-1 subset is not otherwise specified, it is presumed
to be the BMP subset, collection 300. If the adopted encoding form is not otherwise specified, it presumed to
be the UTF-16 encoding form.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,
properties, and functions beyond those described in this specification. In particular, a conforming
implementation of ECMAScript is permitted to provide properties not described in this specification, and
values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript is permitted to support program and regular expression syntax
not described in this specification. In particular, a conforming implementation of ECMAScript is permitted to
support program syntax that makes use of the “future reserved words” listed in 7.6.1.2 of this specification.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 9899:1996, Programming Languages — C, including amendment 1 and technical corrigenda 1 and 2

ISO/IEC 10646-1:1993, Information Technology — Universal Multiple-Octet Coded Character Set (UCS) plus
its amendments and corrigenda

4 Overview
This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data or
output of computed results. Instead, it is expected that the computational environment of an ECMAScript
program will provide not only the objects and other facilities described in this specification but also certain
environment-specific host objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that can
be called from an ECMAScript program.

© Ecma International 2011 1

secma

A scripting language is a programming language that is used to manipulate, customise, and automate the
facilities of an existing system. In such systems, useful functionality is already available through a user
interface, and the scripting language is a mechanism for exposing that functionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes the
capabilities of the scripting language. A scripting language is intended for use by both professional and non-
professional programmers.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMASCcript can provide core scripting capabilities for a variety of host environments, and therefore the core
scripting language is specified in this document apart from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular
Java™, Self, and Scheme as described in:

Gosling, James, Bill Joy and Guy Steele. The Java™ Language Specification. Addison Wesley Publishing Co.,
1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp.
227-241, Orlando, FL, October 1987.

IEEE Standard for the Scheme Programming Language. IEEE Std 1178-1990.

4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies,
and input/output. Further, the host environment provides a means to attach scripting code to events such as
change of focus, page and image loading, unloading, error and abort, selection, form submission, and mouse
actions. Scripting code appears within the HTML and the displayed page is a combination of user interface
elements and fixed and computed text and images. The scripting code is reactive to user interaction and there
is no need for a main program.

A web server provides a different host environment for server-side computation including objects representing
requests, clients, and files; and mechanisms to lock and share data. By using browser-side and server-side
scripting together, it is possible to distribute computation between the client and server while providing a
customised user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

4.2 Language Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. An ECMAScript object is a collection of properties each with
zero or more attributes that determine how each property can be used—for example, when the Writable
attribute for a property is set to false, any attempt by executed ECMAScript code to change the value of the
property fails. Properties are containers that hold other objects, primitive values, or functions. A primitive
value is a member of one of the following built-in types: Undefined, Null, Boolean, Number, and String; an
object is a member of the remaining built-in type Object; and a function is a callable object. A function that is
associated with an object via a property is a method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These

built-in objects include the global object, the Object object, the Function object, the Array object, the String
object, the Boolean object, the Number object, the Math object, the Date object, the RegExp object, the

2 © Ecma International 2011

secma

JSON object, and the Error objects Error, EvalError, RangeError, ReferenceError, SyntaxError,
TypeError and URIError.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators,
binary bitwise operators, binary logical operators, assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as
an easy-to-use scripting language. For example, a variable is not required to have its type declared nor are
types associated with properties, and defined functions are not required to have their declarations appear
textually before calls to them.

4.2.1 Objects

ECMAScript does not use classes such as those in C++, Smalltalk, or Java. Instead objects may be created in
various ways including via a literal notation or via constructors which create objects and then execute code
that initialises all or part of them by assigning initial values to their properties. Each constructor is a function
that has a property named “prototype” that is used to implement prototype-based inheritance and shared
properties. Objects are created by using constructors in new expressions; for example, new
Date (2009,11) creates a new Date object. Invoking a constructor without using hew has consequences that
depend on the constructor. For example, Date () produces a string representation of the current date and
time rather than an object.

Every object created by a constructor has an implicit reference (called the object’s prototype) to the value of
its constructor’s “prototype” property. Furthermore, a prototype may have a non-null implicit reference to its
prototype, and so on; this is called the prototype chain. When a reference is made to a property in an object,
that reference is to the property of that name in the first object in the prototype chain that contains a property
of that name. In other words, first the object mentioned directly is examined for such a property; if that object
contains the named property, that is the property to which the reference refers; if that object does not contain
the named property, the prototype for that object is examined next; and so on.

A A ... >
PR o implicit prototype link
prototype CFp | ..
- crp1 explicit prototype property

......... ot of, cfy cfy cfg
gl gl al at a
g2 qz 92 a2 i

Figure 1 — Object/Prototype Relationships
In a class-based object-oriented language, in general, state is carried by instances, methods are carried by

classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried
by objects, and structure, behaviour, and state are all inherited.

© Ecma International 2011 3

secma

All objects that do not directly contain a particular property that their prototype contains share that property
and its value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cf;, cf,,
cfs, cfy, and cfs. Each of these objects contains properties named g1 and g2. The dashed lines represent the
implicit prototype relationship; so, for example, cfs’'s prototype is CF,. The constructor, CF, has two properties
itself, named P1 and P2, which are not visible to CFy, cfy, cf,, cf, cfs, or cfs. The property named CFP1 in CF,
is shared by cf;, cfy, cfs, cfs, and cfs (but not by CF), as are any properties found in CF,’s implicit prototype
chain that are not named g1, g2, or CFP1. Notice that there is no implicit prototype link between CF and CF,,.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values to
them. That is, constructors are not required to name or assign values to all or any of the constructed object’s
properties. In the above diagram, one could add a new shared property for cf,, cf,, cfs, cfs, and cfs by
assigning a new value to the property in CF,.

4.2.2 The Strict Variant of ECMAScript

The ECMAScript Language recognises the possibility that some users of the language may wish to restrict
their usage of some features available in the language. They might do so in the interests of security, to avoid
what they consider to be error-prone features, to get enhanced error checking, or for other reasons of their
choosing. In support of this possibility, ECMAScript defines a strict variant of the language. The strict variant
of the language excludes some specific syntactic and semantic features of the regular ECMAScript language
and modifies the detailed semantics of some features. The strict variant also specifies additional error
conditions that must be reported by throwing error exceptions in situations that are not specified as errors by
the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode
selection and use of the strict mode syntax and semantics of ECMAScript is explicitly made at the level of
individual ECMAScript code units. Because strict mode is selected at the level of a syntactic code unit, strict
mode only imposes restrictions that have local effect within such a code unit. Strict mode does not restrict or
modify any aspect of the ECMAScript semantics that must operate consistently across multiple code units. A
complete ECMAScript program may be composed for both strict mode and non-strict mode ECMAScript code
units. In this case, strict mode only applies when actually executing code that is defined within a strict mode
code unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full
unrestricted ECMAScript language and the strict mode variant of the ECMAScript language as defined by this
specification. In addition, an implementation must support the combination of unrestricted and strict mode
code units into a single composite program.

4.3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

43.1

type

set of data values as defined in Clause 8 of this specification

4.3.2

primitive value

member of one of the types Undefined, Null, Boolean, Number, or String as defined in Clause 8
NOTE A primitive value is a datum that is represented directly at the lowest level of the language implementation.
4.3.3

object

member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the null value.

4 © Ecma International 2011

secma

434
constructor
function object that creates and initialises objects

NOTE The value of a constructor’s “prototype” property is a prototype object that is used to implement inheritance
and shared properties.

435
prototype
object that provides shared properties for other objects

NOTE When a constructor creates an object, that object implicitly references the constructor’'s “prototype” property
for the purpose of resolving property references. The constructor's “prototype” property can be referenced by the
program expression constructor.prototype, and properties added to an object’s prototype are shared, through
inheritance, by all objects sharing the prototype. Alternatively, a new object may be created with an explicitly specified
prototype by using the Object. create built-in function.

4.3.6

native object

object in an ECMAScript implementation whose semantics are fully defined by this specification rather than by
the host environment

NOTE Standard native objects are defined in this specification. Some native objects are built-in; others may be
constructed during the course of execution of an ECMAScript program.

4.3.7

built-in object

object supplied by an ECMAScript implementation, independent of the host environment, that is present at the
start of the execution of an ECMAScript program

NOTE Standard built-in objects are defined in this specification, and an ECMAScript implementation may specify and
define others. Every built-in object is a native object. A built-in constructor is a built-in object that is also a constructor.

4.3.8
host object
object supplied by the host environment to complete the execution environment of ECMAScript

NOTE Any object that is not native is a host object.

4.3.9
undefined value
primitive value used when a variable has not been assigned a value

4.3.10
Undefined type
type whose sole value is the undefined value

4311
null value
primitive value that represents the intentional absence of any object value

4.3.12
Null type
type whose sole value is the null value

4.3.13
Boolean value
member of the Boolean type

NOTE There are only two Boolean values, true and false.

© Ecma International 2011 5

secma

4.3.14
Boolean type
type consisting of the primitive values true and false

4.3.15
Boolean object
member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a Boolean
value as an argument. The resulting object has an internal property whose value is the Boolean value. A Boolean object
can be coerced to a Boolean value.

4.3.16
String value
primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer

NOTE A String value is a member of the String type. Each integer value in the sequence usually represents a single
16-bit unit of UTF-16 text. However, ECMAScript does not place any restrictions or requirements on the values except that
they must be 16-bit unsigned integers.

4.3.17
String type
set of all possible String values

4.3.18
String object
member of the Object type that is an instance of the standard built-in String constructor

NOTE A String object is created by using the String constructor in a new expression, supplying a String value as

an argument. The resulting object has an internal property whose value is the String value. A String object can be coerced
to a String value by calling the String constructor as a function (15.5.1).

4.3.19
Number value
primitive value corresponding to a double-precision 64-bit binary format IEEE 754 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.

4.3.20

Number type

set of all possible Number values including the special “Not-a-Number” (NaN) values, positive infinity, and
negative infinity

4.3.21
Number object
member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor in a new expression, supplying a Number value

as an argument. The resulting object has an internal property whose value is the Number value. A Number object can be
coerced to a Number value by calling the Number constructor as a function (15.7.1).

4.3.22
Infinity
number value that is the positive infinite Number value

4.3.23

NaN
number value that is a IEEE 754 “Not-a-Number” value

6 © Ecma International 2011

secma

4.3.24

function

member of the Object type that is an instance of the standard built-in Function constructor and that may be
invoked as a subroutine

NOTE In addition to its named properties, a function contains executable code and state that determine how it
behaves when invoked. A function’s code may or may not be written in ECMAScript.

4.3.25
built-in function
built-in object that is a function

NOTE Examples of built-in functions include parseInt and Math.exp. An implementation may provide
implementation-dependent built-in functions that are not described in this specification.

4.3.26
property
association between a name and a value that is a part of an object

NOTE Depending upon the form of the property the value may be represented either directly as a data value (a
primitive value, an object, or a function object) or indirectly by a pair of accessor functions.

4.3.27
method
function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this value.

4.3.28
built-in method
method that is a built-in function

NOTE Standard built-in methods are defined in this specification, and an ECMAScript implementation may specify
and provide other additional built-in methods.

4.3.29
attribute
internal value that defines some characteristic of a property

4.3.30

own property

property that is directly contained by its object
4.3.31

inherited property

property of an object that is not an own property but is a property (either own or inherited) of the object’s
prototype

5 Notational Conventions
5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars
A context-free grammar consists of a number of productions. Each production has an abstract symbol called a

nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its
right-hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

© Ecma International 2011 7

secma

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-hand
side of a production for which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 7. This grammar has as its terminal symbols characters
(Unicode code units) that conform to the rules for SourceCharacter defined in Clause 6. It defines a set of
productions, starting from the goal symbol InputElementDiv or InputElementRegExp, that describe how
sequences of such characters are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for
ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and
punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens,
also become part of the stream of input elements and guide the process of automatic semicolon insertion (7.9).
Simple white space and single-line comments are discarded and do not appear in the stream of input
elements for the syntactic grammar. A MultiLineComment (that is, a comment of the form “/*...* /” regardless
of whether it spans more than one line) is likewise simply discarded if it contains no line terminator; but if a
MultiLineComment contains one or more line terminators, then it is replaced by a single line terminator, which
becomes part of the stream of input elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 15.10. This grammar also has as its terminal symbols the
characters as defined by SourceCharacter. It defines a set of productions, starting from the goal symbol Pattern,
that describe how sequences of characters are translated into regular expression patterns.

Productions of the lexical and RegExp grammars are distinguished by having two colons “::” as separating
punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the
lexical grammar having to do with numeric literals and has as its terminal symbols SourceCharacter. This
grammar appears in 9.3.1.

Productions of the numeric string grammar are distinguished by having three colons “:::” as punctuation.

5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting
from the goal symbol Program, that describe how sequences of tokens can form syntactically correct
ECMAScript programs.

When a stream of characters is to be parsed as an ECMAScript program, it is first converted to a stream of
input elements by repeated application of the lexical grammar; this stream of input elements is then parsed by
a single application of the syntactic grammar. The program is syntactically in error if the tokens in the stream
of input elements cannot be parsed as a single instance of the goal nonterminal Program, with no tokens left
over.

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in clauses 11, 12, 13 and 14 is actually not a complete account of which
token sequences are accepted as correct ECMAScript programs. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the
sequence in certain places (such as before line terminator characters). Furthermore, certain token sequences
that are described by the grammar are not considered acceptable if a terminator character appears in certain
“awkward” places.

8 © Ecma International 2011

secma

5.1.5 The JSON Grammar

The JSON grammar is used to translate a String describing a set of ECMAScript objects into actual objects.
The JSON grammar is given in 15.12.1.

The JSON grammar consists of the JSON lexical grammar and the JSON syntactic grammar. The JSON
lexical grammar is used to translate character sequences into tokens and is similar to parts of the ECMAScript
lexical grammar. The JSON syntactic grammar describes how sequences of tokens from the JSON lexical
grammar can form syntactically correct JSON object descriptions.

Productions of the JSON lexical grammar are distinguished by having two colons “::” as separating
punctuation. The JSON lexical grammar uses some productions from the ECMAScript lexical grammar. The
JSON syntactic grammar is similar to parts of the ECMAScript syntactic grammar. Productions of the JSON

“w.n

syntactic grammar are distinguished by using one colon “:” as separating punctuation.

