
(page 1)

The ()*+,-.*book

The fine print in the upper right-hand
corner of each page is a draft of intended

index entries; it won’t appear in the real book.
Some index entries will be in typewriter type

and/or enclosed in 〈. . .〉, etc;
such typographic distinctions aren’t shown here.
An index entry often extends for several pages;

the actual scope will be determined later.
Please note things that should be indexed but aren’t.

Apology: The xeroxed illustrations are often hard to see;
they will be done professionally in the real book.
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beautyPreface

GENERATION OF LETTERFORMS by mathematical means was first tried in
the fifteenth century; it became popular in the sixteenth and seventeenth

centuries; and it was abandoned (for good reasons) during the eighteenth century.
Perhaps the twentieth century will turn out to be the right time for this idea to
make a comeback, now that mathematics has advanced and computers are able
to do the calculations.

Modern printing equipment based on raster lines—in which metal “type”
has been replaced by purely combinatorial patterns of zeroes and ones that spec-
ify the desired position of ink in a discrete way—makes mathematics and com-
puter science increasingly relevant to printing. We now have the ability to give a
completely precise definition of letter shapes that will produce essentially equiv-
alent results on all raster-based machines. Moreover, the shapes can be defined
in terms of variable parameters; computers can “draw” new fonts of characters
in seconds, making it possible for designers to perform valuable experiments that
were previously unthinkable.

METAFONT is a system for the design of alphabets suited to raster-based
devices that print or display text. The characters that you are reading were all
designed with METAFONT, in a completely precise way; and they were developed
rather hastily by the author of the system, who is a rank amateur at such things.
It seems clear that further work with METAFONT has the potential of producing
typefaces of real beauty. This manual has been written for people who would
like to help advance the art of mathematical type design.

A top-notch designer of typefaces needs to have an unusually good eye
and a highly developed sensitivity to the nuances of shapes. A top-notch user of
computer languages needs to have an unusual talent for abstract reasoning and
a highly developed ability to express intuitive ideas in formal terms. Very few
people have both of these unusual combinations of skills; hence the best products
of METAFONT will probably be collaborative efforts between two people who
complement each other’s abilities. Indeed, this situation isn’t very different from
the way types have been created for many generations, except that the rôle of
“punch-cutter” is now being played by skilled computer specialists instead of by
skilled metalworkers.

A METAFONT user writes a “program” for each letter or symbol of
a typeface. These programs are different from ordinary computer programs,
because they are essentially declarative rather than imperative. In the META-
FONT language you explain where the major components of a desired shape are
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to be located, and how they relate to each other, but you don’t have to work
out the details of exactly where the lines cross, etc.; the computer takes over the
work of solving equations as it deduces the consequences of your specifications.
One of the advantages of METAFONT is that it provides a discipline according to
which the principles of a particular alphabet design can be stated precisely. The
underlying intelligence does not remain hidden in the mind of the designer; it
is spelled out in the programs. Thus consistency can readily be obtained where
consistency is desirable, and a font can readily be extended to new symbols that
are compatible with the existing ones.

It would be nice if a system like METAFONT were to simplify the task
of type design to the point where beautiful new alphabets could be created in a
few hours. This, alas, is impossible; an enormous amount of subtlety lies behind
the seemingly simple letter shapes that we see every day, and the designers of
high-quality typefaces have done their work so well that we don’t notice the
underlying complexity. One of the disadvantages of METAFONT is that a person
can easily use it to produce poor alphabets, cheaply and in great quantity. Let
us hope that such experiments will have educational value as they reveal why
the subtle tricks of the trade are important, but let us also hope that they will
not cause bad workmanship to proliferate. Anybody can now produce a book
in which all of the type is home-made, but a person or team of persons should
expect to spend a year or more on the project if the type is actually supposed
to look right. METAFONT won’t put today’s type designers out of work; on
the contrary, it will tend to make them heroes and heroines, as more and more
people come to appreciate their skills.

Although there is no royal road to type design, there are some things
that can, in fact, be done well with METAFONT in an afternoon. Geometric
designs are rather easy; and it doesn’t take long to make modifications to letters
or symbols that have previously been expressed in METAFONT form. Thus,
although comparatively few users of METAFONT will have the courage to do
an entire alphabet from scratch, there will be many who will enjoy customizing
someone else’s design.

This book is not a text about mathematics or about computers. But
if you know the rudiments of those subjects (namely, contemporary high school
mathematics, together with the knowledge of how to use the text editing or
word processing facilities on your computing machine), you should be able to
use METAFONT with little difficulty after reading what follows. Some parts
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dangerous bend

of the exposition in the text are more obscure than others, however, since the
author has tried to satisfy experienced METAFONTers as well as beginners and
casual users with a single manual. Therefore a special symbol has been used to
warn about esoterica: When you see the sign

�

at the beginning of a paragraph, watch out for a “dangerous bend” in the train of
thought—don’t read such a paragraph unless you need to. You will be able to use
METAFONT reasonably well, even to design characters like the dangerous-bend
symbol itself, without reading the fine print in such advanced sections.

Some of the paragraphs in this manual are so far out that they are rated

�� ;

everything that was said about single dangerous-bend signs goes double for these.
You should probably have at least a month’s experience with METAFONT before
you attempt to fathom such doubly dangerous depths of the system; in fact,
most people will never need to know METAFONT in this much detail, even if
they use it every day. After all, it’s possible to fry an egg without knowing
anything about biochemistry. Yet the whole story is here in case you’re curious.
(About METAFONT, not eggs.)

The reason for such different levels of complexity is that people change
as they grow accustomed to any powerful tool. When you first try to use META-
FONT, you’ll find that some parts of it are very easy, while other things will take
some getting used to. At first you’ll probably try to control the shapes too rigidly,
by overspecifying data that has been copied from some other medium. But later,
after you have begun to get a feeling for what the machine can do well, you’ll
be a different person, and you’ll be willing to let METAFONT help contribute to
your designs as they are being developed. As you gain more and more experience
working with this unusual apprentice, your perspective will continue to change
and you will run into different sorts of challenges. That’s the way it is with any
powerful tool: There’s always more to learn, and there are always better ways
to do what you’ve done before. At every stage in the development you’ll want a
slightly different sort of manual. You may even want to write one yourself. By
paying attention to the dangerous bend signs in this book you’ll be better able
to focus on the level that interests you at a particular time.
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JOKES
truth
EXERCISES
MF79
Hobby

Computer system manuals usually make dull reading, but take heart:
This one contains JOKES every once in a while. You might actually enjoy read-
ing it. (However, most of the jokes can only be appreciated properly if you
understand a technical point that is being made—so read carefully.)

Another noteworthy characteristic of this book is that it doesn’t always
tell the truth. When certain concepts of METAFONT are introduced informally,
general rules will be stated; afterwards you will find that the rules aren’t strictly
true. In general, the later chapters contain more reliable information than the
earlier ones do. The author feels that this technique of deliberate lying will
actually make it easier for you to learn the ideas. Once you understand a simple
but false rule, it will not be hard to supplement that rule with its exceptions.

In order to help you internalize what you’re reading, EXERCISES are
sprinkled through this manual. It is generally intended that every reader should
try every exercise, except for questions that appear in the “dangerous bend”
areas. If you can’t solve a problem, you can always look up the answer. But
please, try first to solve it by yourself; then you’ll learn more and you’ll learn
faster. Furthermore, if you think you do know the solution, you should turn to
Appendix A and check it out, just to make sure.

WARNING: Type design can be hazardous to your other interests.
Once you get hooked, you will develop intense feelings about letter-
forms; the medium will intrude on the messages that you read. And
you will perpetually be thinking of improvements to the fonts that
you see everywhere, especially those of your own design.

The METAFONT language described here has very little in common with
the author’s previous attempt at a language for alphabet design, because five
years of experience with the old system has made it clear that a completely
different approach is preferable. Both languages have been called METAFONT;
but henceforth the old language should be called METAFONT79, and its use
should rapidly fade away. Let’s keep the name METAFONT for the language
described here, since it is so much better, and since it will never change again.

I wish to thank the hundreds of people who have helped me to formulate
this “definitive edition” of METAFONT, based on their experiences with prelim-
inary versions of the system. In particular, John Hobby discovered many of
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National Science Foundation
Office of Naval Research
IBM Corporation
System Development Foundation
American Mathematical Society
TUGboat
Knuth, Jill
Knuth, Don
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MORISON

the algorithms that have made the new language possible. My work at Stan-
ford has been generously supported by the National Science Foundation, the
Office of Naval Research, the IBM Corporation, and the System Development
Foundation. I also wish to thank the American Mathematical Society for its
encouragement and for publishing the TUGboat newsletter (see Appendix J).
Above all, I deeply thank my wife, Jill, for the inspiration, understanding, com-
fort, and support she has given me for more than 25 years, especially during the
eight years that I have been working intensively on mathematical typography.

Stanford, California — D. E. K.
September 1985

It is hoped that Divine Justice may find
some suitable affliction for the malefactors

who invent variations upon the alphabet of our fathers. . . .
The type-founder, worthy mechanic, has asserted himself

with an overshadowing individuality,
defacing with his monstrous creations and revivals

every publication in the land.

— AMBROSE BIERCE, The Opinionator. Alphabêtes (1911)

Can the new process yield a result that, say,
a Club of Bibliophiles would recognise as a work of art

comparable to the choice books they have in their cabinets?

— STANLEY MORISON, Typographic Design in Relation to
Photographic Composition (1958)
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TeX
METAFONT, the name
meta-font

This is a book about a computer system called METAFONT, just asThe TEXbook
is about TEX. METAFONT and TEX are good friends who intend to live together
for a long time. Between them they take care of the two most fundamental tasks
of typesetting: TEX puts characters into the proper positions on a page, while
METAFONT determines the shapes of the characters themselves.

Why is the system called METAFONT ? The ‘-FONT ’ part is easy to
understand, because sets of related characters that are used in typesetting are
traditionally known as fonts of type. The ‘META-’ part is more interesting: It
indicates that we are interested in making high-level descriptions that transcend
any of the individual fonts being described.

Newly coined words beginning with ‘meta-’ generally reflect our con-
temporary inclination to view things from outside or above, at a more abstract
level than before, with what we feel is a more mature understanding. We now
have metapsychology (the study of how the mind relates to its containing body),
metahistory (the study of principles that control the course of events), meta-
mathematics (the study of mathematical reasoning), metafiction (literary works
that explicitly acknowledge their own forms), and so on. A metamathemati-
cian proves metatheorems (theorems about theorems); a computer scientist of-
ten works with metalanguages (languages for describing languages). Similarly,
a meta-font is a schematic description of the shapes in a family of related fonts;
the letterforms change appropriately as their underlying parameters change.

Meta-design is much more difficult than design; it’s easier to draw some-
thing than to explain how to draw it. One of the problems is that different sets
of potential specifications can’t easily be envisioned all at once. Another is that
a computer has to be told absolutely everything. However, once we have suc-
cessfully explained how to draw something in a sufficiently general manner, the
same explanation will work for related shapes, in different circumstances; so the
time spent in formulating a precise explanation turns out to be worth it.

Typefaces intended for text are normally seen small, and our eyes can
read them best when the letters have been designed specifically for the size at
which they are actually used. Although it is tempting to get 7-point fonts by
simply making a 70% reduction from the 10-point size, this shortcut leads to a
serious degradation of quality. Much better results can be obtained by incorpo-
rating parametric variations into a meta-design. In fact, there are advantages to
built-in variability even when you want to produce only one font of type in a sin-
gle size, because it allows you to postpone making decisions about many aspects
of your design. If you leave certain things undefined, treating them as parame-
ters instead of “freezing” the specifications at an early stage, the computer will
be able to draw lots of examples with different settings of the parameters, and
you will be able to see the results of all those experiments at the final size. This
will greatly increase your ability to edit and fine-tune the font.

If meta-fonts are so much better than plain old ordinary fonts, why
weren’t they developed long ago? The main reason is that computers did not
exist until recently. People find it difficult and dull to carry out calculations
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interpolate
recipe

with a multiplicity of parameters, while today’s machines do such tasks with
ease. The introduction of parameters is a natural outgrowth of automation.

OK, let’s grant that meta-fonts sound good, at least in theory. There’s
still the practical problem about how to achieve them. How can we actually
specify shapes that depend on unspecified parameters?

If only one parameter is varying, it’s fairly easy to solve the problem
in a visual way, by overlaying a series of drawings that show graphically how
the shape changes. For example, if the parameter varies from 0 to 1, we might
prepare five sketches, corresponding to the parameter values 0, 1

4 , 1
2 , 3

4 , and 1.
If these sketches follow a consistent pattern, we can readily interpolate to find
the shape for a value like 2

3 that lies between two of the given ones. We might
even try extrapolating to parameter values like 1 1

4 .
But if there are two or more independent parameters, a purely visual

solution becomes too cumbersome. We must go to a verbal approach, using some
sort of language to describe the desired drawings. Let’s imagine, for example,
that we want to explain the shape of a certain letter ‘a’ to a friend in a distant
country, using only a telephone for communication; our friend is supposed to be
able to reconstruct exactly the shape we have in mind. Once we figure out a
sufficiently natural way to do that, for a particular fixed shape, it isn’t much of
a trick to go further and make our verbal description more general, by including
variable parameters instead of restricting ourselves to constants.

An analogy to cooking might make this point clearer. Suppose you have
just baked a delicious berry pie, and your friends ask you to tell them the recipe
so that they can bake one too. If you have developed your cooking skills entirely
by intuition, you might find it difficult to record exactly what you did. But there
is a traditional language of recipes in which you could communicate the steps
you followed; and if you take careful measurements, you might find that you
used, say, 1 1

4 cups of sugar. The next step, if you were instructing a computer-
controlled cooking machine, would be to go to a meta-recipe in which you use,
say, .25x cups of sugar for x cups of berries; or .3x + .2y cups for x cups of
boysenberries and y cups of blackberries.

In other words, going from design to meta-design is essentially like going
from arithmetic to elementary algebra. Numbers are replaced by simple formulas
that involve unknown quantities. We will see many examples of this.

A METAFONT definition of a complete typeface generally consists of
three main parts. First there is a rather mundane set of subroutines that take
care of necessary administrative details, such as assigning code numbers to indi-
vidual characters; each character must also be positioned properly inside an in-
visible “box,” so that typesetting systems will produce the correct spacing. Next
comes a more interesting collection of subroutines, designed to draw the basic
strokes characteristic of the typeface (e.g., the serifs, bowls, arms, arches, and so
on). These subroutines will typically be described in terms of their own special
parameters, so that they can produce a variety of related strokes; a serif subrou-
tine will, for example, be able to draw serifs of different lengths, although all of
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Hobby
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HULTÉN
Tinguely
KNUTH

the serifs it draws should have the same “feeling.” Finally, there are routines for
each of the characters. If the subroutines in the first and second parts have been
chosen well, the routines of the third part will be fairly high-level descriptions
that don’t concern themselves unnecessarily with details; for example, it may
be possible to substitute a different serif-drawing subroutine without changing
any of the programs that use that subroutine, thereby obtaining a typeface of
quite a different flavor. [A particularly striking example of this approach has
been worked out by John D. Hobby and Gu Guoan in “A Chinese Meta-Font,”
TUGboat 5 (1984), 119–136. By changing a set of 13 basic stroke subroutines,
they were able to draw 128 sample Chinese characters in three different styles
(Song, Long Song, and Bold), using the same programs for the characters.]

A well-written METAFONT program will express the designer’s intentions
more clearly than mere drawings ever can, because the language of algebra has
simple “idioms” that make it possible to elucidate many visual relationships.
Thus, METAFONT programs can be used to communicate knowledge about type
design, just as recipes convey the expertise of a chef. But algebraic formulas are
not easy to understand in isolation; METAFONT descriptions are meant to be
read with an accompanying illustration, just as the constructions in geometry
textbooks are accompanied by diagrams. Nobody is ever expected to read the
text of a METAFONT program and say, “Ah, what a beautiful letter!” But with
one or more enlarged pictures of the letter, based on one or more settings of the
parameters, a reader of the METAFONT program should be able to say, “Ah,
I understand how this beautiful letter was drawn!” We shall see that the META-
FONT system makes it fairly easy to obtain annotated proof drawings that you
can hold in your hand as you are working with a program.

Although METAFONT is intended to provide a relatively painless way to
describe meta-fonts, you can, of course, use it also to describe unvarying shapes
that have no “meta-ness” at all. Indeed, you need not even use it to produce
fonts; the system will happily draw geometric designs that have no relation to
the characters or glyphs of any alphabet or script. The author occasionally uses
METAFONT simply as a pocket calculator, to do elementary arithmetic in an
interactive way. A computer doesn’t mind if its programs are put to purposes
that don’t match their names.

[Tinguely] made some large, brightly coloured open reliefs,
juxtaposing stationary and mobile shapes.

He later gave them names like Meta-Kandinsky and Meta-Herbin,
to clarify the ideas and attitudes that lay at the root of their conception.

— K. G. PONTUS HULTÉN, Jean Tinguely: Méta (1972)

The idea of a meta-font should now be clear. But what good is it?
The ability to manipulate lots of parameters may be interesting and fun,

but does anybody really need a 6` -point font
that is one fourth of the way between Baskerville and Helvetica?

— DONALD E. KNUTH, The Concept of a Meta-Font (1982)
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Cartesian
coordinates
x coordinate
y coordinate
graph paper
raster
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pel, see pixel

If we want to tell a computer how to draw a particular shape, we need a way to
explain where the key points of that shape are supposed to be. METAFONT uses
standard Cartesian coordinates for this purpose: The location of a point is de-
fined by specifying its x coordinate, which is the number of units to the right of
some reference point, and its y coordinate, which is the number of units upward
from the reference point. First we determine the horizontal (left/right) compo-
nent of a point’s position, then we determine the vertical (up/down) component.
METAFONT’s world is two-dimensional, so two coordinates are enough.

For example, let’s consider the following six points:

(Figure 2a will be inserted here; too bad you can’t see it now.)

METAFONT’s names for the positions of these points are

(x1, y1) = (0, 100); (x2, y2) = (100, 100); (x3, y3) = (200, 100);
(x4, y4) = (0, 0); (x5, y5) = (100, 0); (x6, y6) = (200, 0).

Point 4 is the same as the reference point, since both of its coordinates are zero;
to get to point 3 = (200, 100), you start at the reference point and go 200 steps
right and 100 up; and so on.

xEXERCISE 2.1
Which of the six example points is closest to the point (60, 30)?

xEXERCISE 2.2
True or false: All points that lie on a given horizontal straight line have the same
x coordinate.

xEXERCISE 2.3
Explain where the point (−5, 15) is located.

xEXERCISE 2.4
What are the coordinates of a point that lies exactly 60 units below point 6 in
the diagram above? (“Below” means “down the page,” not “under the page.”)

In a typical application of METAFONT, you prepare a rough sketch of
the shape you plan to define, on a piece of graph paper, and you label important
points on that sketch with any convenient numbers. Then you write a META-
FONT program that explains (i) the coordinates of those key points, and (ii) the
lines or curves that are supposed to go between them.

METAFONT has its own internal graph paper, which forms a so-called
raster or grid consisting of square “pixels.” The output of METAFONT will specify
that certain of the pixels are “black” and that the others are “white”; thus,
the computer essentially converts shapes into binary patterns like the designs
a person can make when doing needlepoint with two colors of yarn.
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resolution
Cartesian
Descartes

Coordinates are lengths, but we haven’t discussed yet what the units of
length actually are. It’s important to choose convenient units, and METAFONT’s
coordinates are given in units of pixels. The little squares illustrated on the
previous page, which correspond to differences of 10 units in an x coordinate or
a y coordinate, therefore represent 10 × 10 arrays of pixels, and the rectangle
enclosed by our six example points contains 20,000 pixels altogether.*

Coordinates don’t have to be whole numbers. You can refer, for example,
to point (31.5, 42.5), which lies smack in the middle of the pixel whose corners
are at (31, 42), (31, 43), (32, 42), and (32, 43). The computer works internally
with coordinates that are integer multiples of 1

65536 ≈ 0.00002 of the width of a
pixel, so it is capable of making very fine distinctions. But METAFONT will never
make a pixel half black; it’s all or nothing, as far as the output is concerned.

The fineness of a grid is usually called its resolution, and resolution is
usually expressed in pixel units per inch (in America) or pixel units per millimeter
(elsewhere). For example, the type you are now reading was prepared by META-
FONT with a resolution of slightly more than 700 pixels to the inch, but with
slightly fewer than 30 pixels per mm. For the time being we shall assume that the
pixels are so tiny that the operation of rounding to whole pixels is unimportant;
later we will consider the important questions that arise when METAFONT is
producing low-resolution output.

It’s usually desirable to write METAFONT programs that can manu-
facture fonts at many different resolutions, so that a variety of low-resolution
printing devices will be able to make proofs that are compatible with a variety
of high-resolution devices. Therefore the key points in METAFONT programs are
rarely specified in terms of pure numbers like ‘100’ ; we generally make the co-
ordinates relative to some other resolution-dependent quantity, so that changes
will be easy to make. For example, it would have been better to use a definition
something like the following, for the six points considered earlier:

(x1, y1) = (0, b); (x2, y2) = (a, b); (x3, y3) = (2a, b);
(x4, y4) = (0, 0); (x5, y5) = (a, 0); (x6, y6) = (2a, 0);

then the quantities a and b can be defined in some way appropriate to the desired
resolution. We had a = b = 100 in our previous example, but such constant
values leave us with little or no flexibility.

Notice the quantity ‘2a’ in the definitions of x3 and x6; METAFONT un-
derstands enough algebra to know that this means twice the value of a, whatever
a is. We observed in Chapter 1 that simple uses of algebra give METAFONT its
meta-ness. Indeed, it is interesting to note from a historical standpoint that
Cartesian coordinates are named after René Descartes, not because he invented
the idea of coordinates, but because he showed how to get much more out of

* We sometimes use the term “pixel” to mean a square picture element, but sometimes
we use it to signify a one-dimensional unit of length. A square pixel is one pixel-unit
wide and one pixel-unit tall.
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draw
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that idea by applying algebraic methods. People had long since been using co-
ordinates for such things as latitudes and longitudes, but Descartes observed
that by putting unknown quantities into the coordinates it became possible to
describe infinite sets of related points, and to deduce properties of curves that
were extremely difficult to work out using geometrical methods alone.

So far we have specified some points, but we haven’t actually done any-
thing with them. Let’s suppose that we want to draw a straight line from point 1
to point 6, obtaining

(Figure 2b will be inserted here; too bad you can’t see it now.)

One way to do this with METAFONT is to say

draw (x1, y1) . . (x6, y6).

The ‘. .’ here tells the computer to connect two points.
It turns out that we often want to write formulas like ‘(x1, y1)’, so it

will be possible to save lots of time if we have a special abbreviation for such
things. Henceforth we shall use the notation z1 to stand for (x1, y1); and in
general, zk with an arbitrary subscript will stand for the point (xk, yk). The
‘draw’ command above can therefore be written more simply as

draw z1 . . z6.

Adding two more straight lines by saying, ‘draw z2 . . z5’ and ‘draw z3 . . z4’,
we obtain a design that is slightly reminiscent of the Union Jack:

(Figure 2c will be inserted here; too bad you can’t see it now.)

We shall call this a hex symbol, because it has six endpoints. Notice that the
straight lines here have some thickness, and they are rounded at the ends as
if they had been drawn with a felt-tip pen having a circular nib. METAFONT
provides many ways to control the thicknesses of lines and to vary the terminal
shapes, but we shall discuss such things in later chapters because our main
concern right now is to learn about coordinates.

If the hex symbol is scaled down so that its height parameter b is exactly
equal to the height of the letters in this paragraph, it looks like this: ‘� ’. Just
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for fun, let’s try to typeset ten of them in a row:

����������

How easy it is to do this!*
Let’s look a bit more closely at this new character. The � is a bit too

tall, because it extends above points 1, 2, and 3 when the thickness of the lines
is taken into account; similarly, it sinks a bit too much below the baseline (i.e.,
below the line y = 0 that contains points 4, 5, and 6). In order to correct this,
we want to move the key points slightly. For example, point z1 should not be
exactly at (0, b); we ought to arrange things so that the top of the pen is at (0, b)
when the center of the pen is at z1. We can express this condition for the top
three points as follows:

top z1 = (0, b); top z2 = (a, b); top z3 = (2a, b);

similarly, the remedy for points 4, 5, and 6 is to specify the equations

bot z4 = (0, 0); bot z5 = (a, 0); bot z6 = (2a, 0).

The resulting squashed-in character is

(Figure 2d will be inserted here; too bad you can’t see it now.)

(shown here with the original weight ‘� ’ and also in a bolder version ‘� ’).

xEXERCISE 2.5
Ten of these bold hexes produce ‘���������� ’; notice that
adjacent symbols overlap each other. The reason is that each character has width
2a, hence point 3 of one character coincides with point 1 of the next. Suppose
that we actually want the characters to be completely confined to a rectan-
gular box of width 2a, so that adjacent characters come just shy of touching
(���������� ). Try to guess how the point-defining equa-
tions above could be modified to make this happen, assuming that METAFONT
has operations ‘lft ’ and ‘rt ’ analogous to ‘top ’ and ‘bot ’.

* Now that authors have for the first time the power to invent new symbols with great
ease, and to have those characters printed in their manuscripts on a wide variety
of typesetting devices, we must face the question of how much experimentation is
desirable. Will font freaks abuse this toy by overdoing it? Is it wise to introduce new
symbols by the thousands? Such questions are beyond the scope of this book; but
it is easy to imagine an epidemic of fontomania occurring, once people realize how
much fun it is to design their own characters, hence it may be necessary to perform
fontal lobotomies.
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vectors
addition of vectors
multiplication of vector by scalar
negation of vectors
vector subtraction principle
subtraction of vectors
bracket notation
mediation
of-the-way function

Pairs of coordinates can be thought of as “vectors” or “displacements”
as well as points. For example, (15, 8) can be regarded as a command to go
right 15 and up 8; then point (15, 8) is the position we get to after starting at
the reference point and obeying the command (15, 8). This interpretation works
out nicely when we consider addition of vectors: If we move according to the
vector (15, 8) and then move according to (7,−3), the result is the same as if
we move (15, 8) + (7,−3) = (15 + 7, 8 − 3) = (22, 5). The sum of two vectors
z1 = (x1, y1) and z2 = (x2, y2) is the vector z1 + z2 = (x1 + x2, y1 + y2) obtained
by adding x and y components separately. This vector represents the result
of moving by vector z1 and then moving by vector z2; alternatively, z1 + z2

represents the point you get to by starting at point z1 and moving by vector z2.

xEXERCISE 2.6
Consider the four fundamental vectors (0, 1), (1, 0), (0,−1), and (−1, 0). Which
of them corresponds to moving one pixel unit (a) to the right? (b) to the left?
(c) down? (d) up?

Vectors can be subtracted as well as added; the value of z1−z2 is simply
(x1 − x2, y1 − y2). Furthermore it is natural to multiply a vector by a single
number c: The quantity c times (x, y), which is written c(x, y), equals (cx, cy).
Thus, for example, 2z = 2(x, y) = (2x, 2y) turns out to be equal to z + z. In the
special case c = −1, we write −(x, y) = (−x,−y).

Now we come to an important notion, based on the fact that subtraction
is the opposite of addition. If z1 and z2 are any two points, then z2 − z1 is the
vector that corresponds to moving from z1 to z2. The reason is simply that z2−z1
is what we must add to z1 in order to get z2: i.e., z1 + (z2 − z1) = z2. We shall
call this the vector subtraction principle. It is used frequently in METAFONT
programs when the designer wants to specify the direction and/or distance of
one point from another.

METAFONT programs often use another idea to express relations be-
tween points. Suppose we start at point z1 and travel in a straight line from
there in the direction of point z2, but we don’t go all the way. There’s a special
notation for this, using square brackets:

1
3 [z1, z2] is the point one-third of the way from z1 to z2,
1
2 [z1, z2] is the point midway between z1 and z2,

.8[z1, z2] is the point eight-tenths of the way from z1 to z2,

and, in general, t[z1, z2] stands for the point that lies a fraction t of the way from
z1 to z2. We call this the operation of mediation between points, or (informally)
the “of-the-way function.” If the fraction t increases from 0 to 1, the expression
t[z1, z2] traces out a straight line from z1 to z2. According to the vector subtrac-
tion principle, we must move z2 − z1 in order to go all the way from z1 to z2,
hence the point t of the way between them is

t[z1, z2] = z1 + t(z2 − z1).
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sidebarThis is a general formula by which we can calculate t[z1, z2] for any given values
of t, z1, and z2. But METAFONT has this formula built in, so we can use the
bracket notation explicitly.

For example, let’s go back to our first six example points, and suppose
that we want to refer to the point that’s 2/5 of the way from z2 = (100, 100) to
z6 = (200, 0). In METAFONT we can write this simply as .4[z2, z6]. And if we
need to compute the exact coordinates for some reason, we can always work them
out from the general formula, getting z2 + .4(z6−z2) = (100, 100)+ .4

(

(200, 0)−
(100, 100)

)

= (100, 100) + .4(100,−100) = (100, 100) + (40,−40) = (140, 60).

xEXERCISE 2.7
True or false: The direction vector from (5,−2) to (2, 3) is (−3, 5).

xEXERCISE 2.8
Explain what the notation ‘0[z1, z2]’ means, if anything. What about ‘1[z1, z2]’?
And ‘2[z1, z2]’? And ‘(−.5)[z1, z2]’?

xEXERCISE 2.9
True or false, for mathematicians: (a) 1

2 [z1, z2] = 1
2 (z1 + z2); (b) 1

3 [z1, z2] =
1
3z1 + 2

3z2; (c) t[z1, z2] = (1− t)[z2, z1].

Let’s conclude this chapter by using x
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(Figure 2e will be in-
serted here; too bad
you can’t see it now.)

s ←−−−− a−−−−→ s

mediation to help specify the five points in the
stick-figure ‘�’ shown enlarged at the right. The
distance between points 1 and 5 should be a,
and point 3 should be b pixels above the base-
line; these values a and b have been predeter-
mined by some method that doesn’t concern
us here, and so has a “sidebar” parameter s
that specifies the horizontal distance of points
1 and 5 from the edges of the type. We shall
assume that we don’t know for sure what the
height of the bar line should be; point 2 should
be somewhere on the straight line from point 1
to point 3, and point 4 should be in the corresponding place between 5 and 3,
but we want to try several possibilities before we make a decision.

The width of the character will be s + a + s, and we can specify points
z1 and z5 by the equations

bot z1 = (s, 0); z5 = z1 + (a, 0).

There are other ways to do the job, but these formulas clearly express our in-
tention to have the bottom of the pen at the baseline, s pixels to the right of
the reference point, when the pen is at z1, and to have z5 exactly a pixels to the
right of z1. Next, we can say

z3 =
(1

2 [x1, x5], b
)

;
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golden ratio
dangerous bend
ELLIS
Descartes
BELL

this means that the x coordinate of point 3 should be halfway between the
x coordinates of points 1 and 5, and that y3 = b. Finally, let’s say

z2 = alpha [z1, z3]; z4 = alpha [z5, z3];

the parameter alpha is a number between 0 and 1 that governs the position of
the bar line, and it will be supplied later. When alpha has indeed received a
value, we can say

draw z1 . . z3; draw z3 . . z5; draw z2 . . z4.

METAFONT will draw the characters ‘��	
��
’ when alpha varies from 0.2 to
0.5 in steps of 0.05 and when a = 150, b = 250, s = 30. The illustration on the
previous page has alpha = (3 −

√
5 )/2 ≈ 0.38197; this value makes the ratio of

the area above the bar to the area below it equal to (
√

5 − 1)/2 ≈ 0.61803, the
so-called “golden ratio” of classical Greek mathematics.

� (Are you sure you should be reading this paragraph? The “dangerous bend”
sign here is meant to warn you about material that ought to be skipped on first

reading. And maybe also on second reading. The reader-beware paragraphs sometimes
refer to concepts that aren’t explained until later chapters.)

� xEXERCISE 2.10
Why is it better to define z3 as ( 1

2 [x1, x5], b), rather than to work out the
explicit coordinates z3 = (s + 1

2a, b) that are implied by the other equations?

��xEXERCISE 2.11
Given z1, z3, and z5 as above, explain how to define z2 and z4 so that all of

the following conditions hold simultaneously:

the line from z2 to z4 slopes upward at a 20◦ angle;
the y coordinate of that line’s midpoint is 2/3 of the way from y3 to y1;
z2 and z4 are on the respective lines z1 . . z3 and z3 . . z5.

(If you solve this exercise, you deserve an ‘�’.)

Here, where we reach the sphere of mathematics,
we are among processes which seem to some

the most inhuman of all human activities
and the most remote from poetry.

Yet it is here that the artist has the fullest scope for his imagination.

— HAVELOCK ELLIS, The Dance of Life (1923)

To anyone who has lived in a modern American city (except Boston)
at least one of the underlying ideas of Descartes’ analytic geometry

will seem ridiculously evident. Yet, as remarked,
it took mathematicians all of two thousand years

to arrive at this simple thing.

— ERIC TEMPLE BELL, Mathematics: Queen and Servant of Science (1951)
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Dürer
curves
four-point method for curves
midpoints

Albrecht Dürer and other Renaissance men attempted to establish mathematical
principles of type design, but the letters they came up with were not especially
beautiful. Their methods failed because they restricted themselves to “ruler
and compass” constructions, which cannot adequately express the nuances of
good calligraphy. METAFONT gets around this problem by using more powerful
mathematical techniques, which provide the necessary flexibility without really
being too complicated. The purpose of the present chapter is to explain the
simple principles by which a computer is able to draw “pleasing” curves.

The basic idea is to start with four points (z1, z2, z3, z4) and to construct
the three midpoints z12 = 1

2 [z1, z2], z23 = 1
2 [z2, z3], z34 = 1

2 [z3, z4]:

(Figure 3a will be inserted here; too bad you can’t see it now.)

Then take those three midpoints (z12, z23, z34) and construct two second-order
midpoints z123 = 1

2 [z12, z23] and z234 = 1
2 [z23, z34]; finally, construct the third-

order midpoint z1234 = 1
2 [z123, z234]:

(Figure 3b will be inserted here; too bad you can’t see it now.)

This point z1234 is one of the points of the curve determined by (z1, z2, z3, z4).
To get the remaining points of that curve, repeat the same construction on
(z1, z12, z123, z1234) and on (z1234, z234, z34, z4), ad infinitum:

(Figure 3c will be inserted here; too bad you can’t see it now.)

The process converges quickly, and the preliminary scaffolding (which appears
above the limiting curve in our example) is ultimately discarded. The limiting
curve has the following important properties:

It begins at z1, heading in the direction from z1 to z2.
It ends at z4, heading in the direction from z3 to z4.
It stays entirely within the so-called convex hull of z1, z2, z3, and z4;
i.e., all points of the curve lie “between” the defining points.
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de Casteljau
Bernshtĕın polynomial
Bernshtĕın
Bézier
mediation

� The recursive midpoint rule for curve-drawing was discovered in 1959 by Paul
de Casteljau, who showed that the curve could be described algebraically by

the remarkably simple formula

z(t) = (1− t)3z1 + 3(1− t)2t z2 + 3(1− t)t2z3 + t3z4,

as the parameter t varies from 0 to 1. This polynomial of degree 3 in t is called
a Bernshtĕın polynomial, because Sergĕı N. Bernshtĕın introduced such functions in
1912 as part of his pioneering work on approximation theory. Curves traced out by
Bernshtĕın polynomials of degree 3 are often called Bézier cubics, after Pierre Bézier
who realized their importance for computer-aided design during the 1960s.

� It is interesting to observe that the Bernshtĕın polynomial of degree 1, i.e., the
function z(t) = (1−t) z1+t z2, is precisely the mediation operator t[z1, z2] that

we discussed in the previous chapter. Indeed, if the geometric construction we have just
seen is changed to use t-of-the-way points instead of midpoints (i.e., if z12 = t[z1, z2]
and z23 = t[z2, z3], etc.), then z1234 turns out to be precisely z(t) in the formula above.

No matter what four points (z1, z2, z3, z4) are given, the construction on
the previous page defines a curved line that runs from z1 to z4. This curve is not
always interesting or beautiful; for example, if all four of the given points lie on
a straight line, the entire “curve” that they define will also be contained in that
same line. We obtain rather different curves from the same four starting points
if we number the points differently:

(Figure 3d will be inserted here; too bad you can’t see it now.)

Some discretion is evidently advisable when the z’s are chosen. But the four-
point method is good enough to obtain satisfactory approximations to any curve
we want, provided that we break the desired curve into short enough segments
and give four suitable control points for each segment. It turns out, in fact, that
we can usually get by with only a few segments. For example, the four-point
method can produce an approximate quarter-circle with less than 0.06% error; it
never yields an exact circle, but the differences between four such quarter-circles
and a true circle are imperceptible.

All of the curves that METAFONT draws are based on four points, as just
described. But it isn’t necessary for a user to specify all of those points, because
the computer is usually able to figure out good values of z2 and z3 by itself. Only
the endpoints z1 and z4, through which the curve is actually supposed to pass,
are usually mentioned explicitly in a METAFONT program.

For example, let’s return to the six points that were used to introduce
the ideas of coordinates in Chapter 2. We said ‘draw z1 . . z6’ in that chapter,
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..
control points
cycle
bean-like shape
tension

in order to draw a straight line from point z1 to point z6. In general, if three
or more points are listed instead of two, METAFONT will draw a smooth curve
through all the points. For example, the commands ‘draw z4 . . z1 . . z2 . . z6’
and ‘draw z5 . . z4 . . z1 . . z3 . . z6 . . z5’ will produce the respective results

(Figure 3e will be inserted here; too bad you can’t see it now.)

(Unlabeled points in these diagrams are control points that METAFONT has
supplied automatically so that it can use the four-point scheme to draw curves
between each pair of adjacent points on the specified paths.)

Notice that the curve is not smooth at z5 in the right-hand example,
because z5 appears at both ends of that particular path. In order to get a
completely smooth curve that returns to its starting point, you can say ‘draw
z5 . . z4 . . z1 . . z3 . . z6 . . cycle’ instead:

(Figure 3f will be inserted here; too bad you can’t see it now.)

The word ‘cycle’ at the end of a path refers to the starting point of that path.
METAFONT believes that this bean-like shape is the nicest way to connect the
given points in the given cyclic order; but of course there are many decent curves
that satisfy the specifications, and you may have another one in mind. You can
obtain finer control by giving hints to the machine in various ways. For example,
the bean curve can be “pulled tighter” between z1 and z3 if you say

draw z5 . . z4 . . z1 . . tension 1.2 . . z3 . . z6 . . cycle;

the so-called tension between points is normally 1, and an increase to 1.2 yields

(Figure 3g will be inserted here; too bad you can’t see it now.)
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� An asymmetric effect can be obtained by increasing the tension only at point 1
but not at points 3 or 4; the shape

(Figure 3h will be inserted here; too bad you can’t see it now.)

comes from ‘draw z5 . . z4 . . tension 1 and 1.5 . . z1 . . tension 1.5 and 1 . . z3 . . z6 . .
cycle’. The effect of tension has been achieved in this example by moving two of the
anonymous control points closer to point 1.

It’s possible to control a curve in another way, by telling METAFONT
what direction to travel at some or all of the points. Such directions are given
inside curly braces; for example,

draw z5 . . z4{left} . . z1 . . z3 . . z6{left} . . cycle

says that the curve should be traveling leftward at points 4 and 6. The resulting
curve is perfectly straight from z6 to z5 to z4:

(Figure 3i will be inserted here; too bad you can’t see it now.)

We will see later that ‘left ’ is an abbreviation for the vector (−1, 0), which
stands for one unit of travel in a leftward direction. Any desired direction can
be specified by enclosing a vector in {. . .}’s; for example, the command ‘draw
z4 . . z2{z3−z4} . . z3’ will draw a curve from z4 to z2 to z3 such that the tangent
direction at z2 is parallel to the line z4 . . z3, because z3 − z4 is the vector that
represents travel from z4 to z3:

(Figure 3j will be inserted here; too bad you can’t see it now.)

The same result would have been obtained from a command such as ‘draw
z4 . . z2{10(z3− z4)} . . z3’, because the vector 10(z3− z4) has the same direction
as z3 − z4. METAFONT ignores the magnitudes of vectors when they are simply
being used to specify directions.
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curlxEXERCISE 3.1
What do you think will be the result of ‘draw z4 . . z2{z4 − z3} . . z3’, when
points z2, z3, z4 are the same as they have been in the last several examples?

xEXERCISE 3.2
Explain how to get METAFONT to draw the wiggly shape

(Figure 3k will be inserted here; too bad you can’t see it now.)

in which the curve aims directly at point 2 when it’s at point 6, but directly
away from point 2 when it’s at point 4. [Hint: No tension changes are needed;
it’s merely necessary to specify directions at z4 and z6.]

METAFONT allows you to change the shape of a curve at its endpoints
by specifying different amounts of “curl.” For example, the two commands

draw z4{curl 0} . . z2{z3− z4} . . {curl 0} z3;
draw z4{curl 2} . . z2{z3− z4} . . {curl 2} z3

give the respective curves

(Figure 3l will be inserted here; too bad you can’t see it now.)

which can be compared with the one shown earlier when no special curl was
requested. (The specification ‘curl 1’ is assumed at an endpoint if no explicit
curl or direction has been mentioned, just as ‘tension 1’ is implied between points
when no tension has been explicitly given.) Chapter 14 explains more about this.

It’s possible to get curved lines instead of straight lines even when only
two points are named, if a direction has been prescribed at one or both of the
points. For example,

draw z4{z2 − z4} . . {down} z6

asks METAFONT for a curve that starts traveling towards z2 but finishes in a
downward direction:

(Figure 3m will be inserted here; too bad you can’t see it now.)
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for
step
until
cm
dir
inflection point
...

� Here are some of the curves that hijklmnj draws between two points, when
it is asked to move outward from the left-hand point at an angle of 60◦, and

to approach the right-hand point at various angles:

(Figure 3aa will be inserted here; too bad you can’t see it now.)

This diagram was produced by the hijklmnj program

for d = 0 step 10 until 120:
draw (0, 0){dir 60} . . {dir−d}(6cm , 0); endfor;

the ‘dir’ function specifies a direction measured in degrees counterclockwise from a
horizontal rightward line, hence ‘dir−d’ gives a direction that is d◦ below the horizon.
The lowest curves in the illustration correspond to small values of d, and the highest
curves correspond to values near 120◦.

� A car that drives along the upper paths in the diagram above is always turning
to the right, but in the lower paths it comes to a point where it needs to turn to

the left in order to reach its destination from the specified direction. The place where a
path changes its curvature from right to left or vice versa is called an “inflection point.”
hijklmnj introduces inflection points when it seems better to change the curvature
than to make a sharp turn; indeed, when d is negative there is no way to avoid points
of inflection, and the curves for small positive d ought to be similar to those obtained
when d has small negative values. The program

for d = 0 step −10 until −90:
draw (0, 0){dir 60} . . {dir−d}(6cm , 0); endfor

shows what hijklmnj does when d is negative:

(Figure 3bb will be inserted here; too bad you can’t see it now.)

� It is sometimes desirable to avoid points of inflection, when d is positive, and
to require the curve to remain inside the triangle determined by its initial and

final directions. This can be achieved by using three dots instead of two when you
specify a curve: The program

for d = 0 step 10 until 120:
draw (0, 0){dir 60} . . . {dir−d}(6cm , 0); endfor
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generates the curves

(Figure 3cc will be inserted here; too bad you can’t see it now.)

which are the same as before except that inflection points do not occur for the small
values of d. The ‘. . .’ specification keeps the curve “bounded” inside the triangle that
is defined by the endpoints and directions; but it has no effect when there is no such
triangle. More precisely, suppose that the curve goes from z0 to z1; if there’s a point z
such that the initial direction is from z0 to z and the final direction is from z to z1,
then the curve specified by ‘. . .’ will stay entirely within the triangle whose corners are
z0, z1, and z. But if there’s no such triangle (e.g., if d < 0 or d > 120 in our example
program), both ‘. . .’ and ‘. .’ will produce the same curves.

In this chapter we have seen lots of different ways to get METAFONT
to draw curves. And there’s one more way, which subsumes all of the others.
If changes to tensions, curls, directions, and/or boundedness aren’t enough to
produce the sort of curve that a person wants, it’s always possible as a last
resort to specify all four of the points in the four-point method. For example,
the command

draw z4 . . controls z1 and z2 . . z6

will draw the following curve from z4 to z6:

(Figure 3n will be inserted here; too bad you can’t see it now.)

And so I think I have omitted nothing
that is necessary to an understanding of curved lines.

— RENÉ DESCARTES, La Géométrie (1637)

Rules or substitutes for the artist’s hand must necessarily be inadequate,
although, when set down by such men as
Dürer, Tory, Da Vinci, Serlio, and others,

they probably do establish canons of proportion and construction
which afford a sound basis upon which to present new expressions.

— FREDERIC W. GOUDY, Typologia (1940)
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pen
nib
bean
scaled
pickup
draw
pencircle
pt
xscaled
yscaled
rotated

Our examples so far have involved straight lines or curved lines that look as
if they were drawn by a felt-tip pen, where the nib of that pen was perfectly
round. A mathematical “line” has no thickness, so it’s invisible; but when we
plot circular dots at each point of an infinitely thin line, we get a visible line
that has constant thickness.

Lines of constant thickness have their uses, but METAFONT also provides
several other kinds of scrivener’s tools, and we shall take a look at some of them
in this chapter. We’ll see not only that the sizes and shapes of pen nibs can be
varied, but also that characters can be built up in such a way that the outlines
of each stroke are precisely controlled.

