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index entries; it won’t appear in the real book.

Some index entries will be in typewriter type
and/or enclosed in (...), etc;

such typographic distinctions aren’t shown here.

An index entry often extends for several pages;

the actual scope will be determined later.

Please note things that should be indexed but aren’t.

Apology: The xeroxed illustrations are often hard to see;
they will be done professionally in the real book.



(page 1) |_ _I

The METAFONTbook

DONALD E KNUTH Stanford University

Llustrations by
DUANE BIBBY

Al
ADDISON-WESLEY
PUBLISHING COMPANY

Reading, Massachusetts
Menlo Park, California

New York

Don Mills, Ontario
Wokingham, England
Amsterdam - Bonn

Sydney - Singapore - Tokyo
Madrid - San Juan



(page ii) |_ _|

Palais

Wilkins

Tobin

Knuth, Donald Ervin

This manual describes METAFONT Version 2.0. Some of the advanced features mentioned here
are absent from earlier versions.

The joke on page 8 is due to Richard S. Palais.
The Wilkins quotation on page 283 was suggested by Georgia K. M. Tobin.
METAFONT is a trademark of Addison—Wesley Publishing Company.

TEX is a trademark of the American Mathematical Society.

Library of Congress cataloging in publication data

Knuth, Donald Ervin, 1938-
The METAFONTbook.

(Computers & Typesetting ; C)

Includes index.

1. METAFONT (Computer system). 2. Type and type-
founding--Data processing. I. Title. II. Series:

Knuth, Donald Ervin, 1938- . Computers &
typesetting ; C.
Z250.8.M46K58 1986 686.2'24 85-28675

ISBN 0-201-13445-4
ISBN 0-201-13444-6 (soft)

Incorporates the final corrections made in 1995.
Copyright (© 1986 by the American Mathematical Society

This book is published jointly by the American Mathematical Society and Addison—Wesley
Publishing Company. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, me-
chanical, photocopying, recording, or otherwise, without the prior written permission of the
publishers. Printed in the United States of America.

ISBN 0-201-13445-4
678910 11 12-CRS-9998979695



(page iii) |_ _|

Zapf, Hermann

To Hermann Zapf:
Whose strokes are the best



(page iv) |_



(page v) |_ _|

Preface

GENERATION OF LETTERFORMS by mathematical means was first tried in

the fifteenth century; it became popular in the sixteenth and seventeenth
centuries; and it was abandoned (for good reasons) during the eighteenth century.
Perhaps the twentieth century will turn out to be the right time for this idea to
make a comeback, now that mathematics has advanced and computers are able
to do the calculations.

Modern printing equipment based on raster lines—in which metal “type”
has been replaced by purely combinatorial patterns of zeroes and ones that spec-
ify the desired position of ink in a discrete way—makes mathematics and com-
puter science increasingly relevant to printing. We now have the ability to give a
completely precise definition of letter shapes that will produce essentially equiv-
alent results on all raster-based machines. Moreover, the shapes can be defined
in terms of variable parameters; computers can “draw” new fonts of characters
in seconds, making it possible for designers to perform valuable experiments that
were previously unthinkable.

METAFONT is a system for the design of alphabets suited to raster-based
devices that print or display text. The characters that you are reading were all
designed with METAFONT, in a completely precise way; and they were developed
rather hastily by the author of the system, who is a rank amateur at such things.
It seems clear that further work with METAFONT has the potential of producing
typefaces of real beauty. This manual has been written for people who would
like to help advance the art of mathematical type design.

A top-notch designer of typefaces needs to have an unusually good eye
and a highly developed sensitivity to the nuances of shapes. A top-notch user of
computer languages needs to have an unusual talent for abstract reasoning and
a highly developed ability to express intuitive ideas in formal terms. Very few
people have both of these unusual combinations of skills; hence the best products
of METAFONT will probably be collaborative efforts between two people who
complement each other’s abilities. Indeed, this situation isn’t very different from
the way types have been created for many generations, except that the role of
“punch-cutter” is now being played by skilled computer specialists instead of by
skilled metalworkers.

A METAFONT user writes a “program” for each letter or symbol of
a typeface. These programs are different from ordinary computer programs,
because they are essentially declarative rather than imperative. In the META-
FONT language you explain where the major components of a desired shape are
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to be located, and how they relate to each other, but you don’t have to work
out the details of exactly where the lines cross, etc.; the computer takes over the
work of solving equations as it deduces the consequences of your specifications.
One of the advantages of METAFONT is that it provides a discipline according to
which the principles of a particular alphabet design can be stated precisely. The
underlying intelligence does not remain hidden in the mind of the designer; it
is spelled out in the programs. Thus consistency can readily be obtained where
consistency is desirable, and a font can readily be extended to new symbols that
are compatible with the existing ones.

It would be nice if a system like METAFONT were to simplify the task
of type design to the point where beautiful new alphabets could be created in a
few hours. This, alas, is impossible; an enormous amount of subtlety lies behind
the seemingly simple letter shapes that we see every day, and the designers of
high-quality typefaces have done their work so well that we don’t notice the
underlying complexity. One of the disadvantages of METAFONT is that a person
can easily use it to produce poor alphabets, cheaply and in great quantity. Let
us hope that such experiments will have educational value as they reveal why
the subtle tricks of the trade are important, but let us also hope that they will
not cause bad workmanship to proliferate. Anybody can now produce a book
in which all of the type is home-made, but a person or team of persons should
expect to spend a year or more on the project if the type is actually supposed
to look right. METAFONT won’t put today’s type designers out of work; on
the contrary, it will tend to make them heroes and heroines, as more and more
people come to appreciate their skills.

Although there is no royal road to type design, there are some things
that can, in fact, be done well with METAFONT in an afternoon. Geometric
designs are rather easy; and it doesn’t take long to make modifications to letters
or symbols that have previously been expressed in METAFONT form. Thus,
although comparatively few users of METAFONT will have the courage to do
an entire alphabet from scratch, there will be many who will enjoy customizing
someone else’s design.

This book is not a text about mathematics or about computers. But
if you know the rudiments of those subjects (namely, contemporary high school
mathematics, together with the knowledge of how to use the text editing or
word processing facilities on your computing machine), you should be able to
use METAFONT with little difficulty after reading what follows. Some parts
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of the exposition in the text are more obscure than others, however, since the
author has tried to satisfy experienced METAFONTers as well as beginners and
casual users with a single manual. Therefore a special symbol has been used to
warn about esoterica: When you see the sign
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at the beginning of a paragraph, watch out for a “dangerous bend” in the train of
thought—don’t read such a paragraph unless you need to. You will be able to use
METAFONT reasonably well, even to design characters like the dangerous-bend
symbol itself, without reading the fine print in such advanced sections.

Some of the paragraphs in this manual are so far out that they are rated

L

everything that was said about single dangerous-bend signs goes double for these.
You should probably have at least a month’s experience with METAFONT before
you attempt to fathom such doubly dangerous depths of the system; in fact,
most people will never need to know METAFONT in this much detail, even if
they use it every day. After all, it’s possible to fry an egg without knowing
anything about biochemistry. Yet the whole story is here in case you're curious.
(About METAFONT, not eggs.)

The reason for such different levels of complexity is that people change
as they grow accustomed to any powerful tool. When you first try to use META-
FONT, you’ll find that some parts of it are very easy, while other things will take
some getting used to. At first you’ll probably try to control the shapes too rigidly,
by overspecifying data that has been copied from some other medium. But later,
after you have begun to get a feeling for what the machine can do well, you’ll
be a different person, and you’ll be willing to let METAFONT help contribute to
your designs as they are being developed. As you gain more and more experience
working with this unusual apprentice, your perspective will continue to change
and you will run into different sorts of challenges. That’s the way it is with any
powerful tool: There’s always more to learn, and there are always better ways
to do what you’ve done before. At every stage in the development you’ll want a
slightly different sort of manual. You may even want to write one yourself. By
paying attention to the dangerous bend signs in this book you’ll be better able
to focus on the level that interests you at a particular time.

vii

dangerous bend



viii

Preface

Computer system manuals usually make dull reading, but take heart:
This one contains JOKES every once in a while. You might actually enjoy read-
ing it. (However, most of the jokes can only be appreciated properly if you
understand a technical point that is being made—so read carefully.)

Another noteworthy characteristic of this book is that it doesn’t always
tell the truth. When certain concepts of METAFONT are introduced informally,
general rules will be stated; afterwards you will find that the rules aren’t strictly
true. In general, the later chapters contain more reliable information than the
earlier ones do. The author feels that this technique of deliberate lying will
actually make it easier for you to learn the ideas. Once you understand a simple
but false rule, it will not be hard to supplement that rule with its exceptions.

In order to help you internalize what you’re reading, EXERCISES are
sprinkled through this manual. It is generally intended that every reader should
try every exercise, except for questions that appear in the “dangerous bend”
areas. If you can’t solve a problem, you can always look up the answer. But
please, try first to solve it by yourself; then you’ll learn more and you’ll learn
faster. Furthermore, if you think you do know the solution, you should turn to
Appendix A and check it out, just to make sure.

WARNING: Type design can be hazardous to your other interests.
Once you get hooked, you will develop intense feelings about letter-
forms; the medium will intrude on the messages that you read. And
you will perpetually be thinking of improvements to the fonts that
you see everywhere, especially those of your own design.

The METAFONT language described here has very little in common with
the author’s previous attempt at a language for alphabet design, because five
years of experience with the old system has made it clear that a completely
different approach is preferable. Both languages have been called METAFONT;
but henceforth the old language should be called METAFONT79, and its use
should rapidly fade away. Let’s keep the name METAFONT for the language
described here, since it is so much better, and since it will never change again.

I wish to thank the hundreds of people who have helped me to formulate
this “definitive edition” of METAFONT, based on their experiences with prelim-
inary versions of the system. In particular, John Hobby discovered many of

JOKES
truth
EXERCISES
MF79
Hobby
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the algorithms that have made the new language possible. My work at Stan-
ford has been generously supported by the National Science Foundation, the
Office of Naval Research, the IBM Corporation, and the System Development
Foundation. I also wish to thank the American Mathematical Society for its
encouragement and for publishing the TUGboat newsletter (see Appendix J).
Above all, T deeply thank my wife, Jill, for the inspiration, understanding, com-
fort, and support she has given me for more than 25 years, especially during the
eight years that I have been working intensively on mathematical typography.

Stanford, California — D. E. K.
September 1985

It is hoped that Divine Justice may find

some suitable affliction for the malefactors

who invent variations upon the alphabet of our fathers. ...
The type-founder, worthy mechanic, has asserted himself
with an overshadowing individuality,

defacing with his monstrous creations and revivals

every publication in the land.

— AMBROSE BIERCE, The Opinionator. Alphabétes (1911)

Can the new process yield a result that, say,
a Club of Bibliophiles would recognise as a work of art
comparable to the choice books they have in their cabinets?

— STANLEY MORISON, Typographic Design in Relation to
Photographic Composition (1958)
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Chapter 1: The Name of the Game

This is a book about a computer system called METAFONT, just as The TEXbook
is about TEX. METAFONT and TEX are good friends who intend to live together
for a long time. Between them they take care of the two most fundamental tasks
of typesetting: TEX puts characters into the proper positions on a page, while
METAFONT determines the shapes of the characters themselves.

Why is the system called METAFONT ? The ‘-FONT’ part is easy to
understand, because sets of related characters that are used in typesetting are
traditionally known as fonts of type. The ‘METRA-’ part is more interesting: It
indicates that we are interested in making high-level descriptions that transcend
any of the individual fonts being described.

Newly coined words beginning with ‘meta-’ generally reflect our con-
temporary inclination to view things from outside or above, at a more abstract
level than before, with what we feel is a more mature understanding. We now
have metapsychology (the study of how the mind relates to its containing body),
metahistory (the study of principles that control the course of events), meta-
mathematics (the study of mathematical reasoning), metafiction (literary works
that explicitly acknowledge their own forms), and so on. A metamathemati-
cian proves metatheorems (theorems about theorems); a computer scientist of-
ten works with metalanguages (languages for describing languages). Similarly,
a meta-font is a schematic description of the shapes in a family of related fonts;
the letterforms change appropriately as their underlying parameters change.

Meta-design is much more difficult than design; it’s easier to draw some-
thing than to explain how to draw it. One of the problems is that different sets
of potential specifications can’t easily be envisioned all at once. Another is that
a computer has to be told absolutely everything. However, once we have suc-
cessfully explained how to draw something in a sufficiently general manner, the
same explanation will work for related shapes, in different circumstances; so the
time spent in formulating a precise explanation turns out to be worth it.

Typefaces intended for text are normally seen small, and our eyes can
read them best when the letters have been designed specifically for the size at
which they are actually used. Although it is tempting to get 7-point fonts by
simply making a 70% reduction from the 10-point size, this shortcut leads to a
serious degradation of quality. Much better results can be obtained by incorpo-
rating parametric variations into a meta-design. In fact, there are advantages to
built-in variability even when you want to produce only one font of type in a sin-
gle size, because it allows you to postpone making decisions about many aspects
of your design. If you leave certain things undefined, treating them as parame-
ters instead of “freezing” the specifications at an early stage, the computer will
be able to draw lots of examples with different settings of the parameters, and
you will be able to see the results of all those experiments at the final size. This
will greatly increase your ability to edit and fine-tune the font.

If meta-fonts are so much better than plain old ordinary fonts, why
weren’t they developed long ago? The main reason is that computers did not
exist until recently. People find it difficult and dull to carry out calculations

TeX
METAFONT, the name
meta-font



Chapter 1: The Name of the Game

with a multiplicity of parameters, while today’s machines do such tasks with
ease. The introduction of parameters is a natural outgrowth of automation.

OK, let’s grant that meta-fonts sound good, at least in theory. There’s
still the practical problem about how to achieve them. How can we actually
specify shapes that depend on unspecified parameters?

If only one parameter is varying, it’s fairly easy to solve the problem
in a visual way, by overlaying a series of drawings that show graphically how
the shape changes. For example, if the parameter varies from 0 to 1, we might
prepare five sketches, corresponding to the parameter values 0, i, %, %, and 1.
If these sketches follow a consistent pattern, we can readily interpolate to find
the shape for a value like % that lies between two of the given ones. We might
even try extrapolating to parameter values like 1%.

But if there are two or more independent parameters, a purely visual
solution becomes too cumbersome. We must go to a verbal approach, using some
sort of language to describe the desired drawings. Let’s imagine, for example,
that we want to explain the shape of a certain letter ‘a’ to a friend in a distant
country, using only a telephone for communication; our friend is supposed to be
able to reconstruct exactly the shape we have in mind. Once we figure out a
sufficiently natural way to do that, for a particular fixed shape, it isn’t much of
a trick to go further and make our verbal description more general, by including
variable parameters instead of restricting ourselves to constants.

An analogy to cooking might make this point clearer. Suppose you have
just baked a delicious berry pie, and your friends ask you to tell them the recipe
so that they can bake one too. If you have developed your cooking skills entirely
by intuition, you might find it difficult to record exactly what you did. But there
is a traditional language of recipes in which you could communicate the steps
you followed; and if you take careful measurements, you might find that you
used, say, 1% cups of sugar. The next step, if you were instructing a computer-
controlled cooking machine, would be to go to a meta-recipe in which you use,
say, .25z cups of sugar for x cups of berries; or .3x + .2y cups for x cups of
boysenberries and y cups of blackberries.

In other words, going from design to meta-design is essentially like going
from arithmetic to elementary algebra. Numbers are replaced by simple formulas
that involve unknown quantities. We will see many examples of this.

A METAFONT definition of a complete typeface generally consists of
three main parts. First there is a rather mundane set of subroutines that take
care of necessary administrative details, such as assigning code numbers to indi-
vidual characters; each character must also be positioned properly inside an in-
visible “box,” so that typesetting systems will produce the correct spacing. Next
comes a more interesting collection of subroutines, designed to draw the basic
strokes characteristic of the typeface (e.g., the serifs, bowls, arms, arches, and so
on). These subroutines will typically be described in terms of their own special
parameters, so that they can produce a variety of related strokes; a serif subrou-
tine will, for example, be able to draw serifs of different lengths, although all of

interpolate
recipe
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the serifs it draws should have the same “feeling.” Finally, there are routines for
each of the characters. If the subroutines in the first and second parts have been
chosen well, the routines of the third part will be fairly high-level descriptions
that don’t concern themselves unnecessarily with details; for example, it may
be possible to substitute a different serif-drawing subroutine without changing
any of the programs that use that subroutine, thereby obtaining a typeface of
quite a different flavor. [A particularly striking example of this approach has
been worked out by John D. Hobby and Gu Guoan in “A Chinese Meta-Font,”
TUGboat 5 (1984), 119-136. By changing a set of 13 basic stroke subroutines,
they were able to draw 128 sample Chinese characters in three different styles
(Song, Long Song, and Bold), using the same programs for the characters.]

A well-written METAFONT program will express the designer’s intentions
more clearly than mere drawings ever can, because the language of algebra has
simple “idioms” that make it possible to elucidate many visual relationships.
Thus, METAFONT programs can be used to communicate knowledge about type
design, just as recipes convey the expertise of a chef. But algebraic formulas are
not easy to understand in isolation; METAFONT descriptions are meant to be
read with an accompanying illustration, just as the constructions in geometry
textbooks are accompanied by diagrams. Nobody is ever expected to read the
text of a METAFONT program and say, “Ah, what a beautiful letter!” But with
one or more enlarged pictures of the letter, based on one or more settings of the
parameters, a reader of the METAFONT program should be able to say, “Ah,
I understand how this beautiful letter was drawn!” We shall see that the META-
FONT system makes it fairly easy to obtain annotated proof drawings that you
can hold in your hand as you are working with a program.

Although METAFONT is intended to provide a relatively painless way to
describe meta-fonts, you can, of course, use it also to describe unvarying shapes
that have no “meta-ness” at all. Indeed, you need not even use it to produce
fonts; the system will happily draw geometric designs that have no relation to
the characters or glyphs of any alphabet or script. The author occasionally uses
METAFONT simply as a pocket calculator, to do elementary arithmetic in an
interactive way. A computer doesn’t mind if its programs are put to purposes
that don’t match their names.

[Tinguely] made some large, brightly coloured open reliefs,

Jjuxtaposing stationary and mobile shapes.

He later gave them names like Meta-Kandinsky and Meta-Herbin,

to clarify the ideas and attitudes that lay at the root of their conception.

— K. G. PONTUS HULTEN, Jean Tinguely: Méta (1972)

The idea of a meta-font should now be clear. But what good is it?
The ability to manipulate lots of parameters may be interesting and fun,
but does anybody really need a 6%-point font

that is one fourth of the way between Baskerville and Helvetica?

— DONALD E. KNUTH, The Concept of a Meta-Font (1982)

Hobby
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Chapter 2: Coordinates

If we want to tell a computer how to draw a particular shape, we need a way to
explain where the key points of that shape are supposed to be. METAFONT uses
standard Cartesian coordinates for this purpose: The location of a point is de-
fined by specifying its x coordinate, which is the number of units to the right of
some reference point, and its y coordinate, which is the number of units upward
from the reference point. First we determine the horizontal (left/right) compo-
nent of a point’s position, then we determine the vertical (up/down) component.
METAFONT’s world is two-dimensional, so two coordinates are enough.
For example, let’s consider the following six points:

(Figure 2a will be inserted here; too bad you can’t see it now.)

METAFONT’s names for the positions of these points are

(z1,91) = (0,100); (z2,92) = (100, 100); (z3,y3) = (200, 100);
(z4,y4) = (0, 0); (z5,95) = (100, 0); (w6,6) = (200, 0).

Point 4 is the same as the reference point, since both of its coordinates are zero;
to get to point 3 = (200, 100), you start at the reference point and go 200 steps
right and 100 up; and so on.

» EXERCISE 2.1
Which of the six example points is closest to the point (60,30)?

» EXERCISE 2.2
True or false: All points that lie on a given horizontal straight line have the same
x coordinate.

» EXERCISE 2.3
Explain where the point (—5,15) is located.

» EXERCISE 2.4
What are the coordinates of a point that lies exactly 60 units below point 6 in
the diagram above? (“Below” means “down the page,” not “under the page.”)

In a typical application of METAFONT, you prepare a rough sketch of
the shape you plan to define, on a piece of graph paper, and you label important
points on that sketch with any convenient numbers. Then you write a META-
FONT program that explains (i) the coordinates of those key points, and (ii) the
lines or curves that are supposed to go between them.

METAFONT has its own internal graph paper, which forms a so-called
raster or grid consisting of square “pixels.” The output of METAFONT will specify
that certain of the pixels are “black” and that the others are “white”; thus,
the computer essentially converts shapes into binary patterns like the designs
a person can make when doing needlepoint with two colors of yarn.

Cartesian
coordinates
x coordinate
y coordinate
graph paper
raster

grid

pixels

pel, see pixel



Chapter 2: Coordinates

Coordinates are lengths, but we haven’t discussed yet what the units of
length actually are. It’s important to choose convenient units, and METAFONT’s
coordinates are given in units of pixels. The little squares illustrated on the
previous page, which correspond to differences of 10 units in an = coordinate or
a y coordinate, therefore represent 10 x 10 arrays of pixels, and the rectangle
enclosed by our six example points contains 20,000 pixels altogether.*

Coordinates don’t have to be whole numbers. You can refer, for example,
to point (31.5,42.5), which lies smack in the middle of the pixel whose corners
are at (31,42), (31,43), (32,42), and (32,43). The computer works internally
with coordinates that are integer multiples of Wé% ~ 0.00002 of the width of a
pixel, so it is capable of making very fine distinctions. But METAFONT will never
make a pixel half black; it’s all or nothing, as far as the output is concerned.

The fineness of a grid is usually called its resolution, and resolution is
usually expressed in pixel units per inch (in America) or pixel units per millimeter
(elsewhere). For example, the type you are now reading was prepared by META-
FONT with a resolution of slightly more than 700 pixels to the inch, but with
slightly fewer than 30 pixels per mm. For the time being we shall assume that the
pixels are so tiny that the operation of rounding to whole pixels is unimportant;
later we will consider the important questions that arise when METAFONT is
producing low-resolution output.

It’s usually desirable to write METAFONT programs that can manu-
facture fonts at many different resolutions, so that a variety of low-resolution
printing devices will be able to make proofs that are compatible with a variety
of high-resolution devices. Therefore the key points in METAFONT programs are
rarely specified in terms of pure numbers like ‘100’ ; we generally make the co-
ordinates relative to some other resolution-dependent quantity, so that changes
will be easy to make. For example, it would have been better to use a definition
something like the following, for the six points considered earlier:

(1'1,?!1) = (O’b)a ($2,y2) = (aab); ($3vy3) = (20’7());
(z4,94) = (0,0); (z5,95) = (a,0); (w6, ) = (2a,0);

then the quantities a and b can be defined in some way appropriate to the desired
resolution. We had a = b = 100 in our previous example, but such constant
values leave us with little or no flexibility.

Notice the quantity ‘2a’ in the definitions of x3 and x¢; METAFONT un-
derstands enough algebra to know that this means twice the value of a, whatever
a is. We observed in Chapter 1 that simple uses of algebra give METAFONT its
meta-ness. Indeed, it is interesting to note from a historical standpoint that
Cartesian coordinates are named after René Descartes, not because he invented
the idea of coordinates, but because he showed how to get much more out of

* We sometimes use the term “pixel” to mean a square picture element, but sometimes
we use it to signify a one-dimensional unit of length. A square pixel is one pixel-unit
wide and one pixel-unit tall.

resolution
Cartesian
Descartes



Chapter 2: Coordinates

that idea by applying algebraic methods. People had long since been using co-
ordinates for such things as latitudes and longitudes, but Descartes observed
that by putting unknown quantities into the coordinates it became possible to
describe infinite sets of related points, and to deduce properties of curves that
were extremely difficult to work out using geometrical methods alone.

So far we have specified some points, but we haven’t actually done any-
thing with them. Let’s suppose that we want to draw a straight line from point 1
to point 6, obtaining

(Figure 2b will be inserted here; too bad you can’t see it now.)

One way to do this with METAFONT is to say

draw (z1,%1) .. (26, Ys)-

The ‘..” here tells the computer to connect two points.

It turns out that we often want to write formulas like ‘(z1,y1)’, so it
will be possible to save lots of time if we have a special abbreviation for such
things. Henceforth we shall use the notation z; to stand for (z1,y1); and in
general, z; with an arbitrary subscript will stand for the point (zy,yx). The
‘draw’ command above can therefore be written more simply as

draw z7 .. zg.

Adding two more straight lines by saying, ‘draw z5 .. z5” and ‘draw z3 .. z4’,
we obtain a design that is slightly reminiscent of the Union Jack:

(Figure 2c will be inserted here; too bad you can’t see it now.)

We shall call this a hex symbol, because it has six endpoints. Notice that the
straight lines here have some thickness, and they are rounded at the ends as
if they had been drawn with a felt-tip pen having a circular nib. METAFONT
provides many ways to control the thicknesses of lines and to vary the terminal
shapes, but we shall discuss such things in later chapters because our main
concern right now is to learn about coordinates.

If the hex symbol is scaled down so that its height parameter b is exactly
equal to the height of the letters in this paragraph, it looks like this: ‘>’. Just

z convention
draw

Union Jack
hex symbol
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for fun, let’s try to typeset ten of them in a row:
SRS HKK

How easy it is to do this!*

Let’s look a bit more closely at this new character. The >K is a bit too
tall, because it extends above points 1, 2, and 3 when the thickness of the lines
is taken into account; similarly, it sinks a bit too much below the baseline (i.e.,
below the line y = 0 that contains points 4, 5, and 6). In order to correct this,
we want to move the key points slightly. For example, point z; should not be
exactly at (0,b); we ought to arrange things so that the top of the pen is at (0, b)
when the center of the pen is at z;. We can express this condition for the top
three points as follows:

top z1 = (0,b); top zo = (a,b); top z3 = (2a, b);
similarly, the remedy for points 4, 5, and 6 is to specify the equations
bot z4 = (0,0); bot z5 = (a,0); bot z¢ = (2a,0).

The resulting squashed-in character is

(Figure 2d will be inserted here; too bad you can’t see it now.)

(shown here with the original weight ‘>’ and also in a bolder version ‘).

» EXERCISE 2.5

Ten of these bold hexes produce * SIHIIISHIIIIKKIIK ’; notice that
adjacent symbols overlap each other. The reason is that each character has width
2a, hence point 3 of one character coincides with point 1 of the next. Suppose
that we actually want the characters to be completely confined to a rectan-
gular box of width 2a, so that adjacent characters come just shy of touching
( A AIKIKIKIKIKIK ). Try to guess how the point-defining equa-
tions above could be modified to make this happen, assuming that METAFONT
has operations ‘Ift’ and ‘rt’ analogous to ‘top’ and ‘bot’.

* Now that authors have for the first time the power to invent new symbols with great
ease, and to have those characters printed in their manuscripts on a wide variety
of typesetting devices, we must face the question of how much experimentation is
desirable. Will font freaks abuse this toy by overdoing it? Is it wise to introduce new
symbols by the thousands? Such questions are beyond the scope of this book; but
it is easy to imagine an epidemic of fontomania occurring, once people realize how
much fun it is to design their own characters, hence it may be necessary to perform
fontal lobotomies.
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Pairs of coordinates can be thought of as “vectors” or “displacements”
as well as points. For example, (15,8) can be regarded as a command to go
right 15 and up 8; then point (15,8) is the position we get to after starting at
the reference point and obeying the command (15, 8). This interpretation works
out nicely when we consider addition of vectors: If we move according to the
vector (15,8) and then move according to (7, —3), the result is the same as if
we move (15,8) + (7,-3) = (15 + 7,8 — 3) = (22,5). The sum of two vectors
z1 = (z1,y1) and zo = (22, y2) is the vector z1 + 22 = (1 + x2,y1 + y2) obtained
by adding x and y components separately. This vector represents the result
of moving by vector z; and then moving by vector zs; alternatively, z; + zo
represents the point you get to by starting at point z; and moving by vector zs.

» EXERCISE 2.6
Consider the four fundamental vectors (0,1), (1,0), (0,—1), and (—1,0). Which
of them corresponds to moving one pixel unit (a) to the right? (b) to the left?
(¢) down? (d) up?

Vectors can be subtracted as well as added; the value of z; — z5 is simply
(x1 — z2,y1 — y2). Furthermore it is natural to multiply a vector by a single
number ¢: The quantity ¢ times (z,y), which is written c(z,y), equals (cz, cy).
Thus, for example, 2z = 2(x,y) = (2z, 2y) turns out to be equal to z + 2. In the
special case ¢ = —1, we write —(z,y) = (—z, —y).

Now we come to an important notion, based on the fact that subtraction
is the opposite of addition. If z; and z9 are any two points, then zo — z, is the
vector that corresponds to moving from z1 to zo. The reason is simply that zo — 21
is what we must add to z; in order to get zs: i.e., 21 + (22 — 21) = 22. We shall
call this the vector subtraction principle. It is used frequently in METAFONT
programs when the designer wants to specify the direction and/or distance of
one point from another.

METAFONT programs often use another idea to express relations be-
tween points. Suppose we start at point z; and travel in a straight line from
there in the direction of point z5, but we don’t go all the way. There’s a special
notation for this, using square brackets:

%[zh 29] is the point one-third of the way from z; to za,

%[zl, 29| is the point midway between z; and zo,

.8[21, z2] is the point eight-tenths of the way from z; to 2o,

and, in general, t[z1, 25| stands for the point that lies a fraction ¢ of the way from
21 t0 z3. We call this the operation of mediation between points, or (informally)
the “of-the-way function.” If the fraction ¢ increases from 0 to 1, the expression
t[z1, 22] traces out a straight line from z7 to z2. According to the vector subtrac-
tion principle, we must move zy — z1 in order to go all the way from 2z; to zo,
hence the point ¢ of the way between them is

t[Zl,ZQ] = z1+ t(ZQ — Zl).

vectors

addition of vectors
multiplication of vector by scalar
negation of vectors

vector subtraction principle
subtraction of vectors

bracket notation

mediation

of-the-way function
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This is a general formula by which we can calculate t[z1, z2] for any given values
of t, z1, and zo. But METAFONT has this formula built in, so we can use the
bracket notation explicitly.

For example, let’s go back to our first six example points, and suppose
that we want to refer to the point that’s 2/5 of the way from zo = (100, 100) to
z¢ = (200,0). In METAFONT we can write this simply as .4[z2, z6]. And if we
need to compute the exact coordinates for some reason, we can always work them
out from the general formula, getting 22 +.4(z6 — z2) = (100, 100) +.4((200, 0) —
(100, 100)) = (100, 100) + .4(100, —100) = (100, 100) + (40, —40) = (140, 60).

» EXERCISE 2.7
True or false: The direction vector from (5, —2) to (2,3) is (=3, 5).

» EXERCISE 2.8
Explain what the notation ‘0[z1, 22]” means, if anything. What about ‘1[z1, z2]’?
And ‘2[z1,22]’? And ‘(—.5)[21, 22’7

» EXERCISE 2.9
1

True or false, for mathematicians: (a) 3[z1,22] = 3(21 + 22); (D) $[21,22] =

221+ 2295 (c) t[z1, 22] = (1 — t)[22, 21].

Let’s conclude this chapter by using
mediation to help specify the five points in the
stick-figure ‘A’ shown enlarged at the right. The
distance between points 1 and 5 should be a,
and point 3 should be b pixels above the base- ) _ _

(Figure 2e will be in-
line; these values a and b have been predeter- b serted here; too bad
mined by some method that doesn’t concern you et see o)
us here, and so has a “sidebar” parameter s
that specifies the horizontal distance of points
1 and 5 from the edges of the type. We shall
assume that we don’t know for sure what the
height of the bar line should be; point 2 should | s | a | s |
be somewhere on the straight line from point 1
to point 3, and point 4 should be in the corresponding place between 5 and 3,
but we want to try several possibilities before we make a decision.

The width of the character will be s + a + s, and we can specify points
z1 and z5 by the equations

bot z1 = (s,0); z5 = 21 + (a,0).

There are other ways to do the job, but these formulas clearly express our in-
tention to have the bottom of the pen at the baseline, s pixels to the right of
the reference point, when the pen is at z;, and to have z5 exactly a pixels to the
right of z;. Next, we can say

z3 = (%[z1,25),0);

sidebar
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this means that the = coordinate of point 3 should be halfway between the
x coordinates of points 1 and 5, and that y3 = b. Finally, let’s say

29 = alpha|z1, z3); z4 = alphalzs, z3);

the parameter alpha is a number between 0 and 1 that governs the position of
the bar line, and it will be supplied later. When alpha has indeed received a
value, we can say

draw z7 .. z3; draw z3 .. zs; draw z; .. z4.

METAFONT will draw the characters ‘AAAAAAA’ when alpha varies from 0.2 to
0.5 in steps of 0.05 and when a = 150, b = 250, s = 30. The illustration on the
previous page has alpha = (3 —/5)/2 ~ 0.38197; this value makes the ratio of
the area above the bar to the area below it equal to (v/5 — 1)/2 = 0.61803, the
so-called “golden ratio” of classical Greek mathematics.

@ (Are you sure you should be reading this paragraph? The “dangerous bend”

sign here is meant to warn you about material that ought to be skipped on first
reading. And maybe also on second reading. The reader-beware paragraphs sometimes
refer to concepts that aren’t explained until later chapters.)

@ » EXERCISE 2.10
Why is it better to define z3 as (%[ml,xg,},b), rather than to work out the
explicit coordinates z3 = (s + %a, b) that are implied by the other equations?

@@» EXERCISE 2.11
Given z1, z3, and z5 as above, explain how to define z2 and z4 so that all of
the following conditions hold simultaneously:

» the line from 22 to 24 slopes upward at a 20° angle;
= the y coordinate of that line’s midpoint is 2/3 of the way from ys3 to yi;
m 22 and z4 are on the respective lines z1 .. z3 and z3 .. zs5.

(If you solve this exercise, you deserve an ‘A’.)

Here, where we reach the sphere of mathematics,

we are among processes which seem to some

the most inhuman of all human activities

and the most remote from poetry.

Yet it is here that the artist has the fullest scope for his imagination.

— HAVELOCK ELLIS, The Dance of Life (1923)

To anyone who has lived in a modern American city (except Boston)
at least one of the underlying ideas of Descartes’ analytic geometry
will seem ridiculously evident. Yet, as remarked,

it took mathematicians all of two thousand years

to arrive at this simple thing.

— ERIC TEMPLE BELL, Mathematics: Queen and Servant of Science (1951)

11
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Albrecht Diirer and other Renaissance men attempted to establish mathematical
principles of type design, but the letters they came up with were not especially
beautiful. Their methods failed because they restricted themselves to “ruler
and compass” constructions, which cannot adequately express the nuances of
good calligraphy. METAFONT gets around this problem by using more powerful
mathematical techniques, which provide the necessary flexibility without really
being too complicated. The purpose of the present chapter is to explain the
simple principles by which a computer is able to draw “pleasing” curves.

The basic idea is to start with four points (21, 22, 23, 24) and to construct
the three midpoints z15 = %[zl, zo], 223 = %[22, 23], 234 = %[23, z4):

(Figure 3a will be inserted here; too bad you can’t see it now.)

Then take those three midpoints (212, 223, 234) and construct two second-order
midpoints 2123 = %[212,223] and 2934 = %[223,234]; finally, construct the third-
order midpoint z1234 = %[2123, Z934):

(Figure 3b will be inserted here; too bad you can’t see it now.)