5.1.6 Grammar Notation

Terminal symbols of the lexical, RegExp, and numeric string grammars, and some of the terminal symbols of
the other grammars, are shown in fixed width font, both in the productions of the grammars and
throughout this specification whenever the text directly refers to such a terminal symbol. These are to appear
in a program exactly as written. All terminal symbol characters specified in this way are to be understood as
the appropriate Unicode character from the ASCII range, as opposed to any similar-looking characters from
other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal is introduced by the name of the
nonterminal being defined followed by one or more colons. (The number of colons indicates to which grammar
the production belongs.) One or more alternative right-hand sides for the nonterminal then follow on
succeeding lines. For example, the syntactic definition:

WhileStatement :
while (Expression) Statement

states that the nonterminal WhileStatement represents the token while, followed by a left parenthesis token,
followed by an Expression, followed by a right parenthesis token, followed by a Statement. The occurrences of
Expression and Statement are themselves nonterminals. As another example, the syntactic definition:

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed by
a comma, followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is, it is defined
in terms of itself. The result is that an ArgumentList may contain any positive number of arguments, separated
by commas, where each argument expression is an AssignmentExpression. Such recursive definitions of
nonterminals are common.

The subscripted suffix “,,", which may appear after a terminal or nonterminal, indicates an optional symbol.
The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the
optional element and one that includes it. This means that:

VariableDeclaration :
Identifier Initialisergy

is a convenient abbreviation for:
VariableDeclaration :

Identifier
Identifier Initialiser

© Ecma International 2011 9

secma

and that:

IterationStatement :
for (ExpressionNolngy ; EXxpressiongy ; Expressiong,) Statement

is a convenient abbreviation for:
IterationStatement :
for (; Expressiongy ; EXxpressiong,) Statement
for (ExpressionNoln ; Expressiong, ; Expressiongy) Statement
which in turn is an abbreviation for:
IterationStatement :
for (; ; Expressiongy) Statement
for (; Expression ; Expressiongy) Statement
for (ExpressionNoln ; ; Expressiongy) Statement
for (ExpressionNoln ; Expression ; Expressiong,) Statement

which in turn is an abbreviation for:

IterationStatement :

for (; ;) Statement

for (; ; Expression) Statement

for (; Expression ;) Statement

for (; Expression ; Expression) Statement

for (ExpressionNoln ; ;) Statement

for (ExpressionNoln ; ; Expression) Statement

for (ExpressionNoln ; Expression ;) Statement

for (ExpressionNoln ; Expression ; Expression) Statement

so the nonterminal IterationStatement actually has eight alternative right-hand sides.

When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the terminal
symbols on the following line or lines is an alternative definition. For example, the lexical grammar for
ECMAScript contains the production:

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

which is merely a convenient abbreviation for:

NonZeroDigit ::

wooJdoUlbdWNR

If the phrase “lempty]” appears as the right-hand side of a production, it indicates that the production's right-
hand side contains no terminals or nonterminals.

If the phrase “[lookahead ¢ set]” appears in the right-hand side of a production, it indicates that the production

may not be used if the immediately following input token is a member of the given set. The set can be written
as a list of terminals enclosed in curly braces. For convenience, the set can also be written as a nonterminal,

10 © Ecma International 2011

secma

in which case it represents the set of all terminals to which that nonterminal could expand. For example, given
the definitions

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample ::
n [lookahead ¢ {1, 3, 5, 7, 9}] DecimalDigits
DecimalDigit [lookahead ¢ DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit
not followed by another decimal digit.

If the phrase “[no LineTerminator here]” appears in the right-hand side of a production of the syntactic grammar, it
indicates that the production is a restricted production: it may not be used if a LineTerminator occurs in the
input stream at the indicated position. For example, the production:

ThrowStatement :
throw [no LineTerminator here] EXpression ;

indicates that the production may not be used if a LineTerminator occurs in the program between the throw
token and the Expression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of occurrences of
LineTerminator may appear between any two consecutive tokens in the stream of input elements without
affecting the syntactic acceptability of the program.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multi-character token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase
“but not” and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal ldentifier may be replaced by any sequence of characters that could replace
IdentifierName provided that the same sequence of characters could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it
would be impractical to list all the alternatives:

SourceCharacter ::
any Unicode code unit

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to
precisely specify the required semantics of ECMAScript language constructs. The algorithms are not intended
to imply the use of any specific implementation technique. In practice, there may be more efficient algorithms
available to implement a given feature.

© Ecma International 2011 11

secma

In order to facilitate their use in multiple parts of this specification, some algorithms, called abstract operations,
are named and written in parameterised functional form so that they may be referenced by name from within
other algorithms.

When an algorithm is to produce a value as a result, the directive “return x” is used to indicate that the result of
the algorithm is the value of x and that the algorithm should terminate. The notation Result(n) is used as
shorthand for “the result of step n”.

For clarity of expression, algorithm steps may be subdivided into sequential substeps. Substeps are indented
and may themselves be further divided into indented substeps. Outline humbering conventions are used to
identify substeps with the first level of substeps labelled with lower case alphabetic characters and the second
level of substeps labelled with lower case roman numerals. If more than three levels are required these rules
repeat with the fourth level using numeric labels. For example:

1. Top-level step
a. Substep.
b. Substep
i Subsubstep.
ii. Subsubstep.
1. Subsubsubstep
a Subsubsubsubstep
A step or substep may be written as an “if” predicate that conditions its substeps. In this case, the substeps
are only applied if the predicate is true. If a step or substep begins with the word “else”, it is a predicate that is
the negation of the preceding “if” predicate step at the same level.

A step may specify the iterative application of its substeps.

A step may assert an invariant condition of its algorithm. Such assertions are used to make explicit
algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic
requirements and hence need not be checked by an implementation. They are used simply to clarify
algorithms.

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions defined later in this clause should always be understood as computing exact mathematical results
on mathematical real numbers, which do not include infinities and do not include a negative zero that is
distinguished from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit
steps, where necessary, to handle infinities and signed zero and to perform rounding. If a mathematical
operation or function is applied to a floating-point number, it should be understood as being applied to the
exact mathematical value represented by that floating-point number; such a floating-point number must be
finite, and if it is +0 or —0 then the corresponding mathematical value is simply 0.

The mathematical function abs(x) yields the absolute value of x, which is —x if X is hegative (less than zero) and
otherwise is x itself.

The mathematical function sign(x) yields 1 if x is positive and -1 if x is negative. The sign function is not used in
this standard for cases when x is zero.

The notation “x modulo y” (y must be finite and nonzero) computes a value k of the same sign as y (or zero)
such that abs(k) < abs(y) and x—k = q x y for some integer qg.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger than x.
NOTE floor(x) = x—(x modulo 1).

If an algorithm is defined to “throw an exception”, execution of the algorithm is terminated and no result is
returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly deals

with the exception, using terminology such as “If an exception was thrown...”. Once such an algorithm step
has been encountered the exception is no longer considered to have occurred.

12 © Ecma International 2011

secma

6 Source Text

ECMAScript source text is represented as a sequence of characters in the Unicode character encoding,
version 3.0 or later. The text is expected to have been normalised to Unicode Normalization Form C
(canonical composition), as described in Unicode Technical Report #15. Conforming ECMAScript
implementations are not required to perform any normalisation of text, or behave as though they were
performing normalisation of text, themselves. ECMAScript source text is assumed to be a sequence of 16-bit
code units for the purposes of this specification. Such a source text may include sequences of 16-bit code
units that are not valid UTF-16 character encodings. If an actual source text is encoded in a form other than
16-bit code units it must be processed as if it was first converted to UTF-16.

Syntax

SourceCharacter ::
any Unicode code unit

Throughout the rest of this document, the phrase “code unit” and the word “character” will be used to refer to a
16-bit unsigned value used to represent a single 16-bit unit of text. The phrase “Unicode character” will be
used to refer to the abstract linguistic or typographical unit represented by a single Unicode scalar value
(which may be longer than 16 bits and thus may be represented by more than one code unit). The phrase
“code point” refers to such a Unicode scalar value. “Unicode character” only refers to entities represented by
single Unicode scalar values: the components of a combining character sequence are still individual “Unicode
characters,” even though a user might think of the whole sequence as a single character.

In string literals, regular expression literals, and identifiers, any character (code unit) may also be expressed
as a Unicode escape sequence consisting of six characters, namely \u plus four hexadecimal digits. Within a
comment, such an escape sequence is effectively ignored as part of the comment. Within a string literal or
regular expression literal, the Unicode escape sequence contributes one character to the value of the literal.
Within an identifier, the escape sequence contributes one character to the identifier.

NOTE Although this document sometimes refers to a “transformation” between a “character” within a “string” and the
16-bit unsigned integer that is the code unit of that character, there is actually no transformation because a “character”
within a “string” is actually represented using that 16-bit unsigned value.

ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequence \u000a, for example, occurs within a single-line comment, it
is interpreted as a line terminator (Unicode character 000A is line feed) and therefore the next character is not
part of the comment. Similarly, if the Unicode escape sequence \u000A occurs within a string literal in a Java
program, it is likewise interpreted as a line terminator, which is not allowed within a string literal—one must
write \n instead of \u0O00A to cause a line feed to be part of the string value of a string literal. In an
ECMAScript program, a Unicode escape sequence occurring within a comment is never interpreted and
therefore cannot contribute to termination of the comment. Similarly, a Unicode escape sequence occurring
within a string literal in an ECMAScript program always contributes a character to the String value of the literal
and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

7 Lexical Conventions

The source text of an ECMAScript program is first converted into a sequence of input elements, which are
tokens, line terminators, comments, or white space. The source text is scanned from left to right, repeatedly
taking the longest possible sequence of characters as the next input element.

There are two goal symbols for the lexical grammar. The InputElementDiv symbol is used in those syntactic
grammar contexts where a leading division (/) or division-assignment (/=) operator is permitted. The
InputElementRegExp symbol is used in other syntactic grammar contexts.

NOTE There are no syntactic grammar contexts where both a leading division or division-assignment, and a leading
RegularExpressionLiteral are permitted. This is not affected by semicolon insertion (see 7.9); in examples such as the
following:

© Ecma International 2011 13

secma

a=>
/hi/g.exec (c) .map(d) ;

where the first non-whitespace, non-comment character after a LineTerminator is slash (/) and the syntactic context allows
division or division-assignment, no semicolon is inserted at the LineTerminator. That is, the above example is interpreted in
the same way as:

a=Db / hi / g.exec(c).map(d);

Syntax

InputElementDiv ::
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator

InputElementRegExp ::
WhiteSpace
LineTerminator
Comment
Token
RegularExpressionLiteral

7.1 Unicode Format-Control Characters

The Unicode format-control characters (i.e., the characters in category “Cf’ in the Unicode Character
Database such as LEFT-TO-RIGHT MARK Or RIGHT-TO-LEFT MARK) are control codes used to control the formatting
of a range of text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control
characters may be used within comments, and within string literals and regular expression literals.

<ZWNJ> and <ZWJ> are format-control characters that are used to make necessary distinctions when forming
words or phrases in certain languages. In ECMAScript source text, <ZWNJ> and <ZWJ> may also be used in
an identifier after the first character.

<BOM?> is a format-control character used primarily at the start of a text to mark it as Unicode and to allow
detection of the text's encoding and byte order. <BOM> characters intended for this purpose can sometimes
also appear after the start of a text, for example as a result of concatenating files. <BOM> characters are
treated as white space characters (see 7.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular
expression literals is summarised in Table 1.

Table 1 — Format-Control Character Usage

Code Unit Value Name Formal Name Usage
\u200C Zero width non-joiner <ZWNJ> IdentifierPart
\u200D Zero width joiner <ZWJ> IdentifierPart
\uFEFF Byte Order Mark <BOM> Whitespace

7.2 White Space

White space characters are used to improve source text readability and to separate tokens (indivisible lexical
units) from each other, but are otherwise insignificant. White space characters may occur between any two
tokens and at the start or end of input. White space characters may also occur within a StringLiteral or a

14 © Ecma International 2011

secmd

RegularExpressionLiteral (where they are considered significant characters forming part of the literal value) or
within a Comment, but cannot appear within any other kind of token.

The ECMASCcript white space characters are listed in Table 2.

Table 2 — Whitespace Characters

Code Unit Value Name Formal Name

\u0009 Tab <TAB>

\u000B Vertical Tab <VT>

\u000C Form Feed <FF>

\u0020 Space <SP>

\uO00AO0 No-break space <NBSP>

\uFEFF Byte Order Mark <BOM>

Other category “Zs” Any other Unicode <USP>
“space separator”

ECMAScript implementations must recognise all of the white space characters defined in Unicode 3.0. Later
editions of the Unicode Standard may define other white space characters. ECMAScript implementations may
recognise white space characters from later editions of the Unicode Standard.

Syntax

WhiteSpace ::
<TAB>
<VT>
<FF>
<Sp>
<NBSP>
<BOM>
<USP>

7.3 Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. However, unlike white space characters, line
terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators
may occur between any two tokens, but there are a few places where they are forbidden by the syntactic
grammar. Line terminators also affect the process of automatic semicolon insertion (7.9). A line terminator
cannot occur within any token except a StringLiteral. Line terminators may only occur within a StringLiteral
token as part of a LineContinuation.

A line terminator can occur within a MultiLineComment (7.4) but cannot occur within a SingleLineComment.

Line terminators are included in the set of white space characters that are matched by the \s class in regular
expressions.

The ECMAScript line terminator characters are listed in Table 3.

Table 3 — Line Terminator Characters

Code Unit Value Name Formal Name
\u000A Line Feed <LF>
\u000D Carriage Return <CR>
\u2028 Line separator <LS>
\u2029 Paragraph separator <PS>

© Ecma International 2011 15

secma

Only the characters in Table 3 are treated as line terminators. Other new line or line breaking characters are
treated as white space but not as line terminators. The character sequence <CR><LF> is commonly used as
a line terminator. It should be considered a single character for the purpose of reporting line numbers.

Syntax

LineTerminator ::
<LF>
<CR>
<LS>
<PS>

LineTerminatorSequence ::
<LF>
<CR> [lookahead ¢ <LF>]
<LS>
<PS>
<CR> <LF>

7.4 Comments
Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any character except a LineTerminator character, and because of
the general rule that a token is always as long as possible, a single-line comment always consists of all
characters from the // marker to the end of the line. However, the LineTerminator at the end of the line is not
considered to be part of the single-line comment; it is recognised separately by the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important, because
it implies that the presence or absence of single-line comments does not affect the process of automatic
semicolon insertion (see 7.9).

Comments behave like white space and are discarded except that, if a MultiLineComment contains a line
terminator character, then the entire comment is considered to be a LineTerminator for purposes of parsing by
the syntactic grammar.