First let’s consider the simplest extensions of what we have seen before.
The letter ‘�’ of Chapter 2 and the kidney-bean ‘ � ’ of Chapter 3 were drawn
with circular pen nibs of diameter 0.4 pt, where ‘pt’ stands for a printer’s point;*
0.4 pt is the standard thickness of a ruled line ‘ ’ drawn by TEX. Such a
penpoint can be specified by telling METAFONT to

pickup pencircle scaled 0.4pt ;

METAFONT will use the pen it has most recently picked up whenever it is asked
to ‘draw’ anything. A pencircle is a circular pen whose diameter is the width
of one pixel. Scaling it by 0.4pt will change it to the size that corresponds
to 0.4 pt in the output, because pt is the number of pixels in 1 pt. If the key
points (z1, z2, z3, z4, z5, z6) of Chapters 2 and 3 have already been defined, the
METAFONT commands

pickup pencircle scaled 0.8pt ;
draw z5 . . z4 . . z1 . . z3 . . z6 . . cycle

will produce a bean shape twice as thick as before: ‘ � ’ instead of ‘ � ’.
More interesting effects arise when we use non-circular pen nibs. For

example, the command

pickup pencircle xscaled 0.8pt yscaled 0.2pt

picks up a pen whose tip has the shape of an ellipse, 0.8 pt wide and 0.2 pt tall;
magnified 10 times, it looks like this: ‘� ’. (The operation of “xscaling” mul-
tiplies x coordinates by a specified amount but leaves y coordinates unchanged,
and the operation of “yscaling” is similar.) Using such a pen, the ‘ � ’ becomes
‘ � ’, and ‘�’ becomes ‘�’. Furthermore,

pickup pencircle xscaled 0.8pt yscaled 0.2pt rotated 30

takes that ellipse and rotates it 30◦ counterclockwise, obtaining the nib ‘�’; this
changes ‘ � ’ into ‘ � ’ and ‘�’ into ‘�’. An enlarged view of the bean shape shows

* 1 in = 2.54 cm = 72.27 pt exactly, as explained in The TEXbook.
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more clearly what is going on:

(Figure 4a will be inserted here; too bad you can’t see it now.)

The right-hand example was obtained by eliminating the clause ‘yscaled 0.2pt ’;
this makes the pen almost razor thin, only one pixel tall before rotation.

xEXERCISE 4.1
Describe the pen shapes defined by (a) pencircle xscaled 0.2pt yscaled 0.8pt ;
(b) pencircle scaled 0.8pt rotated 30; (c) pencircle xscaled .25 scaled 0.8pt .

xEXERCISE 4.2
We’ve seen many examples of ‘draw’ used with two or more points. What do
you think METAFONT will do if you ask it to perform the following commands?

draw z1; draw z2; draw z3; draw z4; draw z5; draw z6.

Let’s turn now to the design of a real letter that has already appeared

(0,h) (w,h)

(Figure 4b will be inserted here;
too bad you can’t see it now.)

(0,0) (w,0)

many times in this manual, namely the ‘T ’ of ‘METAFONT’. All seven of the
distinct letters in ‘METAFONT’ will be used to illustrate various ideas as we get
into the details of the language; we might as well start with ‘ T ’, because it
occurs twice, and (especially) because it’s the sim-
plest. An enlarged version of this letter is shown at
the right of this paragraph, including the locations
of its four key points (z1, z2, z3, z4) and its bounding
box. Typesetting systems like TEX are based on the
assumption that each character fits in a rectangular
box; we shall discuss boxes in detail later, but for
now we will be content simply to know that such
boundaries do exist.* Numbers h and w will have
been computed so that the corners of the box are at
positions (0, 0), (0, h), (w, 0), and (w, h) as shown.

Each of the letters in ‘METAFONT’ is drawn
with a pen whose nib is an unrotated ellipse, 90% as tall as it is wide. In the
10-point size, which is used for the main text of this book, the pen is 2/3 pt wide,

* Strictly speaking, the bounding box doesn’t actually have to “bound” the black pixels
of a character; for example, the ‘q ’ protrudes slightly below the baseline at point 4,
and italic letters frequently extend rather far to the right of their boxes. However,
TEX positions all characters by lumping boxes together as if they were pieces of metal
type that contain all of the ink.
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so it has been specified by the command

pickup pencircle scaled 2
3pt yscaled 9

10

or something equivalent to this.
We shall assume that a special value ‘o’ has been computed so that the

bottom of the vertical stroke in ‘T ’ should descend exactly o pixels below the
baseline; this is called the amount of “overshoot.” Given h, w, and o, it is a
simple matter to define the four key points and to draw the ‘ T ’:

top lft z1 = (0, h); top rt z2 = (w, h);
top z3 = (.5w, h); bot z4 = (.5w,−o);
draw z1 . . z2; draw z3 . . z4.

� Sometimes it is easier and/or clearer to define the x and y coordinates sepa-
rately. For example, the key points of the ‘j ’ could also be specified thus:

lft x1 = 0; w − x2 = x1; x3 = x4 = .5w;
top y1 = h; bot y4 = −o; y1 = y2 = y3.

The equation w − x2 = x1 expresses the fact that x2 is just as far from the right edge
of the bounding box as x1 is from the left edge.

� What exactly does ‘top’ mean in a hijklmnj equation? If the currently-
picked-up pen extends l pixels to the left of its center, r pixels to the right,

t pixels upward and b downward, then

top z = z + (0, t), bot z = z − (0, b), lft z = z − (l, 0), rt z = z + (r, 0),

when z is a pair of coordinates. But—as the previous paragraph shows, if you study it
carefully—we also have

top y = y + t, bot y = y − b, lft x = x− l, rt x = x + r,

when x and y are single values instead of coordinate pairs. You shouldn’t apply ‘top’
or ‘bot ’ to x coordinates, nor ‘lft ’ or ‘rt ’ to y coordinates.

� xEXERCISE 4.3
True or false: top bot z = z, whenever z is a pair of coordinates.

� xEXERCISE 4.4
An enlarged picture of hijklmnj’s (0,h) (w,h)

(Figure 4c will be inserted here; too bad you
can’t see it now.)

(0,0) (w,0)

‘h’ shows that it has five key points. Assum-
ing that special values ss and ygap have been
precomputed and that the equations

x1 = ss = w − x5; y3 − y1 = ygap

have already been given, what further equa-
tions and ‘draw’ commands will complete the
specification of this letter? (The value of w
will be greater for ‘h ’ than it was for ‘j ’; it
stands for the pixel width of whatever char-
acter is currently being drawn.)
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METAFONT’s ability to ‘draw’ allows it to produce character shapes that
are satisfactory for many applications, but the shapes are inherently limited by
the fact that the simulated pen nib must stay the same through an entire stroke.
Human penpushers are able to get richer effects by using different amounts of
pressure and/or by rotating the pen as they draw.

We can obtain finer control over the characters we produce if we specify
their outlines, instead of working only with key points that lie somewhere in the
middle. In fact, METAFONT works internally with outlines, and the computer
finds it much easier to fill a region with solid black than to figure out what pixels
are blackened by a moving pen. There’s a ‘fill’ command that does region filling;
for example, the solid bean shape

(Figure 4d will be inserted here; too bad you can’t see it now.)

can be obtained from our six famous example points by giving the command

fill z5 . . z4 . . z1 . . z3 . . z6 . . cycle.

The filled region is essentially what would be cut out by an infinitely sharp knife
blade if it traced over the given curve while cutting a piece of thin film. A draw
command needs to add thickness to its curve, because the result would otherwise
be invisible; but a fill command adds no thickness.

The curve in a fill command must end with ‘cycle’, because an entire
region must be filled. It wouldn’t make sense to say, e.g., ‘fill z1 . . z2’. The cycle
being filled shouldn’t cross itself, either; METAFONT would have lots of trouble
trying to figure out how to obey a command like ‘fill z1 . . z6 . . z3 . . z4 . . cycle’.

� xEXERCISE 4.5
Chapter 3 discusses the curve z5 . . z4 . . z1 . . z3 . . z6 . . z5, which isn’t smooth

at z5. Since this curve doesn’t end with ‘cycle’, you can’t use it in a fill command. But
it does define a closed region. How can hijklmnj be instructed to fill that region?

The black triangle ‘x’ that appears in the statement of exercises in this
book was drawn with the command

fill z1 - - z2 - - z3 - - cycle

after appropriate corner points z1, z2, and z3 had been specified. In this case the
outline of the region to be filled was specified in terms of the symbol ‘- -’ instead
of ‘. .’; this is a convention we haven’t discussed before. Each ‘- -’ introduces
a straight line segment, which is independent of the rest of the path that it
belongs to; thus it is quite different from ‘. .’, which specifies a possibly curved
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line segment that connects smoothly with neighboring points and lines of a path.
In this case ‘- -’ was used so that the triangular region would have straight edges
and sharp corners. We might say informally that ‘. .’ means “Connect the points
with a nice curve,” while ‘- -’ means “Connect the points with a straight line.”

� The corner points z1, z2, and z3 were defined care- (0,h) (w,h)

(Figure 4e will be inserted
here; too bad you can’t see
it now.)

(0,0) (w,0)

fully so that the triangle would be equilateral, i.e.,
so that all three of its sides would have the same length.
Since an equilateral triangle has 60◦ angles, the following
equations did the job:

x1 = x2 = w − x3 = s;
y3 = .5h;
z1 − z2 = (z3 − z2) rotated 60.

Here w and h represent the character’s width and height,
and s is the distance of the triangle from the left and right
edges of the type.

� The fill command has a companion called unfill, which changes pixels from
black to white inside a given region. For example, the solid bean shape on the

previous page can be changed to

(Figure 4f will be inserted here; too bad you can’t see it now.)

if we say also ‘unfill 1
4 [z4, z2] . . 3

4 [z4, z2] . . cycle; unfill 1
4 [z6, z2] . . 3

4 [z6, z2] . . cycle’.
This example shows, incidentally, that hijklmnj converts a two-point specification
like ‘z1 . . z2 . . cycle’ into a more-or-less circular path, even though two points by
themselves define only a straight line.

� xEXERCISE 4.6
Let z0 be the point (.8[x1, x2], .5[y1, y4]), and introduce six new points by

letting z′k = .2[zk, z0] for k = 1, 2, . . . , 6. Explain how to obtain the shape

(Figure 4g will be inserted here; too bad you can’t see it now.)

in which the interior region is defined by z′1 . . . z′6 instead of by z1 . . . z6.
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The ability to fill between outlines makes it possible to pretend that we
have broad-edge pens that change in direction and pressure as they glide over
the paper, if we consider the separate paths traced out by the pen’s left edge
and right edge. For example, the stroke

(Figure 4h will be inserted here; too bad you can’t see it now.)

can be regarded as drawn by a pen that starts at the left, inclined at a 30◦ angle;
as the pen moves, it turns gradually until its edge is strictly vertical by the time
it reaches the right end. The pen motion was horizontal at positions 2 and 3.
This stroke was actually obtained by the command

fill z1l . . z2l{right} . . {right} z3l

- - z3r{left} . . {left} z2r . . z1r

- - cycle;

i.e., METAFONT was asked to fill a region bounded by a “left path” from z1l to
z2l to z3l, followed by a straight line to z3r, then a reversed “right path” from
z3r to z2r to z1r, and finally a straight line back to the starting point z1l.

Key positions of the “pen” are represented in this example by sets of
three points, like (z1l, z1, z1r), which stand for the pen’s left edge, its midpoint,
and its right edge. The midpoint doesn’t actually occur in the specification of
the outline, but we’ll see examples of its usefulness. The relationships between
such triples of points are established by a ‘penpos ’ command, which states the
breadth of the pen and its angle of inclination at a particular position. For
example, positions 1, 2, and 3 in the stroke above were established by saying

penpos1(1.2pt , 30); penpos2(1.0pt , 45); penpos3(0.8pt , 90);

this made the pen 1.2 pt broad and tipped 30◦ with respect to the horizontal at
position 1, etc. In general the idea is to specify ‘penposk(b, d)’, where k is the
position number or position name, b is the breadth (in pixels), and d is the angle
(in degrees). Pen angles are measured counterclockwise from the horizontal.
Thus, an angle of 0 makes the right edge of the pen exactly b pixels to the right
of the left edge; an angle of 90 makes the right pen edge exactly b pixels above
the left; an angle of −90 makes it exactly b pixels below. An angle of 45 makes
the right edge b/

√
2 pixels above and b/

√
2 pixels to the right of the left edge;

an angle of −45 makes it b/
√

2 pixels below and b/
√

2 to the right. When the
pen angle is between 90◦ and 180◦, the “right” edge actually lies to the left of
the “left” edge. In terms of compass directions on a conventional map, an angle
of 0◦ points due East, while 90◦ points North and −90◦ points South. The angle
corresponding to Southwest is −135◦, also known as +225◦.

xEXERCISE 4.7
What angle corresponds to the direction North-Northwest?
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xEXERCISE 4.8
What are the pen angles at positions 1, 2, 3, and 4 in

(Figure 4i will be inserted
here; too bad you can’t see
it now.)

the circular shape shown here? [Hint: Each angle is a
multiple of 30◦. Note that z3r lies to the left of z3l.]

xEXERCISE 4.9
What are the coordinates of z1l and z1r after the com-
mand ‘penpos1(10,−90)’, if z1 = (25, 25)?

� The statement ‘penposk(b, d)’ is simply an abbreviation for two equations,
‘zk = 1

2 [zkl, zkr]’ and ‘zkr = zkl + (b, 0) rotated d ’. You might want to use
other equations to define the relationship between zkl, zk, and zkr, instead of giving a
penpos command, if an alternative formulation turns out to be more convenient.

After ‘penpos ’ has specified the relations between three points, we still
don’t know exactly where they are; we only know their positions relative to each
other. Another equation or two is needed in order to fix the horizontal and
vertical locations of each triple. For example, the three penpos commands that
led to the pen stroke on the previous page were accompanied by the equations

z1 = (0, 2pt ); z2 = (4pt , 0); x3 = 9pt ; y3l = y2r;

these made the information complete. There should be one x equation and one
y equation for each position; or you can use a z equation, which defines both x
and y simultaneously.

It’s a nuisance to write long-winded fill commands when broad-edge
pens are being simulated in this way, so METAFONT provides a convenient ab-
breviation: You can write simply

penstroke z1e . . z2e{right} . . {right}z3e

instead of the command ‘fill z1l . . z2l{right} . . {right} z3l - - z3r{left} . .
{left} z2r . . z1r - - cycle’ that was stated earlier. The letter ‘e’ stands for the
pen’s edge. A penstroke command fills the region ‘p.l - - reverse p.r - - cycle’,
where p.l and p.r are the left and right paths formed by changing each ‘e’ into
‘l’ or ‘r’, respectively.

� The penstroke abbreviation can be used to draw cyclic paths as well as
ordinary ones. For example, the circle in exercise 4.8 was created by saying

simply ‘penstroke z1e . . z2e . . z3e . . z4e . . cycle’. This type of penstroke essentially
expands into

fill z1r . . z2r . . z3r . . z4r . . cycle;
unfill z1l . . z2l . . z3l . . z4l . . cycle;

or the operations ‘fill’ and ‘unfill’ are reversed, if points (z1r, z2r, z3r, z4r) are on the
inside and (z1l, z2l, z3l, z4l) are on the outside.

� xEXERCISE 4.10
The circle of exercise 4.8 was actually drawn with a slightly more complicated

penstroke command than just claimed: The edges of the curve were forced to be
vertical at positions 1 and 3, horizontal at 2 and 4. How did the author do this?
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Here’s an example of how this new sort of pen can be used to draw a sans-

(0,h) (w,h)

(Figure 4j will be
inserted here; too
bad you can’t see it
now.)

(0,0) (w,0)

serif letter ‘�’. As usual, we assume that two variables, h and w, have been set up
to give the height and width of the character in pixels. We
shall also assume that there’s a stem parameter, which
specifies the nominal pen breadth. The breadth decreases
to .9stem in the middle of the stroke, and the pen angle
changes from 15◦ to 10◦:

penpos1(stem , 15); penpos2(.9stem , 12);
penpos3(stem , 10); x1 = x2 = x3 = .5w;
y1 = h; y2 = .55h; y3 = 0;
x2l := 1

6 [x2l, x2];
penstroke z1e . . z2e{down} . . z3e.

Setting x1 = x2 = x3 = .5w centers the stroke; setting
y1 = h and y3 = 0 makes it sit in the type box, protruding
just slightly at the top and bottom.

The second-last line of this program is something that we haven’t seen
before: It resets x2l to a value 1/6 of the way towards the center of the pen,
thereby making the stroke taper a bit at the left. The ‘:=’ operation is called an
assignment; we shall study the differences between ‘:=’ and ‘=’ in Chapter 10.

� It is important to note that these simulated pens have a serious limitation
compared to the way a real calligrapher’s pen works: The left and right edges

of a penpos -made pen must never cross, hence it is necessary to turn the pen when
going around a curve. Consider, for example, the following two curves:

(Figure 4k will be inserted here; too bad you can’t see it now.)

The left-hand circle was drawn with a broad-edge pen of fixed breadth, held at a fixed
angle; consequently the left edge of the pen was responsible for the outer boundary on
the left, but the inner boundary on the right. (This curve was produced by saying
‘pickup pencircle xscaled 0.8pt rotated 25; draw z1 . . z2 . . cycle’.) The right-hand
shape was produced by ‘penpos1(0.8pt , 25); penpos2(0.8pt , 25); penstroke z1e . . z2e . .
cycle’; important chunks of the shape are missing at the crossover points, because they
don’t lie on either of the circles z1l . . z2l . . cycle or z1r . . z2r . . cycle.

� To conclude this chapter we shall improve the hex character � of Chapter 2,
which is too dark in the middle because it has been drawn with a pen of

uniform thickness. The main trouble with unvarying pens is that they tend to produce
black blotches where two strokes meet, unless the pens are comparatively thin or unless
the strokes are nearly perpendicular. We want to thin out the lines at the center just
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enough to cure the darkness problem, without destroying the illusion that the lines still
seem (at first glance) to have uniform thickness.

� It isn’t difficult to produce ‘���������� ’ instead of

(0,h) (w,h)

(Figure 4l will be inserted here;
too bad you can’t see it now.)

(0,0) (w,0)

‘���������� ’ when we work with dynamic pens:

pickup pencircle scaled b;
top z1 = (0, h); top z2 = (.5w, h); top z3 = (w, h);
bot z4 = (0, 0); bot z5 = (.5w, 0); bot z6 = (w, 0); draw z2 . . z5;
z1′ = .25[z1, z6]; z6′ = .75[z1, z6]; z3′ = .25[z3, z4]; z4′ = .75[z3, z4];
theta 1 := angle(z6 − z1) + 90;
theta 3 := angle(z4 − z3) + 90;
penpos1′(b, theta 1); penpos6′(b, theta 1);
penpos3′(b, theta 3); penpos4′(b, theta 3);
penpos7(.6b, theta 1); penpos8(.6b, theta 3);
z7 = z8 = .5[z1, z6];
draw z1 . . z1′ ; draw z6′ . . z6;
draw z3 . . z3′ ; draw z4′ . . z4;
penstroke z1′e{z6′ − z1′} . . z7e . . {z6′ − z1′}z6′e;
penstroke z3′e{z4′ − z3′} . . z8e . . {z4′ − z3′}z4′e.

Here b is the diameter of the pen at the terminal points; ‘angle’ computes the direction
angle of a given vector. Adding 90◦ to a direction angle gives a perpendicular direction
(see the definitions of theta 1 and theta 3). It isn’t necessary to take anything off of the
vertical stroke z2 . . z5, because the two diagonal strokes fill more than the width of
the vertical stroke at the point where they intersect.

� xEXERCISE 4.11
Modify the hex character so that its ends are

(0,h) (w,h)

(Figure 4m will be inserted
here; too bad you can’t see it
now.)

(0,0) (w,0)

cut sharply and confined to the bounding box, as shown.

It is very important that the nib be cut “sharp,”
and as often as its edge wears blunt it must be resharpened.

It is impossible to make “clean cut” strokes with a blunt pen.

— EDWARD JOHNSTON, Writing & Illuminating, & Lettering (1906)

I might compare the high-speed computing machine
to a remarkably large and awkward pencil

which takes a long time to sharpen and
cannot be held in the fingers in the usual manner so that it

gives the illusion of responding to my thoughts,
but is fitted with a rather delicate engine

and will write like a mad thing
provided I am willing to let it dictate pretty much

the subjects on which it writes.

— R. H. BRUCK, Computational Aspects of Certain
Combinatorial Problems (1956)
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It’s high time now for you to stop reading and to start playing with the computer,
since METAFONT is an interactive system that is best learned by trial and error.
(In fact, one of the nicest things about computer graphics is that errors are often
more interesting and more fun than “successes.”)

You probably will have to ask somebody how to deal with the idiosyn-
crasies of your particular version of the system, even though METAFONT itself
works in essentially the same way on all machines; different computer terminals
and different hardcopy devices make it necessary to have somewhat different
interfaces. In this chapter we shall assume that you have a computer terminal
with a reasonably high-resolution graphics display; that you have access to a
(possibly low-resolution) output device; and that you can rather easily get that
device to work with newly created fonts.

OK, are you ready to run the program? First you need to log in, of
course; then start METAFONT, which is usually called mf for short. Once you’ve
figured out how to do it, you’ll be welcomed by a message something like

This is METAFONT, Version 2.0 (preloaded base=plain 89.11.8)
**

The ‘**’ is METAFONT’s way of asking you for an input file name.
Now type ‘\relax’—that’s backslash, r, e, l, a, x—and hit 〈return〉

(or whatever stands for “end-of-line” on your keyboard). METAFONT is all geared
up for action, ready to make a big font; but you’re saying that it’s all right to take
things easy, since this is going to be a real simple run. The backslash means that
METAFONT should not read a file, it should get instructions from the keyboard;
the ‘relax’ means “do nothing.”

The machine will respond by typing a single asterisk: ‘*’. This means
it’s ready to accept instructions (not the name of a file). Type the following,
just for fun:

drawdot (35,70); showit;

and 〈return〉—don’t forget to type the semicolons along with the other stuff. A
more-or-less circular dot should now appear on your screen! And you should also
be prompted with another asterisk. Type

drawdot (65,70); showit;

and 〈return〉, to get another dot. (Henceforth we won’t keep mentioning the
necessity of 〈return〉ing after each line of keyboard input.) Finally, type

draw (20,40)..(50,25)..(80,40); showit; shipit; end.

This draws a curve through three given points, displays the result, ships it to an
output file, and stops. METAFONT should respond with ‘[0]’, meaning that it
has shipped out a character whose number is zero, in the “font” just made; and
it should also tell you that it has created an output file called ‘mfput.2602gf’.
(The name mfput is used when you haven’t specified any better name in response



32 Chapter 5: Running 89:;<=>:

**
gf
generic font
GFtoDVI
dvi
mode setup

to the ** at the beginning. The suffix 2602gf stands for “generic font at 2602
pixels per inch.” The data in mfput.2602gf can be converted into fonts suitable
for a wide assortment of typographical output devices; since it doesn’t match
the font file conventions of any name-brand manufacturer, we call it generic.)

This particular file won’t make a very interesting font, because it con-
tains only one character, and because it probably doesn’t have the correct res-
olution for your output device. However, it does have the right resolution for
hardcopy proofs of characters; your next step should therefore be to convert the
data of mfput.2602gf into a picture, suitable for framing. There should be a
program called GFtoDVI on your computer. Apply it to mfput.2602gf, thereby
obtaining a file called mfput.dvi that can be printed. Your friendly local com-
puter hackers will tell you how to run GFtoDVI and how to print mfput.dvi; then
you’ll have a marvelous souvenir of your very first encounter with METAFONT.

Once you have made a complete test run as just described, you will know
how to get through the whole cycle, so you’ll be ready to tackle a more complex
project. Our next experiment will therefore be to work from a file, instead of
typing the input online.

Use your favorite text editor to create a file called io.mf that contains
the following 23 lines of text (no more, no less):

1 mode_setup;
2 em#:=10pt#; cap#:=7pt#;
3 thin#:=1/3pt#; thick#:=5/6pt#;
4 o#:=1/5pt#;
5 define_pixels(em,cap);
6 define_blacker_pixels(thin,thick);
7 define_corrected_pixels(o);
8 curve_sidebar=round 1/18em;
9 beginchar("O",0.8em#,cap#,0); "The letter O";

10 penpos1(thick,10); penpos2(.1[thin,thick],90-10);
11 penpos3(thick,180+10); penpos4(thin,270-10);
12 x1l=w-x3l=curve_sidebar; x2=x4=.5w;
13 y1=.49h; y2l=-o; y3=.51h; y4l=h+o;
14 penstroke z1e{down}..z2e{right}
15 ..z3e{up}..z4e{left}..cycle;
16 penlabels(1,2,3,4); endchar;
17 def test_I(expr code,trial_stem,trial_width) =
18 stem#:=trial_stem*pt#; define_blacker_pixels(stem);
19 beginchar(code,trial_width*em#,cap#,0); "The letter I";
20 penpos1(stem,15); penpos2(stem,12); penpos3(stem,10);
21 x1=x2=x3=.5w; y1=h; y2=.55h; y3=0; x2l:=1/6[x2l,x2];
22 penstroke z1e..z2e{down}..z3e;
23 penlabels(1,2,3); endchar; enddef;

(But don’t type the numbers at the left of these lines; they’re only for reference.)
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This example file is dedicated to Io, the Greek goddess of input and
output. It’s a trifle long, but you’ll be able to get worthwhile experience by
typing it; so go ahead and type it now. For your own good. And think about
what you’re typing, as you go; the example introduces several important features
of METAFONT that you can learn as you’re creating the file.

Here’s a brief explanation of what you’ve just typed: Line 1 contains a
command that usually appears near the beginning of every METAFONT file; it
tells the computer to get ready to work in whatever “mode” is currently desired.
(A file like io.mf can be used to generate proofsheets as well as to make fonts
for a variety of devices at a variety of magnifications, and ‘mode setup’ is what
adapts METAFONT to the task at hand.) Lines 2–8 define parameters that will
be used to draw the letters in the font. Lines 9–16 give a complete program for
the letter ‘O’; and lines 17–23 give a program that will draw the letter ‘I’ in a
number of related ways.

It all looks pretty frightening at first glance, but a closer look shows
that Io is not so mysterious once we penetrate her disguise. Let’s spend a few
minutes studying the file in more detail.

Lines 2–4 define dimensions that are independent of the mode; the ‘#’
signs are meant to imply “sharp” or “true” units of measure, which remain the
same whether we are making a font at high or low resolution. For example, one
‘pt#’ is a true printer’s point, one 72.27th of an inch. This is quite different from
the ‘pt ’ we have discussed in previous chapters, because ‘pt ’ is the number of
pixels that happen to correspond to a printer’s point when the current resolu-
tion is taken into account. The value of ‘pt#’ never changes, but mode setup
establishes the appropriate value of ‘pt ’.

The assignments ‘em#:=10pt#’ and ‘cap#:=7pt#’ in line 2 mean that the
Io font has two parameters, called em and cap , whose mode-independent values
are 10 and 7 points, respectively. The statement ‘define_pixels(em,cap)’ on
line 5 converts these values into pixel units. For example, if we are working at
the comparatively low resolution of 3 pixels per pt, the values of em and cap
after the computer has performed the instructions on line 5 will be em = 30
and cap = 21. (We will see later that the widths of characters in this font are
expressed in terms of ems, and that cap is the height of the capital letters. A
change to line 2 will therefore affect the widths and/or heights of all the letters.)

Similarly, the Io font has parameters called thin and thick , defined on
line 3 and converted to pixel units in line 6. These are used to control the breadth
of a simulated pen when it draws the letter O. Experience has shown that META-
FONT produces better results on certain output devices if pixel-oriented pens are
made slightly broader than the true dimensions would imply, because black pixels
sometimes tend to “burn off” in the process of printing. The command on line 6,
‘define_blacker_pixels’, adds a correction based on the device for which the
font is being prepared. For example, if the resolution is 3 pixels per point, the
value of thin when converted from true units to pixels by define pixels would
be 1, but define blacker pixels might set thin to a value closer to 2.



34 Chapter 5: Running 89:;<=>:

o
overshoot
sidebar
rounding
plain
TeX

The ‘o’ parameter on line 4 represents the amount by which curves will
overshoot their boundaries. This is converted to pixels in yet another way on
line 7, so as to avoid yet another problem that arises in low-resolution printing.
The author apologizes for letting such real-world considerations intrude into a
textbook example; let’s not get bogged down in fussy details now, since these
refinements will be explained in Chapter 11 after we have mastered the basics.

For now, the important point is simply that a typeface design usually in-
volves parameters that represent physical lengths. The true, “sharped” forms of
these parameters need to be converted to “unsharped” pixel-oriented quantities,
and best results are obtained when such conversions are done carefully. After
METAFONT has obeyed line 7 of the example, the pixel-oriented parameters em ,
cap , thin , thick , and o are ready to be used as we draw letters of the font.

Line 8 defines a quantity called curve sidebar that will measure the
distance of the left and right edges of the ‘O’ from the bounding box. It is com-
puted by rounding 1

18em to the nearest integer number of pixels. For example,
if em = 30 then 30

18 = 5
3 yields the rounded value curve sidebar = 2; there will

be two all-white columns of pixels at the left and right of the ‘O’, when we work
at this particular resolution.

Before we go any further, we ought to discuss the strange collection of
words and pseudo-words in the file io.mf. Which of the terms ‘mode_setup’, ‘em’,
‘curve_sidebar’ and so forth are part of the METAFONT language, and which of
them are made up specifically for the Io example? Well, it turns out that almost
nothing in this example is written in the pure METAFONT language that the
computer understands! METAFONT is really a low-level language that has been
designed to allow easy adaptation to many different styles of programming, and
io.mf illustrates just one of countless ways to use it. Most of the terms in io.mf
are conventions of “plain METAFONT,” which is a collection of subroutines found
in Appendix B. METAFONT’s primitive capabilities are not meant to be used
directly, because that would force a particular style on all users. A “base file” is
generally loaded into the computer at the beginning of a run, so that a standard
set of conventions is readily available. METAFONT’s welcoming message, quoted
at the beginning of this chapter, says ‘preloaded base=plain’; it means that
the primitive METAFONT language has been extended to include the features
of the plain base file. This book is not only about METAFONT; it also explains
how to use the conventions of METAFONT’s plain base. Similarly, The TEXbook
describes a standard extension of TEX called “plain TEX format”; the “plain”
extensions of TEX and METAFONT are completely analogous to each other.

The notions of mode setup, define pixels, beginchar, penpos , and
many other things found in io.mf are aspects of plain METAFONT but they are
not hardwired into METAFONT itself. Appendix B defines all of these things, as
well as the relations between “sharped” and “unsharped” variables. Even the
fact that z1 stands for (x1, y1) is defined in Appendix B; METAFONT does not
have this built in. You are free to define even fancier bases as you gain more
experience, but the plain base is a suitable starting point for a novice.
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� If you have important applications that make use of a different base file, it’s
possible to create a version of hijklmnj that has any desired base preloaded.

Such a program is generally called by a special name, since the nickname ‘mf’ is reserved
for the version that includes the standard plain base assumed in this book. For example,
the author has made a special version called ‘cmmf’ just for the Computer Modern
typefaces he has been developing, so that the Computer Modern base file does not
have to be loaded each time he makes a new experiment.

� There’s a simple way to change the base file from the one that has been
preloaded: If the first character you type in response to ‘**’ is an ampersand

( ‘&’ ), hijklmnj will replace its memory with a specified base file before proceeding.
If, for example, there is a base file called ‘cm.base’ but not a special program called
‘cmmf’, you can substitute the Computer Modern base for the plain base in mf by
typing ‘&cm’ at the very beginning of a run. If you are working with a program that
doesn’t have the plain base preloaded, the first experiment in this chapter won’t work as
described, but you can do it by starting with ‘&plain \relax’ instead of just ‘\relax’.
These conventions are exactly the same as those of TEX.

Our Ionian example uses the following words that are not part of plain
METAFONT: em , cap , thin , thick , o , curve sidebar , test I , code , trial stem ,
trial width , and stem . If you change these to some other words or symbols—for
example, if you replace ‘thin’ and ‘thick’ by ‘t’ and ‘T’ respectively, in lines
3, 6, 10, and 11—the results will be unchanged, unless your substitutions just
happen to clash with something that plain METAFONT has already preëmpted.
In general, the best policy is to choose descriptive terms for the quantities in
your programs, since they are not likely to conflict with reserved pseudo-words
like penpos and endchar.

We have already noted that lines 9–16 of the file represent a program
for the letter ‘O’. The main part of this program, in lines 10–15, uses the ideas
of Chapter 4, but we haven’t seen the stuff in lines 9 and 16 before. Plain
METAFONT makes it convenient to define letters by starting each one with

beginchar(〈code〉, 〈width〉, 〈height〉, 〈depth〉);

here 〈code〉 is either a quoted single character like "O" or a number that rep-
resents the character’s position in the final font. The other three quantities
〈width〉, 〈height〉, and 〈depth〉 say how big the bounding box is, so that typeset-
ting systems like TEX will be able to use the character. These three dimensions
must be given in device-independent units, i.e., in “sharped” form.

xEXERCISE 5.1
What are the height and width of the bounding box described in the beginchar
command on line 9 of io.mf, given the parameter values defined on line 2? Give
your answer in terms of printer’s points.

Each beginchar operation assigns values to special variables called w,
h, and d, which represent the respective width, height, and depth of the current
character’s bounding box, rounded to the nearest integer number of pixels. Our
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example file uses w and h to help establish the locations of several pen positions
(see lines 12, 13, and 21 of io.mf).

xEXERCISE 5.2
Continuing the previous exercise, what will be the values of w and h if there are
exactly 3.6 pixels per point?

There’s a quoted phrase "The letter O" at the end of line 9; this is
simply a title that will be used in printouts.

The ‘endchar’ on line 16 finishes the character that was begun on line 9,
by writing it to an output file and possibly displaying it on your screen. We will
want to see the positions of the control points z1, z2, z3, and z4 that are used in its
design, together with the auxiliary points (z1l, z2l, z3l, z4l) and (z1r, z2r, z3r, z4r)
that come with the penpos conventions; the statement ‘penlabels(1,2,3,4)’
takes care of labeling these points on the proofsheets.

So much for the letter O. Lines 17–23 are analogous to what we’ve seen
before, except that there’s a new wrinkle: They contain a little program enclosed
by ‘def...enddef’, which means that a subroutine is being defined. In other
words, those lines set up a whole bunch of METAFONT commands that we will
want to execute several times with minor variations. The subroutine is called
test I and it has three parameters called code , trial stem , and trial width (see
line 17). The idea is that we’ll want to draw several different versions of an
‘I’, having different stem widths and character widths; but we want to type the
program only once. Line 18 defines stem# and stem , given a value of trial stem ;
and lines 19–23 complete the program for the letter I (copying it from Chapter 4).

Oops—we’ve been talking much too long about io.mf. It’s time to stop
rambling and to begin Experiment 2 in earnest, because it will be much more
fun to see what the computer actually does with that file.

Are you brave enough to try Experiment 2? Sure. Get METAFONT
going again, but this time when the machine says ‘**’ you should say ‘io’, since
that’s the name of the file you have prepared so laboriously. (The file could also
be specified by giving its full name ‘io.mf’, but METAFONT automatically adds
‘.mf’ when no suffix has been given explicitly.)

If all goes well, the computer should now flash its lights a bit and—
presto—a big ‘�’ should be drawn on your screen. But if your luck is as good
as the author’s, something will probably go wrong the first time, most likely
because of a typographic error in the file. A METAFONT program contains lots
of data with comparatively little redundancy, so a single error can make a drastic
change in the meaning. Check that you’ve typed everything perfectly: Be sure
to notice the difference between the letter ‘l’ and the numeral ‘1’ (especially in
line 12, where it says ‘x1l’, not ‘x11 or ‘xll’); be sure to distinguish between
the letter ‘O’ and the numeral ‘0’ (especially in line 9); be sure to type the
“underline” characters in words like ‘mode_setup’. We’ll see later that META-
FONT can recover gracefully from most errors, but your job for now is to make
sure that you’ve got io.mf correct.
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Once you have a working file, the computer will draw you an ‘�’ and it
will also say something like this:

(io.mf
The letter O [79])
*

What does this mean? Well, ‘(io.mf’ means that it has started to read your
file, and ‘The letter O’ was printed when the title was found in line 9. Then
when METAFONT got to the endchar on line 16, it said ‘[79]’ to tell you that it
had just output character number 79. (This is the ASCII code for the letter O;
Appendix C lists all of these codes, if you need to know them.) The ‘)’ after
‘[79]’ means that METAFONT subsequently finished reading the file, and the ‘*’
means that it wants another instruction.

Hmmm. The file contains programs for both I and O; why did we get
only an O? Answer: Because lines 17–23 simply define the subroutine test I ; they
don’t actually do anything with that subroutine. We need to activate test I if
we’re going to see what it does. So let’s type

test_I("I",5/6,1/3);

this invokes the subroutine, with code = "I", trial stem = 5
6 , and trial width =

1
3 . The computer will now draw an I corresponding to these values,* and it will
prompt us for another command.

It’s time to type ‘end’ now, after which METAFONT should tell us that it
has completed this run and made an output file called ‘io.2602gf’. Running this
file through GFtoDVI as in Experiment 1 will produce two proofsheets, showing
the ‘�’ and the ‘�’ we have created. The output won’t be shown here, but you
can see the results by doing the experiment personally.

Look at those proofsheets now, because they provide instructive exam-
ples of the simulated broad-edge pen constructions introduced in Chapter 4.
Compare the ‘�’ with the program that drew it: Notice that the penpos2 in
line 10 makes the curve slightly thicker at the bottom than at the top; that
the equation ‘x1l = w − x3l = curve sidebar ’ in line 12 makes the right edge
of the curve as far from the right of the bounding box as the left edge is from
the left; that line 13 places point 1 slightly lower than point 3. The proofsheet
for ‘�’ should look very much like the corresponding illustration near the end of
Chapter 4, but it will be somewhat larger.

� Your proof copy of the ‘�’ should show twelve dots for key points; but only
ten of them will be labeled, because there isn’t room enough to put labels on

points 2 and 4. The missing labels usually appear in the upper right corner, where it
might say, e.g., ‘4 = 4l + (-1,-5.9)’; this means that point z4 is one pixel to the left
and 5.9 pixels down from point z4l, which is labeled. (Some implementations omit this
information, because there isn’t always room for it.)

* Unless, of course, there was a typing error in lines 17–23, where test I is defined.
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The proofsheets obtained in Experiment 2 show the key points and the
bounding boxes, but this extra information can interfere with our perception of
the character shape itself. There’s a simple way to get proofs that allow a viewer
to criticize the results from an aesthetic rather than a logical standpoint; the
creation of such proofs will be the goal of our next experiment.

Here’s how to do Experiment 3: Start METAFONT as usual, then type

\mode=smoke; input io

in response to the ‘**’. This will input file io.mf again, after establishing
“smoke” mode. (As in Experiment 1, the command line begins with ‘\’ so
that the computer knows you aren’t starting with the name of a file.) Then
complete the run exactly as in Experiment 2, by typing ‘test_I("I",5/6,1/3);
end’; and apply GFtoDVI to the resulting file io.2602gf.

This time the proofsheets will contain the same characters as before,
but they will be darker and without labeled points. The bounding boxes will be
indicated only by small markings at the corners; you can put these boxes next
to each other and tack the results up on the wall, then stand back to see how
the characters will look when set by a high-resolution typesetter. (This way of
working is called smoke mode because it’s analogous to the “smoke proofs” that
punch-cutters traditionally used to test their handiwork. They held the newly
cut type over a candle flame so that it would be covered with carbon; then they
pressed it on paper to make a clean impression of the character, in order to see
whether changes were needed.)

� Incidentally, many systems allow you to invoke hijklmnj by typing a one-
line command like ‘mf io’ in the case of Experiment 2; you don’t have to

wait for the ‘**’ before giving a file name. Similarly, the one-liners ‘mf \relax’ and
‘mf \mode=smoke; input io’ can be used on many systems at the beginning of Experi-
ments 1 and 3. You might want to try this, to see if it works on your computer; or you
might ask somebody if there’s a similar shortcut.

Experiments 1, 2, and 3 have demonstrated how to make proof drawings
of test characters, but they don’t actually produce new fonts that can be used
in typesetting. For this, we move onward to Experiment 4, in which we put
ourselves in the position of a person who is just starting to design a new typeface.
Let’s imagine that we’re happy with the O of io.mf, and that we want a “sans
serif” I in the general style produced by test I , but we aren’t sure about how
thick the stem of the I should be in order to make it blend properly with the O.
Moreover, we aren’t sure how much white space to leave at the sides of the I.
So we want to do some typesetting experiments, using a sequence of different I’s.

The ideal way to do this would be to produce a high-resolution test font
and to view the output at its true size. But this may be too expensive, because
fine printing equipment is usually available only for large production runs. The
next-best alternative is to use a low-resolution printer but to magnify the output,
so that the resolution is effectively increased. We shall adopt the latter strategy,
because it gives us a chance to learn about magnification as well as fontmaking.
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After starting METAFONT again, you can begin Experiment 4 by typing

\mode=localfont; mag=4; input io

in response to the ‘**’. The plain base at your installation is supposed to recog-
nize localfont as the name of the mode that makes fonts for your “standard”
output device. The equation ‘mag=4’ means that this run will produce a font
that is magnified fourfold; i.e., the results will be 4 times bigger than usual.

The computer will read io.mf as before, but this time it won’t display
an ‘O’; characters are normally not displayed in fontmaking modes, because we
usually want the computer to run as fast as possible when it’s generating a font
that has already been designed. All you’ll see is ‘(io.mf [79])’, followed by ‘*’.
Now the fun starts: You should type

code=100;
for s=7 upto 10:
for w=5 upto 8:
test_I(incr code,s/10,w/20);

endfor endfor end.

(Here ‘upto’ must be typed as a single word.) We’ll learn about repeating things
with ‘for...endfor’ in Chapter 19. This little program produces 16 versions of
the letter I, with stem widths of 7

10 , 8
10 , 9

10 , and 10
10 pt, and with character widths

of 5
20 , 6

20 , 7
20 , and 8

20 em. The sixteen trial characters will appear in positions
101 through 116 of the font; it turns out that these are the ASCII codes for lower
case letters e through t inclusive. (Other codes would have been used if ‘code’
had been started at a value different from 100. The construction ‘incr code’
increases the value of code by 1 and produces the new value; thus, each use of
test_I has a different code number.)

This run of METAFONT will not only produce a generic font io.nnngf,
it will also create a file called io.tfm, the “font metric file” that tells typesetting
systems like TEX how to make use of the new font. The remaining part of
Experiment 4 will be to put TEX to work: We shall make some test patterns
from the new font, in order to determine which ‘I’ is best.

You may need to ask a local system wizard for help at this point, because
it may be necessary to move the file io.tfm to some special place where TEX
and the other typesetting software can find it. Furthermore, you’ll need to run
a program that converts io.nnngf to the font format used by your local output
device. But with luck, these will both be fairly simple operations, and a new
font called ‘io’ will effectively be installed on your system. This font will contain
seventeen letters, namely an O and sixteen I’s, where the I’s happen to be in
the positions normally occupied by e, f, . . . , t. Furthermore, the font will be
magnified fourfold.

� The magnification of the font will be reflected in its file name. For example,
if localfont mode is for a device with 200 pixels per inch, the io font at 4×

magnification will be called ‘io.800gf’.
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You can use TEX to typeset from this font like any other, but for the
purposes of Experiment 4 it’s best to use a special TEX package that has been
specifically designed for font testing. All you need to do is to run TEX—which
is just like running METAFONT, except that you call it ‘tex’ instead of ‘mf’;
and you simply type ‘testfont’ in reply to TEX’s ‘**’. (The testfont routine
should be available on your system; if not, you or somebody else can type it in,
by copying the relevant material from Appendix H.) You will then be asked for
the name of the font you wish to test. Type

io scaled 4000

(which means the io font magnified by 4, in TEX’s jargon), since this is what
METAFONT just created. The machine will now ask you for a test command,
and you should reply

\mixture

to get the “mixture” test. (Don’t forget the backslash.) You’ll be asked for a
background letter, a starting letter, and an ending letter; type ‘O’, ‘e’, and ‘t’,
respectively. This will produce sixteen lines of typeset output, in which the first
line contains a mixture of O with e, the second contains a mixture of O with f,
and so on. To complete Experiment 4, type ‘\end’ to TEX, and print the file
testfont.dvi that TEX gives you.

If all goes well, you’ll have sixteen lines that say ‘OIOOIIOOOIIIOI’,
but with a different I on each line. In order to choose the line that looks best,
without being influenced by neighboring lines, it’s convenient to take two sheets
of blank paper and use them to mask out all of the lines except the one you’re
studying. Caution: These letters are four times larger than the size at which
the final font is meant to be viewed, so you should look at the samples from
afar. Xerographic reductions may introduce distortions that will give misleading
results. Sometimes when you stare at things like this too closely, they all look
wrong, or they all look right; first impressions are usually more significant than
the results of logical reflection. At any rate, you should be able to come up
with an informed judgment about what values to use for the stem width and the
character width of a decent ‘I’; these can then be incorporated into the program,
the ‘def’ and ‘enddef’ parts of io.mf can be removed, and you can go on to
design other characters that go with your I and O. Furthermore you can always
go back and make editorial changes after you see your letters in more contexts.

��xEXERCISE 5.3
The goddess Io was known in Egypt as Isis. Design an ‘�’ for her.

Well, this isn’t a book about type design; the example of io.mf is simply
intended to illustrate how a type designer might want to operate, and to provide a
run-through of the complete process from design of type to its use in a document.
We must go back now to the world of computerese, and study a few more practical
details about the use of METAFONT.
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¿¿This has been a long chapter, but take heart: There’s only one more
experiment to do, and then you will know enough about METAFONT to run it
fearlessly by yourself forever after. The only thing you are still missing is some
information about how to cope with error messages. Sometimes METAFONT
stops and asks you what to do next. Indeed, this may have already happened,
and you may have panicked.

Error messages can be terrifying when you aren’t prepared for them;
but they can be fun when you have the right attitude. Just remember that
you really haven’t hurt the computer’s feelings, and that nobody will hold the
errors against you. Then you’ll find that running METAFONT might actually be
a creative experience instead of something to dread.

The first step in Experiment 5 is to plant some intentional mistakes in
the input file. Make a copy of io.mf and call it badio.mf; then change line 1 of
badio.mf to

mode setup; % an intentional error!

(thereby omitting the underline character in mode_setup). Also change the first
semicolon ( ‘;’ ) on line 2 to a colon ( ‘:’ ); change ‘thick,10’ to ‘thick,l0’ on
line 10 (i.e., replace the numeral ‘1’ by the letter ‘l’ ); and change ‘thin’ to
‘thinn’ on line 11. These four changes introduce typical typographic errors, and
it will be instructive to see if they lead to any disastrous consequences.

Now start METAFONT up again; but instead of cooperating with the
computer, type ‘mumble’ in reply to the ‘**’. (As long as you’re going to make
intentional mistakes, you might as well make some dillies.) METAFONT will say
that it can’t find any file called mumble.mf, and it will ask you for another name.
Just hit 〈return〉 this time; you’ll see that you had better give the name of a real
file. So type ‘badio’ and wait for METAFONT to find one of the faux pas in that
messed-up travesty.