This point 21234 is one of the points of the curve determined by (21, 22, 23, 24).
To get the remaining points of that curve, repeat the same construction on
(2’1,212, 2123, 21234) and on (212347 22345 234, 24)7 ad infinitum:

(Figure 3c will be inserted here; too bad you can’t see it now.)

The process converges quickly, and the preliminary scaffolding (which appears
above the limiting curve in our example) is ultimately discarded. The limiting
curve has the following important properties:

» It begins at z;, heading in the direction from z; to zs.

» It ends at z4, heading in the direction from z3 to zy4.

n It stays entirely within the so-called convex hull of 21, z3, 23, and z4;
i.e., all points of the curve lie “between” the defining points.

13
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@ The recursive midpoint rule for curve-drawing was discovered in 1959 by Paul
de Casteljau, who showed that the curve could be described algebraically by
the remarkably simple formula

2(t) = (1 —1)%21 +3(1 — )%t 20 4+ 3(1 — t)t%25 + t324,

as the parameter ¢ varies from 0 to 1. This polynomial of degree 3 in ¢ is called
a Bernshtein polynomial, because Sergei N. Bernshtein introduced such functions in
1912 as part of his pioneering work on approximation theory. Curves traced out by
Bernshtein polynomials of degree 3 are often called Bézier cubics, after Pierre Bézier
who realized their importance for computer-aided design during the 1960s.

@ It is interesting to observe that the Bernshtein polynomial of degree 1, i.e., the

function z(t) = (1—t) 21+t 22, is precisely the mediation operator t[z1, z2] that
we discussed in the previous chapter. Indeed, if the geometric construction we have just
seen is changed to use t-of-the-way points instead of midpoints (i.e., if z12 = t[z1, 22]
and z23 = t[z2, 23], etc.), then z1234 turns out to be precisely z(¢) in the formula above.

No matter what four points (z1, 22, 23, 24) are given, the construction on
the previous page defines a curved line that runs from z; to z4. This curve is not
always interesting or beautiful; for example, if all four of the given points lie on
a straight line, the entire “curve” that they define will also be contained in that
same line. We obtain rather different curves from the same four starting points
if we number the points differently:

(Figure 3d will be inserted here; too bad you can’t see it now.)

Some discretion is evidently advisable when the z’s are chosen. But the four-
point method is good enough to obtain satisfactory approximations to any curve
we want, provided that we break the desired curve into short enough segments
and give four suitable control points for each segment. It turns out, in fact, that
we can usually get by with only a few segments. For example, the four-point
method can produce an approximate quarter-circle with less than 0.06% error; it
never yields an exact circle, but the differences between four such quarter-circles
and a true circle are imperceptible.

All of the curves that METAFONT draws are based on four points, as just
described. But it isn’t necessary for a user to specify all of those points, because
the computer is usually able to figure out good values of zo and z3 by itself. Only
the endpoints z; and z4, through which the curve is actually supposed to pass,
are usually mentioned explicitly in a METAFONT program.

For example, let’s return to the six points that were used to introduce
the ideas of coordinates in Chapter 2. We said ‘draw z; .. zg’ in that chapter,

de Casteljau
Bernshtein polynomial
Bernshtein

Bézier

mediation
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in order to draw a straight line from point z; to point zg. In general, if three
or more points are listed instead of two, METAFONT will draw a smooth curve
through all the points. For example, the commands ‘draw z4 .. 21 .. 22 .. 2’
and ‘draw z5 ..24 ..21 ..23.. 26 .. 25 will produce the respective results

(Figure 3e will be inserted here; too bad you can’t see it now.)

(Unlabeled points in these diagrams are control points that METAFONT has
supplied automatically so that it can use the four-point scheme to draw curves
between each pair of adjacent points on the specified paths.)

Notice that the curve is not smooth at z5 in the right-hand example,
because z5; appears at both ends of that particular path. In order to get a
completely smooth curve that returns to its starting point, you can say ‘draw
25 ..24..21 .. 23 .. 2 .. cycle’ instead:

(Figure 3f will be inserted here; too bad you can’t see it now.)

The word ‘cycle’ at the end of a path refers to the starting point of that path.
METAFONT believes that this bean-like shape is the nicest way to connect the
given points in the given cyclic order; but of course there are many decent curves
that satisfy the specifications, and you may have another one in mind. You can
obtain finer control by giving hints to the machine in various ways. For example,
the bean curve can be “pulled tighter” between z; and z3 if you say

draw 25 ..24..21 .. tension1.2 .. 23 .. zg .. cycle;

the so-called tension between points is normally 1, and an increase to 1.2 yields

(Figure 3g will be inserted here; too bad you can’t see it now.)

15
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@ An asymmetric effect can be obtained by increasing the tension only at point 1
but not at points 3 or 4; the shape

(Figure 3h will be inserted here; too bad you can’t see it now.)

comes from ‘draw 25 .. 24 .. tensionland1.5 .. z1 .. tension1l.5and1 .. 23 .. z¢ ..
cycle’. The effect of tension has been achieved in this example by moving two of the
anonymous control points closer to point 1.

It’s possible to control a curve in another way, by telling METAFONT
what direction to travel at some or all of the points. Such directions are given
inside curly braces; for example,

draw z5 .. z4{left} .. 21 .. 23 .. zg{left} .. cycle

says that the curve should be traveling leftward at points 4 and 6. The resulting
curve is perfectly straight from zg to z5 to z4:

(Figure 3i will be inserted here; too bad you can’t see it now.)

We will see later that ‘left’ is an abbreviation for the vector (—1,0), which
stands for one unit of travel in a leftward direction. Any desired direction can
be specified by enclosing a vector in {...}’s; for example, the command ‘draw
24 .. 22{23—24} .. 23" will draw a curve from z4 to z3 to z3 such that the tangent
direction at 29 is parallel to the line z4 .. 23, because z3 — z4 is the vector that
represents travel from z4 to z3:

(Figure 3j will be inserted here; too bad you can’t see it now.)

The same result would have been obtained from a command such as ‘draw
z4 .. 22{10(z3 —z4)} .. 23’, because the vector 10(z3 — z4) has the same direction
as z3 — z4. METAFONT ignores the magnitudes of vectors when they are simply
being used to specify directions.
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» EXERCISE 3.1
What do you think will be the result of ‘draw z4 .. z0{z4 — 23} .. 23", when
points zs, z3, z4 are the same as they have been in the last several examples?

» EXERCISE 3.2
Explain how to get METAFONT to draw the wiggly shape

(Figure 3k will be inserted here; too bad you can’t see it now.)

in which the curve aims directly at point 2 when it’s at point 6, but directly
away from point 2 when it’s at point 4. [Hint: No tension changes are needed;
it’s merely necessary to specify directions at z4 and zg.]

METAFONT allows you to change the shape of a curve at its endpoints
by specifying different amounts of “curl.” For example, the two commands

draw zy{curl0} .. 20{23 — 24} .. {curl 0} z3;
draw zg{curl2} .. 29{23 — 24} .. {curl 2} z3

give the respective curves

(Figure 31 will be inserted here; too bad you can’t see it now.)

which can be compared with the one shown earlier when no special curl was
requested. (The specification ‘curl1’ is assumed at an endpoint if no explicit
curl or direction has been mentioned, just as ‘tension 1’ is implied between points
when no tension has been explicitly given.) Chapter 14 explains more about this.

It’s possible to get curved lines instead of straight lines even when only
two points are named, if a direction has been prescribed at one or both of the
points. For example,

draw z4{z2 — 24} .. {down} zs

asks METAFONT for a curve that starts traveling towards z3 but finishes in a
downward direction:

(Figure 3m will be inserted here; too bad you can’t see it now.)

17
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@ Here are some of the curves that METAFONT draws between two points, when for
it is asked to move outward from the left-hand point at an angle of 60°, and Stf‘t}?l
. . . unti
to approach the right-hand point at various angles: cm
dir

inflection point

(Figure 3aa will be inserted here; too bad you can’t see it now.)

This diagram was produced by the METAFONT program

for d = 0 step 10 until 120:
draw (0,0){dir 60} .. {dir —d}(6cm, 0); endfor;

the ‘dir’ function specifies a direction measured in degrees counterclockwise from a
horizontal rightward line, hence ‘dir —d’ gives a direction that is d° below the horizon.
The lowest curves in the illustration correspond to small values of d, and the highest
curves correspond to values near 120°.

@ A car that drives along the upper paths in the diagram above is always turning

to the right, but in the lower paths it comes to a point where it needs to turn to
the left in order to reach its destination from the specified direction. The place where a
path changes its curvature from right to left or vice versa is called an “inflection point.”
METAFONT introduces inflection points when it seems better to change the curvature
than to make a sharp turn; indeed, when d is negative there is no way to avoid points
of inflection, and the curves for small positive d ought to be similar to those obtained
when d has small negative values. The program

for d = 0 step —10 until —90:
draw (0,0){dir60} .. {dir —d}(6¢m, 0); endfor

shows what METAFONT does when d is negative:

(Figure 3bb will be inserted here; too bad you can’t see it now.)

@ It is sometimes desirable to avoid points of inflection, when d is positive, and

to require the curve to remain inside the triangle determined by its initial and
final directions. This can be achieved by using three dots instead of two when you
specify a curve: The program

for d = 0 step 10 until 120:
draw (0,0){dir60} ... {dir —d}(6¢m,0); endfor
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generates the curves

(Figure 3cc will be inserted here; too bad you can’t see it now.)

which are the same as before except that inflection points do not occur for the small
values of d. The ‘..."” specification keeps the curve “bounded” inside the triangle that
is defined by the endpoints and directions; but it has no effect when there is no such
triangle. More precisely, suppose that the curve goes from zp to z1; if there’s a point z
such that the initial direction is from zo to z and the final direction is from z to z1,

then the curve specified by ‘...” will stay entirely within the triangle whose corners are
20, #z1, and z. But if there’s no such triangle (e.g., if d < 0 or d > 120 in our example
program), both ‘...” and ‘..” will produce the same curves.

In this chapter we have seen lots of different ways to get METAFONT
to draw curves. And there’s one more way, which subsumes all of the others.
If changes to tensions, curls, directions, and/or boundedness aren’t enough to
produce the sort of curve that a person wants, it’s always possible as a last
resort to specify all four of the points in the four-point method. For example,
the command

draw z4 .. controlsz; and z5 .. zg

will draw the following curve from z4 to zg:

(Figure 3n will be inserted here; too bad you can’t see it now.)

And so | think | have omitted nothing
that is necessary to an understanding of curved lines.

— RENE DESCARTES, La Géométrie (1637)

Rules or substitutes for the artist’s hand must necessarily be inadequate,
although, when set down by such men as

Diirer, Tory, Da Vinci, Serlio, and others,

they probably do establish canons of proportion and construction

which afford a sound basis upon which to present new expressions.

— FREDERIC W. GOUDY, Typologia (1940)
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Our examples so far have involved straight lines or curved lines that look as
if they were drawn by a felt-tip pen, where the nib of that pen was perfectly
round. A mathematical “line” has no thickness, so it’s invisible; but when we
plot circular dots at each point of an infinitely thin line, we get a visible line
that has constant thickness.

Lines of constant thickness have their uses, but METAFONT also provides
several other kinds of scrivener’s tools, and we shall take a look at some of them
in this chapter. We’ll see not only that the sizes and shapes of pen nibs can be
varied, but also that characters can be built up in such a way that the outlines
of each stroke are precisely controlled.

First let’s consider the simplest extensions of what we have seen before.
The letter ‘A’ of Chapter 2 and the kidney-bean ‘w’ of Chapter 3 were drawn
with circular pen nibs of diameter 0.4 pt, where ‘pt’ stands for a printer’s point;*
0.4 pt is the standard thickness of a ruled line ‘——’ drawn by TEX. Such a
penpoint can be specified by telling METAFONT to

pickup pencircle scaled 0.4pt;

METAFONT will use the pen it has most recently picked up whenever it is asked
to ‘draw’ anything. A pencircle is a circular pen whose diameter is the width
of one pixel. Scaling it by 0.4pt will change it to the size that corresponds
to 0.4pt in the output, because pt is the number of pixels in 1pt. If the key
points (z1, 22, 23, 24, 25, 2z6) of Chapters 2 and 3 have already been defined, the
METAFONT commands

pickup pencircle scaled 0.8pt;
draw 25 ..24..21 .. 23 .. 26 .. cycle

will produce a bean shape twice as thick as before: ‘e’ instead of ‘o’.
More interesting effects arise when we use non-circular pen nibs. For
example, the command

pickup pencircle xscaled 0.8pt yscaled 0.2pt

picks up a pen whose tip has the shape of an ellipse, 0.8 pt wide and 0.2 pt tall;
magnified 10 times, it looks like this: ‘=".(The operation of “xscaling” mul-
tiplies = coordinates by a specified amount but leaves y coordinates unchanged,
and the operation of “yscaling” is similar.) Using such a pen, the ‘o’ becomes

‘o’, and ‘A’ becomes ‘A’. Furthermore,
pickup pencircle xscaled 0.8pt yscaled 0.2pt rotated 30

takes that ellipse and rotates it 30° counterclockwise, obtaining the nib ‘~’; this
changes ‘o’ into ‘e’ and ‘A’ into ‘A’. An enlarged view of the bean shape shows

* 1lin = 2.54cm = T72.27 pt exactly, as explained in The TEXbook.
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more clearly what is going on:

(Figure 4a will be inserted here; too bad you can’t see it now.)

The right-hand example was obtained by eliminating the clause ‘yscaled 0.2pt’;
this makes the pen almost razor thin, only one pixel tall before rotation.

» EXERCISE 4.1

Describe the pen shapes defined by (a) pencircle xscaled 0.2pt yscaled 0.8pt;
(b) pencircle scaled 0.8pt rotated 30; (c¢) pencircle xscaled .25 scaled 0.8pt.

» EXERCISE 4.2

We've seen many examples of ‘draw’ used with two or more points. What do
you think METAFONT will do if you ask it to perform the following commands?

draw z1; draw z9; draw z3; draw z4; draw z;; draw zg.

Let’s turn now to the design of a real letter that has already appeared
many times in this manual, namely the ‘T’ of ‘METAFONT’. All seven of the
distinct letters in ‘METAFONT’ will be used to illustrate various ideas as we get
into the details of the language; we might as well start with ‘T’ because it
occurs twice, and (especially) because it’s the sim- (g (w,h)

plest. An enlarged version of this letter is shown at
the right of this paragraph, including the locations
of its four key points (21, 22, 23, z4) and its bounding
box. Typesetting systems like TEX are based on the
assumption that each character fits in a rectangular
box; we shall discuss boxes in detail later, but for
now we will be content simply to know that such
boundaries do exist.* Numbers h and w will have
been computed so that the corners of the box are at
positions (0,0), (0,h), (w,0), and (w, h) as shown.

Each of the letters in ‘METAFONT’ is drawn

(Figure 4b will be inserted here;
too bad you can’t see it now.)

(0,0) (w,0)

with a pen whose nib is an unrotated ellipse, 90% as tall as it is wide. In the
10-point size, which is used for the main text of this book, the pen is 2/3 pt wide,

* Strictly speaking, the bounding box doesn’t actually have to “bound” the black pixels
of a character; for example, the ‘ T’ protrudes slightly below the baseline at point 4,
and italic letters frequently extend rather far to the right of their boxes. However,
TEX positions all characters by lumping boxes together as if they were pieces of metal

type that contain all of the ink.

draw

T

METAFONT logo
bounding box

box

h

W
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so it has been specified by the command o
overshoot
pickup pencircle scaled % pt yscaled 1% top

1ft
or something equivalent to this. lr)tot
We shall assume that a special value ‘0’ has been computed so that the coordinates
bottqm of t.he.vertical stroke in ‘T’ should descend e).cactly o pixels belqw 'the ﬁET AFONT logo
baseline; this is called the amount of “overshoot.” Given h, w, and o, it is a

simple matter to define the four key points and to draw the ‘T

top lft z1 = (0,h);  top rt z9 = (w, h);
top z3 = (.bw, h);  bot z4 = (bw, —o);
draw z; .. z9; draw z3 .. z4.

@ Sometimes it is easier and/or clearer to define the x and y coordinates sepa-
rately. For example, the key points of the ‘ T’ could also be specified thus:

Ift x1 = 0; w— Ty = X1; T3 = x4 = .Dw;

topyr =h;  botys = —o; Y1 =Yz = y3.
The equation w — 2 = 1 expresses the fact that 2 is just as far from the right edge
of the bounding box as x; is from the left edge.

@ What exactly does ‘top’ mean in a METAFONT equation? If the currently-
picked-up pen extends [ pixels to the left of its center, r pixels to the right,
t pixels upward and b downward, then

topz=2z+(0,t), botz=2z—(0,b), lftz=2—-(,0), rtz=z+(r0),

when z is a pair of coordinates. But—as the previous paragraph shows, if you study it
carefully—we also have

topy =y +t, boty =y — b, fte=x—1, rtr=x+r,

when x and y are single values instead of coordinate pairs. You shouldn’t apply ‘top’
or ‘bot’ to x coordinates, nor ‘Ift’ or ‘rt’ to y coordinates.

@ » EXERCISE 4.3
True or false: top bot z = z, whenever z is a pair of coordinates.

@ » EXERCISE 4.4
(0,h) (w,h)

An enlarged picture of METAFONT’s
‘M’ shows that it has five key points. Assum-
ing that special values ss and ygap have been
precomputed and that the equations

T1 =88 =w—ID; Y3 — Y1 = ygap (Figure 4c will be inserted here; too bad you

can’t see it now.)

have already been given, what further equa-
tions and ‘draw’ commands will complete the
specification of this letter? (The value of w
will be greater for ‘M’ than it was for ‘T’; it
stands for the pixel width of whatever char-
acter is currently being drawn.)

(0,0) (w,0)
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METAFONT’s ability to ‘draw’ allows it to produce character shapes that
are satisfactory for many applications, but the shapes are inherently limited by
the fact that the simulated pen nib must stay the same through an entire stroke.
Human penpushers are able to get richer effects by using different amounts of
pressure and/or by rotating the pen as they draw.

We can obtain finer control over the characters we produce if we specify
their outlines, instead of working only with key points that lie somewhere in the
middle. In fact, METAFONT works internally with outlines, and the computer
finds it much easier to fill a region with solid black than to figure out what pixels
are blackened by a moving pen. There’s a ‘fill’ command that does region filling;
for example, the solid bean shape

(Figure 4d will be inserted here; too bad you can’t see it now.)

can be obtained from our six famous example points by giving the command
fill z5..24..21..23..2..cycle.

The filled region is essentially what would be cut out by an infinitely sharp knife
blade if it traced over the given curve while cutting a piece of thin film. A draw
command needs to add thickness to its curve, because the result would otherwise
be invisible; but a fill command adds no thickness.

The curve in a fill command must end with ‘cycle’, because an entire
region must be filled. It wouldn’t make sense to say, e.g., ‘fill z; .. z53’. The cycle
being filled shouldn’t cross itself, either; METAFONT would have lots of trouble
trying to figure out how to obey a command like ‘fill z1 .. zg .. 23 .. 24 .. cycle’.

@ » EXERCISE 4.5

Chapter 3 discusses the curve z5 .. 24 .. 21 .. 23 .. 26 .. 25, which isn’t smooth
at z5. Since this curve doesn’t end with ‘cycle’, you can’t use it in a fill command. But
it does define a closed region. How can METAFONT be instructed to fill that region?

The black triangle ‘»’ that appears in the statement of exercises in this
book was drawn with the command

fill 21 -- 2z -- 23 - - cycle

after appropriate corner points z1, zo, and z3 had been specified. In this case the
outline of the region to be filled was specified in terms of the symbol ‘- -’ instead
of ¢..7; this is a convention we haven’t discussed before. Each ‘--’ introduces
a straight line segment, which is independent of the rest of the path that it

belongs to; thus it is quite different from °..’, which specifies a possibly curved

fill
bean
knife
cycle
triangle

polygonal path
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line segment that connects smoothly with neighboring points and lines of a path. equilateral
In this case ‘--’ was used so that the triangular region would have straight edges fl‘:fgffd
and sharp corners. We might say informally that ‘..” means “Connect the points

7

with a nice curve,” while ‘--" means “Connect the points with a straight line.”

@ The corner points z1, 22, and z3 were defined care- (0,h) (w,h)
fully so that the triangle would be equilateral, i.e.,

so that all three of its sides would have the same length.

Since an equilateral triangle has 60° angles, the following

equations did the job:

(Figure 4e will be inserted
T1 =T2 =W — T3 =8, here; too bad you can’t see

it now.)
ys = .5h; t
z1 — z2 = (23 — 22) rotated 60.

Here w and h represent the character’s width and height,
and s is the distance of the triangle from the left and right
edges of the type. (0,0) (w,0)

@ The fill command has a companion called unfill, which changes pixels from
black to white inside a given region. For example, the solid bean shape on the
previous page can be changed to

(Figure 4f will be inserted here; too bad you can’t see it now.)

if we say also ‘unfill i[z4722] .. %[24,22] .. cycle; unfill i[zmza] .. %[26,22] .. cycle’.
This example shows, incidentally, that METAFONT converts a two-point specification
like ‘z1 .. z2 .. cycle’ into a more-or-less circular path, even though two points by
themselves define only a straight line.

g% » EXERCISE 4.6
Let zo be the point (.8[z1,2],.5[y1,v4]), and introduce six new points by
letting zj, = .2[zk, 20] for k =1, 2, ..., 6. Explain how to obtain the shape

(Figure 4g will be inserted here; too bad you can’t see it now.)

in which the interior region is defined by 21 ...z instead of by z1 ... 2.
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The ability to fill between outlines makes it possible to pretend that we
have broad-edge pens that change in direction and pressure as they glide over
the paper, if we consider the separate paths traced out by the pen’s left edge
and right edge. For example, the stroke

(Figure 4h will be inserted here; too bad you can’t see it now.)

can be regarded as drawn by a pen that starts at the left, inclined at a 30° angle;
as the pen moves, it turns gradually until its edge is strictly vertical by the time
it reaches the right end. The pen motion was horizontal at positions 2 and 3.
This stroke was actually obtained by the command

fill zy; .. 2o {right} .. {right} zs

-- 23T{left} .. {left} Zor .. R1r
--cycle;

i.e., METAFONT was asked to fill a region bounded by a “left path” from zy; to
zg1 to z3;, followed by a straight line to z3,, then a reversed “right path” from
z3r t0 22, tO z1,, and finally a straight line back to the starting point zy;.

Key positions of the “pen” are represented in this example by sets of
three points, like (z1;, 21, 21,-), which stand for the pen’s left edge, its midpoint,
and its right edge. The midpoint doesn’t actually occur in the specification of
the outline, but we’ll see examples of its usefulness. The relationships between
such triples of points are established by a ‘penpos’ command, which states the
breadth of the pen and its angle of inclination at a particular position. For
example, positions 1, 2, and 3 in the stroke above were established by saying

penpos, (1.2pt, 30); penposy(1.0pt, 45); penposs(0.8pt, 90);

this made the pen 1.2 pt broad and tipped 30° with respect to the horizontal at
position 1, etc. In general the idea is to specify ‘penpos,(b,d)’, where k is the
position number or position name, b is the breadth (in pixels), and d is the angle
(in degrees). Pen angles are measured counterclockwise from the horizontal.
Thus, an angle of 0 makes the right edge of the pen exactly b pixels to the right
of the left edge; an angle of 90 makes the right pen edge exactly b pixels above
the left; an angle of —90 makes it exactly b pixels below. An angle of 45 makes
the right edge b/\/§ pixels above and b/v/2 pixels to the right of the left edge;
an angle of —45 makes it b/\/§ pixels below and b/\/§ to the right. When the
pen angle is between 90° and 180°, the “right” edge actually lies to the left of
the “left” edge. In terms of compass directions on a conventional map, an angle
of 0° points due East, while 90° points North and —90° points South. The angle
corresponding to Southwest is —135°, also known as +225°.

» EXERCISE 4.7
What angle corresponds to the direction North-Northwest?

broad-edge pens
angle of pen
penpos

compass directions
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» EXERCISE 4.8
What are the pen angles at positions 1, 2, 3, and 4 in
the circular shape shown here? [Hint: Each angle is a
multiple of 30°. Note that z3, lies to the left of z3;.] (Figure 4i will be inserted

here; too bad you can’t sce
» EXERCISE 4.9 e

What are the coordinates of z1; and z1, after the com-

mand ‘penpos, (10, —90)’, if z; = (25,25)?

@ The statement ‘penpos,(b,d)’ is simply an abbreviation for two equations,
‘zp = %[zkl,zkr]’ and ‘zgr = zi + (b,0) rotated d’. You might want to use

other equations to define the relationship between zy;, 2z, and zk,, instead of giving a

penpos command, if an alternative formulation turns out to be more convenient.

After ‘penpos’ has specified the relations between three points, we still
don’t know exactly where they are; we only know their positions relative to each
other. Another equation or two is needed in order to fix the horizontal and
vertical locations of each triple. For example, the three penpos commands that
led to the pen stroke on the previous page were accompanied by the equations

21 =(0,2pt); 2o = (4pt,0); w3 =9pt; Y3 = yor;

these made the information complete. There should be one x equation and one
y equation for each position; or you can use a z equation, which defines both x
and y simultaneously.

It’s a nuisance to write long-winded fill commands when broad-edge
pens are being simulated in this way, so METAFONT provides a convenient ab-
breviation: You can write simply

penstroke zi. .. zac{right} .. {right }zs.

instead of the command ‘fill zy; .. zoi{right} .. {right}zs -- zs.{left} ..
{left} zo, .. z1, -- cycle’ that was stated earlier. The letter ‘e’ stands for the
pen’s edge. A penstroke command fills the region ‘p.l -- reversep.r -- cycle’,
where p.l and p.r are the left and right paths formed by changing each ‘e’ into
‘I’ or ‘r’, respectively.
@ The penstroke abbreviation can be used to draw cyclic paths as well as
ordinary ones. For example, the circle in exercise 4.8 was created by saying
simply ‘penstroke zie .. z2¢ .. 23¢ .. 24¢ .. cycle’. This type of penstroke essentially
expands into

fill Rlr «+« R2r «« Z23r «« Z4r .. cycle;
unfill z1; .. 297 .. 231 .. 241 .. cycle;

or the operations ‘fill’ and ‘unfill’ are reversed, if points (z1,, 22r, 23r, 24r) are on the
inside and (z11, 221, 231, 241) are on the outside.

@ » EXERCISE 4.10

The circle of exercise 4.8 was actually drawn with a slightly more complicated
penstroke command than just claimed: The edges of the curve were forced to be
vertical at positions 1 and 3, horizontal at 2 and 4. How did the author do this?

27
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Here’s an example of how this new sort of pen can be used to draw a sans- I
serif letter ‘I’. As usual, we assume that two variables, h and w, have been set up Zzgi‘;ment
to give the height and width of the character in pixels. We =

shall also assume that there’s a stem parameter, which (0:4) (w:h) hex
specifies the nominal pen breadth. The breadth decreases
to .9stem in the middle of the stroke, and the pen angle
changes from 15° to 10°:
penpos; (stem, 15); penposy(.9stem, 12); (Figure 4j will be
penposy(stem, 10); z1 = xo = w3 = Sw; T o et e
y1 = h; y2 = .55h; y3 =0; o
Ty = & [war, wa);
penstroke zi. .. zo.{down} .. z3.
Setting x1 = xo = x3 = .bw centers the stroke; setting -
(0,0) (w,0)

y1 = h and y3 = 0 makes it sit in the type box, protruding
just slightly at the top and bottom.

The second-last line of this program is something that we haven’t seen
before: It resets zg; to a value 1/6 of the way towards the center of the pen,
thereby making the stroke taper a bit at the left. The ‘:=’ operation is called an

assignment; we shall study the differences between ‘:=’" and ‘=’ in Chapter 10.
@ It is important to note that these simulated pens have a serious limitation
compared to the way a real calligrapher’s pen works: The left and right edges

of a penpos-made pen must never cross, hence it is necessary to turn the pen when
going around a curve. Consider, for example, the following two curves:

(Figure 4k will be inserted here; too bad you can’t see it now.)

The left-hand circle was drawn with a broad-edge pen of fixed breadth, held at a fixed
angle; consequently the left edge of the pen was responsible for the outer boundary on
the left, but the inner boundary on the right. (This curve was produced by saying
‘pickup pencircle xscaled 0.8pt rotated 25; draw 21 .. 22 .. cycle’.) The right-hand
shape was produced by ‘penpos; (0.8pt, 25); penpos,(0.8pt, 25); penstroke zic .. z2¢ ..
cycle’; important chunks of the shape are missing at the crossover points, because they
don’t lie on either of the circles z1; .. z9; .. cycle or zi, .. 22, .. cycle.

?2 To conclude this chapter we shall improve the hex character >K of Chapter 2,

which is too dark in the middle because it has been drawn with a pen of
uniform thickness. The main trouble with unvarying pens is that they tend to produce
black blotches where two strokes meet, unless the pens are comparatively thin or unless
the strokes are nearly perpendicular. We want to thin out the lines at the center just
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enough to cure the darkness problem, without destroying the illusion that the lines still
seem (at first glance) to have uniform thickness.

@ It isn’t difficult to produce ‘SR KIKKKKKKSKK instead of
¢ SIS when we work with dynamic pens:

pickup pencircle scaled b;

top z1 = (0, h); top z2 = (5w, h); top zs = (w, h);

bot z4 = (0,0); bot zs = (.bw,0); bot z¢6 = (w,0); draw z2 .. z5;
21 = .25[z1, z6); zer = .TH[21,26); 23 = .2B[z3,24]; zy = .75[z3, 24];
theta: := angle(zs — 21) + 90;

thetas := angle(z4 — z3) + 90;

penposy, (b, theta1); penposg (b, thetar);
penposs (b, thetas); penpos,, (b, thetas); (Figure 41 will be inserted here;
penpos,(.6b, theta1); penposg(.6b, thetas); teo bad you cantt see it now:)

27 = 28 = .B[z1, z6];

draw z; .. zy/; draw zg .. 26; (0,0) (w,0)
draw z3 .. z3/; draw zy .. 24;

penstroke zi/.{z¢r — 21/} .. z7c .. {26 — 21/ }2¢7¢;

penstroke zz {24 — 23/} .. 28¢ .. {24 — 23/ }2arc-

(0,h) (w,h)

Here b is the diameter of the pen at the terminal points; ‘angle’ computes the direction
angle of a given vector. Adding 90° to a direction angle gives a perpendicular direction
(see the definitions of theta: and thetas). It isn’t necessary to take anything off of the
vertical stroke z2 .. z5, because the two diagonal strokes fill more than the width of

the vertical stroke at the point where they intersect.
(0,h) (w,h)

g% » EXERCISE 4.11
Modify the hex character so that its ends are _ o
cut sharply and confined to the bounding box, as shown. f,i:i?if ‘Eaﬁ‘ifo?,i;‘?iiii it

now.)

(0,0) (w,0)

It is very important that the nib be cut “sharp,”
and as often as its edge wears blunt it must be resharpened.
It is impossible to make ‘“clean cut” strokes with a blunt pen.

— EDWARD JOHNSTON, Writing & Illuminating, & Lettering (1906)

I might compare the high-speed computing machine

to a remarkably large and awkward pencil

which takes a long time to sharpen and

cannot be held in the fingers in the usual manner so that it
gives the illusion of responding to my thoughts,

but is fitted with a rather delicate engine

and will write like a mad thing

provided | am willing to let it dictate pretty much

the subjects on which it writes.

— R. H. BRUCK, Computational Aspects of Certain
Combinatorial Problems (1956)
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It’s high time now for you to stop reading and to start playing with the computer,
since METAFONT is an interactive system that is best learned by trial and error.
(In fact, one of the nicest things about computer graphics is that errors are often
more interesting and more fun than “successes.”)

You probably will have to ask somebody how to deal with the idiosyn-
crasies of your particular version of the system, even though METAFONT itself
works in essentially the same way on all machines; different computer terminals
and different hardcopy devices make it necessary to have somewhat different
interfaces. In this chapter we shall assume that you have a computer terminal
with a reasonably high-resolution graphics display; that you have access to a
(possibly low-resolution) output device; and that you can rather easily get that
device to work with newly created fonts.

OK, are you ready to run the program? First you need to log in, of
course; then start METAFONT, which is usually called mf for short. Once you've
figured out how to do it, you’ll be welcomed by a message something like

This is METAFONT, Version 2.0 (preloaded base=plain 89.11.8)
Kk

The ‘**’ is METAFONT’s way of asking you for an input file name.

Now type ‘\relax’—that’s backslash, r, e, 1, a, x—and hit (return)
(or whatever stands for “end-of-line” on your keyboard). METAFONT is all geared
up for action, ready to make a big font; but you’re saying that it’s all right to take
things easy, since this is going to be a real simple run. The backslash means that
METAFONT should not read a file, it should get instructions from the keyboard;
the ‘relax’ means “do nothing.”

The machine will respond by typing a single asterisk: ‘x’. This means
it’s ready to accept instructions (not the name of a file). Type the following,
just for fun:

drawdot (35,70); showit;

and (return)—don’t forget to type the semicolons along with the other stuff. A
more-or-less circular dot should now appear on your screen! And you should also
be prompted with another asterisk. Type

drawdot (65,70); showit;

and (return), to get another dot. (Henceforth we won’t keep mentioning the
necessity of (return)ing after each line of keyboard input.) Finally, type

draw (20,40)..(50,25)..(80,40); showit; shipit; end.

This draws a curve through three given points, displays the result, ships it to an
output file, and stops. METAFONT should respond with ‘[0]’, meaning that it
has shipped out a character whose number is zero, in the “font” just made; and
it should also tell you that it has created an output file called ‘mfput.2602gf’.
(The name mfput is used when you haven’t specified any better name in response
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to the *x at the beginning. The suffix 2602gf stands for “generic font at 2602
pixels per inch.” The data in mfput.2602gf can be converted into fonts suitable
for a wide assortment of typographical output devices; since it doesn’t match
the font file conventions of any name-brand manufacturer, we call it generic.)
This particular file won’t make a very interesting font, because it con-
tains only one character, and because it probably doesn’t have the correct res-
olution for your output device. However, it does have the right resolution for
hardcopy proofs of characters; your next step should therefore be to convert the
data of mfput.2602gf into a picture, suitable for framing. There should be a
program called GFtoDVI on your computer. Apply it to mfput.2602gf, thereby
obtaining a file called mfput.dvi that can be printed. Your friendly local com-
puter hackers will tell you how to run GFtoDVI and how to print mfput.dvi; then
you’ll have a marvelous souvenir of your very first encounter with METAFONT.

Once you have made a complete test run as just described, you will know
how to get through the whole cycle, so you’ll be ready to tackle a more complex
project. Our next experiment will therefore be to work from a file, instead of
typing the input online.