Syntax

Comment ::
MultiLineComment
SingleLineComment

MultiLineComment ::
/* MultiLineCommentCharsyp; */

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentCharsy
* PostAsteriskCommentChars,p

PostAsteriskCommentChars ::
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChars
* PostAsteriskCommentCharsy,

MultiLineNotAsteriskChar ::
SourceCharacter but not *

MultiLineNotForwardSlashOrAsteriskChar ::
SourceCharacter but not one of / or *

16 © Ecma International 2011

secma

SingleLineComment ::
// SingleLineCommentCharsgp

SingleLineCommentChars ::
SingleLineCommentChar SingleLineCommentChars,

SingleLineCommentChar ::
SourceCharacter but not LineTerminator

7.5 Tokens

Syntax

Token ::
IdentifierName
Punctuator
NumericLiteral
StringLiteral

NOTE The DivPunctuator and RegularExpressionLiteral productions define tokens, but are not included in the Token
production.

7.6 ldentifier Names and Identifiers

Identifier Names are tokens that are interpreted according to the grammar given in the “Identifiers” section of
chapter 5 of the Unicode standard, with some small modifications. An Identifier is an IdentifierName that is not
a ReservedWord (see 7.6.1). The Unicode identifier grammar is based on both normative and informative
character categories specified by the Unicode Standard. The characters in the specified categories in version
3.0 of the Unicode standard must be treated as in those categories by all conforming ECMAScript
implementations.

This standard specifies specific character additions: The dollar sign ($) and the underscore (_) are permitted
anywhere in an IdentifierName.

Unicode escape sequences are also permitted in an IdentifierName, where they contribute a single character to
the lIdentifierName, as computed by the CV of the UnicodeEscapeSequence (see 7.8.4). The \ preceding the
UnicodeEscapeSequence does not contribute a character to the IdentifierName. A UnicodeEscapeSequence cannot
be used to put a character into an ldentifierName that would otherwise be illegal. In other words, if a
\ UnicodeEscapeSequence sequence were replaced by its UnicodeEscapeSequence's CV, the result must still be
a valid IdentifierName that has the exact same sequence of characters as the original IdentifierName. All
interpretations of identifiers within this specification are based upon their actual characters regardless of
whether or not an escape sequence was used to contribute any particular characters.

Two ldentifierName that are canonically equivalent according to the Unicode standard are not equal unless
they are represented by the exact same sequence of code units (in other words, conforming ECMAScript
implementations are only required to do bitwise comparison on IdentifierName values). The intent is that the
incoming source text has been converted to normalised form C before it reaches the compiler.

ECMAScript implementations may recognise identifier characters defined in later editions of the Unicode
Standard. If portability is a concern, programmers should only employ identifier characters defined in Unicode
3.0.

Syntax

Identifier ::
IdentifierName but not ReservedWord

© Ecma International 2011 17

secma

IdentifierName ::
ldentifierStart
IdentifierName ldentifierPart

IdentifierStart ::
UnicodeLetter
$

\ UnicodeEscapeSequence

IdentifierPart ::
IdentifierStart
UnicodeCombiningMark
UnicodeDigit
UnicodeConnectorPunctuation
<ZWNJ>
<ZWJ>

UnicodeLetter ::
any character in the Unicode categories “Uppercase letter (Lu)”, “Lowercase letter (LI)”, “Titlecase letter
(Lt)”, “Modifier letter (Lm)”, “Other letter (Lo)”, or “Letter number (NI)".

UnicodeCombiningMark ::
any character in the Unicode categories “Non-spacing mark (Mn)” or “Combining spacing mark (Mc)”

UnicodeDigit ::
any character in the Unicode category “Decimal number (Nd)”

UnicodeConnectorPunctuation ::
any character in the Unicode category “Connector punctuation (Pc)”

The definitions of the nonterminal UnicodeEscapeSequence is given in 7.8.4

7.6.1 Reserved Words

A reserved word is an IdentifierName that cannot be used as an Identifier.

Syntax

ReservedWord ::
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

7.6.1.1 Keywords

The following tokens are ECMAScript keywords and may not be used as ldentifiers in ECMAScript programs.

Syntax

Keyword :: one of
break do instanceof typeof
case else new var
catch finally return void
continue for switch while
debugger function this with
default if throw
delete in try

18 © Ecma International 2011

secma

7.6.1.2 Future Reserved Words

The following words are used as keywords in proposed extensions and are therefore reserved to allow for the
possibility of future adoption of those extensions.

Syntax

FutureReservedWord :: one of
class enum
const export

extends
import

super

The following tokens are also considered to be FutureReservedWords when they occur within strict mode code
(see 10.1.1). The occurrence of any of these tokens within strict mode code in any context where the

occurrence of a FutureReservedWord would produce an error must also produce an equivalent error:

implements let
interface package

7.7 Punctuators

Syntax

Punctuator :: one of
{ } (
>= == =
+ - *
<< >> >>>
1 ~ &&
= += -=
>>= >>>= &=

DivPunctuator :: one of
/ /=

7.8 Literals

Syntax

Literal ::
NullLiteral

BooleanLiteral
NumericLiteral
StringL.iteral
RegularExpressionLiteral

7.8.1 Null Literals

Syntax

NullLiteral ::
null

© Ecma International 2011

private
protected

public

static

[]
> <=
==
++ --

I A

?

%= <<=

yield

19

»ecma

Semantics

The value of the null literal null is the sole value of the Null type, namely null.
7.8.2 Boolean Literals

Syntax

BooleanLiteral ::
true
false

Semantics

The value of the Boolean literal true is a value of the Boolean type, namely true.

The value of the Boolean literal f£alse is a value of the Boolean type, namely false.
7.8.3 Numeric Literals

Syntax

NumericLiteral ::
DecimalLiteral
HexlIntegerLiteral

DecimalLiteral ::
DecimalintegerLiteral . DecimalDigitsy,; ExponentParty
. DecimalDigits ExponentPartoy,
DecimalintegerLiteral ExponentPart,y

DecimalintegerLiteral ::
0

NonZeroDigit DecimalDigits,

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

ExponentPart ::
Exponentindicator Signedinteger

Exponentindicator :: one of
e E

SignedIinteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexlIntegerLiteral ::
0x HexDigit
0X HexDigit
HexlIntegerLiteral HexDigit

20 © Ecma International 2011

secma

HexDigit :: one of
0 1 2 3 4 5 6 7 8 9 a b ¢c d e £ A B C D E F

The source character immediately following a NumericLiteral must not be an IdentifierStart or DecimalDigit.

NOTE For example:
3in

is an error and not the two input elements 3 and in.

Semantics

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from the literal; second, this mathematical value is rounded as described
below.

. The MV of NumericLiteral :: DecimalLiteral is the MV of DecimalLiteral.

. The MV of NumericLiteral :: HexIntegerLiteral is the MV of HexIntegerLiteral.

e The MV of DecimalLiteral :: DecimalintegerLiteral . is the MV of DecimallntegerLiteral.

. The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits is the MV of DecimallntegerLiteral plus
(the MV of DecimalDigits times 10™), where n is the number of characters in DecimalDigits.

e The MV of DecimalLiteral :: DecimalintegerLiteral . ExponentPart is the MV of DecimalintegerLiteral times
10°%, where e is the MV of ExponentPart.

. The MV of DecimalLiteral :: DecimalintegerLiteral . DecimalDigits ExponentPart is (the MV of
DecimallntegerLiteral plus (the MV of DecimalDigits times 10™)) times 10° where n is the number of
characters in DecimalDigits and e is the MV of ExponentPart.

e The MV of DecimalLiteral :: . DecimalDigits is the MV of DecimalDigits times 10™, where n is the number of
characters in DecimalDigits.

. The MV of DecimalLiteral :: . DecimalDigits ExponentPart is the MV of DecimalDigits times 10°", where n is
the number of characters in DecimalDigits and e is the MV of ExponentPart.

e The MV of DecimalLiteral :: DecimalintegerLiteral is the MV of DecimallntegerLiteral.

. The MV of DecimalLiteral :: DecimallntegerLiteral ExponentPart is the MV of DecimallntegerLiteral times 10°,
where e is the MV of ExponentPart.

. The MV of DecimallntegerLiteral :: 0 is O.
e The MV of DecimalintegerLiteral :: NonZeroDigit is the MV of NonZeroDigit.

e The MV of DecimalintegerLiteral :: NonZeroDigit DecimalDigits is (the MV of NonZeroDigit times 10") plus
the MV of DecimalDigits, where n is the number of characters in DecimalDigits.

. The MV of DecimalDigits :: DecimalDigit is the MV of DecimalDigit.

. The MV of DecimalDigits :: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV of
DecimalDigit.

e The MV of ExponentPart :: Exponentindicator Signedinteger is the MV of Signedinteger.

e The MV of Signedinteger :: DecimalDigits is the MV of DecimalDigits.

e The MV of Signedinteger :: + DecimalDigits is the MV of DecimalDigits.

e The MV of Signedinteger :: - DecimalDigits is the negative of the MV of DecimalDigits.

e The MV of DecimalDigit :: 0 or of HexDigit :: 0is 0.

e The MV of DecimalDigit :: 1 or of NonZeroDigit :: 1 or of HexDigit :: 1 is 1.

e The MV of DecimalDigit :: 2 or of NonZeroDigit :: 2 or of HexDigit :: 2 is 2.

e The MV of DecimalDigit :: 3 or of NonZeroDigit :: 3 or of HexDigit :: 3 is 3.

e The MV of DecimalDigit :: 4 or of NonZeroDigit :: 4 or of HexDigit :: 4 is 4.

e The MV of DecimalDigit :: 5 or of NonZeroDigit :: 5 or of HexDigit :: 5 is 5.

e The MV of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 is 6.

e The MV of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit :: 7 is 7.

e The MV of DecimalDigit :: 8 or of NonZeroDigit :: 8 or of HexDigit :: 8 is 8.

e The MV of DecimalDigit :: 9 or of NonZeroDigit :: 9 or of HexDigit :: 9 is 9.

e The MV of HexDigit :: a or of HexDigit :: A is 10.

© Ecma International 2011 21

secma

e The MV of HexDigit :: b or of HexDigit :: B is 11.
e The MV of HexDigit :: ¢ or of HexDigit :: Cis 12.
e The MV of HexDigit :: d or of HexDigit :: D is 13.
e The MV of HexDigit :: e or of HexDigit :: E is 14.
e The MV of HexDigit :: £ or of HexDigit :: Fis 15.
e The MV of HexIntegerLiteral :: 0x HexDigit is the MV of HexDigit.
e The MV of HexIntegerLiteral :: 0x HexDigit is the MV of HexDigit.

e The MV of HexlIntegerLiteral :: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus the
MV of HexDigit.

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number type.
If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the Number value for the
MV (as specified in 8.5), unless the literal is a DecimalLiteral and the literal has more than 20 significant digits,
in which case the Number value may be either the Number value for the MV of a literal produced by replacing
each significant digit after the 20th with a 0 digit or the Number value for the MV of a literal produced by
replacing each significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th
significant digit position. A digit is significant if it is not part of an ExponentPart and

) it is not 0; or
o there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

A conforming implementation, when processing strict mode code (see 10.1.1), must not extend the syntax of
NumericLiteral to include OctalintegerLiteral as described in B.1.1.

7.8.4 String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be
represented by an escape sequence. All characters may appear literally in a string literal except for the closing
quote character, backslash, carriage return, line separator, paragraph separator, and line feed. Any character
may appear in the form of an escape sequence.

Syntax

StringLiteral ::
" DoubleStringCharactersgp; "
' SingleStringCharactersqp;

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringCharactersy,

SingleStringCharacters ::
SingleStringCharacter SingleStringCharactersyp

DoubleStringCharacter ::
SourceCharacter but not one of " or \ or LineTerminator
\ EscapeSequence
LineContinuation

SingleStringCharacter ::
SourceCharacter but not one of ' or \ or LineTerminator
\ EscapeSequence
LineContinuation

LineContinuation ::
\ LineTerminatorSequence

22 © Ecma International 2011

secma

EscapeSequence ::
CharacterEscapeSequence
0 [lookahead ¢ DecimalDigit]

HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence ::
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter :: one of
' " \ b £ n r t v

NonEscapeCharacter ::
SourceCharacter but not one of EscapeCharacter or LineTerminator

EscapeCharacter ::
SingleEscapeCharacter
DecimalDigit
X
u

HexEscapeSequence ::
x HexDigit HexDigit

UnicodeEscapeSequence ::
u HexDigit HexDigit HexDigit HexDigit

The definition of the nonterminal HexDigit is given in 7.8.3. SourceCharacter is defined in clause 6.

Semantics

A string literal stands for a value of the String type. The String value (SV) of the literal is described in terms of
character values (CV) contributed by the various parts of the string literal. As part of this process, some
characters within the string literal are interpreted as having a mathematical value (MV), as described below or
in 7.8.3.

. The SV of StringLiteral :: "" is the empty character sequence.

e The SV of StringLiteral :: ' ' is the empty character sequence.

. The SV of StringLiteral :: ™ DoubleStringCharacters " is the SV of DoubleStringCharacters.
e The SV of StringLiteral :: ' SingleStringCharacters ' is the SV of SingleStringCharacters.

e The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of one character, the CV of
DoubleStringCharacter.

e The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters is a sequence of the CV
of DoubleStringCharacter followed by all the characters in the SV of DoubleStringCharacters in order.

e The SV of SingleStringCharacters :: SingleStringCharacter is a sequence of one character, the CV of
SingleStringCharacter.

e The SV of SingleStringCharacters :: SingleStringCharacter SingleStringCharacters is a sequence of the CV
of SingleStringCharacter followed by all the characters in the SV of SingleStringCharacters in order.

e The SV of LineContinuation :: \ LineTerminatorSequence is the empty character sequence.

e The CV of DoubleStringCharacter :: SourceCharacter but not one of " or \ or LineTerminator is the
SourceCharacter character itself.

e The CV of DoubleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

e The CV of DoubleStringCharacter :: LineContinuation is the empty character sequence.

e The CV of SingleStringCharacter :: SourceCharacter but not one of ' or \ or LineTerminator is the
SourceCharacter character itself.

e The CV of SingleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

© Ecma International 2011 23

secma

e The CV of SingleStringCharacter :: LineContinuation is the empty character sequence.

e The CV of EscapeSequence :: CharacterEscapeSequence is the CV of the CharacterEscapeSequence.

e The CV of EscapeSequence :: 0 [lookahead ¢ DecimalDigit] IS @ <NUL> character (Unicode value 0000).
e The CV of EscapeSequence :: HexEscapeSequence is the CV of the HexEscapeSequence.

e The CV of EscapeSequence :: UnicodeEscapeSequence is the CV of the UnicodeEscapeSequence.

e The CV of CharacterEscapeSequence :: SingleEscapeCharacter is the character whose code unit value is
determined by the SingleEscapeCharacter according to Table 4:

Table 4 — String Single Character Escape Sequences

Escape Sequence Code Unit Value Name Symbol

\b \u0008 backspace <BS>
\t \u0009 horizontal tab <HT>
\n \u000A line feed (new line) <LF>
\v \u000B vertical tab <VT>
\f \u000C form feed <FF>
\r \u000D carriage return <CR>
\" \u0022 double quote "

\' \u0027 single quote '

\\ \u005C backslash \

o The CV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.

o The CV of NonEscapeCharacter :: SourceCharacter but not one of EscapeCharacter or LineTerminator is the
SourceCharacter character itself.