Ah yes, the machine will soon stop, after typing something like this:

>> mode.setup
! Isolated expression.
<to be read again>

;
l.1 mode setup;

% an intentional error!
?

METAFONT begins its error messages with ‘!’, and it sometimes precedes them
with one or two related mathematical expressions that are displayed on lines
starting with ‘>>’. Each error message is also followed by lines of context that
show what the computer was reading at the time of the error. Such context lines
occur in pairs; the top line of the pair (e.g., ‘mode setup;’ ) shows what META-
FONT has looked at so far, and where it came from (‘l.1’, i.e., line number 1);
the bottom line (here ‘% an intentional error!’ ) shows what METAFONT has
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yet to read. In this case there are two pairs of context lines; the top pair refers
to a semicolon that METAFONT has read once but will be reading again, because
it didn’t belong with the preceding material.

You don’t have to take out pencil and paper in order to write down the
error messages that you get before they disappear from view, since METAFONT
always writes a “transcript” or “log file” that records what happened during
each session. For example, you should now have a file called io.log containing
the transcript of Experiment 4, as well as a file mfput.log that contains the
transcript of Experiment 1. (The old transcript of Experiment 2 was probably
overwritten when you did Experiment 3, and again when you did Experiment 4,
because all three transcripts were called io.log.) At the end of Experiment 5
you’ll have a file badio.log that will serve as a helpful reminder of what errors
need to be fixed up.

The ‘?’ that appears after the context display means that METAFONT
wants advice about what to do next. If you’ve never seen an error message
before, or if you’ve forgotten what sort of response is expected, you can type ‘?’
now (go ahead and try it!); METAFONT will respond as follows:

Type <return> to proceed, S to scroll future error messages,
R to run without stopping, Q to run quietly,
I to insert something, E to edit your file,
1 or ... or 9 to ignore the next 1 to 9 tokens of input,
H for help, X to quit.

This is your menu of options. You may choose to continue in various ways:
1. Simply type 〈return〉. METAFONT will resume its processing, after at-

tempting to recover from the error as best it can.
2. Type ‘S’. METAFONT will proceed without pausing for instructions if

further errors arise. Subsequent error messages will flash by on your
terminal, possibly faster than you can read them, and they will appear
in your log file where you can scrutinize them at your leisure. Thus,
‘S’ is sort of like typing 〈return〉 to every message.

3. Type ‘R’. This is like ‘S’ but even stronger, since it tells METAFONT not
to stop for any reason, not even if a file name can’t be found.

4. Type ‘Q’. This is like ‘R’ but even more so, since it tells METAFONT not
only to proceed without stopping but also to suppress all further output
to your terminal. It is a fast, but somewhat reckless, way to proceed
(intended for running METAFONT with no operator in attendance).

5. Type ‘I’, followed by some text that you want to insert. METAFONT
will read this text before encountering what it would ordinarily see next.

6. Type a small number (less than 100). METAFONT will delete this many
tokens from whatever it is about to read next, and it will pause again
to give you another chance to look things over. (A “token” is a name,
number, or symbol that METAFONT reads as a unit; e.g., ‘mode’ and
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help messages
space
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‘setup’ and ‘;’ are the first three tokens of badio.mf, but ‘mode_setup’
is the first token of io.mf. Chapter 6 explains this concept precisely.)

7. Type ‘H’. This is what you should do now and whenever you are faced
with an error message that you haven’t seen for a while. METAFONT
has two messages built in for each perceived error: a formal one and
an informal one. The formal message is printed first (e.g., ‘! Isolated
expression.’ ); the informal one is printed if you request more help
by typing ‘H’, and it also appears in your log file if you are scrolling
error messages. The informal message tries to complement the formal
one by explaining what METAFONT thinks the trouble is, and often by
suggesting a strategy for recouping your losses.

8. Type ‘X’. This stands for “exit.” It causes METAFONT to stop working
on your job, after putting the finishing touches on your log file and on
any characters that have already been output to your gf and/or tfm
files. The current (incomplete) character will not be output.

9. Type ‘E’. This is like ‘X’, but it also prepares the computer to edit the
file that METAFONT is currently reading, at the current position, so that
you can conveniently make a change before trying again.

After you type ‘H’ (or ‘h’, which also works), you’ll get a message that tries to
explain the current problem: The mathematical quantity just read by META-
FONT (i.e., mode.setup) was not followed by ‘=’ or ‘:=’, so there was nothing for
the computer to do with it. Chapter 6 explains that a space between tokens (e.g.,
‘mode setup’ ) is equivalent to a period between tokens (e.g., ‘mode.setup’ ). The
correct spelling ‘mode_setup’ would be recognized as a preloaded subroutine of
plain METAFONT, but plain METAFONT doesn’t have any built-in meaning for
mode.setup. Hence mode.setup appears as a sort of orphan, and METAFONT
realizes that something is amiss.

In this case, it’s OK to go ahead and type 〈return〉, because we really
don’t need to do the operations of mode setup when no special mode has been
selected. METAFONT will continue by forgetting the isolated expression, and it
will ignore the rest of line 1 because everything after a ‘%’ sign is always ignored.
(This is another thing that will be explained in Chapter 6; it’s a handy way to
put comments into your METAFONT programs.) The changes that were made
to line 1 of badio.mf therefore have turned out to be relatively harmless. But
METAFONT will almost immediately encounter the mutilated semicolon in line 2:

! Extra tokens will be flushed.
<to be read again>

:
l.2 em#:=10pt#:

cap#:=7pt#;
?

What does this mean? Type ‘H’ to find out. METAFONT has no idea what to do
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with a ‘:’ at this place in the file, so it plans to recover by “flushing” or getting
rid of everything it sees, until coming to a semicolon. It would be a bad idea to
type 〈return〉 now, since you’d lose the important assignment ‘cap#:=7pt#’, and
that would lead to worse errors.

You might type ‘X’ or ‘E’ at this point, to exit from METAFONT and to
fix the errors in lines 1 and 2 before trying again. But it’s usually best to keep
going, trying to detect and correct as many mistakes as possible in each run,
since that increases your productivity while decreasing your computer bills. An
experienced METAFONT user will quit after an error only if the error is unfixable,
or if there’s almost no chance that additional errors are present.

The solution in this case is to proceed in two steps: First type ‘1’, which
tells METAFONT to delete the next token (the unwanted ‘:’); then type ‘I;’,
which inserts a semicolon. This semicolon protects the rest of line 2 from being
flushed away, so all will go well until METAFONT reaches another garbled line.

The next error message is more elaborate, because it is detected while
METAFONT is trying to carry out a penpos command; penpos is not a primitive
operation (it is defined in plain METAFONT), hence a lot more context is given:

>> l0
! Improper transformation argument.
<to be read again>

;
penpos->...(EXPR3),0)rotated(EXPR4);

x(SUFFIX2)=0.5(x(SUFF...
l.10 penpos1(thick,l0)

; penpos2(.1[thin,thick],90-10);
?

At first, such error messages will appear to be complete nonsense to you, because
much of what you see is low-level METAFONT code that you never wrote. But you
can overcome this hangup by getting a feeling for the way METAFONT operates.

The bottom line shows how much progress METAFONT has made so far
in the badio file: It has read ‘penpos1(thick,l0)’ but not yet the semicolon,
on line 10. The penpos routine expands into a long list of tokens; indeed, this
list is so long that it can’t all be shown on two lines, and the appearances of
‘...’ indicate that the definition of penpos has been truncated here. Parameter
values are often inserted into the expansion of a high-level routine; in this case,
for example, ‘(EXPR3)’ and ‘(EXPR4)’ correspond to the respective parameters
‘thick’ and ‘l0’, and ‘(SUFFIX2)’ corresponds to ‘1’. METAFONT detected an
error just after encountering the phrase ‘rotated(EXPR4)’; the value of (EXPR4)
was an undefined quantity (namely ‘l0’, which METAFONT treats as the sub-
scripted variable ‘l0’ ), and rotation is permitted only when a known numeric
value has been supplied. Rotations are particular instances of what METAFONT
calls transformations; hence METAFONT describes this particular error by saying
that an “improper transformation argument” was present.
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When you get a multiline error message like this, the best clues about
the source of the trouble are usually on the bottom line (since that is what
you typed) and on the top line (since that is what triggered the error message).
Somewhere in there you can usually spot the problem.

If you type ‘H’ now, you’ll find that METAFONT has simply decided to
continue without doing the requested rotation. Thus, if you respond by typing
〈return〉, METAFONT will go on as if the program had said ‘penpos1(thick,0)’.
Comparatively little harm has been done; but there’s actually a way to fix the
error perfectly before proceeding: Insert the correct rotation by typing

I rotated 10

and METAFONT will rotate by 10 degrees as if ‘l0’ had been ‘10’.
What happens next in Experiment 5? METAFONT will hiccup on the

remaining bug that we planted in the file. This time, however, the typo will
not be discovered until much later, because there’s nothing wrong with line 11
as it stands. (The variable thinn is not defined, but undefined quantities are
no problem unless you’re doing something complicated like rotation. Indeed,
METAFONT programs typically consist of equations in which there are lots of
unknowns; variables get more and more defined as time goes on. Hence spelling
errors cannot possibly be detected until the last minute.) Finally comes the
moment of truth, when badio tries to draw a path through an unknown point;
and you will get an error message that’s even scarier than the previous one:

>> 0.08682thinn+144
! Undefined x coordinate has been replaced by 0.
<to be read again>

{
<for(l)> ...FFIX0){up}..z4(SUFFIX0){

left}..cycle; ENDFOR
penstroke->...ath_.e:=(TEXT0);endfor

.if.cycle.path_.l:cyc...
<to be read again>

;
l.15 ... ..z3e{up}..z4e{left}..cycle;

?

Wow; what’s this? The expansion of penstroke involves a “for loop,” and the
error was detected in the midst of it. The expression ‘0.08682thinn+144’ just
above the error message implies that the culprit in this case was a misspelled
‘thin’. If that hadn’t been enough information, you could have gleaned another
clue from the fact that ‘z4(SUFFIX0)’ has just been read; (SUFFIX0) is the
current loop value and ‘<for(l)>’ indicates that the value in question is ‘l’,
hence z4l is under suspicion. (Sure enough, the undefined x coordinate that
provoked this error can be shown to be x4l = 0.08682thinn + 144.)
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editingIn any event the mistake on line 11 has propagated too far to be fixable,
so you’re justified in typing ‘X’ or ‘E’ at this point. But type ‘S’ instead, just
for fun: This tells METAFONT to plunge ahead, correcting all remaining errors
as best it can. (There will be a few more problems, since several variables still
depend on ‘thinn’.) METAFONT will draw a very strange letter O before it gets
to the end of the file. Then you should type ‘end’ to terminate the run.

If you try to edit badio.mf again, you’ll notice that line 2 still contains
a colon instead of a semicolon. The fact that you told METAFONT to delete the
colon and to insert additional material doesn’t mean that your file has changed
in any way. However, the transcript file badio.log has a record of all the errors,
so it’s a handy reference when you want to correct mistakes. (Why not look at
badio.log now, and io.log too, in order to get familiar with log files?)

� xEXERCISE 5.4
Suppose you were doing Experiment 3 with badio instead of io, so you be-

gan by saying ‘\mode=smoke; input badio’. Then you would want to recover from the
error on line 1 by inserting a correct mode setup command, instead of by simply
〈return〉ing, because mode setup is what really establishes smoke mode. Unfortu-
nately if you try typing ‘I mode_setup’ in response to the “isolated expression” error,
it doesn’t work. What should you type instead?

By doing the five experiments in this chapter you have learned at first
hand (1) how to produce proofsheets of various kinds, including “smoke proofs”;
(2) how to make a new font and test it; (3) how to keep calm when METAFONT
issues stern warnings. Congratulations! You’re on the threshold of being able to
do lots more. As you read the following chapters, the best strategy will be for
you to continue making trial runs, using experiments of your own design.

xEXERCISE 5.5
However, this has been an extremely long chapter, so you should go outside now
and get some real exercise.
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Aeschylus
RUNNING

Let us learn how Io’s frenzy came—
She telling her disasters manifold.

— ÆSCHYLUS, Prometheus Bound (c. 470 B.C.)

To the student who wishes to use graphical methods as a tool,
it can not be emphasized too strongly that practice in the use of that tool

is as essential as a knowledge of how to use it.
The oft-repeated pedagogical phrase, “we learn by doing,” is applicable here.

— THEODORE RUNNING, Graphical Mathematics (1927)



(page 48)

6
How ()*+,-.*

Reads What You
Type



Chapter 6: How 89:;<=>: Reads What You Type 49

ASCII
tokens
string tokens
numeric tokens
symbolic tokens
underline
grammatical rules
Backus
Naur
angle brackets
syntax rules

So far in this book we’ve seen lots of things that METAFONT can do, but we
haven’t discussed what METAFONT can’t do. We have looked at many examples
of commands that METAFONT can understand, but we haven’t dwelt on the
fact that the computer will find many phrases unintelligible. It’s time now to
adopt a more systematic approach and to study the exact rules of METAFONT’s
language. Then we’ll know what makes sense to the machine, and we’ll also
know how to avoid ungrammatical utterances.

A METAFONT program consists of one or more lines of text, where each
line is made up of letters, numbers, punctuation marks, and other symbols that
appear on a standard computer keyboard. A total of 95 different characters
can be employed, namely a blank space plus the 94 visible symbols of stan-
dard ASCII. (Appendix C describes the American Standard Code for Informa-
tion Interchange, popularly known as “ASCII,” under which code numbers 33
through 126 have been assigned to 94 specific symbols. This particular coding
scheme is not important to a METAFONT programmer; the only relevant thing
is that 94 different nonblank symbols can be used.)

METAFONT converts each line of text into a series of tokens, and a
programmer should understand exactly how this conversion takes place. Tokens
are the individual lexical units that govern the computer’s activities. They are
the basic building blocks from which meaningful sequences of instructions can
be constructed. We discussed tokens briefly at the end of the previous chapter;
now we shall consider them in detail. Line 9 of the file io.mf in that chapter is
a typical example of what the machine might encounter:

beginchar("O",0.8em#,cap#,0); "The letter O";

When METAFONT reads these ASCII characters it finds sixteen tokens:

beginchar ( "O" , 0.8 em # ,

cap # , 0 ) ; "The letter O" ;

Two of these, "O" and "The letter O", are called string tokens because they
represent strings of characters. Two of them, ‘0.8’ and ‘0’, are called numeric
tokens because they represent numbers. The other twelve—‘beginchar’, ‘(’,
etc.—are called symbolic tokens; such tokens can change their meaning while a
METAFONT program runs, but string tokens and numeric tokens always have a
predetermined significance. Notice that clusters of letters like ‘beginchar’ are
treated as a unit; the same holds with respect to letters mixed with underline
characters, as in ‘mode_setup’. Indeed, the rules we are about to study will
explain that clusters of other characters like ‘0.8’ and ‘:=’ are also considered
to be indecomposable tokens. METAFONT has a definite way of deciding where
one token stops and another one begins.

It’s often convenient to discuss grammatical rules by formulating them
in a special notation that was introduced about 1960 by John Backus and Peter
Naur. Parts of speech are represented by named quantities in angle brackets,
and syntax rules are used to express the ways in which those quantities can
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be built up from simpler units. For example, here are three syntax rules that
completely describe the possible forms of numeric tokens:

〈decimal digit〉 −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
〈digit string〉 −→ 〈decimal digit〉 | 〈digit string〉〈decimal digit〉
〈numeric token〉 −→ 〈digit string〉 | . 〈digit string〉

| 〈digit string〉 . 〈digit string〉

The first rule says that a 〈decimal digit〉 is either ‘0’ or ‘1’ or · · · or ‘9’; thus
it must be one of the ten numerals. The next rule says that a 〈digit string〉 is
either a 〈decimal digit〉 or a 〈digit string〉 followed by a 〈decimal digit〉; thus it
must be a sequence of one or more digits. Finally, a 〈numeric token〉 has one of
three forms, exemplified respectively by ‘15’, ‘.05’, and ‘3.14159’.

Syntax rules explain only the surface structure of a language, not the
underlying meanings of things. For example, the rules above tell us that ‘15’
is a 〈numeric token〉, but they don’t imply that ‘15’ has any connection with
the number fifteen. Therefore syntax rules are generally accompanied by rules
of semantics, which ascribe meanings to the strings of symbols that meet the
conditions of the syntax. In the case of numeric tokens, the principles of ordinary
decimal notation define the semantics, except that METAFONT deals only with
numbers in a limited range: A numeric token must be less than 4096, and its
value is always rounded to the nearest multiple of 1

65536 . Thus, for example,
‘.1’ does not mean 1

10 , it means 6554
65536 (which is slightly greater than 1

10 ). It
turns out that the tokens ‘.099999’ and ‘0.10001’ both have exactly the same
meaning as ‘.1’, because all three tokens represent the value 6554

65536 .

� xEXERCISE 6.1
Are the following pairs of numeric tokens equivalent to each other, when they

appear in hijklmnj programs? (a) 0 and 0.00001; (b) 0.00001 and 0.00002;
(c) 0.00002 and 0.00003; (d) 04095.999999 and 10000?

METAFONT converts each line of text into a sequence of tokens by re-
peating the following rules until no more characters remain on the line:

1) If the next character is a space, or if it’s a period ( ‘.’ ) that isn’t followed
by a decimal digit or a period, ignore it and move on.

2) If the next character is a percent sign ( ‘%’ ), ignore it and also ignore
everything else that remains on the current line. (Percent signs therefore
allow you to write comments that are unseen by METAFONT.)

3) If the next character is a decimal digit or a period that’s followed by
a decimal digit, the next token is a numeric token, consisting of the
longest sequence of contiguous characters starting at the current place
that satisfies the syntax for 〈numeric token〉 above.

4) If the next character is a double-quote mark ( ‘"’ ), the next token is a
string token, consisting of all characters from the current place to the
next double-quote, inclusive. (There must be at least one more double-
quote remaining on the line, otherwise METAFONT will complain about
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an “incomplete string.”) A string token represents the sequence of
characters between the double-quotes.

5) If the next character is a parenthesis ( ‘(’ or ‘)’ ), a comma ( ‘,’ ), or a
semicolon ( ‘;’ ), the next token is a symbolic token consisting of that
single character.

6) Otherwise the next token is a symbolic token consisting of the next
character together with all immediately following characters that appear
in the same row of the following table:

ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz
<=>:|
‘’
+-
/*\
!?
#&@$
^~
[
]
{}
. (see rules 1, 3, 6)
, ; ( ) (see rule 5; these characters are “loners”)
" (see rule 4 for details about string tokens)
0123456789 (see rule 3 for details about numeric tokens)
% (see rule 2 for details about comments)

The best way to learn the six rules about tokens is to work the following exercise,
after which you’ll be able to read any input file just as the computer does.

xEXERCISE 6.2
What tokens does METAFONT find in the (ridiculous) line

xx3.1.6..[[a+-bc_d.e] ]"a %" <|>(($1. 5"+-""" % weird?

xEXERCISE 6.3
Criticize the following statement: METAFONT ignores all spaces in the input.

� xEXERCISE 6.4
True or false: If the syntax for 〈numeric token〉 were changed to include a

fourth alternative, ‘〈digit string〉.’, the meaning of hijklmnj programs would not
change in any way.

Yet wee with all our seeking could see no tokens.

— PHILEMON HOLLAND, Camden’s Brittania (1610)

Unpropitious tokens interfered.

— WILLIAM COWPER, Homer’s Iliad (1791)
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One of METAFONT’s most important concepts is the notion of a variable—
something that can take on a variety of different values. Indeed, this is one of
the most important concepts in all of mathematics, and variables play a promi-
nent rôle in almost all computer languages. The basic idea is that a program
manipulates data, and the data values are stored in little compartments of a
computer’s memory. Each little compartment is a variable, and we refer to an
item of data by giving its compartment a name.

For example, the io.mf program for the letter � in Chapter 5 contains
lots of variables. Some of these, like ‘x1l’ and ‘y1’, represent coordinates. Others,
like ‘up’, represent directions. The variables ‘em#’ and ‘thin#’ stand for physical,
machine-independent distances; the analogous variables ‘em’ and ‘thin’ stand for
the corresponding machine-dependent distances in units of pixels.

These examples indicate that different variables are often related to each
other. There’s an implicit connection between ‘em#’ and ‘em’, between ‘x1’ and
‘y1’; the ‘penpos ’ convention sets up relationships between ‘x1l’, ‘x1’, and ‘x1r’.
By choosing the names of variables carefully, programmers can make their pro-
grams much easier to understand, because the relationships between variables
can be made to correspond to the structure of their names.

In the previous chapter we discussed tokens, the atomic elements from
which all METAFONT programs are made. We learned that there are three kinds
of tokens: numeric (representing numbers), string (representing text), and sym-
bolic (representing everything else). Symbolic tokens have no intrinsic meaning;
any symbolic token can stand for whatever a programmer wants it to represent.

Some symbolic tokens do, however, have predefined primitive meanings,
when METAFONT begins its operations. For example, ‘+’ stands initially for
“plus,” and ‘;’ stands for “finish the current statement and move on to the next
part of the program.” It is customary to let such tokens retain their primitive
meanings, but any symbolic token can actually be assigned a new meaning as a
program is performed. For example, the definition of ‘test_I’ in io.mf makes
that token stand for a macro, i.e., a subroutine. We’ll see later that you can
instruct METAFONT to ‘let plus=+’, after which ‘plus’ will act just like ‘+’ did.

METAFONT divides symbolic tokens into two categories, depending on
their current meaning. If the symbolic token currently stands for one of META-
FONT’s primitive operations, or if it has been defined to be a macro, it is called a
spark; otherwise it is called a tag. Almost all symbolic tokens are tags, because
only a few are defined to be sparks; however, METAFONT programs typically in-
volve lots of sparks, because sparks are what make things happen. The symbolic
tokens on the first five lines of io.mf include the following sparks:

mode_setup ; := / define_pixels ( , )

and the following tags:

em # pt cap thin thick o
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(some of which appear several times). Tags are used to designate variables, but
sparks cannot be used within a variable’s name.

Some variables, like ‘em#’, have names that are made from more than
one token; in fact, the variable ‘x1l’ is named by three tokens, one of which is
numeric. METAFONT has been designed so that it is easy to make compound
names that correspond to the relations between variables. Conventional pro-
gramming languages like Pascal would refer to ‘x1l’ by the more cumbersome
notation ‘x[1].l’; it turns out that ‘x[1].l’ is an acceptable way to designate
the variable x1l in a METAFONT program, but the shorthand form ‘x1l’ is a
great convenience because such variables are used frequently.

Here are the formal rules of syntax by which METAFONT understands
the names of variables:

〈variable〉 −→ 〈tag〉〈suffix〉
〈suffix〉 −→ 〈empty〉 | 〈suffix〉〈subscript〉 | 〈suffix〉〈tag〉
〈subscript〉 −→ 〈numeric token〉 | [ 〈numeric expression〉 ]

First comes a tag, like ‘x’; then comes a suffix to the tag, like ‘1l’. The suffix
might be empty, or it might consist of one or more subscripts or tags that are
tacked on to the original tag. A subscript is a numeric index that permits you
to construct arrays of related variables. The subscript is either a single numeric
token, or it is a formula enclosed in square brackets; in the latter case the formula
should produce a numeric value. For example, ‘x[1]’ and ‘x[k]’ and ‘x[3-2k]’
all mean the same thing as ‘x1’, if k is a variable whose value is 1. But ‘x.k’ is
not the same; it is the tag ‘x’ suffixed by the tag ‘k’, not the tag ‘x’ subscripted
by the value of variable k.

� The variables ‘x1’ and ‘x01’ and ‘x1.00’ are identical. Since any numeric token
can be used as a subscript, fractional indices are possible; for example, ‘x1.5’

is the same as ‘x[3/2]’. Notice, however, that ‘B007’ and ‘B.007’ are not the same
variable, because the latter has a fractional subscript.

� hijklmnj makes each 〈suffix〉 as long as possible. In other words, a 〈suffix〉
is always extended if it is followed by a 〈subscript〉 or a 〈tag〉.

� xEXERCISE 7.1
Explain how to type a reference to the doubly subscripted variable ‘a[1][5]’

without using square brackets.

� xEXERCISE 7.2
Is it possible to refer to any variable without using square brackets?

��xEXERCISE 7.3
Jonathan H. Quick (a student) used ‘a.plus1’ as the name of a variable at

the beginning of his program; later he said ‘let plus=+’. How could he refer to the
variable ‘a.plus1’ after that?

� hijklmnj has several special variables called internal quantities that are
intimately wired-in to the computer’s behavior. For example, there’s an in-

ternal quantity called ‘fontmaking’ that controls whether or not a tfm file is produced;
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another one called ‘tracingtitles’ governs whether or not titles like "The letter O"
appear on your terminal; still another one called ‘smoothing’ affects the digitization of
curves. (A complete list of hijklmnj’s internal quantities appears in Chapter 25.)
The name of an internal quantity acts like a tag, but internal quantities cannot be
suffixed. Thus, the syntax rule for 〈variable〉 should actually be replaced by a slightly
more complicated pair of rules:

〈variable〉 −→ 〈external tag〉〈suffix〉 | 〈internal quantity〉
〈tag〉 −→ 〈external tag〉 | 〈internal quantity〉

� xEXERCISE 7.4
True or false: Every 〈variable〉 is a legal 〈suffix〉.

�� The ‘[’ and ‘]’ that appear in the syntax for 〈subscript〉 stand for any sym-
bolic tokens whose current meanings are the same as hijklmnj’s primitive

meanings of left and right bracket, respectively; those tokens don’t necessarily have to
be brackets. Conversely, if the meanings of the tokens ‘[’ and ‘]’ have been changed,
brackets cannot be used to delimit subscripts. Similar remarks apply to all of the sym-
bolic tokens in all of the syntax rules from now on. hijklmnj doesn’t look at the
form of a token; it considers only a token’s current meaning.

The examples of METAFONT programs in this book have used two differ-
ent typographic conventions. Sometimes we refer to variables by using italic type
and/or genuine subscripts, e.g., ‘em ’ and ‘x2r’; but sometimes we refer to those
same variables by using a typewriter-like style of type, e.g., ‘em’ and ‘x2r’. In
general, the typewriter style is used when we are mainly concerned with the way
a programmer is supposed to type something that will appear on the terminal
or in a file; but fancier typography is used when we are focusing on the meaning
of a program rather than its ASCII representation. It should be clear how to
convert the fancier form into tokens that METAFONT can actually understand.

� In general, we shall use italic type only for tags (e.g., em , x , r ), while boldface
and roman type will be used for sparks (e.g., draw, fill, cycle, rotated, sqrt).

Tags that consist of special characters instead of letters will sometimes get special
treatment; for example, em# and z2’ might be rendered em# and z′2, respectively.

The variables we’ve discussed so far have almost always had numbers as
their values, but in fact METAFONT’s variables are allowed to assume values of
eight different types. A variable can be of type

boolean, representing the values ‘true’ or ‘false’;
string, representing sequences of ASCII characters;
path, representing a (possibly curved) line;
pen, representing the shape of a pen nib;
picture, representing an entire pattern of pixels;
transform, representing the operations of scaling, rotating, shifting, re-
flecting, and/or slanting;
pair, representing two numbers (e.g., a point or a vector);
numeric, representing a single number.
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If you want a variable to represent something besides a number, you must first
give a type declaration that states what the type will be. But if you refer to a
variable whose type has not been declared, METAFONT won’t complain, unless
you try to use it in a way that demands a value that isn’t numeric.

Type declarations are easy. You simply name one of the eight types,
then you list the variables that you wish to declare for that type. For example,
the declaration

pair right , left , a.p

says that right and left and a.p will be variables of type pair, so that equations
like

right = −left = 2a.p = (1, 0)

can be given later. These equations, incidentally, define the values right = (1, 0),
left = (−1, 0), and a.p = (.5, 0). (Plain METAFONT has the stated values of
right and left already built in.)

The rules for declarations are slightly trickier when subscripts are in-
volved, because METAFONT insists that all variables whose names are identical
except for subscript values must have the same type. It’s possible to set things
up so that, for example, a is numeric, a.p is a pair, a.q is a pen, a.r is a path,
and a1 is a string; but if a1 is a string, then all other variables a2, a3, etc.,
must also be strings. In order to enforce this restriction, METAFONT allows only
“collective” subscripts, represented by empty brackets ‘[]’, to appear in type
declarations. For example,

path r, r[], x[]arc, f[][]

declares r and all variables of the forms r[i], x[i]arc , and f [i][j] to be path
variables. This declaration doesn’t affect the types or values of other variables
like r[ ]arc ; it affects only the variables that are specifically mentioned.

Declarations destroy all previous values of the variables being defined.
For example, the path declaration above makes r and r[i] and x[i]arc and f [i][j]
undefined, even if those variables previously had paths as their values. The idea
is that all such variables will start out with a clean slate so that they can receive
appropriate new values based on subsequent equations.

xEXERCISE 7.5
Numeric variables don’t need to be declared. Therefore is there ever any reason
for saying ‘numeric x’ ?

� The formal syntax rules for type declarations explain these grammatical con-
ventions precisely. If the symbolic token that begins a declared variable was

previously a spark, it loses its former meaning and immediately becomes a tag.

〈declaration〉 −→ 〈type〉〈declaration list〉
〈type〉 −→ boolean | string | path | pen

| picture | transform | pair | numeric
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declaration list
,
declared variable
declared suffix
DARWIN
Algol
LOCKYER

〈declaration list〉 −→ 〈declared variable〉
| 〈declaration list〉 , 〈declared variable〉

〈declared variable〉 −→ 〈symbolic token〉〈declared suffix〉
〈declared suffix〉 −→ 〈empty〉 | 〈declared suffix〉〈tag〉

| 〈declared suffix〉 [ ]

� xEXERCISE 7.6
Find three errors in the supposed declaration ‘transform t42,24t,,t,path’.

Beings low in the scale of nature are
more variable than those which are higher.

— CHARLES DARWIN, On the Origin of Species (1859)

Among the variables, Beta (�) Persei, or Algol,
is perhaps the most interesting, as its period is short.

— J. NORMAN LOCKYER, Elements of Astronomy (1870)
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Algebraic

Expressions



Chapter 8: Algebraic Expressions 59

expressions
variable
constant
operator
operands
parentheses
sqrt
product

METAFONT programmers express themselves algebraically by writing algebraic
formulas called expressions. The formulas are algebraic in the sense that they
involve variables as well as constants. By combining variables and constants with
appropriate mathematical operations, a programmer can specify an amazing
variety of things with comparative ease.

We have already seen many examples of expressions; our goal now is to
make a more systematic study of what is possible. The general idea is that an
expression is either a variable (e.g., ‘x1’ ) or a constant (e.g., ‘20’ ), or it consists
of an operator (e.g., ‘+’ ) together with its operands (e.g., ‘x1 + 20’ ). The
operands are, in turn, expressions built up in the same way, perhaps enclosed in
parentheses. For example, ‘(x1+20)/(x2−20)’ is an expression that stands for the
quotient of two subexpressions. It is possible to concoct extremely complicated
algebraic expressions, but even the most intricate constructions are built from
simple parts in simple ways.

Mathematicians spent hundreds of years developing good ways to write
formulas; then computer scientists came along and upset all the time-honored
traditions. The main reason for making a change was the fact that computers
find it difficult to deal with two-dimensional constructions like

x1 + 20
x2 − 20

+

√

a2 − 2
3

√
b.

One-dimensional sequences of tokens are much easier to input and to decode;
hence programming languages generally put such formulas all on one line, by
inserting parentheses, brackets, and asterisks as follows:

(x[1]+20)/(x[2]-20)+sqrt(a**2-(2/3)*sqrt(b)).

METAFONT will understand this formula, but it also accepts a notation that is
shorter and closer to the standard conventions of mathematics:

(x1+20)/(x2-20)+sqrt(a**2-2/3sqrt b).

We observed in the previous chapter that METAFONT allows you to write ‘x2’
instead of ‘x[2]’; similarly, you can write ‘2x’ instead of ‘2*x’ and ‘2/3x’ instead
of ‘(2/3)*x’. Such operations are extremely common in METAFONT programs,
hence the language has been set up to facilitate them. On the other hand, META-
FONT doesn’t free you from all the inconveniences of computer languages; you
must still write ‘x*k’ for the product of x times k, and ‘x[k]’ for the variable
x subscripted by k, in order to avoid confusion with the suffixed variable ‘x.k’.

We learned in the previous chapter that there are eight types of variables:
numeric, boolean, string, and so on. The same types apply to expressions; META-
FONT deals not only with numeric expressions but also with boolean expressions,
string expressions, and the others. For example, ‘(0, 0) . . (x1, y1)’ is a path-
valued expression, formed by applying the operator ‘. .’ to the subexpressions
‘(0, 0)’ and ‘(x1, y1)’; these subexpressions, in turn, have values of type “pair,”
and they have been built up from values of type “numeric.” Each operation
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order of operations
precedence
magnets
braces
brackets

produces a result whose type can be determined from the types of the operands;
furthermore, the simplest expressions (variables and constants) always have a
definite type. Therefore the machine always knows what type of quantity it is
dealing with, after it has evaluated an expression.

If an expression contains several operators, METAFONT has to decide
which operation should be done first. For example, in the expression ‘a− b + c’
it is important to compute ‘a − b’ first, then to add c; if ‘b + c’ were computed
first, the result ‘a− (b + c)’ would be quite different from the usual conventions
of mathematics. On the other hand, mathematicians usually expect ‘b/c’ to
be computed first in an expression like ‘a − b/c’; multiplications and divisions
are usually performed before additions and subtractions, unless the contrary is
specifically indicated by parentheses as in ‘(a − b)/c’. The general rule is to
evaluate subexpressions in parentheses first, then to do operations in order of
their “precedence”; if two operations have the same precedence, the left one is
done first. For example, ‘a − b/c’ is equivalent to ‘a − (b/c)’ because division
takes precedence over subtraction; but ‘a − b + c’ is equivalent to ‘(a − b) + c’
because left-to-right order is used on operators of equal precedence.

It’s convenient to think of operators as if they are tiny magnets that
attract their operands; the magnets for ‘∗’ and ‘/’ are stronger than the magnets
for ‘+’ and ‘−’, so they stick to their operands more tightly and we want to
perform them first.

METAFONT distinguishes four (and only four) levels of precedence. The
strongest magnets are those that join ‘2’ to ‘x’ and ‘sqrt’ to ‘b’ in expressions like
‘2x’ and ‘sqrt b’. The next strongest are multiplicative operators like ‘∗’ and ‘/’;
then come the additive operators like ‘+’ and ‘−’. The weakest magnets are
operators like ‘. .’ or ‘<’. For example, the expression

a + sqrt b/2x < c

is equivalent to the fully parenthesized formula
(

a +
(

(sqrt b)/(2x)
))

< c.

xEXERCISE 8.1
Insert parentheses into the formula ‘z1+z2..z3/4*5..z6-7*8z9’, to show ex-
plicitly in what order METAFONT will do the operations.

� High-school algebra texts often avoid parentheses inside of parentheses by
using braces and brackets. Therefore many people have been trained to write

{a + [(sqrt b)/(2x)]} < c

instead of the fully parenthesized formula above. However, professional mathematicians
usually stick to only one kind of parentheses, because braces and brackets have other
meanings that are more important. In this respect hijklmnj is like the professionals:
It reserves curly braces ‘{}’ and square brackets ‘[]’ for special purposes, so you should
not try to substitute them for parentheses.
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delimiters
division of numeric tokens
fractions
tracingonline
scrollmode
forever
scantokens
readstring
message
expr.mf

�� If you really want alternatives to parentheses, there is actually a way to get
them. You can say, for example,

delimiters [[ ]]; delimiters {{ }}

after which double brackets and braces can be used in formulas like

{{a+[[(sqrt b)/(2x)]]}}<c.

The symbolic token ‘{{’ has no relation to ‘{’, and it has no primitive meaning, hence
you are free to define it in any way you like; the delimiters command defines a new
pair of delimiters. In formulas with mixed delimiters as defined here, hijklmnj will
check that ‘[[’ matches only with ‘]]’, ‘{{’ only with ‘}}’, and ‘(’ only with ‘)’; thus
you can more easily detect errors in large expressions. However, it’s usually unnecessary
to have any delimiters other than parentheses, because large expressions are rare, and
because the rules of operator precedence make most parentheses superfluous.

If you’re reading this chapter carefully, you may be thinking, “Hey wait!
Isn’t there a contradiction? A minute ago I was told that ‘2/3x’ stands for
‘(2/3)*x’, but now the rules of precedence appear to state that ‘2/3x’ really
stands for ‘2/(3x)’. What gives?” Indeed, you have an excellent point; but
there is no contradiction, because of another rule that hasn’t been mentioned
yet. When two numeric tokens are divided, the magnetism of ‘/’ is stronger
than usual; in this case ‘/’ has the same precedence as the implied multiplication
operator in ‘3x’. Hence the operations in ‘2/3x’ are carried out from left to right,
as stated previously. (This is a good rule because it is almost always what a
METAFONT programmer wants. However, one should bear in mind that ‘a/3x’
means ‘a/(3x)’ when a is not a numeric token.)

Because of the rule in the previous paragraph, the METAFONT programs
in this book often say ‘ 23x’ for what would be typed ‘2/3x’ in a file. Such built-up
fractions are never used except when the numerator and denominator are both
numbers; a construction like ‘a/3x’ will always be rendered as ‘a/3x’, not ‘ a

3x ’.
METAFONT knows how to do dozens of operations that haven’t been

mentioned yet in this book. Let’s take a look at some of them, so that we will
know they are available in case of need. It will be most instructive and most
fun to learn about expressions by interacting with the computer; therefore you
should prepare the following short file, called expr.mf:

string s[]; s1="abra";
path p[]; p1=(0,0)..(3,3); p2=(0,0)..(3,3)..cycle;
tracingonline:=1; scrollmode;
forever: message "gimme an expr: "; s0:=readstring;
show scantokens s0; endfor

� You don’t need to understand what’s in expr.mf when you read this chapter for
the first time, because the file uses hijklmnj in ways that will be explained

carefully later. But here is a translation, in case you’re curious: Line 1 declares all
variables of the form sk to be strings, and sets s1 to the value "abra". Line 2 declares
all variables of the form pk to be paths, and sets p1 and p2 to simple example paths.
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online
log file
gimme
arithmetic
epsilon

Line 3 tells hijklmnj to print diagnostic information online, i.e., on the terminal as
well as in the log file; it also establishes ‘scrollmode’, which means that the computer
won’t stop after error messages. Lines 4 and 5 set up an infinite loop in which hijk-
lmnj reads an expression from the terminal and shows the corresponding value.

If you start METAFONT and type ‘expr’ when it asks for an input file
name, it will read the file expr.mf and then it will say ‘gimme an expr’. Here’s
where the fun starts: You can type any expression, and METAFONT will compute
and display its value. Try it; type ‘2+2’ and 〈return〉, obtaining the value ‘>> 4’.
Isn’t that amazing? Here are some more things to try:

You type And the result is

1.2-2.3 -1.1

1.3-2.4 -1.09999

1.3*1000 1300.00305

2.4*1000 2399.9939

3/8 0.375

.375*1000 375

1/3 0.33333

1/3*3 0.99998

0.99999 0.99998

1-epsilon 0.99998

1/(1/3) 3.00005

1/3.00005 0.33333

.1*10 1.00006

1+4epsilon 1.00006

These examples illustrate the small errors that occur because METAFONT does
“fixed binary” arithmetic using integer multiples of 1

65536 . The result of 1.3−2.4
is not quite the same as −1.1, because 1.3 is a little bit larger than 13

10 and 2.4
is a little smaller than 24

10 . Small errors get magnified when they are multiplied
by 1000, but even after magnification the discrepancies are negligible because
they are just tiny fractions of a pixel. You may be surprised that 1/3 times 3
comes out to be .99998 instead of .99999; the truth is that both 0.99999 and
0.99998 represent the same value, namely 65535

65536 ; METAFONT displays this value
as 0.99998 because it is closer to .99998 than to .99999. Plain METAFONT
defines epsilon to be 1

65536 , the smallest representable number that is greater
than zero; therefore 1-epsilon is 65535

65536 , and 1+4epsilon is 65540
65536 .

You type And the result is

4096 4095.99998 (with error message)
infinity 4095.99998

1000*1000 32767.99998 (with error message)
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enormous number
infinity
mediation
multiply
divide

infinity+epsilon 4096

100*100 10000

.1(100*100) 1000.06104

(100*100)/3 3333.33333

METAFONT will complain that an ‘Enormous number has been reduced’ when
you try to introduce constants that are 4096 or more. Plain METAFONT defines
infinity to be 4096 − epsilon , which is the largest legal numeric token. On
the other hand, it turns out that larger numbers can actually arise when an
expression is being evaluated; METAFONT doesn’t worry about this unless the
resulting magnitude is at least 32768.

� xEXERCISE 8.2
If you try ‘100*100/3’ instead of ‘(100*100)/3’, you get ‘3333.33282’. Why?

�� Sometimes hijklmnj will compute things more accurately than you would
expect from the examples above, because many of its internal calculations are

done with multiples of 2−28 instead of 2−16. For example, if t = 3 the result of ‘1/3t’
will be exactly 1 (not 0.99998); the same thing happens if you write ‘1/3(3)’.

Now let’s try some more complicated expressions, using undefined vari-
ables as well as constants. (Are you actually trying these examples, or are you
just reading the book? It’s far better to type them yourself and to watch what
happens; in fact, you’re also allowed to type things that aren’t in the book!)

You type And the result is

b+a a+b

a+b a+b

b+a-2b a-b

2(a-b+.5) 2a-2b+1

.5(b-a) -0.5a+0.5b

.5[a,b] 0.5a+0.5b

1/3[a,b] 0.66667a+0.33333b

0[a,b] a

a[2,3] a+2

t[a,a+1] t+a

a*b b (with error message)
1/b b (with error message)

METAFONT has a preferred way to arrange variables in order when they are
added together; therefore ‘a + b’ and ‘b + a’ give the same result. Notice that
the mediation construction ‘.5[a, b]’ specifies a number that’s halfway between a
and b, as explained in Chapter 2. METAFONT does not allow you to multiply
two unknown numeric quantities together, nor can you divide by an unknown
numeric; all of the unknown expressions that METAFONT works with must be
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linear forms
sqrt
square roots
**
true
false

“linear forms,” i.e., they must be sums of variables with constant coefficients,
plus an optional constant. (You might want to try typing ‘t[a,b]’ now, in order
to see what error message is given.)

You type And the result is

sqrt 2 1.41422

sqrt 100 10

sqrt 100*100 1000

sqrt(100*100) 100

sqrt 100(100) 100

sqrt sqrt 100(100) 10

sqrt .01 0.09998

0.09998**2 0.01

2**1/2 1.41422

sqrt 2**2 2

sqrt -1 0 (with error message)
sqrt a a (with error message)

Since sqrt has more “magnetism” than *, the formula sqrt 100*100 is evaluated
as (sqrt 100)*100; but in ‘sqrt 100(100)’ the 100(100) is computed first. The
reason is that ‘(sqrt 100)(100)’ isn’t a legal expression, so the operations in
‘sqrt 100(100)’ must be carried out from right to left. If you are unsure about
the order of evaluation, you can always insert parentheses; but you’ll find that
METAFONT’s rules of precedence are fairly natural as you gain experience.

xEXERCISE 8.3
Is ‘sqrt 2**2’ computed as ‘(sqrt 2)**2’ or as ‘sqrt(2**2)’ ?

Some METAFONT expressions have ‘true’ or ‘false’ values, instead of
numbers; we will see later that they can be used to adapt METAFONT programs
to special conditions.

You type And the result is

0<1 true

0=1 false

a+1>a true

a>=b false (with error message)
"abc"<="b" true

"B">"a!" false

"b">"a?" true

(1,2)<>(0,4) true

(1,2)<(0,4) false

(1,a)>(0,b) true
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not
and
or
comparison
¿=
¡=
¡¿
relations
greater-than-or-equal-to
less-than-or-equal-to
unequal-to
pair
numeric
pen
known
max
min
maximum
minimum
integers

numeric a true

known a false

not pen a true

known "a" and numeric 1 true

(0>1) or (a<a) false

0>1 or a<a a (with error messages)

The tokens ‘>=’, ‘<=’, and ‘<>’ stand respectively for the relations greater-than-
or-equal-to, less-than-or-equal-to, and unequal-to. When strings are compared,
METAFONT uses the order of words in a dictionary, except that it uses ASCII
code to define ordering of individual characters; thus, all uppercase letters are
considered to be less than all lowercase letters. (See Appendix C.) When pairs
of numbers are compared, METAFONT considers only the x coordinates, unless
the x coordinates are equal; in the latter case it compares the y coordinates. The
type of an expression can be ascertained by an expression like ‘pair a’, which is
true if and only if a is a pair. The expression ‘known a’ is true if and only if the
value of a is fully known.

� xEXERCISE 8.4
What causes the error messages in ‘0>1 or a<a’ ?

� The rest of this chapter is entirely preceded by “dangerous bend” signs, so
you can safely omit it on first reading (unless you’re hooked and can’t stop).

� hijklmnj expressions can include many operations that are less familiar but
still useful. For example, the max and min operations compute the maximum

and minimum of numbers, strings, or pairs:

You type And the result is

max(1,-2,4) 4

min(1,-2,4) -2

max("a","b","ab") "b"

min("a","b","ab") "a"

max((1,5),(0,6),(1,4)) (1,5)

min((1,5),(0,6),(1,4)) (0,6)

max(.5a+1,.5a-1) 0.5a+1

Numbers can be converted to integers in a variety of ways:

You type And the result is

floor 3.14159 3

floor -3.14159 -4

floor -epsilon -1

floor infinity 4095

ceiling 3.14159 4

ceiling -3.14159 -3
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floor
greatest integer
ceiling
least integer
round
remainder
mod
abs
length
absolute value
++
Pythagorean addition
square root
Pythagorean subtraction
+-+

round 3.14159 3

round -3.14159 -3

round(1.1,2.8) (1,3)

round(3.5,-3.5) (4,-3)

round a a+0.5 (with error message)
8 mod 3 2

-8 mod 3 1

.8 mod .3 0.2

The ‘floor’ operation computes the greatest integer that is less than or equal to its
operand; this quantity is often denoted by bxc in mathematics texts. Plain hijklmnj
also includes the analogous ‘ceiling’ operation dxe, which is the least integer greater
than or equal to x. Furthermore, ‘roundx’ is the integer nearest to x; plain hijklmnj
computes this by using the formula bx + .5c, and applies it to both components of a
pair if a pair is being rounded. The remainder of x with respect to y, written ‘x mod y’,
is calculated by using the formula x− ybx/yc.