Use your favorite text editor to create a file called io.mf that contains
the following 23 lines of text (no more, no less):

1 mode_setup;

2 em#:=10pt#; cap#:=Tpt#;

3 thin#:=1/3pt#; thick#:=5/6pt#;

4 o#:=1/5pt#;

5 define_pixels(em,cap);

6 define_blacker_pixels(thin,thick);

7 define_corrected_pixels (o) ;

8 curve_sidebar=round 1/18em;

9 beginchar("0",0.8em#,cap#,0); "The letter 0";

10 penposl(thick,10); penpos2(.1[thin,thick],90-10);

11 penpos3(thick,180+10); penpos4(thin,270-10);

12 x11=w-x3l=curve_sidebar; x2=x4=.5w;

13 y1=.49h; y2l=-o; y3=.51h; y4l=h+o;

14 penstroke zle{down}..z2e{right}

15 ..z3e{up}. .z4e{left}. .cycle;

16 penlabels(1,2,3,4); endchar;

17 def test_I(expr code,trial_stem,trial_width) =

18 stem#:=trial_stemxpt#; define_blacker_pixels(stem);
19 beginchar(code,trial_width*em#,cap#,0); "The letter I";
20  penposl(stem,15); penpos2(stem,12); penpos3(stem,10);
21 x1=x2=x3=.56w; yl=h; y2=.55h; y3=0; x21:=1/6[x21,x2];
22 penstroke zle..z2e{down}..z3e;

23 penlabels(1,2,3); endchar; enddef;

(But don’t type the numbers at the left of these lines; they’re only for reference.)

Hk
gf

generic font
GFtoDVI
dvi
mode_setup
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This example file is dedicated to lo, the Greek goddess of input and
output. It’s a trifle long, but you’ll be able to get worthwhile experience by
typing it; so go ahead and type it now. For your own good. And think about
what you're typing, as you go; the example introduces several important features
of METAFONT that you can learn as you’re creating the file.

Here’s a brief explanation of what you’ve just typed: Line 1 contains a
command that usually appears near the beginning of every METAFONT file; it
tells the computer to get ready to work in whatever “mode” is currently desired.
(A file like io.mf can be used to generate proofsheets as well as to make fonts
for a variety of devices at a variety of magnifications, and ‘mode_setup’ is what
adapts METAFONT to the task at hand.) Lines 2-8 define parameters that will
be used to draw the letters in the font. Lines 9-16 give a complete program for
the letter ‘O’; and lines 17-23 give a program that will draw the letter ‘I’ in a
number of related ways.

It all looks pretty frightening at first glance, but a closer look shows
that o is not so mysterious once we penetrate her disguise. Let’s spend a few
minutes studying the file in more detail.

Lines 2—4 define dimensions that are independent of the mode; the ‘#’
signs are meant to imply “sharp” or “true” units of measure, which remain the
same whether we are making a font at high or low resolution. For example, one
‘pt#’ is a true printer’s point, one 72.27th of an inch. This is quite different from
the ‘pt’ we have discussed in previous chapters, because ‘pt’ is the number of
pixels that happen to correspond to a printer’s point when the current resolu-
tion is taken into account. The value of ‘pt#’ never changes, but mode_setup
establishes the appropriate value of ‘pt’.

The assignments ‘em#:=10pt#” and ‘cap#:=7pt#  in line 2 mean that the
To font has two parameters, called em and cap, whose mode-independent values
are 10 and 7 points, respectively. The statement ‘define_pixels(em,cap)’ on
line 5 converts these values into pixel units. For example, if we are working at
the comparatively low resolution of 3 pixels per pt, the values of em and cap
after the computer has performed the instructions on line 5 will be em = 30
and cap = 21. (We will see later that the widths of characters in this font are
expressed in terms of ems, and that cap is the height of the capital letters. A
change to line 2 will therefore affect the widths and/or heights of all the letters.)

Similarly, the Io font has parameters called thin and thick, defined on
line 3 and converted to pixel units in line 6. These are used to control the breadth
of a simulated pen when it draws the letter O. Experience has shown that META-
FONT produces better results on certain output devices if pixel-oriented pens are
made slightly broader than the true dimensions would imply, because black pixels
sometimes tend to “burn off” in the process of printing. The command on line 6,
‘define_blacker_pixels’, adds a correction based on the device for which the
font is being prepared. For example, if the resolution is 3 pixels per point, the
value of thin when converted from true units to pixels by define_pixels would
be 1, but define_blacker_pixels might set thin to a value closer to 2.
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The ‘o’ parameter on line 4 represents the amount by which curves will
overshoot their boundaries. This is converted to pixels in yet another way on
line 7, so as to avoid yet another problem that arises in low-resolution printing.
The author apologizes for letting such real-world considerations intrude into a
textbook example; let’s not get bogged down in fussy details now, since these
refinements will be explained in Chapter 11 after we have mastered the basics.

For now, the important point is simply that a typeface design usually in-
volves parameters that represent physical lengths. The true, “sharped” forms of
these parameters need to be converted to “unsharped” pixel-oriented quantities,
and best results are obtained when such conversions are done carefully. After
METAFONT has obeyed line 7 of the example, the pixel-oriented parameters em,
cap, thin, thick, and o are ready to be used as we draw letters of the font.

Line 8 defines a quantity called curve_sidebar that will measure the
distance of the left and right edges of the ‘O’ from the bounding box. It is com-
puted by rounding Tlgem to the nearest integer number of pixels. For example,
if em = 30 then % = % yields the rounded value curve_sidebar = 2; there will
be two all-white columns of pixels at the left and right of the ‘O’, when we work
at this particular resolution.

Before we go any further, we ought to discuss the strange collection of
words and pseudo-words in the file io.mf. Which of the terms ‘mode_setup’, ‘em’,
‘curve_sidebar’ and so forth are part of the METAFONT language, and which of
them are made up specifically for the Io example? Well, it turns out that almost
nothing in this example is written in the pure METAFONT language that the
computer understands! METAFONT is really a low-level language that has been
designed to allow easy adaptation to many different styles of programming, and
io.mf illustrates just one of countless ways to use it. Most of the terms in io.mf
are conventions of “plain METAFONT,” which is a collection of subroutines found
in Appendix B. METAFONT’s primitive capabilities are not meant to be used
directly, because that would force a particular style on all users. A “base file” is
generally loaded into the computer at the beginning of a run, so that a standard
set of conventions is readily available. METAFONT’s welcoming message, quoted
at the beginning of this chapter, says ‘preloaded base=plain’; it means that
the primitive METAFONT language has been extended to include the features
of the plain base file. This book is not only about METAFONT,; it also explains
how to use the conventions of METAFONT’s plain base. Similarly, The TEXbook
describes a standard extension of TEX called “plain TEX format”; the “plain”
extensions of TEX and METAFONT are completely analogous to each other.

The notions of mode_setup, define_pixels, beginchar, penpos, and
many other things found in io.mf are aspects of plain METAFONT but they are
not hardwired into METAFONT itself. Appendix B defines all of these things, as
well as the relations between “sharped” and “unsharped” variables. Even the
fact that z; stands for (z1,y1) is defined in Appendix B; METAFONT does not
have this built in. You are free to define even fancier bases as you gain more
experience, but the plain base is a suitable starting point for a novice.

o
overshoot
sidebar
rounding
plain

TeX
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@ If you have important applications that make use of a different base file, it’s

possible to create a version of METAFONT that has any desired base preloaded.
Such a program is generally called by a special name, since the nickname ‘mf’ is reserved
for the version that includes the standard plain base assumed in this book. For example,
the author has made a special version called ‘cmmf’ just for the Computer Modern
typefaces he has been developing, so that the Computer Modern base file does not
have to be loaded each time he makes a new experiment.

?P There’s a simple way to change the base file from the one that has been

preloaded: If the first character you type in response to ‘**’ is an ampersand
(‘&’), METAFONT will replace its memory with a specified base file before proceeding.
If, for example, there is a base file called ‘cm.base’ but not a special program called
‘cmmf’, you can substitute the Computer Modern base for the plain base in mf by
typing ‘&cm’ at the very beginning of a run. If you are working with a program that
doesn’t have the plain base preloaded, the first experiment in this chapter won’t work as
described, but you can do it by starting with ‘¢plain \relax’ instead of just ‘\relax’.
These conventions are exactly the same as those of TEX.

Our Ionian example uses the following words that are not part of plain
METAFONT: em, cap, thin, thick, o, curve_sidebar, test_I, code, trial_stem,
trial_width, and stem. If you change these to some other words or symbols—for
example, if you replace ‘thin’ and ‘thick’ by ‘t’ and ‘T’ respectively, in lines
3, 6, 10, and 11—the results will be unchanged, unless your substitutions just
happen to clash with something that plain METAFONT has already preémpted.
In general, the best policy is to choose descriptive terms for the quantities in
your programs, since they are not likely to conflict with reserved pseudo-words
like penpos and endchar.

We have already noted that lines 9-16 of the file represent a program
for the letter ‘O’. The main part of this program, in lines 10-15, uses the ideas
of Chapter 4, but we haven’t seen the stuff in lines 9 and 16 before. Plain
METAFONT makes it convenient to define letters by starting each one with

beginchar ((code), (width), (height), (depth));

here (code) is either a quoted single character like "0" or a number that rep-
resents the character’s position in the final font. The other three quantities
(width), (height), and (depth) say how big the bounding box is, so that typeset-
ting systems like TEX will be able to use the character. These three dimensions
must be given in device-independent units, i.e., in “sharped” form.

» EXERCISE 5.1
What are the height and width of the bounding box described in the beginchar
command on line 9 of io.mf, given the parameter values defined on line 27 Give
your answer in terms of printer’s points.

Each beginchar operation assigns values to special variables called w,
h, and d, which represent the respective width, height, and depth of the current
character’s bounding box, rounded to the nearest integer number of pixels. Our
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example file uses w and h to help establish the locations of several pen positions endchar

(see lines 12, 13, and 21 of io.mf). S:?labels
» EXERCISE 5.2 gybroutine

Continuing the previous exercise, what will be the values of w and h if there are mf

exactly 3.6 pixels per point? file names

There’s a quoted phrase "The letter 0" at the end of line 9; this is
simply a title that will be used in printouts.

The ‘endchar’ on line 16 finishes the character that was begun on line 9,
by writing it to an output file and possibly displaying it on your screen. We will
want to see the positions of the control points z1, 22, 23, and z4 that are used in its
design, together with the auxiliary points (z1;, 2o, 231, 241) and (217, 225, 231, Z4r)
that come with the penpos conventions; the statement ‘penlabels(1,2,3,4)’
takes care of labeling these points on the proofsheets.

So much for the letter O. Lines 17-23 are analogous to what we’ve seen
before, except that there’s a new wrinkle: They contain a little program enclosed
by ‘def...enddef’, which means that a subroutine is being defined. In other
words, those lines set up a whole bunch of METAFONT commands that we will
want to execute several times with minor variations. The subroutine is called
test_I and it has three parameters called code, trial_stem, and trial_width (see
line 17). The idea is that we’ll want to draw several different versions of an
‘T’, having different stem widths and character widths; but we want to type the
program only once. Line 18 defines stem# and stem, given a value of trial_stem;
and lines 19-23 complete the program for the letter I (copying it from Chapter 4).

Oops—we’ve been talking much too long about io.mf. It’s time to stop
rambling and to begin Experiment 2 in earnest, because it will be much more
fun to see what the computer actually does with that file.

Are you brave enough to try Experiment 2?7 Sure. Get METAFONT
going again, but this time when the machine says ‘**’ you should say ‘io’, since
that’s the name of the file you have prepared so laboriously. (The file could also
be specified by giving its full name ‘io.mf’, but METAFONT automatically adds
‘.mf’ when no suffix has been given explicitly.)

If all goes well, the computer should now flash its lights a bit and—
presto—a big ‘O’ should be drawn on your screen. But if your luck is as good
as the author’s, something will probably go wrong the first time, most likely
because of a typographic error in the file. A METAFONT program contains lots
of data with comparatively little redundancy, so a single error can make a drastic
change in the meaning. Check that you’ve typed everything perfectly: Be sure
to notice the difference between the letter ‘1’ and the numeral ‘1’ (especially in
line 12, where it says ‘x11’, not ‘x11 or ‘x11’); be sure to distinguish between
the letter ‘0’ and the numeral ‘0’ (especially in line 9); be sure to type the
“underline” characters in words like ‘mode_setup’. We'll see later that METR-
FONT can recover gracefully from most errors, but your job for now is to make
sure that you've got io.mf correct.
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Once you have a working file, the computer will draw you an ‘O’ and it
will also say something like this:

(io.mf
The letter 0 [79])
*

What does this mean? Well, ‘(io.mf’ means that it has started to read your
file, and ‘The letter 0’ was printed when the title was found in line 9. Then
when METAFONT got to the endchar on line 16, it said ‘[79]’ to tell you that it
had just output character number 79. (This is the ASCII code for the letter O;
Appendix C lists all of these codes, if you need to know them.) The ¢)’ after
‘[79]° means that METAFONT subsequently finished reading the file, and the ‘x’
means that it wants another instruction.

Hmmm. The file contains programs for both I and O; why did we get
only an O7 Answer: Because lines 17-23 simply define the subroutine test_I'; they
don’t actually do anything with that subroutine. We need to activate test_I if
we're going to see what it does. So let’s type

test_I("I",5/6,1/3);

this invokes the subroutine, with code = "I", trial_stem = %, and trial_width =
%. The computer will now draw an I corresponding to these values,* and it will
prompt us for another command.

It’s time to type ‘end’ now, after which METAFONT should tell us that it
has completed this run and made an output file called ‘io.2602gf’. Running this
file through GFtoDVI as in Experiment 1 will produce two proofsheets, showing
the ‘O’ and the ‘I’ we have created. The output won’t be shown here, but you
can see the results by doing the experiment personally.

Look at those proofsheets now, because they provide instructive exam-
ples of the simulated broad-edge pen constructions introduced in Chapter 4.
Compare the ‘O’ with the program that drew it: Notice that the penpos, in
line 10 makes the curve slightly thicker at the bottom than at the top; that
the equation ‘xy; = w — w3 = curve_sidebar’ in line 12 makes the right edge
of the curve as far from the right of the bounding box as the left edge is from
the left; that line 13 places point 1 slightly lower than point 3. The proofsheet
for ‘I’ should look very much like the corresponding illustration near the end of
Chapter 4, but it will be somewhat larger.

@ Your proof copy of the ‘O’ should show twelve dots for key points; but only

ten of them will be labeled, because there isn’t room enough to put labels on
points 2 and 4. The missing labels usually appear in the upper right corner, where it
might say, e.g., ‘4 = 41 + (-1,-5.9)’; this means that point z4 is one pixel to the left
and 5.9 pixels down from point z4;, which is labeled. (Some implementations omit this
information, because there isn’t always room for it.)

* Unless, of course, there was a typing error in lines 17-23, where test_I is defined.
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The proofsheets obtained in Experiment 2 show the key points and the
bounding boxes, but this extra information can interfere with our perception of
the character shape itself. There’s a simple way to get proofs that allow a viewer
to criticize the results from an aesthetic rather than a logical standpoint; the
creation of such proofs will be the goal of our next experiment.

Here’s how to do Experiment 3: Start METAFONT as usual, then type

\mode=smoke; input io

in response to the ‘*x’. This will input file io.mf again, after establishing
“smoke” mode. (As in Experiment 1, the command line begins with ‘\’ so
that the computer knows you aren’t starting with the name of a file.) Then
complete the run exactly as in Experiment 2, by typing ‘test_I("I",5/6,1/3);
end’; and apply GFtoDVI to the resulting file i0.2602gf.

This time the proofsheets will contain the same characters as before,
but they will be darker and without labeled points. The bounding boxes will be
indicated only by small markings at the corners; you can put these boxes next
to each other and tack the results up on the wall, then stand back to see how
the characters will look when set by a high-resolution typesetter. (This way of
working is called smoke mode because it’s analogous to the “smoke proofs” that
punch-cutters traditionally used to test their handiwork. They held the newly
cut type over a candle flame so that it would be covered with carbon; then they
pressed it on paper to make a clean impression of the character, in order to see
whether changes were needed.)

@ Incidentally, many systems allow you to invoke METAFONT by typing a one-

line command like ‘mf io’ in the case of Experiment 2; you don’t have to
wait for the ‘*x*’ before giving a file name. Similarly, the one-liners ‘mf \relax’ and
‘mf \mode=smoke; input io’ can be used on many systems at the beginning of Experi-
ments 1 and 3. You might want to try this, to see if it works on your computer; or you
might ask somebody if there’s a similar shortcut.

Experiments 1, 2, and 3 have demonstrated how to make proof drawings
of test characters, but they don’t actually produce new fonts that can be used
in typesetting. For this, we move onward to Experiment 4, in which we put
ourselves in the position of a person who is just starting to design a new typeface.
Let’s imagine that we’re happy with the O of io.mf, and that we want a “sans
serif” T in the general style produced by test_I, but we aren’t sure about how
thick the stem of the I should be in order to make it blend properly with the O.
Moreover, we aren’t sure how much white space to leave at the sides of the I.
So we want to do some typesetting experiments, using a sequence of different Is.

The ideal way to do this would be to produce a high-resolution test font
and to view the output at its true size. But this may be too expensive, because
fine printing equipment is usually available only for large production runs. The
next-best alternative is to use a low-resolution printer but to magnify the output,
so that the resolution is effectively increased. We shall adopt the latter strategy,
because it gives us a chance to learn about magnification as well as fontmaking.

*k
backslash
smoke
magnification
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After starting METAFONT again, you can begin Experiment 4 by typing
\mode=localfont; mag=4; input io

in response to the ‘“**’. The plain base at your installation is supposed to recog-
nize localfont as the name of the mode that makes fonts for your “standard”
output device. The equation ‘mag=4" means that this run will produce a font
that is magnified fourfold; i.e., the results will be 4 times bigger than usual.

The computer will read io.mf as before, but this time it won’t display
an ‘Q’; characters are normally not displayed in fontmaking modes, because we
usually want the computer to run as fast as possible when it’s generating a font
that has already been designed. All you’ll see is ‘(io.mf [79])’, followed by ‘*’.
Now the fun starts: You should type

code=100;
for s=7 upto 10:
for w=5 upto 8:
test_I(incr code,s/10,w/20);
endfor endfor end.

(Here ‘upto’ must be typed as a single word.) We’ll learn about repeating things
with ‘for...endfor’ in Chapter 19. This little program produces 16 versions of
the letter I, with stem widths of 1—70, %, 19—0, and % pt, and with character widths
of 2%, %, %, and 2% em. The sixteen trial characters will appear in positions
101 through 116 of the font; it turns out that these are the ASCII codes for lower
case letters e through t inclusive. (Other codes would have been used if ‘code’
had been started at a value different from 100. The construction ‘incr code’
increases the value of code by 1 and produces the new value; thus, each use of
test_I has a different code number.)

This run of METAFONT will not only produce a generic font io.nnngf,
it will also create a file called io.tfm, the “font metric file” that tells typesetting
systems like TEX how to make use of the new font. The remaining part of
Experiment 4 will be to put TEX to work: We shall make some test patterns
from the new font, in order to determine which ‘I’ is best.

You may need to ask a local system wizard for help at this point, because
it may be necessary to move the file io.tfm to some special place where TEX
and the other typesetting software can find it. Furthermore, you’ll need to run
a program that converts io.nnngf to the font format used by your local output
device. But with luck, these will both be fairly simple operations, and a new
font called ‘io’ will effectively be installed on your system. This font will contain
seventeen letters, namely an 0 and sixteen I’s, where the I’s happen to be in
the positions normally occupied by e, f, ..., t. Furthermore, the font will be
magnified fourfold.

@ The magnification of the font will be reflected in its file name. For example,
if localfont mode is for a device with 200 pixels per inch, the io font at 4x
magnification will be called ‘io.800gf’.
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You can use TEX to typeset from this font like any other, but for the
purposes of Experiment 4 it’s best to use a special TEX package that has been
specifically designed for font testing. All you need to do is to run TEX—which
is just like running METAFONT, except that you call it ‘tex’ instead of ‘mf’;
and you simply type ‘testfont’ in reply to TEX’s ‘“**’. (The testfont routine
should be available on your system; if not, you or somebody else can type it in,
by copying the relevant material from Appendix H.) You will then be asked for
the name of the font you wish to test. Type

io scaled 4000

(which means the io font magnified by 4, in TEX’s jargon), since this is what
METAFONT just created. The machine will now ask you for a test command,
and you should reply

\mixture

to get the “mixture” test. (Don’t forget the backslash.) You'll be asked for a
background letter, a starting letter, and an ending letter; type ‘0’, ‘e’, and ‘t’,
respectively. This will produce sixteen lines of typeset output, in which the first
line contains a mixture of 0 with e, the second contains a mixture of 0 with f,
and so on. To complete Experiment 4, type ‘\end’ to TEX, and print the file
testfont.dvi that TEX gives you.

If all goes well, you’ll have sixteen lines that say ‘OIOOIIOOOIITOT’,
but with a different I on each line. In order to choose the line that looks best,
without being influenced by neighboring lines, it’s convenient to take two sheets
of blank paper and use them to mask out all of the lines except the one you're
studying. Caution: These letters are four times larger than the size at which
the final font is meant to be viewed, so you should look at the samples from
afar. Xerographic reductions may introduce distortions that will give misleading
results. Sometimes when you stare at things like this too closely, they all look
wrong, or they all look right; first impressions are usually more significant than
the results of logical reflection. At any rate, you should be able to come up
with an informed judgment about what values to use for the stem width and the
character width of a decent ‘I’; these can then be incorporated into the program,
the ‘def’ and ‘enddef’ parts of io.mf can be removed, and you can go on to
design other characters that go with your I and O. Furthermore you can always
go back and make editorial changes after you see your letters in more contexts.

@@» EXERCISE 5.3
The goddess Io was known in Egypt as Isis. Design an ‘S’ for her.

Well, this isn’t a book about type design; the example of io.mf is simply
intended to illustrate how a type designer might want to operate, and to provide a
run-through of the complete process from design of type to its use in a document.
We must go back now to the world of computerese, and study a few more practical
details about the use of METAFONT.

testfont
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This has been a long chapter, but take heart: There’s only one more
experiment to do, and then you will know enough about METAFONT to run it
fearlessly by yourself forever after. The only thing you are still missing is some
information about how to cope with error messages. Sometimes METAFONT
stops and asks you what to do next. Indeed, this may have already happened,
and you may have panicked.

Error messages can be terrifying when you aren’t prepared for them;
but they can be fun when you have the right attitude. Just remember that
you really haven’t hurt the computer’s feelings, and that nobody will hold the
errors against you. Then you’ll find that running METAFONT might actually be
a creative experience instead of something to dread.

The first step in Experiment 5 is to plant some intentional mistakes in
the input file. Make a copy of io.mf and call it badio.mf; then change line 1 of
badio.mf to

mode setup; % an intentional error!

(thereby omitting the underline character in mode_setup). Also change the first
semicolon (‘;’) on line 2 to a colon (‘:’); change ‘thick,10’ to ‘thick,10’ on
line 10 (i.e., replace the numeral ‘1’ by the letter ‘1’); and change ‘thin’ to
‘thinn’ on line 11. These four changes introduce typical typographic errors, and
it will be instructive to see if they lead to any disastrous consequences.

Now start METAFONT up again; but instead of cooperating with the
computer, type ‘mumble’ in reply to the ‘**’. (As long as you're going to make
intentional mistakes, you might as well make some dillies.) METAFONT will say
that it can’t find any file called mumble.mf, and it will ask you for another name.
Just hit (return) this time; you’ll see that you had better give the name of a real
file. So type ‘badio’ and wait for METAFONT to find one of the faux pas in that
messed-up travesty.

Ah yes, the machine will soon stop, after typing something like this:

>> mode.setup
! Isolated expression.
<to be read again>

>
1.1 mode setup;

% an intentional error!
?

METAFONT begins its error messages with ‘!’, and it sometimes precedes them
with one or two related mathematical expressions that are displayed on lines
starting with ‘>>’. Each error message is also followed by lines of context that
show what the computer was reading at the time of the error. Such context lines
occur in pairs; the top line of the pair (e.g., ‘mode setup;’) shows what META-
FONT has looked at so far, and where it came from (‘1.1’; i.e., line number 1);
the bottom line (here ‘% an intentional error!’) shows what METAFONT has
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yet to read. In this case there are two pairs of context lines; the top pair refers
to a semicolon that METAFONT has read once but will be reading again, because
it didn’t belong with the preceding material.

You don’t have to take out pencil and paper in order to write down the
error messages that you get before they disappear from view, since METAFONT
always writes a “transcript” or “log file” that records what happened during
each session. For example, you should now have a file called io.log containing
the transcript of Experiment 4, as well as a file mfput.log that contains the
transcript of Experiment 1. (The old transcript of Experiment 2 was probably
overwritten when you did Experiment 3, and again when you did Experiment 4,
because all three transcripts were called io.log.) At the end of Experiment 5
you’ll have a file badio.log that will serve as a helpful reminder of what errors
need to be fixed up.

The ‘?’ that appears after the context display means that METAFONT
wants advice about what to do next. If you’ve never seen an error message
before, or if you’ve forgotten what sort of response is expected, you can type ‘7’
now (go ahead and try it!); METAFONT will respond as follows:

Type <return> to proceed, S to scroll future error messages,
R to run without stopping, Q to run quietly,

I to insert something, E to edit your file,

1 or ... or 9 to ignore the next 1 to 9 tokens of input,

H for help, X to quit.

This is your menu of options. You may choose to continue in various ways:

1. Simply type (return). METAFONT will resume its processing, after at-
tempting to recover from the error as best it can.

2. Type ‘S’. METAFONT will proceed without pausing for instructions if
further errors arise. Subsequent error messages will flash by on your
terminal, possibly faster than you can read them, and they will appear
in your log file where you can scrutinize them at your leisure. Thus,
‘S’ is sort of like typing (return) to every message.

3. Type ‘R’. This is like ‘S’ but even stronger, since it tells METAFONT not
to stop for any reason, not even if a file name can’t be found.

4. Type ‘Q’. This is like ‘R’ but even more so, since it tells METAFONT not
only to proceed without stopping but also to suppress all further output
to your terminal. It is a fast, but somewhat reckless, way to proceed
(intended for running METAFONT with no operator in attendance).

5. Type ‘I’, followed by some text that you want to insert. METAFONT
will read this text before encountering what it would ordinarily see next.
6. Type a small number (less than 100). METAFONT will delete this many
tokens from whatever it is about to read next, and it will pause again
to give you another chance to look things over. (A “token” is a name,
number, or symbol that METAFONT reads as a unit; e.g., ‘mode’ and

transcript
log file
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‘setup’ and ¢;’ are the first three tokens of badio.mf, but ‘mode_setup’
is the first token of io.mf. Chapter 6 explains this concept precisely.)

7. Type ‘H’. This is what you should do now and whenever you are faced
with an error message that you haven’t seen for a while. METAFONT
has two messages built in for each perceived error: a formal one and
an informal one. The formal message is printed first (e.g., ‘! Isolated
expression.’); the informal one is printed if you request more help
by typing ‘H’, and it also appears in your log file if you are scrolling
error messages. The informal message tries to complement the formal
one by explaining what METAFONT thinks the trouble is, and often by
suggesting a strategy for recouping your losses.

8. Type ‘X’. This stands for “exit.” It causes METAFONT to stop working
on your job, after putting the finishing touches on your log file and on
any characters that have already been output to your gf and/or tfm
files. The current (incomplete) character will not be output.

9. Type ‘E’. This is like ‘X’, but it also prepares the computer to edit the
file that METAFONT is currently reading, at the current position, so that
you can conveniently make a change before trying again.

After you type ‘H’ (or ‘h’, which also works), you’ll get a message that tries to
explain the current problem: The mathematical quantity just read by META-
FONT (i.e., mode.setup) was not followed by ‘=’ or ‘:=", so there was nothing for
the computer to do with it. Chapter 6 explains that a space between tokens (e.g.,
‘mode setup’) is equivalent to a period between tokens (e.g., ‘mode.setup’). The
correct spelling ‘mode_setup’ would be recognized as a preloaded subroutine of
plain METAFONT, but plain METAFONT doesn’t have any built-in meaning for
mode . setup. Hence mode.setup appears as a sort of orphan, and METAFONT
realizes that something is amiss.

In this case, it’s OK to go ahead and type (return), because we really
don’t need to do the operations of mode_setup when no special mode has been
selected. METAFONT will continue by forgetting the isolated expression, and it
will ignore the rest of line 1 because everything after a ‘%’ sign is always ignored.
(This is another thing that will be explained in Chapter 6; it’s a handy way to
put comments into your METAFONT programs.) The changes that were made
to line 1 of badio.mf therefore have turned out to be relatively harmless. But
METAFONT will almost immediately encounter the mutilated semicolon in line 2:

! Extra tokens will be flushed.
<to be read again>

1.2 em#:=10pt#:
cap#:=7Tpt#;
?

What does this mean? Type ‘H’ to find out. METAFONT has no idea what to do
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b

with a ‘:” at this place in the file, so it plans to recover by “flushing” or getting
rid of everything it sees, until coming to a semicolon. It would be a bad idea to
type (return) now, since you’d lose the important assignment ‘cap#:=7pt#’, and
that would lead to worse errors.

You might type ‘X’ or ‘E’ at this point, to exit from METAFONT and to
fix the errors in lines 1 and 2 before trying again. But it’s usually best to keep
going, trying to detect and correct as many mistakes as possible in each run,
since that increases your productivity while decreasing your computer bills. An
experienced METAFONT user will quit after an error only if the error is unfixable,
or if there’s almost no chance that additional errors are present.

The solution in this case is to proceed in two steps: First type ‘1’, which
tells METAFONT to delete the next token (the unwanted ‘:’); then type ‘I;’,
which inserts a semicolon. This semicolon protects the rest of line 2 from being
flushed away, so all will go well until METAFONT reaches another garbled line.

The next error message is more elaborate, because it is detected while
METAFONT is trying to carry out a penpos command; penpos is not a primitive
operation (it is defined in plain METAFONT), hence a lot more context is given:

>> 10
! Improper transformation argument.
<to be read again>

penpos—>. .. (EXPR3),0)rotated (EXPR4) ;

x (SUFFIX2)=0.5(x(SUFF...

1.10 penposl(thick,10)
; penpos2(.1[thin,thick],90-10);
?

At first, such error messages will appear to be complete nonsense to you, because
much of what you see is low-level METAFONT code that you never wrote. But you
can overcome this hangup by getting a feeling for the way METAFONT operates.

The bottom line shows how much progress METAFONT has made so far
in the badio file: It has read ‘penposi(thick,10)’ but not yet the semicolon,
on line 10. The penpos routine expands into a long list of tokens; indeed, this
list is so long that it can’t all be shown on two lines, and the appearances of
‘...” indicate that the definition of penpos has been truncated here. Parameter
values are often inserted into the expansion of a high-level routine; in this case,
for example, ‘(EXPR3)’ and ‘(EXPR4)’ correspond to the respective parameters
‘thick’ and ‘10’, and ‘(SUFFIX2)’ corresponds to ‘1’. METAFONT detected an
error just after encountering the phrase ‘rotated (EXPR4)’; the value of (EXPR4)
was an undefined quantity (namely ‘10’, which METAFONT treats as the sub-
scripted variable ‘ly’), and rotation is permitted only when a known numeric
value has been supplied. Rotations are particular instances of what METAFONT
calls transformations; hence METAFONT describes this particular error by saying
that an “improper transformation argument” was present.

flushing

EXPR

SUFFIX
rotation
transformations
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When you get a multiline error message like this, the best clues about
the source of the trouble are usually on the bottom line (since that is what
you typed) and on the top line (since that is what triggered the error message).
Somewhere in there you can usually spot the problem.

If you type ‘H’ now, you’ll find that METAFONT has simply decided to
continue without doing the requested rotation. Thus, if you respond by typing
(return), METAFONT will go on as if the program had said ‘penpos1(thick,0)’.
Comparatively little harm has been done; but there’s actually a way to fix the
error perfectly before proceeding: Insert the correct rotation by typing

I rotated 10

and METAFONT will rotate by 10 degrees as if ‘10’ had been ‘10’.

What happens next in Experiment 57 METAFONT will hiccup on the
remaining bug that we planted in the file. This time, however, the typo will
not be discovered until much later, because there’s nothing wrong with line 11
as it stands. (The variable thinn is not defined, but undefined quantities are
no problem unless you’re doing something complicated like rotation. Indeed,
METAFONT programs typically consist of equations in which there are lots of
unknowns; variables get more and more defined as time goes on. Hence spelling
errors cannot possibly be detected until the last minute.) Finally comes the
moment of truth, when badio tries to draw a path through an unknown point;
and you will get an error message that’s even scarier than the previous one:

>> 0.08682thinn+144
! Undefined x coordinate has been replaced by O.
<to be read again>
{
<for(1l)> ...FFIX0){up}..z4(SUFFIX0){
left}..cycle; ENDFOR
penstroke->...ath_.e:=(TEXTO) ;endfor

.if.cycle.path_.l:cyc...

<to be read again>

1.15 ... ..z3e{up}. .zde{left}. .cycle;
?

Wow; what’s this? The expansion of penstroke involves a “for loop,” and the
error was detected in the midst of it. The expression ‘0.08682thinn+144’ just
above the error message implies that the culprit in this case was a misspelled
‘thin’. If that hadn’t been enough information, you could have gleaned another
clue from the fact that ‘z4 (SUFFIX0)’ has just been read; (SUFFIX0) is the
current loop value and ‘<for(1)>’ indicates that the value in question is ‘1’,
hence zy is under suspicion. (Sure enough, the undefined = coordinate that
provoked this error can be shown to be x4 = 0.08682thinn + 144.)
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In any event the mistake on line 11 has propagated too far to be fixable,
so you're justified in typing ‘X’ or ‘E’ at this point. But type ‘S’ instead, just
for fun: This tells METAFONT to plunge ahead, correcting all remaining errors
as best it can. (There will be a few more problems, since several variables still
depend on ‘thinn’.) METAFONT will draw a very strange letter O before it gets
to the end of the file. Then you should type ‘end’ to terminate the run.

If you try to edit badio.mf again, you’ll notice that line 2 still contains
a colon instead of a semicolon. The fact that you told METAFONT to delete the
colon and to insert additional material doesn’t mean that your file has changed
in any way. However, the transcript file badio.log has a record of all the errors,
so0 it’s a handy reference when you want to correct mistakes. (Why not look at
badio.log now, and io.log too, in order to get familiar with log files?)

@ » EXERCISE 5.4

Suppose you were doing Experiment 3 with badio instead of io, so you be-
gan by saying ‘\mode=smoke; input badio’. Then you would want to recover from the
error on line 1 by inserting a correct mode_setup command, instead of by simply
(return)ing, because mode_setup is what really establishes smoke mode. Unfortu-
nately if you try typing ‘I mode_setup’ in response to the “isolated expression” error,
it doesn’t work. What should you type instead?

By doing the five experiments in this chapter you have learned at first
hand (1) how to produce proofsheets of various kinds, including “smoke proofs”;
(2) how to make a new font and test it; (3) how to keep calm when METAFONT
issues stern warnings. Congratulations! You're on the threshold of being able to
do lots more. As you read the following chapters, the best strategy will be for
you to continue making trial runs, using experiments of your own design.

» EXERCISE 5.5
However, this has been an extremely long chapter, so you should go outside now
and get some real exercise.

editing
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Aeschylus
RUNNING

Let us learn how lo's frenzy came—
She telling her disasters manifold.

— ASCHYLUS, Prometheus Bound (c.470 B.C.)

To the student who wishes to use graphical methods as a tool,
it can not be emphasized too strongly that practice in the use of that tool
is as essential as a knowledge of how to use it.