) The CV of HexEscapeSequence :: x HexDigit HexDigit is the character whose code unit value is (16 times
the MV of the first HexDigit) plus the MV of the second HexDigit.

) The CV of UnicodeEscapeSequence :: u HexDigit HexDigit HexDigit HexDigit is the character whose code
unit value is (4096 times the MV of the first HexDigit) plus (256 times the MV of the second HexDigit) plus
(16 times the MV of the third HexDigit) plus the MV of the fourth HexDigit.

A conforming implementation, when processing strict mode code (see 10.1.1), may not extend the syntax of
EscapeSequence to include OctalEscapeSequence as described in B.1.2.

NOTE A line terminator character cannot appear in a string literal, except as part of a LineContinuation to produce the
empty character sequence. The correct way to cause a line terminator character to be part of the String value of a string
literal is to use an escape sequence such as \n or \uO0O0A.

7.8.5 Regular Expression Literals

A regular expression literal is an input element that is converted to a RegExp object (see 15.10) each time the
literal is evaluated. Two regular expression literals in a program evaluate to regular expression objects that
never compare as === to each other even if the two literals' contents are identical. A RegExp object may also
be created at runtime by new RegExp (see 15.10.4) or calling the RegExp constructor as a function (15.10.3).

The productions below describe the syntax for a regular expression literal and are used by the input element
scanner to find the end of the regular expression literal. The Strings of characters comprising the
RegularExpressionBody and the RegularExpressionFlags are passed uninterpreted to the regular expression
constructor, which interprets them according to its own, more stringent grammar. An implementation may
extend the regular expression constructor's grammar, but it must not extend the RegularExpressionBody and
RegularExpressionFlags productions or the productions used by these productions.

24 © Ecma International 2011

secma

Syntax

RegularExpressionLiteral ::
/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::
[empty]))
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar ::
RegularExpressionNonTerminator but not one of * or \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionChar ::
RegularExpressionNonTerminator but not one of \ or / or [
RegularExpressionBackslashSequence
RegularExpressionClass

RegularExpressionBackslashSequence ::
\ RegularExpressionNonTerminator

RegularExpressionNonTerminator ::
SourceCharacter but not LineTerminator

RegularExpressionClass ::
[RegularExpressionClassChars]

RegularExpressionClassChars ::
[empty]))
RegularExpressionClassChars RegularExpressionClassChar

RegularExpressionClassChar ::
RegularExpressionNonTerminator but not one of] or \
RegularExpressionBackslashSequence

RegularExpressionFlags ::
[empty]) B
RegularExpressionFlags IdentifierPart

NOTE Regular expression literals may not be empty; instead of representing an empty regular expression literal, the
characters // start a single-line comment. To specify an empty regular expression, use: /(?:)/.

Semantics

A regular expression literal evaluates to a value of the Object type that is an instance of the standard built-in
constructor RegExp. This value is determined in two steps: first, the characters comprising the regular
expression's RegularExpressionBody and RegularExpressionFlags production expansions are collected
uninterpreted into two Strings Pattern and Flags, respectively. Then each time the literal is evaluated, a new
object is created as if by the expression new RegExp (Pattern, Flags) where RegExp is the standard
built-in constructor with that name. The newly constructed object becomes the value of the
RegularExpressionLiteral. If the call to new RegExp would generate an error as specified in 15.10.4.1, the error
must be treated as an early error (Clause 16).

© Ecma International 2011 25

ecmna

7.9 Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, variable statement, expression statement, do-while
statement, continue statement, break statement, return statement, and throw statement) must be
terminated with semicolons. Such semicolons may always appear explicitly in the source text. For
convenience, however, such semicolons may be omitted from the source text in certain situations. These
situations are described by saying that semicolons are automatically inserted into the source code token
stream in those situations.

7.9.1 Rules of Automatic Semicolon Insertion

There are three basic rules of semicolon insertion:

When, as the program is parsed from left to right, a token (called the offending token) is encountered that
is not allowed by any production of the grammar, then a semicolon is automatically inserted before the
offending token if one or more of the following conditions is true:

e The offending token is separated from the previous token by at least one LineTerminator.
e The offending token is }.

When, as the program is parsed from left to right, the end of the input stream of tokens is encountered
and the parser is unable to parse the input token stream as a single complete ECMAScript Program, then
a semicolon is automatically inserted at the end of the input stream.

When, as the program is parsed from left to right, a token is encountered that is allowed by some
production of the grammar, but the production is a restricted production and the token would be the first
token for a terminal or nonterminal immediately following the annotation “[no LineTerminator here]” within the
restricted production (and therefore such a token is called a restricted token), and the restricted token is
separated from the previous token by at least one LineTerminator, then a semicolon is automatically
inserted before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted
automatically if the semicolon would then be parsed as an empty statement or if that semicolon would become
one of the two semicolons in the header of a for statement (see 12.6.3).

NOTE The following are the only restricted productions in the grammar:

PostfixExpression :
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] —-

ContinueStatement :
continue [no LineTerminator here] Identifier ;

BreakStatement :
break [no LineTerminator here] ldentifier ;

ReturnStatement :
return [no LineTerminator here] Expression ;

ThrowStatement :
throw [no LineTerminator here] Expression)

The practical effect of these restricted productions is as follows:

26

When a ++ or -- token is encountered where the parser would treat it as a postfix operator, and at least one
LineTerminator occurred between the preceding token and the ++ or -- token, then a semicolon is automatically
inserted before the ++ or -- token.

© Ecma International 2011

ecina

When a continue, break, return, or throw token is encountered and a LineTerminator is encountered before
the next token, a semicolon is automatically inserted after the continue, break, return, or throw token.

The resulting practical advice to ECMAScript programmers is:

A postfix ++ or -- operator should appear on the same line as its operand.
An Expression in a return or throw statement should start on the same line as the return or throw token.

An ldentifier in a break or continue statement should be on the same line as the break or continue token.

7.9.2 Examples of Automatic Semicolon Insertion

The source

{121} 3
is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In
contrast, the source

{1

2} 3

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{1

72 7} 3;
which is a valid ECMAScript sentence.

The source

for (a; b

)
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header of a for statement. Automatic semicolon insertion never inserts one of
the two semicolons in the header of a for statement.

The source
return
a+b
is transformed by automatic semicolon insertion into the following:
return;
a + b;
NOTE The expression a + b is not treated as a value to be returned by the return statement, because a

LineTerminator separates it from the token return.

The source
a=>
++c
is transformed by automatic semicolon insertion into the following:
a =b;
++c;
NOTE The token ++ is not treated as a postfix operator applying to the variable b, because a LineTerminator occurs

between b and ++.
The source

if (a > b)
else c =d

© Ecma International 2011 27

secma

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else token,
even though no production of the grammar applies at that point, because an automatically inserted semicolon
would then be parsed as an empty statement.

The source

a=>b + c

(d + e) .print()
is not transformed by automatic semicolon insertion, because the parenthesised expression that begins the
second line can be interpreted as an argument list for a function call:

a=>b + c(d + e).print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for the
programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely on
automatic semicolon insertion.

8 Types

Algorithms within this specification manipulate values each of which has an associated type. The possible
value types are exactly those defined in this clause. Types are further subclassified into ECMAScript language
types and specification types.

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript
programmer using the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean,
String, Number, and Obiject.

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of
ECMAScript language constructs and ECMAScript language types. The specification types are Reference,
List, Completion, Property Descriptor, Property Identifier, Lexical Environment, and Environment Record.
Specification type values are specification artefacts that do not necessarily correspond to any specific entity
within an ECMAScript implementation. Specification type values may be used to describe intermediate results
of ECMAScript expression evaluation but such values cannot be stored as properties of objects or values of
ECMAScript language variables.

Within this specification, the notation “Type(x)” is used as shorthand for “the type of X" where “type” refers to the
ECMAScript language and specification types defined in this clause.

8.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value
has the value undefined.

8.2 The Null Type

The Null type has exactly one value, called null.

8.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.

8.4 The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values
(“elements”). The String type is generally used to represent textual data in a running ECMAScript program, in
which case each element in the String is treated as a code unit value (see Clause 6). Each element is
regarded as occupying a position within the sequence. These positions are indexed with nonnegative integers.
The first element (if any) is at position 0, the next element (if any) at position 1, and so on. The length of a

28 © Ecma International 2011

secma

String is the number of elements (i.e., 16-bit values) within it. The empty String has length zero and therefore
contains no elements.

When a String contains actual textual data, each element is considered to be a single UTF-16 code unit.
Whether or not this is the actual storage format of a String, the characters within a String are numbered by
their initial code unit element position as though they were represented using UTF-16. All operations on
Strings (except as otherwise stated) treat them as sequences of undifferentiated 16-bit unsigned integers;
they do not ensure the resulting String is in normalised form, nor do they ensure language-sensitive results.

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-performing as
possible. The intent is that textual data coming into the execution environment from outside (e.g., user input, text read
from a file or received over the network, etc.) be converted to Unicode Normalised Form C before the running program
sees it. Usually this would occur at the same time incoming text is converted from its original character encoding to
Unicode (and would impose no additional overhead). Since it is recommended that ECMAScript source code be in
Normalised Form C, string literals are guaranteed to be normalised (if source text is guaranteed to be normalised), as long
as they do not contain any Unicode escape sequences.

8.5 The Number Type

The Number type has exactly 18437736874454810627 (that is, 2%-2%3+3) values, representing the double-
precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic,
except that the 9007199254740990 (that is, 2°°-2) distinct “Not-a-Number” values of the IEEE Standard are
represented in ECMAScript as a single special NaN value. (Note that the NaN value is produced by the
program expression NaN.) In some implementations, external code might be able to detect a difference
between various Not-a-Number values, but such behaviour is implementation-dependent; to ECMAScript code,
all NaN values are indistinguishable from each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values
are also referred to for expository purposes by the symbols +w and -, respectively. (Note that these two
infinite Number values are produced by the program expressions +Infinity (or simply Infinity) and -
Infinity.)

The other 18437736874454810624 (that is, 2%-2°%) values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive Number value there is a
corresponding negative value having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for
expository purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number
values are produced by the program expressions +0 (or simply 0) and -0.)

The 18437736874454810622 (that is, 2%*~2°°-2) finite nonzero values are of two kinds:

18428729675200069632 (that is, 2*~2°*) of them are normalised, having the form

sxmx2°

where s is +1 or -1, m is a positive integer less than 2 but not less than 2%, and e is an integer ranging from
—-1074 to 971, inclusive.

The remaining 9007199254740990 (that is, 2°°~2) values are denormalised, having the form

sxmx2°

where sis +1 or -1, m is a positive integer less than 2%, and e is —1074.

Note that all the positive and negative integers whose magnitude is no greater than 2> are representable in
the Number type (indeed, the integer 0 has two representations, +0 and -0).

© Ecma International 2011 29

secma

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the two
forms shown above) is odd. Otherwise, it has an even significand.

In this specification, the phrase “the Number value for x” where x represents an exact nonzero real
mathematical quantity (which might even be an irrational number such as ©) means a Number value chosen in
the following manner. Consider the set of all finite values of the Number type, with -0 removed and with two
additional values added to it that are not representable in the Number type, namely 2'% (which is +1 x 2% x
2°™) and 2" (which is —1 x 2 x 2°'"). Choose the member of this set that is closest in value to x. If two
values of the set are equally close, then the one with an even significand is chosen; for this purpose, the two
extra values 2'%* and —2'%* are considered to have even significands. Finally, if 2!%* was chosen, replace it
with +oo; if —21°%* was chosen, replace it with —o; if +0 was chosen, replace it with -0 if and only if x is less than
zero; any other chosen value is used unchanged. The result is the Number value for x. (This procedure
corresponds exactly to the behaviour of the IEEE 754 “round to nearest” mode.)

Some ECMAScript operators deal only with integers in the range —2* through 2*-1, inclusive, or in the range
0 through 2%-1, inclusive. These operators accept any value of the Number type but first convert each such

value to one of 2% integer values. See the descriptions of the Tolnt32 and ToUint32 operators in 9.5 and 9.6,
respectively.

8.6 The Object Type

An Obiject is a collection of properties. Each property is either a named data property, a hamed accessor
property, or an internal property:

e A named data property associates a hame with an ECMAScript language value and a set of Boolean
attributes.

e A named accessor property associates a hame with one or two accessor functions, and a set of Boolean
attributes. The accessor functions are used to store or retrieve an ECMAScript language value that is
associated with the property.

e An internal property has no name and is not directly accessible via ECMAScript language operators.
Internal properties exist purely for specification purposes.

There are two kinds of access for named (non-internal) properties: get and put, corresponding to retrieval and
assignment, respectively.

8.6.1 Property Attributes

Attributes are used in this specification to define and explain the state of nhamed properties. A named data
property associates a name with the attributes listed in Table 5

Table 5 — Attributes of a Named Data Property

Attribute Name Value Domain Description
[[Value]] Any ECMAScript The value retrieved by reading the property.
language type
[[Writable]] Boolean If false, attempts by ECMAScript code to change the
property’s [[Value]] attribute using [[Put]] will not succeed.
[[Enumerable]] Boolean If true, the property will be enumerated by a for-in

enumeration (see 12.6.4). Otherwise, the property is said
to be non-enumerable.

[[Configurable]] | Boolean If false, attempts to delete the property, change the
property to be an accessor property, or change its
attributes (other than [[Value]]) will fail.

A named accessor property associates a name with the attributes listed in Table 6.

30 © Ecma International 2011

secmd

Table 6 — Attributes of a Named Accessor Property

Attribute Name Value Domain Description
[[Get]] Object or If the value is an Object it must be a function Object. The
Undefined function’s [[Call]] internal method (8.6.2) is called with an
empty arguments list to return the property value each time
a get access of the property is performed.
[[Set]] Object or If the value is an Object it must be a function Object. The
Undefined function’s [[Call]] internal method (8.6.2) is called with an

arguments list containing the assigned value as its sole
argument each time a set access of the property is
performed. The effect of a property's [[Set]] internal method
may, but is not required to, have an effect on the value
returned by subsequent calls to the property's [[Get]]
internal method.