You type And the result is

abs -7 7

abs(3,4) 5

length(3,4) 5

3++4 5

300++400 500

sqrt(300**2 + 400**2) 181.01933 (with error messages)
1++1 1.4142

0 ++ -7 7

5+-+4 3

The ‘++’ operation is called Pythagorean addition; a++b is the same thing as
√

a2 + b2.
Most of the square root operations in computer programs could probably be avoided
if ++ were more widely available, because people seem to want square roots primarily
when they are computing distances. Notice that a++ b++ c =

√
a2 + b2 + c2; we have

the identity (a ++ b) ++ c = a ++ (b ++ c) as well as a ++ b = b ++ a. It is better
to use Pythagorean addition than to calculate

√
a2 + b2, because the computation of

a2 and b2 might produce numbers that are too large even when a ++ b is rather small.
There’s also an inverse operation, Pythagorean subtraction, which is denoted by ‘+-+’;
the quantity a +−+ b is equal to

√
a2 − b2.

� xEXERCISE 8.5
When the author was preparing these examples he typed ‘0++-7’ and was

surprised to get the answer ‘0’. Why should this not have been a surprise?

��xEXERCISE 8.6
(For mathematicians.) Although the Pythagorean addition operation is asso-

ciative and commutative, hijklmnj says that 5++4++2++2 = 7 = 2++2++4++5
yet 2 ++ 4 ++ 5 ++ 2 = 6.99998. Why?
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sind
cosd
trigonometric
sine
cosine
dir
angle
mlog
mexp

� hijklmnj uses the names ‘sind’ and ‘cosd’ for the trigonometric functions
sine and cosine, because hijklmnj’s operations are designed to deal with

angles expressed in degrees. But it turns out that programmers rarely need to refer
to sines and cosines explicitly, because the ‘dir’ and ‘angle’ functions provide most of
what a font designer needs.

You type And the result is

sind 30 0.5

cosd 30 0.86603

sind -30 -0.5

cosd 360 1

sind 10 ++ cosd 10 1

dir 30 (0.86603,0.5)

dir -90 (0,-1)

angle(1,1) 45

angle(1,2) 63.43495

angle(1,-2) -63.43495

sind 63.43495 / cosd 63.43495 1.99997

angle up 90

angle left 180

angle(-1000,-epsilon) -180

angle dir 60 60.00008

angle(0,0) 0 (with error message)

Plain hijklmnj defines ‘dir x’ to be the pair of values (cosdx, sind x); this is a vector,
which points x degrees above the rightward horizon. Conversely, the ‘angle’ operator
determines the angle that corresponds to a given vector.

�� Logarithms and exponentials are computed with respect to an unusual base,
designed to enhance the accuracy of calculations involving fixed-radix numbers

in hijklmnj’s range. The values mlogx = 256 ln x and mexp x = ex/256 produce
reasonably good results when x ∗∗ y is computed by the formula mexp(y ∗mlog x).

You type And the result is

mlog 2 177.44568

mexp mlog 2 2

mexp 8 mlog 2 256

mexp 256 2.71828

mlog 2.71828 255.99954

mlog 2.71829 256.00098

15 mlog 2 2661.68518

mexp 2661.68518 32767.99998

mexp 2661.68519 32767.99998 (with error message)
mexp-2661.68519 0.00003
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uniformdeviate
normaldeviate
scaled
xscaled
yscaled
dir

� hijklmnj also generates two flavors of random numbers. It is very unlikely
that you will get the particular values shown in the following examples, when

you do the experiment yourself, because the results come out different each time the
computer is asked for a new random number (unless you have specified a “seed value”
as explained in Chapter 21).

You type And the result might be

uniformdeviate 100 47.4241

uniformdeviate 100 97.28148

uniformdeviate -100 -36.16279

(normaldeviate,normaldeviate) (0.46236,-1.87648)

The value of ‘uniformdeviate 100’ is a random number between 0 and 100; the value
of ‘normaldeviate’ is a normally distributed random number whose mean value is zero
and whose standard deviation is unity. Chapter 21 explains what this means and gives
several applications.

� Besides all of these operations on numbers, hijklmnj has a rich collection
of operations on pairs, some of which are indicated in the following examples:

You type And the result is

right (1,0)

(1,2)+(3,4) (4,6)

1/3(3,10) (1,3.33333)

z2-z1 (-x1+x2,-y1+y2)

.2[z1,z2] (0.8x1+0.2x2,0.8y1+0.2y2)

3z (3x,3y)

z scaled 3 (3x,3y)

z xscaled 2 yscaled 1/2 (2x,0.5y)

z shifted (2,3) (x+2,y+3)

z shifted 3right (x+3,y)

z slanted 1/6 (x+0.16667y,y)

z rotated 90 (-y,x)

z rotated 30 (-0.5y+0.86603x,0.86603y+0.5x)

xpart(z rotated 30) -0.5y+0.86603x

ypart(z rotated 30) 0.86603y+0.5x

(1,2)*(3,4) (3,4) (with error message)
(1,2)zscaled(3,4) (-5,10)

(a,b)zscaled(3,4) (3a-4b,4a+3b)

(a,b)zscaled dir 30 (0.86603a-0.5b,0.5a+0.86603b)

(1,2)dotprod(3,4) 11

(a,b)dotprod(3,4) 3a+4b

dir 21 dotprod dir 51 0.86603

(3,4)dotprod((30,40)rotated 90) 0
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xpart
ypart
shifted
right
slanted
zscaled
dotprod
z
rotated
sines
cosines
zscaled
complex number
multiplication
dot product
perpendicular
product
string
point
direction
length
cycle

(Recall that plain hijklmnj converts ‘z$’ into ‘(x$,y$)’ when $ is any 〈suffix〉.) The
operations exhibited here are almost all self-evident. When a point or vector is rotated,
it is moved counterclockwise about (0, 0) through a given number of degrees. hijk-
lmnj computes the rotated coordinates by using sines and cosines in an appropriate
way; you don’t have to remember the formulas! Although you cannot use ‘*’ to multiply
a pair by a pair, you can use ‘zscaled’ to get the effect of complex number multiplication:
Since (1+2i) times (3+4i) is −5+10i, we have (1, 2) zscaled (3, 4) = (−5, 10). There’s
also a multiplication that converts pairs into numbers: (a, b) dotprod (c, d) = ac + bd.
This is the “dot product,” often written ‘(a, b) · (c, d)’ in mathematics texts; it turns
out to be equal to a++b times c++d times the cosine of the angle between the vectors
(a, b) and (c, d). Since cosd 90◦ = 0, two vectors are perpendicular to each other if and
only if their dot product is zero.

� There are operations on strings, paths, and the other types too; we shall study
such things carefully in later chapters. For now, it will suffice to give a few

examples, keeping in mind that the file expr.mf defines s with any subscript to be a
string, while p with any subscript is a path. Furthermore s1 has been given the value
"abra", while p1 is ‘(0, 0) . . (3, 3)’ and p2 is ‘(0, 0) . . (3, 3) . . cycle ’.

You type And the result is

s2 unknown string s2

s1&"cad"&s1 "abracadabra"

length s1 4

length p1 1

length p2 2

cycle p1 false

cycle p2 true

substring (0,2) of s1 "ab"

substring (2,infinity) of s1 "ra"

point 0 of p1 (0,0)

point 1 of p1 (3,3)

point .5 of p1 (1.5,1.5)

point infinity of p1 (3,3)

point .5 of p2 (3,0)

point 1.5 of p2 (0,3)

point 2 of p2 (0,0)

point 2+epsilon of p2 (0.00009,-0.00009)

point -epsilon of p2 (-0.00009,0.00009)

point -1 of p1 (0,0)

direction 0 of p1 (1,1)

direction 0 of p2 (4,-4)

direction 1 of p2 (-4,4)

The length of a path is the number of ‘. .’ steps that it contains; the construction
‘cycle 〈path〉’ can be used to tell whether or not a particular path is cyclic. If you say
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control points
substring
subpath
ampersand

just ‘p1’ you get to see path p1 with its control points:

(0,0)..controls (1,1) and (2,2)
..(3,3)

Similarly, ‘p2’ is

(0,0)..controls (2,-2) and (5,1)
..(3,3)..controls (1,5) and (-2,2)
..cycle

and ‘subpath (0,1) of p2’ is analogous to a substring:

(0,0)..controls (2,-2) and (5,1)
..(3,3)

The expression ‘point t of p2’ gives the position of a point that moves along path p2,
starting with the initial point (0, 0) at t = 0, then reaching point (3, 3) at t = 1,
etc.; the value at t = 1/2 is the third-order midpoint obtained by the construction of
Chapter 3, using intermediate control points (2,−2) and (5, 1). Since p2 is a cyclic
path of length 2, point (t + 2) of p2 is the same as point t. Path p1 is not cyclic, so its
points turn out to be identical to point 0 when t < 0, and identical to point 1 when
t > 1. The expression ‘direction t of 〈path〉’ is similar to ‘point t of 〈path〉’; it yields a
vector for the direction of travel at time t.

� Paths are not necessarily traversed

(Figure 8a will be inserted here; too bad you
can’t see it now.)

at constant speed. For example, the
diagram at the right shows point t of p2 at
twenty equally spaced values of t. hijk-
lmnj moves faster in this case at time 1.0
than at time 1.2; but the points are spread
out fairly well, so the concept of fractional
time can be useful. The diagram shows, in-
cidentally, that path p2 is not an especially
good approximation to a circle; there is no
left-right symmetry, although the curve from
point 1 to point 2 is a mirror image of the
curve from point 0 to point 1. This lack of
circularity is not surprising, since p2 was defined by simply specifying two points, (0, 0)
and (3, 3); at least four points are needed to get a path that is convincingly round.

�� The ampersand operation ‘&’ can be used to splice paths together in much the
same way as it concatenates strings. For example, if you type ‘p2 & p1’, you

get the path of length 3 that is obtained by breaking the cyclic connection at the end
of path p2 and attaching p1:

(0,0)..controls (2,-2) and (5,1)
..(3,3)..controls (1,5) and (-2,2)
..(0,0)..controls (1,1) and (2,2)
..(3,3)

Concatenated paths must have identical endpoints at the junction.
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precedence
primary
secondary
tertiary
expression
α primary
(
)
α secondary
α tertiary
α expression

�� You can even “slow down the clock” by concatenating subpaths that have
non-integer time specifications. For example, here’s what you get if you ask

for ‘subpath (0,.5) of p2 & subpath (.5,2) of p2 & cycle’:

(0,0)..controls (1,-1) and (2.25,-0.75)
..(3,0)..controls (3.75,0.75) and (4,2)
..(3,3)..controls (1,5) and (-2,2)
..cycle

When t goes from 0 to 1 in subpath (0, .5) of p2, you get the same points as when t
goes from 0 to .5 in p2; when t goes from 0 to 1 in subpath (.5, 2) of p2, you get the
same points as when t goes from .5 to 1 in p2; but when t goes from 1 to 2 in subpath
(.5, 2) of p2, it’s the same as the segment from 1 to 2 in p2.

� Let’s conclude this chapter by discussing the exact rules of precedence by
which hijklmnj decides what operations to do first. The informal notion of

“magnetism” gives a good intuitive picture of what happens, but syntax rules express
things unambiguously in borderline cases.

� The four levels of precedence correspond to four kinds of formulas, which
are called primaries, secondaries, tertiaries, and expressions. A primary is

a variable or a constant or a tightly bound unit like ‘2x’ or ‘sqrt 2’; a secondary is a
primary or a sequence of primaries connected by multiplicative operators like ‘*’ or
‘scaled’; a tertiary is a secondary or a sequence of secondaries connected by additive
operators like ‘+’ or ‘++’; an expression is a tertiary or a sequence of tertiaries connected
by external operators like ‘<’ or ‘..’. For example, the expression

a+b/2>3c*sqrt4d

is composed of the primaries ‘a’, ‘b’, ‘2’, ‘3c’, and ‘sqrt4d’; the last of these is a primary
containing ‘4d’ as a primary within itself. The subformulas ‘a’, ‘b/2’, and ‘3c*sqrt4d’
are secondaries; the subformulas ‘a+b/2’ and ‘3c*sqrt4d’ are tertiaries.

� If an expression is enclosed in parentheses, it becomes a primary that can be
used to build up larger secondaries, tertiaries, etc.

� The full syntax for expressions is quite long, but most of it falls into a simple
pattern. If α, β, and γ are any “types”—numeric, boolean, string, etc.—then

〈α variable〉 refers to a variable of type α, 〈β primary〉 refers to a primary of type β,
and so on. Almost all of the syntax rules fit into the following general framework:

〈α primary〉 −→ 〈α variable〉 | 〈α constant〉 | ( 〈α expression〉 )
| 〈operator that takes type β to type α〉〈β primary〉

〈α secondary〉 −→ 〈α primary〉
| 〈β secondary〉〈multiplicative op taking types β and γ to α〉〈γ primary〉

〈α tertiary〉 −→ 〈α secondary〉
| 〈β tertiary〉〈additive op taking types β and γ to α〉〈γ secondary〉

〈α expression〉 −→ 〈α tertiary〉
| 〈β expression〉〈external op taking types β and γ to α〉〈γ tertiary〉

These schematic rules don’t give the whole story, but they do give the general structure
of the plot.
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numeric primary
[
,
]
length
length
length
angle
xpart
ypart
numeric atom
(
)
normaldeviate
numeric token primary
/
numeric operator
sqrt
sind
cosd
mlog
mexp
floor
uniformdeviate
scalar multiplication operator
numeric secondary
times or over
*
/
numeric tertiary
plus or minus
+
-
Pythagorean plus or minus
++
+-+
numeric expression
fractions
mediation
of-the-way
ASCII
xxpart
ceiling
**

� Chapter 25 spells out all of the syntax rules for all types of expressions. We
shall consider only a portion of the numeric and pair cases here, in order to

have a foretaste of the complete menu:

〈numeric primary〉 −→ 〈numeric atom〉
| 〈numeric atom〉 [ 〈numeric expression〉 , 〈numeric expression〉 ]
| length 〈string primary〉
| length 〈path primary〉
| length 〈pair primary〉
| angle 〈pair primary〉
| xpart 〈pair primary〉
| ypart 〈pair primary〉
| 〈numeric operator〉〈numeric primary〉

〈numeric atom〉 −→ 〈numeric variable〉
| 〈numeric token primary〉
| ( 〈numeric expression〉 )
| normaldeviate

〈numeric token primary〉 −→ 〈numeric token〉 / 〈numeric token〉
| 〈numeric token not followed by ‘/ 〈numeric token〉’ 〉

〈numeric operator〉 −→ sqrt | sind | cosd | mlog | mexp
| floor | uniformdeviate | 〈scalar multiplication operator〉

〈scalar multiplication operator〉 −→ 〈plus or minus〉
| 〈numeric token primary not followed by + or - or a numeric token〉

〈numeric secondary〉 −→ 〈numeric primary〉
| 〈numeric secondary〉〈times or over〉〈numeric primary〉

〈times or over〉 −→ * | /
〈numeric tertiary〉 −→ 〈numeric secondary〉

| 〈numeric tertiary〉〈plus or minus〉〈numeric secondary〉
| 〈numeric tertiary〉〈Pythagorean plus or minus〉〈numeric secondary〉

〈plus or minus〉 −→ + | -
〈Pythagorean plus or minus〉 −→ ++ | +-+
〈numeric expression〉 −→ 〈numeric tertiary〉

All of the finicky details about fractions and such things are made explicit by this
syntax. For example, we can use the rules to deduce that ‘sind-1/3x-2’ is interpreted
as ‘(sind(-(1/3x)))-2’; notice that the first minus sign in this formula is considered
to be a “scalar multiplication operator,” which comes in at the primary level, while the
second one denotes subtraction and enters in the construction of 〈numeric tertiary〉.
The mediation or “of-the-way” operation ‘t[a, b]’ is handled at the primary level.

� Several operations that haven’t been discussed yet do not appear in the syntax
above, but they fit into the same general pattern; for example, we will see later

that ‘ASCII〈string primary〉’ and ‘xxpart〈transform primary〉’ are additional cases of
the syntax for 〈numeric primary〉. On the other hand, several operations that we have
discussed in this chapter do not appear in the syntax, because they are not primitives
of hijklmnj itself; they are defined in the plain hijklmnj base (Appendix B). For
example, ‘ceiling’ is analogous to ‘floor’, and ‘**’ is analogous to ‘*’. Chapter 20
explains how hijklmnj allows extensions to its built-in syntax, so that additional
operations can be added at will.
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pair primary
(
,
)
(
)
[
,
]
point
of
pair secondary
*
transformer
rotated
scaled
shifted
slanted
transformed
xscaled
yscaled
zscaled
pair tertiary
pair expression
GRIMM
BRONTË

� xEXERCISE 8.7
How does hijklmnj interpret ‘2 2’ ? (There’s a space between the 2’s.)

��xEXERCISE 8.8
According to expr.mf, the value of ‘1/2/3/4’ is 0.66667; the value of ‘a/2/3/4’

is 0.375a. Explain why.

� The rules of 〈pair expression〉 are similar to those for 〈numeric expression〉, so
it’s convenient to learn them both at the same time.

〈pair primary〉 −→ 〈pair variable〉
| ( 〈numeric expression〉 , 〈numeric expression〉 )
| ( 〈pair expression〉 )
| 〈numeric atom〉 [ 〈pair expression〉 , 〈pair expression〉 ]
| point 〈numeric expression〉 of 〈path primary〉
| 〈scalar multiplication operator〉〈pair primary〉

〈pair secondary〉 −→ 〈pair primary〉
| 〈pair secondary〉〈times or over〉〈numeric primary〉
| 〈numeric secondary〉 * 〈pair primary〉
| 〈pair secondary〉〈transformer〉

〈transformer〉 −→ rotated 〈numeric primary〉
| scaled 〈numeric primary〉
| shifted 〈pair primary〉
| slanted 〈numeric primary〉
| transformed 〈transform primary〉
| xscaled 〈numeric primary〉
| yscaled 〈numeric primary〉
| zscaled 〈pair primary〉

〈pair tertiary〉 −→ 〈pair secondary〉
| 〈pair tertiary〉〈plus or minus〉〈pair secondary〉

〈pair expression〉 −→ 〈pair tertiary〉

� xEXERCISE 8.9
Try to guess the syntax rules for 〈string primary〉, 〈string secondary〉, 〈string

tertiary〉, and 〈string expression〉, based solely on the examples that have appeared in
this chapter. [Hint: The ‘&’ operation has the same precedence as ‘..’.]

A maiden was sitting there who was lovely as any picture,
nay, so beautiful that no words can express it.

— JAKOB and WILHELM GRIMM, Fairy Tales (1815)

He looked astonished at the expression.

— EMILY BRONTË, Wuthering Heights (1847)
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Equations
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equations
mode
smoke
mode setup
baseline

The variables in a METAFONT program receive their values by appearing in
equations, which express relationships that the programmer wants to achieve.
We’ve seen in the previous chapter that algebraic expressions provide a rich
language for dealing with both numerical and graphical relationships. Thus it is
possible to express a great variety of design objectives in precise form by stating
that certain algebraic expressions should be equal to each other.

The most important things a METAFONT programmer needs to know
about equations are (1) how to translate intuitive design concepts into formal
equations, and (2) how to translate formal equations into intuitive design con-
cepts. In other words, it’s important to be able to write equations, and it’s
also important to be able to read equations that you or somebody else has writ-
ten. This is not nearly as difficult as it might seem at first. The best way to
learn (1) is to get a lot of practice with (2) and to generalize from specific ex-
amples. Therefore we shall begin this chapter by translating a lot of equations
into “simple English.”

Equation Translation

a = 3.14 The value of a should be 3.14.

3.14 = a The number 3.14 should be the value of a. (This
means the same thing as ‘a = 3.14’; the left and
right sides of an equation can be interchanged
without affecting the meaning of that equation
in any way.)

mode = smoke The value of mode should be equal to the value
of smoke . (Plain METAFONT assigns a special
meaning to ‘smoke ’, so that if mode setup is
invoked when mode = smoke the computer will
prepare “smoke proofs” as explained in Chapter 5
and Appendix H.)

y3 = 0 The y coordinate of point 3 should be zero; i.e.,
point 3 should be at the baseline. (Point 3 is
also known as z3, which is an abbreviation for
the pair of coordinates (x3, y3), if you are using
the conventions of plain METAFONT.)

x9 = 0 The x coordinate of point 9 should be zero; i.e.,
point 9 should be at the left edge of the type box
that encloses the current character.

x1l = curve sidebar The x coordinate of point 1l should be equal to
the value of the variable called curve sidebar .
This puts z1l a certain distance from the left
edge of the type.
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mode setup
mm
beginchar
w
h
bounding box
d
distance

x1 = x2 Points 1 and 2 should have the same x coordi-
nate; i.e., they should have the same horizontal
position, so that one will lie directly above or
below the other.

y4 = y5 + 1 Point 4 should be one pixel higher than point 5.
(However, points 4 and 5 might be far apart; this
equation says nothing about the relation between
x4 and x5.)

y6 = y7 + 2mm Point 6 should be two millimeters higher than
point 7. (Plain METAFONT’s mode setup rou-
tine sets variable mm to the number of pixels in
a millimeter, based on the resolution determined
by mode and mag .)

x4 = w − .01in Point 4 should be one-hundredth of an inch inside
the right edge of the type. (Plain METAFONT’s
beginchar routine sets variable w equal to the
width of whatever character is currently being
drawn, expressed in pixels.)

y4 = .5h Point 4 should be halfway between the baseline
and the top of the type. (Plain METAFONT’s
beginchar sets h to the height of the current
character, in pixels.)

y6 = −d Point 6 should be below the baseline, at the bot-
tom edge of the type. (Each character has a
“bounding box” that runs from (0, h) at the up-
per left and (w, h) at the upper right to (0,−d)
and (w,−d) at the lower left and lower right; vari-
able d represents the depth of the type. The val-
ues of w, h, and d might change from character
to character, since the individual pieces of type
in a computer-produced font need not have the
same size.)

y8 = .5[h,−d] Point 8 should be halfway between the top and
bottom edges of the type.

w − x5 = 2
3x6 The distance from point 5 to the right edge of the

type should be two-thirds of the distance from
point 6 to the left edge of the type. (Since w
is at the right edge, w − x5 is the distance from
point 5 to the right edge.)
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reference point
origin
top
vector

z0 = (0, 0) Point 0 should be at the reference point of the
current character, i.e., it should be on the base-
line at the left edge of the type. This equation is
an abbreviation for two equations, ‘x0 = 0’ and
‘y0 = 0’, because an equation between pairs of
coordinates implies that the x and y coordinates
must both agree. (Incidentally, plain META-
FONT defines a variable called origin whose value
is (0, 0); hence this equation could also have been
written ‘z0 = origin ’.)

z9 = (w, h) Point 9 should be at the upper right corner of the
current character’s bounding box.

top z8 = (.5w, h) If the pen that has currently been “picked up”
is placed at point 8, its top edge should be at
the top edge of the type. Furthermore, x8 should
be .5w; i.e., point 8 should be centered between
the left and right edges of the type. (Chapter 4
contains further examples of ‘top ’, as well as the
corresponding operations ‘bot ’, ‘lft ’, and ‘rt ’.)

z4 = 3
7 [z5, z6] Point 4 should be three-sevenths of the way from

point 5 to point 6.

z12 − z11 = z14 − z13 The vector that moves from point 11 to point 12
should be the same as the vector that moves from
point 13 to point 14. In other words, point 12
should have the same direction and distance from
point 11 as point 14 has from point 13.

z3 − z2 =
(z4 − z2) rotated 15

Points 3 and 4 should be at the same distance
from point 2, but the direction to point 3 should
be 15 degrees counterclockwise from the direction
to point 4.

xEXERCISE 9.1
Translate the following equations into “simple English”: (a) x7 − 9 = x1;
(b) z7 = (x4, .5[y4, y5]); (c) lft z21 = rt z20 + 1.

xEXERCISE 9.2
Now see if your knowledge of equation reading gives you the ability to write
equations that correspond to the following objectives: (a) Point 13 should be just
as far below the baseline as point 11 is above the baseline. (b) Point 10 should
be one millimeter to the right of, and one pixel below, point 12. (c) Point 43
should be one-third of the way from the top left corner of the type to the bottom
right corner of the type.
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=
origin

Let’s return now to the six example points (z1, z2, z3, z4, z5, z6) that were
used so often in Chapters 2 and 3. Changing the notation slightly, we might say
that the points are

(x1, y1) = (0, h); (x2, y2) = (.5w, h); (x3, y3) = (w, h);
(x4, y4) = (0, 0); (x5, y5) = (.5w, 0); (x6, y6) = (w, 0).

There are many ways to specify these points by writing a series of equations.
For example, the six equations just given would do fine; or the short names z1

through z6 could be used instead of the long names (x1, y1) through (x6, y6).
But there are several other ways to specify those points and at the same time
to “explain” the relations they have to each other. One way is to define the x
and y coordinates separately:

x1 = x4 = 0; x2 = x5 = .5w; x3 = x6 = w;
y1 = y2 = y3 = h; y4 = y5 = y6 = 0.

METAFONT allows you to state several equations at once, by using more than
one equality sign; for example, ‘y1 = y2 = y3 = h’ stands for three equations,
‘y1 = y2’, ‘y2 = y3’, and ‘y3 = h’.

In order to define the coordinates of six points, it’s necessary to write
twelve equations, because each equation contributes to the definition of one value,
and because six points have twelve coordinates in all. However, an equation
between pairs of coordinates counts as two equations between single numbers;
that’s why we were able to get by with only six ‘=’ signs in the first set of
equations, while twelve were used in the second.

Let’s look at yet another way to specify those six points, by giving
equations for their positions relative to each other:

z1 − z4 = z2 − z5 = z3 − z6

z2 − z1 = z3 − z2 = z5 − z4 = z6 − z5

z4 = origin ; z3 = (w, h).

First we say that the vectors from z4 to z1, from z5 to z2, and from z6 to z3, are
equal to each other; then we say the same thing for the vectors from z1 to z2,
z2 to z3, z4 to z5, and z5 to z6. Finally the corner points z4 and z3 are given
explicitly. That’s a total of seven equations between pairs of coordinates, so it
should be more than enough to define the six points of interest.

However, it turns out that those seven equations are not enough! For
example, the six points

z1 = z4 = (0, 0); z2 = z5 = (.5w, .5h); z3 = z6 = (w, h)

also satisfy the same equations. A closer look explains why: The two formulas

z1 − z4 = z2 − z5 and z2 − z1 = z5 − z4

actually say exactly the same thing. (Add z5 − z1 to both sides of the first
equation and you get ‘z5 − z4 = z2 − z1’.) Similarly, z2 − z5 = z3 − z6 is the
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known
unknown

same as z3 − z2 = z6 − z5. Two of the seven equations give no new information,
so we really have specified only five equations; that isn’t enough. An additional
relation such as ‘z1 = (0, h)’ is needed to make the solution unique.

� xEXERCISE 9.3
(For mathematicians.) Find a solution to the seven equations such that

z1 = z2. Also find another solution in which z1 = z6.

At the beginning of a METAFONT program, variables have no values,
except that plain METAFONT has assigned special values to variables like smoke
and origin . Furthermore, when you begin a new character with beginchar, any
previous values that may have been assigned to x or y variables are obliterated
and forgotten. Values are gradually established as the computer reads equations
and tries to solve them, together with any other equations that have already
appeared in the program.

It takes ten equations to define the values of ten variables. If you have
given only nine equations it may turn out that none of the ten variables has yet
been determined; for example, the nine equations

g0 = g1 = g2 = g3 = g4 = g5 = g6 = g7 = g8 = g9

don’t tell us any of the g values. However, the further equation

g0 + g1 = 1

will cause METAFONT to deduce that all ten of the g’s are equal to 1
2 .

METAFONT always computes the values of as many variables as possible,
based on the equations it has seen so far. For example, after the two equations

a + b + 2c = 3;
a− b− 2c = 1

the machine will know that a = 2 (because the sum of these two equations is
‘2a = 4’); but all it will know about b and c is that b + 2c = 1.

At any point in a program a variable is said to be either “known” or
“unknown,” depending on whether or not its value can be deduced uniquely
from the equations that have been stated so far. The sample expressions in
Chapter 8 indicate that METAFONT can compute a variety of things with un-
known variables; but sometimes a quantity must be known before it can be used.
For example, METAFONT can multiply an unknown numeric or pair variable by
a known numeric value, but it cannot multiply two unknowns.

Equations can be given in any order, except that you might sometimes
need to put certain equations first in order to make critical values known in the
others. For example, METAFONT will find the solution (a, b, c) = (2, 7,−3) to
the equations ‘a+b+2c = 3; a−b−2c = 1; b+c = 4’ if you give those equations
in any other order, like ‘b + c = 4; a − b − 2c = 1; a + b + 2c = 3’. But if the
equations had been ‘a+ b+2c = 3; a− b−2c = 1; a∗ (b+ c) = 8’, you would not
have been able to give the last one first, because METAFONT would have refused
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top
bot
lft
rt
comparison
tracingequations
tracingonline
hash hash

to multiply the unknown quantity a by another unknown quantity b + c. Here
are the main things that METAFONT can do with unknown quantities:

−〈unknown〉
〈unknown〉+ 〈unknown〉
〈unknown〉 − 〈unknown〉
〈unknown〉 ∗ 〈known〉
〈known〉 ∗ 〈unknown〉
〈unknown〉/〈known〉
〈known〉[〈unknown〉, 〈unknown〉]
〈unknown〉[〈known〉, 〈known〉]

Some of the operations of plain METAFONT, defined in Appendix B, also work
with unknown quantities. For example, it’s possible to say top 〈unknown〉,
bot 〈unknown〉, lft 〈unknown〉, rt 〈unknown〉, and even

penpos〈suffix〉(〈unknown〉, 〈known〉).

� A hijklmnj program can say ‘〈unknown〉[a, b]’ when a − b is known, and
variable a can be compared to variable b in boolean expressions like ‘a < b’

when a − b is known. The quantity a − b might be known even when a and b aren’t
known by themselves.

� You might wonder how hijklmnj is able to keep its knowledge up-to-date,
based on scraps of partial information that it receives from miscellaneous

equations. The best way to understand this is to watch how it happens, by asking the
computer to show certain calculations that it usually keeps to itself. Here’s one way to
do it: Run hijklmnj and say

\tracingequations:=tracingonline:=1;

in response to the opening ‘**’. (Be sure to type the backslash ‘\’, and to use ‘:=’
instead of ‘=’. We will see in Chapter 27 that hijklmnj can be asked to “trace”
many aspects of what it’s doing.) Now type

a+b+2c=3;

the machine will reply by saying

## c=-0.5b-0.5a+1.5

since that is how it has digested your equation. (The ‘##’ in this line identifies diag-
nostic information that comes from tracingequations .) Now type

a-b-2c=1;

hijklmnj will read this as if you had said ‘a-b-2(-0.5b-0.5a+1.5)=1’, since it has
previously learned how to replace c by an expression that involves only a and b. This
new equation can be simplified by multiplying out the left-hand side and collecting
terms. The result is ‘2a-3=1’, hence hijklmnj will respond with

## a=2
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showdependencies
hash hash hash hash
dependent
independent
known

and it will be your turn to type something again. Say

showdependencies;

hijklmnj’s response will be

c=-0.5b+0.5

indicating that there is only one variable whose value depends on others, and that its
equation of dependency is now ‘c = −0.5b + 0.5’. (The previous dependency equation
‘c = −0.5b − 0.5a + 1.5’ has been simplified to take account of the newly discovered
value, a = 2.) Finally type

b+c=4;

this spurs the computer on to say

## b=7
#### c=-3

A line that begins with ‘##’ states what hijklmnj has deduced from the equation
it has just read; a line that begins with ‘####’ states an indirect consequence of that
direct result, if some previously dependent variable has now become known.

� It’s interesting to continue the computer experiment just begun by typing the
following lines, one at a time, and watching what happens:

a’+b’+.5c’=3;
a’-b’-.5c’=1;
g0=g1=g2=g3=g4;
showdependencies;
g0+g1=1;
z1-z4=z2-z5=z3-z6;
z2-z1=z3-z2=z5-z4=z6-z5;
z4=origin;
z3=(w,h);
x1=0;
y6=0;
w=2h=100;
end.

Notice that on the sixth line ( ‘z1 − z4 = · · · ’ ) hijklmnj reports four equations, but
on the next line ( ‘z2 − z1 = · · · ’ ) it reports only two. This happens because most of
that line is redundant, as we have already observed.

� This computer session indicates that hijklmnj deals with two kinds of un-
known numeric variables: dependent variables and independent ones. Every

variable is independent at the beginning of its life, but every equation causes one
of the independent variables to become dependent or known. Each ‘##’ line emit-
ted by tracingequations shows a newly dependent-or-known variable, together with an
equivalent expression that involves only independent variables. For example, the line
‘## c=-0.5b-0.5a+1.5’ means that variable c has just become dependent and that it
equals − 1

2 b − 1
2a + 1.5, where variables b and a are independent. Similarly, ‘## a=2’

means that a has just changed from independent to known. When an independent
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variable v changes to dependent or known, the equivalents of all dependent variables
are updated so that they no longer depend on v; in this updating process some or all of
them may change from dependent to known, whereupon a ‘####’ line will be printed.

�� When hijklmnj reads a numeric equation it replaces all known variables
by their numeric values and all dependent variables by their equivalents. The

resulting equation can be converted into the form

c1v1 + · · ·+ cmvm = α

where the c’s are nonzero constants and the v’s are independent variables; α is a numeric
constant that might be zero. If some ck is so small that it probably would have been
zero in a calculation free of rounding errors, it is replaced by zero and the corresponding
vk is removed from the equation. Now if m = 0, the equation is considered to be either
redundant (if α is zero or extremely small) or inconsistent (otherwise). But if m > 0,
hijklmnj chooses an independent variable vk for which ck is maximum, and rewrites
the equation in the form

## vk = (α− c1v1 − · · · − ck−1vk−1 − ck+1vk+1 − · · · − cmvm)/ck.

Variable vk becomes dependent (if m > 1) or known (if m = 1).

� Inconsistent equations are equations that have no solutions. For example,
if you say ‘0 = 1’, hijklmnj will issue an error message saying that the

equation is “off by 1.” A less blatant inconsistency arises if you say, e.g, ‘a = b + 1;
b = c + 1; c = a + 1’; this last equation is off by three, for the former equations imply
that c = b− 1 = a− 2. The computer will simply ignore an inconsistent equation when
you resume processing after such an error.

� Redundant equations are equations that say nothing new. For example, ‘0 = 0’
is redundant, and so is ‘a = b + c’ if you have previously said that c = a− b.

hijklmnj stops with an error message if you give it a redundant equation between
two numeric expressions, because this usually indicates an oversight in the program.
However, no error is reported when an equation between pairs leads to one or two
redundant equations between numerics. For example, the equation ‘z3 = (0, h)’ will
not trigger an error message when the program has previously established that x3 = 0
or that y3 = h or both.

� Sometimes you might have to work a little bit to put an equation into a form
that hijklmnj can handle. For example, you can’t say

x/y = 2

when y is independent or dependent, because hijklmnj allows division only by known
quantities. The alternative

x = 2y

says the same thing and causes the computer no difficulties; furthermore it is a correct
equation even when y = 0.

�� hijklmnj’s ability to remember previous equations is limited to “linear”
dependencies as explained above. A mathematician might want to introduce

the condition x ≥ 0 by giving an equation such as ‘x = abs x’; but hijklmnj is
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incapable of dealing with such a constraint. Similarly, hijklmnj can’t cope with an
equation like ‘x = floor x’, which states that x is an integer. Systems of equations that
involve the absolute value and/or floor operation can be extremely difficult to solve,
and hijklmnj doesn’t pretend to be a mathematical genius.

�� The rules given earlier explain how an independent variable can become de-
pendent or known; conversely, it’s possible for a dependent variable to become

independent again, in unusual circumstances. For example, suppose that the equation
a+ b+2c = 3 in our example above had been followed by the equation d = b+ c+a/4.
Then there would be two dependent variables,

## c=-0.5b-0.5a+1.5
## d=0.5b-0.25a+1.5

Now suppose that the next statement is ‘numeric a’, meaning that the old value of
variable a should be discarded. hijklmnj can’t simply delete an independent variable
that has things depending on it, so it chooses a dependent variable to take a’s place;
the computer prints out

### 0.5a=-0.5b-c+1.5

meaning that 0.5a will be replaced by −c − 1
2 b + 3

2 in all dependencies, before a is
discarded. Variable c is now independent again; ‘showdependencies’ will reveal that
the only dependent variable is now d, which equals 0.75b + 0.5c + 0.75. (This is
correct, for if the variable a is eliminated from the two given equations we obtain
4d = 3b + 2c + 3.) The variable chosen for independence is one that has the greatest
coefficient of dependency with respect to the variable that will disappear.

� A designer often wants to stipulate that a certain point lies on a certain
line. This can be done easily by using a special feature of plain hijklmnj

called ‘whatever ’, which stands for an anonymous numeric variable that has a different
unknown value each time you use it. For example,

z1 = whatever [z2, z3]

states that point 1 appears somewhere on the straight line that passes through points
2 and 3. (The expression t[z2, z3] represents that entire straight line, as t runs through
all values from −∞ to +∞. We want z1 to be equal to t[z2, z3] for some value of t, but
we don’t care what value it is.) The expression ‘whatever [z2, z3]’ is legal whenever the
difference z2 − z3 is known; it’s usually used only when z2 and z3 are both known, i.e.,
when both points have been determined by prior equations.

� Here are a few more examples of equations that involve ‘whatever ’, together
with their translations into English. These equations are more fun than the

“tame” ones we considered at the beginning of this chapter, because they show off more
of the computer’s amazing ability to deduce explicit values from implicit statements.

Equation Translation

z5 − z4 = whatever ∗ dir 30 The angle between points 4 and 5 will be 30◦

above the horizon. (This equation can also
be written ‘z4 = z5 +whatever ∗dir 30’, which
states that point 4 is obtained by starting at
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point 5 and moving by some unspecified mul-
tiple of dir 30.)

z7 − z6 = whatever ∗ (z3 − z2) The line from point 6 to point 7 should be
parallel to the line from point 2 to point 3.

penpos8(whatever , 60) The simulated pen angle at point 8 should
be 60 degrees; the breadth of the pen is un-
specified, so it will be determined by other
equations.

� xEXERCISE 9.4
If z1, z2, z3, and z4 are known points, how can you tell hijklmnj to compute

the point z that lies on the intersection of the lines z1 . . z2 and z3 . . z4?

� xEXERCISE 9.5
Given five points z1, z2, z3, z4, and z5, explain how to compute z on the line

z1 . . z2 such that the line z . . z3 is parallel to the line z4 . . z5.

� xEXERCISE 9.6
What hijklmnj equation says that the line between points 11 and 12 is

perpendicular to the line between points 13 and 14?

� xEXERCISE 9.7
(For mathematicians.) Given three points z1, z2, and z3, explain how to

compute the distance from z1 to the straight line through z2 and z3.

��xEXERCISE 9.8
(For mathematicians.) Given three points z1, z2, z3, and a length l, explain

how to compute the two points on the line z2 . . z3 that are at distance l from z1.
(Assume that l is greater than the distance from z1 to the line.)

��xEXERCISE 9.9
The applications of whatever that we have seen so far have been in equations

between pairs of numeric values, not in equations between simple numerics. Explain
why an equation like ‘a + 2b = whatever ’ would be useless.

� All of the equations so far in this chapter have been between numeric expres-
sions or pair expressions. But hijklmnj actually allows equations between

any of the eight types of quantities. For example, you can write

s1="go"; s1&s1=s2

if s1 and s2 are string variables; this makes s1 = "go" and s2 = "gogo". Moreover, the
subsequent equations

s3=s4; s5=s6; s3=s5; s4=s1&"sh"

will make it possible for the machine to deduce that s6 = "gosh".

� But nonnumeric equations are not as versatile as numeric ones, because hijk-
lmnj does not perform operations on unknown quantities of other types. For

example, the equation

"h"&s7="heck"
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cannot be used to define s7 = "eck", because the concatenation operator & works only
with strings that are already known.

�� After the declaration ‘string s[]’ and the equations ‘s1=s2=s3’, the statement
‘show s0’ will produce the result ‘unknown string s0’; but ‘show s1’ will

produce ‘unknown string s2’. Similarly, ‘show s2’ and ‘show s3’ will produce ‘unknown
string s3’ and ‘unknown string s1’, respectively. In general, when several nonnumeric
variables have been equated, they will point to each other in some cyclic order.

Let “X” equal my father’s signature.

— FRED ALLEN, Vogues (1924)

ALL ANIMALS ARE EQUAL
BUT SOME ANIMALS ARE MORE EQUAL THAN OTHERS

— GEORGE ORWELL, Animal Farm (1945)
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Variables usually get values by appearing in equations, as described in the pre-
ceding chapter. But there’s also another way, in which ‘:=’ is used instead of ‘=’.
For example, the io.mf program in Chapter 5 said

stem# := trial_stem * pt#

when it wanted to define the value of stem#.
The colon-equal operator ‘:=’ means “discard the previous value of the

variable and assign a new one”; we call this an assignment operation. It was
convenient for io.mf to define stem# with an assignment instead of an equation,
because stem# was getting several different values within a single font. The
alternative would have been to say

numeric stem#; stem# = trial_stem * pt#

(thereby specifically undefining the previous value of stem# before using it in an
equation); this is more cumbersome.

The variable at the left of ‘:=’ might appear also in the expression on
the right. For example,

code := code + 1

means “increase the value of code by 1.” This assignment would make no sense
as an equation, since ‘code = code + 1’ is inconsistent. The former value of
code is still relevant on the right-hand side when ‘code + 1’ is evaluated in this
example, because old values are not discarded until the last minute; they are
retained until just before a new assignment is made.

� xEXERCISE 10.1
Is it possible to achieve the effect of ‘code := code +1’ by using equations and

numeric declarations but not assignments?

Assignments are permitted only when the quantity at the left of the ‘:=’
is a variable. For example, you can’t say ‘code+1:=code’. More significantly,
things like ‘(x,y):=(0,0)’ are not permitted, although you can say ‘w:=(0,0)’
if w has been declared to be a variable of type pair. This means that a state-
ment like ‘z1:=z2’ is illegal, because it’s an abbreviation for the inadmissible
construction ‘(x1,y1):=(x2,y2)’; we must remember that z1 is not really a
variable, it’s a pair of variables.

The restriction in the previous paragraph is not terribly significant, be-
cause assignments play a relatively minor rôle in METAFONT programs. The
best programming strategy is usually to specify equations instead of assignments,
because equations indicate the relationships between variables in a declarative
manner. A person who makes too many assignments is still locked into the habits
of old-style “imperative” programming languages in which it is necessary to tell
the computer exactly how to do everything; METAFONT’s equation mechanism
liberates us from that more complicated style of programming, because it lets
the computer take over the job of solving equations.
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The use of assignments often imposes a definite order on the statements
of a program, because the value of a variable is different before and after an
assignment takes place. Equations are simpler than assignments because they
can usually be written down in any order that comes naturally to you.

Assignments do have their uses; otherwise METAFONT wouldn’t bother
with ‘:=’ at all. But experienced METAFONT programmers introduce assign-
ments sparingly—only when there’s a good reason for doing so—because equa-
tions are generally easier to write and more enlightening to read.

� hijklmnj’s internal quantities like tracingequations always have known nu-
meric values, so there’s no way to change them except by giving assignments.

The computer experiment in Chapter 9 began with

\tracingequations:=tracingonline:=1;

this illustrates the fact that multiple assignments are possible, just like multiple equa-
tions. Here is the complete syntax for equations and assignments:

〈equation〉 −→ 〈expression〉 = 〈right-hand side〉
〈assignment〉 −→ 〈variable〉 := 〈right-hand side〉
〈right-hand side〉 −→ 〈expression〉 | 〈equation〉 | 〈assignment〉

Notice that the syntax permits mixtures like ‘a + b = c := d + e’; this is the same as
the assignment ‘c := d + e’ and the equation ‘a + b = c’.

�� In a mixed equation/assignment like ‘a + b = b := b + 1’, the old value of b
is used to evaluate the expressions. For example, if b equals 3 before that

statement, the result will be the same as ‘a + 3 = b := 3 + 1’; therefore b will be set
to 4 and a will be set to 1.

� xEXERCISE 10.2
Suppose that you want variable x3 to become “like new,” completely indepen-

dent of any value that it formerly had; but you don’t want to destroy the values of x1

and x2. You can’t say ‘numeric x[ ]’, because that would obliterate all the xk’s. What
can you do instead?

��xEXERCISE 10.3
Apply hijklmnj to the short program

string s[ ]; s1 = s2 = s3 = s4; s5 = s6; s2 := s5; showvariable s;

and explain the results you get.

�� If other variables depend on v when v is assigned a new value, the other
variables do not change to reflect the new assignment; they still act as if

they depended on the previous (unknown) value of v. For example, if the equations
‘2u = 3v = w’ are followed by the assignment ‘w := 6’, the values of u and v won’t
become known, but hijklmnj will still remember the fact that v = .66667u. (This
is not a new rule; it’s a consequence of the rules already stated. When an independent
variable is discarded, a dependent variable may become independent in its place, as
described in Chapter 9.)
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��xEXERCISE 10.4
Apply hijklmnj to the program

tracingequations := tracingonline := 1;
a = 1; a := a + b; a := a + b; a := a + b;
show a, b;

and explain the results you get.

At first his assignment had pleased,
but as hour after hour passed

with growing weariness,
he chafed more and more.

— C. E. MULFORD, Hopalong Cassidy (1910)

〈left part〉 ::= 〈variable〉 :=
〈left part list〉 ::= 〈left part〉 | 〈left part list〉〈left part〉

〈assignment statement〉 ::= 〈left part list〉〈arithmetic expression〉 |
〈left part list〉〈Boolean expression〉

— PETER NAUR et al., Report on the Algorithmic language ALGOL 60 (1960)
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A single METAFONT program can produce fonts of type for many different kinds
of printing equipment, if the programmer has set things up so that the resolution
can be varied. The “plain METAFONT ” base file described in Appendix B estab-
lishes a set of conventions that make such variability quite simple; the purpose
of the present chapter is to explain those conventions.