The oft-repeated pedagogical phrase, “we learn by doing,” is applicable here.
— THEODORE RUNNING, Graphical Mathematics (1927)
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So far in this book we’'ve seen lots of things that METAFONT can do, but we
haven’t discussed what METAFONT can’t do. We have looked at many examples
of commands that METAFONT can understand, but we haven’t dwelt on the
fact that the computer will find many phrases unintelligible. It’s time now to
adopt a more systematic approach and to study the exact rules of METAFONT’s
language. Then we’ll know what makes sense to the machine, and we’ll also
know how to avoid ungrammatical utterances.

A METAFONT program consists of one or more lines of text, where each
line is made up of letters, numbers, punctuation marks, and other symbols that
appear on a standard computer keyboard. A total of 95 different characters
can be employed, namely a blank space plus the 94 visible symbols of stan-
dard ASCII. (Appendix C describes the American Standard Code for Informa-
tion Interchange, popularly known as “ASCIIL,” under which code numbers 33
through 126 have been assigned to 94 specific symbols. This particular coding
scheme is not important to a METAFONT programmer; the only relevant thing
is that 94 different nonblank symbols can be used.)

METAFONT converts each line of text into a series of tokens, and a
programmer should understand exactly how this conversion takes place. Tokens
are the individual lexical units that govern the computer’s activities. They are
the basic building blocks from which meaningful sequences of instructions can
be constructed. We discussed tokens briefly at the end of the previous chapter;
now we shall consider them in detail. Line 9 of the file io.mf in that chapter is
a typical example of what the machine might encounter:

beginchar("0",0.8em#,cap#,0); "The letter 0";
When METAFONT reads these ASCII characters it finds sixteen tokens:

L] # L
@ E] @ E] l"The letter O"‘ E]

Two of these, "0" and "The letter 0", are called string tokens because they
represent strings of characters. Two of them, ‘0.8’ and ‘0’, are called numeric
tokens because they represent numbers. The other twelve—‘beginchar’, ‘(’,
etc.—are called symbolic tokens; such tokens can change their meaning while a
METAFONT program runs, but string tokens and numeric tokens always have a
predetermined significance. Notice that clusters of letters like ‘beginchar’ are
treated as a unit; the same holds with respect to letters mixed with underline
characters, as in ‘mode_setup’. Indeed, the rules we are about to study will
explain that clusters of other characters like ‘0.8 and ‘:=’" are also considered
to be indecomposable tokens. METAFONT has a definite way of deciding where
one token stops and another one begins.

It’s often convenient to discuss grammatical rules by formulating them
in a special notation that was introduced about 1960 by John Backus and Peter
Naur. Parts of speech are represented by named quantities in angle brackets,
and syntax rules are used to express the ways in which those quantities can
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be built up from simpler units. For example, here are three syntax rules that
completely describe the possible forms of numeric tokens:

(decimal digit) — 0 | 1 |2 |3 |4 |5]|6]|7]8]9
(digit string) — (decimal digit) | (digit string)({decimal digit)
(numeric token) — (digit string) | . (digit string)

| (digit string) . (digit string)

The first rule says that a (decimal digit) is either ‘0’ or ‘1" or --- or ‘9’; thus
it must be one of the ten numerals. The next rule says that a (digit string) is
either a (decimal digit) or a (digit string) followed by a (decimal digit); thus it
must be a sequence of one or more digits. Finally, a (numeric token) has one of
three forms, exemplified respectively by ‘15’, *.05’, and ‘3.14159’.

Syntax rules explain only the surface structure of a language, not the
underlying meanings of things. For example, the rules above tell us that ‘15’
is a (numeric token), but they don’t imply that ‘15’ has any connection with
the number fifteen. Therefore syntax rules are generally accompanied by rules
of semantics, which ascribe meanings to the strings of symbols that meet the
conditions of the syntax. In the case of numeric tokens, the principles of ordinary
decimal notation define the semantics, except that METAFONT deals only with
numbers in a limited range: A numeric token must be less than 4096, and its
value is always rounded to the nearest multiple of ﬁ. Thus, for example,
‘.1” does not mean %0, it means 665555;6 (which is slightly greater than 1—10) It
turns out that the tokens ‘.099999’ and ‘0.10001’ both have exactly the same

meaning as ‘.1’, because all three tokens represent the value 665555346.

g% » EXERCISE 6.1

Are the following pairs of numeric tokens equivalent to each other, when they
appear in METAFONT programs? (a) 0 and 0.00001; (b) 0.00001 and 0.00002;
(c) 0.00002 and 0.00003; (d) 04095.999999 and 100007

METAFONT converts each line of text into a sequence of tokens by re-
peating the following rules until no more characters remain on the line:

1) If the next character is a space, or if it’s a period (‘.”) that isn’t followed
by a decimal digit or a period, ignore it and move on.

2) If the next character is a percent sign (‘%’), ignore it and also ignore
everything else that remains on the current line. (Percent signs therefore
allow you to write comments that are unseen by METAFONT.)

3) If the next character is a decimal digit or a period that’s followed by
a decimal digit, the next token is a numeric token, consisting of the
longest sequence of contiguous characters starting at the current place
that satisfies the syntax for (numeric token) above.

4) If the next character is a double-quote mark (‘"”), the next token is a
string token, consisting of all characters from the current place to the
next double-quote, inclusive. (There must be at least one more double-
quote remaining on the line, otherwise METAFONT will complain about

decimal digit
digit string
numeric token

semantics

numeric tokens, rounded values
numeric tokens, maximum value
space

period

decimal point

percent sign

comments

decimal digit

double-quote mark
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an “incomplete string.”) A string token represents the sequence of incomplete string
characters between the double-quotes. parenthesis
. . table of character classes
5) If the next character is a parenthesis (‘C’ or ©)’), a comma (‘,’), or a HOLLAND
: ) : : fedd Camden
s'emlcolon (*;7), the next token is a symbolic token consisting of that COWPER
single character. Homer

6) Otherwise the next token is a symbolic token consisting of the next
character together with all immediately following characters that appear
in the same row of the following table:

ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghi jklmnopgrstuvwxyz

<=>:|
(29
4
/*\
e
#40$
[
]
{}
(see rules 1, 3, 6)
, 3 ) (see rule 5; these characters are “loners”)
" (see rule 4 for details about string tokens)
0123456789 (see rule 3 for details about numeric tokens)
% (see rule 2 for details about comments)

The best way to learn the six rules about tokens is to work the following exercise,
after which you’ll be able to read any input file just as the computer does.

» EXERCISE 6.2
What tokens does METAFONT find in the (ridiculous) line

xx3.1.6..[[at+-bc_d.e] J"a %" <[>(($1. 5"+=""" Y weird?

» EXERCISE 6.3
Criticize the following statement: METAFONT ignores all spaces in the input.

@ » EXERCISE 6.4

True or false: If the syntax for (numeric token) were changed to include a
fourth alternative, ‘(digit string).’, the meaning of METAFONT programs would not
change in any way.

Yet wee with all our seeking could see no tokens.
— PHILEMON HOLLAND, Camden'’s Brittania (1610)

Unpropitious tokens interfered.
— WILLIAM COWPER, Homer’s lliad (1791)
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One of METAFONT’s most important concepts is the notion of a variable—
something that can take on a variety of different values. Indeed, this is one of
the most important concepts in all of mathematics, and variables play a promi-
nent role in almost all computer languages. The basic idea is that a program
manipulates data, and the data values are stored in little compartments of a
computer’s memory. Each little compartment is a variable, and we refer to an
item of data by giving its compartment a name.

For example, the io.mf program for the letter O in Chapter 5 contains
lots of variables. Some of these, like ‘x11” and ‘y1’, represent coordinates. Others,
like ‘up’, represent directions. The variables ‘em#’ and ‘thin#’ stand for physical,
machine-independent distances; the analogous variables ‘em’ and ‘thin’ stand for
the corresponding machine-dependent distances in units of pixels.

These examples indicate that different variables are often related to each
other. There’s an implicit connection between ‘em#’ and ‘em’, between ‘x1’ and
‘y1’; the ‘penpos’ convention sets up relationships between ‘x11’, ‘x1’, and ‘x1r’.
By choosing the names of variables carefully, programmers can make their pro-
grams much easier to understand, because the relationships between variables
can be made to correspond to the structure of their names.

In the previous chapter we discussed tokens, the atomic elements from
which all METAFONT programs are made. We learned that there are three kinds
of tokens: numeric (representing numbers), string (representing text), and sym-
bolic (representing everything else). Symbolic tokens have no intrinsic meaning;
any symbolic token can stand for whatever a programmer wants it to represent.

Some symbolic tokens do, however, have predefined primitive meanings,
when METAFONT begins its operations. For example, ‘+’ stands initially for
“plus,” and ‘;’ stands for “finish the current statement and move on to the next
part of the program.” It is customary to let such tokens retain their primitive
meanings, but any symbolic token can actually be assigned a new meaning as a
program is performed. For example, the definition of ‘test_I’ in io.mf makes
that token stand for a macro, i.e., a subroutine. We’ll see later that you can
instruct METAFONT to ‘let plus=+’, after which ‘plus’ will act just like ‘+’ did.

METAFONT divides symbolic tokens into two categories, depending on
their current meaning. If the symbolic token currently stands for one of METR-
FONT’s primitive operations, or if it has been defined to be a macro, it is called a
spark; otherwise it is called a tag. Almost all symbolic tokens are tags, because
only a few are defined to be sparks; however, METAFONT programs typically in-
volve lots of sparks, because sparks are what make things happen. The symbolic
tokens on the first five lines of io.mf include the following sparks:

mode_setup ; := / define_pixels ( , )
and the following tags:

em # pt cap thin thick o
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(some of which appear several times). Tags are used to designate variables, but Pascal
sparks cannot be used within a variable’s name. ;’sg‘j{ble
Some variables, like ‘em#’, have names that are made from more than subscript
one token; in fact, the variable ‘x11’ is named by three tokens, one of which is ziﬁiript
numeric. METAFONT has been designed so that it is easy to make compound arrays
racke

names that correspond to the relations between variables. Conventional pro- [
gramming languages like Pascal would refer to ‘x11’ by the more cumbersome ]
notation ‘x[1].1’; it turns out that ‘x[1].1’ is an acceptable way to designate Quick "

A K K internal quantities
the variable x11 in a METAFONT program, but the shorthand form ‘x11’ is a fontmaking
great convenience because such variables are used frequently.

Here are the formal rules of syntax by which METAFONT understands

the names of variables:

(variable) — (tag)(suffix)
(suffix) — (empty) | (suffix)(subscript) | (suffix)(tag)
(subscript) — (numeric token) | [ (numeric expression) ]

First comes a tag, like ‘x’; then comes a suffix to the tag, like ‘11’. The suffix
might be empty, or it might consist of one or more subscripts or tags that are
tacked on to the original tag. A subscript is a numeric index that permits you
to construct arrays of related variables. The subscript is either a single numeric
token, or it is a formula enclosed in square brackets; in the latter case the formula
should produce a numeric value. For example, ‘x[1]’ and ‘x[k]’ and ‘x[3-2k]’
all mean the same thing as ‘x1’, if k is a variable whose value is 1. But ‘x.k’ is
not the same; it is the tag ‘x’ suffixed by the tag ‘k’, not the tag ‘x’ subscripted
by the value of variable k.

@ The variables ‘x1’ and ‘x01’ and ‘x1.00’ are identical. Since any numeric token

can be used as a subscript, fractional indices are possible; for example, ‘x1.5’
is the same as ‘x[3/2]’. Notice, however, that ‘B007’ and ‘B.007’ are not the same
variable, because the latter has a fractional subscript.

@ METAFONT makes each (suffix) as long as possible. In other words, a (suffix)
is always extended if it is followed by a (subscript) or a (tag).

@ » EXERCISE 7.1
Explain how to type a reference to the doubly subscripted variable ‘a[1] [5]’
without using square brackets.

@ » EXERCISE 7.2
Is it possible to refer to any variable without using square brackets?

@@» EXERCISE 7.3

Jonathan H. Quick (a student) used ‘a.plusl’ as the name of a variable at
the beginning of his program; later he said ‘let plus=+. How could he refer to the
variable ‘a.plus1’ after that?

@ METAFONT has several special variables called internal quantities that are
intimately wired-in to the computer’s behavior. For example, there’s an in-
ternal quantity called ‘fontmaking’ that controls whether or not a tfm file is produced;
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another one called ‘tracingtitles’ governs whether or not titles like "The letter 0"
appear on your terminal; still another one called ‘smoothing’ affects the digitization of
curves. (A complete list of METAFONT’s internal quantities appears in Chapter 25.)
The name of an internal quantity acts like a tag, but internal quantities cannot be
suffixed. Thus, the syntax rule for (variable) should actually be replaced by a slightly
more complicated pair of rules:

(variable) — (external tag)(suffix) | (internal quantity)
(tag) — (external tag) | (internal quantity)

@ » EXERCISE 7.4
True or false: Every (variable) is a legal (suffix).

@@ The ‘[’ and ‘1’ that appear in the syntax for (subscript) stand for any sym-

bolic tokens whose current meanings are the same as METAFONT’s primitive
meanings of left and right bracket, respectively; those tokens don’t necessarily have to
be brackets. Conversely, if the meanings of the tokens ‘[’ and ‘]’ have been changed,
brackets cannot be used to delimit subscripts. Similar remarks apply to all of the sym-
bolic tokens in all of the syntax rules from now on. METAFONT doesn’t look at the
form of a token; it considers only a token’s current meaning.

The examples of METAFONT programs in this book have used two differ-
ent typographic conventions. Sometimes we refer to variables by using italic type
and/or genuine subscripts, e.g., ‘em’ and ‘zs,’; but sometimes we refer to those
same variables by using a typewriter-like style of type, e.g., ‘em’ and ‘x2r’. In
general, the typewriter style is used when we are mainly concerned with the way
a programmer is supposed to type something that will appear on the terminal
or in a file; but fancier typography is used when we are focusing on the meaning
of a program rather than its ASCII representation. It should be clear how to
convert the fancier form into tokens that METAFONT can actually understand.

@ In general, we shall use italic type only for tags (e.g., em, z, r), while boldface
and roman type will be used for sparks (e.g., draw, fill, cycle, rotated, sqrt).

Tags that consist of special characters instead of letters will sometimes get special

treatment; for example, em# and z2’ might be rendered em# and z5, respectively.

The variables we’ve discussed so far have almost always had numbers as
their values, but in fact METAFONT’s variables are allowed to assume values of
eight different types. A variable can be of type

boolean, representing the values ‘true’ or ‘false’;

string, representing sequences of ASCII characters;

path, representing a (possibly curved) line;

pen, representing the shape of a pen nib;

picture, representing an entire pattern of pixels;

transform, representing the operations of scaling, rotating, shifting, re-
flecting, and/or slanting;

pair, representing two numbers (e.g., a point or a Vector);

= numeric, representing a single number.
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If you want a variable to represent something besides a number, you must first
give a type declaration that states what the type will be. But if you refer to a
variable whose type has not been declared, METAFONT won’t complain, unless
you try to use it in a way that demands a value that isn’t numeric.

Type declarations are easy. You simply name one of the eight types,
then you list the variables that you wish to declare for that type. For example,
the declaration

pair right, left, a.p

says that right and left and a.p will be variables of type pair, so that equations
like

right = —left = 2a.p = (1,0)

can be given later. These equations, incidentally, define the values right = (1,0),
left = (—1,0), and a.p = (.5,0). (Plain METAFONT has the stated values of
right and left already built in.)

The rules for declarations are slightly trickier when subscripts are in-
volved, because METAFONT insists that all variables whose names are identical
except for subscript values must have the same type. It’s possible to set things
up so that, for example, a is numeric, a.p is a pair, a.q is a pen, a.r is a path,
and ap is a string; but if a1 is a string, then all other variables as, as, etc.,
must also be strings. In order to enforce this restriction, METAFONT allows only
“collective” subscripts, represented by empty brackets ‘[1’, to appear in type
declarations. For example,

path r, r[], x[Jarc, £[1[]

declares r and all variables of the forms r[i], x[i]arc, and f[i][j] to be path
variables. This declaration doesn’t affect the types or values of other variables
like r[]arc; it affects only the variables that are specifically mentioned.

Declarations destroy all previous values of the variables being defined.
For example, the path declaration above makes r and r[i] and z[i]arc and f[é][;]
undefined, even if those variables previously had paths as their values. The idea
is that all such variables will start out with a clean slate so that they can receive
appropriate new values based on subsequent equations.

» EXERCISE 7.5
Numeric variables don’t need to be declared. Therefore is there ever any reason
for saying ‘numeric x’?

@ The formal syntax rules for type declarations explain these grammatical con-
ventions precisely. If the symbolic token that begins a declared variable was
previously a spark, it loses its former meaning and immediately becomes a tag.

(declaration) — (type)(declaration list)
(type) — boolean | string | path | pen
| picture | transform | pair | numeric

type declaration
declarations

0

collective subscripts
value, disappearance of
declaration

type

boolean

string
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pen

picture
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(declaration list) — (declared variable) declaration list
| (declaration list) , (declared variable) Heclared variable
(declared variable) — (symbolic token)(declared suffix) declared suffix
(declared suffix) — (empty) | (declared suffix) (tag) DARWIN
(declared suffix) [ ] jllegglKYER

@ » EXERCISE 7.6
Find three errors in the supposed declaration ‘transform t42,24t,,t,path’.

Beings low in the scale of nature are
more variable than those which are higher.

— CHARLES DARWIN, On the Origin of Species (1859)

Among the variables, Beta (B) Persei, or Algol,
is perhaps the most interesting, as its period is short.

— J. NORMAN LOCKYER, Elements of Astronomy (1870)



page 58) |_ _I

0

Algebraic
Expressions



Chapter 8: Algebraic Fxpressions

METAFONT programmers express themselves algebraically by writing algebraic
formulas called expressions. The formulas are algebraic in the sense that they
involve variables as well as constants. By combining variables and constants with
appropriate mathematical operations, a programmer can specify an amazing
variety of things with comparative ease.

We have already seen many examples of expressions; our goal now is to
make a more systematic study of what is possible. The general idea is that an
expression is either a variable (e.g., ‘z1’) or a constant (e.g., ‘20”), or it consists
of an operator (e.g., ‘+’) together with its operands (e.g., ‘zy; + 20’). The
operands are, in turn, expressions built up in the same way, perhaps enclosed in
parentheses. For example, ‘(21+20)/(x2—20)’ is an expression that stands for the
quotient of two subexpressions. It is possible to concoct extremely complicated
algebraic expressions, but even the most intricate constructions are built from
simple parts in simple ways.

Mathematicians spent hundreds of years developing good ways to write
formulas; then computer scientists came along and upset all the time-honored
traditions. The main reason for making a change was the fact that computers
find it difficult to deal with two-dimensional constructions like

x1 + 20 2

—_ + a2 \/5

To — 20 3
One-dimensional sequences of tokens are much easier to input and to decode;
hence programming languages generally put such formulas all on one line, by
inserting parentheses, brackets, and asterisks as follows:

(x[11+20) / (x[2]-20) +sqrt (a**2-(2/3) *sqrt (b)) .

METAFONT will understand this formula, but it also accepts a notation that is
shorter and closer to the standard conventions of mathematics:

(x1+20) / (x2-20) +sqrt (a*x*2-2/3sqrt b).

We observed in the previous chapter that METAFONT allows you to write ‘x2’
instead of ‘x[2]’; similarly, you can write ‘2x’ instead of ‘2*x’ and ‘2/3x’ instead
of *(2/3)*x’. Such operations are extremely common in METAFONT programs,
hence the language has been set up to facilitate them. On the other hand, META-
FONT doesn’t free you from all the inconveniences of computer languages; you
must still write ‘x*k’ for the product of x times k, and ‘x[k]’ for the variable
x subscripted by k, in order to avoid confusion with the suffixed variable ‘x.k’.

We learned in the previous chapter that there are eight types of variables:
numeric, boolean, string, and so on. The same types apply to expressions; META-
FONT deals not only with numeric expressions but also with boolean expressions,
string expressions, and the others. For example, ‘(0,0) .. (z1,y1)’ is a path-
valued expression, formed by applying the operator ‘..” to the subexpressions
(0,0)” and ‘(z1,y1)’; these subexpressions, in turn, have values of type “pair,”
and they have been built up from values of type “numeric.” Each operation
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produces a result whose type can be determined from the types of the operands;
furthermore, the simplest expressions (variables and constants) always have a
definite type. Therefore the machine always knows what type of quantity it is
dealing with, after it has evaluated an expression.

If an expression contains several operators, METAFONT has to decide
which operation should be done first. For example, in the expression ‘a — b+ ¢’
it is important to compute ‘a — b’ first, then to add ¢; if ‘b + ¢’ were computed
first, the result ‘a — (b + ¢)’ would be quite different from the usual conventions
of mathematics. On the other hand, mathematicians usually expect ‘b/¢’ to
be computed first in an expression like ‘a — b/¢’; multiplications and divisions
are usually performed before additions and subtractions, unless the contrary is
specifically indicated by parentheses as in ‘(a — b)/¢’. The general rule is to
evaluate subexpressions in parentheses first, then to do operations in order of
their “precedence”; if two operations have the same precedence, the left one is
done first. For example, ‘a — b/c’ is equivalent to ‘a — (b/c)’ because division
takes precedence over subtraction; but ‘a — b + ¢’ is equivalent to ‘(a — b) 4 ¢’
because left-to-right order is used on operators of equal precedence.

It’s convenient to think of operators as if they are tiny magnets that
attract their operands; the magnets for ‘x’ and ¢/’ are stronger than the magnets
for ‘4’ and ‘—’, so they stick to their operands more tightly and we want to
perform them first.

METAFONT distinguishes four (and only four) levels of precedence. The
strongest magnets are those that join ‘2’ to ‘z’ and ‘sqrt’ to ‘b’ in expressions like
‘227 and ‘sqrt b’. The next strongest are multiplicative operators like ‘«” and /’;
then come the additive operators like ‘+’ and ‘—’. The weakest magnets are
operators like ‘..” or ‘<’. For example, the expression

a+sqrtb/2x < ¢

is equivalent to the fully parenthesized formula

(a+ ((sqrtb)/(2x))) < c.

» EXERCISE 8.1
Insert parentheses into the formula ‘z1+z2..z3/4%5..z6-7*8z9’, to show ex-
plicitly in what order METAFONT will do the operations.

g% High-school algebra texts often avoid parentheses inside of parentheses by
using braces and brackets. Therefore many people have been trained to write

{a +[(sartb)/(22)]} < c

instead of the fully parenthesized formula above. However, professional mathematicians
usually stick to only one kind of parentheses, because braces and brackets have other
meanings that are more important. In this respect METAFONT is like the professionals:
It reserves curly braces ‘{}’ and square brackets ‘[1’ for special purposes, so you should
not try to substitute them for parentheses.

order of operations
precedence
magnets

braces

brackets
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@ If you really want alternatives to parentheses, there is actually a way to get
them. You can say, for example,

delimiters [[ ]1]; delimiters {{ 1}}
after which double brackets and braces can be used in formulas like
{{a+[[(sqrt b)/(2x)11}}<c.

The symbolic token ‘{{’ has no relation to ‘{’, and it has no primitive meaning, hence
you are free to define it in any way you like; the delimiters command defines a new
pair of delimiters. In formulas with mixed delimiters as defined here, METAFONT will
check that ‘[[’ matches only with ‘11’ ‘{{’ only with ‘}}’; and ‘C’ only with )’; thus
you can more easily detect errors in large expressions. However, it’s usually unnecessary
to have any delimiters other than parentheses, because large expressions are rare, and
because the rules of operator precedence make most parentheses superfluous.

If you're reading this chapter carefully, you may be thinking, “Hey wait!
Isn’t there a contradiction? A minute ago I was told that ‘2/3x’ stands for
‘(2/3)*x’, but now the rules of precedence appear to state that ‘2/3x’ really
stands for ‘2/(3x)’. What gives?” Indeed, you have an excellent point; but
there is no contradiction, because of another rule that hasn’t been mentioned
yet. When two numeric tokens are divided, the magnetism of ‘/’ is stronger
than usual; in this case ‘/’ has the same precedence as the implied multiplication
operator in ‘3x’. Hence the operations in ‘2/3x’ are carried out from left to right,
as stated previously. (This is a good rule because it is almost always what a
METAFONT programmer wants. However, one should bear in mind that ‘a/3x’
means ‘a/(3x)’ when a is not a numeric token.)

Because of the rule in the previous paragraph, the METAFONT programs
in this book often say ‘%x’ for what would be typed ‘2/3x’ in a file. Such built-up
fractions are never used except when the numerator and denominator are both
numbers; a construction like ‘a/3x’ will always be rendered as ‘a/32’, not * 5= ".

METAFONT knows how to do dozens of operations that haven’t been
mentioned yet in this book. Let’s take a look at some of them, so that we will
know they are available in case of need. It will be most instructive and most
fun to learn about expressions by interacting with the computer; therefore you
should prepare the following short file, called expr.mf:

string s[]; sl="abra";
path pl[]; p1=(0,0)..(3,3); p2=(0,0)..(3,3)..cycle;
tracingonline:=1; scrollmode;

forever: message "gimme an expr: "

show scantokens s0; endfor

; sO:=readstring;

?P You don’t need to understand what’s in expr .mf when you read this chapter for

the first time, because the file uses METAFONT in ways that will be explained
carefully later. But here is a translation, in case you're curious: Line 1 declares all
variables of the form sk to be strings, and sets s1 to the value "abra". Line 2 declares
all variables of the form pj to be paths, and sets p; and p2 to simple example paths.
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Line 3 tells METAFONT to print diagnostic information online, i.e., on the terminal as
well as in the log file; it also establishes ‘scrollmode’, which means that the computer
won’t stop after error messages. Lines 4 and 5 set up an infinite loop in which METRA-
FONT reads an expression from the terminal and shows the corresponding value.

If you start METAFONT and type ‘expr’ when it asks for an input file
name, it will read the file expr.mf and then it will say ‘gimme an expr’. Here’s
where the fun starts: You can type any expression, and METAFONT will compute
and display its value. Try it; type ‘2+2” and (return), obtaining the value ‘>> 4’.
Isn’t that amazing? Here are some more things to try:

You type And the result is
1.2-2.3 -1.1
1.3-2.4 -1.09999
1.3%1000 1300.00305
2.4%x1000 2399.9939
3/8 0.375
.375%1000 375

1/3 0.33333
1/3%3 0.99998
0.99999 0.99998
l1-epsilon 0.99998
1/(1/3) 3.00005
1/3.00005 0.33333
.1%10 1.00006
1+4epsilon 1.00006

These examples illustrate the small errors that occur because METAFONT does
“fixed binary” arithmetic using integer multiples of m. The result of 1.3—2.4
is not quite the same as —1.1, because 1.3 is a little bit larger than % and 2.4
is a little smaller than %. Small errors get magnified when they are multiplied
by 1000, but even after magnification the discrepancies are negligible because
they are just tiny fractions of a pixel. You may be surprised that 1/3 times 3
comes out to be .99998 instead of .99999; the truth is that both 0.99999 and
0.99998 represent the same value, namely ggggg; METAFONT displays this value
as 0.99998 because it is closer to .99998 than to .99999. Plain METAFONT

defines epsilon to be m, the smallest representable number that is greater

than zero; therefore 1-epsilon is ggggg, and 1+4epsilon is gggég.
You type And the result is
4096 4095.99998 (with error message)

infinity 4095.99998
1000*1000 32767.99998 (with error message)

online

log file
gimme
arithmetic
epsilon
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infinity+epsilon 4096
100*100 10000
.1(100%100) 1000.06104
(100%100) /3 3333.33333

METAFONT will complain that an ‘Enormous number has been reduced’ when
you try to introduce constants that are 4096 or more. Plain METAFONT defines
infinity to be 4096 — epsilon, which is the largest legal numeric token. On
the other hand, it turns out that larger numbers can actually arise when an
expression is being evaluated; METAFONT doesn’t worry about this unless the
resulting magnitude is at least 32768.

@ » EXERCISE 8.2
If you try ‘100%100/3’ instead of ‘(100%100)/3’, you get ‘3333.33282". Why?

@ Sometimes METAFONT will compute things more accurately than you would

expect from the examples above, because many of its internal calculations are
done with multiples of 272% instead of 27'%. For example, if t = 3 the result of ‘1/3t’
will be exactly 1 (not 0.99998); the same thing happens if you write ‘1/3(3)’.

Now let’s try some more complicated expressions, using undefined vari-
ables as well as constants. (Are you actually trying these examples, or are you
just reading the book? It’s far better to type them yourself and to watch what
happens; in fact, you're also allowed to type things that aren’t in the book!)

You type And the result is

b+a a+b

a+b a+b

b+a-2b a-b

2(a-b+.5) 2a-2b+1

.5(b-a) -0.5a+0.5b

.5[a,b] 0.5a+0.5b

1/3[a,b] 0.66667a+0.33333b
0[a,b] a

a[2,3] a+2

t[a,a+1] t+a

a*b b (with error message)
1/b b (with error message)

METAFONT has a preferred way to arrange variables in order when they are
added together; therefore ‘a + b’ and ‘b 4+ o’ give the same result. Notice that
the mediation construction ‘.5[a, b]’ specifies a number that’s halfway between a
and b, as explained in Chapter 2. METAFONT does not allow you to multiply
two unknown numeric quantities together, nor can you divide by an unknown
numeric; all of the unknown expressions that METAFONT works with must be

63

enormous number
infinity

mediation
multiply

divide



64

Chapter 8: Algebraic Expressions

“linear forms,” i.e., they must be sums of variables with constant coefficients,
plus an optional constant. (You might want to try typing ‘t [a,b]’ now, in order

to see what error message is given.)

You type

sqrt 2

sqrt 100

sqrt 100*100
sqrt (100%100)
sqrt 100(100)
sqrt sqrt 100(100)
sqrt .01
0.09998**2
2%x1/2

sqrt 2x*2
sqrt -1

sqrt a

And the result is

1.41422
10

1000
100

100

10
0.09998
0.01
1.41422
2

0

(with error message)
a (with error message)

Since sqrt has more “magnetism” than *, the formula sqrt 100*100 is evaluated
as (sqrt 100)*100; but in ‘sqrt 100(100)’ the 100(100) is computed first. The
reason is that ‘(sqrt 100) (100)’ isn’t a legal expression, so the operations in
‘sqrt 100(100)’ must be carried out from right to left. If you are unsure about
the order of evaluation, you can always insert parentheses; but you’ll find that
METAFONT’s rules of precedence are fairly natural as you gain experience.

» EXERCISE 8.3

Is ‘sqrt 2#x2’ computed as ‘(sqrt 2)**2’ or as ‘sqrt(2x*2)’7

Some METAFONT expressions have ‘true’ or ‘false’ values, instead of
numbers; we will see later that they can be used to adapt METAFONT programs

to special conditions.

You type
0<1

0=1

atl>a

a>=b
"abc"<="b"
"BM>tgli"
"b">"a?"
(1,2)<>(0,4)
(1,2)<(0,4)
(1,a)>(0,b)

And the result is

true

false

true

false (with error message)
true

false

true

true

false

true

linear forms
sqrt

square roots
Hk

true

false
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numeric a true
known a false
not pen a true
known "a" and numeric 1 true
(0>1) or (a<a) false

0>1 or a<a a (with error messages)

The tokens ‘>=", ‘<=’ and ‘<>’ stand respectively for the relations greater-than-
or-equal-to, less-than-or-equal-to, and unequal-to. When strings are compared,
METAFONT uses the order of words in a dictionary, except that it uses ASCII
code to define ordering of individual characters; thus, all uppercase letters are
considered to be less than all lowercase letters. (See Appendix C.) When pairs
of numbers are compared, METAFONT considers only the x coordinates, unless
the x coordinates are equal; in the latter case it compares the y coordinates. The
type of an expression can be ascertained by an expression like ‘pair a’, which is
true if and only if a is a pair. The expression ‘known a’ is true if and only if the
value of a is fully known.

?2 » EXERCISE 8.4
What causes the error messages in ‘0>1 or a<a’?

@ The rest of this chapter is entirely preceded by “dangerous bend” signs, so
you can safely omit it on first reading (unless you're hooked and can’t stop).

@ METAFONT expressions can include many operations that are less familiar but
still useful. For example, the max and min operations compute the maximum
and minimum of numbers, strings, or pairs:

You type And the result is
max(1,-2,4) 4

min(1,-2,4) -2
max("a","b","ab") "p"
min("a","b","ab") "a"
max((1,5),(0,6),(1,4)) (1,5)
min((1,5),(0,6),(1,4)) (0,6)
max(.5a+1,.5a-1) 0.5a+1

Numbers can be converted to integers in a variety of ways:

You type And the result is
floor 3.14159 3

floor -3.14159 -4

floor -epsilon -1

floor infinity 4095

ceiling 3.14159 4

ceiling -3.14159 -3
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round 3.14159 3

round -3.14159 -3

round(1.1,2.8) (1,3)

round(3.5,-3.5) (4,-3)

round a a+0.5 (with error message)
8 mod 3 2

-8 mod 3 1

.8 mod .3 0.2

The ‘floor’ operation computes the greatest integer that is less than or equal to its
operand; this quantity is often denoted by || in mathematics texts. Plain METAFONT
also includes the analogous ‘ceiling’ operation [z], which is the least integer greater
than or equal to z. Furthermore, ‘round z’ is the integer nearest to x; plain METAFONT
computes this by using the formula |z + .5], and applies it to both components of a
pair if a pair is being rounded. The remainder of x with respect to y, written ‘x mod y’,
is calculated by using the formula x — y|z/y].

You type And the result is

abs -7 7

abs(3,4) 5

length(3,4) 5

3++4 5

300++400 500

sqrt (300%*2 + 400%%2) 181.01933 (with error messages)
1++1 1.4142

0 ++ -7 7

5+-+4 3

The ‘++’ operation is called Pythagorean addition; a++b is the same thing as v a? + b2.
Most of the square root operations in computer programs could probably be avoided
if ++ were more widely available, because people seem to want square roots primarily
when they are computing distances. Notice that a++b++c = vV a? + b2 + ¢2; we have
the identity (a ++ b) ++c =a++ (b++c¢) as well as a ++ b = b ++ a. It is better
to use Pythagorean addition than to calculate Va2 + b2, because the computation of
a? and b? might produce numbers that are too large even when a ++ b is rather small.
There’s also an inverse operation, Pythagorean subtraction, which is denoted by ‘+-+’;
the quantity a +—+ b is equal to va? — b2.

@ » EXERCISE 8.5
When the author was preparing these examples he typed ‘0++-7’ and was
surprised to get the answer ‘0’. Why should this not have been a surprise?

@@» EXERCISE 8.6

(For mathematicians.) Although the Pythagorean addition operation is asso-
ciative and commutative, METAFONT says that 5++4++4+2++42 =7 = 24++2++4++5
yet 2 ++4 445 ++ 2 = 6.99998. Why?

floor

greatest integer
ceiling

least integer

round

remainder

mod

abs

length

absolute value

++

Pythagorean addition
square root
Pythagorean subtraction
+-+
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@ METAFONT uses the names ‘sind’ and ‘cosd’ for the trigonometric functions sind
sine and cosine, because METAFONT’s operations are designed to deal with cosd
angles expressed in degrees. But it turns out that programmers rarely need to refer sine
to sines and cosines explicitly, because the ‘dir’ and ‘angle’ functions provide most of cosine
what a font designer needs. j:gle
mlog
You type And the result is mexp
sind 30 0.5
cosd 30 0.86603
sind -30 -0.5
cosd 360 1
sind 10 ++ cosd 10 1
dir 30 (0.86603,0.5)
dir -90 0,-1)
angle(1,1) 45
angle(1,2) 63.43495
angle(1,-2) -63.43495
sind 63.43495 / cosd 63.43495 1.99997
angle up 90
angle left 180
angle(-1000,-epsilon) -180
angle dir 60 60.00008

angle(0,0)

0 (with error message)

Plain METAFONT defines ‘dir 2’ to be the pair of values (cosd z, sind z); this is a vector,
which points x degrees above the rightward horizon. Conversely, the ‘angle’ operator
determines the angle that corresponds to a given vector.