[[Enumerable]] Boolean If true, the property is to be enumerated by a for-in
enumeration (see 12.6.4). Otherwise, the property is said to
be non-enumerable.

[[Configurable]] Boolean If false, attempts to delete the property, change the

property to be a data property, or change its attributes will
fail.

If the value of an attribute is not explicitly specified by this specification for a named property, the default value
defined in Table 7 is used.

Table 7 — Default Attribute Values

Attribute Name Default Value
[[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false
[[Enumerable]] false
[[Configurable]] false

8.6.2 Object Internal Properties and Methods

This specification uses various internal properties to define the semantics of object values. These internal
properties are not part of the ECMAScript language. They are defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave as if it produced and operated upon
internal properties in the manner described here. The names of internal properties are enclosed in double
square brackets [[]J]. When an algorithm uses an internal property of an object and the object does not
implement the indicated internal property, a TypeError exception is thrown.

The Table 8 summarises the internal properties used by this specification that are applicable to all
ECMAScript objects. The Table 9 summarises the internal properties used by this specification that are only
applicable to some ECMAScript objects. The descriptions in these tables indicate their behaviour for native
ECMAScript objects, unless stated otherwise in this document for particular kinds of native ECMAScript
objects. Host objects may support these internal properties with any implementation-dependent behaviour as
long as it is consistent with the specific host object restrictions stated in this document.

The “Value Type Domain” columns of the following tables define the types of values associated with internal
properties. The type names refer to the types defined in Clause 8 augmented by the following additional
names. “any” means the value may be any ECMAScript language type. “primitive” means Undefined, Null,
Boolean, String, or Number. “SpecOp” means the internal property is an internal method, an implementation
provided procedure defined by an abstract operation specification. “SpecOp” is followed by a list of descriptive
parameter names. If a parameter name is the same as a type name then the name describes the type of the

© Ecma International 2011 31

parameter. If a “SpecOp” returns a value, its parameter list is followed by the symbol “—” and the type of the
returned value.

Table 8 — Internal Properties Common to All Objects

Internal Property Value Type Domain Description
[[Prototypel]] Object or Null The prototype of this object.
[[Class]] String A String value indicating a specification defined
classification of objects.
[[Extensible]] Boolean If true, own properties may be added to the
object.
[[Get]] SpecOp(propertyName) — | Returns the value of the named property.
any
[[GetOwnProperty]] SpecOp (propertyName) — | Returns the Property Descriptor of the named
Undefined or Property own property of this object, or undefined if
Descriptor absent.
[[GetProperty]] SpecOp (propertyName) — | Returns the fully populated Property Descriptor
Undefined or Property of the named property of this object, or
Descriptor undefined if absent.
[[Put]] SpecOp (propertyName, Sets the specified named property to the value
any, Boolean) of the second parameter. The flag controls
failure handling.
[[CanPut]] SpecOp (propertyName) — | Returns a Boolean value indicating whether a
Boolean [[Put]] operation with PropertyName can be
performed.
[[HasProperty]] SpecOp (propertyName) — | Returns a Boolean value indicating whether the
Boolean object already has a property with the given
name.
[[Delete]] SpecOp (propertyName, Removes the specified named own property
Boolean) — Boolean from the object. The flag controls failure
handling.
[[DefaultValue]] SpecOp (Hint) — primitive Hint is a String. Returns a default value for the
object.
[[DefineOwnProperty]] | SpecOp (propertyName, Creates or alters the named own property to
PropertyDescriptor, have the state described by a Property
Boolean) — Boolean Descriptor. The flag controls failure handling.

Every object (including host objects) must implement all of the internal properties listed in Table 8. However,
the [[DefaultValue]] internal method may, for some objects, simply throw a TypeError exception.

All objects have an internal property called [[Prototype]]. The value of this property is either null or an object
and is used for implementing inheritance. Whether or not a native object can have a host object as its
[[Prototype]] depends on the implementation. Every [[Prototype]] chain must have finite length (that is, starting
from any object, recursively accessing the [[Prototype]] internal property must eventually lead to a null value).
Named data properties of the [[Prototype]] object are inherited (are visible as properties of the child object) for
the purposes of get access, but not for put access. Named accessor properties are inherited for both get
access and put access.

Every ECMAScript object has a Boolean-valued [[Extensible]] internal property that controls whether or not
named properties may be added to the object. If the value of the [[Extensible]] internal property is false then
additional named properties may not be added to the object. In addition, if [[Extensible]] is false the value of
the [[Class]] and [[Prototype]] internal properties of the object may not be modified. Once the value of an
[[Extensible]] internal property has been set to false it may not be subsequently changed to true.

NOTE This specification defines no ECMAScript language operators or built-in functions that permit a program to
modify an object’s [[Class]] or [[Prototype]] internal properties or to change the value of [[Extensible]] from false to true.
Implementation specific extensions that modify [[Class]], [[Prototype]] or [[Extensible]] must not violate the invariants
defined in the preceding paragraph.

32 © Ecma International 2011

secma

The value of the [[Class]] internal property is defined by this specification for every kind of built-in object. The
value of the [[Class]] internal property of a host object may be any String value except one of "Arguments",
"Array", "Boolean", "Date", "Error", "Function", "JSON", "Math", "Number", "Object",
"RegExp", and "String". The value of a [[Class]] internal property is used internally to distinguish different
kinds of objects. Note that this specification does not provide any means for a program to access that value
except through Object.prototype. toString (see 15.2.4.2).

Unless otherwise specified, the common internal methods of native ECMAScript objects behave as described
in 8.12. Array objects have a slightly different implementation of the [[DefineOwnProperty]] internal method
(see 15.4.5.1) and String objects have a slightly different implementation of the [[GetOwnProperty]] internal
method (see 15.5.5.2). Arguments objects (10.6) have different implementations of [[Get]], [[GetOwnProperty]],
[[DefineOwnProperty]], and [[Delete]]. Function objects (15.3) have a different implementation of [[Get]].

Host objects may implement these internal methods in any manner unless specified otherwise; for example,
one possibility is that [[Get]] and [[Put]] for a particular host object indeed fetch and store property values but
[[HasProperty]] always generates false. However, if any specified manipulation of a host object's internal
properties is not supported by an implementation, that manipulation must throw a TypeError exception when
attempted.

The [[GetOwnProperty]] internal method of a host object must conform to the following invariants for each
property of the host object:

o |If a property is described as a data property and it may return different values over time, then either or
both of the [[Writable]] and [[Configurable]] attributes must be true even if no mechanism to change the
value is exposed via the other internal methods.

o If a property is described as a data property and its [[Writable]] and [[Configurable]] are both false, then
the SameValue (according to 9.12) must be returned for the [[Value]] attribute of the property on all calls
to [[GetOwnProperty]].

o If the attributes other than [[Writable]] may change over time or if the property might disappear, then the
[[Configurable]] attribute must be true.

o If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true.
o |If the value of the host object’s [[Extensible]] internal property has been observed by ECMAScript code to
be false, then if a call to [[GetOwnProperty]] describes a property as non-existent all subsequent calls

must also describe that property as non-existent.

The [[DefineOwnProperty]] internal method of a host object must not permit the addition of a new property to a
host object if the [[Extensible]] internal property of that host object has been observed by ECMAScript code to
be false.

If the [[Extensible]] internal property of that host object has been observed by ECMAScript code to be false
then it must not subsequently become true.

© Ecma International 2011 33

PPN
[V

eCmd

4

Table 9 — Internal Properties Only Defined for Some Objects

Internal Property Value Type Description
Domain
[[PrimitiveValue]] primitive Internal state information associated with this object. Of the

standard built-in ECMAScript objects, only Boolean, Date,
Number, and String objects implement [[PrimitiveValue]].

[[Construct]]

SpecOp(a List of
any) — Object

Creates an object. Invoked via the new operator. The
arguments to the SpecOp are the arguments passed to the
new operator. Objects that implement this internal method
are called constructors.

([Call]]

SpecOp(any, a List
of any) — any or
Reference

Executes code associated with the object. Invoked via a
function call expression. The arguments to the SpecOp are
this object and a list containing the arguments passed to the
function call expression. Objects that implement this internal
method are callable. Only callable objects that are host
objects may return Reference values.

[[HaslInstance]]

SpecOp(any) —
Boolean

Returns a Boolean value indicating whether the argument is
likely an Object that was constructed by this object. Of the
standard built-in ECMAScript objects, only Function objects
implement [[HasInstance]].

[[Scope]]

Lexical Environment

A lexical environment that defines the environment in which
a Function object is executed. Of the standard built-in
ECMAScript objects, only Function objects implement
[[Scope]].

[[FormalParameters]]

List of Strings

A possibly empty List containing the identifier Strings of a
Function’s FormalParameterList. Of the standard built-in
ECMAScript objects, only Function objects implement
[[FormalParameterList]].

[[Code]]

ECMAScript code

The ECMAScript code of a function. Of the standard built-in
ECMAScript objects, only Function objects implement
[[Code]].

[[TargetFunction]]

Object

The target function of a function object created using the
standard built-in Function.prototype.bind method. Only
ECMAScript objects created using Function.prototype.bind
have a [[TargetFunction]] internal property.

[[BoundThis]]

any

The pre-bound this value of a function Object created using
the standard built-in Function.prototype.bind method. Only
ECMAScript objects created using Function.prototype.bind
have a [[BoundThis]] internal property.

[[BoundArguments]]

List of any

The pre-bound argument values of a function Object created
using the standard built-in Function.prototype.bind method.
Only ECMAScript objects created using
Function.prototype.bind have a [[BoundArguments]] internal

property.

[[Match]]

SpecOp(String,
index) —
MatchResult

Tests for a regular expression match and returns a
MatchResult value (see 15.10.2.1). Of the standard built-in
ECMAScript objects, only RegExp objects implement
[[Match]].

[[ParameterMap]]

Object

Provides a mapping between the properties of an arguments
object (see 10.6) and the formal parameters of the
associated function. Only ECMAScript objects that are
arguments objects have a [[ParameterMap]] internal

property.

34

© Ecma International 2011

secma

8.7 The Reference Specification Type

The Reference type is used to explain the behaviour of such operators as delete, typeof, and the
assignment operators. For example, the left-hand operand of an assignment is expected to produce a
reference. The behaviour of assignment could, instead, be explained entirely in terms of a case analysis on
the syntactic form of the left-hand operand of an assignment operator, but for one difficulty: function calls are
permitted to return references. This possibility is admitted purely for the sake of host objects. No built-in
ECMAScript function defined by this specification returns a reference and there is no provision for a user-
defined function to return a reference. (Another reason not to use a syntactic case analysis is that it would be
lengthy and awkward, affecting many parts of the specification.)

A Reference is a resolved name binding. A Reference consists of three components, the base value, the
referenced name and the Boolean valued strict reference flag. The base value is either undefined, an Object, a
Boolean, a String, a Number, or an environment record (10.2.1). A base value of undefined indicates that the
reference could not be resolved to a binding. The referenced name is a String.

The following abstract operations are used in this specification to access the components of references:

o GetBase(V). Returns the base value component of the reference V.

o GetReferencedName(V). Returns the referenced name component of the reference V.
o IsStrictReference(V). Returns the strict reference component of the reference V.

e HasPrimitiveBase(V). Returns true if the base value is a Boolean, String, or Number.

o IsPropertyReference(V). Returns true if either the base value is an object or HasPrimitiveBase(V) is true;
otherwise returns false.

e IsUnresolvableReference(V). Returns true if the base value is undefined and false otherwise.

The following abstract operations are used in this specification to operate on references:

8.7.1 GetValue (V)

If Type(V) is not Reference, return V.
Let base be the result of calling GetBase(V).
If IsUnresolvableReference(V), throw a ReferenceError exception.
If IsPropertyReference(V), then
a. If HasPrimitiveBase(V) is false, then let get be the [[Get]] internal method of base, otherwise let get
be the special [[Get]] internal method defined below.
b. Return the result of calling the get internal method using base as its this value, and passing
GetReferencedName(V) for the argument.
5. Else, base must be an environment record.
a. Return the result of calling the GetBindingValue (see 10.2.1) concrete method of base passing
GetReferencedName(V) and IsStrictReference(V) as arguments.

BwpdE

The following [[Get]] internal method is used by GetValue when V is a property reference with a primitive base
value. It is called using base as its this value and with property P as its argument. The following steps are
taken:

1. Let O be ToObject(base).

2. Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.

3. Ifdesc is undefined, return undefined.

4. If IsDataDescriptor(desc) is true, return desc.[[Value]].

5. Otherwise, IsAccessorDescriptor(desc) must be true so, let getter be desc.[[Get]] (see 8.10).

6. |If getter is undefined, return undefined.

7. Return the result calling the [[Call]] internal method of getter providing base as the this value and providing
no arguments.

NOTE The object that may be created in step 1 is not accessible outside of the above method. An implementation

might choose to avoid the actual creation of the object. The only situation where such an actual property access that uses
this internal method can have visible effect is when it invokes an accessor function.

© Ecma International 2011 35

secma

8.7.2 PutValue (V, W)

1. If Type(V) is not Reference, throw a ReferenceError exception.
Let base be the result of calling GetBase(V).
3. If IsUnresolvableReference(V), then
a. If IsStrictReference(V) is true, then
i Throw ReferenceError exception.
b. Call the [[Put]] internal method of the global object, passing GetReferencedName(V) for the
property name, W for the value, and false for the Throw flag.
4. Else if IsPropertyReference(V), then
a. If HasPrimitiveBase(V) is false, then let put be the [[Put]] internal method of base, otherwise let put
be the special [[Put]] internal method defined below.
b. Call the put internal method using base as its this value, and passing GetReferencedName(V) for the
property name, W for the value, and IsStrictReference(V) for the Throw flag.
5. Else base must be a reference whose base is an environment record. So,
a. Call the SetMutableBinding (10.2.1) concrete method of base, passing GetReferencedName(V), W,
and IsStrictReference(V) as arguments.
6. Return.

N

The following [[Put]] internal method is used by PutValue when V is a property reference with a primitive base
value. It is called using base as its this value and with property P, value W, and Boolean flag Throw as
arguments. The following steps are taken:

1. Let O be ToObject(base).
2. If the result of calling the [[CanPut]] internal method of O with argument P is false, then
a. |If Throw is true, then throw a TypeError exception.
b. Else return.
3. Let ownDesc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
4. If IsDataDescriptor(ownDesc) is true, then
a. |If Throw is true, then throw a TypeError exception.
b. Else return.
5. Let desc be the result of calling the [[GetProperty]] internal method of O with argument P. This may be
either an own or inherited accessor property descriptor or an inherited data property descriptor.
6. If IsAccessorDescriptor(desc) is true, then
a. Let setter be desc.[[Set]] (see 8.10) which cannot be undefined.
b. Call the [[Call]] internal method of setter providing base as the this value and an argument list
containing only W.
7. Else, this is a request to create an own property on the transient object O
a. |If Throw is true, then throw a TypeError exception.
8. Return.