For concreteness let’s assume that our computer has two output devices.
One of them, called cheapo , has a resolution of 200 pixels per inch (approximately
8 per millimeter); the other, called luxo , has a resolution of 2000 pixels per inch.
We would like to write METAFONT programs that are able to produce fonts for
both devices. For example, if the file newface.mf contains a program for a new
typeface, we’d like to generate a low-resolution font by invoking METAFONT with

\mode=cheapo; input newface

and the same file should also produce a high-resolution font if we start with

\mode=luxo; input newface

instead. Other people with different printing equipment should also be able to
use newface.mf with their own favorite mode values.

The way to do this with plain METAFONT is to call mode setup near
the beginning of newface.mf; this routine establishes the values of variables like
pt and mm , which represent the respective numbers of pixels in a point and a
millimeter. For example, when mode = cheapo , the values will be pt = 2.7674
and mm = 7.87402; when mode = luxo , they will be pt = 27.674 and mm =
78.74017. The newface.mf program should be written in terms of such variables,
so that the pixel patterns for characters will be about 10 times narrower and
10 times shorter in cheapo mode than they are in luxo mode. For example, a
line that’s drawn from (0, 0) to (3mm , 0) will produce a line that’s about 23.6
pixels long in cheapo mode, and about 236.2 pixels long in luxo mode; the former
line will appear to be 3mm long when printed by cheapo , while the latter will
look 3mm long when printed by luxo .

A further complication occurs when a typeface is being magnified; in
such cases the font does not correspond to its normal size. For example, we might
want to have a set of fonts for cheapo that are twice as big as usual, so that users
can make transparencies for overhead projectors. (Such output could also be
reduced to 50% of its size as printed, on suitable reproduction equipment, thereby
increasing the effective resolution from 200 to 400.) TEX allows entire jobs to
be magnified by a factor of 2 if the user says ‘\magnification=2000’; individual
fonts can also be magnified in a TEX job by saying, e.g., ‘\font\f=newface
scaled 2000’. The standard way to produce a font with two-fold magnification
using the conventions of plain METAFONT is to say, e.g.,

\mode=cheapo; mag=2; input newface;

this will make pt = 5.5348 and mm = 15.74803.
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The mode setup routine looks to see if mag has a known value; if not,
it sets mag = 1. Similarly, if mode is unknown, mode setup sets mode = proof .

Plain METAFONT also computes the values of several other dimension-
oriented values in addition to pt and mm , corresponding to the dimensions that
are understood by TEX. Here is the complete list:

pt printer’s point (72.27 pt = 1 in)
pc pica (1 pc = 12 pt)
in inch (1 in = 2.54 cm)
bp big point (72 bp = 1 in)
cm centimeter (100 cm = 1meter)
mm millimeter (10mm = 1 cm)
dd didot point (1157 dd = 1238 pt)
cc cicero (1 cc = 12 dd)

In each case the values are rounded to the nearest 1
65536 th of a pixel.

Although such standard physical dimensions are available, they haven’t
been used very much in traditional typefaces; designers usually specify other
units like ‘em ’ or ‘x height ’ in order to define the sizes of letters, and such
quantities generally have ad hoc values that vary from font to font. Plain META-
FONT makes it easy to introduce ad hoc dimensions that will vary with the
resolution and the magnification just as pt and mm do; all you have to do is
define “sharped” dimensions that have the same name as your pixel-oriented
dimensions, but with ‘#’ tacked on as a suffix. For example, em# and x height#

(typed ‘em#’ and ‘x_height#’ ) would be the sharped dimensions corresponding
to em and x height . Plain METAFONT has already defined the quantities pt#,
pc#, in#, bp#, cm#, mm#, dd#, and cc# for the standard units named above.

Sharped dimensions like em# and x height# should always be defined
in terms of resolution-independent dimension variables like pt#, in#, etc., so
that their values do not change in any way when mode and mag are varied.
The ‘#’ sign implies unchangeability. After mode setup has been called, the
pixel-oriented dimensions can be calculated by simply saying

define pixels(em , x height ).

This statement is an abbreviation for

em := em# ∗ hppp ; x height := x height# ∗ hppp

where hppp is an internal variable of METAFONT that represents the number of
pixels per point in the horizontal dimension. Any number of ad hoc dimensions
can be listed in a single define pixels statement. Notice that ‘#’ is not an oper-
ator that could convert em to em#; rounding errors would be mode-dependent.

Chapter 5’s demonstration program io.mf contains several examples of
ad hoc dimensions defined in this way, and it also contains the statement

define blacker pixels(thin , thick );
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what’s this? Well, Appendix B makes that statement an abbreviation for

thin := thin# ∗ hppp + blacker ; thick := thick # ∗ hppp + blacker ;

in other words, the sharped dimensions are being unsharped in this case by
converting them to pixels and then adding ‘blacker ’. The variable blacker is a
special correction intended to help adapt a font to the idiosyncrasies of the cur-
rent output device; mode setup uses the value of mode to establish the value of
blacker . For example, cheapo mode might want blacker = 0.65, while luxo mode
might give best results when blacker = 0.1. The general convention is to add
blacker to pixel-oriented variables that determine the breadth of pens and the
thickness of stems, so that the letters will be slightly darker on machines that
otherwise would make them appear too light. Different machines treat pixels
quite differently, because they are often based on quite different physical prin-
ciples. For example, the author once worked with an extremely high-resolution
device that tended to shrink stem lines rather drastically when it used a certain
type of photographic paper, and it was necessary to set blacker = 4 to get proper
results on that machine; another high-resolution device seems to want blacker
to be only 0.2. Experimentation is necessary to tune METAFONT’s output to
particular devices, but the author’s experience suggests strongly that such a cor-
rection is worthwhile. When mode = proof or smoke , the value of blacker is
taken to be zero, since the output in these modes is presumably undistorted.

xEXERCISE 11.1
Does ‘mode = cheapo ; mag = 10’ produce exactly the same font as ‘mode =
luxo ’, under the assumptions of this chapter?

� Line 7 of io.mf says ‘define corrected pixels(o)’, and this is yet a third
way of converting from true physical dimensions to pixel-oriented values. Ac-

cording to Appendix B, variable o is defined by the assignment

o := round(o# ∗ hppp ∗ o correction ) + eps

where o correction , like blacker , is a magic number that depends on the output device
for which fonts are being made. On a high-resolution device like luxo , the appropriate
value for the o correction factor is 1; but on a low-resolution device like cheapo , the
author has obtained more satisfactory results with o correction = 0.4. The reason is
that ‘o’ is used to specify the number of pixels by which certain features of characters
“overshoot” the baseline or some other line to which they are visually related. High-
resolution curves look better when they overshoot in this way, but low-resolution curves
do not; therefore it is usually wise to curtail the amount of overshoot by applying the
o correction factor. In proof and smoke modes the factor is equal to 1.0, since these
modes correspond to high resolution.

�� The properties of output devices are modeled also by a parameter that’s called
fillin , which represents the amount by which diagonal strokes tend to be darker

than horizontal or vertical strokes. More precisely, let us say that a “corner” pixel is
one whose color matches the color of five of its neighbors but not the other three,
where the three exceptions include one horizontal neighbor, one vertical neighbor, and
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the diagonal neighbor between them. If a white corner pixel has apparent darkness f1

and if a black corner pixel has apparent darkness 1− f2, then the fillin is f1 − f2. (A
“true” raster image would have f1 = f2 = 0, but physical properties often cause pixels
to influence their neighbors.)

�� Each output device for which you will be generating fonts should be repre-
sented by a symbolic mode name in the implementation of hijklmnj that

you are using. Since these mode names vary from place to place, they are not standard
aspects of the hijklmnj language; for example, it is doubtful whether the hypotheti-
cal cheapo and luxo modes discussed in this chapter actually exist anywhere. The plain
hijklmnj base is intended to be extended to additional modes in a disciplined way,
as described at the end of Appendix B.

�� It’s easy to create a new symbolic mode, using plainhijklmnj’s ‘mode def ’
convention. For example, the luxo mode we have been talking about could be

defined by saying

mode def luxo =
pixels per inch := 2000; % high res, almost 30 per point
blacker := .1; % make pens a teeny bit blacker
o correction := 1; % keep the full overshoot
fillin := 0.1; % compensate for darkened corners
proofing := 0; % no, we’re not making proofs
fontmaking := 1; % yes, we are making a font
tracingtitles := 1; enddef ; % yes, show titles online

The name of the mode should be a single symbolic token. The resolution should be
specified by assigning a value to pixels per inch ; all other dimension values (pt , mm ,
etc.) will be computed from this one by mode setup. A mode definition should also
assign values to the internal variables blacker , o correction , and fillin (which describe
the device characteristics), as well as proofing , fontmaking , and tracingtitles (which
affect the amount of output that will be produced). In general, proofing and fontmaking
are usually set to 0 and 1, respectively, in modes that are intended for font production
rather than initial font design; tracingtitles is usually 0 for low-resolution fonts (which
are generated quickly), but 1 for high-resolution fonts (which go more slowly), because
detailed online progress reports are desirable when comparatively long jobs are running.

�� Besides the seven mandatory quantities ‘pixels per inch ’, . . . , ‘tracingtitles ’
just discussed, a mode definition might assign a value to ‘aspect ratio ’. In the

normal case when no aspect ratio is specified, it means that the fonts to be output are
assumed to have square pixels. But if, for example, the mode def sets aspect ratio :=
5/4, it means that the output pixels are assumed to be nonsquare in the ratio of 5
to 4; i.e., 5 vertical pixel units are equal to 4 horizontal pixel units. The pixel-oriented
dimensions of plain hijklmnj are given in terms of horizontal pixel units, so an aspect
ratio of 5/4 together with 2000 pixels per inch would mean that there are 2500 vertical
pixel units per inch; a square inch would consist of 2500 rows of pixels, with 2000 pixels
in each row. (Stating this another way, each pixel would be 1

2000 inches wide and 1
2500

inches high.) In such a case, plain hijklmnj will set the currenttransform variable
so that all draw and fill commands stretch the curves by a factor of 5/4 in the vertical
dimension; this compensates for the nonsquare pixels, so the typeface designer doesn’t
have to be aware of the fact that pixels aren’t square.
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Let’s look now at a concrete example, so that it will be clear how the
ideas of device-independent font design can be implemented in practice. We
shall study a file logo.mf that generates the seven letters of METAFONT’s logo.
There also are “parameter” files logo10.mf, logo9.mf, etc., which use logo.mf
to produce fonts in various sizes. For example, a font containing the 10-point
characters ‘METAFONT ’ could be generated for the hypothetical luxo printer by
running METAFONT with the command line

\mode=luxo; input logo10

if luxo mode really existed.
The main purpose of logo10.mf is to establish the “sharped” values of

several ad hoc dimensions; then it inputs logo.mf, which does the rest of the
work. Here is the entire file logo10.mf:

% 10-point METAFONT logo

font_size 10pt#; % the "design size" of this font
ht#:=6pt#; % height of characters
xgap#:=0.6pt#; % horizontal adjustment
u#:=4/9pt#; % unit width
s#:=0; % extra space at the left and the right
o#:=1/9pt#; % overshoot
px#:=2/3pt#; % horizontal thickness of pen
input logo % now generate the font
end % and stop.

Similar files logo9.mf and logo8.mf will produce 9-point ‘hijklmnj ’ and
8-point ‘opqrstuq ’; the letters get a little wider in relation to their height,
and the inter-character spacing gets significantly wider, as the size gets smaller:

% 9-point METAFONT logo % 8-point METAFONT logo

font_size 9pt#; font_size 8pt#;
ht#:=.9*6pt#; ht#:=.8*6pt#;
xgap#:=.9*0.6pt#; xgap#:=.8*0.6pt#;
u#:=.91*4/9pt#; u#:=.82*4/9pt#;
s#:=.08pt#; s#:=.2pt#;
o#:=1/10pt#; o#:=1/12pt#;
px#:=.9*2/3pt#; px#:=.8*2/3pt#;
input logo input logo
end end

It is interesting to compare the font generated by logo10.mf to the font gener-
ated by logo8.mf with mag=10/8: Both fonts will have the same values of ht ,
xgap , and px , when the magnification has been taken into account. But the
magnified 8-point font has a slightly larger value of u and a positive value of s ;
this changes ‘METAFONT ’ to ‘/0123451 ’.
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� Every font has a “design size,” which is a more-or-less arbitrary number that
reflects the size of type it is intended to blend with. Users of TEX select

magnified fonts in two ways, either by specifying an “at size” or by specifying a scale
factor (times 1000). For example, the 8-point hijklmnj logo can be used at 10/8
magnification by referring either to ‘logo8 at 10pt’ or to ‘logo8 scaled 1250’ in a TEX
document. When an “at size” is specified, the amount of magnification is the stated
size divided by the design size. A typeface designer can specify the design size by using
plain hijklmnj’s ‘font size’ command as illustrated on the previous page. (If no
design size is specified, hijklmnj will set it to 128 pt, by default.)

The file logo.mf itself begins by defining three more ad hoc dimensions
in terms of the parameters that were set by the parameter file; these dimensions
will be used in several of the programs for individual letters. Then logo.mf
makes the conversion to pixel units:

% Routines for the METAFONT logo
% (logo10.mf is a typical parameter file)
mode_setup;
ygap#:=(ht#/13.5u#)*xgap#; % vertical adjustment
leftstemloc#:=2.5u#+s#; % position of left stems
barheight#:=.45ht#; % height of bar lines
define_pixels(s,u,xgap,ygap,leftstemloc,barheight);
py#:=.9px#; define_blacker_pixels(px,py); % pen dimensions
pickup pencircle xscaled px yscaled py; logo_pen:=savepen;
define_corrected_pixels(o);

There’s nothing new here except the use of ‘savepen ’ in the second-last line;
this, as we will see in Chapter 16, makes the currently-picked-up pen available
for repeated use in the subsequent program.

After the initial definitions just shown, logo.mf continues with programs
for each of the seven letters. For example, here is the program for ‘E’, which
illustrates the use of u#, s#, ht#, leftstemloc , barheight , xgap , and logo pen :

(Figure 11a will be inserted here;
too bad you can’t see it now.)

beginchar("E",14u#+2s#,ht#,0);
pickup logo_pen;
x1=x2=x3=leftstemloc;
x4=x6=w-x1+o; x5=x4-xgap;
y1=y6; y2=y5; y3=y4;
bot y1=0; top y3=h;
y2=barheight;
draw z6--z1--z3--z4; draw z2--z5;
labels(1,2,3,4,5,6);
endchar;

We have seen the essentials of the M and the T in Chapter 4; programs for the
other letters will appear later.
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xEXERCISE 11.2
The ad hoc dimensions ht#, xgap#, u#, s#, o#, and px # defined in the parameter
files all affect the letter ‘E’ defined by this program. For each of these dimensions,
tell what would happen to the ‘E’ if that dimension were increased slightly while
all the others stayed the same.

� xEXERCISE 11.3
Guess the program for ‘l’ (which is almost the same as ‘i’ ).

� xEXERCISE 11.4
Write the complete programs for ‘h’ and ‘j ’, based on the information in

Chapter 4, but using the style of the program for ‘E’ above. The character widths
should be 18u# + 2s# and 13u# + 2s#, respectively.

� The file logo.mf also contains the following cryptic instructions, which cause
the letter pairs ‘jk’ and ‘lm’ to be typeset closer together than their bounding

boxes would imply:

ligtable "T": "A" kern -.5u#;
ligtable "F": "O" kern -u#;

Without these corrections ‘hijklmnj ’ would be ‘hijklmnj ’. Uppercase letters
are often subject to such spacing corrections, especially in logos; TEX will adjust the
spacing if the typeface designer has supplied ligtable information like this.

� Finally, logo.mf closes with four more commands, which provide further in-
formation about how to typeset with this font:

font_quad 18u#+2s#;
font_normal_space 6u#+2s#;
font_normal_stretch 3u#;
font_normal_shrink 2u#;

A font quad is the unit of measure that a TEX user calls one ‘em’ when this font is
selected. The normal space, stretch, and shrink parameters define the interword spacing
when text is being typeset in this font. Actually a font like logo10 is rarely used to
typeset anything except the one word, ‘hijklmnj ’; but the spacing parameters have
been included just in case somebody wants to typeset a sentence like ‘kn illiji
jmhkjm ml hmnjknk mljin kji nmnlkj jmllii’.

� An optional ‘=’ or ‘:=’ sign may be typed after ‘font size’, ‘font quad’, etc.,
in case you think the file looks better that way.

� Notice that “sharped” units must be given in the ligtable kerning commands
and in the definition of device-independent parameters like font size and

font quad. Appendix F discusses the complete rules of ligtable and other commands
by which hijklmnj programs can send important information to typesetting systems
like TEX. Adding these extra bits of information to a hijklmnj program after a font
has been designed is something like adding an index to a book after that book has been
written and proofread.

��xEXERCISE 11.5
What’s the longest English word that can be typeset with the font logo9?
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� Let’s summarize the general contents of logo.mf, now that we have seen it
all, because it provides an example of a complete typeface description (even

though there are only seven letters):
The file begins by defining ad hoc dimensions and converting them to pixel
units, using mode setup, define pixels, etc.
Then come programs for individual letters. (These programs are often pre-
ceded by macro definitions for subroutines that occur several times. For ex-
ample, we will see later that the ‘k’ and the ‘m’ of the logo are drawn with the
help of a subroutine that makes half of a superellipse; the definition of this
macro actually comes near the beginning of logo.mf, just before the programs
for the letters.)
Finally there are special commands like ligtable and font quad, to define
parameters of the font that are helpful when typesetting.
The file is accompanied by parameter files that define ad hoc dimensions for
different incarnations of the typeface.

We could make lots of different parameter files, which would produce lots of different
(but related) variations on the hijklmnj logo; thus, logo.mf defines a “meta-font”
in the sense of Chapter 1.

� xEXERCISE 11.6
What changes would be necessary to generalize the logo routines so that the

bar-line height is not always 45 per cent of the character height?

� Assignments ( ‘:=’ ) have been used instead of equations ( ‘=’ ) in the param-
eter files logo10.mf, logo9.mf, and logo8.mf, as well as in the opening lines

of io.mf in Chapter 5; this contradicts the advice in Chapter 10, where we are told to
stick to equations unless assignments are absolutely necessary. The author has found
it convenient to develop the habit of using assignments whenever ad hoc dimensions
are being defined, because he often makes experimental files in which the ad hoc di-
mensions are changed several times. For example, it’s a good idea to test a particular
letter with respect to a variety of different parameter settings when that letter is first
being designed; such experiments can be done easily by copying the ad hoc parameter
definitions from parameter files into a test file, provided that the parameters have been
defined with assignments instead of equations.

� TEX users have found it convenient to have fonts in a series of magnifications
that form a geometric series. A font is said to be scaled by ‘magstep 1’ if

it has been magnified by 1.2; it is scaled by ‘magstep 2’ if it has been magnified by
1.2×1.2 = 1.44; it is scaled by ‘magstep 3’ if it has been magnified by 1.2×1.2×1.2 =
1.728; and so on. Thus, if a job uses a font that is scaled by magstep 2, and if that
entire job is magnified by magstep 1, the font actually used for printing will be scaled
by magstep 3. The additive nature of magsteps makes it more likely that fonts will
exist at the desired sizes when jobs are magnified. Plain hijklmnj supports this
convention by allowing constructions like

\mode=cheapo; mag=magstep 2; input logo9

if you want to generate the 9-point hijklmnj logo for the cheapo printer, magnified
by 1.44 (i.e., by magstep 2). You can also write ‘magstep 0.5’ for what TEX calls
‘\magstephalf’; this magnifies by

√
1.2.
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�� The sharped forms of dimensions are actually represented by plain hijk-
lmnj in terms of printer’s points, so that ‘pt#’ turns out to be equal to 1.

However, it is best for programmers not to make use of this fact; a program ought to
say, e.g., ‘em# := 10pt#’, even though the ‘pt#’ in this construction is redundant, and
even though the computer would run a few microseconds faster without it.

��xEXERCISE 11.7
Suppose you want to simulate a low-resolution printer on a high resolution

device; for concreteness, let’s say that luxo is supposed to produce the output of cheapo ,
with each black cheapo pixel replaced by a 10×10 square of black luxo pixels. Explain
how to do this to the logo10 font, by making appropriate changes to logo.mf. Your
output file should be called cheaplogo10.2000gf.

A great Temptation must be withstood with great Resolution.

— WILLIAM BURKITT, Expository Notes on the New Testament (c. 1700)

What some invent, the rest enlarge.

— JONATHAN SWIFT, Journal of a Modern Lady (1729)



(page 100)

12
Boxes



Chapter 12: Boxes 101

TeX
height
baseline
depth
width
reference point
cmr10
cmsl10

Let’s pause now to take a closer look at the “bounding boxes” that enclose
individual characters. In olden days, metal type was cast on a rectangular body
in which each piece of type had the same vertical extent, although the type widths
would vary from character to character. Nowadays we are free of the mechanical
constraints imposed by metal type, but the former metaphors are still useful:
A typesetting system like TEX imagines that each character fits into a rectangular
box, and words are typeset by putting such boxes snugly next to each other.

The main difference between the old conventions and the new ones is that
type boxes are now allowed to vary in height as well as in width. For example,
when TEX typesets ‘A line of type.’ it puts boxes together that essentially look
like this: ‘ ’. (The ‘A’ appears in a box ‘ ’ that sits on a given
baseline, while the ‘y’ appears in a box ‘ ’ that descends below the baseline.)
TEX never looks inside a box to see what character actually appears there; TEX’s
job is to put boxes together in the right places on a page, based only on the box
sizes. It is a typeface designer’s job to decide how big the boxes should be and
to create the characters inside the boxes.

Boxes are two-dimensional objects, but we ascribe three dimensions to
them because the vertical component is divided into two quantities, the height
(above the baseline) and the depth (below the baseline). The horizontal dimen-
sion is, of course, called the width. Here is a picture of a typical box, showing
its so-called reference point and baseline:

Reference point−→• Baseline

←− width −→

↑
|
|

height
|
|
↓
↑

depth
↓

The example characters in previous chapters have all had zero depth, but we
will soon be seeing examples in which both height and depth are relevant.

A character shape need not fit inside the boundaries of its box. Indeed,
italic and slanted letters are put into ordinary boxes just as if they were not
slanted, so they frequently stick out at the right. For example, the letter ‘g’
in the font you are now reading (cmr10) can be compared with the ‘g ’ in the
corresponding slanted font (cmsl10):

(A figure will be inserted here; too bad you can’t see it now.
It shows two g’s, as claimed. In fact, the same figure ap-
peared on page 63 of The TeXbook.)

The slanted ‘g ’ has been drawn as if its box were skewed right at the top and
left at the bottom, keeping the baseline fixed; but TEX is told in both cases that
the box is 5 pt wide, 4.3055 pt high, and 1.9444 pt deep. Slanted letters will be
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spaced properly in spite of the fact that their boxes have been straightened up,
because the letters will match correctly at the baseline.

� Boxes also have a fourth dimension called the italic correction, which gives
TEX additional information about whether or not a letter protrudes at the

right. For example, the italic correction for an unslanted ‘g’ in cmr10 is 0.1389 pt,
while the corresponding slanted letter in cmsl10 has an italic correction of 0.8565 pt.
The italic correction is added to a box’s width when math formulas like g2 or g2 are
being typeset, and also in other cases as explained in The TEXbook.

Plain METAFONT’s beginchar command establishes the width, height,
and depth of a box. These dimensions should be given in terms of “sharped”
quantities that do not vary with the resolution or magnification, because the size
of a character’s type box should not depend in any way on the device that will
be used to output that character. It is important to be able to define documents
that will not change even though the technology for printing those documents is
continually evolving. METAFONT can be used to produce fonts for new devices
by introducing new “modes,” as we have seen in Chapter 11, but the new fonts
should still give the same box dimensions to each character. Then the device-
independent files output by TEX will not have to be changed in any way when
they are printed or displayed with the help of new equipment.

The three dimensions in a beginchar command are given in reverse
alphabetical order: First comes the width, then the height, then the depth. The
beginchar routine converts these quantities into pixel units and assigns them
to the three variables w , h , and d . In fact, beginchar rounds these dimensions
to the nearest whole number of pixels; hence w, h, and d will always be integers.

METAFONT’s pixels are like squares on graph paper, with pixel bound-
aries at points with integer coordinates. The left edge of the type box lies on
the line x = 0, and the right edge lies on the line x = w; we have y = h on the
top edge and y = −d on the bottom edge. There are w pixels in each row and
h + d in each column, so there are exactly wh + wd pixels inside the type box.

Since w, h, and d are integers, they probably do not exactly match
the box dimensions that are assumed by device-independent typesetting systems
like TEX. Some characters will be a fraction of a pixel too wide; others will be a
fraction of a pixel too narrow. However, it’s still possible to obtain satisfactory
results if the pixel boxes are stacked together based on their w values and if the
accumulated error is removed in the spaces between words, provided that the box
positions do not drift too far away from their true device-independent locations.
A designer should strive to obtain letterforms that work well together when they
are placed together in boxes that are an integer number of pixels wide.

�� You might not like the value of w that beginchar computes by rounding the
device-independent width to the nearest pixel boundary. For example, you

might want to make the letter ‘m’ one pixel wider, at certain resolutions, so that its
three stems are equally spaced or so that it will go better with your ‘n’. In such a case
you can assign a new value to w, at any time between beginchar and endchar. This
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new value will not affect the device-independent box width assumed by TEX, but it
should be respected by the software that typesets dvi files using your font.

Here’s an example of a character that has nonzero width, height, and
depth; it’s the left parenthesis in Computer Modern fonts like cmr10. Computer
Modern typefaces are generated by METAFONT programs that involve lots of pa-
rameters, so this example also illustrates the principles of “meta-design”: Many
different varieties of left parentheses can be drawn by this one program. But
let’s focus our attention first on the comparatively simple way in which the box
dimensions are established and used, before looking into the details of how a
meta-parenthesis has actually been specified.

"Left parenthesis";
numeric ht#, dp#;
ht# = body height#; .5[ht#,−dp#] = axis#;
beginchar("(", 7u#, ht#, dp#);
italcorr ht# ∗ slant − .5u#;
pickup fine.nib ;
penpos1(hair − fine , 0);

(0,h) (w,h)

(Figure 12a will be
inserted here; too bad
you can’t see it now.)

(0,−d) (w,−d)

penpos2(.75[thin , thick ]− fine , 0);
penpos3(hair − fine , 0);
rt x1r = rt x3r = w − u; lft x2l = x1 − 4u;
top y1 = h; y2 = .5[y1, y3] = axis ;
filldraw z1l{(z2l − z1l) xscaled 3} . . . z2l

. . . {(z3l − z2l) xscaled 3}z3l

- - z3r{(z2r − z3r) xscaled 3} . . . z2r

. . . {(z1r − z2r) xscaled 3}z1r - - cycle;
penlabels(1, 2, 3); endchar;

The width of this left parenthesis is 7u#, where u# is an ad hoc pa-
rameter that figures in all the widths of the Computer Modern characters. The
height and depth have been calculated in such a way that the top and bot-
tom of the bounding box are equally distant from an imaginary line called the
axis, which is important in mathematical typesetting. (For example, TEX puts
the bar line at the axis in fractions like 1

2 ; many symbols like ‘+’ and ‘=’,
as well as parentheses, are centered on the axis line.) Our example program
puts the axis midway between the top and bottom of the type by saying that
‘.5[ht#,−dp#] = axis#’. We also place the top at position ‘ht# = body height#’ ;
here body height# is the height of the tallest characters in the entire typeface.
It turns out that body height# is exactly 7.5pt# in cmr10, and axis# = 2.5pt#;
hence dp# = 2.5pt#, and the parenthesis is exactly 10 pt tall.

The program for ‘(’ uses a filldraw command, which we haven’t seen
before in this book; it’s basically a combination of fill and draw, where the filling
is done with the currently-picked-up pen. Some of the Computer Modern fonts
have characters with “soft” edges while others have “crisp” edges; the difference
is due to the pen that is used to filldraw the shapes. This pen is a circle whose
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diameter is called fine ; when fine is fairly large, filldraw will produce rounded
corners, but when fine = 0 (as it is in cmr10) the corners will be sharp.

The statement ‘penpos1(hair−fine , 0)’ makes the breadth of a simulated
broad-edge pen equal to hair − fine at position 1; i.e., the distance between z1l

and z1r will be hair − fine . We will be filling a region between z1l and z1r with
a circle-shaped pen nib whose diameter is fine ; the center of that nib will pass
through z1l and z1r, hence the pen will effectively add 1

2fine to the breadth of
the stroke at either side. The overall breadth at position 1 will therefore be
1
2fine +(hair −fine )+ 1

2fine = hair . (Computer Modern’s “hairline thickness”
parameter, which governs the breadth of the thinnest strokes, is called hair .)
Similarly, the statement ‘penpos2(.75[thin , thick ] − fine , 0)’ makes the overall
breadth of the pen at position 2 equal to .75[thin , thick ], which is 3

4 of the way
between two other parameters that govern stroke breadths in Computer Modern
routines. If fine is increased while hair , thin , and thick stay the same, the effect
will simply be to produce more rounded corners at positions 1 and 3, with little
or no effect on the rest of the shape, provided that fine doesn’t get so large that
it exceeds hair .

Here, for example, are five different left parentheses, drawn by our ex-
ample program with various settings of the parameters:

cmr10

(Figure 12a will be
inserted here; too bad
you can’t see it now.)

u = 20
ht = 270
axis = 90
fine = 0
hair = 8
thin = 9
thick = 25

cmbx10

(Figure 12b will be in-
serted here; too bad you
can’t see it now.)

u = 23
ht = 270
axis = 90
fine = 0
hair = 13
thin = 17
thick = 41

cmvtt10

(Figure 12c will be in-
serted here; too bad
you can’t see it now.)

u = 21
ht = 250
axis = 110
fine = 22
hair = 22
thin = 25
thick = 25

cmssdc10

(Figure 12d will be
inserted here; too
bad you can’t see it
now.)

u = 19
ht = 270
axis = 95
fine = 8
hair = 23
thin = 40
thick = 40

cmti10

(Figure 12e will be
inserted here; too
bad you can’t see it
now.)

u = 18.4
ht = 270
axis = 90
fine = 7
hair = 8
thin = 11
thick = 23

Parameter values are shown here in proof mode pixel units, 36 to the point.
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(Thus, for example, the value of u# in cmr10 is 20
36pt#.) Since cmbx10 is a “bold

extended” font, its unit width u is slightly larger than the unit width of cmr10,
and its pen widths (especially thick ) are significantly larger. The “variable-
width typewriter” font cmvtt10 has soft edges and strokes of almost uniform
thickness, because fine and hair are almost as large as thin and thick . This font
also has a raised axis and a smaller height. An intermediate situation occurs
in cmssdc10, a “sans serif demibold condensed” font that is similar to the type
used in the chapter titles of this book; thick = thin in this font, but hairlines are
noticeably thinner, and fine provides slightly rounded corners. The “text italic”
font cmti10 has rounded ends, and the character shape has been slanted by .25;
this means that each point (x, y) has been moved to position (x+ .25y, y), in the
path that is filled by filldraw.

� The vertical line just to the right of the italic left parenthesis shows the italic
correction of that character, i.e., the fourth box dimension mentioned earlier.

This quantity was defined by the statement ‘italcorr ht#∗slant−.5u#’ in our program;
here slant is a parameter of Computer Modern that is zero in all the unslanted fonts,
but slant = .25 in the case of cmti10. The expression following italcorr should always
be given in sharped units. If the value is negative, the italic correction will be zero;
otherwise the italic correction will be the stated amount.

� The author has obtained satisfactory results by making the italic correction
roughly equal to .5u plus the maximum amount by which the character sticks

out to the right of its box. For example, the top right end of the left parenthesis will be
nearly at position (w − u, ht ) before slanting, so its x coordinate after slanting will be
w − u + ht ∗ slant ; this will be the rightmost point of the character, if we assume that
slant ≥ 0. Adding .5u, subtracting w, and rewriting in terms of sharped units gives the
stated formula. Notice that when slant = 0 the statement reduces to ‘italcorr −.5u#’;
this means that unslanted left parentheses will have an italic correction of zero.

� xEXERCISE 12.1
Write a program for right parentheses, to go with these left parentheses.

The reader should bear in mind that the conventions of plain METAFONT
and of Computer Modern are not hardwired into the METAFONT language; they
are merely examples of how a person might use the system, and other typefaces
may well be better served by quite different approaches. Our program for left
parentheses makes use of beginchar, endchar, italcorr, penlabels, pickup,
penpos , lft , rt , top , z , and filldraw, all of which are defined somewhat arbitrarily
in Appendix B as part of the plain base; it also uses the quantities u , body height ,
axis , fine , hair , thin , thick , and slant , all of which are arbitrary parameters that
the author decided to introduce in his programs for Computer Modern. Once
you understand how to use arbitrary conventions like these, you will be able to
modify them to suit your own purposes.

xEXERCISE 12.2
(For people who know TEX.) It’s fairly clear that the width of a type box is
important for typesetting, but what use does TEX make of the height and depth?



106 Chapter 12: Boxes

charwd
charht
chardp
charic
shipout
charcode
location
c code
charext
oriental
chardx
dvi
drift
w
charexists
dangerous bend

�� The primitive commands by which hijklmnj actually learns the dimensions
of each box are rarely used directly, since they are intended to be embedded

in higher-level commands like beginchar and italcorr. But if you must know how
things are done at the low level, here is the secret: There are four internal quantities
called charwd , charht , chardp , and charic , whose values at the time of every shipout
command are assumed to be the box dimensions for the character being shipped out, in
units of printer’s points. (See the definitions of beginchar and italcorr in Appendix B
for examples of how these quantities can be manipulated.)

�� Besides charwd and its cousins, hijklmnj also has four other internal vari-
ables whose values are recorded at the time of every shipout:

charcode is rounded to the nearest integer and then converted to a number
between 0 and 255, by adding or subtracting multiples of 256 if necessary; this “c code”
is the location of the character within its font.

charext is rounded to the nearest integer; the resulting number is a secondary
code that can be used to distinguish between two or more characters with equal c codes.
(TEX ignores charext and assumes that each font contains at most 256 characters; but
extensions to TEX for oriental languages can use charext to handle much larger fonts.)

chardx and chardy represent horizontal and vertical escapement in units of
pixels. (Some typesetting systems use both of these device-dependent amounts to
change their current position on a page, just after typesetting each character. Other sys-
tems, like the dvi software associated with TEX, assume that chardy = 0 but use chardx
as the horizontal escapement whenever a horizontal movement by chardx does not cause
the subsequent position to drift too far from the device-independent position defined by
accumulated charwd values. Plain hijklmnj’s endchar routine keeps chardy = 0,
but sets chardx := w just before shipping a character to the output. This explains why
a change to w will affect the spacing between adjacent letters, as discussed earlier.)

�� Two characters with the same c code should have the same box dimensions and
escapements; otherwise the second character will override the specifications of

the first. The boolean expression ‘charexists c’ can be used to determine whether or
not a character with a particular c code has already been shipped out.

� Let’s conclude this chapter by contemplating a hijklmnj program that gen-
erates the “dangerous bend” symbol, since that symbol appears so often in

this book. It’s a custom-made character intended to be used only at the very beginnings
of paragraphs in which the baselines of the text are exactly 11 pt apart. Therefore it
extends below its baseline by 11 pt; but it is put into a box of depth zero, because TEX
would otherwise think that the first line of the paragraph contains an extremely deep
character, and such depth would cause the second line to be moved down.

baselinedistance# := 11pt#; define pixels(baselinedistance );
heavyline# := 50/36pt#; define blacker pixels(heavyline );
beginchar(127, 25u#, h height# + border#, 0); "Dangerous bend symbol";
pickup pencircle scaled rulethickness ; top y1 = 25

27h; lft x4 = 0;
x1+x1 = x1a+x1b = x4b+x2a = x4+x2 = x4a+x2b = x3b+x3a = x3+x3 = w;
x4a = x4b = x4 + u; x3b = x1a = x1 − 2u;
y4 +y4 = y4a +y4b = y3b +y1a = y3 +y1 = y3a +y1b = y2b +y2a = y2 +y2 = 0;
y1a = y1b = y1 − 2

27h; y4b = y2a = y4 + 4
27h;
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beginchar
location
—
intersectionpoint
HAGGARD
COLBURN

draw z1a . . z1 . . z1b - - - z2a . . z2 . . z2b - - -
z3a . . z3 . . z3b - - - z4a . . z4 . . z4b - - - cycle; % the signboard

x10 = x11 = x12 = x13 = .5w − u; x14 = x15 = x16 = x17 = w − x10;
y10 = y14 = 28

27h; bot y13 = −baselinedistance ;
z11 = (z10 . . z13) intersectionpoint (z1a{z1a − z4b} . . z1{right});
y15 = y11; y16 = y12 = −y11; y17 = y20 = y21 = y13;
draw z11 - - z10 - - z14 - - z15; draw z12 - - z13; draw z16 - - z17; % the signpost
x20 = w − x21; x21 − x20 = 16u; draw z20 - - z21; % ground level
x36 = w − x31; x36 − x31 = 8u; x32 = x33 = x36; x31 = x34 = x35;
y31 = −y36 = 12

27h; y32 = −y35 = 9
27h; y33 = −y34 = 3

27h;
pickup pencircle scaled heavyline ;
draw z32{z32 − z31} . . z33 - - - z34 . . z35{z36 − z35}; % the dangerous bend
pickup penrazor xscaled heavyline rotated (angle(z32 − z31) + 90);
draw z31 - - z32; draw z35 - - z36; % upper and lower bars
labels(1a, 1b, 2a, 2b, 3a, 3b, 4a, 4b, range 1 thru 36); endchar.

(Figure 12f will be inserted here; too bad you can’t see it now.)

This program has sev-
eral noteworthy points
of interest: (1) The first
parameter to beginchar
here is 127, not a string;
this puts the character
into font location 127.
(2) A sequence of equa-
tions like ‘a = w−b; a′ =
w − b′’ can conveniently
be shortened to ‘a + b =
a′ + b′ = w’. (3) Three
hyphens ‘- - -’ is an ab-
breviation for a line with
“infinite” tension, i.e.,
an almost straight line
that connects smoothly
to its curved neighbors.
(4) An ‘intersectionpoint’
operation finds out where
two paths cross; we’ll
learn more about this in
Chapter 14.

Well, we are in the same box.

— RIDER HAGGARD, Dawn (1884)

A story, too,
may be boxed.

— DOROTHY COLBURN, Newspaper Nomenclature (1927)
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graph paper
fill
unfill
coordinates

The pictures that METAFONT produces are made up of tiny pixels that are either
“on” or “off”; therefore you might imagine that the computer works behind the
scenes with some sort of graph paper, and that it darkens some of the squares
whenever you tell it to draw a line or to fill a region.

METAFONT’s internal graph paper is actually more sophisticated than
this. Pixels aren’t simply “on” or “off” when METAFONT is working on a picture;
they can be “doubly on” or “triply off.” Each pixel contains a small integer value,
and when a character is finally shipped out to a font the black pixels are those
whose value is greater than zero. For example, the two commands

fill (0, 3) - - (9, 3) - - (9, 6) - - (0, 6) - - cycle;
fill (3, 0) - - (3, 9) - - (6, 9) - - (6, 0) - - cycle

yield the following 9× 9 pattern of pixel values:

0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
1 1 1 2 2 2 1 1 1
1 1 1 2 2 2 1 1 1
1 1 1 2 2 2 1 1 1
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0

Pixels that have been filled twice now have a value of 2.
When a simple region is “filled,” its pixel values are all increased by 1;

when it is “unfilled,” they are all decreased by 1. The command

unfill (1, 4) - - (8, 4) - - (8, 5) - - (1, 5) - - cycle

will therefore change the pattern above to

0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
1 1 1 2 2 2 1 1 1
1 0 0 1 1 1 0 0 1
1 1 1 2 2 2 1 1 1
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0

The pixels in the center have not been erased (i.e., they will still be black if this
picture is output to a font), because they still have a positive value.

Incidentally, this example illustrates the fact that the edges between
METAFONT’s pixels are lines that have integer coordinates, just as the squares
on graph paper do. For example, the lower left ‘0’ in the 9 × 9 array above
corresponds to the pixel whose boundary is ‘(0, 0) - - (1, 0) - - (1, 1) - - (0, 1) - -
cycle’. The (x, y) coordinates of the points inside this pixel lie between 0 and 1.

xEXERCISE 13.1
What are the (x, y) coordinates of the four corners of the middle pixel in the
9× 9 array?

xEXERCISE 13.2
What picture would have been obtained if the unfill command had been given
before the two fill commands in the examples above?
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doubly filled
hole
strange path
turning number

xEXERCISE 13.3
Devise an unfill command that will produce the pixel values

0 0 0 1 1 1 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0 0
1 1 1 2 1 2 1 1 1
1 0 0 1 0 1 0 0 1
1 1 1 2 1 2 1 1 1
0 0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 1 1 1 0 0 0

when it is used just after the fill and unfill commands already given.

A “simple” region is one whose boundary does not intersect itself; more
complicated effects occur when the boundary lines cross. For example,

fill (0, 1) - - (9, 1) - - (9, 4) - - (4, 4) - -
(4, 0) - - (6, 0) - - (6, 3) - - (8, 3) - - (8, 2) - - (0, 2) - - cycle

produces the pixel pattern

0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 0 0 1
1 1 1 1 2 2 1 1 1
0 0 0 0 1 1 0 0 0

Notice that some pixels receive the value 2, because they’re “doubly filled.”
There’s also a “hole” where the pixel values remain zero, even though they are
surrounded by filled pixels; the pixels in that hole are not considered to be in
the region, but the doubly filled pixels are considered to be in the region twice.

xEXERCISE 13.4
Show that the first 9 × 9 cross pattern on the previous page can be generated
by a single fill command. (The nine pixel values in the center should be 2, as if
two separate regions had been filled, even though you are doing only one fill.)

xEXERCISE 13.5
What do you think is the result of ‘fill (0, 0) - - (1, 0) - - (1, 1) - - (0, 1) - - (0, 0) - -
(1, 0) - - (1, 1) - - (0, 1) - - cycle’ ?

A fill command can produce even stranger effects when its boundary
lines cross in only one place. If you say, for example,

fill (0, 2) - - (4, 2) - - (4, 4) - - (2, 4) - - (2, 0) - - (0, 0) - - cycle

METAFONT will produce the 4× 4 pattern

0 0 1 1
0 0 1 1

0 0
0 0

where ‘ ’ stands for the value −1. Furthermore the machine will report that
you have a “strange path” whose “turning number” is zero! What does this
mean? Basically, it means that your path loops around on itself something like a
figure 8; this causes a breakdown in METAFONT’s usual rules for distinguishing
the “inside” and “outside” of a curve.
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digitized� Every cyclic path has a turning number that can be understood as follows.
Imagine that you are driving a car along the path and that you have a digital

compass that tells in what direction you’re heading. For example, if the path is

(0, 0) - - (2, 0) - - (2, 2) - - (0, 2) - - cycle

you begin driving in direction 0◦, then you make four left turns. After the first turn,
your compass heading is 90◦; after the second, it is 180◦; and after the third it is
270◦. (The compass direction increases when you turn left and decreases when you
turn right; therefore it now reads 270◦, not −90◦.) At the end of this cycle the compass
will read 360◦, and if you go around again the reading will be 720◦. Similarly, if you
had traversed the path

(0, 0) - - (0, 2) - - (2, 2) - - (2, 0) - - cycle

(which is essentially the same, but in the opposite direction), your compass heading
would have started at 90◦ and ended at −270◦; in this case each circuit would have
decreased the reading by 360◦. It is clear that a drive around any cyclic path will change
the compass heading by some multiple of 360◦, since you end in the same direction you
started. The turning number of a path is defined to be t if the compass heading changes
by exactly t times 360◦ when the path is traversed. Thus, the two example cycles we
have just discussed have turning numbers of +1 and −1, respectively; and the “strange
path” on the previous page that produced both positive and negative pixel values does
indeed have a turning number of 0.

� Here’s how hijklmnj actually implements a fill command, assuming that
the cyclic path being filled has a positive turning number: The path is first

“digitized,” if necessary, so that it lies entirely on the edges of pixels; in other words,
it is distorted slightly so that it is confined to the lines between pixels on graph paper.
(Our examples so far in this chapter have not needed any such adjustments.) Then
each individual pixel value is increased by j and decreased by k if an infinite horizontal
line to the left of that pixel intersects the digitized path j times when the path is
traveling downward and k times when it is traveling upward. For example, let’s look
more closely at the non-simple path on the previous page that enclosed a hole:

a a a a
y

b b b b b


x

a a a a
y

b b


xc c
y

d


x

y

e e e e
y

f f


xg g g


x

a a a a
y

b b


xh h h

Pixel d has j = 2 descending edges and k = 1 ascending edges to its left, so its net
value increases by j−k = 1; pixels g are similar. Pixels c have j = k = 1, so they lie in
a “hole” that is unfilled; pixels f have j = 2 and k = 0, so they are doubly filled. This
rule works because, intuitively, the inside of a region lies at the left of a path whose
turning number is positive.

� xEXERCISE 13.6
True or false: When the turning number of a cyclic path is positive, a fill

command increases each individual pixel value by l−m, if an infinite horizontal line to
the right of that pixel intersects the digitized path l times when the path is traveling
upward and m times when it is traveling downward. (For example, pixels e have l = 2
and m = 1; pixels c have l = m = 1.)
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turningcheck
draw
penrazor
filldraw

� When the turning number is negative, a similar rule applies, except that the
pixel values are decreased by j and increased by k; in this case the inside of

the region lies at the right of the path.

� But when the turning number is zero, the inside of the region lies sometimes at
the left, sometimes at the right. hijklmnj uses the rule for positive turning

number and reports that the path is “strange.” You can avoid this error message by
setting ‘turningcheck := 0’; in this case the rule for positive turning number is always
used for filling, even when the turning number is negative.

Plain METAFONT’s draw command is different from fill in two impor-
tant ways. First, it uses the currently-picked-up pen, thereby “thickening” the
path. Second, it does not require that the path be cyclic. There is also a third
difference, which needs to be mentioned although it is not quite as important:
A draw command may increase the value of certain pixels by more than 1, even
if the shape being drawn is fairly simple. For example, the pixel pattern
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 0 0 0 0 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

was produced by two draw commands. The left-hand shape came from

pickup penrazor scaled 10; % a pen of width 10 and height 0
draw (6, 1){up} . . (13.5, 25) . . {down}(21, 1);

it’s not difficult to imagine why some of the top pixels get the value 2 here
because an actual razor-thin pen would cover those pixels twice as it follows the
given path. But the right-hand shape, which came from

pickup pencircle scaled 16; draw (41, 9) . . (51, 17) . . (61, 9)

is harder to explain; there seems to be no rhyme or reason to the pattern of 2’s
in that case. METAFONT’s method for drawing curves with thick pens is too
complicated to explain here, so we shall just regard it as a curious process that
occasionally shoots out extra spurts of ink in the interior of the shape that it’s
filling. Sometimes a pixel value even gets as high as 3 or more; but if we ignore
such anomalies and simply consider the set of pixels that receive a positive value,
we find that a reasonable shape has been drawn.