@@ Logarithms and exponentials are computed with respect to an unusual base,
designed to enhance the accuracy of calculations involving fixed-radix numbers

in METAFONT’s range. The values mlogz = 256Ilnx and mexpx = e

.
#/256 hroduce

reasonably good results when z *x y is computed by the formula mexp(y * mlog ).

You type

mlog 2

mexp mlog 2
mexp 8 mlog 2
mexp 256

mlog 2.71828
mlog 2.71829

15 mlog 2

mexp 2661.68518
mexp 2661.68519
mexp-2661.68519

And the result is

177.44568

2

256

2.71828

255.99954

256.00098

2661.68518

32767 .99998

32767.99998 (with error message)
0.00003

trigonometric
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4

METAFONT also generates two flavors of random numbers. It is very unlikely
that you will get the particular values shown in the following examples, when
you do the experiment yourself, because the results come out different each time the
computer is asked for a new random number (unless you have specified a “seed value”
as explained in Chapter 21).

You type

uniformdeviate 100
uniformdeviate 100
uniformdeviate -100

(normaldeviate,normaldeviate)

And the result might be

47.4241

97.28148

-36.16279
(0.46236,-1.87648)

The value of ‘uniformdeviate 100’ is a random number between 0 and 100; the value
of ‘normaldeviate’ is a normally distributed random number whose mean value is zero
and whose standard deviation is unity. Chapter 21 explains what this means and gives
several applications.

4

Besides all of these operations on numbers, METAFONT has a rich collection
of operations on pairs, some of which are indicated in the following examples:

You type

right
(1,2)+(3,4)
1/3(3,10)

z2-z1

.2[z1,z2]

3z

scaled 3
xscaled 2 yscaled 1/2
shifted (2,3)
shifted 3right
slanted 1/6
rotated 90
rotated 30

N N N N N N N

xpart(z rotated 30)

ypart(z rotated 30)

(1,2)*%(3,4)

(1,2)zscaled(3,4)
(a,b)zscaled(3,4)

(a,b)zscaled dir 30
(1,2)dotprod(3,4)
(a,b)dotprod(3,4)

dir 21 dotprod dir 51
(3,4)dotprod((30,40)rotated 90)

And the result is

(1,0)

(4,6)

(1,3.33333)
(-x1+x2,-y1+y2)
(0.8x1+0.2x2,0.8y1+0.2y2)
(3x,3y)

(3x,3y)

(2%,0.5y)

(x+2,y+3)

(x+3,y)

(x+0.16667y,7)

(-y,x)
(-0.5y+0.86603x,0.86603y+0.5x)
-0.5y+0.86603x
0.86603y+0.5x

(3,4) (with error message)
(-5,10)

(3a-4b,4a+3b)
(0.86603a-0.5b,0.5a+0.86603b)
11

3a+4b

0.86603

0

uniformdeviate
normaldeviate
scaled

xscaled

yscaled

dir
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(Recall that plain METAFONT converts ‘z$’ into ‘(x$,y$)’ when $ is any (suffix).) The
operations exhibited here are almost all self-evident. When a point or vector is rotated,
it is moved counterclockwise about (0,0) through a given number of degrees. META-
FONT computes the rotated coordinates by using sines and cosines in an appropriate
way; you don’t have to remember the formulas! Although you cannot use ‘*’ to multiply
a pair by a pair, you can use ‘zscaled’ to get the effect of complex number multiplication:
Since (1+2t) times (34 41) is —5+ 104, we have (1, 2) zscaled (3,4) = (-5, 10). There’s
also a multiplication that converts pairs into numbers: (a,b) dotprod (¢,d) = ac + bd.
This is the “dot product,” often written ‘(a,b) - (¢,d)’ in mathematics texts; it turns
out to be equal to a++b times c++d times the cosine of the angle between the vectors
(a,b) and (c,d). Since cosd 90° = 0, two vectors are perpendicular to each other if and
only if their dot product is zero.

@ There are operations on strings, paths, and the other types too; we shall study

such things carefully in later chapters. For now, it will suffice to give a few
examples, keeping in mind that the file expr.mf defines s with any subscript to be a
string, while p with any subscript is a path. Furthermore s; has been given the value
"abra", while p; is ¢(0,0) .. (3,3)” and p2 is ‘(0,0) .. (3,3) .. cycle’.

You type And the result is
s2 unknown string s2
sl&"cad"&s1 "abracadabra"
length si1 4

length pil 1

length p2 2

cycle pl false

cycle p2 true

substring (0,2) of si "ab"
substring (2,infinity) of si "ra"

point 0O of pil (0,0)

point 1 of p1 (3,3)

point .5 of pi (1.5,1.5)
point infinity of pil (3,3)

point .5 of p2 (3,0)

point 1.5 of p2 €0,3)

point 2 of p2 (0,0)

(0.00009,-0.00009)
(-0.00009,0.00009)

point 2+epsilon of p2
point -epsilon of p2

point -1 of pil (0,0)
direction 0 of pil (1,1)
direction O of p2 (4,-4)
direction 1 of p2 (-4,4)

The length of a path is the number of ‘.. steps that it contains; the construction

‘cycle (path)’ can be used to tell whether or not a particular path is cyclic. If you say

xpart

ypart

shifted

right

slanted
zscaled
dotprod

V4

rotated

sines

cosines
zscaled
complex number
multiplication
dot product
perpendicular
product
string

point
direction
length

cycle
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just ‘p1’ you get to see path p; with its control points: control points
substring
(0,0)..controls (1,1) and (2,2) subpath
..(3,3) ampersand

Similarly, ‘p2’ is

(0,0)..controls (2,-2) and (5,1)
..(3,3)..controls (1,5) and (-2,2)
..cycle

and ‘subpath (0,1) of p2’ is analogous to a substring:

(0,0)..controls (2,-2) and (5,1)
..(3,3)

The expression ‘point ¢ of ps’ gives the position of a point that moves along path pa,
starting with the initial point (0,0) at ¢ = 0, then reaching point (3,3) at ¢ = 1,
etc.; the value at t = 1/2 is the third-order midpoint obtained by the construction of
Chapter 3, using intermediate control points (2,—2) and (5,1). Since ps2 is a cyclic
path of length 2, point (¢ + 2) of p2 is the same as point ¢. Path p; is not cyclic, so its
points turn out to be identical to point 0 when ¢t < 0, and identical to point 1 when
t > 1. The expression ‘direction ¢ of (path)’ is similar to ‘point ¢ of (path)’; it yields a
vector for the direction of travel at time t.

@ Paths are not necessarily traversed

at constant speed. For example, the
diagram at the right shows point t of p2 at
twenty equally spaced values of t. META-
FONT moves faster in this case at time 1.0
than at time 1.2; but the points are spread  (pigure sa winl be inserted here; too bad you
out fairly well, so the concept of fractional — can’t see it now)
time can be useful. The diagram shows, in-
cidentally, that path p2 is not an especially
good approximation to a circle; there is no
left-right symmetry, although the curve from
point 1 to point 2 is a mirror image of the
curve from point 0 to point 1. This lack of
circularity is not surprising, since p» was defined by simply specifying two points, (0,0)
and (3,3); at least four points are needed to get a path that is convincingly round.

@ The ampersand operation ‘&’ can be used to splice paths together in much the

same way as it concatenates strings. For example, if you type ‘p2 & p1’, you
get the path of length 3 that is obtained by breaking the cyclic connection at the end
of path p2 and attaching ps:

(0,0)..controls (2,-2) and (5,1)
..(3,3)..controls (1,5) and (-2,2)
..(0,0)..controls (1,1) and (2,2)
..(3,3)

Concatenated paths must have identical endpoints at the junction.
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@ You can even “slow down the clock” by concatenating subpaths that have
non-integer time specifications. For example, here’s what you get if you ask
for ‘subpath (0, .5) of p2 & subpath (.5,2) of p2 & cycle’:

(0,0)..controls (1,-1) and (2.25,-0.75)
..(3,0)..controls (3.75,0.75) and (4,2)
..(3,3)..controls (1,5) and (-2,2)
..cycle

When ¢ goes from 0 to 1 in subpath (0,.5) of p2, you get the same points as when ¢
goes from 0 to .5 in py; when ¢ goes from 0 to 1 in subpath (.5,2) of pa2, you get the
same points as when ¢ goes from .5 to 1 in p2; but when ¢ goes from 1 to 2 in subpath
(.5,2) of pa, it’s the same as the segment from 1 to 2 in po.

@ Let’s conclude this chapter by discussing the exact rules of precedence by

which METAFONT decides what operations to do first. The informal notion of
“magnetism” gives a good intuitive picture of what happens, but syntax rules express
things unambiguously in borderline cases.

@ The four levels of precedence correspond to four kinds of formulas, which

are called primaries, secondaries, tertiaries, and expressions. A primary is
a variable or a constant or a tightly bound unit like ‘2%’ or ‘sqrt 2’; a secondary is a
primary or a sequence of primaries connected by multiplicative operators like ‘*’ or
‘scaled’; a tertiary is a secondary or a sequence of secondaries connected by additive
operators like ‘+’ or ‘++’; an expression is a tertiary or a sequence of tertiaries connected
by external operators like ‘<’ or ‘.. . For example, the expression

a+b/2>3c*sqrtéd

is composed of the primaries ‘a’, ‘b’, ‘2’, ‘3c’, and ‘sqrt4d’; the last of these is a primary
containing ‘4d’ as a primary within itself. The subformulas ‘a’; ‘b/2’; and ‘3c*sqrt4d’
are secondaries; the subformulas ‘a+b/2’ and ‘3c*sqrt4d’ are tertiaries.

@ If an expression is enclosed in parentheses, it becomes a primary that can be
used to build up larger secondaries, tertiaries, etc.

@ The full syntax for expressions is quite long, but most of it falls into a simple
pattern. If o, 8, and y are any “types”—numeric, boolean, string, etc.—then

(« variable) refers to a variable of type a, (8 primary) refers to a primary of type 3,

and so on. Almost all of the syntax rules fit into the following general framework:

(o primary) — (« variable) | (« constant) | ({(« expression) )
| (operator that takes type 3 to type a)(8 primary)
(ar secondary) — (a primary)
| (8 secondary) (multiplicative op taking types 8 and v to «)(y primary)
(o tertiary) — (a secondary)
| (B tertiary)(additive op taking types 8 and 7 to «){v secondary)
(o expression) — (« tertiary)
| (B expression)(external op taking types 3 and v to «)(y tertiary)

These schematic rules don’t give the whole story, but they do give the general structure
of the plot.
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@ Chapter 25 spells out all of the syntax rules for all types of expressions. We
shall consider only a portion of the numeric and pair cases here, in order to
have a foretaste of the complete menu:

(numeric primary) — (numeric atom)
| (numeric atom) [ (numeric expression) , (numeric expression) ]
length (string primary)
length (path primary)
length (pair primary)
angle (pair primary)
xpart (pair primary)
ypart (pair primary)
| (numeric operator) (numeric primary)
(numeric atom) — (numeric variable)
(numeric token primary)
| ((numeric expression) )
| normaldeviate
(numeric token primary) — (numeric token) / (numeric token)
| (numeric token not followed by ‘/ (numeric token)’)
(numeric operator) — sqrt | sind | cosd | mlog | mexp
| floor | uniformdeviate | (scalar multiplication operator)
(scalar multiplication operator) — (plus or minus)
| (numeric token primary not followed by + or - or a numeric token)
(numeric secondary) — (numeric primary)
| (numeric secondary)(times or over)(numeric primary)
(times or over) — * | /
(numeric tertiary) — (numeric secondary)
| (numeric tertiary)(plus or minus)(numeric secondary)
| (numeric tertiary)(Pythagorean plus or minus)(numeric secondary)
(plus or minus) — + | -
(Pythagorean plus or minus) — ++ | +—+
(numeric expression) — (numeric tertiary)

All of the finicky details about fractions and such things are made explicit by this
syntax. For example, we can use the rules to deduce that ‘sind-1/3x-2’ is interpreted
as ‘(sind(-(1/3x)))-2’; notice that the first minus sign in this formula is considered
to be a “scalar multiplication operator,” which comes in at the primary level, while the
second one denotes subtraction and enters in the construction of (numeric tertiary).
The mediation or “of-the-way” operation ‘t[a, b]’ is handled at the primary level.

@ Several operations that haven’t been discussed yet do not appear in the syntax

above, but they fit into the same general pattern; for example, we will see later
that ‘ASCII(string primary)’ and ‘xxpart(transform primary)’ are additional cases of
the syntax for (numeric primary). On the other hand, several operations that we have
discussed in this chapter do not appear in the syntax, because they are not primitives
of METAFONT itself; they are defined in the plain METAFONT base (Appendix B). For
example, ‘ceiling’ is analogous to ‘floor’, and ‘**’ is analogous to ‘*’. Chapter 20
explains how METAFONT allows extensions to its built-in syntax, so that additional
operations can be added at will.

numeric primary

[

]

length

length
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xpart
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numeric atom

(

)
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/

numeric operator
sqrt
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/

numeric tertiary
plus or minus

+

Pythagorean plus or minus
++
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@ » EXERCISE 8.7
How does METAFONT interpret ‘2 2°? (There’s a space between the 2’s.)

@@» EXERCISE 8.8
According to expr.mf, the value of ‘1/2/3/4’ is 0.66667; the value of ‘a/2/3/4’
is 0.375a. Explain why.

@ The rules of (pair expression) are similar to those for (numeric expression), so
it’s convenient to learn them both at the same time.

(pair primary) — (pair variable)
| ((numeric expression) , (numeric expression) )
| ((pair expression) )
| (numeric atom) [ (pair expression) , (pair expression) ]
| point (numeric expression) of (path primary)
| (scalar multiplication operator)(pair primary)
(pair secondary) — (pair primary)
| (pair secondary)(times or over)(numeric primary)
| (numeric secondary) * (pair primary)
| (pair secondary)(transformer)
(transformer) — rotated (numeric primary)
scaled (numeric primary)
shifted (pair primary)
slanted (numeric primary)
transformed (transform primary)
xscaled (numeric primary)
yscaled (numeric primary)
zscaled (pair primary)
(pair tertiary) — (pair secondary)
| (pair tertiary)(plus or minus)(pair secondary)
(pair expression) — (pair tertiary)

@ » EXERCISE 8.9

Try to guess the syntax rules for (string primary), (string secondary), (string
tertiary), and (string expression), based solely on the examples that have appeared in
this chapter. [Hint: The ‘&’ operation has the same precedence as ‘..".]

A maiden was sitting there who was lovely as any picture,
nay, so beautiful that no words can express it.

— JAKOB and WILHELM GRIMM, Fairy Tales (1815)

He looked astonished at the expression.
— EMILY BRONTE, Wuthering Heights (1847)
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The variables in a METAFONT program receive their values by appearing in
equations, which express relationships that the programmer wants to achieve.
We’ve seen in the previous chapter that algebraic expressions provide a rich
language for dealing with both numerical and graphical relationships. Thus it is
possible to express a great variety of design objectives in precise form by stating
that certain algebraic expressions should be equal to each other.

The most important things a METAFONT programmer needs to know
about equations are (1) how to translate intuitive design concepts into formal
equations, and (2) how to translate formal equations into intuitive design con-
cepts. In other words, it’s important to be able to write equations, and it’s
also important to be able to read equations that you or somebody else has writ-
ten. This is not nearly as difficult as it might seem at first. The best way to
learn (1) is to get a lot of practice with (2) and to generalize from specific ex-
amples. Therefore we shall begin this chapter by translating a lot of equations
into “simple English.”

Equation Translation
a=3.14 The value of a should be 3.14.
314 =a The number 3.14 should be the value of a. (This

means the same thing as ‘a = 3.14’; the left and
right sides of an equation can be interchanged
without affecting the meaning of that equation
in any way.)

mode = smoke The value of mode should be equal to the value
of smoke. (Plain METAFONT assigns a special
meaning to ‘smoke’, so that if mode_setup is
invoked when mode = smoke the computer will
prepare “smoke proofs” as explained in Chapter 5
and Appendix H.)

|
o

The y coordinate of point 3 should be zero; i.e.,
point 3 should be at the baseline. (Point 3 is
also known as z3, which is an abbreviation for
the pair of coordinates (x3,ys), if you are using
the conventions of plain METAFONT.)

Ys

x9 =0 The z coordinate of point 9 should be zero; i.e.,
point 9 should be at the left edge of the type box
that encloses the current character.

x1; = curve_sidebar ~ The x coordinate of point 1l should be equal to
the value of the variable called curve_sidebar.
This puts z1; a certain distance from the left
edge of the type.
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Yya =ys +1

Y6 = Y7 + 2mm

4 =w — .0lin

Yg = .5h
ye = —d
Ys = 5[h7 _d}
w— Ty = %.’E(;

Points 1 and 2 should have the same x coordi-
nate; i.e., they should have the same horizontal
position, so that one will lie directly above or
below the other.

Point 4 should be one pixel higher than point 5.
(However, points 4 and 5 might be far apart; this
equation says nothing about the relation between
x4 and 5.)

Point 6 should be two millimeters higher than
point 7. (Plain METAFONT’s mode_setup rou-
tine sets variable mm to the number of pixels in
a millimeter, based on the resolution determined
by mode and mag.)

Point 4 should be one-hundredth of an inch inside
the right edge of the type. (Plain METAFONT’s
beginchar routine sets variable w equal to the
width of whatever character is currently being
drawn, expressed in pixels.)

Point 4 should be halfway between the baseline
and the top of the type. (Plain METAFONT’s
beginchar sets h to the height of the current
character, in pixels.)

Point 6 should be below the baseline, at the bot-
tom edge of the type. (Each character has a
“bounding box” that runs from (0, h) at the up-
per left and (w,h) at the upper right to (0, —d)
and (w, —d) at the lower left and lower right; vari-
able d represents the depth of the type. The val-
ues of w, h, and d might change from character
to character, since the individual pieces of type
in a computer-produced font need not have the
same size.)

Point 8 should be halfway between the top and
bottom edges of the type.

The distance from point 5 to the right edge of the
type should be two-thirds of the distance from
point 6 to the left edge of the type. (Since w
is at the right edge, w — x5 is the distance from
point 5 to the right edge.)

mode_setup
mm
beginchar

w

h

bounding box
d

distance
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zo = (0,0) Point 0 should be at the reference point of the
current character, i.e., it should be on the base-
line at the left edge of the type. This equation is
an abbreviation for two equations, ‘zg = 0’ and
‘49 = 0’, because an equation between pairs of
coordinates implies that the x and y coordinates
must both agree.  (Incidentally, plain META-
FONT defines a variable called origin whose value
is (0,0); hence this equation could also have been
written ‘zg = origin’.)

z9 = (w, h) Point 9 should be at the upper right corner of the
current character’s bounding box.

top zg = (.bw, h) If the pen that has currently been “picked up”
is placed at point 8, its top edge should be at
the top edge of the type. Furthermore, xg should
be .5w; i.e., point 8 should be centered between
the left and right edges of the type. (Chapter 4
contains further examples of ‘top’, as well as the
corresponding operations ‘bot’, ‘Ift’, and ‘rt’.)

Z4 = %[25, 26) Point 4 should be three-sevenths of the way from
point 5 to point 6.

z19 — 211 = 214 — 213 The vector that moves from point 11 to point 12
should be the same as the vector that moves from
point 13 to point 14. In other words, point 12
should have the same direction and distance from
point 11 as point 14 has from point 13.

23 — 29 = Points 3 and 4 should be at the same distance
(24 — z9) rotated 15 from point 2, but the direction to point 3 should
be 15 degrees counterclockwise from the direction

to point 4.

» EXERCISE 9.1
Translate the following equations into “simple English”: (a) x7 — 9 = xy;
(b) 27 = (@4, 5lya, ys]); (c) ift 221 = rt 220 + 1.

» EXERCISE 9.2
Now see if your knowledge of equation reading gives you the ability to write
equations that correspond to the following objectives: (a) Point 13 should be just
as far below the baseline as point 11 is above the baseline. (b) Point 10 should
be one millimeter to the right of, and one pixel below, point 12. (c) Point 43
should be one-third of the way from the top left corner of the type to the bottom
right corner of the type.
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Let’s return now to the six example points (21, 22, 23, 24, 25, 26) that were
used so often in Chapters 2 and 3. Changing the notation slightly, we might say
that the points are

(Il,yl) = (O’h)’ (I27y2) = ('5w7h); (xSayii) = (’LU, h)a
(x4,94) = (0,0);  (z5,y5) = (5w, 0); (w6, 96) = (w,0).

There are many ways to specify these points by writing a series of equations.
For example, the six equations just given would do fine; or the short names z;
through z¢ could be used instead of the long names (z1,y1) through (zg,ys).
But there are several other ways to specify those points and at the same time
to “explain” the relations they have to each other. One way is to define the x
and y coordinates separately:

$1:$4:0; $2=x5:.5w; T3 = Tg = W,
Y1 =y2=y3 =N ys =1ys = ys = 0.

METAFONT allows you to state several equations at once, by using more than
one equality sign; for example, ‘y; = y» = y3 = h’ stands for three equations,
‘1 = yo', ‘Y2 = y3’, and ‘y3 = h’.

In order to define the coordinates of six points, it’s necessary to write
twelve equations, because each equation contributes to the definition of one value,
and because six points have twelve coordinates in all. However, an equation
between pairs of coordinates counts as two equations between single numbers;
that’s why we were able to get by with only six ‘=’ signs in the first set of
equations, while twelve were used in the second.

Let’s look at yet another way to specify those six points, by giving
equations for their positions relative to each other:

Rl T R4 =22 — 25 = 23— %6
Z9 —RZ] —mR3 — 29 =25 — 24 =26 — %5
z4 = origin; zs = (w, h).

First we say that the vectors from z4 to z1, from z5 to 23, and from zg to 23, are
equal to each other; then we say the same thing for the vectors from z; to zo,
Zo to 23, 24 to 25, and z5 to zg. Finally the corner points z4 and z3 are given
explicitly. That’s a total of seven equations between pairs of coordinates, so it
should be more than enough to define the six points of interest.

However, it turns out that those seven equations are not enough! For
example, the six points

z1 =24 = (0,0); 22 = z5 = (.bw,.5h); 23 = 26 = (w, h)
also satisfy the same equations. A closer look explains why: The two formulas
21— 24 = 29 — 25 and 2o — 21 = 25 — 24

actually say exactly the same thing. (Add z5 — z; to both sides of the first
equation and you get ‘zs — 24 = 23 — 21’.) Similarly, zo0 — 25 = 23 — 2¢ is the

origin
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same as z3 — 22 = 2¢ — 25. 1'wo of the seven equations give no new information,
so we really have specified only five equations; that isn’t enough. An additional
relation such as ‘z; = (0, k)’ is needed to make the solution unique.

@ » EXERCISE 9.3
(For mathematicians.) Find a solution to the seven equations such that
21 = 2z2. Also find another solution in which z; = zs.

At the beginning of a METAFONT program, variables have no values,
except that plain METAFONT has assigned special values to variables like smoke
and origin. Furthermore, when you begin a new character with beginchar, any
previous values that may have been assigned to x or y variables are obliterated
and forgotten. Values are gradually established as the computer reads equations
and tries to solve them, together with any other equations that have already
appeared in the program.

It takes ten equations to define the values of ten variables. If you have
given only nine equations it may turn out that none of the ten variables has yet
been determined; for example, the nine equations

go =91 =92 =93 =94 =95 = g6 = g7 = g8 = g9
don’t tell us any of the g values. However, the further equation
go+o=1

will cause METAFONT to deduce that all ten of the g’s are equal to %
METAFONT always computes the values of as many variables as possible,
based on the equations it has seen so far. For example, after the two equations

a+b+2c=3;
a—b—2c=1

the machine will know that @ = 2 (because the sum of these two equations is
‘2a = 4’); but all it will know about b and c¢ is that b+ 2¢ = 1.

At any point in a program a variable is said to be either “known” or
“unknown,” depending on whether or not its value can be deduced uniquely
from the equations that have been stated so far. The sample expressions in
Chapter 8 indicate that METAFONT can compute a variety of things with un-
known variables; but sometimes a quantity must be known before it can be used.
For example, METAFONT can multiply an unknown numeric or pair variable by
a known numeric value, but it cannot multiply two unknowns.

Equations can be given in any order, except that you might sometimes
need to put certain equations first in order to make critical values known in the
others. For example, METAFONT will find the solution (a,b,c¢) = (2,7,—3) to
the equations ‘a+b+2c = 3; a—b—2c = 1; b+c¢ = 4’ if you give those equations
in any other order, like ‘b+c¢c =4;a—b—2c=1; a+ b+ 2c = 3. But if the
equations had been ‘a+b+2¢=3;a—b—2c=1; ax(b+c) = 8, you would not
have been able to give the last one first, because METAFONT would have refused
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to multiply the unknown quantity a by another unknown quantity b + c¢. Here
are the main things that METAFONT can do with unknown quantities:

—(unknown)

(unknown) + (unknown)
(unknown) — (unknown)
(unknown) * (known)

(known) * (unknown)
(unknown) /(known)

(known) [(unknown), (unknown)]
(unknown) [(known), (known)]

Some of the operations of plain METAFONT, defined in Appendix B, also work
with unknown quantities. For example, it’s possible to say top (unknown),
bot (unknown), Ift (unknown), r¢t (unknown), and even

penpos(suffix) ((unknown), (known)).

@ A METAFONT program can say ‘(unknown)|a,b]’ when a — b is known, and

variable a can be compared to variable b in boolean expressions like ‘a < b’
when a — b is known. The quantity a — b might be known even when a and b aren’t
known by themselves.

@ You might wonder how METAFONT is able to keep its knowledge up-to-date,

based on scraps of partial information that it receives from miscellaneous
equations. The best way to understand this is to watch how it happens, by asking the
computer to show certain calculations that it usually keeps to itself. Here’s one way to
do it: Run METAFONT and say

\tracingequations:=tracingonline:=1;

in response to the opening ‘**’. (Be sure to type the backslash ‘\’; and to use ‘:=

instead of ‘=". We will see in Chapter 27 that METAFONT can be asked to “trace”
many aspects of what it’s doing.) Now type

)

a+b+2c=3;
the machine will reply by saying
## c=-0.5b-0.5a+1.5

since that is how it has digested your equation. (The ‘“##’ in this line identifies diag-
nostic information that comes from tracingequations.) Now type

a-b-2c=1;

METAFONT will read this as if you had said ‘a-b-2(-0.5b-0.5a+1.5)=1’, since it has
previously learned how to replace ¢ by an expression that involves only a and b. This
new equation can be simplified by multiplying out the left-hand side and collecting
terms. The result is ‘2a-3=1", hence METAFONT will respond with

## a=2

top

bot

1ft

Tt

comparison
tracingequations
tracingonline
hash hash
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and it will be your turn to type something again. Say
showdependencies;

METAFONT’s response will be
c=-0.5b+0.5

indicating that there is only one variable whose value depends on others, and that its
equation of dependency is now ‘c = —0.5b 4 0.5’. (The previous dependency equation
‘c = —0.5b — 0.5a + 1.5" has been simplified to take account of the newly discovered
value, a = 2.) Finally type

b+c=4;

this spurs the computer on to say

## b=7
#### c=-3

A line that begins with ‘##’ states what METAFONT has deduced from the equation
it has just read; a line that begins with ‘####  states an indirect consequence of that
direct result, if some previously dependent variable has now become known.

g% It’s interesting to continue the computer experiment just begun by typing the
following lines, one at a time, and watching what happens:

a’+b’+.5c’=3;
a’-b’-.5c’=1;
g0=gl=g2=g3=g4;
showdependencies;
gO+gl=1;
z1-24=22-25=23-26;
z2-z1=23-22=25-24=26-25;
z4=origin;
z3=(w,h);

x1=0;

y6=0;

w=2h=100;

end.

Notice that on the sixth line (‘z1 — z4 = ---7) METAFONT reports four equations, but
on the next line (‘z2 — z1 = -+-7) it reports only two. This happens because most of
that line is redundant, as we have already observed.

@ This computer session indicates that METAFONT deals with two kinds of un-

known numeric variables: dependent variables and independent ones. Every
variable is independent at the beginning of its life, but every equation causes one
of the independent variables to become dependent or known. Each ‘## line emit-
ted by tracingequations shows a newly dependent-or-known variable, together with an
equivalent expression that involves only independent variables. For example, the line
‘## c=-0.5b-0.5a+1.5" means that variable ¢ has just become dependent and that it
equals —%b - %a + 1.5, where variables b and a are independent. Similarly, ‘## a=2’
means that a has just changed from independent to known. When an independent
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variable v changes to dependent or known, the equivalents of all dependent variables
are updated so that they no longer depend on v; in this updating process some or all of
them may change from dependent to known, whereupon a ‘####’ line will be printed.

@ When METAFONT reads a numeric equation it replaces all known variables
by their numeric values and all dependent variables by their equivalents. The
resulting equation can be converted into the form

C1U1 + "+ CmUm =

where the ¢’s are nonzero constants and the v’s are independent variables; « is a numeric
constant that might be zero. If some ¢ is so small that it probably would have been
zero in a calculation free of rounding errors, it is replaced by zero and the corresponding
v is removed from the equation. Now if m = 0, the equation is considered to be either
redundant (if « is zero or extremely small) or inconsistent (otherwise). But if m > 0,
METAFONT chooses an independent variable vy, for which c¢x is maximum, and rewrites
the equation in the form

## vy, = (@—c1v1 — = Ch—1Vk—1 — Cht1Vkt1 — *** — CmUm)/Ck.
Variable v, becomes dependent (if m > 1) or known (if m = 1).

@ Inconsistent equations are equations that have no solutions. For example,

if you say ‘0 = 1’, METAFONT will issue an error message saying that the
equation is “off by 1.” A less blatant inconsistency arises if you say, e.g, ‘a = b + 1;
b= c+ 1; c = a+ 1’; this last equation is off by three, for the former equations imply
that ¢ = b—1 = a —2. The computer will simply ignore an inconsistent equation when
you resume processing after such an error.

@ Redundant equations are equations that say nothing new. For example, ‘0 = 0’

is redundant, and so is ‘a = b+ ¢’ if you have previously said that ¢ = a — b.
METAFONT stops with an error message if you give it a redundant equation between
two numeric expressions, because this usually indicates an oversight in the program.
However, no error is reported when an equation between pairs leads to one or two
redundant equations between numerics. For example, the equation ‘zs = (0,h) will
not trigger an error message when the program has previously established that 3 =0
or that y3 = h or both.

@ Sometimes you might have to work a little bit to put an equation into a form
that METAFONT can handle. For example, you can’t say

x/y=2
when y is independent or dependent, because METAFONT allows division only by known
quantities. The alternative

x =2y
says the same thing and causes the computer no difficulties; furthermore it is a correct

equation even when y = 0.

@@ METAFONT’s ability to remember previous equations is limited to “linear”
dependencies as explained above. A mathematician might want to introduce
the condition = > 0 by giving an equation such as ‘¢ = absx’; but METAFONT is

redundant
inconsistent

off by x

division

linear dependencies
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incapable of dealing with such a constraint. Similarly, METAFONT can’t cope with an
equation like ‘x = floor x’, which states that x is an integer. Systems of equations that
involve the absolute value and/or floor operation can be extremely difficult to solve,
and METAFONT doesn’t pretend to be a mathematical genius.

@@ The rules given earlier explain how an independent variable can become de-

pendent or known; conversely, it’s possible for a dependent variable to become
independent again, in unusual circumstances. For example, suppose that the equation
a+ b+ 2c = 3 in our example above had been followed by the equation d = b+ c+a/4.
Then there would be two dependent variables,

## c=-0.5b-0.5a+1.5
## d=0.5b-0.25a+1.5

Now suppose that the next statement is ‘numeric a’, meaning that the old value of
variable a should be discarded. METAFONT can’t simply delete an independent variable
that has things depending on it, so it chooses a dependent variable to take a’s place;
the computer prints out

### 0.5a=-0.5b-c+1.5

meaning that 0.5a will be replaced by —c — %b + % in all dependencies, before a is
discarded. Variable c¢ is now independent again; ‘showdependencies’ will reveal that
the only dependent variable is now d, which equals 0.756 + 0.5¢ + 0.75.  (This is
correct, for if the variable a is eliminated from the two given equations we obtain
4d = 3b+ 2c+ 3.) The variable chosen for independence is one that has the greatest
coefficient of dependency with respect to the variable that will disappear.

@ A designer often wants to stipulate that a certain point lies on a certain

line. This can be done easily by using a special feature of plain METAFONT
called ‘whatever’, which stands for an anonymous numeric variable that has a different
unknown value each time you use it. For example,

z1 = whatever|zz, 23]

states that point 1 appears somewhere on the straight line that passes through points
2 and 3. (The expression t[z2, z3] represents that entire straight line, as ¢ runs through
all values from —oco to +00. We want z1 to be equal to ¢[z2, z3] for some value of ¢, but
we don’t care what value it is.) The expression ‘whatever[z2, 23] is legal whenever the
difference z2 — z3 is known; it’s usually used only when z2 and z3 are both known, i.e.,
when both points have been determined by prior equations.

@ Here are a few more examples of equations that involve ‘whatever’, together
with their translations into English. These equations are more fun than the

“tame” ones we considered at the beginning of this chapter, because they show off more

of the computer’s amazing ability to deduce explicit values from implicit statements.

Equation Translation

25 — z4 = whatever * dir 30 The angle between points 4 and 5 will be 30°
above the horizon. (This equation can also
be written ‘z4 = z5 + whatever xdir 30, which
states that point 4 is obtained by starting at
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point 5 and moving by some unspecified mul- dir
tiple of dir 30.) parallel

intersection
perpendicular

27 — z6 = whatever x (z3 — z2) The line from point 6 to point 7 should be nknown quantities, nonnumeric

parallel to the line from point 2 to point 3.

penposg(whatever, 60) The simulated pen angle at point 8 should
be 60 degrees; the breadth of the pen is un-
specified, so it will be determined by other
equations.

@ » EXERCISE 9.4
If 21, 22, 23, and z4 are known points, how can you tell METAFONT to compute
the point z that lies on the intersection of the lines z; .. z2 and 23 .. 247

gé? » EXERCISE 9.5
Given five points z1, z2, 23, 24, and z5, explain how to compute z on the line
z1 .. z2 such that the line z .. z3 is parallel to the line z4 .. z5.

@ » EXERCISE 9.6
What METAFONT equation says that the line between points 11 and 12 is
perpendicular to the line between points 13 and 147

@ » EXERCISE 9.7
(For mathematicians.) Given three points z1, z2, and z3, explain how to
compute the distance from z; to the straight line through z2 and zs.