NOTE The object that may be created in step 1 is not accessible outside of the above method. An implementation
might choose to avoid the actual creation of that transient object. The only situations where such an actual property
assignment that uses this internal method can have visible effect are when it either invokes an accessor function or is in
violation of a Throw predicated error check. When Throw is true any property assignment that would create a hew property
on the transient object throws an error.

8.8 The List Specification Type

The List type is used to explain the evaluation of argument lists (see 11.2.4) in new expressions, in function
calls, and in other algorithms where a simple list of values is needed. Values of the List type are simply
ordered sequences of values. These sequences may be of any length.

8.9 The Completion Specification Type

The Completion type is used to explain the behaviour of statements (break, continue, return and throw)
that perform nonlocal transfers of control. Values of the Completion type are triples of the form (type, value,
target), where type is one of normal, break, continue, return, or throw, value is any ECMAScript language
value or empty, and target is any ECMAScript identifier or empty. If cv is a completion value then cv.type,
cv.value, and cv.target may be used to directly refer to its constituent values.

36 © Ecma International 2011

secma

The term “abrupt completion” refers to any completion with a type other than normal.

8.10 The Property Descriptor and Property ldentifier Specification Types

The Property Descriptor type is used to explain the manipulation and reification of named property attributes.
Values of the Property Descriptor type are records composed of named fields where each field’s name is an
attribute name and its value is a corresponding attribute value as specified in 8.6.1. In addition, any field may
be present or absent.

Property Descriptor values may be further classified as data property descriptors and accessor property
descriptors based upon the existence or use of certain fields. A data property descriptor is one that includes
any fields named either [[Value]] or [[Writable]]. An accessor property descriptor is one that includes any fields
named either [[Get]] or [[Set]]. Any property descriptor may have fields named [[Enumerable]] and
[[Configurable]]. A Property Descriptor value may not be both a data property descriptor and an accessor
property descriptor; however, it may be neither. A generic property descriptor is a Property Descriptor value
that is neither a data property descriptor nor an accessor property descriptor. A fully populated property
descriptor is one that is either an accessor property descriptor or a data property descriptor and that has all of
the fields that correspond to the property attributes defined in either 8.6.1 Table 5 or Table 6.

For notational convenience within this specification, an object literal-like syntax can be used to define a
property descriptor value. For example, Property Descriptor {[[Value]]: 42, [[Writable]]: false, [[Configurable]]:
true} defines a data property descriptor. Field name order is not significant. Any fields that are not explicitly
listed are considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Property
Descriptor. For example, if D is a property descriptor then D.[[Value]] is shorthand for “the field of D named
[[Value]]”.

The Property Identifier type is used to associate a property name with a Property Descriptor. Values of the
Property Identifier type are pairs of the form (name, descriptor), where name is a String and descriptor is a
Property Descriptor value.

The following abstract operations are used in this specification to operate upon Property Descriptor values:

8.10.1 IsAccessorDescriptor (Desc)

When the abstract operation IsAccessorDescriptor is called with property descriptor Desc, the following steps
are taken:

1. If Desc is undefined, then return false.

2. If both Desc.[[Get]] and Desc.[[Set]] are absent, then return false.
3. Return true.
8.

10.2 IsDataDescriptor (Desc)

When the abstract operation IsDataDescriptor is called with property descriptor Desc, the following steps are
taken:

1. If Desc is undefined, then return false.

2. If both Desc.[[Value]] and Desc.[[Writable]] are absent, then return false.
3. Return true.
8.

10.3 IsGenericDescriptor (Desc)

When the abstract operation IsGenericDescriptor is called with property descriptor Desc, the following steps
are taken:

1. If Desc is undefined, then return false.
2. If IsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) are both false, then return true.

© Ecma International 2011 37

secma

3. Return false.

8.10.4 FromPropertyDescriptor (Desc)

When the abstract operation FromPropertyDescriptor is called with property descriptor Desc, the following
steps are taken:

The following algorithm assumes that Desc is a fully populated Property Descriptor, such as that returned from
[[GetOwnProperty]] (see 8.12.1).

1. If Desc is undefined, then return undefined.
2. Let obj be the result of creating a new object as if by the expression new Object() where Object is the standard
built-in constructor with that name.
3. If IsDataDescriptor(Desc) is true, then
a. Call the [[DefineOwnProperty]] internal method of obj with arguments "value", Property Descriptor
{[[Value]]: Desc.[[Value]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
b. Call the [[DefineOwnProperty]] internal method of obj with arguments "writable", Property Descriptor
{[[Value]]: Desc.[[Writable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
4. Else, IsAccessorDescriptor(Desc) must be true, so
a. Call the [[DefineOwnProperty]] internal method of obj with arguments "get", Property Descriptor
{[[Value]]: Desc.[[Get]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
b. Call the [[DefineOwnProperty]] internal method of obj with arguments "set", Property Descriptor
{[[Value]]: Desc.[[Set]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
5. Call the [[DefineOwnProperty]] internal method of obj with arguments "enumerable", Property Descriptor
{[[Value]]: Desc.[[Enumerable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
6. Call the [[DefineOwnProperty]] internal method of obj with arguments "configurable”, Property Descriptor
{[[Value]]: Desc.[[Configurable]], [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}, and false.
7. Return obj.

8.10.5 ToPropertyDescriptor (Obj)

When the abstract operation ToPropertyDescriptor is called with object Obj, the following steps are taken:

1. If Type(Obj) is not Object throw a TypeError exception.
2. Let desc be the result of creating a new Property Descriptor that initially has no fields.
3. If the result of calling the [[HasProperty]] internal method of Obj with argument "enumerable" is true,
then
a. Let enum be the result of calling the [[Get]] internal method of Obj with "enumerable".
b. Setthe [[Enumerable]] field of desc to ToBoolean(enum).
4. If the result of calling the [[HasProperty]] internal method of Obj with argument "configurable" is true,
then
a. Letconf be the result of calling the [[Get]] internal method of Obj with argument
"configurable".
b. Set the [[Configurable]] field of desc to ToBoolean(conf).
5. If the result of calling the [[HasProperty]] internal method of Obj with argument "value" is true, then
a. Letvalue be the result of calling the [[Get]] internal method of Obj with argument “value”.
b. Set the [[Value]] field of desc to value.
6. If the result of calling the [[HasProperty]] internal method of Obj with argument "writable" is true, then
a. Letwritable be the result of calling the [[Get]] internal method of Obj with argument "writable".
b. Setthe [[Writable]] field of desc to ToBoolean(writable).
7. If the result of calling the [[HasProperty]] internal method of Obj with argument "get" is true, then
a. Let getter be the result of calling the [[Get]] internal method of Obj with argument "get".
b. If IsCallable(getter) is false and getter is not undefined, then throw a TypeError exception.
c. Set the [[Get]] field of desc to getter.
8. If the result of calling the [[HasProperty]] internal method of Obj with argument "set" is true, then
a. Let setter be the result of calling the [[Get]] internal method of Obj with argument "set".
b. If IsCallable(setter) is false and setter is not undefined, then throw a TypeError exception.
c. Set the [[Set]] field of desc to setter.
9. |If either desc.[[Get]] or desc.[[Set]] are present, then
a. If either desc.[[Value]] or desc.[[Writable]] are present, then throw a TypeError exception.

38 © Ecma International 2011

secma

10. Return desc.

8.11 The Lexical Environment and Environment Record Specification Types

The Lexical Environment and Environment Record types are used to explain the behaviour of name resolution
in nested functions and blocks. These types and the operations upon them are defined in Clause 10.

8.12 Algorithms for Object Internal Methods

In the following algorithm descriptions, assume O is a native ECMAScript object, P is a String, Desc is a
Property Description record, and Throw is a Boolean flag.

8.12.1 [[GetOwnProperty]] (P)

When the [[GetOwnProperty]] internal method of O is called with property name P, the following steps are
taken:

If O doesn’t have an own property with name P, return undefined.
Let D be a newly created Property Descriptor with no fields.
Let X be O’s own property named P.
If X is a data property, then
a. Set D.[[Value]] to the value of X’s [[Value]] attribute.
b. Set D.[[Writable]] to the value of X’s [[Writable]] attribute
5. Else X is an accessor property, so
a. Set D.[[Get]] to the value of X’s [[Get]] attribute.
b. Set D.[[Set]] to the value of X’s [[Set]] attribute.
6. Set D.[[Enumerable]] to the value of X’s [[Enumerable]] attribute.
7. Set D.[[Configurable]] to the value of X’s [[Configurable]] attribute.
8. Return D.

PwOdE

However, if O is a String object it has a more elaborate [[GetOwnProperty]] internal method defined in 15.5.5.2.

8.12.2 [[GetProperty]] (P)
When the [[GetProperty]] internal method of O is called with property name P, the following steps are taken:

Let prop be the result of calling the [[GetOwnProperty]] internal method of O with property name P.
If prop is not undefined, return prop.

Let proto be the value of the [[Prototype]] internal property of O.

If proto is null, return undefined.

Return the result of calling the [[GetProperty]] internal method of proto with argument P.

agrwn e

8.12.3 [[Get]] (P)
When the [[Get]] internal method of O is called with property name P, the following steps are taken:

Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.

If desc is undefined, return undefined.

If IsDataDescriptor(desc) is true, return desc.[[Value]].

Otherwise, IsAccessorDescriptor(desc) must be true so, let getter be desc.[[Get]].

If getter is undefined, return undefined.

Return the result calling the [[Call]] internal method of getter providing O as the this value and providing no
arguments.

A ®wWNE

8.12.4 [[CanPut]] (P)
When the [[CanPut]] internal method of O is called with property name P, the following steps are taken:

1. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.

© Ecma International 2011 39

secma

2. If desc is not undefined, then
a. If IsAccessorDescriptor(desc) is true, then
i If desc.[[Set]] is undefined, then return false.
ii. Else return true.
b. Else, desc must be a DataDescriptor so return the value of desc.[[Writable]].
Let proto be the [[Prototype]] internal property of O.
If proto is null, then return the value of the [[Extensible]] internal property of O.
Let inherited be the result of calling the [[GetProperty]] internal method of proto with property name P.
If inherited is undefined, return the value of the [[Extensible]] internal property of O.
If IsAccessorDescriptor(inherited) is true, then
a. If inherited.[[Set]] is undefined, then return false.
b. Else return true.
8. Else, inherited must be a DataDescriptor
a. If the [[Extensible]] internal property of O is false, return false.
b. Else return the value of inherited.[[Writable]].

Nookow

Host objects may define additional constraints upon [[Put]] operations. If possible, host objects should not
allow [[Put]] operations in situations where this definition of [[CanPut]] returns false.

8.12.5 [[Put]] (P, V, Throw)

When the [[Put]] internal method of O is called with property P, value V, and Boolean flag Throw, the following
steps are taken:

1. If the result of calling the [[CanPut]] internal method of O with argument P is false, then
a. |If Throw is true, then throw a TypeError exception.
b. Else return.
Let ownDesc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.
3. If IsDataDescriptor(ownDesc) is true, then
a. LetvalueDesc be the Property Descriptor {[[Value]]: V}.
b. Call the [[DefineOwnProperty]] internal method of O passing P, valueDesc, and Throw as
arguments.
c. Return.
4. Let desc be the result of calling the [[GetProperty]] internal method of O with argument P. This may be
either an own or inherited accessor property descriptor or an inherited data property descriptor.
5. If IsAccessorDescriptor(desc) is true, then
a. Let setter be desc.[[Set]] which cannot be undefined.
b. Call the [[Call]] internal method of setter providing O as the this value and providing V as the sole
argument.
6. Else, create a named data property named P on object O as follows
a. Let newDesc be the Property Descriptor
{[[Value]]: V, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true}.
b. Call the [[DefineOwnProperty]] internal method of O passing P, newDesc, and Throw as arguments.
7. Return.

N

8.12.6 [[HasProperty]] (P)
When the [[HasProperty]] internal method of O is called with property name P, the following steps are taken:
Let desc be the result of calling the [[GetProperty]] internal method of O with property name P.

1.

2. If desc is undefined, then return false.
3. Else return true.
8.

12.7 [[Delete]] (P, Throw)

When the [[Delete]] internal method of O is called with property name P and the Boolean flag Throw, the
following steps are taken:

1. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with property name P.
2. If desc is undefined, then return true.

40 © Ecma International 2011

secma

3. If desc.[[Configurable]] is true, then
a. Remove the own property with name P from O.
b. Return true.

4. Else if Throw, then throw a TypeError exception.

5. Return false.

8.12.8 [[DefaultValue]] (hint)
When the [[DefaultValue]] internal method of O is called with hint String, the following steps are taken:

1. Let toString be the result of calling the [[Get]] internal method of object O with argument "toString".
2. If IsCallable(toString) is true then,
a. Let str be the result of calling the [[Call]] internal method of toString, with O as the this value and
an empty argument list.
b. If stris a primitive value, return str.
3. Let valueOf be the result of calling the [[Get]] internal method of object O with argument "valueOf".
4. If IsCallable(valueOf) is true then,
a. Letval be the result of calling the [[Call]] internal method of valueOf, with O as the this value and
an empty argument list.
b. Ifvalisa primitive value, return val.
5. Throw a TypeError exception.

When the [[DefaultValue]] internal method of O is called with hint Number, the following steps are taken:

1. Let valueOf be the result of calling the [[Get]] internal method of object O with argument "valueO£f".
2. If IsCallable(valueOf) is true then,
a. Letval be the result of calling the [[Call]] internal method of valueOf, with O as the this value and
an empty argument list.
b. Ifvalis a primitive value, return val.
3. Let toString be the result of calling the [[Get]] internal method of object O with argument "toString".
4. If IsCallable(toString) is true then,
a. Let str be the result of calling the [[Call]] internal method of toString, with O as the this value and
an empty argument list.
b. If stris a primitive value, return str.
5. Throw a TypeError exception.

When the [[DefaultValue]] internal method of O is called with no hint, then it behaves as if the hint were
Number, unless O is a Date object (see 15.9.6), in which case it behaves as if the hint were String.

The above specification of [[DefaultValue]] for native objects can return only primitive values. If a host object
implements its own [[DefaultValue]] internal method, it must ensure that its [[DefaultValue]] internal method
can return only primitive values.