The left-parenthesis example in Chapter 12 illustrates the filldraw com-
mand, which is like fill in that it requires a cyclic path, and like draw in that it
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drawdot
undraw
unfilldraw
undrawdot
cullit
culling
erase
for
cube
impossible cube

uses the current pen. Pixel values are increased inside the region that you would
obtain by drawing the specified path with the current pen and then filling in the
interior. Some of the pixel values in this region may increase by 2 or more. The
turning number of the path should be nonzero.

Besides fill, draw, and filldraw, you can also say ‘drawdot’, as il-
lustrated at the beginning of Chapter 5. In this case you should specify only
a single point; the currently-picked-up pen will be used to increase pixel values
by 1 around that point. Chapter 24 explains that this gives slightly better results
than if you were to draw a one-point path.

� There’s also an undraw command, analogous to unfill; it decreases pixel
values by the same amount that draw would increase them. Furthermore—

as you might expect—unfilldraw and undrawdot are the respective opposites of
filldraw and drawdot.

� If you try to use unfill and/or undraw in connection with fill and/or draw,
you’ll soon discover that something else is necessary. Plain hijklmnj has

a cullit command that replaces all negative pixel values by 0 and all positive pixel
values by 1. This “culling” operation makes it possible to erase unwanted sections of
a picture in spite of the vagaries of draw and undraw, and in spite of the fact that
overlapping regions may be doubly filled.

� The command ‘erase fill c’ is an abbreviation for ‘cullit; unfill c; cullit’;
this zeros out the pixel values inside the cyclic path c, and sets other pixel

values to 1 if they were positive before erasing took place. (It works because the initial
cullit makes all the values 0 or 1, then the unfill changes the values inside c to 0 or
negative. The final cullit gets rid of the negative values, so that they won’t detract
from future filling and drawing.) You can also use ‘draw’, ‘filldraw’, or ‘drawdot’
with ‘erase’; for example, ‘erase draw p’ is an abbreviation for ‘cullit; undraw p;
cullit’, which uses the currently-picked-up pen as if it were an eraser applied to path p.

� The cube at the right of this paragraph illustrates

(Figure 13a will be in-
serted here; too bad you
can’t see it now.)

one of the effects that is easily obtained by erasing.
First the eight points are defined, and the “back” square
is drawn; then two lines of the “front” square are erased,
using a somewhat thicker pen; finally the remaining lines
are drawn with the ordinary pen:

s# := 5pt#; define pixels(s); % side of the square
z1 = (0, 0); z2 = (s, 0); z3 = (0, s); z4 = (s, s);
for k = 1 upto 4: zk+4 = zk + ( 2

3s, 1
3s); endfor

pickup pencircle scaled .4pt ; draw z5 - - z6 - - z8 - - z7 - - cycle;
pickup pencircle scaled 1.6pt ; erase draw z2 - - z4 - - z3;
pickup pencircle scaled .4pt ; draw z1 - - z2 - - z4 - - z3 - - cycle;
for k = 1 upto 4: draw zk - - zk+4; endfor.

At its true size the resulting cube looks like this: ‘� ’.

� xEXERCISE 13.7
Modify the draw-and-erase construction in the preceding paragraph so that

you get the impossible cube ‘� ’ instead.
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rotated
tension
subpaths
star
macro
overdraw
fullcircle
point
S
Möbius
picture
currentpicture

� xEXERCISE 13.8
Write a hijklmnj program to produce the symbol ‘�’. [Hints: The char-

acter is 10 pt wide, 7 pt high, and 2 pt deep. The starlike path can be defined by five
points connected by “tense” lines as follows:

pair center ; center = (.5w, 2pt );
numeric radius ; radius = 5pt ;
for k = 0 upto 4: zk = center + (radius , 0) rotated(90 + 360

5 k); endfor
def :: = . . tension 5 . . enddef ;
path star ; star = z0 :: z2 :: z4 :: z1 :: z3 :: cycle;

You probably want to work with subpaths of star instead of drawing the whole path
at once, in order to give the illusion that the curves cross over and under each other.]

� xEXERCISE 13.9
What does the command ‘fill star ’ do, if star is the path defined above?

� xEXERCISE 13.10
Devise a macro called ‘overdraw’ such that the command

‘overdraw c’ will erase the inside of region c and will then draw the

(Figure 13aa
will be inserted
here; too bad
you can’t see it
now.)

boundary of c with the currently-picked-up pen, assuming that c is a
cyclic path that doesn’t intersect itself. (Your macro could be used,
for example, in the program

path S; S = ((0, 1) . . (2, 0) . . (4, 2) . .
(2, 5.5) . . (0, 8) . . (2, 10) . . (3.5, 9)) scaled 9pt ;

for k = 0 upto 35: overdraw fullcircle scaled 3mm
shifted point k/35 ∗ length S of S; endfor

to create the curious S shown here.)

��xEXERCISE 13.11
The Möbius Watchband Corporation has a logo that looks like this:

(Figure 13bb will be inserted here; too bad you can’t see it now.)

Explain how to produce it (or something very similar) with hijklmnj.

� Chapter 7 points out that variables can be of type ‘picture’, and Chapter 8
mentions that expressions can be of type ‘picture’, but we still haven’t seen

any examples of picture variables or picture expressions. Plain hijklmnj keeps the
currently-worked-on picture in a picture variable called currentpicture , and you can
copy it by equating it to a picture variable of your own. For example, if you say
‘picture v[ ]’ at the beginning of your program, you can write equations like

v1 = currentpicture ;

this makes v1 equal to the picture that has been drawn so far; i.e., it gives v1 the same
array of pixel values that currentpicture now has.
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sum of pictures
negative of a picture
inverse video
reverse-video
dangerous bend
black/white reversal
nullpicture
clearit
beginchar
mode setup
picture primary
nullpicture
(
)
picture secondary
picture tertiary
picture expression
totalweight
epsilon

� Pictures can be added or subtracted; for example, v1+v2 stands for the picture
whose pixel values are the sums of the pixel values of v1 and v2. The “reverse-

video dangerous bend” sign that heads this paragraph was made by substituting the
following code for the ‘endchar’ in the program at the end of Chapter 12:

picture dbend ; dbend = currentpicture ;
endchar; % end of the normal dangerous bend sign
beginchar(0, 25u#, h height# + border#, 0);
fill (0,−11pt ) - - (w,−11pt ) - - (w, h) - - (0, h) - - cycle;
currentpicture := currentpicture − dbend ;
endchar; % end of the reversed dangerous bend sign

The pixel values in dbend are all zero or more; thus the pixels with a positive value,
after dbend has been subtracted from a filled rectangle, will be those that are inside
the rectangle but zero in dbend .

� We will see in Chapter 15 that pictures can also be shifted, reflected, and
rotated by multiples of 90◦. For example, the statement ‘currentpicture :=

currentpicture shifted 3right ’ shifts the entire current picture three pixels to the right.

� There’s a “constant” picture called nullpicture, whose pixel values are all
zero; plain hijklmnj defines ‘clearit’ to be an abbreviation for the as-

signment ‘currentpicture :=nullpicture’. The current picture is cleared automatically
by every beginchar and mode setup command, so you usually don’t have to say
‘clearit’ in your own programs.

� Here’s the formal syntax for picture expressions. Although hijklmnj has
comparatively few built-in operations that deal with entire pictures, the op-

erations that do exist have the same syntax as the similar operations we have seen
applied to numbers and pairs.

〈picture primary〉 −→ 〈picture variable〉
| nullpicture
| ( 〈picture expression〉 )
| 〈plus or minus〉〈picture primary〉

〈picture secondary〉 −→ 〈picture primary〉
| 〈picture secondary〉〈transformer〉

〈picture tertiary〉 −→ 〈picture secondary〉
| 〈picture tertiary〉〈plus or minus〉〈picture secondary〉

〈picture expression〉 −→ 〈picture tertiary〉

� The “total weight” of a picture is the sum of all its pixel values, divided by
65536; you can compute this numeric quantity by saying

totalweight 〈picture primary〉.

hijklmnj divides by 65536 in order to avoid overflow in case of huge pictures. If the
totalweight function returns a number whose absolute value is less than .5, as it almost
always is, you can safely divide that number by epsilon to obtain the integer sum of
all pixel values (since epsilon = 1/65536).
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� Let’s turn to the computer again and try to evaluate some simple picture ex-
pressions interactively, using the general routine expr.mf of Chapter 8. When

hijklmnj says ‘gimme’, you can type

hide(fill unitsquare) currentpicture

and the machine will respond as follows:

>> Edge structure at line 5:
row 0: 0+ 1- |

What does this mean? Well, ‘hide’ is plain hijklmnj’s sneaky way to insert a
command or sequence of commands into the middle of an expression; such commands
are executed before the rest of the expression is looked at. In this case the command
‘fill unitsquare ’ sets one pixel value of the current picture to 1, because unitsquare is
plain hijklmnj’s abbreviation for the path (0, 0) - - (1, 0) - - (1, 1) - - (0, 1) - - cycle.
The value of currentpicture is displayed as ‘row 0: 0+ 1-’, because this means “in
row 0, the pixel value increases at x = 0 and decreases at x = 1.”

� hijklmnj represents pictures internally by remembering only the vertical
edges where pixel values change. For example, the picture just displayed

has just two edges, both in row 0, i.e., both in the row between y coordinates 0 and 1.
(Row k contains vertical edges whose x coordinates are integers and whose y coordinates
run between k and k+1.) The fact that edges are represented, rather than entire arrays
of pixels, makes it possible for hijklmnj to operate efficiently at high resolutions,
because the number of edges in a picture is essentially proportional to the resolution
while the total number of pixels is proportional to the resolution squared. A ten-fold
increase in resolution therefore calls for only a ten-fold (rather than a hundred-fold)
increase in memory space and execution time.

�� Continuing our computer experiments, let’s declare a picture variable and fill
a few more pixels:

hide(picture V; fill unitsquare scaled 2; V=currentpicture) V

The resulting picture has pixel values 1 1
2 1 , and its edges are shown thus:

>> Edge structure at line 5:
row 1: 0+ 2- |
row 0: 0+ 2- 0+ 1- |

If we now type ‘-V’, the result is similar but with the signs changed:

>> Edge structure at line 5:
row 1: 0- 2+ |
row 0: 0- 2+ 0- 1+ |

(You should be doing the experiments as you read this.) A more interesting picture
transformation occurs if we ask for ‘V rotated-90’; the picture 2 1

1 1 appears below the
baseline, hence the following edges are shown:

>> Edge structure at line 5:
row -1: | 0++ 1- 2-
row -2: | 0+ 2-
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Here ‘++’ denotes an edge where the weight increases by 2. The edges appear after
vertical lines ‘|’ in this case, while they appeared before vertical lines in the previous
examples; this means that hijklmnj has sorted the edges by their x coordinates.
Each fill or draw instruction contributes new edges to a picture, and unsorted edges
accumulate until hijklmnj needs to look at them in left-to-right order. (Type

V rotated-90 rotated 90

to see what V itself looks like when its edges have been sorted.) The expression

V + V rotated 90 shifted 2right

produces an edge structure with both sorted and unsorted edges:

>> Edge structure at line 5:
row 1: 0+ 2- | 0+ 2-
row 0: 0+ 2- 0+ 1- | 0+ 1+ 2--

In general, addition of pictures is accomplished by simply combining the unsorted and
sorted edges of each row separately.

��xEXERCISE 13.12
Guess what will happen if you type ‘hide(cullit) currentpicture’ now; and

verify your guess by actually doing the experiment.

��xEXERCISE 13.13
Guess (and verify) what will happen when you type the expression

(V + V + V rotated 90 shifted 2right
- V rotated-90 shifted 2up) rotated 90.

[You must type this monstrous formula all on one line, even though it’s too long to fit
on a single line in this book.]

�� If you ask for ‘V rotated 45’, hijklmnj will complain that 45◦ rotation is
too hard. (Try it.) After all, square pixels can’t be rotated unless the angle

of rotation is a multiple of 90◦. On the other hand, ‘V scaled-1’ does work; you get

>> Edge structure at line 5:
row -1: 0- -2+ 0- -1+ |
row -2: 0- -2+ |

��xEXERCISE 13.14
Why is ‘V scaled-1’ different from ‘-V’ ?

��xEXERCISE 13.15
Experiment with ‘V shifted (1.5,3.14159)’ and explain what happens.

��xEXERCISE 13.16
Guess and verify the result of ‘V scaled 2’.

��xEXERCISE 13.17
Why does the machine always speak of an edge structure ‘at line 5’ ?

�� That completes our computer experiments. But before you log off, you might
want to try typing ‘totalweight V/epsilon’, just to verify that the sum of

all pixel values in V is 5.
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� The commands we have discussed so far in this chapter—fill, draw, filldraw,
unfill, etc.—are not really primitives of hijklmnj; they are macros of plain

hijklmnj, defined in Appendix B. Let’s look now at the low-level operations on
pictures that hijklmnj actually performs behind the scenes. Here is the syntax:

〈picture command〉 −→ 〈addto command〉 | 〈cull command〉
〈addto command〉 −→ addto 〈picture variable〉 also 〈picture expression〉

| addto 〈picture variable〉 contour 〈path expression〉〈with list〉
| addto 〈picture variable〉 doublepath 〈path expression〉〈with list〉

〈with list〉 −→ 〈empty〉 | 〈with list〉〈with clause〉
〈with clause〉 −→ withpen 〈pen expression〉 | withweight 〈numeric expression〉
〈cull command〉 −→ cull 〈picture variable〉〈keep or drop〉〈pair expression〉

| 〈cull command〉 withweight 〈numeric expression〉
〈keep or drop〉 −→ keeping | dropping

The 〈picture variable〉 in these commands should contain a known picture; the com-
mand modifies that picture, and assigns the resulting new value to the variable.

� The first form of 〈addto command〉, ‘addto V also P ’, has essentially the
same meaning as ‘V := V + P ’. But the addto statement is more efficient,

because it destroys the old value of V as it adds P ; this saves both time and space.
Earlier in this chapter we discussed the reverse-video dangerous bend, which was said
to have been formed by the statement ‘currentpicture := currentpicture−dbend ’. That
was a little white lie; the actual command was ‘addto currentpicture also −dbend ’.

� The details of the other forms of ‘addto’ are slightly more complex, but
(informally) they work like this, when V = currentpicture and q = currentpen :

Plain hijklmnj Corresponding hijklmnj primitives

fill c addto V contour c
unfill c addto V contour c withweight −1
draw p addto V doublepath p withpen q
undraw p addto V doublepath p withpen q withweight −1
filldraw c addto V contour c withpen q
unfilldraw c addto V contour c withpen q withweight −1

�� The second form of 〈addto command〉 is ‘addto V contour p’, followed by
optional clauses that say either ‘withpen q’ or ‘withweight w’. In this case

p must be a cyclic path; each pen q must be known; and each weight w must be either
−3, −2, −1, +1, +2, or +3, when rounded to the nearest integer. If more than one
pen or weight is given, the last specification overrides all previous ones. If no pen is
given, the pen is assumed to be ‘nullpen’; if no weight is given, the weight is assumed
to be +1. Thus, the second form of 〈addto command〉 basically identifies a picture
variable V , a cyclic path p, a pen q, and a weight w; and it has the following meaning,
assuming that turningcheck is ≤ 0: If q is the null pen, path p is digitized and each
pixel value is increased by (j − k)w, where j and k are the respective numbers of
downward and upward path edges lying to the left of the pixel (as explained earlier in
this chapter). If q is not the null pen, the action is basically the same except that p
is converted to another path that “envelopes” p with respect to the shape of q; this
modified path is digitized and filled as before. (The modified path may cross itself
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in unusual ways, producing strange squirts of ink as illustrated earlier. But it will be
well behaved if path p defines a convex region, i.e., if a car that drives counterclockwise
around p never turns toward the right at any time.)

�� If turningcheck > 0 when an ‘addto . . . contour’ command is being per-
formed, the action is the same as just described, provided that path p has

a positive turning number. However, if p’s turning number is negative, the action
depends on whether or not pen q is simple or complex; a complex pen is one whose
boundary contains at least two points. If the turning number is negative and the pen is
simple, the weight w is changed to −w. If the turning number is negative and the pen
is complex, you get an error message about a “backwards path.” Finally, if the turning
number is zero, you get an error message about a “strange path,” unless the pen is
simple and turningcheck <= 1. Plain hijklmnj sets turningcheck := 2; the filldraw
macro in Appendix B avoids the “backwards path” error by explicitly reversing a path
whose turning number is negative.

� We mentioned that the command ‘fill (0, 2) - - (4, 2) - - (4, 4) - - (2, 4) - -
(2, 0) - - (0, 0) - - cycle’ causes hijklmnj to complain about a strange path;

let’s take a closer look at the error message that you get:

> 0 ENE 1 NNE 2 (NNW WNW) WSW 3 SSW 4 WSW 5 (WNW NNW) NNE 0
! Strange path (turning number is zero).

What does this mean? The numbers represent “time” on the cyclic path, from the
starting point at time 0, to the next key point at time 1, and so on, finally returning
to the starting point. Code names like ‘ENE’ stand for compass directions like “East
by North East”; hijklmnj decides in which of eight “octants” each part of a path
travels, and ENE stands for all directions between the angles 0◦ and 45◦, inclusive. Thus,
this particular strange path starts in octant ENE at time 0, then it turns to octant NNE
after time 1. An octant name is parenthesized when the path turns through that
octant without moving; thus, for example, octants NNW and WNW are bypassed on the
way to octant WSW. It’s possible to compute the turning number from the given sequence
of octants; therefore, if you don’t think your path is really strange, the abbreviated
octant codes should reveal where hijklmnj has decided to take an unexpected turn.
(Chapter 27 explains more about strange paths.)

�� The third form of 〈addto command〉 is ‘addto V doublepath p’, followed
by optional clauses that define a pen q and a weight w as in the second case.

If p is not a cyclic path, this case reduces to the second case, with p replaced by the
doubled-up path ‘p & reverse p & cycle’ (unless p consists of only a single point, when
the new path is simply ‘p . . cycle’ ). On the other hand if p is a cyclic path, this
case reduces to two addto commands of the second type, in one of which p is reversed;
turningcheck is ignored during both of those commands.

� An anomalous result may occur in the statement ‘draw p’ or, more generally,
in ‘addto V doublepath p withpen q’ when p is a very small cyclic path

and the current pen q is very large: Pixels that would be covered by the pen regardless
of where it is placed on p might retain their original value. If this unusual circumstance
hits you, the cure is simply to include the additional statement ‘draw z’ or ‘addto V
doublepath z withpen q’, where z is any point of p, since this will cover all of the
potentially uncovered pixels.
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� The cull command transforms a picture variable so that all of its pixel values
are either 0 or a specified weight w, where w is determined as in an addto

command. A pair of numbers (a, b) is given, where a must be less than or equal
to b. To cull “keeping (a, b)” means that each new pixel value is w if and only if the
corresponding old pixel value v was included in the range a ≤ v ≤ b; to cull “dropping
(a, b)” means that each new pixel value is w if and only if the corresponding old pixel
value v was not in that range. Thus, for example, ‘cullit’ is an abbreviation for

cull currentpicture keeping (1, infinity )

or for

cull currentpicture dropping (−infinity , 0)

(which both mean the same thing). A more complicated example is

cull V5 dropping (−3, 2) withweight −2;

this changes the pixel values of V5 to −2 if they were −4 or less, or if they were 3
or more; pixel values between −3 and +2, inclusive, are zeroed.

� A cull command must not change pixel values from zero to nonzero. For
example, hijklmnj doesn’t let you say ‘cull V1 keeping (0, 0)’, since that

would give a value of 1 to infinitely many pixels.

� xEXERCISE 13.18
What is the effect of the following sequence of commands?

picture V [ ];
V1 = V2 = currentpicture ;
cull V1 dropping (0, 0);
cull V2 dropping (−1, 1);
currentpicture := V1 − V2;

� xEXERCISE 13.19
Given two picture variables V1 and V2, all of whose pixel values are known to

be either 0 or 1, explain how to replace V1 by (a) V1 ∩ V2; (b) V1 ∪ V2; (c) V1 ⊕ V2.
[The intersection V1 ∩V2 has 1’s where V1 and V2 both are 1; the union V1 ∪ V2 has 0’s
where V1 and V2 both are 0; the symmetric difference or selective complement V1 ⊕ V2

has 1’s where V1 and V2 are unequal.]

��xEXERCISE 13.20
Explain how to test whether or not two picture variables are equal.

��xEXERCISE 13.21
Look at the definitions of fill, draw, etc., in Appendix B and determine the

effect of the following statements:

a) draw p withpen q;
b) draw p withweight 3;
c) undraw p withweight w;
d) fill c withweight −2 withpen q;
e) erase fill c withweight 2 withpen currentpen ;
f) cullit withweight 2.
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��xEXERCISE 13.22
Devise a safefill macro such that ‘safefill c’ increases the pixel values of

currentpicture by 1 in all pixels whose value would be changed by the command ‘fill c’.
(Unlike fill, the safefill command never stops with a “strange path” error; furthermore,
it never increases a pixel value by more than 1, nor does it decrease any pixel values,
even when the cycle c is quite wild.)

��xEXERCISE 13.23
Explain how to replace a character by its “outline”: All black pixels whose

four closest neighbors are also black should be changed to white, because they are in
the interior. (Diagonally adjacent neighbors don’t count.)

��xEXERCISE 13.24
In John Conway’s “Game of Life,” pixels are said to be either alive or dead.

Each pixel is in contact with eight neighbors. The live pixels in the (n+1)st generation
are those who were dead and had exactly three live neighbors in the nth generation, or
those who were alive and had exactly two or three live neighbors in the nth generation.
Write a short hijklmnj program that displays successive generations on your screen.

Blot out, correct, insert, refine,
Enlarge, diminish, interline;

Be mindful, when Invention fails,
To scratch your Head, and bite your Nails.

— JONATHAN SWIFT, On Poetry: A Rapsody (1733)

The understanding that can be gained from computer drawings
is more valuable than mere production.

— IVAN E. SUTHERLAND, Sketchpad (1963)
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The boundaries of regions to be filled, and the trajectories of moving pens, are
“paths” that can be specified by the general methods introduced in Chapter 3.
METAFONT allows variables and expressions to be of type path, so that a de-
signer can build new paths from old ones in many ways. Our purpose in this
chapter will be to complete what Chapter 3 began; we shall look first at some
special features of plain METAFONT that facilitate the creation of paths, then we
shall go into the details of everything that METAFONT knows about pathmaking.

A few handy paths have been predefined in Appendix B as part of plain
METAFONT, because they turn out to be useful in a variety of applications.
For example, quartercircle is a path that represents one-fourth of a circle of
diameter 1; it runs from point (0.5, 0) to point (0, 0.5). The METAFONT program

beginchar("a", 5pt#, 5pt#, 0);
pickup pencircle scaled (.4pt + blacker );
draw quartercircle scaled 10pt ; endchar;

therefore produces the character ‘ ’ in position ‘a’ of a font.

xEXERCISE 14.1
Write a program that puts a filled quarter-circle ‘!’ into font position ‘b’.

xEXERCISE 14.2
Why are the ‘ ’ and ‘!’ characters of these examples only 5 pt wide and 5 pt
high, although they are made with the path ‘quartercircle scaled 10pt ’?

xEXERCISE 14.3
Use a rotated quarter-circle to produce ‘" ’ in font position ‘c’.

� xEXERCISE 14.4
Use quartercircle to produce ‘# ’ in font position ‘d’.

Plain METAFONT also provides a path called halfcircle that gives you
‘" ’; this path is actually made from two quarter-circles, by defining

halfcircle = quartercircle & quartercircle rotated 90.

And of course there’s also fullcircle , a complete circle of unit diameter:

fullcircle = halfcircle & halfcircle rotated 180 & cycle.

You can draw a circle of diameter D centered at (x, y) by saying

draw fullcircle scaled D shifted (x, y);

similarly, ‘draw fullcircle xscaledA yscaledB’ yields an ellipse with axes A and B.
Besides circles and parts of circles, there’s also a standard square path

called unitsquare ; this is a cycle that runs from (0, 0) to (1, 0) to (1, 1) to (0, 1)
and back to (0, 0). For example, the command ‘fill unitsquare ’ adds 1 to a single
pixel value, as discussed in the previous chapter.
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xEXERCISE 14.5
Use fullcircle and unitsquare to produce the characters ‘$’ and ‘%’ in font
positions ‘e’ and ‘f’, respectively. These characters should be 10 pt wide and
10 pt tall, and their centers should be 2.5 pt above the baseline.

(Figure 14a will be inserted here;
too bad you can’t see it now.)

path branch [ ], trunk ;
branch1 = flex ((0, 660), (−9, 633), (−22, 610))

& flex ((−22, 610), (−3, 622), (17, 617))
& flex ((17, 617), (7, 637), (0, 660)) & cycle;

branch2 = flex ((30, 570), (10, 590), (−1, 616))
& flex ((−1, 616), (−11, 592), (−29, 576), (−32, 562))
& flex ((−32, 562), (−10, 577), (30, 570)) & cycle;

branch3 = flex ((−1, 570), (−17, 550), (−40, 535))
& flex ((−40, 535), (−45, 510), (−60, 477))
& flex ((−60, 477), (−20, 510), (40, 512))
& flex ((40, 512), (31, 532), (8, 550), (−1, 570)) & cycle;

branch4 = flex ((0, 509), (−14, 492), (−32, 481))
& flex ((−32, 481), (−42, 455), (−62, 430))
& flex ((−62, 430), (−20, 450), (42, 448))
& flex ((42, 448), (38, 465), (4, 493), (0, 509)) & cycle;

branch5 = flex ((−22, 470), (−23, 435), (−44, 410))
& flex ((−44, 410), (−10, 421), (35, 420))
& flex ((35, 420), (15, 455), (−22, 470)) & cycle;

branch6 = flex ((18, 375), (9, 396), (5, 420))
& flex ((5, 420), (−5, 410), (−50, 375), (−50, 350))
& flex ((−50, 350), (−25, 375), (18, 375)) & cycle;

branch 7 = flex ((0, 400), (−13, 373), (−30, 350))
& flex ((−30, 350), (0, 358), (30, 350))
& flex ((30, 350), (13, 373), (0, 400)) & cycle;

branch8 = flex ((50, 275), (45, 310), (3, 360))
& flex ((3, 360), (−20, 330), (−70, 300), (−100, 266))
& flex ((−100, 266), (−75, 278), (−60, 266))
& flex ((−60, 266), (0, 310), (50, 275)) & cycle;

branch9 = flex ((10, 333), (−15, 290), (−43, 256))
& flex ((−43, 256), (8, 262), (58, 245))
& flex ((58, 245), (34, 275), (10, 333)) & cycle;

branch10 = flex ((8, 262), (−21, 249), (−55, 240))
& flex ((−55, 240), (−51, 232), (−53, 220))
& flex ((−53, 220), (−28, 229), (27, 235))
& flex ((27, 235), (16, 246), (8, 262)) & cycle;

branch11 = flex ((0, 250), (−25, 220), (−70, 195))
& flex ((−70, 195), (−78, 180), (−90, 170))
& flex ((−90, 170), (−5, 188), (74, 183))
& flex ((74, 183), (34, 214), (0, 250)) & cycle;

branch12 = flex ((8, 215), (−35, 175), (−72, 155))
& flex ((−72, 155), (−75, 130), (−92, 110), (−95, 88))
& flex ((−95, 88), (−65, 117), (−54, 104))
& flex ((−54, 104), (10, 151), (35, 142))

. . flex ((42, 130), (60, 123), (76, 124))
& flex ((76, 124), (62, 146), (26, 180), (8, 215)) & cycle;

trunk = (0, 660) - - - (−12, 70) . . {curl 5}(−28,−8)
& flex ((−28,−8), (−16,−4), (−10,−11))
& flex ((−10,−11), (0,−5), (14,−10))
& flex ((14,−10), (20,−6), (29,−11))
& (29,−11){curl 4} . . (10, 100) - - - cycle;
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Sometimes it’s necessary to draw rather complicated curves, and plain
METAFONT provides a ‘flex ’ operation that can simplify this task. The construc-
tion ‘flex (z1, z2, z3)’ stands for the path ‘z1 . . z2{z3 − z1} . . z3’, and similarly
‘flex (z1, z2, z3, z4)’ stands for ‘z1 . . z2{z4 − z1} . . z3{z4 − z1} . . z4’; in general

flex (z1, z2, . . . , zn−1, zn)

is an abbreviation for the path

z1 . . z2{zn − z1} . . · · · . . zn−1{zn − z1} . . zn.

The idea is to specify two endpoints, z1 and zn, together with one or more
intermediate points where the path is traveling in the same direction as the
straight line from z1 to zn; these intermediate points are easy to see on a typical
curve, so they are natural candidates for key points.

For example, the command

fill flex (z1, z2, z3) & flex (z3, z4, z5)
& flex (z5, z6, z7) & flex (z7, z8, z9, z1) & cycle

will fill the shape

(Figure 14b will be inserted here; too bad you can’t see it now.)

after the points z1, . . . , z9 have been suitably defined. This shape occurs as
the fourth branch from the top of “El Palo Alto,” a tree that is often used to
symbolize Stanford University. The thirteen paths on the opposite page were
defined by simply sketching the tree on a piece of graph paper, then reading off
approximate values of key points “by eye” while typing the code into a computer.
(A good radio or television program helps to stave off boredom when you’re
typing a bunch of data like this.) The entire figure involves a total of 47 flexes,
most of which are pretty mundane; but branch 12 does contain an interesting
subpath of the form

flex (z1, z2, z3) . . flex (z4, z5, z6),

which is an abbreviation for

z1 . . z2{z3 − z1} . . z3 . . z4 . . z5{z6 − z4} . . z6.

Since z3 6= z4 in this example, a smooth curve runs through all six points,
although two different flexes are involved.
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Once the paths have been defined, it’s easy to use them

(Figure
14aa will
be inserted
here; too
bad you
can’t see it
now.)

to make symbols like the white-on-black medallion shown here:

beginchar("T", .5in#, 1.25in#, 0);
〈Define the thirteen paths on the preceding pages〉;
fill superellipse ((w, .5h), (.5w, h), (0, .5h), (.5w, 0), .8);
branch 0 = trunk ;
for n = 0 upto 12:

unfill branch [n] shifted (150, 50) scaled (w/300);
endfor endchar;

The oval shape that encloses this tree is a superellipse , which is another special
kind of path provided by plain METAFONT. To get a general shape of this kind,
you can write

superellipse (right point , top point , left point , bottom point , superness )

where ‘superness ’ controls the amount by which the curve differs from a true
ellipse. For example, here are four superellipses, drawn with varying amounts of
superness, using a pencircle xscaled 0.7pt yscaled 0.2pt rotated 30:

(Figure 14c will be inserted here; too bad you can’t see it now.)

The superness should be between 0.5 (when you get a diamond) and 1.0 (when
you get a square); values in the vicinity of 0.75 are usually preferred. The zero
symbol ‘0’ in this book’s typewriter font was drawn as a superellipse of superness
2−.5 ≈ .707, which corresponds to a normal ellipse; the uppercase letter ‘O’ was
drawn with superness 2−.25 ≈ .841, to help distinguish it from the zero. The
ambiguous symbol ‘0’ (which is not in the font, but METAFONT can of course
draw it) lies between these two extremes; its superness is 0.77.

�� A mathematical superellipse satisfies the equation |x/a|β + |y/b|β = 1, for
some exponent β. It has extreme points (±a, 0) and (0,±b), as well as the

“corner” points (±σa,±σb), where σ = 2−1/β is the superness. The tangent to the
curve at (σa, σb) runs in the direction (−a, b), hence it is parallel to a line from (a, 0)
to (0, b). Gabriel Lamé invented the superellipse in 1818, and Piet Hein popularized the
special case β = 2.5 [see Martin Gardner, Mathematical Carnival (New York: Knopf,
1975), 240–254]; this special case corresponds to a superness of 2−.4 ≈ .7578582832552.
Plain hijklmnj’s superellipse routine does not produce a perfect superellipse, nor
does fullcircle yield a true circle, but the results are close enough for practical purposes.

��xEXERCISE 14.6
Try superellipse with superness values less than 0.5 or greater than 1.0; explain

why you get weird shapes in such cases.
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Let’s look now at the symbols that are used between key points, when
we specify a path. There are five such tokens in plain METAFONT:

. . free curve;

. . . bounded curve;
- - straight line;
- - - “tense” line;
& splice.

In general, when you write ‘z0 . . z1 . . 〈etc.〉 . . zn−1 . . zn’, METAFONT will
compute the path of length n that represents its idea of the “most pleasing
curve” through the given points z0 through zn. The symbol ‘. . .’ is essentially
the same as ‘. .’ , except that it confines the path to a bounding triangle whenever
possible, as explained in Chapter 3. A straight line segment ‘zk−1 - - zk’ usually
causes the path to change course abruptly at zk−1 and zk. By contrast, a segment
specified by ‘zk−1 - - - zk’ will be a straight line that blends smoothly with the
neighboring curves; i.e., the path will enter zk−1 and leave zk in the direction of
zk − zk−1. (The trunk of El Palo Alto makes use of this option, and we have
also used it to draw the signboard of the dangerous bend symbol at the end of
Chapter 12.) Finally, the ‘&’ operation joins two independent paths together
at a common point, just as ‘&’ concatenates two strings together.

Here, for example, is a somewhat silly path that illustrates all five basic
types of joinery:

(Figure 14d will be inserted here; too bad you can’t see it now.)

z0 = (0, 100); z1 = (50, 0); z2 = (180, 0);
for n = 3 upto 9: z[n] = z[n− 3] + (200, 0); endfor
draw z0 . . z1 - - - z2 . . . {up}z3

& z3 . . z4 - - z5 . . . {up}z6

& z6 . . . z7 - - - z8 . . {up}z9.

� The ‘. . .’ operation is usually used only when one or both of the adjacent
directions have been specified (like ‘{up}’ in this example). Plain hijk-

lmnj’s flex construction actually uses ‘. . .’ , not ‘. .’ as stated earlier, because this
avoids inflection points in certain situations.

� A path like ‘z0 - - - z1 - - - z2’ is almost indistinguishable from the broken
line ‘z0 - - z1 - - z2’, except that if you enlarge the former path you will see

that its lines aren’t perfectly straight; they bend just a little, so that the curve is
“smooth” at z1 although there’s a rather sharp turn there. (This means that the
autorounding operations discussed in Chapter 24 will apply.) For example, the path
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unitsquare
tensepath
curl

(0, 3) - - - (0, 0) - - - (3, 0) is equivalent to

(0, 3) . . controls (−0.0002, 2.9998) and (−0.0002, 0.0002)
. . (0, 0) . . controls (0.0002,−0.0002) and (2.9998,−0.0002) . . (3, 0)

while (0, 3) - - (0, 0) - - (3, 0) consists of two perfectly straight segments:

(0, 3) . . controls (0, 2) and (0, 1)
. . (0, 0) . . controls (1, 0) and (2, 0) . . (3, 0).

� xEXERCISE 14.7
Plain hijklmnj’s unitsquare path is defined to be ‘(0, 0) - - (1, 0) - - (1, 1) - -

(0, 1) - - cycle’. Explain how the same path could have been defined using only ‘. .’
and ‘&’, not ‘- -’ or explicit directions.

�� Sometimes it’s desirable to take a path and change all its connecting links
to ‘- - -’, regardless of what they were originally; the key points are left un-

changed. Plain hijklmnj has a tensepath operation that does this. For example,
tensepath unitsquare = (0, 0) - - - (1, 0) - - - (1, 1) - - - (0, 1) - - - cycle.

When METAFONT is deciding what curves should be drawn in place of
‘. .’ or ‘. . .’, it has to give special consideration to the beginning and ending points,
so that the path will start and finish as gracefully as possible. The solution that
usually works out best is to make the first and last path segments very nearly
the same as arcs of circles; an unadorned path of length 2 like ‘z0 . . z1 . . z2’
will therefore turn out to be a good approximation to the unique circular arc
that passes through (z0, z1, z2), except in extreme cases. You can change this
default behavior at the endpoints either by specifying an explicit direction or by
specifying an amount of “curl.” If you call for curliness less than 1, the path will
decrease its curvature in the vicinity of the endpoint (i.e., it will begin to turn
less sharply); if you specify curliness greater than 1, the curvature will increase.
(See the definition of El Palo Alto’s trunk , earlier in this chapter.)

Here, for example, are some pairs of parentheses that were drawn using
various amounts of curl. In each case the shape was drawn by a statement of the
form ‘penstroke z0e{curl c} . . z1e . . {curl c}z2e’; different values of c produce
different-looking parentheses:

curl value 0 1 2 4 infinity
yields 12 34 56 78 9:

(The parentheses of Computer Modern typefaces are defined by the somewhat
more general scheme described in Chapter 12; explicit directions are specified at
the endpoints, instead of curls, because this produces better results in unusual
cases when the characters are extremely tall or extremely wide.)

� The amount of curl should not be negative. When the curl is very large,
hijklmnj doesn’t actually make an extremely sharp turn at the endpoint;

instead, it changes the rest of the path so that there is comparatively little curvature
at the neighboring point.
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� Chapter 3 points out that we can change hijklmnj’s default curves by
specifying nonstandard “tension” between points, or even by specifying ex-

plicit control points to be used in the four-point method. Let us now study the full
syntax of path expressions, so that we can come to a complete understanding of the
paths that hijklmnj is able to make. Here are the general rules:

〈path primary〉 −→ 〈path variable〉
| ( 〈path expression〉 )
| reverse 〈path primary〉
| subpath 〈pair expression〉 of 〈path primary〉

〈path secondary〉 −→ 〈path primary〉
| 〈path secondary〉〈transformer〉

〈path tertiary〉 −→ 〈path secondary〉 | 〈pair tertiary〉
〈path expression〉 −→ 〈path subexpression〉

| 〈path subexpression〉〈direction specifier〉
| 〈path subexpression〉〈path join〉 cycle

〈path subexpression〉 −→ 〈path tertiary〉
| 〈path expression〉〈path join〉〈path tertiary〉

〈path join〉 −→ 〈direction specifier〉〈basic path join〉〈direction specifier〉
〈direction specifier〉 −→ 〈empty〉

| { curl 〈numeric expression〉 }
| { 〈pair expression〉 }
| { 〈numeric expression〉 , 〈numeric expression〉 }

〈basic path join〉 −→ & | .. | .. 〈tension〉 .. | .. 〈controls〉 ..
〈tension〉 −→ tension 〈tension amount〉

| tension 〈tension amount〉 and 〈tension amount〉
〈tension amount〉 −→ 〈numeric primary〉

| atleast 〈numeric primary〉
〈controls〉 −→ controls 〈pair primary〉

| controls 〈pair primary〉 and 〈pair primary〉

The operations ‘. . .’ and ‘- -’ and ‘- - -’ are conspicuously absent from this syntax; that
is because Appendix B defines them as macros:

. . . is an abbreviation for ‘. . tension atleast 1 . .’ ;
- - is an abbreviation for ‘{curl 1} . . {curl 1}’ ;
- - - is an abbreviation for ‘. . tension infinity . .’ .

� These syntax rules specify a wide variety of possibilities, even though they
don’t mention ‘- -’ and such things explicitly, so we shall now spend a little

while looking carefully at their implications. A path expression essentially has the form

p0 j1 p1 j2 · · · jn pn

where each pk is a tertiary expression of type pair or path, and where each jk is a “path
join.” A path join begins and ends with a “direction specifier,” and has a “basic path
join” in the middle. A direction specifier can be empty, or it can be ‘{curl c}’ for some
c ≥ 0, or it can be a direction vector enclosed in braces. For example, ‘{up}’ specifies
an upward direction, because plain hijklmnj defines up to be the pair (0, 1). This
same direction could be specified by ‘{(0, 1)}’ or ‘{(0, 10)}’, or without parentheses as
‘{0, 1}’. If a specified direction vector turns out to be (0, 0), hijklmnj behaves as
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if no direction had been specified; i.e., ‘{0, 0}’ is equivalent to ‘〈empty〉’. An empty
direction specifier is implicitly filled in by rules that we shall discuss later.

� A basic path join has three essential forms: (1) ‘&’ simply concatenates
two paths, which must share a common endpoint. (2) ‘. . tension α and β . .’

means that a curve should be defined, having respective “tensions” α and β. Both α
and β must be equal to 3/4 or more; we shall discuss tension later in this chapter.
(3) ‘. . controls u and v . .’ defines a curve with intermediate control points u and v.

� Special abbreviations are also allowed, so that the long forms of basic path
joins can usually be avoided: ‘. .’ by itself stands for ‘. . tension 1 and 1 . .’ ,

while ‘. . tension α . .’ stands for ‘. . tension α and α . .’ , and ‘. . controls u . .’ stands for
‘. . controls u and u . .’ .

� Our examples so far have always constructed paths from points; but the syn-
tax shows that it’s also possible to write, e.g., ‘p0 . . p1 . . p2’ when the p’s

themselves are paths. What does this mean? Well, every such path will already
have been changed into a sequence of curves with explicit control points; hijk-
lmnj expands such paths into the corresponding sequence of points and basic path
joins of type (3). For example, ‘((0, 0) . . (3, 0)) . . (3, 3)’ is essentially the same as
‘(0, 0) . . controls (1, 0) and (2, 0) . . (3, 0) . . (3, 3)’, because ‘(0, 0) . . (3, 0)’ is the path
‘(0, 0) . . controls (1, 0) and (2, 0) . . (3, 0)’. If a cycle is expanded into a subpath in this
way, its cyclic nature will be lost; its last point will simply be a copy of its first point.

� Now let’s consider the rules by which empty direction specifiers can inherit
specifications from their environment. An empty direction specifier at the

beginning or end of a path, or just next to the ‘&’ operator, is effectively replaced by
‘{curl 1}’. This rule should be interpreted properly with respect to cyclic paths, which
have no beginning or end; for example, ‘z0 . . z1 & z1 . . z2 . . cycle’ is equivalent to
‘z0 . . z1{curl 1}&{curl 1}z1 . . z2 . . cycle’.

� If there’s a nonempty direction specifier after a point but not before it, the
nonempty one is copied into both places. Thus, for example, ‘. . z{w}’ is

treated as if it were ‘. . {w}z{w}’. If there’s a nonempty direction specifier before a
point but not after it, the nonempty one is, similarly, copied into both places, except
if it follows a basic path join that gives explicit control points. The direction specifier
that immediately follows ‘. . controls u and v . .’ is always ignored.

� An empty direction specifier next to an explicit control point inherits the direc-
tion of the adjacent path segment. More precisely, ‘. . z . . controls u and v . .’

is treated as if it were ‘. . {u − z}z . . controls u and v . .’ if u 6= z, or as if it were
‘. . {curl 1}z . . controls u and v . .’ if u = z. Similarly, ‘. . controls u and v . . z . .’ is
treated as if z were followed by {z − v} if z 6= v, by {curl 1} otherwise.

�� After the previous three rules have been applied, we might still be left with
cases in which there are points surrounded on both sides by empty direction

specifiers. hijklmnj must choose appropriate directions at such points, and it does
so by applying the following algorithm due to John Hobby [Discrete and Computational
Geometry 1 (1986), 123–140]: Given a sequence

z0{d0} . . tension α0 and β1 . . z1 . . tension α1 and β2 . . z2

〈etc.〉 zn−1 . . tension αn−1 and βn . . {dn}zn
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mock curvaturefor which interior directions need to be determined, we will regard the z’s as if they
were complex numbers. Let lk = |zk − zk−1| be the distance from zk−1 to zk, and let
ψk = arg((zk+1−zk)/(zk−zk−1)) be the turning angle at zk. We wish to find direction
vectors w0, w1, . . . , wn so that the given sequence can effectively be replaced by

z0{w0} . . tension α0 and β1 . . {w1}z1{w1} . . tension α1 and β2 . . {w2}z2

〈etc.〉 zn−1{wn−1} . . tension αn−1 and βn . . {wn}zn.

Since only the directions of the w’s are significant, not the magnitudes, it suffices to
determine the angles θk = arg(wk/(zk+1 − zk)). For convenience, we also let φk =
arg((zk − zk−1)/wk), so that

θk + φk + ψk = 0. (∗)

Hobby’s paper introduces the notion of “mock curvature” according to which the fol-
lowing equations should hold at interior points:

β2
kl−1

k (α−1
k−1(θk−1 + φk)− 3φk) = α2

kl−1
k+1(β

−1
k+1(θk + φk+1)− 3θk). (∗∗)

We also need to consider boundary conditions. If d0 is an explicit direction vector w0,
we know θ0; otherwise d0 is ‘curl γ0’ and we set up the equation

α2
0(β−1

1 (θ0 + φ1)− 3θ0) = γ0β2
1(α−1

0 (θ0 + φ1)− 3φ1). (∗∗∗)

If dn is an explicit vector wn, we know φn; otherwise dn is ‘curl γn’ and we set

β2
n(α−1

n−1(θn−1 + φn)− 3φn) = γnα2
n−1(β−1

n (θn−1 + φn)− 3θn−1). (∗∗∗′)

It can be shown that the conditions αk ≥ 3/4, βk ≥ 3/4, γk ≥ 0 imply that there is a
unique solution to the system of equations consisting of (∗) and (∗∗) for 0 < k < n plus
the two boundary equations; hence the desired quantities θ0, . . . , θn−1 and φ1, . . . , φn

are uniquely determined. (The only exception is the degenerate case n = γ0γ1 = 1.)

�� A similar scheme works for cycles, when there is no ‘{d0}’ or ‘{dn}’. In this
case equations (∗) and (∗∗) hold for all k.

��xEXERCISE 14.8
Write out the equations that determine the directions chosen for the general

cycle ‘z0 . . tension α0 and β1 . . z1 . . tension α1 and β2 . . z2 . . tension α2 and β3 . . cycle’
of length 3. (You needn’t try to solve the equations.)