@@» EXERCISE 9.8

(For mathematicians.) Given three points z1, 22, 23, and a length [, explain
how to compute the two points on the line z2 .. z3 that are at distance [ from z;.
(Assume that [ is greater than the distance from z; to the line.)

@ » EXERCISE 9.9

The applications of whatever that we have seen so far have been in equations
between pairs of numeric values, not in equations between simple numerics. Explain
why an equation like ‘a 4+ 2b = whatever’ would be useless.

@ All of the equations so far in this chapter have been between numeric expres-
sions or pair expressions. But METAFONT actually allows equations between
any of the eight types of quantities. For example, you can write

sl="go"; sl&sl=s2

if s1 and so are string variables; this makes s1 = "go" and s3 = "gogo". Moreover, the
subsequent equations

s3=s4; sb=s6; s3=sb; s4=s1&"sh"
will make it possible for the machine to deduce that s¢ = "gosh".

@ But nonnumeric equations are not as versatile as numeric ones, because METR-
FONT does not perform operations on unknown quantities of other types. For
example, the equation

"h"g&s7="heck"
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cannot be used to define sy = "eck", because the concatenation operator & works only
with strings that are already known.

@ After the declaration ‘string s[]’” and the equations ‘s1=s2=s3’, the statement
‘show s0’ will produce the result ‘unknown string s0’; but ‘show s1’ will
produce ‘unknown string s2’. Similarly, ‘show s2’ and ‘show s3’ will produce ‘unknown
string s3’ and ‘unknown string s1’, respectively. In general, when several nonnumeric
variables have been equated, they will point to each other in some cyclic order.

Let “X"” equal my father's signature.
— FRED ALLEN, Vogues (1924)

ALL ANIMALS ARE EQUAL
BUT SOME ANIMALS ARE MORE EQUAL THAN OTHERS

— GEORGE ORWELL, Animal Farm (1945)
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Variables usually get values by appearing in equations, as described in the pre-
ceding chapter. But there’s also another way, in which ‘:=’ is used instead of ‘=’.
For example, the io.mf program in Chapter 5 said

stem# := trial_stem * pt#

when it wanted to define the value of stem#.

The colon-equal operator ‘:=" means “discard the previous value of the
variable and assign a new one”; we call this an assignment operation. It was
convenient for io.mf to define stem# with an assignment instead of an equation,
because stem# was getting several different values within a single font. The
alternative would have been to say

numeric stem#; stem# = trial_stem * pt#

(thereby specifically undefining the previous value of stem# before using it in an
equation); this is more cumbersome.

The variable at the left of ‘:=" might appear also in the expression on
the right. For example,

code := code + 1

means “increase the value of code by 1.” This assignment would make no sense
as an equation, since ‘code = code + 1’ is inconsistent. The former value of
code is still relevant on the right-hand side when ‘code 4 1’ is evaluated in this
example, because old values are not discarded until the last minute; they are
retained until just before a new assignment is made.

@ » EXERCISE 10.1
Is it possible to achieve the effect of ‘code := code + 1’ by using equations and
numeric declarations but not assignments?

Assignments are permitted only when the quantity at the left of the ‘:=’
is a variable. For example, you can’t say ‘code+1:=code’. More significantly,
things like ‘(x,y) :=(0,0)’ are not permitted, although you can say ‘w:=(0,0)’
if w has been declared to be a variable of type pair. This means that a state-
ment like ‘z1:=22’ is illegal, because it’s an abbreviation for the inadmissible
construction ‘(x1,y1):=(x2,y2)’; we must remember that z1 is not really a
variable, it’s a pair of variables.

The restriction in the previous paragraph is not terribly significant, be-
cause assignments play a relatively minor réle in METAFONT programs. The
best programming strategy is usually to specify equations instead of assignments,
because equations indicate the relationships between variables in a declarative
manner. A person who makes too many assignments is still locked into the habits
of old-style “imperative” programming languages in which it is necessary to tell
the computer exactly how to do everything; METAFONT’s equation mechanism
liberates us from that more complicated style of programming, because it lets
the computer take over the job of solving equations.
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The use of assignments often imposes a definite order on the statements internal quantities
of a program, because the value of a variable is different before and after an ezquation
assignment takes place. Equations are simpler than assignments because they assignment
can usually be written down in any order that comes naturally to you. :ri:ght_han d side
Assignments do have their uses; otherwise METAFONT wouldn’t bother variables, reinitializing
with ‘:=" at all. But experienced METAFONT programmers introduce assign- reinitializing

independent variables
ments sparingly—only when there’s a good reason for doing so—because equa- numeric

tions are generally easier to write and more enlightening to read.

@ METAFONT’s internal quantities like tracingequations always have known nu-
meric values, so there’s no way to change them except by giving assignments.
The computer experiment in Chapter 9 began with

\tracingequations:=tracingonline:=1;

this illustrates the fact that multiple assignments are possible, just like multiple equa-
tions. Here is the complete syntax for equations and assignments:

(equation) — (expression) = (right-hand side)
(assignment) — (variable) : = (right-hand side)
(right-hand side) — (expression) | (equation) | (assignment)

Notice that the syntax permits mixtures like ‘a + b = ¢ := d + ¢€’; this is the same as
the assignment ‘c := d + e’ and the equation ‘a +b = ¢’.

?2 In a mixed equation/assignment like ‘a +b = b := b+ 1, the old value of b

is used to evaluate the expressions. For example, if b equals 3 before that
statement, the result will be the same as ‘a + 3 = b := 3 + 1’; therefore b will be set
to 4 and a will be set to 1.

@ » EXERCISE 10.2

Suppose that you want variable x3 to become “like new,” completely indepen-
dent of any value that it formerly had; but you don’t want to destroy the values of x;
and z2. You can’t say ‘numeric z[]’, because that would obliterate all the z’s. What
can you do instead?

@@» EXERCISE 10.3
Apply METAFONT to the short program

string s[]; s1 = s2 = s3 = s4; S5 = S¢; S2 := S5; showvariable s;
and explain the results you get.

@@ If other variables depend on v when v is assigned a new value, the other
variables do not change to reflect the new assignment; they still act as if
they depended on the previous (unknown) value of v. For example, if the equations
‘2u = 3v = w’ are followed by the assignment ‘w := 6’, the values of u and v won’t
become known, but METAFONT will still remember the fact that v = .66667u. (This
is not a new rule; it’s a consequence of the rules already stated. When an independent
variable is discarded, a dependent variable may become independent in its place, as
described in Chapter 9.)
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@@» EXERCISE 10.4
Apply METAFONT to the program
tracingequations := tracingonline := 1;

a=1; a:=a+b;, a:=a+b;, a:=a+0b;
show a, b;

and explain the results you get.

At first his assignment had pleased,
but as hour after hour passed

with growing weariness,

he chafed more and more.

— C. E. MULFORD, Hopalong Cassidy (1910)

(left part) ::= (variable) :=
(left part list) ::= (left part) | (left part list){left part)
assignment statement) ::= (left part list)(arithmetic expression
j lef li ith i [

(left part list)(Boolean expression)
— PETER NAUR et al., Report on the Algorithmic language ALGOL 60 (1960)

MULFORD
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A single METAFONT program can produce fonts of type for many different kinds
of printing equipment, if the programmer has set things up so that the resolution
can be varied. The “plain METAFONT ” base file described in Appendix B estab-
lishes a set of conventions that make such variability quite simple; the purpose
of the present chapter is to explain those conventions.

For concreteness let’s assume that our computer has two output devices.
One of them, called cheapo, has a resolution of 200 pixels per inch (approximately
8 per millimeter); the other, called luzo, has a resolution of 2000 pixels per inch.
We would like to write METAFONT programs that are able to produce fonts for
both devices. For example, if the file newface.mf contains a program for a new
typeface, we’d like to generate a low-resolution font by invoking METAFONT with

\mode=cheapo; input newface
and the same file should also produce a high-resolution font if we start with
\mode=1luxo; input newface

instead. Other people with different printing equipment should also be able to
use newface.mf with their own favorite mode values.

The way to do this with plain METAFONT is to call mode_setup near
the beginning of newface.mf; this routine establishes the values of variables like
pt and mm, which represent the respective numbers of pixels in a point and a
millimeter. For example, when mode = cheapo, the values will be pt = 2.7674
and mm = 7.87402; when mode = luxo, they will be pt = 27.674 and mm =
78.74017. The newface.mf program should be written in terms of such variables,
so that the pixel patterns for characters will be about 10 times narrower and
10 times shorter in cheapo mode than they are in luzo mode. For example, a
line that’s drawn from (0,0) to (3mm,0) will produce a line that’s about 23.6
pixels long in cheapo mode, and about 236.2 pixels long in luzo mode; the former
line will appear to be 3mm long when printed by cheapo, while the latter will
look 3mm long when printed by luzo.

A further complication occurs when a typeface is being magnified; in
such cases the font does not correspond to its normal size. For example, we might
want to have a set of fonts for cheapo that are twice as big as usual, so that users
can make transparencies for overhead projectors. (Such output could also be
reduced to 50% of its size as printed, on suitable reproduction equipment, thereby
increasing the effective resolution from 200 to 400.) TgX allows entire jobs to
be magnified by a factor of 2 if the user says ‘\magnification=2000’; individual
fonts can also be magnified in a TEX job by saying, e.g., ‘\font\f=newface
scaled 2000’. The standard way to produce a font with two-fold magnification
using the conventions of plain METAFONT is to say, e.g.,

\mode=cheapo; mag=2; input newface;

this will make pt = 5.5348 and mm = 15.74803.
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The mode_setup routine looks to see if mag has a known value; if not,
it sets mag = 1. Similarly, if mode is unknown, mode_setup sets mode = proof .

Plain METAFONT also computes the values of several other dimension-
oriented values in addition to pt and mm, corresponding to the dimensions that
are understood by TEX. Here is the complete list:

pt printer’s point (72.27pt = 1in)

pe pica (Ipc = 12pt)

in inch (lin = 2.54 cm)

bp big point (72bp = 1in)

cm centimeter (100 cm = 1 meter)
mm millimeter (10mm = 1cm)

dd didot point (1157dd = 1238 pt)
cc cicero (lecec=12dd)

In each case the values are rounded to the nearest mth of a pixel.

Although such standard physical dimensions are available, they haven’t
been used very much in traditional typefaces; designers usually specify other
units like ‘em’ or ‘z_height’ in order to define the sizes of letters, and such
quantities generally have ad hoc values that vary from font to font. Plain META-
FONT makes it easy to introduce ad hoc dimensions that will vary with the
resolution and the magnification just as pt and mm do; all you have to do is
define “sharped” dimensions that have the same name as your pixel-oriented
dimensions, but with ‘#’ tacked on as a suffix. For example, em# and z_height#
(typed ‘em#’ and ‘x_height#’ ) would be the sharped dimensions corresponding
to em and z_height. Plain METAFONT has already defined the quantities pt#,
pc#, in#, bp#, ecm#*, mm#, dd#, and cc# for the standard units named above.

Sharped dimensions like em# and z_height# should always be defined
in terms of resolution-independent dimension variables like pt#, in#, etc., so
that their values do not change in any way when mode and mag are varied.
The ‘#° sign implies unchangeability. After mode_setup has been called, the
pixel-oriented dimensions can be calculated by simply saying

define_pixels(em, z_height).
This statement is an abbreviation for
em := em# x hppp; x_height := x_height# x hppp

where hppp is an internal variable of METAFONT that represents the number of
pixels per point in the horizontal dimension. Any number of ad hoc dimensions
can be listed in a single define_pixels statement. Notice that ‘#’ is not an oper-
ator that could convert em to em#; rounding errors would be mode-dependent.

Chapter 5’s demonstration program io.mf contains several examples of
ad hoc dimensions defined in this way, and it also contains the statement

define_blacker_pixels(thin, thick);

mag
proof

pc

in

bp

cm

dd

cc

dimensions

ad hoc dimensions
sharped

hash

sharped dimensions
define_pixels

hppp
define_blacker_pixels
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what’s this? Well, Appendix B makes that statement an abbreviation for
thin := thin# * hppp + blacker:; thick := thick# x hppp + blacker;

in other words, the sharped dimensions are being unsharped in this case by
converting them to pixels and then adding ‘blacker’. The variable blacker is a
special correction intended to help adapt a font to the idiosyncrasies of the cur-
rent output device; mode_setup uses the value of mode to establish the value of
blacker. For example, cheapo mode might want blacker = 0.65, while luzo mode
might give best results when blacker = 0.1. The general convention is to add
blacker to pixel-oriented variables that determine the breadth of pens and the
thickness of stems, so that the letters will be slightly darker on machines that
otherwise would make them appear too light. Different machines treat pixels
quite differently, because they are often based on quite different physical prin-
ciples. For example, the author once worked with an extremely high-resolution
device that tended to shrink stem lines rather drastically when it used a certain
type of photographic paper, and it was necessary to set blacker = 4 to get proper
results on that machine; another high-resolution device seems to want blacker
to be only 0.2. Experimentation is necessary to tune METAFONT’s output to
particular devices, but the author’s experience suggests strongly that such a cor-
rection is worthwhile. When mode = proof or smoke, the value of blacker is
taken to be zero, since the output in these modes is presumably undistorted.

» EXERCISE 11.1
Does ‘mode = cheapo; mag = 10’ produce exactly the same font as ‘mode =
luzo’, under the assumptions of this chapter?

@ Line 7 of io.mf says ‘define_corrected_pixels(o)’, and this is yet a third
way of converting from true physical dimensions to pixel-oriented values. Ac-
cording to Appendix B, variable o is defined by the assignment

o := round(o# * hppp * o_correction) + eps

where o_correction, like blacker, is a magic number that depends on the output device
for which fonts are being made. On a high-resolution device like luzo, the appropriate
value for the o_correction factor is 1; but on a low-resolution device like cheapo, the
author has obtained more satisfactory results with o_correction = 0.4. The reason is
that ‘o’ is used to specify the number of pixels by which certain features of characters
“overshoot” the baseline or some other line to which they are visually related. High-
resolution curves look better when they overshoot in this way, but low-resolution curves
do not; therefore it is usually wise to curtail the amount of overshoot by applying the
o-correction factor. In proof and smoke modes the factor is equal to 1.0, since these
modes correspond to high resolution.

@@ The properties of output devices are modeled also by a parameter that’s called

fillin, which represents the amount by which diagonal strokes tend to be darker
than horizontal or vertical strokes. More precisely, let us say that a “corner” pixel is
one whose color matches the color of five of its neighbors but not the other three,
where the three exceptions include one horizontal neighbor, one vertical neighbor, and
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the diagonal neighbor between them. If a white corner pixel has apparent darkness fi
and if a black corner pixel has apparent darkness 1 — fo, then the fillin is fi — f2. (A
“true” raster image would have f; = fo = 0, but physical properties often cause pixels
to influence their neighbors.)

@@ Each output device for which you will be generating fonts should be repre-

sented by a symbolic mode name in the implementation of METAFONT that
you are using. Since these mode names vary from place to place, they are not standard
aspects of the METAFONT language; for example, it is doubtful whether the hypotheti-
cal cheapo and luzo modes discussed in this chapter actually exist anywhere. The plain
METAFONT base is intended to be extended to additional modes in a disciplined way,
as described at the end of Appendix B.

@ It’s easy to create a new symbolic mode, using plain METAFONT’s ‘mode._def’
convention. For example, the luzo mode we have been talking about could be
defined by saying

mode_def luxzo =

pizels_per_inch := 2000; % high res, almost 30 per point
blacker := .1; % make pens a teeny bit blacker
o_correction := 1; % keep the full overshoot

fillin := 0.1, % compensate for darkened corners
proofing := 0; % no, we’re not making proofs
fontmaking := 1; % yes, we are making a font
tracingtitles := 1; enddef; % yes, show titles online

The name of the mode should be a single symbolic token. The resolution should be
specified by assigning a value to pizels_per_inch; all other dimension values (pt, mm,
etc.) will be computed from this one by mode_setup. A mode definition should also
assign values to the internal variables blacker, o_correction, and fillin (which describe
the device characteristics), as well as proofing, fontmaking, and tracingtitles (which
affect the amount of output that will be produced). In general, proofing and fontmaking
are usually set to 0 and 1, respectively, in modes that are intended for font production
rather than initial font design; tracingtitles is usually 0 for low-resolution fonts (which
are generated quickly), but 1 for high-resolution fonts (which go more slowly), because
detailed online progress reports are desirable when comparatively long jobs are running.

?P Besides the seven mandatory quantities ‘pizels_per_inch’, ..., ‘tracingtitles’

just discussed, a mode definition might assign a value to ‘aspect_ratio’. In the
normal case when no aspect_ratio is specified, it means that the fonts to be output are
assumed to have square pixels. But if, for example, the mode_def sets aspect_ratio :=
5/4, it means that the output pixels are assumed to be nonsquare in the ratio of 5
to 4; i.e., 5 vertical pixel units are equal to 4 horizontal pixel units. The pixel-oriented
dimensions of plain METAFONT are given in terms of horizontal pixel units, so an aspect
ratio of 5/4 together with 2000 pixels per inch would mean that there are 2500 vertical
pixel units per inch; a square inch would consist of 2500 rows of pixels, with 2000 pixels
in each row. (Stating this another way, each pixel would be ﬁ inches wide and ?100
inches high.) In such a case, plain METAFONT will set the currenttransform variable
so that all draw and fill commands stretch the curves by a factor of 5/4 in the vertical
dimension; this compensates for the nonsquare pixels, so the typeface designer doesn’t
have to be aware of the fact that pixels aren’t square.

mode

mode_def
proofing
fontmaking
tracingtitles
aspect_ratio
nonsquare
currenttransform
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Let’s look now at a concrete example, so that it will be clear how the
ideas of device-independent font design can be implemented in practice. We
shall study a file logo.mf that generates the seven letters of METAFONT’s logo.
There also are “parameter” files 1ogo10.mf, logo9.mf, etc., which use logo.mf
to produce fonts in various sizes. For example, a font containing the 10-point
characters ‘ METAFONT ’ could be generated for the hypothetical luzo printer by
running METAFONT with the command line

\mode=1luxo; input logol0

if luzo mode really existed.

The main purpose of 1ogo10.mf is to establish the “sharped” values of
several ad hoc dimensions; then it inputs logo.mf, which does the rest of the
work. Here is the entire file logo10.mf:

% 10-point METAFONT logo
font_size 10pt#; % the "design size" of this font

ht#:=6pt#; % height of characters

xgap#:=0.6pt#; % horizontal adjustment

u#:=4/9pt#; % unit width

s#:=0; % extra space at the left and the right
o#:=1/9pt#; % overshoot

px#:=2/3pt#; % horizontal thickness of pen

input logo % now generate the font

end % and stop.

Similar files logo9.mf and logo8.mf will produce 9-point ‘METAFONT’ and
8-point ‘METAFONT’; the letters get a little wider in relation to their height,
and the inter-character spacing gets significantly wider, as the size gets smaller:

% 9-point METAFONT logo % 8-point METAFONT logo
font_size 9pt#; font_size 8pt#;
ht#:=.9%6pt#; ht#:=.8%6pt#;
xgap#:=.9%0.6pt#; xgap#:=.8%0.6pt#;
u#:=.91%4/9pt#; u#:=.82*%4/9pt#;
s#:=.08pt#; s#:=.2pt#;

o#:=1/10pt#; o#:=1/12pt#;
px#:=.9%2/3pt#; px#:=.8%2/3pt#;

input logo input logo

end end

It is interesting to compare the font generated by logo10.mf to the font gener-
ated by logo8.mf with mag=10/8: Both fonts will have the same values of ht,
zgap, and pzr, when the magnification has been taken into account. But the
magnified 8-point font has a slightly larger value of u and a positive value of s;
this changes ‘METAFONT’ to ‘ METAFONT .
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@ Every font has a “design size,” which is a more-or-less arbitrary number that

reflects the size of type it is intended to blend with. Users of TEX select
magnified fonts in two ways, either by specifying an “at size” or by specifying a scale
factor (times 1000). For example, the 8-point METAFONT logo can be used at 10/8
magnification by referring either to ‘logo8 at 10pt’ or to ‘logo8 scaled 1250’ in a TEX
document. When an “at size” is specified, the amount of magnification is the stated
size divided by the design size. A typeface designer can specify the design size by using
plain METAFONT’s ‘font_size’ command as illustrated on the previous page. (If no
design size is specified, METAFONT will set it to 128 pt, by default.)

The file 1ogo .mf itself begins by defining three more ad hoc dimensions
in terms of the parameters that were set by the parameter file; these dimensions
will be used in several of the programs for individual letters. Then logo.mf
makes the conversion to pixel units:

% Routines for the METAFONT logo
% (logol0.mf is a typical parameter file)
mode_setup;

ygap#:=(ht#/13.5u#) *xgap#; % vertical adjustment
leftstemloc#:=2.5u#+s#; % position of left stems
barheight#:=.45ht#; % height of bar lines

define_pixels(s,u,xgap,ygap,leftstemloc,barheight);
py#:=.9px#; define_blacker_pixels(px,py); % pen dimensions
pickup pencircle xscaled px yscaled py; logo_pen:=savepen;
define_corrected_pixels(o);

There’s nothing new here except the use of ‘savepen’ in the second-last line;
this, as we will see in Chapter 16, makes the currently-picked-up pen available
for repeated use in the subsequent program.

After the initial definitions just shown, logo.mf continues with programs
for each of the seven letters. For example, here is the program for ‘E’, which
illustrates the use of u#, s#, ht#, leftstemloc, barheight, zgap, and logo_pen:

beginchar ("E", 14u#+2s# ht#,0) ;
pickup logo_pen;
x1=x2=x3=leftstemloc;
x4=x6=w-x1+0; x5=x4-xgap;

y1=y6; y2=y5; y3=y4; foo bad you can’t et 1s mowy
bot y1=0; top y3=h;

y2=barheight;

draw z6--z1--z3--z4; draw z2--z5;
labels(1,2,3,4,5,6);

endchar;

We have seen the essentials of the M and the T in Chapter 4; programs for the
other letters will appear later.

design size
TeX

at size
font_size
savepen

E



Chapter 11: Magnification and Resolution

» EXERCISE 11.2
The ad hoc dimensions ht#, xgap#, u#, s#, o#, and pz# defined in the parameter
files all affect the letter ‘E’ defined by this program. For each of these dimensions,
tell what would happen to the ‘E’ if that dimension were increased slightly while
all the others stayed the same.

g% » EXERCISE 11.3
Guess the program for ‘F’ (which is almost the same as ‘E’).

g% » EXERCISE 11.4

Write the complete programs for ‘M’ and ‘T’, based on the information in
Chapter 4, but using the style of the program for ‘E’ above. The character widths
should be 18u# + 2s# and 13u# + 2s#, respectively.

@ The file 1ogo.mf also contains the following cryptic instructions, which cause
the letter pairs ‘TA’ and ‘FO’ to be typeset closer together than their bounding
boxes would imply:

ligtable "T": "A" kern -.5u#;
ligtable "F": "0" kern -u#;

Without these corrections ‘METAFONT’ would be ‘METAFONT’. Uppercase letters
are often subject to such spacing corrections, especially in logos; TEX will adjust the
spacing if the typeface designer has supplied ligtable information like this.

@ Finally, logo.mf closes with four more commands, which provide further in-
formation about how to typeset with this font:

font_quad 18u#+2s#;
font_normal_space 6u#+2s#;
font_normal_stretch 3u#;
font_normal_shrink 2u#;

A font_quad is the unit of measure that a TEX user calls one ‘em’ when this font is
selected. The normal space, stretch, and shrink parameters define the interword spacing
when text is being typeset in this font. Actually a font like 1ogo10 is rarely used to
typeset anything except the one word, ‘METAFONT’; but the spacing parameters have
been included just in case somebody wants to typeset a sentence like ‘AN EFFETE
TOMATO OF MONTANA OFTEN ATE NONFAT TOFFEE’.

@ An optional ‘=" or ‘:=’ sign may be typed after ‘font_size’, ‘font_quad’, etc.,
in case you think the file looks better that way.

@ Notice that “sharped” units must be given in the ligtable kerning commands

and in the definition of device-independent parameters like font_size and
font_quad. Appendix F discusses the complete rules of ligtable and other commands
by which METAFONT programs can send important information to typesetting systems
like TEX. Adding these extra bits of information to a METAFONT program after a font
has been designed is something like adding an index to a book after that book has been
written and proofread.

@@» EXERCISE 11.5
What’s the longest English word that can be typeset with the font logo9?
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@ Let’s summarize the general contents of logo.mf, now that we have seen it ligtable
all, because it provides an example of a complete typeface description (even fontfq;la(i
though there are only seven letters): Xssizn(;lents
» The file begins by defining ad hoc dimensions and converting them to pixel magstep

TeX
units, using mode_setup, define_pixels, etc. ¢

» Then come programs for individual letters. (These programs are often pre-
ceded by macro definitions for subroutines that occur several times. For ex-
ample, we will see later that the ‘A’ and the ‘O’ of the logo are drawn with the
help of a subroutine that makes half of a superellipse; the definition of this
macro actually comes near the beginning of logo.mf, just before the programs
for the letters.)

Finally there are special commands like ligtable and font_quad, to define
parameters of the font that are helpful when typesetting.

The file is accompanied by parameter files that define ad hoc dimensions for
different incarnations of the typeface.

We could make lots of different parameter files, which would produce lots of different
(but related) variations on the METAFONT logo; thus, logo.mf defines a “meta-font”
in the sense of Chapter 1.

@ » EXERCISE 11.6
What changes would be necessary to generalize the logo routines so that the
bar-line height is not always 45 per cent of the character height?

@ Assignments (‘:=") have been used instead of equations (‘=”) in the param-

eter files 1ogo10.mf, logo9.mf, and logo8.mf, as well as in the opening lines
of io.mf in Chapter 5; this contradicts the advice in Chapter 10, where we are told to
stick to equations unless assignments are absolutely necessary. The author has found
it convenient to develop the habit of using assignments whenever ad hoc dimensions
are being defined, because he often makes experimental files in which the ad hoc di-
mensions are changed several times. For example, it’s a good idea to test a particular
letter with respect to a variety of different parameter settings when that letter is first
being designed; such experiments can be done easily by copying the ad hoc parameter
definitions from parameter files into a test file, provided that the parameters have been
defined with assignments instead of equations.

TEX users have found it convenient to have fonts in a series of magnifications

that form a geometric series. A font is said to be scaled by ‘magstep 1’ if
it has been magnified by 1.2; it is scaled by ‘magstep 2’ if it has been magnified by
1.2 x 1.2 = 1.44; it is scaled by ‘magstep 3’ if it has been magnified by 1.2 x 1.2 x 1.2 =
1.728; and so on. Thus, if a job uses a font that is scaled by magstep 2, and if that
entire job is magnified by magstep 1, the font actually used for printing will be scaled
by magstep 3. The additive nature of magsteps makes it more likely that fonts will
exist at the desired sizes when jobs are magnified. Plain METAFONT supports this
convention by allowing constructions like

\mode=cheapo; mag=magstep 2; input logo9

if you want to generate the 9-point METAFONT logo for the cheapo printer, magnified
by 1.44 (i.e., by magstep 2). You can also write ‘magstep 0.5’ for what TEX calls
‘\magstephalf’; this magnifies by v/1.2.
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@@ The sharped forms of dimensions are actually represented by plain METRA-
FONT in terms of printer’s points, so that ‘pt#’ turns out to be equal to 1.
However, it is best for programmers not to make use of this fact; a program ought to
say, e.g., ‘em# := 10pt#’, even though the ‘pt#’ in this construction is redundant, and
even though the computer would run a few microseconds faster without it.

@@» EXERCISE 11.7

Suppose you want to simulate a low-resolution printer on a high resolution
device; for concreteness, let’s say that luxo is supposed to produce the output of cheapo,
with each black cheapo pixel replaced by a 10 x 10 square of black luzo pixels. Explain
how to do this to the logo10 font, by making appropriate changes to logo.mf. Your
output file should be called cheaplogo10.2000gf.

A great Temptation must be withstood with great Resolution.
— WILLIAM BURKITT, Expository Notes on the New Testament (c.1700)

What some invent, the rest enlarge.
— JONATHAN SWIFT, Journal of a Modern Lady (1729)
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Let’s pause now to take a closer look at the “bounding boxes” that enclose
individual characters. In olden days, metal type was cast on a rectangular body
in which each piece of type had the same vertical extent, although the type widths
would vary from character to character. Nowadays we are free of the mechanical
constraints imposed by metal type, but the former metaphors are still useful:
A typesetting system like TEX imagines that each character fits into a rectangular
box, and words are typeset by putting such boxes snugly next to each other.

The main difference between the old conventions and the new ones is that
type boxes are now allowed to vary in height as well as in width. For example,
when TEX typesets ‘A line of type.’ it puts boxes together that essentially look
like this: ‘O Moo dlOgm]’. (The ‘A’ appears in a box ‘0’ that sits on a given
baseline, while the ‘y’ appears in a box ‘g’ that descends below the baseline.)
TEX never looks inside a box to see what character actually appears there; TEX’s
job is to put boxes together in the right places on a page, based only on the box
sizes. It is a typeface designer’s job to decide how big the boxes should be and
to create the characters inside the boxes.

Boxes are two-dimensional objects, but we ascribe three dimensions to
them because the vertical component is divided into two quantities, the height
(above the baseline) and the depth (below the baseline). The horizontal dimen-
sion is, of course, called the width. Here is a picture of a typical box, showing
its so-called reference point and baseline:

height

. Baseli J
Reference point aserne

i
depth
1

«— width —

The example characters in previous chapters have all had zero depth, but we
will soon be seeing examples in which both height and depth are relevant.

A character shape need not fit inside the boundaries of its box. Indeed,
italic and slanted letters are put into ordinary boxes just as if they were not
slanted, so they frequently stick out at the right. For example, the letter ‘g’
in the font you are now reading (cmr10) can be compared with the ‘g’ in the
corresponding slanted font (cms110):

(A figure will be inserted here; too bad you can’t see it now.
It shows two g’s, as claimed. In fact, the same figure ap-
peared on page 63 of The TeXbook.)

The slanted ‘g’ has been drawn as if its box were skewed right at the top and
left at the bottom, keeping the baseline fixed; but TEX is told in both cases that
the box is 5 pt wide, 4.3055 pt high, and 1.9444 pt deep. Slanted letters will be
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spaced properly in spite of the fact that their boxes have been straightened up,
because the letters will match correctly at the baseline.

@ Boxes also have a fourth dimension called the italic correction, which gives

TEX additional information about whether or not a letter protrudes at the
right. For example, the italic correction for an unslanted ‘g’ in cmr10 is 0.1389 pt,
while the corresponding slanted letter in cms110 has an italic correction of 0.8565 pt.
The italic correction is added to a box’s width when math formulas like g2 or g? are
being typeset, and also in other cases as explained in The TEXbook.

Plain METAFONT’s beginchar command establishes the width, height,
and depth of a box. These dimensions should be given in terms of “sharped”
quantities that do not vary with the resolution or magnification, because the size
of a character’s type box should not depend in any way on the device that will
be used to output that character. It is important to be able to define documents
that will not change even though the technology for printing those documents is
continually evolving. METAFONT can be used to produce fonts for new devices
by introducing new “modes,” as we have seen in Chapter 11, but the new fonts
should still give the same box dimensions to each character. Then the device-
independent files output by TEX will not have to be changed in any way when
they are printed or displayed with the help of new equipment.

The three dimensions in a beginchar command are given in reverse
alphabetical order: First comes the width, then the height, then the depth. The
beginchar routine converts these quantities into pixel units and assigns them
to the three variables w, h, and d. In fact, beginchar rounds these dimensions
to the nearest whole number of pixels; hence w, h, and d will always be integers.

METAFONT’s pixels are like squares on graph paper, with pixel bound-
aries at points with integer coordinates. The left edge of the type box lies on
the line x = 0, and the right edge lies on the line z = w; we have y = h on the
top edge and y = —d on the bottom edge. There are w pixels in each row and
h 4+ d in each column, so there are exactly wh + wd pixels inside the type box.

Since w, h, and d are integers, they probably do not exactly match
the box dimensions that are assumed by device-independent typesetting systems
like TEX. Some characters will be a fraction of a pixel too wide; others will be a
fraction of a pixel too narrow. However, it’s still possible to obtain satisfactory
results if the pixel boxes are stacked together based on their w values and if the
accumulated error is removed in the spaces between words, provided that the box
positions do not drift too far away from their true device-independent locations.
A designer should strive to obtain letterforms that work well together when they
are placed together in boxes that are an integer number of pixels wide.

@@ You might not like the value of w that beginchar computes by rounding the
device-independent width to the nearest pixel boundary. For example, you
might want to make the letter ‘m’ one pixel wider, at certain resolutions, so that its
three stems are equally spaced or so that it will go better with your ‘n’. In such a case
you can assign a new value to w, at any time between beginchar and endchar. This

italic correction
beginchar
sharped

w

h

d

graph paper
drift

endchar
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new value will not affect the device-independent box width assumed by TEX, but it
should be respected by the software that typesets dvi files using your font.

Here’s an example of a character that has nonzero width, height, and
depth; it’s the left parenthesis in Computer Modern fonts like cmr10. Computer
Modern typefaces are generated by METAFONT programs that involve lots of pa-
rameters, so this example also illustrates the principles of “meta-design”: Many
different varieties of left parentheses can be drawn by this one program. But
let’s focus our attention first on the comparatively simple way in which the box
dimensions are established and used, before looking into the details of how a

meta-parenthesis has actually been specified. (0.h) (wih)

"Left parenthesis";
numeric ht#, dp#;
ht# = body_height#; .5[ht# —dp#] = axis#;
beginchar (" (", 7u#, ht#, dp#);
italcorr ht# x slant — .Su#;
pickup fine.nib;
penpos; (hair - .ﬁnea O); (Figure 12a will be
penposy (. 75[thin, thick] — fine, 0); et oe 1t o,
penposs(hair — fine, 0);
rt x1. = 1t Tz = w — w; Uft xop = 11 — du;
top y1 = h; y2 = 5[y1, y3] = awis;
filldraw zq;{(z2; — 21;) xscaled 3} ... zy
... {(2z31 — z21) xscaled 3} z3;
-- z3:{ (22, — 23, ) xscaled 3} ... z9,
... {(z1 — 2z2,) xscaled 3} 21, -- cycle;

penlabels(1,2,3); endchar; (0.~d) (w,=d)

The width of this left parenthesis is 7u#, where u# is an ad hoc pa-
rameter that figures in all the widths of the Computer Modern characters. The
height and depth have been calculated in such a way that the top and bot-
tom of the bounding box are equally distant from an imaginary line called the
axis, which is important in mathematical typesetting. (For example, TEX puts
the bar line at the axis in fractions like %; many symbols like ‘4’ and ‘=,
as well as parentheses, are centered on the axis line.) Our example program
puts the axis midway between the top and bottom of the type by saying that
“5[ht#, —dp#] = axis# . We also place the top at position ‘ht# = body_height #;
here body_height# is the height of the tallest characters in the entire typeface.
It turns out that body_height# is exactly 7.5pt# in cmr10, and awis# = 2.5pt#;
hence dp# = 2.5pt#, and the parenthesis is exactly 10 pt tall.

The program for ‘(’ uses a filldraw command, which we haven’t seen
before in this book; it’s basically a combination of fill and draw, where the filling
is done with the currently-picked-up pen. Some of the Computer Modern fonts
have characters with “soft” edges while others have “crisp” edges; the difference
is due to the pen that is used to filldraw the shapes. This pen is a circle whose
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diameter is called fine; when fine is fairly large, filldraw will produce rounded
corners, but when fine = 0 (as it is in cmr10) the corners will be sharp.