8.12.9 [[DefineOwnProperty]] (P, Desc, Throw)

In the following algorithm, the term “Reject” means “If Throw is true, then throw a TypeError exception,
otherwise return false”. The algorithm contains steps that test various fields of the Property Descriptor Desc for
specific values. The fields that are tested in this manner need not actually exist in Desc. If a field is absent
then its value is considered to be false.

When the [[DefineOwnProperty]] internal method of O is called with property name P, property descriptor Desc,
and Boolean flag Throw, the following steps are taken:

Let current be the result of calling the [[GetOwnProperty]] internal method of O with property name P.
Let extensible be the value of the [[Extensible]] internal property of O.
If current is undefined and extensible is false, then Reject.
If current is undefined and extensible is true, then
a. |If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then
i. Create an own data property named P of object O whose [[Value]], [[Writable]],
[[Enumerable]] and [[Configurable]] attribute values are described by Desc. If the value of

BwnhdE

© Ecma International 2011 41

ecina

an attribute field of Desc is absent, the attribute of the newly created property is set to its
default value.
b. Else, Desc must be an accessor Property Descriptor so,

i Create an own accessor property named P of object O whose [[Get]], [[Set]],
[[Enumerable]] and [[Configurable]] attribute values are described by Desc. If the value of
an attribute field of Desc is absent, the attribute of the newly created property is set to its
default value.

c. Return true.
Return true, if every field in Desc is absent.
6. Return true, if every field in Desc also occurs in current and the value of every field in Desc is the same
value as the corresponding field in current when compared using the SameValue algorithm (9.12).
7. If the [[Configurable]] field of current is false then
a. Reject, if the [[Configurable]] field of Desc is true.
b. Reject, if the [[Enumerable]] field of Desc is present and the [[Enumerable]] fields of current and
Desc are the Boolean negation of each other.
If IsGenericDescriptor(Desc) is true, then no further validation is required.
Else, if IsDataDescriptor(current) and IsDataDescriptor(Desc) have different results, then
a. Reject, if the [[Configurable]] field of current is false.
b. If IsDataDescriptor(current) is true, then

i. Convert the property named P of object O from a data property to an accessor property.
Preserve the existing values of the converted property’s [[Configurable]] and
[[Enumerable]] attributes and set the rest of the property’s attributes to their default values.

o

©

c. Else,
i Convert the property named P of object O from an accessor property to a data property.
Preserve the existing values of the converted property’s [[Configurable]] and
[[Enumerable]] attributes and set the rest of the property’s attributes to their default values.
10. Else, if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true, then
a. |If the [[Configurable]] field of current is false, then
i. Reject, if the [[Writable]] field of current is false and the [[Writable]] field of Desc is true.
il If the [[Writable]] field of current is false, then
1. Reject, if the [[Value]] field of Desc is present and SameValue(Desc.[[Value]],
current.[[Value]]) is false.
b. else, the [[Configurable]] field of current is true, so any change is acceptable.
11. Else, IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) are both true so,
a. |If the [[Configurable]] field of current is false, then
i Reject, if the [[Set]] field of Desc is present and SameValue(Desc.[[Set]], current.[[Set]]) is
false.
ii. Reject, if the [[Get]] field of Desc is present and SameValue(Desc.[[Get]], current.[[Get]])
is false.
12. For each attribute field of Desc that is present, set the correspondingly named attribute of the property
named P of object O to the value of the field.
13. Return true.

However, if O is an Array object, it has a more elaborate [[DefineOwnProperty]] internal method defined in
15.4.5.1.

NOTE Step 10.b allows any field of Desc to be different from the corresponding field of current if current's
[[Configurable]] field is true. This even permits changing the [[Value]] of a property whose [[Writable]] attribute is false.
This is allowed because a true [[Configurable]] attribute would permit an equivalent sequence of calls where [[Writable]] is
first set to true, a new [[Value]] is set, and then [[Writable]] is set to false.

9 Type Conversion and Testing

The ECMAScript runtime system performs automatic type conversion as needed. To clarify the semantics of
certain constructs it is useful to define a set of conversion abstract operations. These abstract operations are
not a part of the language; they are defined here to aid the specification of the semantics of the language. The
conversion abstract operations are polymorphic; that is, they can accept a value of any ECMAScript language
type, but not of specification types.

42 © Ecma International 2011

eCina

9.1 ToPrimitive

The abstract operation ToPrimitive takes an input argument and an optional argument PreferredType. The
abstract operation ToPrimitive converts its input argument to a non-Object type. If an object is capable of
converting to more than one primitive type, it may use the optional hint PreferredType to favour that type.

Conversion occurs according to Table 10:

Table 10 — ToPrimitive Conversions

Input Type Result

Undefined The result equals the input argument (no conversion).

Null The result equals the input argument (no conversion).

Boolean The result equals the input argument (no conversion).

Number The result equals the input argument (no conversion).

String The result equals the input argument (no conversion).

Object Return a default value for the Object. The default value of an object is
retrieved by calling the [[DefaultValue]] internal method of the object,
passing the optional hint PreferredType. The behaviour of the
[[DefaultValue]] internal method is defined by this specification for all native
ECMAScript objects in 8.12.8.

9.2 ToBoolean

The abstract operation ToBoolean converts its argument to a value of type Boolean according to Table 11:

Table 11 — ToBoolean Conversions

Argument Type Result

Undefined false

Null false

Boolean The result equals the input argument (no conversion).

Number The result is false if the argument is +0, -0, or NaN; otherwise the result is
true.

String The result is false if the argument is the empty String (its length is zero);
otherwise the result is true.

Object true

9.3 ToNumber

The abstract operation ToNumber converts its argument to a value of type Number according to Table 12:

© Ecma International 2011

43

secma

Table 12 — To Number Conversions

Argument Type Result

Undefined NaN

Null +0

Boolean The result is 1 if the argument is true. The result is +0 if the argument is
false.

Number The result equals the input argument (no conversion).

String See grammar and note below.

Object Apply the following steps:
1. Let primValue be ToPrimitive(input argument, hint Number).
2. Return ToNumber(primValue).

9.3.1 ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to the input String. If the grammar cannot interpret
the String as an expansion of StringNumericLiteral, then the result of TONumber is NaN.

Syntax

StringNumericLiteral :::
StrWhiteSpace gy
StrWhiteSpace,p StrNumericLiteral StrWhiteSpace

StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpace o

StrWhiteSpaceChar :::
WhiteSpace
LineTerminator

StrNumericLiteral :::
StrDecimalLiteral
HexIntegerLiteral

StrDecimalLiteral :::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral :::
Infinity
DecimalDigits . DecimalDigits,,: ExponentPart,p;
. DecimalDigits ExponentPart,y,
DecimalDigits ExponentPart,y

DecimalDigits :::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit ::: one of
0 1 2 3 4 5 6 7 8 9

ExponentPart :::
Exponentindicator Signedinteger

44 © Ecma International 2011

ecimnd

Exponentindicator ::: one of

e E

Signedinteger :::

DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral :::

0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit ::: one of

0 1 2 3 4 5 6 7 8 9 a b c d e £ A B C D E F

Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral (see
7.8.3):

A StringNumericLiteral may be preceded and/or followed by white space and/or line terminators.
A StringNumericLiteral that is decimal may have any number of leading 0 digits.

A StringNumericLiteral that is decimal may be preceded by + or - to indicate its sign.

A StringNumericLiteral that is empty or contains only white space is converted to +0.

The conversion of a String to a Number value is similar overall to the determination of the Number value for a
numeric literal (see 7.8.3), but some of the details are different, so the process for converting a String numeric
literal to a value of Number type is given here in full. This value is determined in two steps: first, a
mathematical value (MV) is derived from the String numeric literal; second, this mathematical value is rounded
as described below.

The MV of StringNumericLiteral ::: [empty] is O.

The MV of StringNumericLiteral ::: StrwWhiteSpace is 0.

The MV of StringNumericLiteral ::: StrWhiteSpace,, StrNumericLiteral StrWhiteSpace,, is the MV of
StrNumericLiteral, no matter whether white space is present or not.

The MV of StrNumericLiteral ::: StrDecimalLiteral is the MV of StrDecimalLiteral.

The MV of StrNumericLiteral ::: HexIntegerLiteral is the MV of HexIntegerLiteral.

The MV of StrDecimalLiteral ::: StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

The MV of StrDecimalLiteral ::: + StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

The MV of StrDecimalliteral ::: - StrUnsignedDecimalLiteral is the negative of the MV of
StrUnsignedDecimalLiteral. (Note that if the MV of StrUnsignedDecimalLiteral is O, the negative of this MV is
also 0. The rounding rule described below handles the conversion of this signless mathematical zero to a
floating-point +0 or -0 as appropriate.)

The MV of StrUnsignedDecimalLiteral::: Infinity is 1 (a value so large that it will round to +c0).

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. is the MV of DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits . DecimalDigits is the MV of the first DecimalDigits
plus (the MV of the second DecimalDigits times 10™"), where n is the number of characters in the second
DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. ExponentPart is the MV of DecimalDigits times 10°
where e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. DecimalDigits ExponentPart is (the MV of the first
DecimalDigits plus (the MV of the second DecimalDigits times 10™)) times 10°, where n is the number of characters
in the second DecimalDigits and e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral:::. DecimalDigits is the MV of DecimalDigits times 10™", where n is the
number of characters in DecimalDigits.

The MV of StrUnsignedDecimalLiteral:::. DecimalDigits ExponentPart is the MV of DecimalDigits times 10°™",
where n is the number of characters in DecimalDigits and e is the MV of ExponentPart.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits is the MV of DecimalDigits.

1
0 0000

© Ecma International 2011 45

ecina

e The MV of StrUnsignedDecimalLiteral:::
where e is the MV of ExponentPart.

e The MV of DecimalDigits ::: DecimalDigit is the MV of DecimalDigit.

e The MV of DecimalDigits ::: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV of
DecimalDigit.

e The MV of ExponentPart :::
e The MV of Signedinteger :::
e The MV of Signedinteger :::
e The MV of Signedinteger :::

DecimalDigits ExponentPart is the MV of DecimalDigits times 10°,

Exponentindicator Signedinteger is the MV of Signedlinteger.
DecimalDigits is the MV of DecimalDigits.

+ DecimalDigits is the MV of DecimalDigits.

- DecimalDigits is the negative of the MV of DecimalDigits.

e The MV of DecimalDigit ::: 0 or of HexDigit ::: 0 is 0.
e The MV of DecimalDigit ::: 1 or of HexDigit ::: 1 is 1.
e The MV of DecimalDigit ::: 2 or of HexDigit ::: 2 is 2.
e The MV of DecimalDigit ::: 3 or of HexDigit ::: 3 is 3.
e The MV of DecimalDigit ::: 4 or of HexDigit ::: 4 is 4.
e The MV of DecimalDigit ::: 5 or of HexDigit ::: 5 is 5.
e The MV of DecimalDigit ::: 6 or of HexDigit ::: 6 is 6.
e The MV of DecimalDigit ::: 7 or of HexDigit ::: 7 is 7.
e The MV of DecimalDigit ::: 8 or of HexDigit ::: 8 is 8.
e The MV of DecimalDigit ::: 9 or of HexDigit ::: 9 is 9.
e The MV of HexDigit ::: a or of HexDigit ::: A is 10.
e The MV of HexDigit ::: b or of HexDigit ::: B is 11.
e The MV of HexDigit ::: ¢ or of HexDigit ::: Cis 12.
e The MV of HexDigit ::: d or of HexDigit ::: D is 13.
e The MV of HexDigit ::: e or of HexDigit ::: E is 14.
e The MV of HexDigit ::: £ or of HexDigit ::: Fis 15.

e The MV of HexIntegerLiteral ::: 0x HexDigit is the MV of HexDigit.
e The MV of HexIntegerLiteral ::: 0X HexDigit is the MV of HexDigit.

e The MV of HexlIntegerLiteral ::: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus the
MV of HexDigit.

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0 unless the first non white space character in the
String numeric literal is ‘-’ in which case the rounded value is —0. Otherwise, the rounded value must be the
Number value for the MV (in the sense defined in 8.5), unless the literal includes a StrUnsignedDecimalLiteral
and the literal has more than 20 significant digits, in which case the Number value may be either the Number
value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit or the
Number value for the MV of a literal produced by replacing each significant digit after the 20th with a 0 digit
and then incrementing the literal at the 20th digit position. A digit is significant if it is not part of an ExponentPart
and

e itisnotO; or

e there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

9.4 Tolnteger

The abstract operation Tolnteger converts its argument to an integral numeric value. This abstract operation
functions as follows:

Let number be the result of calling ToNumber on the input argument.
If number is NaN, return +0.

If number is +0, =0, +o0, or —oo, return number.

Return the result of computing sign(number) x floor(abs(number)).

PR

46

© Ecma International 2011

secma

9.5 TolInt32: (Signed 32 Bit Integer)

The abstract operation Tolnt32 converts its argument to one of 2% integer values in the range —2* through
2311, inclusive. This abstract operation functions as follows:

Let number be the result of calling ToNumber on the input argument.

If number is NaN, +0, -0, +o0, or —oo, return +0.

Let posint be sign(humber) * floor(abs(humber)).

Let int32bit be posint modulo 2%; that is, a finite integer value k of Number type with positive sign and less
than 2%? in magnitude such that the mathematical difference of posint and k is mathematically an integer
multiple of 2%,

5. If int32bit is greater than or equal to 2!, return int32bit — 2%, otherwise return int32bit.

BwbdE

NOTE Given the above definition of Tolnt32:

e The Tolnt32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves that
value unchanged.

e ToInt32(ToUint32(x)) is equal to Tolnt32(x) for all values of x. (It is to preserve this latter property that +oo0 and —oo are
mapped to +0.)

e ToInt32 maps -0 to +0.

9.6 ToUint32: (Unsigned 32 Bit Integer)

The abstract operation ToUint32 converts its argument to one of 2* integer values in the range 0 through 2%°-1,
inclusive. This abstraction operation functions as follows:

Let number be the result of calling ToNumber on the input argument.

If number is NaN, +0, —0, +oo, or —o, return +0.

Let posint be sign(number) x floor(abs(number)).

Let int32bit be posint modulo 2%; that is, a finite integer value k of Number type with positive sign and less
than 2% in magnitude such that the mathematical difference of posint and k is mathematically an integer
multiple of 2%

5. Return int32bit.

PwonE

NOTE Given the above definition of ToUInt32:

e Step 5is the only difference between ToUint32 and Tolnt32.

e The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the second application leaves
that value unchanged.

e ToUint32(Tolnt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property that +c0 and —o are
mapped to +0.)

e ToUint32 maps -0 to +0.