�� Whew— these rules have determined the directions at all points. To com-
plete the job of path specification, we need merely explain how to change a

segment like ‘z0{w0} . . tension α and β . . {w1}z1’ into a segment of the form ‘z0 . .
controls u and v . . z1’ ; i.e., we finally want to know hijklmnj’s magic recipe for
choosing the control points u and v. If θ = arg(w0/(z1−z0)) and φ = arg((z1−z0)/w1),
the control points are

u = z0 + eiθ(z1 − z0)f(θ, φ)/α, v = z1 − e−iφ(z1 − z0)f(φ, θ)/β,

where f(θ, φ) is another formula due to John Hobby:

f(θ, φ) =
2 +

√
2 (sin θ − 1

16 sin φ)(sin φ− 1
16 sin θ)(cos θ − cos φ)

3 (1 + 1
2 (
√

5− 1) cos θ + 1
2 (3−

√
5 ) cos φ)

.
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unitsquare
reverse

�� There’s yet one more complication. If the tensions α and/or β have been
preceded by the keyword ‘atleast’, the values of α and/or β are increased, if

necessary, to the minimum values such that u and v do not lie outside the “bounding
triangle,” which is discussed near the end of Chapter 3.

� What do these complex rules imply, for hijklmnj users who aren’t “into”
mathematics? The most important fact is that the rules for paths are invariant

under shifting, scaling, and rotation. In other words, if the key points zk of a path are
all shifted, scaled, and/or rotated in the same way, the resulting path will be the same as
you would get by shifting, scaling, and/or rotating the path defined by the unmodified
zk’s (except of course for possible rounding errors). However, this invariance property
does not hold if the points or paths are xscaled and yscaled by separate amounts.

� Another consequence of the rules is that tension specifications have a fairly
straightforward interpretation in terms of control points, when the adjacent

directions have been given: The formulas for u and v simply involve division by α and β.
This means, for example, that a tension of 2 brings the control points halfway in towards
the neighboring key points, and a tension of infinity makes the points very close indeed;
contrariwise, tensions less than 1 move the control points out.

� Tension and curl specifications also influence hijklmnj’s choices of direc-
tions at the key points. That is why, for example, the construction ‘zk−1 - - - zk’

(which means ‘zk−1 . . tension infinity . . zk’ ) affects the direction of a larger path as it
enters zk−1 and leaves zk.

� The rules imply that a change in the position of point zn causes a change
in the curve near point z0, when hijklmnj has to choose directions at all

points between z0 and zn. However, this effect is generally negligible except in the
vicinity of the changed point. You can verify this by looking, for example, at the
control points that hijklmnj chooses for the path ‘(0, 0) . . (1, 0) . . (2, 0) . . (3, 0) . .
(4, 0) . . . {up}(5, y)’, as y varies.

��xEXERCISE 14.9
Run hijklmnj on the ‘expr’ file of Chapter 8, and ask to see the path

expression ‘unitsquare shifted (0, 1) . . unitsquare shifted (1, 0)’. Account for the
results that you get.

��xEXERCISE 14.10
We’ve said that ‘- -’ is plain hijklmnj’s abbreviation for ‘{curl 1} . . {curl 1}’.

Would there be any essential difference if ‘- -’ were defined to mean ‘{curl 2} . . {curl 2}’ ?

��xEXERCISE 14.11
Look closely at the syntax of 〈path expression〉 and explain what hijklmnj

does with the specification ‘(0, 0) . . (3, 3) . . cycle{curl 1}’.

� Now let’s come back to simpler topics relating to paths. Once a path has
been specified, there are lots of things you can do with it, besides drawing and

filling and suchlike. For example, if p is a path, you can reverse its direction by saying
‘reverse p’; the reverse of ‘z0 . . controls u and v . . z1’ is ‘z1 . . controls v and u . . z0’.

� xEXERCISE 14.12
True or false: length reverse p = length p, for all paths p.
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� It’s convenient to associate “time” with paths, by imagining that we move
along a path of length n as time passes from 0 to n. (Chapter 8 has already

illustrated this notion, with respect to an almost-but-not-quite-circular path called p2;
it’s a good idea to review the discussion of paths and subpaths in Chapter 8 now before
you read further.) Given a path

p = z0 . . controls u0 and v1 . . z1 〈etc.〉 zn−1 . . controls un−1 and vn . . zn

and a number t, hijklmnj determines ‘point t of p’ as follows: If t ≤ 0, the result
is z0; if t ≥ n, the result is zn; otherwise if k ≤ t < k +1, it is (t−k)[zk, uk, vk+1, zk+1],
where we generalize the ‘t[α, β]’ notation so that t[α, β, γ] means t[t[α, β], t[β, γ]] and
t[α, β, γ, δ] means t[t[α, β, γ], t[β, γ, δ]]. (This is a Bernshtĕın polynomial in t, cf. Chap-
ter 3.) Given a cyclic path

c = z0 . . controlsu0 and v1 . . z1 〈etc.〉 zn−1 . . controls un−1 and vn . . cycle

and a number t, hijklmnj determines ‘point t of c’ in essentially the same way,
except that t is first reduced modulo n so as to lie in the range 0 ≤ t < n.

��xEXERCISE 14.13
True or false: point t of (z0 - - z1) = t[z0, z1].

� Given a path p and two time values t1 ≤ t2, ‘subpath (t1, t2) of p’ contains
all the values ‘point t of p’ as t varies from t1 to t2. There’s no problem

understanding how to define this subpath when t1 and t2 are integers; for example,

subpath (2, 4) of p = z2 . . controls u2 and v3 . . z3 . . controls u3 and v4 . . z4

in the notation above, if we assume that n ≥ 4. The fractional case is handled by
“stretching time” in one segment of the curve; for example, if 0 < t < 1 we have

subpath (0, t) of p = z0 . . controls t[z0, u0] and t[z0, u0, v1] . . t[z0, u0, v1, z1];
subpath (t, 1) of p = t[z0, u0, v1, z1] . . controls t[u0, v1, z1] and t[v1, z1] . . z1.

These two subpaths together account for all points of ‘z0 . . controls u0 and v1 . . z1’. To
get subpath (t1, t2) of p when 0 < t1 < t2 < 1, hijklmnj applies this construction
twice, by computing subpath (t1/t2, 1) of subpath (0, t2) of p.

�� The operation ‘subpath (t1, t2) of p’ is defined for all combinations of times
(t1, t2) and paths p by the following rules: Let n = length p. (1) If t1 > t2,

subpath (t1, t2) of p = reverse subpath (t2, t1) of p. Henceforth we shall assume that
t1 ≤ t2. (2) If t1 = t2, subpath (t1, t2) of p = point t1 of p, a path of length zero.
Henceforth we shall assume that t1 < t2. (3) If t1 < 0 and p is a cycle, subpath (t1, t2)
of p = subpath (t1 +n, t2 +n) of p. If t1 < 0 and p is not a cycle, subpath (t1, t2) of p =
subpath (0, max(0, t2)) of p. Henceforth we shall assume that t1 ≥ 0. (4) If t1 ≥ n and
p is a cycle, subpath (t1, t2) of p = subpath (t1−n, t2−n) of p. If t1 < n < t2 and p is a
cycle, subpath (t1, t2) of p = subpath (t1, t2) of (p & p &cycle). If t2 > n and p is not a
cycle, subpath (t1, t2) of p = subpath (min(t1, n), n) of p. Henceforth we shall assume
that 0 ≤ t1 < t2 ≤ n. (5) If t1 ≥ 1, subpath (t1, t2) of p = subpath (t1 − 1, t2 − 1) of
subpath (1, n) of p, where subpath (1, n) of p is obtained by removing the first segment
of p. Henceforth we shall assume that 0 ≤ t1 < 1. (6) If t2 > 1, subpath (t1, t2)
of p = subpath (t1, 1) of p & subpath (1, t2) of p. Henceforth we shall assume that
0 ≤ t1 < t2 ≤ 1. (7) The remaining cases were defined in the preceding paragraph.
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��xEXERCISE 14.14
What is the length of ‘subpath (2.718, 3.142) of p’ ?

� Besides ‘point t of p’, hijklmnj allows you to speak of ‘postcontrol t of p’
and ‘precontrol t of p’; this gives access to the control points of a path. Let

p = z0 . . controlsu0 and v1 . . z1 〈etc.〉 zn−1 . . controls un−1 and vn . . zn.

If t < n, postcontrol t of p is the first control point in subpath (t, n) of p; if t ≥ n,
postcontrol t of p is zn. If t > 0, precontrol t of p is the last control point in subpath (0, t)
of p; if t ≤ 0, precontrol t of p is z0. In particular, if t is an integer, postcontrol t of p
is ut for 0 ≤ t < n, and precontrol t of p is vt for 0 < t ≤ n.

� The ability to extract key points and control points makes it possible to define
interesting operations such as plain hijklmnj’s interpath function, which

allows you to interpolate between paths. For example, ‘interpath (1/3, p, q)’ will produce
a path of length n whose points are 1/3[point t of p, point t of q] for 0 ≤ t ≤ n, given
any paths p and q of length n. It can be defined by a fairly simple program:

vardef interpath (expr a, p, q) =
for t = 0 upto length p − 1: a[point t of p, point t of q]

. . controls a[postcontrol t of p, postcontrol t of q]
and a[precontrol t + 1 of p, precontrol t + 1 of q] . . endfor

if cycle p: cycle % assume that p, q are both cycles or both noncycles
else: a[point infinity of p, point infinity of q] fi enddef ;

� On February 14, 1979, the author bought a box of chocolates and placed the
box on a piece of graph paper (after suitably disposing of the contents). The

experimental data gathered in this way led to a “definitive” heart shape:

heart = (100, 162) . . (140, 178){right} . . (195, 125){down}
. . (100, 0){curl 0} . . {up}(5, 125) . . {right}(60, 178) . . (100, 162);

It is interesting to interpolate between heart and other paths, by using a program like

for n = 0 upto 10: draw interpath (n/10, p, heart ); endfor.

For example, the left illustration below was obtained by taking

p = (100, 0) - - (300, 0) - - (200, 0) - - (100, 0) - - (0, 0) - - (−100, 0) - - (100, 0);

notice that interpath doesn’t necessarily preserve smoothness at the key points. The
right illustration was obtained by duplicating point (100, 0) in heart (thereby making
it a path of length 7) and taking

p = (100, 200) - - (200, 200) - - (200, 100)
- - (200, 0) - - (0, 0) - - (0, 100) - - (0, 200) - - (100, 200).

(Figure 14bb&cc will be inserted here; too bad you can’t see it now.)
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� Plain hijklmnj allows you to say ‘direction t of p’ in order to determine the
direction in which path p is moving at time t. This is simply an abbreviation

for ‘(postcontrol t of p)− (precontrol t of p)’. Sometimes a path veers abruptly and has
no unique direction; in this case the direction function gives a result somewhere between
the two possible extremes. For example, the heart path above turns a corner at time 3;
‘direction 3 of heart ’ turns out to be (−93.29172, 0), but ‘direction 3−epsilon of heart ’
is (−46.64589,−31.63852) and ‘direction 3+epsilon of heart ’ is (−46.64589, 31.63852).

� Conversely, hijklmnj can tell you when a path heads in a given direction.
You just ask for ‘directiontime w of p’, where w is a direction vector and p is

a path. This operation is best understood by looking at examples, so let’s resume our
dialog with the computer by applying hijklmnj to the ‘expr’ file as in Chapter 8.
When hijklmnj first says ‘gimme’, our opening strategy this time will be to type

hide(p3 = (0,0){right}..{up}(1,1)) p3

so that we have a new path to play with. Now the fun begins:

You type And the result is

directiontime right of p3 0

directiontime up of p3 1

directiontime down of p3 -1

directiontime (1,1) of p3 0.5

directiontime left of reverse p3 1

direction directiontime (1,2) of p3 of p3 (0.23126,0.46251)

directiontime right of subpath(epsilon,1) of p3 0

directiontime right of subpath(2epsilon,1)of p3 -1

directiontime (1,1) of subpath(epsilon,1) of p3 0.49998

direction epsilon of p3 (0.55226,0)

direction 2epsilon of p3 (0.55229,0.00003)

directiontime dir 30 of p3 0.32925

angle direction 0.32925 of p3 29.99849

angle direction 0.32925+epsilon of p3 30.00081

directionpoint up of p3 (1,1)

Note that directiontime yields −1 if the specified direction doesn’t occur. At time
epsilon , path p3 is still traveling right, but at time 2epsilon it has begun to turn
upward. The ‘directionpoint’ operation is analogous to directiontime, but it gives the
point on the path rather than the time of arrival.

You type And the result is

directiontime up of fullcircle 0

directiontime left of fullcircle 2

directiontime right of fullcircle 6

directiontime (-1,1) of fullcircle 1

directiontime (epsilon,infinity) of fullcircle 8
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directiontime right of unitsquare 0

directiontime up of unitsquare 1

directiontime (1,1) of unitsquare 1

directiontime (-1,1) of unitsquare 2

If a path travels in a given direction more than once, directiontime reports only the first
time. The unitsquare path has sharp turns at the corners; directiontime considers that
all directions between the incoming and outgoing ones are instantaneously present.

�� It’s possible to construct pathological paths in which unusual things happen.
For example, the path p = (0, 0) . . controls (1, 1) and (0, 1) . . (1, 0) has a

“cusp” at time 0.5, when it comes to a dead stop and turns around. (If you ask
for ‘direction 0.5 of p’, the answer is zero, while direction 0.5 − ε of p is (0, 2ε) and
direction 0.5+ε of p is (0,−2ε).) The directiontime operation assumes that all possible
directions actually occur when a path comes to a standstill, hence ‘directiontime right
of p’ will be 0.5 in this case even though it might be argued that p never turns to the
right. Paths with cusps are numerically unstable, and they might become “strange”
after transformations are applied, because rounding errors might change their turning
numbers. The path p in this example has control points that correspond to tensions of
only 0.28 with respect to the initial and final directions; since hijklmnj insists that
tensions be at least 0.75, this anomalous path could never have arisen if the control
points hadn’t been given explicitly.

��xEXERCISE 14.15
Write macros called posttension and pretension that determine the effective

tensions of a path’s control points at integer times t. For example, ‘pretension 1
of (z0 . . tension α and β . . z1)’ should be β (approximately). Test your macro by
computing posttension 0 of ((0, 0){right} . . . {up}(1, 10)).

� We have now discussed almost all of the things that hijklmnj can do
with paths; but there’s one more important operation to consider, namely

intersection. Given two paths p and q, you can write

p intersectiontimes q

and the result will be a pair of times (t, u) such that point t of p ≈ point u of q. For
example, using the expr routine,

You type And the result is

unitsquare intersectiontimes fullcircle (0.50002,0)

unitsquare intersectiontimes fullcircle rotated 90 (0.50002,6)

reverse unitsquare intersectiontimes fullcircle (0.50002,2)

fullcircle intersectiontimes unitsquare (0,0.50002)

halfcircle rotated 45 intersectiontimes unitsquare (1,3.5)

halfcircle rotated 89 intersectiontimes unitsquare (0.02196,3.5)

halfcircle rotated 90 intersectiontimes unitsquare (0,3.50002)

halfcircle rotated 91 intersectiontimes unitsquare (-1,-1)

halfcircle rotated 45 intersectiontimes fullcircle (0,1)

fullcircle intersectiontimes (-0.5,0) (4,0)
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unitsquare intersectionpoint fullcircle (0.5,0)

reverse unitsquare intersectionpoint fullcircle (0,0.5)

Notice that the result is (−1,−1) if the paths don’t intersect. The last two examples il-
lustrate the ‘intersectionpoint’ operator, which yields the common point of intersection.
Both intersectiontimes and intersectionpoint apply at the tertiary level of precedence,
hence parentheses were not needed in these examples.

� xEXERCISE 14.16
J. H. Quick (a student) wanted to construct a path r that started on some

previously defined path p and proceeded up to the point where it touched another
path q, after which r was supposed to continue on path q. So he wrote

path r; numeric t, u; (t, u) = p intersectiontimes q;
r = subpath (0, t) of p & subpath (u, infinity ) of q;

but it didn’t work. Why not?

�� If the paths intersect more than once, hijklmnj has a somewhat peculiar
way of deciding what times (t, u) should be reported by ‘p intersectiontimes q’.

Suppose p has length m and q has length n. (Paths of length 0 are first changed into
motionless paths of length 1.) hijklmnj proceeds to examine subpath (k, k+1) of p
versus subpath (l, l + 1) of q, for k = 0, . . . , m− 1 and l = 0, . . . , n− 1, with l varying
most rapidly. This reduces the general problem to the special case of paths of length 1,
and the times (t, u) for the first such intersection found are added to (k, l). But within
paths of length 1 the search for intersection times is somewhat different: Instead of
reporting the “lexicographically smallest” pair (t, u) that corresponds to an intersection,
hijklmnj finds the (t, u) whose “shuffled binary” representation (.t1u1t2u2 . . . )2 is
minimum, where (.t1t2 . . . )2 and (.u1u2 . . . )2 are the radix-2 representations of t and u.

��xEXERCISE 14.17
(A mathematical puzzle.) The path p = (0, 0) . . controls (2, 2) and (0, 1) . .

(1, 0) loops on itself, so there are times t < u such that point t of p ≈ point u of p.
Devise a simple way to compute (t, u) in a hijklmnj program, without using the
subpath operation.

� Let’s conclude this chapter by applying what we’ve learned about paths to a
real-life example. The Journal of Algorithms has been published since 1980

by Academic Press, and its cover page carries the following logo, which was designed
by J. C. Knuth to blend with the style of type used elsewhere on that page:

(Figure 14dd will be inserted here; too bad you can’t see it now.)

A hijklmnj program to produce this logo will make it possible for the editors of the
journal to use it on letterheads in their correspondence. Here is one way to do the job,
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without needing to erase anything:

1 beginchar("A", 29mm#, 25mm#, 0); thick# := 2mm#; thin# := 5/4mm#;
2 define whole blacker pixels(thick , thin );
3 forsuffixes $ = a, b, c: transform $;
4 forsuffixes e = l, r: path $e, $′e; numeric t$[ ]e; endfor endfor
5 penpos1(thick , 0); penpos2(thick , 90); penpos3(thick , 180); penpos4(thick , 270);
6 penpos5(thick , 0); penpos6(thick , 90); penpos7(thick , 180); penpos8(thick , 270);
7 x2 = x4 = x6 = x8 = .5[x5, x7] = .5w; x1r = w; x3r = 0; x5 − x7 = y6 − y8;
8 y1 = y3 = y5 = y7 = .5[y6, y8] = .5h; y2r = h; y4r = 0; y6r = .75h;
9 forsuffixes e = l, r: a.e = b′e = c′e = superellipse (z1e, z2e, z3e, z4e, .75);

10 a′e = b.e = c.e = superellipse (z5e, z6e, z7e, z8e, .72); endfor
11 penposa1(thin , 0); penposa5(whatever ,−90); penposa9(thin , 180);
12 xa1l − xa9l = 1/3(x5l − x7l); xa5 = .5w; ya1 = ya9; ya5r = 4/7h;
13 xa3l = xa1l; xa3r = xa1r; xa4r = 1/6[xa3r, x1l]; x0 = .5w; y0 = .52h;
14 xa6l + xa4l = xa6r + xa4r = xa7l + xa3l = xa7r + xa3r = xa9 + xa1 = w;
15 ya3r = ya4r = ya6r = ya7r = .2[y2l, y0]; ya3l = ya4l = ya6l = ya7l = ya3r − thin ;
16 za4l = za4r + (thin , 0) rotated(angle(za4r − za5r) + 90)
17 + whatever ∗ (za4r − za5r); za4l − za5l = whatever ∗ (za4r − za5r);
18 z = a.r intersectionpoint (z0 - - (w, 0)); ya1 − ya5 = length(z − z0);
19 b = identity shifted (0, y0 − ya1) rotatedaround(z0, 90− angle(z0 − (w, 0)));
20 c = b reflectedabout (z2, z4);
21 for n = 1, 3, 4, 5, 6, 7, 9: forsuffixes e = l, , r: forsuffixes $ = b, c:
22 z$[n]e = za[n]e transformed $; endfor endfor endfor
23 forsuffixes e = l, r: forsuffixes $ = a, b, c:
24 z$2e = $r intersectionpoint (z$1e - - z$3e);
25 z$8e = $r intersectionpoint (z$9e - - z$7e);
26 t$1e = xpart($e intersectiontimes (z$1l - - z$3l));
27 t$9e = xpart($e intersectiontimes (z$9l - - z$7l));
28 t$4e = xpart($′e intersectiontimes (z$5r - - z$4l));
29 t$6e = xpart($′e intersectiontimes (z$5r - - z$6l)); endfor endfor
30 penstroke subpath(ta9e, tb6e) of a.e;
31 penstroke subpath(tb4e, tc4e) of b′e;
32 penstroke subpath(tc6e, ta1e + 8) of c′e;
33 penstroke subpath(ta6e, tb9e) of a′e;
34 penstroke subpath(tb1e, tc1e) of b.e;
35 penstroke subpath(tc9e, ta4e + 8) of c.e;
36 forsuffixes $ = a, b, c: penlabels($1, $2, $3, $4, $5, $6, $7, $8, $9);
37 penstroke z$2e - - z$3e - - z$4e - - z$5e - - z$6e - - z$7e - - z$8e; endfor
38 penlabels(range 0 thru 8); endchar;

Lines 5–10 of this program define the main superellipses of the figure. The outer
superellipse is eventually drawn as three separate strokes in lines 30–32, and the inner
one is drawn as three strokes in lines 33–35. The rest of the figure consists of three
arrows, whose point labels are prefaced by the respective labels a, b, c. Lines 11–18
define the ‘a’ arrow; then lines 19–22 transform these points into the ‘b’ and ‘c’ arrows,
anticipating some of the things we shall discuss in Chapter 15. Thirty-six intersections
between arrows and superellipses are computed in lines 23–29, and the arrows are finally
drawn by the penstrokes specified in lines 36–37.
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(Figure 14e will be inserted here; too bad you can’t see it now.)

The route is indicated by dots,
the days’ journeys are expressed by numbers,

and letters are used to locate notable places and sites.
. . . We arrived at the Arroyo de San Francisco,

beside which stream is the redwood tree I spoke of yesterday;
I measured its height with the Graphometer

and reckoned it to be fifty yards high, more or less.

— FRAY PEDRO FONT, Diary (1776)

The practical teaching of the masters of Art was summed by the O of Giotto.

— JOHN RUSKIN, The Cestus of Aglaia (1865)
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Points, paths, pens, and pictures can be shifted, scaled, rotated, and revamped
in a variety of ways. Our aim in this chapter will be to learn all about the built-
in metamorphoses of METAFONT, because they can make programs simpler and
more versatile.

The basic transformations have already appeared in many examples, but
let’s start by reviewing them here:

(x, y) shifted (a, b) = (x + a, y + b);
(x, y) scaled s = (sx, sy);
(x, y) xscaled s = (sx, y);
(x, y) yscaled s = (x, sy);
(x, y) slanted s = (x + sy, y);
(x, y) rotated θ = (x cos θ − y sin θ, x sin θ + y cos θ);
(x, y) zscaled (u, v) = (xu− yv, xv + yu).

One of the nice things about METAFONT is that you don’t have to remem-
ber the sine-and-cosine formulas of trigonometry; you just have to know that
‘(x, y) rotated θ’ means ‘the vector (x, y) rotated θ degrees counterclockwise
around (0, 0)’, and the computer does all the necessary calculations by itself.
The operation of zscaling may look a bit strange, but it is simply a combination
of rotating by angle (u, v) and scaling by length (u, v).

Plain METAFONT provides two more transformations that are commonly
needed: You can say ‘(x, y) rotatedaround (z0, θ)’ if you want to rotate around
point z0 instead of point (0, 0). And you can say ‘(x, y) reflectedabout (z1, z2)’
if you want to find the point directly opposite (x, y) on the other side of the
straight line that runs through z1 and z2.

All of these operations are special manifestations of a single glorious
maneuver that can be written in the general form

(x, y) transformed t.

Here t is a variable (or primary expression) of type transform; it stands for any
desired sequence of shiftings, scalings, slantings, etc., all in one fell swoop.

You can give equations between transforms, just as you can give equa-
tions between other types of things in METAFONT programs. Thus, for example,
you might say

transform t[ ]; t2 = t1 shifted (2, 2) rotated 30;

then an expression like ‘(x, y) transformed t1 shifted (2, 2) rotated 30’ can be
abbreviated to ‘(x, y) transformed t2’, which is simpler and faster.

There’s a special transform variable called identity with the amazing
property that

(x, y) transformed identity = (x, y)

for all x and y. You might think that identity is useless, since it does nothing, but
in fact it’s a natural starting point for building other transforms. For example,
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line 19 of the program at the end of the previous chapter says

b = identity shifted (0, y0 − ya1) rotatedaround(z0, theta );

this defines the transform variable b to be a compound transformation that is
used on lines 21 and 22 to construct the lower left arrow as a shifted and rotated
copy of the upper arrow, in the character being drawn.

� A transform variable t represents six numbers (tx, ty, txx, txy, tyx, tyy), in
much the same way as a pair variable represents two numbers (x, y). The

general transformation ‘(x, y) transformed t’ is simply an abbreviation for

(tx + x txx + y txy, ty + x tyx + y tyy);

thus, for example, ‘txy’ appears in the xpart of the transform as the coefficient of y. If
you say ‘show t’ when t is a completely unknown transform, the computer will type

>> (xpart t,ypart t,xxpart t,xypart t,yxpart t,yypart t)

just as it would type ‘>> (xpart u,ypart u)’ for a completely unknown variable u
of type pair. You can access individual components of a transform by referring to
‘xpart t’, ‘ypart t’, ‘xxpart t’, etc.

� Once again, we can learn best by computer experiments with the expr file
(cf. Chapter 8); this time the idea is to play with transforms:

You type And the result is

identity (0,0,1,0,0,1)

identity shifted (a,b) (a,b,1,0,0,1)

identity scaled s (0,0,s,0,0,s)

identity xscaled s (0,0,s,0,0,1)

identity yscaled s (0,0,1,0,0,s)

identity slanted s (0,0,1,s,0,1)

identity rotated 90 (0,0,0,-1,1,0)

identity rotated 30 (0,0,0.86603,-0.5,0.5,0.86603)

identity rotatedaround ((2,3),90) (5,1,0,-1,1,0)

(x,y) rotatedaround ((2,3),90) (-y+5,x+1)

(x,y) reflectedabout ((0,0),(0,1)) (-x,y)

(x,y) reflectedabout ((0,0),(1,1)) (y,x)

(x,y) reflectedabout ((5,0),(0,10)) (-0.8y-0.6x+8,0.6y-0.8x+4)

� xEXERCISE 15.1
Guess the result of ‘(x,y) reflectedabout ((0,0),(1,0))’.

� xEXERCISE 15.2
What transform takes (x, y) into (−x,−y)?

� xEXERCISE 15.3
True or false: (−(x, y)) transformed t = −((x, y) transformed t).
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� In order to have some transform variables to work with, it’s necessary to ‘hide’
some declarations and commands before giving the next exprs:

You type And the result is

hide(transform t[]) t1 (xpart t1,ypart t1,xxpart...)

hide(t1=identity zscaled(1,2)) t1 (0,0,1,-2,2,1)

hide(t2=t1 shifted (1,2)) t2 (1,2,1,-2,2,1)

t2 xscaled s (s,2,s,-2s,2,1)

unknown t2 false

transform t2 true

t1=t2 false

t1<t2 true

inverse t2 (-1,0,0.2,0.4,-0.4,0.2)

inverse t2 transformed t2 (0,0,0.99998,0,0,0.99998)

hide(t3 transformed t2=identity) t3 (-1,0,0.2,0.4,-0.4,0.2)

The inverse function finds the transform that undoes the work of another; the equation
that defines t3 above shows how to calculate an inverse indirectly, without using inverse .

� Like numeric expressions and pair expressions, transform expressions can be
either “known” or “unknown” at any given point in a program. (If any

component of a transform is unknown, the whole transform is regarded as unknown.)
You are always allowed to use the constructions

〈known〉 transformed 〈known〉
〈unknown〉 transformed 〈known〉
〈known〉 transformed 〈unknown〉

but hijklmnj will balk at ‘〈unknown〉 transformed 〈unknown〉’. This is not the most
lenient rule that could have been implemented, but it does have the virtue of being
easily remembered.

� xEXERCISE 15.4
If z1 and z2 are unknown pairs, you can’t say ‘z1 shifted z2’, because ‘shifted z2’

is an unknown transform. What can you legally say instead?

~ xEXERCISE 15.5
Suppose dbend is a picture variable that contains a normal dangerous bend

sign, as in the “reverse-video” example of Chapter 13. Explain how to transform it
into the left-handed dangerous bend that heads this paragraph.

� The next three lines illustrate the fact that you can specify a transform com-
pletely by specifying the images of three points:

You type And the result is

hide((0,0)transformed t4=(1,2)) t4 (1,2,xxpart t4,xypart t4,...)

hide((1,0)transformed t4=(4,5)) t4 (1,2,3,xypart t4,3,yypart t4)

hide((1,4)transformed t4=(0,0)) t4 (1,2,3,-1,3,-1.25)

The points at which the transform is given shouldn’t all lie on a straight line.
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� Now let’s use transformation to make a little ornament, based on a ‘� ’ shape
replicated four times: &&&&&&&&&&&&&&&&&&

(Figure 15a will be inserted here; too bad you can’t see it now.)

The following program merits careful study:

1 beginchar("4", 11pt#, 11pt#, 0);
2 pickup pencircle scaled 3/4pt yscaled 1/3 rotated 30;
3 transform t;
4 t = identity rotatedaround((.5w, .5h),−90);
5 x2 = .35w; x3 = .6w;
6 y2 = .1h; top y3 = .4h;
7 path p; p = z2{right} . . . {up}z3;
8 top z1 = point .5 of p transformed t;
9 draw z1 . . . p;

10 addto currentpicture also currentpicture transformed t;
11 addto currentpicture also currentpicture transformed (t transformed t);
12 labels(1, 2, 3); endchar;

Lines 3 and 4 compute the transform that moves each ‘� ’ to its clockwise neighbor.
Lines 5–7 compute the right half of the ‘� ’. Line 8 is the most interesting: It puts
point z1 on the rotated path. Line 9 draws the ‘� ’, line 10 changes it into two, and
line 11 changes two into four. The parentheses on line 11 could have been omitted, but
it is much faster to transform a transform than to transform a picture.

�� hijklmnj will transform a picture expression only when txx, txy, tyx, and tyy

are integers and either txy = tyx = 0 or txx = tyy = 0; furthermore, the values
of tx and ty are rounded to the nearest integers. Otherwise the transformation would
not take pixel boundaries into pixel boundaries.

��xEXERCISE 15.6
Explain how to rotate the ornament by 45◦. '''''''''
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Plain METAFONT maintains a special variable called currenttransform ,
behind the scenes. Every fill and draw command is affected by this variable;
for example, the statement ‘fill p’ actually fills the interior of the path

p transformed currenttransform

instead of p itself. We haven’t mentioned this before, because currenttransform
is usually equal to identity ; but nonstandard settings of currenttransform can be
used for special effects that are occasionally desired. For example, it’s possible
to change ‘METAFONT ’ to ‘89:;<=>: ’ by simply saying

currenttransform := identity slanted 1/4

and executing the programs of logo.mf that are described in Chapter 11; no
other changes to those programs are necessary.

It’s worth noting that the pen nib used to draw ‘89:;<=>: ’ was not
slanted when currenttransform was changed; only the “tracks” of the pen, the
paths in draw commands, were modified. Thus the slanted image was not simply
obtained by slanting the unslanted image.

�� When fonts are being made for devices with nonsquare pixels, plain hijk-
lmnj will set currenttransform to ‘identity yscaled aspect ratio ’, and pickup

will similarly yscale the pen nibs that are used for drawing. In this case the slanted
‘89:;<=>: ’ letters should be drawn with

currenttransform := identity slanted 1/4 yscaled aspect ratio .

��xEXERCISE 15.7
Our program for ‘& ’ doesn’t work when pixels aren’t square. Fix it so that

it handles a general aspect ratio .

Change begets change. Nothing propagates so fast.

— CHARLES DICKENS, Martin Chuzzlewit (1843)

There are some that never know how to change.

— MARK TWAIN, Joan of Arc (1896)
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Pens were introduced in Chapter 4, and we ought to make a systematic study of
what METAFONT can do with them before we spill any more ink. The purpose
of this chapter will be to explore the uses of “fixed” pen nibs—i.e., variables
and expressions of type pen—rather than to consider the creation of shapes by
means of outlines or penstrokes.

When you say ‘pickup 〈pen expression〉’, the macros of plain META-
FONT do several things for you: They create a representation of the specified
pen nib, and assign it to a pen variable called currentpen ; then they store away
information about the top, bottom, left, and right extents of that pen, for use
in top , bot , lft , and rt operations. A draw or drawdot or filldraw command
will make use of currentpen to modify the current picture.

You can also say ‘pickup 〈numeric expression〉’; in this case the nu-
meric expression designates the code number of a previously picked-up pen
that was saved by ‘savepen’. For example, the logo.mf file in Chapter 11
begins by picking up the pen that’s used to draw ‘METAFONT ’, then it says
‘logo pen := savepen’. Every character program later in that file begins with
the command ‘pickup logo pen ’, which is a fast operation because it doesn’t
require the generation of a new pen representation inside the computer.

� Caution: Every time you use savepen, it produces a new integer value and
stashes away another pen for later use. If you keep doing this, hijklmnj’s

memory will become cluttered with the representations of pens that you may never
need again. The command ‘clear pen memory’ discards all previously saved pens
and lets hijklmnj start afresh.

� But what is a 〈pen expression〉? Good question. So far in this book, almost
everything that we’ve picked up was a pencircle followed by some sequence of

transformations; for example, the logo pen of Chapter 11 was ‘pencircle xscaled px
yscaled py ’. Chapter 13 also made brief mention of another kind of pen, when it said

pickup penrazor scaled 10;

this command picks up an infinitely thin pen that runs from point (−5, 0) to point
(5, 0) with respect to its center. Later in this chapter we shall make use of pens like

pensquare xscaled 30 yscaled 3 rotated 30;

this pen has a rectangular boundary measuring 30 pixels × 3 pixels, inclined at an
angle of 30◦ to the baseline.

� You can define pens of any convex polygonal shape by saying ‘makepen p’,
where p is a cyclic path. It turns out that hijklmnj looks only at the key

points of p, not the control points, so we may as well assume that p has the form
z0 - - z1 - - 〈etc.〉 - - cycle. This path must have the property that it turns left at every
key point (i.e., zk+1 must lie to the left of the line from zk−1 to zk, for all k), unless the
cycle contains fewer than three key points; furthermore the path must have a turning
number of 1 (i.e., it must not make more than one counterclockwise loop). Plain hijk-
lmnj’s penrazor stands for ‘makepen ((−.5, 0) - - (.5, 0) - - cycle)’, and pensquare
is an abbreviation for ‘makepen (unitsquare shifted −(.5, .5))’. But pencircle is not
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defined via makepen; it is a primitive operation of hijklmnj. It represents a true
circle of diameter 1, passing through the points (±.5, 0) and (0,±.5).

� The complete syntax for pen expressions is rather short, because you can’t
really do all that much with pens. But it also contains a surprise:

〈pen primary〉 −→ 〈pen variable〉
| ( 〈pen expression〉 )
| nullpen

〈future pen primary〉 −→ pencircle
| makepen 〈path primary〉

〈pen secondary〉 −→ 〈pen primary〉
〈future pen secondary〉 −→ 〈future pen primary〉

| 〈future pen secondary〉〈transformer〉
| 〈pen secondary〉〈transformer〉

〈pen tertiary〉 −→ 〈pen secondary〉
| 〈future pen secondary〉

〈pen expression〉 −→ 〈pen tertiary〉

The constant ‘nullpen’ is just the single point (0, 0), which is invisible—unless you
use it in filldraw, which then reduces to fill. (A beginchar command initializes
currentpen to nullpen, in order to reduce potentially dangerous dependencies between
the programs for different characters.) The surprise in these rules is the notion of a
“future pen,” which stands for a path or an ellipse that has not yet been converted into
hijklmnj’s internal representation of a true pen. The conversion process is rather
complicated, so hijklmnj procrastinates until being sure that no more transforma-
tions are going to be made. A true pen is formed at the tertiary level, when future
pens are no longer permitted in the syntax.

� The distinction between pens and future pens would make no difference to a
user, except for another surprising fact: All of hijklmnj’s pens are convex

polygons, even the pens that are made from pencircle and its variants! Thus, for
example, the pen you get from an untransformed pencircle is identical to the pen you
get by specifying the diamond-shaped nib

makepen ((.5, 0) - - (0, .5) - - (−.5, 0) - - (0,−.5) - - cycle).

And the pens you get from ‘pencircle scaled 20’ and ‘pencircle xscaled 30 yscaled 20’
are polygons with 32 and 40 sides, respectively:

(Figure 16a&b will be inserted here; too bad you can’t see it now.)
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The vertices of the polygons, shown as heavy dots in this illustration, all have “half-
integer” coordinates; i.e., each coordinate is either an integer or an integer plus 1/2.
Every polygon that comes from a pencircle is symmetric under 180◦ rotation; further-
more, there will be reflective left/right and top/bottom symmetry if the future pen is
a circle, or if it’s an ellipse that has not been rotated.

� This conversion to polygons explains why future pens must, in general, be
distinguished from ordinary ones. For example, the extra parentheses in

‘(pencircle xscaled 30) yscaled 20’ will yield a result quite different from the elliptical
polygon just illustrated. The parentheses force conversion of ‘pencircle xscaled 30’
from future pen to pen, and this polygon turns out to be

(12.5,−0.5) - - (15, 0) - - (12.5, 0.5)
- - (−12.5, 0.5) - - (−15, 0) - - (−12.5,−0.5) - - cycle,

an approximation to a 30× 1 ellipse. Then yscaling by 20 yields

(Figure 16c will be inserted here; too bad you can’t see it now.)

� Why does hijklmnj work with polygonal approximations to circles, instead
of true circles? That’s another good question. The main reason is that suitably

chosen polygons give better results than the real thing, when digitization is taken into
account. For example, suppose we want to draw a straight line of slope 1/2 that’s
exactly one pixel thick, from (0, y) to (200, y + 100). The image of a perfectly circular
pen of diameter 1 that travels along this line has outlines that run from (0, y ± α) to
(200, y + 100 ± α), where α =

√
5/4 ≈ 0.559. If we digitize these outlines and fill the

region between them, we find that for some values of y (e.g., y = 0.1) the result is
a repeating pixel pattern like ‘ R . . .RRRR. . . R ’; but for other values of y (e.g., y = 0.3)

the repeating pattern of pixels is 50 percent darker: ‘
RR . . .RRRRRR. . . R ’. Similarly, some

diagonal lines of slope 1 digitize to be twice as dark as others, when a truly circular
pen is considered. But the diamond-shaped nib that hijklmnj uses for a pencircle
of diameter 1 does not have this defect; all straight lines of the same slope will digitize
to lines of uniform darkness. Moreover, curved lines drawn with the diamond nib
always yield one pixel per column when they move more-or-less horizontally (with slopes
between +1 and−1), and they always yield one pixel per row when they move vertically.
By contrast, the outlines of curves drawn with circular pens produce occasional “blots.”
Circles and ellipses of all diameters can profitably be replaced by polygons whose sub-
pixel corrections to the ideal shape will produce better digitizations; hijklmnj does
this in accordance with the interesting theory developed by John D. Hobby in his Ph.D.
dissertation (Stanford University, 1985).
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�� It’s much easier to compute the outlines of a polygonal pen that follows a
given curve than to figure out the corresponding outlines of a truly circular

pen; thus polygons win over circles with respect to both quality and speed. When a
curve is traveling in a direction between the edge vectors zk+1 − zk and zk − zk−1 of a
polygonal pen, the curve’s outline will be offset from its center by zk. If you want fine
control over this curve-drawing process, hijklmnj provides the primitive operation
‘penoffset w of p’, where w is a vector and p is a pen. If w = (0, 0), the result is (0, 0);
if the direction of w lies strictly between zk+1 − zk and zk − zk−1, the result is zk; and
if w has the same direction as zk+1 − zk for some k, the result is either zk or zk+1,
whichever hijklmnj finds most convenient to compute.

��xEXERCISE 16.1
Explain how to use penoffset to find the point or points at the “top” of a pen

(i.e., the point or points with largest y coordinate).

�� The primitive operation ‘makepath p’, where p is a (polygonal) pen whose
vertices are z0, z1, . . . , zn−1, produces the path ‘z0 . . controls z0 and z1 . . z1 . .

〈etc.〉 . . zn−1 . . controls zn−1 and z0 . . cycle’, which is one of the paths that might have
generated p. This gives access to all the offsets of a pen.

�� When a pencircle is transformed by any of the operations in Chapter 15, it
changes into an ellipse of some sort, since all of hijklmnj’s transformations

preserve ellipse-hood. The diameter of the ellipse in each direction θ is decreased by
2min(| sin θ|, | cos θ|) times the current value of fillin , before converting to a polygon;
this helps to compensate for the variation in thickness of diagonal strokes with respect
to horizontal or vertical strokes, on certain output devices. (hijklmnj uses fillin
only when creating polygons from ellipses, but users can of course refer to fillin within
their own routines for drawing strokes.) The final polygon will never be perfectly flat
like penrazor, even if you say ‘xscaled 0’ and/or ‘yscaled 0’; its center will always be
surrounded at least by the basic diamond nib that corresponds to a circle of diameter 1.

� xEXERCISE 16.2
Run hijklmnj on the expr file of Chapter 8 and look at what is typed

when you ask for ‘pencircle’ and ‘pencircle scaled 1.1’. (The first will exhibit the
diamond nib, while the second will show a polygon that’s equivalent to pensquare.)
Continue experimenting until you find the “threshold” diameter where hijklmnj
decides to switch between these two polygons.

� hijklmnj’s polygonal pens work well for drawing lines and curves, but this
pleasant fact has an unpleasant corollary: They do not always digitize well

at the endpoints, where curves start and stop. The reason for this is explored further
in Chapter 24; polygon vertices that give nice uniform stroke widths might also be
“ambiguous” points that cause difficulties when we consider rounding to the raster.
Therefore a special drawdot routine is provided for drawing one-point paths. It is
sometimes advantageous to apply drawdot to the first and last points of a path p,
after having said ‘draw p’; this can fatten up the endpoints slightly, making them look
more consistent with each other.

� Plain hijklmnj also provides two routines that can be used to clean up
endpoints in a different way: The command ‘cutoff (z, θ)’ removes half of the

currentpen image at point z, namely all points of the pen that lie in directions between
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(θ − 90)◦ and (θ + 90)◦ from the center point. And the command ‘cutdraw p’ is an
abbreviation for the following three commands:

draw p; cutoff (point 0 of p, 180 + angle direction 0 of p);
cutoff (point infinity of p, angle direction infinity of p).

The effect is to draw a curve whose ends are clipped perpendicular to the starting and
ending directions. For example, the command

cutdraw z4 . . controls z1 and z2 . . z6

produces the following curve, which invites comparison with the corresponding uncut
version at the end of Chapter 3:

(Figure 16d will be inserted here; too bad you can’t see it now.)

� Here’s another example of cutoff , in which
the endpoints of hijklmnj’s ‘T’ have been

(Figure 16e will be inserted here;
too bad you can’t see it now.)

cropped at 10◦ angles to the perpendicular of the
stroke direction:

pickup logo_pen;
top lft z1=(0,h); top rt z2=(w,h);
top z3=(.5w,h); z4=(.5w,0);
draw z1--z2;
cutoff(z1,170); cutoff(z2,-10);
draw z3--z4; cutoff(z4,-80).

�� The cutoff macro of Appendix B deals with several things that we’ve been
studying recently, so it will be instructive to look at it now (slightly simplified):

def cutoff (expr z, theta ) =
cut pic := nullpicture;
addto cut pic doublepath z withpen currentpen ;
addto cut pic contour ((0,−1) - - (1,−1) - - (1, 1) - - (0, 1) - - cycle)

scaled 1.42(1 + max(−pen lft , pen rt , pen top ,−pen bot ))
rotated theta shifted z ;

cull cut pic keeping (2, 2) withweight −1;
addto currentpicture also cut pic enddef .

The main work is done in a separate picture variable called cut pic , so that neighboring
strokes won’t be affected. First cut pic is set to the full digitized pen image (by making
a doublepath from a single point). Then a rectangle that includes the cutoff region
is added in; pen lft , pen rt , pen top , and pen bot are the quantities used to compute
the functions lft , rt , top , and bot , so they bound the size of the pen. The culling
operation produces the intersection of pen and rectangle, which is finally subtracted
from currentpicture .
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�� We shall conclude this chapter by studying two examples of how hijklmnj’s
pen-and-curve-drawing facilities can combine in interesting ways. First, let’s

examine two “tilde” characters

(Figure 16f&g will be inserted here; too bad you can’t see it now.)

which were both created by a single command of the form

draw z1 . . controls z2 and z3 . . z4.

The left example was done with a pencircle xscaled .8pt yscaled .2pt rotated 50, and
the right example was exactly the same but with pensquare. The control points z2

and z3 that made this work were defined by

y2 − y1 = y4 − y3 = 3(y4 − y1);
z2 − z1 = z4 − z3 = whatever ∗ dir 50.

The second pair of equations is an old calligrapher’s trick, namely to start and finish
a stroke in the direction of the pen you’re holding. The first pair of equations is a
mathematician’s trick, based on the fact that the Bernshtĕın polynomial t[0, 3,−2, 1]
goes from 0 to 1 to 0 to 1 as t goes from 0 to .25 to .75 to 1.

�� Next, let’s try to draw a fancy serif with the same two pens, holding them at
a 20◦ angle instead of a 50◦ angle. Here are two examples

(Figure 16h&i will be inserted here; too bad you can’t see it now.)

that can be created by ‘filldraw’ commands:

filldraw z1 . . controls z2 . . z3

- - (flex (z3, .5[z3, z4] + dishing , z4)) shifted (0,−epsilon )
- - z4 . . controls z5 . . z6 - - cycle.

The dishing parameter causes a slight rise between z3 and z4; the flex has been lowered
by epsilon in order to avoid the danger of “strange paths,” which might otherwise be
caused by tiny loops at z3 or z4. But the most interesting thing about this example
is the use of double control points, z2 and z5, in two of the path segments. (Recall
that ‘controls z2’ means the same thing as ‘controls z2 and z2’.) These points were
determined by the equations

x2 = x1; z2 = z3 + whatever ∗ dir 20;
x5 = x6; z5 = z4 + whatever ∗ dir−20;

thus, they make the strokes vertical at z1 and z6, parallel to the pen angle at z3, and
parallel to the complementary angle at z4.
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The pen, probably more than any other tool,
has had the strongest influence upon lettering

in respect of serif design . . .
It is probable that the letters [of the Trajan column]

were painted before they were incised,
and though their main structure is attributed to the pen
and their ultimate design to the technique of the chisel,

they undoubtedly owe much of their freedom
to the influence of the brush.