The statement ‘penpos; (hair — fine, 0)’ makes the breadth of a simulated
broad-edge pen equal to hair — fine at position 1; i.e., the distance between zy;
and zp, will be hair — fine. We will be filling a region between z1; and z1,, with
a circle-shaped pen nib whose diameter is fine; the center of that nib will pass
through z;; and z,, hence the pen will effectively add % fine to the breadth of
the stroke at either side. The overall breadth at position 1 will therefore be
%ﬁne + (hair — fine) + %ﬁne = hair. (Computer Modern’s “hairline thickness”
parameter, which governs the breadth of the thinnest strokes, is called hair.)
Similarly, the statement ‘penpos,(.75[thin, thick] — fine,0)’ makes the overall
breadth of the pen at position 2 equal to .75[thin, thick], which is % of the way
between two other parameters that govern stroke breadths in Computer Modern
routines. If fine is increased while hair, thin, and thick stay the same, the effect
will simply be to produce more rounded corners at positions 1 and 3, with little
or no effect on the rest of the shape, provided that fine doesn’t get so large that
it exceeds hair.

Here, for example, are five different left parentheses, drawn by our ex-
ample program with various settings of the parameters:

cmrl0 cmbx10 cmvttl10 cmssdcl0 cmtilO

(Figure 12¢ will be in- )
serted here; too bad ~ (Figure 12d will be (g0 126 will be

.(Figure 12a will be (Figure 12b will be in- ou can’t see it now. inserted here; too inserted here: too
gt el e RIS
U= 20 u = 23 u = 21 u = 19 u= 184
ht = 270 ht = 270 ht = 250 ht = 270 ht = 270
axis = 90 aris = 90 axis = 110 aris = 95 axis = 90
fine= 0 fine= 0 fine = 22 fine= 8 fine= 7
hair = 8 hair = 13 hair = 22 hair = 23 hair = 8
thin = 9 thin = 17 thin = 25 thin = 40 thin = 11
thick = 25 thick = 41 thick = 25 thick = 40 thick = 23

Parameter values are shown here in proof mode pixel units, 36 to the point.

fine
hairline
proof
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(Thus, for example, the value of u# in cmr10 is 20 pt#.) Since cmbx10 is a “bold
extended” font, its unit width w is slightly larger than the unit width of cmr10,
and its pen widths (especially thick) are significantly larger. The “variable-
width typewriter” font cmvtt10 has soft edges and strokes of almost uniform
thickness, because fine and hair are almost as large as thin and thick. This font
also has a raised axis and a smaller height. An intermediate situation occurs
in cmssdc10, a “sans serif demibold condensed” font that is similar to the type
used in the chapter titles of this book; thick = thin in this font, but hairlines are
noticeably thinner, and fine provides slightly rounded corners. The “text italic”
font cmti10 has rounded ends, and the character shape has been slanted by .25;
this means that each point (z,y) has been moved to position (z + .25y, y), in the
path that is filled by filldraw.

@ The vertical line just to the right of the italic left parenthesis shows the italic

correction of that character, i.e., the fourth box dimension mentioned earlier.
This quantity was defined by the statement ‘italcorr ht#xslant —.5u#’ in our program;
here slant is a parameter of Computer Modern that is zero in all the unslanted fonts,
but slant = .25 in the case of cmti10. The expression following italcorr should always
be given in sharped units. If the value is negative, the italic correction will be zero;
otherwise the italic correction will be the stated amount.

@ The author has obtained satisfactory results by making the italic correction

roughly equal to .5u plus the maximum amount by which the character sticks
out to the right of its box. For example, the top right end of the left parenthesis will be
nearly at position (w — u, ht) before slanting, so its x coordinate after slanting will be
w — u + ht * slant; this will be the rightmost point of the character, if we assume that
slant > 0. Adding .5u, subtracting w, and rewriting in terms of sharped units gives the
stated formula. Notice that when slant = 0 the statement reduces to ‘italcorr —.5u#’;
this means that unslanted left parentheses will have an italic correction of zero.

@ » EXERCISE 12.1
Write a program for right parentheses, to go with these left parentheses.

The reader should bear in mind that the conventions of plain METAFONT
and of Computer Modern are not hardwired into the METAFONT language; they
are merely examples of how a person might use the system, and other typefaces
may well be better served by quite different approaches. Our program for left
parentheses makes use of beginchar, endchar, italcorr, penlabels, pickup,
penpos, Ift, rt, top, z, and filldraw, all of which are defined somewhat arbitrarily
in Appendix B as part of the plain base; it also uses the quantities u, body_height,
azxis, fine, hair, thin, thick, and slant, all of which are arbitrary parameters that
the author decided to introduce in his programs for Computer Modern. Once
you understand how to use arbitrary conventions like these, you will be able to
modify them to suit your own purposes.

» EXERCISE 12.2
(For people who know TEX.) It’s fairly clear that the width of a type box is
important for typesetting, but what use does TEX make of the height and depth?
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@@ The primitive commands by which METAFONT actually learns the dimensions

of each box are rarely used directly, since they are intended to be embedded
in higher-level commands like beginchar and italcorr. But if you must know how
things are done at the low level, here is the secret: There are four internal quantities
called charwd, charht, chardp, and charic, whose values at the time of every shipout
command are assumed to be the box dimensions for the character being shipped out, in
units of printer’s points. (See the definitions of beginchar and italcorr in Appendix B
for examples of how these quantities can be manipulated.)

@@ Besides charwd and its cousins, METAFONT also has four other internal vari-
ables whose values are recorded at the time of every shipout:

m charcode is rounded to the nearest integer and then converted to a number
between 0 and 255, by adding or subtracting multiples of 256 if necessary; this “c code”
is the location of the character within its font.

m charext is rounded to the nearest integer; the resulting number is a secondary
code that can be used to distinguish between two or more characters with equal c codes.
(TEX ignores charext and assumes that each font contains at most 256 characters; but
extensions to TEX for oriental languages can use charezt to handle much larger fonts.)

n chardx and chardy represent horizontal and vertical escapement in units of
pixels. (Some typesetting systems use both of these device-dependent amounts to
change their current position on a page, just after typesetting each character. Other sys-
tems, like the dvi software associated with TEX, assume that chardy = 0 but use chardz
as the horizontal escapement whenever a horizontal movement by chardz does not cause
the subsequent position to drift too far from the device-independent position defined by
accumulated charwd values. Plain METAFONT’s endchar routine keeps chardy = 0,
but sets chardx := w just before shipping a character to the output. This explains why
a change to w will affect the spacing between adjacent letters, as discussed earlier.)

@ Two characters with the same c code should have the same box dimensions and

escapements; otherwise the second character will override the specifications of
the first. The boolean expression ‘charexists ¢’ can be used to determine whether or
not a character with a particular ¢ code has already been shipped out.

@ Let’s conclude this chapter by contemplating a METAFONT program that gen-

erates the “dangerous bend” symbol, since that symbol appears so often in
this book. It’s a custom-made character intended to be used only at the very beginnings
of paragraphs in which the baselines of the text are exactly 11 pt apart. Therefore it
extends below its baseline by 11 pt; but it is put into a box of depth zero, because TEX
would otherwise think that the first line of the paragraph contains an extremely deep
character, and such depth would cause the second line to be moved down.

baselinedistance# := 11pt#; define_pixels(baselinedistance);

heavyline# := 50/36pt#; define_blacker_pixels(heavyline);

beginchar (127, 25u#, h_height# + border#,0); "Dangerous bend symbol";
pickup pencircle scaled rulethickness; top y1 = %h; Ift xa = 0;

T1+T1 = Tia+T1p = Tab+2T2q = T4+T2 = Tag+T2p = T3p+T30 = T3+T3 = W;
T4 = Tap = T4 + U; T3p = Tia = T1 — 2U;

Ya+Ys = Ysa +Yab = Y3b +Y1a = Y3+ Y1 = Y3a + Y16 = Y20 + Y20 = Y2 +y2 = 0;
Yia =Y1b = Y1 — 2= h; Yab = Y2a = Ya + 3=

charwd
charht
chardp
charic
shipout
charcode
location

c code
charext
oriental
chardx
dvi

drift

w
charexists
dangerous bend
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draw z1q .. 21 .. Z1b---22q -- 22 .. 22p - -~ beginchar

23q - 23 .. 23b -=- Z4q .. 24 .. 24p --- CyCle; % the signboard location
10 = T11 = T12 = T13 = .DW — U; T14a = Ti5 = T16 = T17 = W — T10; intersectionpoint
Y10 = Y14 = %h; bot y13 = —baselinedistance; HAGGARD

z11 = (z10 .. z13) intersectionpoint (z1a{z1a — 2ab} .. z1{right}); COLBURN

Y15 = Y11, Yie = Y12 = —Y11, Y17 = Y20 = Y21 = Y13;
draw z11 -- 210 -- 214 -- 215; draw 2z;2 -- 213; draw zi6 -- 217; % the signpost

T2o = W — T21; T21 — T2o = 16u; draw zgo -- 221; % ground level
T3e = W — T31; T36 — T31 = 8U; T32 = T33 = T36; T31 = T34 = T35;

Ys1 = —Yse = 32h; Ys2 = —Ys5 = ach; Ysz = —ysa = 2=

pickup pencircle scaled heavyline;

draw z32{z32 — 231} .. 233 --- 234 .. 235{ 236 — 235 }; % the dangerous bend
pickup penrazor xscaled heavyline rotated (angle(zsz — z31) + 90);

draw z3;1 -- z32; draw 2z3s -- 236; % upper and lower bars

labels(1a, 1b, 2a, 2b, 3a, 3b, 4a, 4b, range 1 thru 36); endchar.

This program has sev-
eral noteworthy points
of interest: (1) The first
parameter to beginchar
here is 127, not a string;
this puts the character
into font location 127.
(2) A sequence of equa-
tions like ‘a = w—b; a’ =
w — b’ can conveniently
be shortened to ‘a +b =
a' +b =w. (3) Three
hyphens ‘---" is an ab-
breviation for a line with
“infinite” tension, i.e.,
an almost straight line
that connects smoothly
to its curved neighbors.
(4) An ‘intersectionpoint’
operation finds out where
two paths cross; we'll
learn more about this in
Chapter 14.

(Figure 12f will be inserted here; too bad you can’t see it now.)

Well, we are in the same box.
— RIDER HAGGARD, Dawn (1884)

A story, too,
may be boxed.

— DOROTHY COLBURN, Newspaper Nomenclature (1927)
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The pictures that METAFONT produces are made up of tiny pixels that are either
“on” or “off”; therefore you might imagine that the computer works behind the
scenes with some sort of graph paper, and that it darkens some of the squares
whenever you tell it to draw a line or to fill a region.

METAFONT’s internal graph paper is actually more sophisticated than
this. Pixels aren’t simply “on” or “off” when METAFONT is working on a picture;
they can be “doubly on” or “triply off.” Each pixel contains a small integer value,
and when a character is finally shipped out to a font the black pixels are those
whose value is greater than zero. For example, the two commands

fill (0,3) -- (9,3) -- (9,6) -- (0,6) -- cycle;
fill (3,0)--(3,9) --(6,9) -- (6,0) -- cycle

yield the following 9 x 9 pattern of pixel values:

000111000
000111000
000111000
111222111
111222111
111222111
000111000
000111000
000111000

Pixels that have been filled twice now have a value of 2.
When a simple region is “filled,” its pixel values are all increased by 1;
when it is “unfilled,” they are all decreased by 1. The command

unfill (1,4) -- (8,4) -- (8,5) -- (1,5) -- cycle

will therefore change the pattern above to

000111000
000111000
000111000
111222111
100111001
111222111
000111000
000111000
000111000

The pixels in the center have not been erased (i.e., they will still be black if this
picture is output to a font), because they still have a positive value.
Incidentally, this example illustrates the fact that the edges between
METAFONT’s pixels are lines that have integer coordinates, just as the squares
on graph paper do. For example, the lower left ‘0’ in the 9 x 9 array above
corresponds to the pixel whose boundary is (0,0) -- (1,0) -- (1,1) -- (0,1) --
cycle’. The (z,y) coordinates of the points inside this pixel lie between 0 and 1.

» EXERCISE 13.1
What are the (z,y) coordinates of the four corners of the middle pixel in the
9 x 9 array?

» EXERCISE 13.2
What picture would have been obtained if the unfill command had been given
before the two fill commands in the examples above?
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» EXERCISE 13.3 doubly filled

Devise an unfill command that will produce the pixel values :flsn
range path

turning number

[elelelll Helele]
[=lelel el Helele]
[elelel el elel=]
= N N b
—HOOFO~OO
= N = N b b
[elelel el Helel=]
[elelel el Helele]
[elelelll Helele]

when it is used just after the fill and unfill commands already given.

A “simple” region is one whose boundary does not intersect itself; more
complicated effects occur when the boundary lines cross. For example,

fill (0,1)--(9,1) - (9,4) -- (4,4) --
(4,0) -- (6,0) -- (6,3) -- (8,3) -- (8,2) -- (0,2) -- cycle

produces the pixel pattern

000011111
000011001
111122111
000011000

Notice that some pixels receive the value 2, because they’re “doubly filled.”
There’s also a “hole” where the pixel values remain zero, even though they are
surrounded by filled pixels; the pixels in that hole are not considered to be in
the region, but the doubly filled pixels are considered to be in the region twice.

» EXERCISE 13.4
Show that the first 9 x 9 cross pattern on the previous page can be generated
by a single fill command. (The nine pixel values in the center should be 2, as if
two separate regions had been filled, even though you are doing only one fill.)

» EXERCISE 13.5
What do you think is the result of ‘fill (0,0)--(1,0)--(1,1)--(0,1) -- (0,0) --
(1,0)--(1,1) --(0,1) -- cycle’?

A fill command can produce even stranger effects when its boundary
lines cross in only one place. If you say, for example,

A1l (0,2) - (4,2) -- (4,4) -- (2,4) -- (2,0) -- (0,0) -- cycle

METAFONT will produce the 4 x 4 pattern

[ N le)
[N =l=)
(==l
[SISTET

)

where stands for the value —1. Furthermore the machine will report that
you have a “strange path” whose “turning number” is zero! What does this
mean? Basically, it means that your path loops around on itself something like a
figure 8; this causes a breakdown in METAFONT’s usual rules for distinguishing
the “inside” and “outside” of a curve.
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@ Every cyclic path has a turning number that can be understood as follows.
Imagine that you are driving a car along the path and that you have a digital
compass that tells in what direction you’re heading. For example, if the path is

(0,0) --(2,0) --(2,2) --(0,2) -- cycle

you begin driving in direction 0°, then you make four left turns. After the first turn,
your compass heading is 90°; after the second, it is 180°; and after the third it is
270°. (The compass direction increases when you turn left and decreases when you
turn right; therefore it now reads 270°, not —90°.) At the end of this cycle the compass
will read 360°, and if you go around again the reading will be 720°. Similarly, if you
had traversed the path

(070) T (OaQ) o (272) o (270) T Cyde

(which is essentially the same, but in the opposite direction), your compass heading
would have started at 90° and ended at —270°; in this case each circuit would have
decreased the reading by 360°. It is clear that a drive around any cyclic path will change
the compass heading by some multiple of 360°, since you end in the same direction you
started. The turning number of a path is defined to be t if the compass heading changes
by exactly t times 360° when the path is traversed. Thus, the two example cycles we
have just discussed have turning numbers of +1 and —1, respectively; and the “strange
path” on the previous page that produced both positive and negative pixel values does
indeed have a turning number of 0.

@ Here’s how METAFONT actually implements a fill command, assuming that

the cyclic path being filled has a positive turning number: The path is first
“digitized,” if necessary, so that it lies entirely on the edges of pixels; in other words,
it is distorted slightly so that it is confined to the lines between pixels on graph paper.
(Our examples so far in this chapter have not needed any such adjustments.) Then
each individual pixel value is increased by j and decreased by k if an infinite horizontal
line to the left of that pixel intersects the digitized path j times when the path is
traveling downward and k times when it is traveling upward. For example, let’s look
more closely at the non-simple path on the previous page that enclosed a hole:

a aa ayb b bbb
aaaabbcc}d
feeecelf g
a a a ayb bih h h

Pixel d has j = 2 descending edges and k = 1 ascending edges to its left, so its net
value increases by j — k = 1; pixels g are similar. Pixels ¢ have j = k = 1, so they lie in
a “hole” that is unfilled; pixels f have j = 2 and k = 0, so they are doubly filled. This
rule works because, intuitively, the inside of a region lies at the left of a path whose
turning number is positive.

g% » EXERCISE 13.6

True or false: When the turning number of a cyclic path is positive, a fill
command increases each individual pixel value by [ —m, if an infinite horizontal line to
the right of that pixel intersects the digitized path [ times when the path is traveling
upward and m times when it is traveling downward. (For example, pixels e have | = 2
and m = 1; pixels ¢ have [ =m =1.)
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@ When the turning number is negative, a similar rule applies, except that the
pixel values are decreased by j and increased by k; in this case the inside of
the region lies at the right of the path.

@ But when the turning number is zero, the inside of the region lies sometimes at

the left, sometimes at the right. METAFONT uses the rule for positive turning
number and reports that the path is “strange.” You can avoid this error message by
setting ‘turningcheck := 0’; in this case the rule for positive turning number is always
used for filling, even when the turning number is negative.

Plain METAFONT’s draw command is different from fill in two impor-
tant ways. First, it uses the currently-picked-up pen, thereby “thickening” the
path. Second, it does not require that the path be cyclic. There is also a third
difference, which needs to be mentioned although it is not quite as important:
A draw command may increase the value of certain pixels by more than 1, even
if the shape being drawn is fairly simple. For example, the pixel pattern

0000000000000000000000000000000000000000000000000000000000000000000000
0000001111122222111110000000000000000000000000011111111000000000000000
0000111111111211111111100000000000000000000011111111111111000000000000
000 1 1111011 1 1100000000000000000011 11111111111 0000000000
000 1 1111011 1 1100000000000000001111 11111111111 1100000000
001 1 1110001 1 1110000000000000011111 11111111111 1110000000
001 1 1110001 1 1110000000000000111111 11111111111 1111000000
00 1 1110001 1 1 000000000000 1 1 11111111111 1 100000
01 1 1100000 1 1 100000000001 1 1 11111111111 1 110000
01 1 1100000 1 1 100000000001 1 1 11111111111 1 110000
01 1 1100000 1 1 100000000011 1 1 11111111111 1 111000
01 1 1100000 1 1 100000000011 1 1 11111111111 1 111000
01 1 1100000 1 1 100000000111 1 1 11111211111 1 111100
01 1 1100000 1 1 100000000111 1 1 11111211111 1 111100
01 1 1100000 1 1 100000001111 1 1 11112211111 1 111110
01 1 1100000 1 1 100000001111 1 1 21112111121 1 111110
01 1 1100000 1 1 100000001111 1 1 11212222111 1 111110
01 1 1100000 1 1 100000001111 1 1 11110011111 1 111110
01 1 1100000 1 1 100000001111 1 1 11200001111 1 111110
01 1 1100000 1 1 100000001111 1 11221100001121 1 111110
01 1 1100000 1 1 100000000111 1 11111000000111 1 111100
01 1 1100000 1 1 100000000111 1 11111000000111 1 111100
01 1 1100000 1 1 100000000011 1 1111000000001 1 1 111000
0111111111100000111111111100000000001111111111000000000011111111110000
0111111111100000111111111100000000000011111100000000000000111111000000
0000000000000000000000000000000000000000000000000000000000000000000000

lon

was produced by two draw commands. The left-hand shape came from

pickup penrazor scaled 10; % a pen of width 10 and height 0
draw (6,1){up} .. (13.5,25) .. {down }(21,1);

it’s not difficult to imagine why some of the top pixels get the value 2 here
because an actual razor-thin pen would cover those pixels twice as it follows the
given path. But the right-hand shape, which came from

pickup pencircle scaled 16; draw (41,9) .. (51,17) .. (61,9)

is harder to explain; there seems to be no rhyme or reason to the pattern of 2’s
in that case. METAFONT’s method for drawing curves with thick pens is too
complicated to explain here, so we shall just regard it as a curious process that
occasionally shoots out extra spurts of ink in the interior of the shape that it’s
filling. Sometimes a pixel value even gets as high as 3 or more; but if we ignore
such anomalies and simply consider the set of pixels that receive a positive value,
we find that a reasonable shape has been drawn.

The left-parenthesis example in Chapter 12 illustrates the filldraw com-
mand, which is like fill in that it requires a cyclic path, and like draw in that it

turningcheck
draw
penrazor
filldraw
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uses the current pen. Pixel values are increased inside the region that you would drawdot

obtain by drawing the specified path with the current pen and then filling in the Eﬁgﬁl";aw

interior. Some of the pixel values in this region may increase by 2 or more. The undrawdot

turning number of the path should be nonzero. zﬁﬂi;g
Besides fill, draw, and filldraw, you can also say ‘drawdot’, as il- erase

lustrated at the beginning of Chapter 5. In this case you should specify only i‘:fbe

a single point; the currently-picked-up pen will be used to increase pixel values impossible cube

by 1 around that point. Chapter 24 explains that this gives slightly better results
than if you were to draw a one-point path.

@ There’s also an undraw command, analogous to unfill; it decreases pixel

values by the same amount that draw would increase them. Furthermore—
as you might expect—unfilldraw and undrawdot are the respective opposites of
filldraw and drawdot.

% If you try to use unfill and/or undraw in connection with fill and/or draw,

you’ll soon discover that something else is necessary. Plain METAFONT has
a cullit command that replaces all negative pixel values by 0 and all positive pixel
values by 1. This “culling” operation makes it possible to erase unwanted sections of
a picture in spite of the vagaries of draw and undraw, and in spite of the fact that
overlapping regions may be doubly filled.

@ The command ‘erase fill ¢’ is an abbreviation for ‘cullit; unfill ¢; cullit’;

this zeros out the pixel values inside the cyclic path ¢, and sets other pixel
values to 1 if they were positive before erasing took place. (It works because the initial
cullit makes all the values 0 or 1, then the unfill changes the values inside ¢ to 0 or
negative. The final cullit gets rid of the negative values, so that they won’t detract
from future filling and drawing.) You can also use ‘draw’, ‘filldraw’, or ‘drawdot’
with ‘erase’; for example, ‘erase draw p’ is an abbreviation for ‘cullit; undraw p;
cullit’, which uses the currently-picked-up pen as if it were an eraser applied to path p.

@ The cube at the right of this paragraph illustrates

one of the effects that is easily obtained by erasing.
First the eight points are defined, and the “back” square (Figure 13a will be in-
. . serted here; too bad you
is drawn; then two lines of the “front” square are erased, can’t see it now.)

using a somewhat thicker pen; finally the remaining lines
are drawn with the ordinary pen:

s# := 5pt#; define_pixels(s); % side of the square

z1=(0,0); 22 = (s,0); z3=(0,5); 24 = (s,5);

for k =1 upto 4: zx44 = 2k + (35, 35); endfor

pickup pencircle scaled .4pt; draw zs -- z6 -- 28 -- 27 -- cycle;
pickup pencircle scaled 1.6pt; erase draw 2z -- 24 -- 23;
pickup pencircle scaled .4pt; draw z; -- z2 -- z4 -- 23 -- cycle;
for £ =1 upto 4: draw zi -- zx4+4; endfor.

At its true size the resulting cube looks like this: ‘GD’.

@ » EXERCISE 13.7
Modify the draw-and-erase construction in the preceding paragraph so that
you get the impossible cube ‘00’ instead.
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@ » EXERCISE 13.8 rotated
Write a METAFONT program to produce the symbol ‘¢y’. [Hints: The char- te’ll)Si‘):‘h
acter is 10 pt wide, 7pt high, and 2 pt deep. The starlike path can be defined by five z}:arpa ®
points connected by “tense” lines as follows: macro
overdraw
pair center; center = (.5w,2pt); fullcircle
numeric radius; radius = 5pt; §°‘“t
for k = 0 upto 4: 2z = center + (radius,0) rotated(90 + 3&k); endfor Mébius
def :: = .. tension5 .. enddef; Elziigflctpicture

path star; star = zo :: z2 32 z4 2 21 2 23 12 cycle;

You probably want to work with subpaths of star instead of drawing the whole path
at once, in order to give the illusion that the curves cross over and under each other.]

@ » EXERCISE 13.9
What does the command ‘fill star’ do, if star is the path defined above?

?2 » EXERCISE 13.10
Devise a macro called ‘overdraw’ such that the command
‘overdraw ¢’ will erase the inside of region ¢ and will then draw the
boundary of ¢ with the currently-picked-up pen, assuming that c is a
cyclic path that doesn’t intersect itself. (Your macro could be used,
for example, in the program (Figure 13aa

will be inserted
here; too bad

path S; S =((0,1)..(2,0)..(4,2).. you can't see it
(2,5.5) .. (0,8) .. (2,10) .. (3.5,9)) scaled 9pt; '

for k£ = 0 upto 35: overdraw fullcircle scaled 3mm
shifted point k/35 * length S of S; endfor

to create the curious S shown here.)

@@» EXERCISE 13.11
The Mobius Watchband Corporation has a logo that looks like this:

(Figure 13bb will be inserted here; too bad you can’t see it now.)

Explain how to produce it (or something very similar) with METAFONT.

@ Chapter 7 points out that variables can be of type ‘picture’, and Chapter 8
mentions that expressions can be of type ‘picture’, but we still haven’t seen
any examples of picture variables or picture expressions. Plain METAFONT keeps the
currently-worked-on picture in a picture variable called currentpicture, and you can
copy it by equating it to a picture variable of your own. For example, if you say
‘picture v[]” at the beginning of your program, you can write equations like

v1 = currentpicture;

this makes v1 equal to the picture that has been drawn so far; i.e., it gives v1 the same
array of pixel values that currentpicture now has.
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LS\ Pictures can be added or subtracted; for example, v1 +wv2 stands for the picture
‘I whose pixel values are the sums of the pixel values of v1 and v2. The “reverse-
video dangerous bend” sign that heads this paragraph was made by substituting the
following code for the ‘endchar’ in the program at the end of Chapter 12:

picture dbend; dbend = currentpicture;

endchar; % end of the normal dangerous bend sign

beginchar(0, 25u#, h_height# + border#,0);

fill (0, —11pt) -- (w, —11pt) -- (w, h) -- (0, h) -- cycle;
currentpicture := currentpicture — dbend;

endchar; % end of the reversed dangerous bend sign

The pixel values in dbend are all zero or more; thus the pixels with a positive value,
after dbend has been subtracted from a filled rectangle, will be those that are inside
the rectangle but zero in dbend.

@ We will see in Chapter 15 that pictures can also be shifted, reflected, and
rotated by multiples of 90°. For example, the statement ‘currentpicture :=
currentpicture shifted 3right’ shifts the entire current picture three pixels to the right.

@ There’s a “constant” picture called nullpicture, whose pixel values are all

zero; plain METAFONT defines ‘clearit’ to be an abbreviation for the as-
signment ‘currentpicture:=nullpicture’. The current picture is cleared automatically
by every beginchar and mode_setup command, so you usually don’t have to say
‘clearit’ in your own programs.

@ Here’s the formal syntax for picture expressions. Although METAFONT has

comparatively few built-in operations that deal with entire pictures, the op-
erations that do exist have the same syntax as the similar operations we have seen
applied to numbers and pairs.

(picture primary) — (picture variable)
| nullpicture
| ({picture expression) )
| (plus or minus)(picture primary)
(picture secondary) — (picture primary)
| (picture secondary)(transformer)
(picture tertiary) — (picture secondary)
| (picture tertiary)({plus or minus)(picture secondary)
(picture expression) — (picture tertiary)

@ The “total weight” of a picture is the sum of all its pixel values, divided by
65536; you can compute this numeric quantity by saying

totalweight (picture primary).

METAFONT divides by 65536 in order to avoid overflow in case of huge pictures. If the
totalweight function returns a number whose absolute value is less than .5, as it almost
always is, you can safely divide that number by epsilon to obtain the integer sum of
all pixel values (since epsilon = 1/65536).
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sum of pictures
negative of a picture
inverse video
reverse-video
dangerous bend
black/white reversal
nullpicture

clearit

beginchar
mode_setup

picture primary
nullpicture

(

)

picture secondary
picture tertiary
picture expression
totalweight
epsilon
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@ Let’s turn to the computer again and try to evaluate some simple picture ex- hide
pressions interactively, using the general routine expr.mf of Chapter 8. When ‘el(’i‘éfsq“are
METAFONT says ‘gimme’, you can type resolution

hide(fill unitsquare) currentpicture

and the machine will respond as follows:

>> Edge structure at line b5:
row 0: O+ 1- |

What does this mean? Well, ‘hide’ is plain METAFONT’s sneaky way to insert a
command or sequence of commands into the middle of an expression; such commands
are executed before the rest of the expression is looked at. In this case the command
“fill unitsquare’ sets one pixel value of the current picture to 1, because unitsquare is
plain METAFONT’s abbreviation for the path (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle.

The value of currentpicture is displayed as ‘row 0: O+ 1-’, because this means “in
row 0, the pixel value increases at * = 0 and decreases at x = 1.”

@ METAFONT represents pictures internally by remembering only the vertical

edges where pixel values change. For example, the picture just displayed
has just two edges, both in row 0, i.e., both in the row between y coordinates 0 and 1.
(Row k contains vertical edges whose = coordinates are integers and whose y coordinates
run between k and k+1.) The fact that edges are represented, rather than entire arrays
of pixels, makes it possible for METAFONT to operate efficiently at high resolutions,
because the number of edges in a picture is essentially proportional to the resolution
while the total number of pixels is proportional to the resolution squared. A ten-fold
increase in resolution therefore calls for only a ten-fold (rather than a hundred-fold)
increase in memory space and execution time.

@ Continuing our computer experiments, let’s declare a picture variable and fill
a few more pixels:

hide(picture V; fill unitsquare scaled 2; V=currentpicture) V

The resulting picture has pixel values 31, and its edges are shown thus:

>> Edge structure at line 5:
row 1: O+ 2- |
row 0: O+ 2- 0+ 1- |

If we now type ‘-V’, the result is similar but with the signs changed:

>> Edge structure at line 5:
row 1: 0- 2+ |
row 0: O- 2+ 0- 1+ |

(You should be doing the experiments as you read this.) A more interesting picture
transformation occurs if we ask for ‘V rotated-90’; the picture 71 appears below the
baseline, hence the following edges are shown:

>> Edge structure at line 5:
row -1: | O++ 1- 2-
row -2: | 0+ 2-
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Here ‘++’ denotes an edge where the weight increases by 2. The edges appear after
vertical lines ‘|’ in this case, while they appeared before vertical lines in the previous
examples; this means that METAFONT has sorted the edges by their z coordinates.
Each fill or draw instruction contributes new edges to a picture, and unsorted edges
accumulate until METAFONT needs to look at them in left-to-right order. (Type

V rotated-90 rotated 90
to see what V itself looks like when its edges have been sorted.) The expression
V + V rotated 90 shifted 2right

produces an edge structure with both sorted and unsorted edges:

>> Edge structure at line 5:
row 1: O+ 2- | O+ 2-
row 0: O+ 2- O+ 1- | O+ 1+ 2--

In general, addition of pictures is accomplished by simply combining the unsorted and
sorted edges of each row separately.

@@» EXERCISE 13.12
Guess what will happen if you type ‘hide(cullit) currentpicture’ now; and
verify your guess by actually doing the experiment.

@g%» EXERCISE 13.13
Guess (and verify) what will happen when you type the expression

(V + V + V rotated 90 shifted 2right
- V rotated-90 shifted 2up) rotated 90.

[You must type this monstrous formula all on one line, even though it’s too long to fit
on a single line in this book.]

@ If you ask for ‘V rotated 45’, METAFONT will complain that 45° rotation is
too hard. (Try it.) After all, square pixels can’t be rotated unless the angle
of rotation is a multiple of 90°. On the other hand, ‘V scaled-1’ does work; you get

>> Edge structure at line 5:
row -1: 0- -2+ 0- -1+ |
row -2: 0- -2+ |

@@» EXERCISE 13.14
Why is ‘V scaled-1’ different from -V’ 7
@@» EXERCISE 13.15
Experiment with ‘V shifted (1.5,3.14159)’ and explain what happens.

@@» EXERCISE 13.16
Guess and verify the result of ‘V scaled 2’.

@g%» EXERCISE 13.17
Why does the machine always speak of an edge structure ‘at line 57

@ That completes our computer experiments. But before you log off, you might
want to try typing ‘totalweight V/epsilon’, just to verify that the sum of
all pixel values in V' is 5.

117

++

+++

vertical line
rotated
shifted

edge structure



118 Chapter 13: Drawing, Filling, and Erasing

@ The commands we have discussed so far in this chapter—fill, draw, filldraw, picture command
unfill, etc.—are not really primitives of METAFONT; they are macros of plain Zggtg command
METAFONT, defined in Appendix B. Let’s look now at the low-level operations on also
pictures that METAFONT actually performs behind the scenes. Here is the syntax: addto
contour
(picture command) — (addto command) | {cull command) detﬁ‘ .
. . . . oublepa
(addto command) — addto (picture variable) also (picture expression) with limt
| addto (picture variable) contour (path expression)(with list) with clause
| addto (picture variable) doublepath (path expression)(with list) X;EE&Z?ght
<With liSt> — (empty) ‘ <With liSt><With clause) cull command
(with clause) — withpen (pen expression) | withweight (numeric expression) cull
. . . . withweight
(cull command) — cull (picture variable)(keep or drop)(pair expression) keep or drop
| (cull command) withweight (numeric expression) keeping
dropping

(keep or drop) — keeping | dropping oo oo
. . . . . d bend
The (picture variable) in these commands should contain a known picture; the com- ansarons ben

currentpen
mand modifies that picture, and assigns the resulting new value to the variable. fill
unfill
@ The first form of (addto command), ‘addto V also P’, has essentially the drzw
same meaning as ‘V := V 4 P’. But the addto statement is more efficient, Aoy
because it destroys the old value of V as it adds P; this saves both time and space. unfilldraw
envelope

Earlier in this chapter we discussed the reverse-video dangerous bend, which was said
to have been formed by the statement ‘currentpicture := currentpicture — dbend’. That
was a little white lie; the actual command was ‘addto currentpicture also —dbend’.

@ The details of the other forms of ‘addto’ are slightly more complex, but
(informally) they work like this, when V' = currentpicture and g = currentpen:

Plain METAFONT Corresponding METAFONT primitives

fill ¢ addto V contour c

unfill ¢ addto V contour ¢ withweight —1

draw p addto V doublepath p withpen ¢

undraw p addto V doublepath p withpen ¢ withweight —1
filldraw c addto V contour ¢ withpen ¢

unfilldraw c addto V contour c withpen ¢ withweight —1

@@ The second form of (addto command) is ‘addto V contour p’, followed by
optional clauses that say either ‘withpen ¢’ or ‘withweight w’. In this case
p must be a cyclic path; each pen ¢ must be known; and each weight w must be either
-3, =2, =1, +1, +2, or +3, when rounded to the nearest integer. If more than one
pen or weight is given, the last specification overrides all previous ones. If no pen is
given, the pen is assumed to be ‘nullpen’; if no weight is given, the weight is assumed
to be +1. Thus, the second form of (addto command) basically identifies a picture
variable V', a cyclic path p, a pen ¢, and a weight w; and it has the following meaning,
assuming that turningcheck is < 0: If ¢ is the null pen, path p is digitized and each
pixel value is increased by (j — k)w, where j and k are the respective numbers of
downward and upward path edges lying to the left of the pixel (as explained earlier in
this chapter). If ¢ is not the null pen, the action is basically the same except that p
is converted to another path that “envelopes” p with respect to the shape of ¢; this
modified path is digitized and filled as before. (The modified path may cross itself
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in unusual ways, producing strange squirts of ink as illustrated earlier. But it will be
well behaved if path p defines a convex region, i.e., if a car that drives counterclockwise
around p never turns toward the right at any time.)