9.7 ToUintl6: (Unsigned 16 Bit Integer)

The abstract operation ToUint16 converts its argument to one of 2'° integer values in the range 0 through 2'°-1,
inclusive. This abstract operation functions as follows:

Let number be the result of calling ToNumber on the input argument.

If number is NaN, +0, -0, +o, or —o, return +0.

Let posint be sign(number) x floor(abs(number)).

Let int16bit be posint modulo 2'°; that is, a finite integer value k of Number type with positive sign and less
than 2'° in magnitude such that the mathematical difference of posint and k is mathematically an integer
multiple of 2°°.

5. Return int16bit.

BwdE

NOTE Given the above definition of ToUint16:

e The substitution of 2'° for 2% in step 4 is the only difference between ToUint32 and ToUint16.
e ToUintl6 maps -0 to +0.

© Ecma International 2011 47

secma

9.8 ToString
The abstract operation ToString converts its argument to a value of type String according to Table 13:

Table 13 — ToString Conversions

Argument Type Result
Undefined "undefined"
Null "null"
Boolean If the argument is true, then the result is "true".
If the argument is false, then the result is "false".
Number See 9.8.1.
String Return the input argument (no conversion)
Object Apply the following steps:
1. Let primValue be ToPrimitive(input argument, hint String).
2. Return ToString(primValue).

9.8.1 ToString Applied to the Number Type
The abstract operation ToString converts a Number m to String format as follows:

If mis NaN, return the String "NaN".

If mis +0 or -0, return the String "0".

If m is less than zero, return the String concatenation of the String "-" and ToString(-m).

If mis infinity, return the String "Infinity".

Otherwise, let n, k, and s be integers such that k > 1, 104! <'s < 10%, the Number value for s x 10" * is m, and

k is as small as possible. Note that k is the number of digits in the decimal representation of s, that s is not

divisible by 10, and that the least significant digit of s is not necessarily uniquely determined by these

criteria.

6. If k <n <21, return the String consisting of the k digits of the decimal representation of s (in order, with no
leading zeroes), followed by n—k occurrences of the character ‘0’.

7. 1f0<n< 21, return the String consisting of the most significant n digits of the decimal representation of s,
followed by a decimal point ., followed by the remaining k—n digits of the decimal representation of s.

8. If —6 < n <0, return the String consisting of the character ‘0’, followed by a decimal point *.’, followed by
—n occurrences of the character <0°, followed by the k digits of the decimal representation of s.

9. Otherwise, if k = 1, return the String consisting of the single digit of s, followed by lowercase character ‘e’,
followed by a plus sign ‘+’ or minus sign ‘—’ according to whether n—1 is positive or negative, followed by
the decimal representation of the integer abs(n—1) (with no leading zeroes).

10. Return the String consisting of the most significant digit of the decimal representation of s, followed by a

decimal point “.’, followed by the remaining k-1 digits of the decimal representation of s, followed by the

lowercase character ‘e’, followed by a plus sign ‘+’ or minus sign ‘-’ according to whether n—1 is positive
or negative, followed by the decimal representation of the integer abs(n-1) (with no leading zeroes).

ok wbdE

NOTE 1 The following observations may be useful as guidelines for implementations, but are not part of the normative
requirements of this Standard:

e If xis any Number value other than -0, then ToNumber(ToString(x)) is exactly the same Number value as x.

e The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

NOTE 2 For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 5 be used as a guideline:
Otherwise, let n, k, and s be integers such that k > 1, 10" < s < 10%, the Number value for s x 10" is m, and k is as small as
possible. If there are multiple possibilities for s, choose the value of s for which s x 10" is closest in value to m. If there are

two such possible values of s, choose the one that is even. Note that k is the number of digits in the decimal representation of
s and that s is not divisible by 10.

48 © Ecma International 2011

secmd

NOTE 3 Implementers of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal

conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis,
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as
http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code available as
http://cm.bell-labs.com/netlib/fp/dtoa.c.gz and as

http://cm.bell-labs.com/netlib/fp/g_fmt.c.gz and may also be found at the various netlib mirror sites.

9.9 ToObject

The abstract operation ToObject converts its argument to a value of type Object according to Table 14:

Table 14 — ToObject

Argument Type Result

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Create a new Boolean object whose [[PrimitiveValue]] internal property is
set to the value of the argument. See 15.6 for a description of Boolean
objects.

Number Create a new Number object whose [[PrimitiveValue]] internal property is
set to the value of the argument. See 15.7 for a description of Number
objects.

String Create a new String object whose [[PrimitiveValue]] internal property is set
to the value of the argument. See 15.5 for a description of String objects.

Object The result is the input argument (no conversion).

9.10 CheckObjectCoercible

The abstract operation CheckObjectCoercible throws an error if its argument is a value that cannot be

converted to an Object using ToObject. It is defined by Table 15:

Table 15 — CheckObjectCoercible Results

Argument Type Result
Undefined Throw a TypeError exception.
Null Throw a TypeError exception.
Boolean Return
Number Return
String Return
Object Return

9.11 IsCallable

The abstract operation IsCallable determines if its argument, which must be an ECMAScript language value,

is a callable function Object according to Table 16:

© Ecma International 2011

ecmna

Table 16 — IsCallable Results

Argument Type Result

Undefined Return false.

Null Return false.

Boolean Return false.

Number Return false.

String Return false.

Object If the argument object has a [[Call]] internal method, then return true,

otherwise return false.

9.12 The SameValue Algorithm

The internal comparison abstract operation SameValue(x, y), where x and y are ECMAScript language values,
produces true or false. Such a comparison is performed as follows:

Wb E

If Type(x) is different from Type(y), return false.
If Type(x) is Undefined, return true.
If Type(x) is Null, return true.
If Type(x) is Number, then.
a. Ifxis NaN andy is NaN, return true.
b. Ifxis+0andy is -0, return false.
c. Ifxis-0andy is +0, return false.
d. If x is the same Number value as y, return true.
e. Return false.
If Type(x) is String, then return true if x and y are exactly the same sequence of characters (same length and
same characters in corresponding positions); otherwise, return false.
If Type(x) is Boolean, return true if x and y are both true or both false; otherwise, return false.
Return true if x and y refer to the same object. Otherwise, return false.

10 Executable Code and Execution Contexts

10.1 Types of Executable Code

There are three types of ECMAScript executable code:

50

Global code is source text that is treated as an ECMAScript Program. The global code of a
particular Program does not include any source text that is parsed as part of a FunctionBody.

Eval code is the source text supplied to the built-in eval function. More precisely, if the parameter
to the built-in eval function is a String, it is treated as an ECMAScript Program. The eval code for a
particular invocation of eval is the global code portion of that Program.

Function code is source text that is parsed as part of a FunctionBody. The function code of a
particular FunctionBody does not include any source text that is parsed as part of a nested
FunctionBody. Function code also denotes the source text supplied when using the built-in
Function object as a constructor. More precisely, the last parameter provided to the Function
constructor is converted to a String and treated as the FunctionBody. If more than one parameter is
provided to the Function constructor, all parameters except the last one are converted to Strings
and concatenated together, separated by commas. The resulting String is interpreted as the
FormalParameterList for the FunctionBody defined by the last parameter. The function code for a
particular instantiation of a Function does not include any source text that is parsed as part of a
nested FunctionBody.

© Ecma International 2011

secma

10.1.1 Strict Mode Code

An ECMAScript Program syntactic unit may be processed using either unrestricted or strict mode syntax and
semantics. When processed using strict mode the three types of ECMAScript code are referred to as strict
global code, strict eval code, and strict function code. Code is interpreted as strict mode code in the following
situations:

e Global code is strict global code if it begins with a Directive Prologue that contains a Use Strict Directive
(see 14.1).

e Eval code is strict eval code if it begins with a Directive Prologue that contains a Use Strict Directive or if
the call to eval is a direct call (see 15.1.2.1.1) to the eval function that is contained in strict mode code.

¢ Function code that is part of a FunctionDeclaration, FunctionExpression, or accessor PropertyAssignment is
strict function code if its FunctionDeclaration, FunctionExpression, or PropertyAssignment is contained in strict
mode code or if the function code begins with a Directive Prologue that contains a Use Strict Directive.

e Function code that is supplied as the last argument to the built-in Function constructor is strict function
code if the last argument is a String that when processed as a FunctionBody begins with a Directive
Prologue that contains a Use Strict Directive.

10.2 Lexical Environments

A Lexical Environment is a specification type used to define the association of Identifiers to specific variables
and functions based upon the lexical nesting structure of ECMAScript code. A Lexical Environment consists of
an Environment Record and a possibly null reference to an outer Lexical Environment. Usually a Lexical
Environment is associated with some specific syntactic structure of ECMAScript code such as a
FunctionDeclaration, a WithStatement, or a Catch clause of a TryStatement and a new Lexical Environment is
created each time such code is evaluated.

An Environment Record records the identifier bindings that are created within the scope of its associated
Lexical Environment.

The outer environment reference is used to model the logical nesting of Lexical Environment values. The
outer reference of a (inner) Lexical Environment is a reference to the Lexical Environment that logically
surrounds the inner Lexical Environment. An outer Lexical Environment may, of course, have its own outer
Lexical Environment. A Lexical Environment may serve as the outer environment for multiple inner Lexical
Environments. For example, if a FunctionDeclaration contains two nested FunctionDeclarations then the Lexical
Environments of each of the nested functions will have as their outer Lexical Environment the Lexical
Environment of the current execution of the surrounding function.

Lexical Environments and Environment Record values are purely specification mechanisms and need not
correspond to any specific artefact of an ECMAScript implementation. It is impossible for an ECMAScript
program to directly access or manipulate such values.

10.2.1 Environment Records

There are two kinds of Environment Record values used in this specification: declarative environment records
and object environment records. Declarative environment records are used to define the effect of ECMAScript
language syntactic elements such as FunctionDeclarations, VariableDeclarations, and Catch clauses that directly
associate identifier bindings with ECMAScript language values. Object environment records are used to define
the effect of ECMAScript elements such as Program and WithStatement that associate identifier bindings with
the properties of some object.

For specification purposes Environment Record values can be thought of as existing in a simple object-

oriented hierarchy where Environment Record is an abstract class with two concrete subclasses, declarative
environment record and object environment record. The abstract class includes the abstract specification

© Ecma International 2011 51

»eCma

methods defined in Table 17. These abstract methods have distinct concrete algorithms for each of the

concrete subclasses.

Table 17 — Abstract Methods of Environment Records

Method

Purpose

HasBinding(N)

Determine if an environment record has a binding for an
identifier. Return true if it does and false if it does not. The
String value N is the text of the identifier.

CreateMutableBinding(N, D)

Create a new mutable binding in an environment record. The
String value N is the text of the bound name. If the optional
Boolean argument D is true the binding is may be subsequently
deleted.

SetMutableBinding(N,V, S)

Set the value of an already existing mutable binding in an
environment record. The String value N is the text of the bound
name. V is the value for the binding and may be a value of any
ECMAScript language type. S is a Boolean flag. If Sis true and
the binding cannot be set throw a TypeError exception. S is
used to identify strict mode references.

GetBindingValue(N,S)

Returns the value of an already existing binding from an
environment record. The String value N is the text of the bound
name. S is used to identify strict mode references. If S is true
and the binding does not exist or is uninitialised throw a
ReferenceError exception.

DeleteBinding(N)

Delete a binding from an environment record. The String value N
is the text of the bound name If a binding for N exists, remove
the binding and return true. If the binding exists but cannot be
removed return false. If the binding does not exist return true.

ImplicitThisValue()

Returns the value to use as the this value on calls to function
objects that are obtained as binding values from this
environment record.

10.2.1.1 Declarative Environment Records

Each declarative environment record is associated with an ECMAScript program scope containing variable
and/or function declarations. A declarative environment record binds the set of identifiers defined by the

declarations contained within its scope.

In addition to the mutable bindings supported by all Environment Records, declarative environment records
also provide for immutable bindings. An immutable binding is one where the association between an identifier
and a value may not be modified once it has been established. Creation and initialisation of immutable binding
are distinct steps so it is possible for such bindings to exist in either an initialised or uninitialised state.
Declarative environment records support the methods listed in Table 18 in addition to the Environment Record

abstract specification methods:

Table 18 — Additional Methods of Declarative Environment Records

Method Purpose

CreatelmmutableBinding(N) Create a new but uninitialised immutable binding in an
environment record. The String value N is the text of the bound
name.

InitializelmmutableBinding(N,V) | Set the value of an already existing but uninitialised immutable
binding in an environment record. The String value N is the text
of the bound name. V is the value for the binding and is a value
of any ECMAScript language type.

52

© Ecma International 2011

secma

The behaviour of the concrete specification methods for Declarative Environment Records is defined by the
following algorithms.

10.2.1.1.1 HasBinding(N)

The concrete environment record method HasBinding for declarative environment records simply determines
if the argument identifier is one of the identifiers bound by the record:

1. Let envRec be the declarative environment record for which the method was invoked.
2. If envRec has a binding for the name that is the value of N, return true.
3. If it does not have such a binding, return false.

10.2.1.1.2 CreateMutableBinding (N, D)

The concrete Environment Record method CreateMutableBinding for declarative environment records creates
a new mutable binding for the name N that is initialised to the value undefined. A binding must not already
exist in this Environment Record for N. If Boolean argument D is provided and has the value true the new
binding is marked as being subject to deletion.

1. Let envRec be the declarative environment record for which the method was invoked.

2. Assert: envRec does not already have a binding for N.

3. Create a mutable binding in envRec for N and set its bound value to undefined. If D is true record that the
newly created binding may be deleted by a subsequent DeleteBinding call.

10.2.1.1.3 SetMutableBinding (N,V,S)

The concrete Environment Record method SetMutableBinding for declarative environment records attempts to
change the bound value of the current binding of the identifier whose name is the value of the argument N to
the value of argument V. A binding for N must already exist. If the binding is an immutable binding, a
TypeError is thrown if S is true.

Let envRec be the declarative environment record for which the method was invoked.

Assert: envRec must have a binding for N.

If the binding for N in envRec is a mutable binding, change its bound value to V.

Else this must be an attempt to change the value of an immutable binding so if S if true throw a TypeError
exception.

BwnpE

10.2.1.1.4 GetBindingValue(N,S)

The concrete Environment Record method GetBindingValue for declarative environment records simply
returns the value of its bound identifier whose name is the value of the argument N. The binding must already
exist. If S is true and the binding is an uninitialised immutable binding throw a ReferenceError exception.

1. Let envRec be the declarative environment record for which the method was invoked.
2. Assert: envRec has a binding for N.
3. If the binding for N in envRec is an uninitialised immutable binding, then
a. If Sis false, return the value undefined, otherwise throw a ReferenceError exception.
4. Else, return the value curren