@@ If turningcheck > 0 when an ‘addto...contour’ command is being per-
formed, the action is the same as just described, provided that path p has
a positive turning number. However, if p’s turning number is negative, the action
depends on whether or not pen ¢ is simple or complex; a complex pen is one whose
boundary contains at least two points. If the turning number is negative and the pen is
simple, the weight w is changed to —w. If the turning number is negative and the pen
is complex, you get an error message about a “backwards path.” Finally, if the turning
number is zero, you get an error message about a “strange path,” unless the pen is
simple and turningcheck <= 1. Plain METAFONT sets turningcheck := 2; the filldraw
macro in Appendix B avoids the “backwards path” error by explicitly reversing a path
whose turning number is negative.

@ We mentioned that the command “All (0,2) -- (4,2) -- (4,4) -- (2,4) --
(2,0) -- (0,0) -- cycle’ causes METAFONT to complain about a strange path;
let’s take a closer look at the error message that you get:

> 0 ENE 1 NNE 2 (NNW WNW) WSW 3 SSW 4 WSW 5 (WNW NNW) NNE O
! Strange path (turning number is zero).

What does this mean? The numbers represent “time” on the cyclic path, from the
starting point at time 0, to the next key point at time 1, and so on, finally returning
to the starting point. Code names like ‘ENE’ stand for compass directions like “East
by North East”; METAFONT decides in which of eight “octants” each part of a path
travels, and ENE stands for all directions between the angles 0° and 45°, inclusive. Thus,
this particular strange path starts in octant ENE at time 0, then it turns to octant NNE
after time 1. An octant name is parenthesized when the path turns through that
octant without moving; thus, for example, octants NNW and WNW are bypassed on the
way to octant WSW. It’s possible to compute the turning number from the given sequence
of octants; therefore, if you don’t think your path is really strange, the abbreviated
octant codes should reveal where METAFONT has decided to take an unexpected turn.
(Chapter 27 explains more about strange paths.)

@ The third form of (addto command) is ‘addto V doublepath p’, followed

by optional clauses that define a pen ¢ and a weight w as in the second case.
If p is not a cyclic path, this case reduces to the second case, with p replaced by the
doubled-up path ‘p & reversep & cycle’ (unless p consists of only a single point, when
the new path is simply ‘p .. cycle’). On the other hand if p is a cyclic path, this
case reduces to two addto commands of the second type, in one of which p is reversed;
turningcheck is ignored during both of those commands.

@ An anomalous result may occur in the statement ‘draw p’ or, more generally,

in ‘addto V doublepath p withpen ¢’ when p is a very small cyclic path
and the current pen ¢ is very large: Pixels that would be covered by the pen regardless
of where it is placed on p might retain their original value. If this unusual circumstance
hits you, the cure is simply to include the additional statement ‘draw 2’ or ‘addto V'
doublepath z withpen ¢’, where z is any point of p, since this will cover all of the
potentially uncovered pixels.
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@ The cull command transforms a picture variable so that all of its pixel values

are either 0 or a specified weight w, where w is determined as in an addto
command. A pair of numbers (a,b) is given, where a must be less than or equal
to b. To cull “keeping (a,b)” means that each new pixel value is w if and only if the
corresponding old pixel value v was included in the range a < v < b; to cull “dropping
(a,b)” means that each new pixel value is w if and only if the corresponding old pixel
value v was not in that range. Thus, for example, ‘cullit’ is an abbreviation for

cull currentpicture keeping (1, infinity)
or for

cull currentpicture dropping (—infinity, 0)
(which both mean the same thing). A more complicated example is
cull V5 dropping (—3,2) withweight —2;

this changes the pixel values of V5 to —2 if they were —4 or less, or if they were 3
or more; pixel values between —3 and +2, inclusive, are zeroed.

@ A cull command must not change pixel values from zero to nonzero. For
example, METAFONT doesn’t let you say ‘cull Vi keeping (0,0)’, since that
would give a value of 1 to infinitely many pixels.

@ » EXERCISE 13.18
What is the effect of the following sequence of commands?

picture V[];

Vi = Vi = currentpicture;
cull V; dropping (0,0);
cull V> dropping (—1,1);
currentpicture := Vi — Va;

g% » EXERCISE 13.19

Given two picture variables Vi and V3, all of whose pixel values are known to
be either 0 or 1, explain how to replace Vi by (a) Vi N Va; (b) V1 U Va; (c) Vi & Va.
[The intersection Vi NV, has 1’s where Vi and V2 both are 1; the union Vi U V5 has 0’s
where V1 and V2 both are 0; the symmetric difference or selective complement Vi & Va
has 1’s where V7 and V5 are unequal,]

@g%» EXERCISE 13.20
Explain how to test whether or not two picture variables are equal.

@@» EXERCISE 13.21
Look at the definitions of fill, draw, etc., in Appendix B and determine the
effect of the following statements:

a) draw p withpen g;

b) draw p withweight 3;

¢) undraw p withweight w;

d) fill ¢ withweight —2 withpen g;

e) erase fill ¢ withweight 2 withpen currentpen;
) cullit withweight 2.
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@@» EXERCISE 13.22

Devise a safefill macro such that ‘safefill ¢’ increases the pixel values of
currentpicture by 1 in all pixels whose value would be changed by the command ‘fill ¢’.
(Unlike fill, the safefill command never stops with a “strange path” error; furthermore,
it never increases a pixel value by more than 1, nor does it decrease any pixel values,
even when the cycle ¢ is quite wild.)

@@» EXERCISE 13.23

Explain how to replace a character by its “outline”: All black pixels whose
four closest neighbors are also black should be changed to white, because they are in
the interior. (Diagonally adjacent neighbors don’t count.)

@@» EXERCISE 13.24

In John Conway’s “Game of Life,” pixels are said to be either alive or dead.
Each pixel is in contact with eight neighbors. The live pixels in the (n+1)st generation
are those who were dead and had exactly three live neighbors in the nth generation, or
those who were alive and had exactly two or three live neighbors in the nth generation.
Write a short METAFONT program that displays successive generations on your screen.

Blot out, correct, insert, refine,

Enlarge, diminish, interline;

Be mindful, when Invention fails,

To scratch your Head, and bite your Nails.

— JONATHAN SWIFT, On Poetry: A Rapsody (1733)

The understanding that can be gained from computer drawings
is more valuable than mere production.

— IVAN E. SUTHERLAND, Sketchpad (1963)
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Chapter 1/4: Paths

The boundaries of regions to be filled, and the trajectories of moving pens, are
“paths” that can be specified by the general methods introduced in Chapter 3.
METAFONT allows variables and expressions to be of type path, so that a de-
signer can build new paths from old ones in many ways. Our purpose in this
chapter will be to complete what Chapter 3 began; we shall look first at some
special features of plain METAFONT that facilitate the creation of paths, then we
shall go into the details of everything that METAFONT knows about pathmaking.

A few handy paths have been predefined in Appendix B as part of plain
METAFONT, because they turn out to be useful in a variety of applications.
For example, quartercircle is a path that represents one-fourth of a circle of
diameter 1; it runs from point (0.5, 0) to point (0,0.5). The METAFONT program

beginchar ("a", 5pt#, 5pt#,0);
pickup pencircle scaled (.4pt + blacker);
draw quartercircle scaled 10pt; endchar;

therefore produces the character ‘' in position ‘a’ of a font.

» EXERCISE 14.1
Write a program that puts a filled quarter-circle ‘a’ into font position ‘b’.

» EXERCISE 14.2
Why are the ‘' and ‘a’ characters of these examples only 5pt wide and 5 pt
high, although they are made with the path ‘quartercircle scaled 10pt’?

» EXERCISE 14.3
Use a rotated quarter-circle to produce ’ in font position ‘c’.

@ » EXERCISE 14.4
Use quartercircle to produce ‘<’ in font position ‘d’.

Plain METAFONT also provides a path called halfcircle that gives you
‘/~\; this path is actually made from two quarter-circles, by defining

halfcircle = quartercircle & quartercircle rotated 90.

And of course there’s also fullcircle, a complete circle of unit diameter:
fullcircle = halfcircle & halfcircle rotated 180 & cycle.

You can draw a circle of diameter D centered at (x,y) by saying
draw fullcircle scaled D shifted (x,y);

similarly, ‘draw fullcircle xscaled A yscaled B’ yields an ellipse with axes A and B.

Besides circles and parts of circles, there’s also a standard square path
called unitsquare; this is a cycle that runs from (0, 0) to (1,0) to (1,1) to (0,1)
and back to (0,0). For example, the command ‘fill unitsquare’ adds 1 to a single
pixel value, as discussed in the previous chapter.
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» EXERCISE 14.5
Use fullcircle and unitsquare to produce the characters ‘@ and ‘@Y’ in font
positions ‘e’ and ‘f’, respectively. These characters should be 10pt wide and
10 pt tall, and their centers should be 2.5 pt above the baseline.

path branch|], trunk;
branchi = flex((0,660), (—9,633), (—22,610))

& flex((~22,610), (=3, 622), (17, 617))

& flex((17,617),(7,637),(0,660)) & cycle;
brancha = flez((30,570), (10,590), (—1,616))

& flex((~1,616), (—11,592), (29, 576), (—32, 562))

& flex((—32,562), (—10,577), (30, 570)) & cycle;
branchs = flex((—1,570), (—17,550), (—40,535))

& flex (=40, 535), (=45, 510), (—60, 477))

& flez ((—60,477), (—20,510), (40, 512))

& flex ((40,512), (31,532), (8, 550), (—1, 570)) & cycle;
branch4 = flez((0,509), (—14,492), (—32,481))

& flew ((—32,481), (—42, 455), (—62, 430))

& flex ((—62,430), (—20,450), (42, 448))

& flex((42,448), (38,465), (4,493), (0,509)) & cycle;
branchs = flex ((—22,470), (—23,435), (—44,410))

& flex ((—44,410), (—10,421), (35, 420))

& flex((35,420), (15, 455), (—22,470)) & cycle;
branche = flex((18,375), (9, 396), (5, 420))

& flex ((5,420), (=5, 410), (=50, 375), (—50, 350))

& flex ((—50,350), (—25,375), (18,375)) & cycle;
branch7 = flex((0,400), (—13,373), (—30, 350))

& flex((—30,350), (0, 358), (30, 350))

& flex((30,350), (13,373), (0,400)) & cycle;
branchg = flex((50,275), (45, 310), (3, 360))

& flex((3,360), (—20, 330), (—70, 300), (—100, 266))

& flex ((—100, 266), (—75, 278), (—60, 266))

& flex ((—60, 266), (0,310), (50, 275)) & cycle;
branchg = flez((10,333), (—15,290), (—43, 256))

& flex ((—43,256), (8,262), (58, 245))

& flex ((58,245), (34,275),(10,333)) & cycle;
(Figure 14a will be inserted here; branchio = flex((8,262), (—21,249), (—55, 240))
too bad you can’t see it now.) & ﬂ@l‘((—557 240)7 (_517 232), (_537 220))

& flex ((—53,220), (—28, 229), (27, 235))

& flex ((27,235), (16, 246), (8, 262)) & cycle;
branchi11 = flex((0, 250), (—25,220), (—70,195))

& flex((~70,195), (—78, 180), (—90, 170))

& flex ((—90,170), (=5, 188), (74, 183))

& flex ((74,183), (34,214), (0,250)) & cycle;
branchi2 = flex((8,215), (—35,175), (—72,155))

& flex ((~72,155), (—75,130), (—92, 110), (—95, 88))

& flex ((—95,88), (—65, 117), (—54, 104))

& flex ((—54,104), (10, 151), (35, 142))

.. flez((42,130), (60, 123), (76, 124))

& flex ((76,124), (62, 146), (26, 180), (8, 215)) & cycle;
trunk = (0,660) --- (—12,70) .. {curl 5}(—28, —8)

& flex ((—28,—8),(—16,—4), (=10, —11))

& ﬂCZE((—].O, _11)7 (07 _5)7 (147 _10))

& ﬂem((14» _10)» (20’ 76)7 (29» 711))

& (29, —11){curl4} .. (10, 100) - - - cycle;
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Sometimes it’s necessary to draw rather complicated curves, and plain
METAFONT provides a ‘flex’ operation that can simplify this task. The construc-
tion ‘flex(z1, 22, 23)’ stands for the path ‘z; .. za{23 — 21} .. 2z3’, and similarly
‘flex(z1, 22, 23, 24)" stands for ‘zy .. zo{z4 — 21} .. 23{24 — 21} .. 24”; in general

ﬂCLL’(Zh 225ty Rn—1; Zn)

is an abbreviation for the path

21 20{zn— 21} oo 0 o zp—i{z — 21} - 2.

The idea is to specify two endpoints, z; and z,, together with one or more
intermediate points where the path is traveling in the same direction as the
straight line from z; to z,; these intermediate points are easy to see on a typical
curve, so they are natural candidates for key points.

For example, the command

fill flex(z1, 22, 23) & flex(z3, 24, 25)
& flex(zs, 26, 27) & flex(z7, 28, 29, 21) & cycle

will fill the shape

(Figure 14b will be inserted here; too bad you can’t see it now.)

after the points z1, ..., 29 have been suitably defined. This shape occurs as
the fourth branch from the top of “El Palo Alto,” a tree that is often used to
symbolize Stanford University. The thirteen paths on the opposite page were
defined by simply sketching the tree on a piece of graph paper, then reading off
approximate values of key points “by eye” while typing the code into a computer.
(A good radio or television program helps to stave off boredom when you're
typing a bunch of data like this.) The entire figure involves a total of 47 flexes,
most of which are pretty mundane; but branch,s does contain an interesting
subpath of the form

ﬂex(zla 22, 23) .. ﬂe:c(2'4, 25, 26)7
which is an abbreviation for
Z1 ..22{23721} .. 23 ..24 ..2,’5{2’6724} .. 26

Since z3 # z4 in this example, a smooth curve runs through all six points,
although two different flexes are involved.
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Once the paths have been defined, it’s easy to use them unfill

to make symbols like the white-on-black medallion shown here: Zﬁli’;;slhpse
beginchar ("T", .5in#, 1.25in#,0); Laporiess
(Define the thirteen paths on the preceding pages); (Figure gcirll
fill superellipse ((w, .5h), (.bw, h), (0,.5h), (.5w,0), .8); be incerted P
branchg = trunk; oo
for n =0 upto 12: now.)

unfill branch[n] shifted (150,50) scaled (w/300);
endfor endchar;

The oval shape that encloses this tree is a superellipse, which is another special
kind of path provided by plain METAFONT. To get a general shape of this kind,
you can write

superellipse (right_point, top_point , left_point, bottom_point, superness)

where ‘superness’ controls the amount by which the curve differs from a true
ellipse. For example, here are four superellipses, drawn with varying amounts of
superness, using a pencircle xscaled 0.7pt yscaled 0.2pt rotated 30:

(Figure 14c will be inserted here; too bad you can’t see it now.)

The superness should be between 0.5 (when you get a diamond) and 1.0 (when
you get a square); values in the vicinity of 0.75 are usually preferred. The zero
symbol ‘0’ in this book’s typewriter font was drawn as a superellipse of superness
275 ~ 707, which corresponds to a normal ellipse; the uppercase letter ‘0’ was
drawn with superness 2725 ~ .841, to help distinguish it from the zero. The
ambiguous symbol ‘0’ (which is not in the font, but METAFONT can of course
draw it) lies between these two extremes; its superness is 0.77.

@ A mathematical superellipse satisfies the equation |z/a|’ + |y/b]® = 1, for

some exponent 3. It has extreme points (+a,0) and (0,+b), as well as the
“corner” points (foa,+ob), where o = 271/8 is the superness. The tangent to the
curve at (oa,ob) runs in the direction (—a,b), hence it is parallel to a line from (a,0)
0 (0,b). Gabriel Lamé invented the superellipse in 1818, and Piet Hein popularized the
special case § = 2.5 [see Martin Gardner, Mathematical Carnival (New York: Knopf,
1975), 240-254]; this special case corresponds to a superness of 27* = .7578582832552.
Plain METAFONT’s superellipse routine does not produce a perfect superellipse, nor
does fullcircle yield a true circle, but the results are close enough for practical purposes.

%@» EXERCISE 14.6
Try superellipse with superness values less than 0.5 or greater than 1.0; explain
why you get weird shapes in such cases.
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Let’s look now at the symbols that are used between key points, when
we specify a path. There are five such tokens in plain METAFONT:

free curve;
bounded curve;
-- straight line;
--- “tense” line;
& splice.

In general, when you write ‘zg .. 21 .. {(etc.) .. zp—1 .. 2z,’, METAFONT will
compute the path of length n that represents its idea of the “most pleasing
curve” through the given points zy through z,. The symbol ...” is essentially
the same as ‘. .”, except that it confines the path to a bounding triangle whenever
possible, as explained in Chapter 3. A straight line segment ‘zj_1 -- 25’ usually
causes the path to change course abruptly at zx_1 and z;. By contrast, a segment
specified by ‘zr_1 --- 2" will be a straight line that blends smoothly with the
neighboring curves; i.e., the path will enter z;_; and leave zj, in the direction of
2k — 2k—1- (The trunk of El Palo Alto makes use of this option, and we have
also used it to draw the signboard of the dangerous bend symbol at the end of
Chapter 12.) Finally, the ‘&’ operation joins two independent paths together
at a common point, just as ‘&’ concatenates two strings together.

Here, for example, is a somewhat silly path that illustrates all five basic
types of joinery:

(Figure 14d will be inserted here; too bad you can’t see it now.)

zo = (0,100); z; = (50,0); 25 = (180,0);
for n = 3 upto 9: z[n| = z[n — 3] + (200,0); endfor
draw zp .. 21 ---22... {up}zs

& z3..24--25...{up}zg

& z6...27---25 .. {up}zg.

@ The ‘... operation is usually used only when one or both of the adjacent

directions have been specified (like ‘{up}’ in this example). Plain META-
FONT’s flex construction actually uses ‘...”, not ‘..
avoids inflection points in certain situations.

" as stated earlier, because this

@ A path like ‘zp --- 21 --- 22’ is almost indistinguishable from the broken

line ‘zp -- z1 -- 227, except that if you enlarge the former path you will see
that its lines aren’t perfectly straight; they bend just a little, so that the curve is
“smooth” at z; although there’s a rather sharp turn there. (This means that the
autorounding operations discussed in Chapter 24 will apply.) For example, the path
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(O, 3) --- (O, 0) --- (3, O) is equivalent to unitsquare
tensepath
(0,3) ... controls (—0.0002, 2.9998) and (—0.0002, 0.0002) curl

.. (0,0) .. controls (0.0002, —0.0002) and (2.9998, —0.0002) .. (3,0)
while (0,3) -- (0,0) -- (3,0) consists of two perfectly straight segments:

(0,3) .. controls (0,2) and (0, 1)
.. (0,0) .. controls (1,0) and (2,0) .. (3,0).

@ » EXERCISE 14.7

Plain METAFONT’s unitsquare path is defined to be ‘(0,0) -- (1,0) -- (1,1) --
(0,1) -- cycle’. Explain how the same path could have been defined using only °..’
and ‘&’, not ‘--’ or explicit directions.
@ Sometimes it’s desirable to take a path and change all its connecting links

to ‘---’, regardless of what they were originally; the key points are left un-

changed. Plain METAFONT has a tensepath operation that does this. For example,
tensepath unitsquare = (0,0) ---(1,0) --- (1,1) --- (0, 1) --- cycle.

When METAFONT is deciding what curves should be drawn in place of
.. or ‘... it has to give special consideration to the beginning and ending points,
so that the path will start and finish as gracefully as possible. The solution that
usually works out best is to make the first and last path segments very nearly
the same as arcs of circles; an unadorned path of length 2 like ‘zg .. 21 .. 2o’
will therefore turn out to be a good approximation to the unique circular arc
that passes through (z, 21, 22), except in extreme cases. You can change this
default behavior at the endpoints either by specifying an explicit direction or by
specifying an amount of “curl.” If you call for curliness less than 1, the path will
decrease its curvature in the vicinity of the endpoint (i.e., it will begin to turn
less sharply); if you specify curliness greater than 1, the curvature will increase.
(See the definition of El Palo Alto’s trunk, earlier in this chapter.)

Here, for example, are some pairs of parentheses that were drawn using
various amounts of curl. In each case the shape was drawn by a statement of the
form ‘penstroke zg.{curlc} .. z1. .. {curlc}zy.’; different values of ¢ produce
different-looking parentheses:

curl value 0 1 2 4 infinity

yields O 0 0 0 0

(The parentheses of Computer Modern typefaces are defined by the somewhat
more general scheme described in Chapter 12; explicit directions are specified at
the endpoints, instead of curls, because this produces better results in unusual
cases when the characters are extremely tall or extremely wide.)

@ The amount of curl should not be negative. When the curl is very large,

METAFONT doesn’t actually make an extremely sharp turn at the endpoint;
instead, it changes the rest of the path so that there is comparatively little curvature
at the neighboring point.
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@ Chapter 3 points out that we can change METAFONT’s default curves by

specifying nonstandard “tension” between points, or even by specifying ex-
plicit control points to be used in the four-point method. Let us now study the full
syntax of path expressions, so that we can come to a complete understanding of the
paths that METAFONT is able to make. Here are the general rules:

(path primary) — (path variable)

| ((path expression) )

| reverse (path primary)

| subpath (pair expression) of (path primary)
(path secondary) — (path primary)

| (path secondary)(transformer)
(path tertiary) — (path secondary) | (pair tertiary)
(path expression) — (path subexpression)

| (path subexpression)(direction specifier)

| (path subexpression){path join) cycle
(path subexpression) — (path tertiary)

| (path expression)(path join)(path tertiary)
(path join) — (direction specifier)(basic path join)(direction specifier)
(direction specifier) — (empty)

| { curl (numeric expression) }

| {(pair expression) }

| {(numeric expression) , (numeric expression) }
(basic path join) — & | .. | .. (tension) .. | .. (controls) ..
(tension) — tension (tension amount)

| tension (tension amount) and (tension amount)
(tension amount) — (numeric primary)

| atleast (numeric primary)
(controls) — controls (pair primary)

| controls (pair primary) and (pair primary)

The operations ‘..." and ‘--’ and ‘---’ are conspicuously absent from this syntax; that

is because Appendix B defines them as macros:

is an abbreviation for ‘.. tension atleast1..”;
-- is an abbreviation for ‘{curl1} .. {curl1}’;
--- is an abbreviation for ‘.. tension infinity .. .

@ These syntax rules specify a wide variety of possibilities, even though they
don’t mention ‘--" and such things explicitly, so we shall now spend a little
while looking carefully at their implications. A path expression essentially has the form

pPo J1 p1 Jz 't Jn Dn

where each py, is a tertiary expression of type pair or path, and where each ji is a “path
join.” A path join begins and ends with a “direction specifier,” and has a “basic path
join” in the middle. A direction specifier can be empty, or it can be ‘{curlc}’ for some
¢ >0, or it can be a direction vector enclosed in braces. For example, ‘{up}’ specifies
an upward direction, because plain METAFONT defines up to be the pair (0,1). This
same direction could be specified by ‘{(0,1)}” or ‘{(0,10)}’, or without parentheses as
‘{0,1}". If a specified direction vector turns out to be (0,0), METAFONT behaves as
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if no direction had been specified; i.e., ‘{0,0} is equivalent to ‘(empty)’. An empty tension
direction specifier is implicitly filled in by rules that we shall discuss later. Hobby

@ A Dbasic path join has three essential forms: (1) ‘&’ simply concatenates

two paths, which must share a common endpoint. (2) ‘.. tensioncand 3 ..’
means that a curve should be defined, having respective “tensions” « and (3. Both «
and 8 must be equal to 3/4 or more; we shall discuss tension later in this chapter.
(3) ‘.. controlsuand v ..” defines a curve with intermediate control points v and v.

@ Special abbreviations are also allowed, so that the long forms of basic path
joins can usually be avoided: ‘..” by itself stands for ‘.. tensionland1 ..”,

while ‘.. tension « ..” stands for ‘.. tensionaand « ..”, and ‘.. controlsu ..’ stands for

‘.. controlsuandw ..”.

@ Our examples so far have always constructed paths from points; but the syn-
tax shows that it’s also possible to write, e.g., ‘po .. p1 .. p2’ when the p’s

themselves are paths. What does this mean? Well, every such path will already
have been changed into a sequence of curves with explicit control points; META-
FONT expands such paths into the corresponding sequence of points and basic path
joins of type (3). For example, ‘((0,0) .. (3,0)) .. (3,3)’ is essentially the same as
‘(0,0) .. controls(1,0) and (2,0) .. (3,0) .. (3,3)’, because ‘(0,0) .. (3,0)’ is the path
‘(0,0) .. controls (1,0) and (2,0) .. (3,0)’. If a cycle is expanded into a subpath in this
way, its cyclic nature will be lost; its last point will simply be a copy of its first point.

@ Now let’s consider the rules by which empty direction specifiers can inherit

specifications from their environment. An empty direction specifier at the
beginning or end of a path, or just next to the ‘&’ operator, is effectively replaced by
‘{curl1}’. This rule should be interpreted properly with respect to cyclic paths, which
have no beginning or end; for example, ‘zo .. z1 & 21 .. 22 .. cycle’ is equivalent to
‘zo .. z1{curl 1}&{curl 1}z .. z2 .. cycle’.

@ If there’s a nonempty direction specifier after a point but not before it, the

nonempty one is copied into both places. Thus, for example, ‘.. z{w}’ is
treated as if it were ‘.. {w}z{w}’. If there’s a nonempty direction specifier before a
point but not after it, the nonempty one is, similarly, copied into both places, except
if it follows a basic path join that gives explicit control points. The direction specifier
that immediately follows ‘.. controlsu andwv ..’ is always ignored.

@ An empty direction specifier next to an explicit control point inherits the direc-

tion of the adjacent path segment. More precisely, ‘.. z .. controlsuandwv ..’
is treated as if it were ‘.. {u — z}z .. controlsuandv ..” if u # z, or as if it were
‘.. {curll}z .. controlsuandv ..” if w = z. Similarly, ‘.. controlsuandv .. z .. is

treated as if z were followed by {z — v} if z # v, by {curl1} otherwise.

g% After the previous three rules have been applied, we might still be left with

cases in which there are points surrounded on both sides by empty direction
specifiers. METAFONT must choose appropriate directions at such points, and it does
so by applying the following algorithm due to John Hobby [Discrete and Computational
Geometry 1 (1986), 123-140]: Given a sequence

zo{do} .. tensionagand fB1 .. 21 .. tensionay and Bz .. 22
(etc.) zn—1 .. tension ap—1 and B, .. {dn}zn
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for which interior directions need to be determined, we will regard the z’s as if they
were complex numbers. Let I = |z — zx—1| be the distance from z,_1 to zx, and let
r = arg((zr41 — 2x)/ (2 — z6—1)) be the turning angle at z;. We wish to find direction
vectors wo, w1, ..., Wy so that the given sequence can effectively be replaced by

zo{wo} .. tensionagand 1 .. {wi}z1{w1} .. tension ay and Bz .. {wz}22
(etc.) zn—1{wn—1} .. tension an—1 and By .. {wn }zn.

Since only the directions of the w’s are significant, not the magnitudes, it suffices to
determine the angles 0 = arg(wg/(zk+1 — 2x)). For convenience, we also let ¢ =
arg((zk — 2K—1)/wk), so that

Ok + ¢ + Y = 0. (*)

Hobby’s paper introduces the notion of “mock curvature” according to which the fol-
lowing equations should hold at interior points:

Bily, gty (Ok—1 + ¢r) — 30n) = Al fy (Bt y (O + dri1) — 30k). (%)

We also need to consider boundary conditions. If dy is an explicit direction vector wo,
we know 6p; otherwise dy is ‘curl vo’ and we set up the equation

ch(ﬂl_l(eo + ¢1) — 390) = 706%(&51(90 + ¢1) — 3¢1). (***)
If d,, is an explicit vector wy,, we know ¢, ; otherwise d,, is ‘curly,’ and we set
Bz(a;il(en—l + on) — 3¢n) = 'Yna%—l(ﬁrtl(an—l + ¢n) — 3‘971—1)- (***/)

It can be shown that the conditions ax > 3/4, Bx > 3/4, v, > 0 imply that there is a
unique solution to the system of equations consisting of (x) and (x*) for 0 < k < n plus
the two boundary equations; hence the desired quantities 6o, ..., 0,—1 and ¢1, ..., ¢n
are uniquely determined. (The only exception is the degenerate case n = voy1 = 1.)

@ A similar scheme works for cycles, when there is no ‘{do}” or ‘{d.}’. In this
case equations (x) and (*x) hold for all k.

@@» EXERCISE 14.8

Write out the equations that determine the directions chosen for the general
cycle ‘zp .. tensionagand 31 .. z1 .. tension a; and B2 .. 22 .. tension a2 and B3 .. cycle’
of length 3. (You needn’t try to solve the equations.)

@ Whew —these rules have determined the directions at all points. To com-

plete the job of path specification, we need merely explain how to change a
segment like ‘zo{wo} .. tensionaand 8 .. {w1}z1’ into a segment of the form ‘zo ..
controlsuandv .. z1’; i.e., we finally want to know METAFONT’s magic recipe for
choosing the control points u and v. If @ = arg(wo/(21—20)) and ¢ = arg((z1—20)/w1),
the control points are

u =20+ eie(zl - Z())f(e, d))/av UV =2z1— e*i¢(zl - Zo)f(d)a 0)/ﬁa
where f(6, ®) is another formula due to John Hobby:

£(0.) = 2 Y2600 = 5 sing)(sing — 5 sind)(cos0 — cos)
a 3(1+%(\/5—1)6089—5-%(3—\/5)005@
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@@ There’s yet one more complication. If the tensions « and/or 8 have been
preceded by the keyword ‘atleast’, the values of « and/or 3 are increased, if
necessary, to the minimum values such that v and v do not lie outside the “bounding
triangle,” which is discussed near the end of Chapter 3.

@ What do these complex rules imply, for METAFONT users who aren’t “into”
mathematics? The most important fact is that the rules for paths are invariant
under shifting, scaling, and rotation. In other words, if the key points z; of a path are
all shifted, scaled, and/or rotated in the same way, the resulting path will be the same as
you would get by shifting, scaling, and/or rotating the path defined by the unmodified
zr’s (except of course for possible rounding errors). However, this invariance property
does not hold if the points or paths are xscaled and yscaled by separate amounts.

@ Another consequence of the rules is that tension specifications have a fairly

straightforward interpretation in terms of control points, when the adjacent
directions have been given: The formulas for v and v simply involve division by « and (.
This means, for example, that a tension of 2 brings the control points halfway in towards
the neighboring key points, and a tension of infinity makes the points very close indeed;
contrariwise, tensions less than 1 move the control points out.

@ Tension and curl specifications also influence METAFONT’s choices of direc-

tions at the key points. That is why, for example, the construction ‘z;_1 --- 23’
(which means ‘zi_1 .. tension infinity .. zi’ ) affects the direction of a larger path as it
enters zp_1 and leaves zj.

@ The rules imply that a change in the position of point z, causes a change

in the curve near point zp, when METAFONT has to choose directions at all
points between zp and z,. However, this effect is generally negligible except in the
vicinity of the changed point. You can verify this by looking, for example, at the
control points that METAFONT chooses for the path ‘(0,0) .. (1,0) .. (2,0) .. (3,0) ..
(4,0)...{up}(5,y)’, as y varies.

@@» EXERCISE 14.9

Run METAFONT on the ‘expr’ file of Chapter 8, and ask to see the path
expression ‘unitsquare shifted (0,1) .. wnitsquare shifted (1,0)’. Account for the
results that you get.

@%» EXERCISE 14.10
We’ve said that ‘--’ is plain METAFONT’s abbreviation for ‘{curl1} .. {curl1}".
Would there be any essential difference if ‘- -’ were defined to mean ‘{curl 2} .. {curl 2}’ ?

@@» EXERCISE 14.11
Look closely at the syntax of (path expression) and explain what METAFONT
does with the specification ‘(0,0) .. (3,3) .. cycle{curl1}".

@ Now let’s come back to simpler topics relating to paths. Once a path has
been specified, there are lots of things you can do with it, besides drawing and

filling and suchlike. For example, if p is a path, you can reverse its direction by saying

‘reverse p’; the reverse of ‘zg .. controlsuandv .. z1” is ‘z1 .. controlsvandu .. zp’.

?2 » EXERCISE 14.12
True or false: length reverse p = length p, for all paths p.

atleast

bounding triangle
tension
unitsquare
reverse
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@ It’s convenient to associate “time” with paths, by imagining that we move

along a path of length n as time passes from 0 to n. (Chapter 8 has already
illustrated this notion, with respect to an almost-but-not-quite-circular path called p2;
it’s a good idea to review the discussion of paths and subpaths in Chapter 8 now before
you read further.) Given a path

p = zo .. controlsup and vy .. z1 (etc.) zn—1 .. controls un—1 and v, .. zn

and a number ¢, METAFONT determines ‘point ¢ of p’ as follows: If ¢ < 0, the result
is zo; if t > n, the result is z,,; otherwise if k <t < k+1, it is (¢ — k) [2k, Uk, Vk+1, Zk+1],
where we generalize the ‘t[c, )" notation so that t[a, 3,v] means t[t[c, 8], t[3,~]] and
tla, B,7, 8] means t[tla, 8,7],t[3,7,6]]. (This is a Bernshtein polynomial in ¢, cf. Chap-
ter 3.) Given a cyclic path

¢ = zo ..controlsug and vi .. 21 (etc.) zn—1 .. controls u,—1 and v, .. cycle

and a number ¢, METAFONT determines ‘point t of ¢’ in essentially the same way,
except that ¢ is first reduced modulo n so as to lie in the range 0 <t < n.

@@» EXERCISE 14.13
True or false: point t of (20 -- 21) = ¢[20, z1]-

@ Given a path p and two time values t1 < o, ‘subpath (t1,%2) of p’ contains
all the values ‘point ¢t of p’ as t varies from t1 to t2. There’s no problem
understanding how to define this subpath when ¢; and t2 are integers; for example,

subpath (2,4) of p = 22 .. controlsuz and vs .. z3 .. controlsuz and vy .. 24

in the notation above, if we assume that n > 4. The fractional case is handled by
“stretching time” in one segment of the curve; for example, if 0 < t < 1 we have

subpath (0,t) of p = 2o .. controls t[zo, uo] and t[z0, uo, v1] . . t[z0, w0, v1, 21];
subpath (¢,1) of p = t[z0,u0,v1, 21] .. controls t{ug, v1, z1] and t[v, z1] .. 21.

These two subpaths together account for all points of ‘zg .. controlsup and v .. z1”. T