— L. C. EVETTS, Roman Lettering (1938)

Remember that it takes time, patience, critical practice
and knowledge to learn any art or craft.

No “art experience” is going to result from any busy work
for a few hours experimenting with the edged pen.

. . . Take as much time as you require,
and do not become impatient.
If it takes a month to get it,

then be happy that it takes only a month.

— LLOYD REYNOLDS, Italic Calligraphy & Handwriting (1969)
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We have now covered all the visual, graphic aspects of METAFONT—its points,
paths, pens, and pictures; but we still don’t know everything about METAFONT’s
organizational, administrative aspects—its programs. The next few chapters of
this book therefore concentrate on how to put programs together effectively.

A METAFONT program is a sequence of statements separated by semi-
colons and followed by ‘end’. More precisely, the syntax rules

〈program〉 −→ 〈statement list〉 end
〈statement list〉 −→ 〈empty〉 | 〈statement〉 ; 〈statement list〉

define a 〈program〉 in terms of a 〈statement〉.
But what are statements? Well, they are of various kinds. An “equation”

states that two expressions are supposed to be equal. An “assignment” assigns
the value of an expression to a variable. A “declaration” states that certain
variables will have a certain type. A “definition” defines a macro. A “title”
gives a descriptive name to the character that is to follow. A “command” orders
METAFONT to do some specific operation, immediately. The “empty statement”
tells METAFONT to do absolutely nothing. And a “compound statement” is a
list of other statements treated as a group.

〈statement〉 −→ 〈equation〉 | 〈assignment〉 | 〈declaration〉
| 〈definition〉 | 〈title〉 | 〈command〉 | 〈empty〉
| begingroup 〈statement list〉 〈statement〉 endgroup

We’ve given the syntax for 〈equation〉 and 〈assignment〉 in Chapter 10; the syntax
for 〈declaration〉 appeared in Chapter 7; 〈definition〉 and 〈title〉 and 〈command〉
will appear in later chapters. Our main concern just now is with the final type
of 〈statement〉, where begingroup and endgroup bind other statements into a
unit, just as parentheses add structure to the elements of an algebraic expression.

The main purpose of grouping is to protect the values of variables in one
part of the program from being clobbered in another. A symbolic token can be
given a new meaning inside a group, without changing the meaning it had outside
that group. (Recall that METAFONT deals with three basic kinds of tokens, as
discussed in Chapter 6; it is impossible to change the meaning of a numeric token
or a string token, but symbolic tokens can change meanings freely.)

There are two ways to protect the values of variables in a group. One is
called a 〈save command〉, and the other is called an 〈interim command〉:

〈save command〉 −→ save 〈symbolic token list〉
〈symbolic token list〉 −→ 〈symbolic token〉

| 〈symbolic token list〉 , 〈symbolic token〉
〈interim command〉 −→ interim 〈internal quantity〉 := 〈right-hand side〉

The symbolic tokens in a save command all lose their current meanings, but
those old meanings are put into a safe place and restored at the end of the current
group. Each token becomes undefined, as if it had never appeared before. For
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example, the command

save x, y

effectively causes all previously known variables like x1 and y5r to become in-
accessible; the variable x1 could now appear in a new equation, where it would
have no connection with its out-of-group value. You could also give the silly
command

save save;

this would make the token ‘save’ itself into a 〈tag〉 instead of a 〈spark〉, so you
couldn’t use it to save anything else until the group ended.

� An interim command is more restrictive than a save, since it applies only to
an 〈internal quantity〉. (Recall that internal quantities are special variables

like tracingequations that take numeric values only; a complete list of all the standard
internal quantities can be found in Chapter 25, but that list isn’t exhaustive because
you can define new ones for your own use.) hijklmnj treats an interim command just
like an ordinary assignment, except that it undoes the assignment when the group ends.

� If you save something two or more times in the same group, the first saved
value takes precedence. For example, in the construction

begingroup
. . .
interim autorounding := 0; save x;
. . .
interim autorounding := 1; save x;
. . .
endgroup

the values of autorounding and x after the end of the group will be their previous values
just before the statement ‘interim autorounding := 0’. (Incidentally, these might not
be the values they had upon entry to the group).

� Tokens and internal quantities regain their old meanings and values at the end
of a group only if they were explicitly saved in a save or interim command.

All other changes in meaning and/or value will survive outside the group.

� The beginchar operation of plain hijklmnj includes a begingroup, and
endchar includes endgroup. Thus, for example, interim assignments can be

made in a program for one character without any effect on other characters.

� A 〈save command〉 that’s not in a group simply clears the meanings of the
symbolic tokens specified; their old meanings are not actually saved, because

they never will have to be restored. An 〈interim command〉 outside a group acts just
like a normal assignment.

� If you set the internal quantity tracingrestores to a positive value, hijklmnj
will make a note in your transcript file whenever it is restoring the former value

of a symbolic token or internal quantity. This can be useful when you’re debugging a
program that doesn’t seem to make sense.
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Groups can also be used within algebraic expressions. This is the other
important reason for grouping; it allows METAFONT to do arbitrarily compli-
cated things while in the middle of other calculations, thereby greatly increasing
the power of macro definitions (which we shall study in the next chapter). A
group expression has the general form

begingroup 〈statement list〉 〈expression〉 endgroup

and it fits into the syntax of expressions at the primary level. The meaning
of a group expression is: “Perform the list of statements, then evaluate the
expression, then restore anything that was saved in this group.”

� Group expressions belong in the syntax rules for each type of expression,
but they were not mentioned in previous chapters because it would have been

unnecessarily distracting. Thus, for example, the syntax for 〈numeric primary〉 actually
includes the additional alternative

begingroup 〈statement list〉〈numeric expression〉 endgroup.

The same goes for 〈pair primary〉, 〈picture primary〉, etc.; Chapter 25 has the complete
rules of syntax for all types of expressions.

� xEXERCISE 17.1
What is the value of the expression

begingroup x:=x+1; x endgroup + begingroup x:=2x; x endgroup

if x initially has the value a? What would the value have been if the two group
expressions had appeared in the opposite order? Verify your answers using the expr
routine of Chapter 8.

� xEXERCISE 17.2
Appendix B defines whatever to be an abbreviation for the group expression

‘begingroup save ?; ? endgroup’. Why does this work?

��xEXERCISE 17.3
What is the value of ‘begingroup save ?; (?, ?) endgroup’ ?

��xEXERCISE 17.4
According to exercise 10.2, the assignment ‘x3 := whatever ’ will make the

numeric variable x3 behave like new, without affecting other variables like x2. Devise
a similar stratagem that works for arrays of picture variables.

It is often difficult
to account for some beginners grouping right away

and others proving almost hopeless.

— A. G. FULTON, Notes on Rifle Shooting (1913)

Rock bands prefer San Francisco groupies to New York groupies.

— ELLEN WILLIS, But Now I’m Gonna Move (1971)
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You can often save time writing METAFONT programs by letting single tokens
stand for sequences of other tokens that are used repeatedly. For example,
Appendix B defines ‘- - -’ to be an abbreviation for ‘. . tension infinity . .’, and
this definition is preloaded as part of the plain METAFONT base. Programs that
use such definitions are not only easier to write, they’re also easier to read. But
Appendix B doesn’t contain every definition that every programmer might want;
the present chapter therefore explains how you can make definitions of your own.

In the simplest case, you just say

def 〈symbolic token〉 = 〈replacement text〉 enddef

and the symbolic token will henceforth expand into the tokens of the replacement
text. For example, Appendix B says

def --- = ..tension infinity.. enddef.

The replacement text can be any sequence of tokens not including ‘enddef ’; or
it can include entire subdefinitions like ‘def . . . enddef ’, according to certain
rules that we shall explain later.

Definitions get more interesting when they include parameters, which
are replaced by arguments when the definition is expanded. For example, Ap-
pendix B also says

def rotatedaround(expr z,theta) =
shifted -z rotated theta shifted z enddef;

this means that an expression like ‘z1 rotatedaround (z2, 30)’ will expand into
‘z1 shifted −z2 rotated 30 shifted z2’.

The parameters ‘z’ and ‘theta’ in this definition could have been any
symbolic tokens whatever; there’s no connection between them and appearances
of ‘z’ and ‘theta’ outside the definition. (For example, ‘z’ would ordinarily
stand for ‘(x,y)’, but it’s just a simple token here.) The definition could even
have been written with “primitive” tokens as parameters, like

def rotatedaround(expr;,+) =
shifted-; rotated+shifted; enddef;

the effect would be exactly the same. (Of course, there’s no point in doing such
a thing unless you are purposely trying to make your definition inscrutable.)

When ‘rotatedaround’ is used, the arguments that are substituted for
z and theta are first evaluated and put into “capsules,” so that they will behave
like primary expressions. Thus, for example, ‘z1 rotatedaround (z2 + z3, 30)’ will
not expand into ‘z1 shifted −z2 + z3 rotated 30 shifted z2 + z3’—which means
something entirely different—but rather into ‘z1 shifted −α rotated 30 shifted α’,
where α is a nameless internal variable that contains the value of z2 + z3.

� A capsule value cannot be changed, so an expr parameter should not appear
at the left of the assignment operator ‘:=’.
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� Macros are great when they work, but complicated macros sometimes surprise
their creators. hijklmnj provides “tracing” facilities so that you can see

what the computer thinks it’s doing, when you’re trying to diagnose the reasons for
unexpected behavior. If you say ‘tracingmacros := 1’, the transcript file of your run
will record every macro that is subsequently expanded, followed by the values of its
arguments as soon as they have been computed. For example, ‘rotatedaround (up , 30)’
might produce the following lines of diagnostic information:

rotatedaround(EXPR0)(EXPR1)->shifted-(EXPR0)rotated(EXPR1)sh
ifted(EXPR0)
(EXPR0)<-(0,1)
(EXPR1)<-30

� Here’s another example from Appendix B. It illustrates the usefulness of group
expressions in macro definitions:

def reflectedabout (expr p, q) =
transformed begingroup

save T ; transform T ;
p transformed T = p;
q transformed T = q;
xxpart T = −yypart T ;
xypart T = yxpart T ;
T endgroup enddef ;

thus a new transform, T , is computed in the midst of another expression, and the
macro ‘reflectedabout(p, q)’ essentially expands into ‘transformed T ’.

Some macros, like ‘rotatedaround’, are meant for general-purpose use.
But it’s also convenient to write special-purpose macros that simplify the devel-
opment of particular typefaces. For example, let’s consider the METAFONT logo
from this standpoint. The program for ‘E’ in Chapter 11 starts with

beginchar("E",14u#+2s#,ht#,0); pickup logo_pen;

and the programs for ‘M’, ‘T ’, etc., all have almost the same beginning. Therefore
we might as well put the following definition near the top of the file logo.mf:

def beginlogochar(expr code, unit_width) =
beginchar(code,unit_width*u#+2s#,ht#,0);
pickup logo_pen enddef;

Then we can start the ‘E’ by saying simply

beginlogochar("E",14);

similar simplifications apply to all seven letters. Notice from this example that
macros can be used inside macros (since ‘beginchar’ and ‘pickup’ are them-
selves macros, defined in Appendix B); once you have defined a macro, you have
essentially extended the METAFONT language. Notice also that expr parame-
ters can be expressions of any type; for example, "E" is a string, and the first
parameter of ‘rotatedaround’ is a pair.
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Chapter 11 didn’t give the programs for
‘A’ or ‘O’. It turns out that those programs can

(Figure 18a will be inserted here; too
bad you can’t see it now.)

be simplified if we write them in terms of an aux-
iliary subroutine called ‘super_half’. For exam-
ple, here is how the ‘O’ is made:

beginlogochar("O",15);
x1=x4=.5w; top y1=h+o; bot y4=-o;
x2=w-x3=1.5u+s; y2=y3=barheight;
super_half(2,1,3);
super_half(2,4,3);
labels(1,2,3,4); endchar;

The super_half routine is supposed to draw half of a superellipse, through three
points whose subscripts are specified.

We could define super_half as a macro with three expr parameters,
referring to the first point as ‘z[i]’, say; but there’s a better way. Parameters
to macros can be classified as suffixes, by saying suffix instead of expr. In this
case the actual arguments may be any 〈suffix〉, i.e., any sequence of subscripts
and tags that complete the name of a variable as explained in Chapter 7. Here’s
what super_half looks like, using this idea:

def super_half(suffix i,j,k) =
draw z.i{0,y.j-y.i}
... (.8[x.j,x.i],.8[y.i,y.j]){z.j-z.i}
... z.j{x.k-x.i,0}
... (.8[x.j,x.k],.8[y.k,y.j]){z.k-z.j}
... z.k{0,y.k-y.j} enddef;

xEXERCISE 18.1
Would the program for ‘O’ still work if the two calls of super_half had been
‘super_half(3,1,2)’ and ‘super_half(3,4,2)’ ?

xEXERCISE 18.2
Guess the program for METAFONT’s ‘A’, which has the same width as ‘O’.

� Besides parameters of type expr and suffix, hijklmnj also allows a third
type called text. In this case the actual argument is any sequence of tokens,

and this sequence is not evaluated beforehand; a text argument is simply copied in
place of the corresponding parameter. This makes it possible to write macros that deal
with lists of things. For example, Appendix B’s ‘define pixels’ macro is defined thus:

def define_pixels(text t) =
forsuffixes a=t: a := a# * hppp; endfor enddef;

This means that ‘define_pixels(em,cap)’ will expand into

forsuffixes a=em,cap: a := a# * hppp; endfor

which, in turn, expands into the tokens ‘em := em# * hppp; cap := cap# * hppp;’ as we
will see in Chapter 19.
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serifs
penpos
jut
]]

� Let’s look now at a subroutine for drawing serifs, since this typifies the sort
of special-purpose macro one expects to see in the design of a meta-typeface.

Serifs can take many forms, so we must choose from myriads of possibilities. We shall
consider two rather different approaches, one based on outline-filling and the other
based on the use of a fixed pen nib. In both cases it will be necessary to omit some
of the refinements that would be desirable in a complete typeface design, to keep the
examples from getting too complicated.

� Our first example is a serif routine that
constructs six points z$a, z$b, . . . , z$f

around a given triple of “penpos” points z$l, z$,

(Figure 18b will be inserted here; too bad
you can’t see it now.)

z$r; here $ is a suffix that’s a parameter to the
serif macro. Other parameters are: breadth ,
the distance between the parallel lines that run
from z$l to z$a and from z$r to z$f ; theta , the
direction angle of those two lines; left jut , the
distance from z$l to z$b; and right jut , the dis-
tance from z$r to z$e. (The serif “juts out” by
the amounts of the jut parameters.) There’s
also a serif edge macro, which constructs the
path shown. The routines refer to three variables that are assumed to apply to all
serifs: slab , the vertical distance from z$b and z$e to z$c and z$d; bracket , the vertical
distance from z$a and z$f to z$l and z$r; and serif darkness , a fraction that controls
how much of the triangular regions (z$a, z$l, z$b) and (z$f , z$r, z$e) will be filled in.

def serif (suffix $)(expr breadth , theta , left jut , right jut ) =
penpos$(breadth/abs sind theta , 0);
z$a − z$l = z$f − z$r = (bracket/abs sind theta ) ∗ dir theta ;
y$c = y$d; y$b = y$e = y$; y$b − y$c = if theta < 0 : − fi slab ;
x$b = x$c = x$l − left jut ; x$d = x$e = x$r + right jut ;
labels($a, $b, $c, $d, $e, $f) enddef ;

def serif edge suffix $ =
(serif bracket ($a, $l, $b) - - z$c

- - z$d - - reverse serif bracket ($f, $r, $e)) enddef ;

def serif bracket (suffix i, j, k) =
(z.i{z.j − z.i} . . . serif darkness [z.j, .5[z.i, z.k] ]{z.k − z.i}

. . . z.k{z.k − z.j}) enddef ;

� xEXERCISE 18.3
Under what circumstances will the serif edge go through points z$l and z$r?

� xEXERCISE 18.4
Should this serif macro be used before points z$l, z$, and z$r have been

defined, or should those points be defined first?

� Here are two sample letters that show how these serif routines might be used.
The programs assume that the font has several additional ad hoc parameters:

u, a unit of character width; ht , the character height; thin and thick , the two stroke
weights; and jut , the amount by which serifs protrude on a “normal” letter like ‘H’.
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(Figure 18c will be inserted here; too bad you can’t see it now.)

beginchar("A", 13u#, ht#, 0);
z1 = (.5w, 1.05h); % top point
x4l = w − x5r = u; y4l = y5r = slab ; % bottom points
numeric theta [ ];
theta 4 = angle(z1 − z4l); % left stroke angle
theta 5 = angle(z1 − z5r); % right stroke angle
serif (4, thin , theta 4, .6jut , jut ); % left serifs
serif (5, thick , theta 5, jut , .6jut ); % right serifs
z0 = z4r + whatever ∗ dir theta 4

= z5l + whatever ∗ dir theta 5; % inside top point
fill z1 - - serif edge 4 - - z0 % the left stroke

& z0 - - serif edge 5 - - z1 & cycle; % the right stroke
penpos2(whatever , theta 4);
penpos3(whatever , theta 5);
y2r = y3r = .5[y4, y0]; % crossbar height
y2l = y3l = y2r − thin ; % crossbar thickness
z2 = whatever [z1, z4r];
z3 = whatever [z1, z5l];
penstroke z2e - - z3e; % the crossbar
penlabels(0, 1, 2, 3, 4, 5); endchar;

beginchar("I", 6u#, ht#, 0);
x1 = x2 = .5w;
y1 = h− y2; y2 = slab ;
serif (1, thick ,−90, 1.1jut, 1.1jut); % upper serifs
serif (2, thick , 90, 1.1jut, 1.1jut); % lower serifs
fill serif edge 2 - - reverse serif edge 1 - - cycle; % the stroke
penlabels(1, 2); endchar;

The illustration was prepared with thin = .5pt , thick = 1.1pt , u = .6pt , ht = 7pt ,
slab = .25pt , jut = .9pt , bracket = pt , and serif darkness = 1/3.

� xEXERCISE 18.5
Could the equations defining y1 and y2 in the program for "I" have been

replaced by ‘y1c = h’ and ‘y2c = 0’?

� xEXERCISE 18.6
Write the program for an "H" to go with these letters.
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�� A second approach to serifs can be based on the example at the end of Chap-
ter 16. In this case we assume that broad pen is a ‘pensquare xscaled px

yscaled py rotated phi ’ for some px > py and some small angle phi . Thicker strokes
will be made by using this pen to fill a larger region; the serif routine is given the
distance xx between z$l and z$r. There’s a pair variable called dishing that controls
the curvature between z$c and z$d. Top and bottom serifs are similar, but they are
sufficiently different that it’s easier to write separate macros for each case.

def bot serif (suffix $)(expr xx , theta , left jut , right jut ) =
penpos$(xx , 0); z$a − z$l = z$f − z$r = (bracket/abs sind theta ) ∗ dir theta ;
y$c = top y$l; y$d = y$r; x$c = x$l − left jut ; x$d = x$r + right jut ;
z$b = z$l + whatever ∗ dir theta = z$c + whatever ∗ dir phi ;
z$e = z$r + whatever ∗ dir theta = z$d + whatever ∗ dir−phi ;
labels($a, $b, $c, $d, $e, $f) enddef ;

def bot serif edge suffix $ =
(z$a . . controls z$b . . z$c

- - (flex (z$c, .5[z$c, z$d] + dishing , z$d)) shifted (0,−epsilon )
- - z$d . . controls z$e . . z$f ) enddef ;

(Figure 18d will be inserted here; too bad you can’t see it now.)

beginchar("A", 13u#, ht#, 0); pickup broad pen ;
z1 = (.5w, top h); lft x4l = w − rt x5r = 1.2u; y4l = y5r = 0;
numeric theta [ ]; theta 4 = angle(z1 − z4l); theta 5 = angle(z1 − z5r);
numeric xxx ; px ∗ sind(theta 5−phi )+ xxx ∗ sind theta 5 = px ∗ cosd phi + xx ;
bot serif (4, 0, theta 4, .8jut , .8jut ); bot serif (5, xxx , theta 5, .6jut , .8jut );
z0 = z4r + whatever ∗ dir theta 4 = z5l + whatever ∗ dir theta 5;
filldraw z1 - - bot serif edge 4 - - z0 & z0 - - bot serif edge 5 - - z1 & cycle;
top y2 = top y3 = .45bot y0; z2 = whatever [z1, z4r]; z3 = whatever [z1, z5l];
draw z2 - - z3; penlabels(0, 1, 2, 3, 4, 5); endchar;

beginchar("I", 6u#, ht#, 0); pickup broad pen ;
x1 = x2 = .5w; y1 = h; y2 = 0;
top serif (1, xx ,−90, 1.1jut , 1.1jut ); bot serif (2, xx , 90, 1.1jut , 1.1jut );
filldraw bot serif edge 2 - - reverse top serif edge 1 - - cycle;
penlabels(1, 2); endchar;

In the illustration, px = .8pt , py = .2pt , phi = 20, xx = .3pt , u = .6pt , ht = 7pt ,
jut = .9pt , bracket = pt , and dishing = (.25pt , 0) rotated 20.
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definition
enddef
is
=
:=
definition heading
def
parameter heading
delimited parameters
(
)
parameter type
expr
suffix
text
parameter tokens
,
undelimited parameters
primary
secondary
tertiary
expr
expr
of
suffix
text
vardef heading
leveldef heading

��xEXERCISE 18.7
Write the missing code for top serif and top serif edge .

��xEXERCISE 18.8
(For mathematicians.) Explain the equation for xxx in the program for "A".

��xEXERCISE 18.9
Write the program for an "H" to go with these letters.

� A close look at the serif edge routines in these examples will reveal that some
parentheses are curiously lacking: We said ‘def serif edge suffix $’ instead

of ‘def serif edge (suffix $)’, and we used the macro by saying ‘serif edge 5’ instead of
‘serif edge (5)’. The reason is that hijklmnj allows the final parameter of a macro
to be without delimiters; this is something that could not have been guessed from a
study of previous examples. It is time now to stop looking at specific cases and to start
examining the complete set of rules for macro definitions. Here is the syntax:

〈definition〉 −→ 〈definition heading〉〈is〉〈replacement text〉 enddef
〈is〉 −→ = | :=
〈definition heading〉 −→ def 〈symbolic token〉〈parameter heading〉

| 〈vardef heading〉
| 〈leveldef heading〉

〈parameter heading〉 −→ 〈delimited parameters〉〈undelimited parameters〉
〈delimited parameters〉 −→ 〈empty〉

| 〈delimited parameters〉 ( 〈parameter type〉〈parameter tokens〉 )
〈parameter type〉 −→ expr

| suffix
| text

〈parameter tokens〉 −→ 〈symbolic token〉
| 〈parameter tokens〉 , 〈symbolic token〉

〈undelimited parameters〉 −→ 〈empty〉
| primary 〈symbolic token〉
| secondary 〈symbolic token〉
| tertiary 〈symbolic token〉
| expr 〈symbolic token〉
| expr 〈symbolic token〉 of 〈symbolic token〉
| suffix 〈symbolic token〉
| text 〈symbolic token〉

(We’ll discuss 〈vardef heading〉 and 〈leveldef heading〉 in Chapter 20.) The basic idea is
that we name the macro to be defined, then we name zero or more delimited parameters
(i.e., parameters in parentheses), then we name zero or more undelimited parameters.
Then comes an ‘=’ sign, followed by the replacement text, and enddef . The ‘=’ sign
might also be ‘:=’ ; both mean the same thing.

� Delimited parameters are of type expr, suffix, or text; two or more param-
eters of the same type may be listed together, separated by commas. For

example, ‘(expr a, b)’ means exactly the same thing as ‘(expr a)(expr b)’. Undelim-
ited parameters have eight possible forms, as shown in the syntax.
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vardef
primarydef
secondarydef
tertiarydef
quote
capsule

� The 〈replacement text〉 is simply filed away for future use, not interpreted,
when hijklmnj reads a definition. But a few tokens are treated specially:

def , vardef , primarydef , secondarydef , and tertiarydef are considered
to introduce definitions inside definitions.

enddef ends the replacement text, unless it matches a previous def -like token
(as listed in the preceding rule).

Each 〈symbolic token〉 that stands for a parameter, by virtue of its appear-
ance in the 〈parameter heading〉 or 〈leveldef heading〉, is changed to a special
internal “parameter token” wherever it occurs in the replacement text. When-
ever this special token is subsequently encountered, hijklmnj will substitute
the appropriate argument.

quote disables any special interpretation of the immediately following token.
A ‘quote’ doesn’t survive in the replacement text (unless, of course, it has
been quoted).

� xEXERCISE 18.10
Check your understanding of these rules by figuring out what the replacement

text is, in the following weird definition:

def foo(text t) expr e of p :=
def t = e enddef; quote def quote t = p enddef

� hijklmnj does not expand macros when it reads a 〈definition〉; but at almost
all other times it will replace a defined token by the corresponding replacement

text, after finding all the arguments. The replacement text will then be read as if it
had been present in the program all along.

� How does hijklmnj determine the arguments to a macro? Well, it knows
what kinds of arguments to expect, based on the parameter heading. Let’s

consider delimited arguments first:

A delimited expr argument should be of the form ‘(〈expression〉)’; the expres-
sion is evaluated and put into a special “capsule” token that will be substituted
for the parameter wherever it appears in the replacement text.

A delimited suffix argument should be of the form ‘(〈suffix〉)’; subscripts that
occur in the suffix are evaluated and replaced by numeric tokens. The result
is a list of zero or more tokens that will be substituted for the parameter
wherever it appears in the replacement text.

A delimited text argument should be of the form ‘(〈text〉)’, where 〈text〉 is any
sequence of tokens that is balanced with respect to the delimiters surrounding
it. This sequence of tokens will be substituted for the parameter wherever it
appears in the replacement text.

When there are two or more delimited parameters, you can separate the ar-
guments by commas instead of putting parentheses around each one. For
example, three delimited arguments could be written either as ‘(a)(b)(c)’ or
‘(a, b)(c)’ or ‘(a)(b, c)’ or ‘(a, b, c)’. However, this abbreviation doesn’t work
after text arguments, which must be followed by ‘)’ because text arguments
can include commas.
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delimiters
primary
secondary
tertiary
expression
of
=
:=
endgroup
end
group
fill
erase
hide
JOHNSON
WEBSTER

�� Chapter 8 points out that you can use other delimiters besides parentheses. In
general, a comma following a delimited expr or suffix argument is equivalent

to two tokens ‘) (’, corresponding to whatever delimiters enclose that comma.

��xEXERCISE 18.11
After ‘def f(expr a)(text b,c)=...enddef’ and ‘delimiters {{ }}’, what

are the arguments in ‘f{{x,(,}}((}}))’?

� The rules for undelimited arguments are similar. An undelimited primary,
secondary, tertiary, or expr is the longest syntactically correct 〈primary〉,

〈secondary〉, 〈tertiary〉, or 〈expression〉 that immediately follows the delimited argu-
ments. An undelimited ‘expr x of y’ specifies two arguments, found by taking the
longest syntactically correct 〈expression〉 of 〈primary〉. In each of these cases, the ex-
pression might also be preceded by an optional ‘=’ or ‘:=’. An undelimited suffix is
the longest 〈suffix〉 that immediately follows the delimited arguments; hijklmnj also
allows ‘(〈suffix〉)’ in this case, but not ‘=〈suffix〉’ or ‘:=〈suffix〉’. An undelimited text
essentially runs to the end of the current statement; more precisely, it runs to the first
‘;’ or ‘endgroup’ or ‘end’ that is not part of a group within the argument.

� Appendix B contains lots of macros that illustrate these rules. For example,

def fill expr c = addto currentpicture contour c enddef ;
def erase text t = cullit; t withweight −1; cullit enddef ;

these are slight simplifications of the real definitions, but they retain the basic ideas.
The command ‘erase fill p’ causes ‘fill p’ to be the text argument to erase, after
which ‘p’ becomes the expr argument to fill.

��xEXERCISE 18.12
The ‘pickup’ macro in Appendix B starts with ‘def pickup secondary q’;

why is the argument a secondary instead of an expression?

��xEXERCISE 18.13
Explain why the following ‘hide ’ macro allows you to hide any sequence of

statements in the midst of an expression:

def hide (text t) = gobble begingroup t; endgroup enddef ;
def gobble primary g = enddef ;

DEFINI ′TION, s. [definitio, Latin.]
1. A short description of a thing by its properties.

— SAMUEL JOHNSON, A Dictionary of the English Language (1755)

DEFINI ′′TION, n. [L. definitio. See Define.]
1. A brief description of a thing by its properties;

as a definition of wit or of a circle.

— NOAH WEBSTER, An American Dictionary of the English Language (1828)
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loops
condition
mouth
stomach
elseif
else
fi
condition
if
:
fi
alternatives
else
:
elseif
:

If decisions never had to be made, life would be much easier, and so would pro-
gramming. But sometimes it is necessary to choose between alternatives, and
METAFONT allows programs to take different paths depending on the circum-
stances. You just say something like

if not decisions : life := programming := easier (much )
elseif choice = a: program a
else: program b fi

which reduces, for example, to ‘program b ’ if and only if decisions = true and
choice 6= a. The normal left-to-right order of program interpretation can also be
modified by specifying “loops,” which tell the computer to read certain tokens
repeatedly, with minor variations, until some condition becomes true. We have
seen many examples of these mechanisms already; the purpose of the present
chapter is to discuss the entire range of possibilities.

METAFONT’s conditions and loops are different from those in most other
programming languages, because the conditional or iterated code does not have
to fit into the syntactic structure. For example, you can write strange things like

p = (if b: 0,0)..(1,5 else: u,v fi)

where the conditional text ‘0, 0) . . (1, 5’ makes no sense by itself, although it
becomes meaningful when read in context. In this respect conditions and loops
behave like macros. They specify rules of token transformation that can be said
to take place in METAFONT’s “mouth” before the tokens are actually digested
in the computer’s “stomach.”

The first conditional example above has three alternatives, in the form

if 〈boolean1〉: 〈text1〉 elseif 〈boolean2〉: 〈text2〉 else: 〈text3〉 fi

and the second example has just two; there can be any number of ‘elseif ’ clauses
before ‘else:’. Only one of the conditional texts will survive, namely the first one
whose condition is true; ‘else:’ is always true. You can also omit ‘else:’ entirely,
in which case ‘else: 〈empty〉’ is implied just before the closing ‘fi’. For example,
plain METAFONT’s mode setup routine includes the conditional command

if unknown mag : mag := 1; fi

whose effect is to set mag equal to 1 if it hasn’t already received a value; in this
case there’s only one alternative.

xEXERCISE 19.1
Would it be wrong to put the ‘;’ after the ‘fi’ in the example just given?

� The informal rules just stated can, of course, be expressed more formally as
rules of syntax:

〈condition〉 −→ if 〈boolean expression〉 : 〈conditional text〉〈alternatives〉 fi
〈alternatives〉 −→ 〈empty〉

| else : 〈conditional text〉
| elseif 〈boolean expression〉 : 〈conditional text〉〈alternatives〉
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if
Boolean expressions
Boole
boolean
boolean primary
true
false
(
)
begingroup
endgroup
known
unknown
cycle
odd
not
boolean secondary
and
boolean tertiary
or
boolean expression
relation
¡
¡=
¿
¿=
=
¡¿
primary
future pen primary
pen
transform

Every conditional construction begins with ‘if ’ and ends with ‘fi’. The conditional texts
are any sequences of tokens that are balanced with respect to ‘if ’ and ‘fi’; furthermore,
‘elseif ’ and ‘else’ can occur in a conditional text only when enclosed by ‘if ’ and ‘fi’.

� Each ‘if ’ and ‘elseif ’ must be followed by a 〈boolean expression〉, i.e., by an
expression whose value is either ‘true’ or ‘false’. Boolean expressions are

named after George Boole, the founder of algebraic approaches to logic. Chapter 7
points out that variables can be of type boolean, and numerous examples of boolean
expressions appear in Chapter 8. It’s time now to be more systematic, so that we
will know the facts about boolean expressions just as we have become well-versed in
numeric expressions, pair expressions, picture expressions, path expressions, transform
expressions, and pen expressions. Here are the relevant syntax rules:

〈boolean primary〉 −→ 〈boolean variable〉
| true | false
| ( 〈boolean expression〉 )
| begingroup 〈statement list〉〈boolean expression〉 endgroup
| known 〈primary〉 | unknown 〈primary〉
| 〈type〉〈primary〉 | cycle 〈primary〉
| odd 〈numeric primary〉
| not 〈boolean primary〉

〈boolean secondary〉 −→ 〈boolean primary〉
| 〈boolean secondary〉 and 〈boolean primary〉

〈boolean tertiary〉 −→ 〈boolean secondary〉
| 〈boolean tertiary〉 or 〈boolean secondary〉

〈boolean expression〉 −→ 〈boolean tertiary〉
| 〈numeric expression〉〈relation〉〈numeric tertiary〉
| 〈pair expression〉〈relation〉〈pair tertiary〉
| 〈transform expression〉〈relation〉〈transform tertiary〉
| 〈boolean expression〉〈relation〉〈boolean tertiary〉
| 〈string expression〉〈relation〉〈string tertiary〉

〈relation〉 −→ < | <= | > | >= | = | <>

Most of these operations were already explained in Chapter 8, so it’s only necessary
to mention the more subtle points now. A 〈primary〉 of any type can be tested to see
whether it has a specific type, and whether it has a known or unknown value based on
the equations so far. In these tests, a 〈future pen primary〉 is considered to be of type
pen. The test ‘cycle p’ is true if and only if p is a cyclic path. The ‘odd’ function first
rounds its argument to an integer, then tests to see if the integer is odd. The ‘not’
function changes true to false and vice versa. The ‘and’ function yields true only if
both arguments are true; the ‘or’ function yields true unless both arguments are false.
Relations on pairs, transforms, or strings are decided by the first unequal component
from left to right. (A transform is considered to be a 6-tuple as in Chapter 15.)

� xEXERCISE 19.2
What do you think: Is false > true?

� xEXERCISE 19.3
Could ‘(odd n) and not (odd −n)’ possibly be true?
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type
declaration
equality
equation
statement
right-hand side
path join
cycle
path
pair expression
loop
endfor
loop header
for
for
forsuffixes
forever
is
=
:=
for list
,
,
suffix list
,
progression
step
until
initial value
step size
limit value
exit clause
exitif
;

� xEXERCISE 19.4
Could ‘(cycle p) and not (known p)’ possibly be true?

� xEXERCISE 19.5
Define an ‘even’ macro such that ‘even n’ is true if and only if round(n) is an

even integer. [Hint: There’s a slick answer.]

�� Boolean expressions beginning with a 〈type〉 should not come at the very
beginning of a statement, because hijklmnj will think that a 〈declaration〉

is coming up instead of an 〈expression〉. Thus, for example, if b is a boolean variable, the
equation ‘path p = b’ should be rewritten either as ‘b = path p’ or as ‘(path p) = b’.

�� A boolean expression like ‘x = y’ that involves the equality relation looks very
much like an equation. hijklmnj will consider ‘=’ to be a 〈relation〉 unless

the expression to its left occurs at the very beginning of a 〈statement〉 or the very
beginning of a 〈right-hand side〉. If you want to change an equation into a relation,
just insert parentheses, as in ‘(x = y) = b’ or ‘b = (x = y)’.

�� After a 〈path join〉, the token ‘cycle’ is not considered to be the beginning of
a 〈boolean primary〉. (Cf. Chapter 14.)

�� The boolean expression ‘path ((0, 0))’ is false, even though ‘((0, 0))’ meets
Chapter 14’s syntax rules for 〈path primary〉, via (〈path expression〉) and

(〈path subexpression〉) and (〈pair tertiary〉). A pair expression is not considered to
be of type path unless the path interpretation is mandatory.

��xEXERCISE 19.6
Evaluate ‘length ((3, 4))’ and ‘length ((3, 4){0, 0})’ and ‘length reverse (3, 4)’.

OK, that covers all there is to be said about conditions. What about
loops? It’s easiest to explain loops by giving the syntax first:

〈loop〉 −→ 〈loop header〉:〈loop text〉 endfor
〈loop header〉 −→ for 〈symbolic token〉〈is〉〈for list〉

| for 〈symbolic token〉〈is〉〈progression〉
| forsuffixes 〈symbolic token〉〈is〉〈suffix list〉
| forever

〈is〉 −→ = | :=
〈for list〉 −→ 〈expression〉 | 〈empty〉

| 〈for list〉 , 〈expression〉 | 〈for list〉 , 〈empty〉
〈suffix list〉 −→ 〈suffix〉

| 〈suffix list〉 , 〈suffix〉
〈progression〉 −→ 〈initial value〉 step 〈step size〉 until 〈limit value〉
〈initial value〉 −→ 〈numeric expression〉
〈step size〉 −→ 〈numeric expression〉
〈limit value〉 −→ 〈numeric expression〉
〈exit clause〉 −→ exitif 〈boolean expression〉 ;

As in macro definitions, ‘=’ and ‘:=’ are interchangeable here.
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capsules
;
semicolons
upto
downto
quote

This syntax shows that loops can be of four kinds, which we might
indicate schematically as follows:

for x = ε1, ε2, ε3: text(x) endfor
for x = ν1 step ν2 until ν3: text(x) endfor
forsuffixes s = σ1, σ2, σ3: text(s) endfor
forever: text endfor

The first case expands to ‘text(ε1) text(ε2) text(ε3)’; the ε’s here are expres-
sions of any type, not necessarily “known,” and they are evaluated and put into
capsules before being substituted for x. The ε’s might also be empty, in which
case text(ε) is omitted. The second case is more complicated, and it will be
explained carefully below; simple cases like ‘1 step 2 until 7’ are equivalent to
short lists like ‘1, 3, 5, 7’. The third case expands to ‘text(σ1) text(σ2) text(σ3)’;
the σ’s here are arbitrary suffixes (possibly empty), in which subscripts will have
been evaluated and changed to numeric tokens before being substituted for x.
The final case expands into the sequence ‘text text text . . .’, ad infinitum; there’s
an escape from this (and from the other three kinds of loop) if an 〈exit clause〉
appears in the text, as explained below.

Notice that if the loop text is a single statement that’s supposed to be
repeated several times, you should put a ‘;’ just before the endfor, not just after
it; METAFONT’s loops do not insert semicolons automatically, because they are
intended to be used in the midst of expressions as well as with statements that
are being iterated.

Plain METAFONT defines ‘upto’ as an abbreviation for ‘step 1 until’,
and ‘downto’ as an abbreviation for ‘step −1 until’. Therefore you can say,
e.g., ‘ for x = 1 upto 9: ’ instead of ‘ for x = 1, 2, 3, 4, 5, 6, 7, 8, 9: ’.

� When you say ‘for x = ν1 step ν2 until ν3’, hijklmnj evaluates the three
numeric expressions, which must have known values. Then it reads the loop

text. If ν2 > 0 and ν1 > ν3, or if ν2 < 0 and ν1 < ν3, the loop is not performed at
all. Otherwise text(ν1) is performed, ν1 is replaced by ν1 + ν2, and the same process is
repeated with the new value of ν1.

� xEXERCISE 19.7
Read the rules in the previous paragraph carefully, then explain for what values

of x the loop is performed if you say (a) ‘ for x = 1 step 2 until 0’ . (b) ‘ for x = 1
step −2 until 0 ’. (c) ‘ for x = 1 step 0 until 0 ’. (d) ‘ for x = 0 step .1 until 1 ’.

� A 〈loop text〉 is rather like the 〈replacement text〉 of a macro. It is any se-
quence of tokens that is balanced with respect to unquoted appearances of

for/forsuffixes/forever and endfor delimiters. hijklmnj reads the entire loop
text quickly and stores it away before trying to perform it or to expand macros within
it. All occurrences of the controlled 〈symbolic token〉 in the loop text are changed to
special internal parameter tokens that mean “insert an argument here,” where the ar-
gument is of type expr in the case of for, of type suffix in the case of forsuffixes. This
rule implies, in particular, that the symbolic token has no connection with similarly
named variables elsewhere in the program.
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save
exitif
exitunless
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SHAKESPEARE
Matthew

� xEXERCISE 19.8
What values are shown by the following program?

n=0; for n=1: m=n; endfor show m,n; end.

� The flex routine described in Chapter 14 provides an interesting example of
how loops can be used inside of macros inside of expressions:

pair z [ ], dz ; numeric n ; % private variables
def flex (text t) = % t is a list of pairs

hide(n := 0;
for z = t: z [incrn ] := z; endfor
dz := z [n ]− z [1] )

z [1] for k = 2 upto n − 1: . . . z [k]{dz } endfor
. . . z [n ] enddef ;

The first loop stores the given pairs temporarily in an array, and it also counts how
many there are; this calculation is “hidden.” Then the actual flex-path is contributed
to the program with the help of a second loop. (Appendix B uses the convention that
symbolic tokens ending in ‘ ’ should not appear in a user’s program; this often makes
it unnecessary to ‘save’ tokens.)

� When hijklmnj encounters the construction ‘exitif 〈boolean expression〉;’,
it evaluates the boolean expression. If the expression is true, the (innermost)

loop being iterated is terminated abruptly. Otherwise, nothing special happens.

� xEXERCISE 19.9
Define an ‘exitunless’ macro such that ‘exitunless 〈boolean expression〉;’

will exit the current loop if the boolean expression is false.

��xEXERCISE 19.10
Write a hijklmnj program that sets p[k] to the kth prime number, for

1 ≤ k ≤ 30. Thus, p[1] should be 2, p[2] = 3, etc.

��xEXERCISE 19.11
When you run hijklmnj on the file ‘expr.mf’ of Chapter 8, you get into a

‘forever’ loop that can be stopped if you type, e.g., ‘0 end’. But what can you type to
get out of the loop without ending the run? (The goal is to make hijklmnj type ‘*’,
without incurring any error messages.)

If? thou Protector of this damned Strumpet,
Talk’st thou to me of Ifs: thou art a Traytor,

Off with his Head.

— WILLIAM SHAKESPEARE, Richard the Third (1593)

Use not vain repetitions.

— Matthew 6 : 7 (c. 70 A.D.)
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vardef
declared variable
SIMULA67
spark
tag
begingroup
endgroup
showvariable

Chapter 18 gave the basic facts about macro definitions, but it didn’t tell the
whole story. It’s time now for the Ultimate Truth to be revealed.

� But this whole chapter consists of “dangerous bend” paragraphs, since the
subject matter will be appreciated best by people who have worked with

hijklmnj for a little while. We shall discuss the following topics:
Definitions that begin with ‘vardef ’; these embed macros into the variables
of a program and extend the unary operators of hijklmnj expressions.
Definitions that begin with ‘primarydef ’, ‘secondarydef ’, or ‘tertiarydef ’;
these extend the binary operators of hijklmnj expressions.
Other primitives of hijklmnj that expand into sequences of tokens in a
macro-like way, including ‘input’ and ‘scantokens’.
Rules that explain when tokens are subject to expansion and when they aren’t.

� First let’s consider the 〈vardef heading〉 that was left undefined in Chapter 18.
The ordinary macros discussed in that chapter begin with

def 〈symbolic token〉〈parameter heading〉

and then comes ‘=’, etc. You can also begin a definition by saying

vardef 〈declared variable〉〈parameter heading〉

instead; in this case the 〈declared variable〉 might consist of several tokens, and you are
essentially defining a variable whose “value” is of type “macro.” For example, suppose
you decide to say

pair a.p; pen a.q; path a.r; vardef a.s = . . . enddef ;

then a.p, a.q, and a.r will be variables of types pair, pen, and path, but a.s will
expand into a sequence of tokens. (The language SIMULA67 demonstrated that it is
advantageous to include procedures as parts of variable data structures; hijklmnj
does an analogous thing with macros.)

� After a definition like ‘def t = . . .’, the token t becomes a “spark”; i.e., you
can’t use it in a suffix. But after ‘vardef t = . . .’, the token t remains a “tag,”

because macro expansion will take place only when t is the first token in a variable
name. Some of the definitions in Appendix B are vardefs instead of defs for just that
reason; for example,

vardef dir primary d = right rotated d enddef

allows a user to have variable names like ‘p5dir’.

� A variable is syntactically a primary expression, and hijklmnj would get
unnecessarily confused if the replacement texts of vardef macros were very dif-

ferent from primary expressions. Therefore, the tokens ‘begingroup’ and ‘endgroup’
are automatically inserted at the beginning and end of every vardef replacement text.
If you say ‘showvariable a’ just after making the declarations and definition above,
the machine will reply as follows:

a.p=pair
a.q=unknown pen
a.r=unknown path
a.s=macro:->begingroup...endgroup
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� The ‘incr’ macro of Appendix B increases its argument by 1 and produces
the increased value as its result. The inserted ‘begingroup’ and ‘endgroup’

come in handy here:

vardef incr suffix $ = $ := $ + 1; $ enddef .

Notice that the argument is a suffix, not an expr, because every variable name is a
special case of a 〈suffix〉, and because an expr parameter should never appear to the
left of ‘:=’. Incidentally, according to the rules for undelimited suffix parameters in
Chapter 18, you’re allowed to say either ‘incr v’ or ‘incr(v)’ when applying incr to v.

� There’s another kind of vardef, in which the variable name being defined can
have any additional suffix when it is used; this suffix is treated as an argument

to the macro. In this case you write

vardef 〈declared variable〉@# 〈parameter heading〉

and you can use @# in the replacement text (where it behaves like any other suffix
parameter). For example, Appendix B says

vardef z@# = (x@#, y@#) enddef ;

this is the magic definition that makes ‘z3r’ equivalent to ‘(x3r, y3r)’, etc. In fact, we
now know that ‘z3r’ actually expands into eleven tokens:

begingroup (x3r, y3r) endgroup

��xEXERCISE 20.1
True or false: After ‘vardef a@# suffix b = . . . enddef’, the suffix argument b

will always be empty.

�� Plain hijklmnj includes a solve macro that uses binary search to find nu-
merical solutions to nonlinear equations, which are too difficult to resolve in

the ordinary way. To use solve , you first define a macro f such that f(x) is either true
or false; then you say

solve f(true x , false x )

where true x and false x are values such that f(true x ) = true and f(false x ) = false.
The resulting value x will be at the cutting edge between truth and falsity, in the sense
that x will be within a given tolerance of values for which f yields both outcomes.

vardef solve@#(expr true x , false x ) =
tx := true x ; fx := false x ;
forever: x := .5[tx , fx ]; exitif abs(tx − fx ) ≤ tolerance ;
if @#(x ) : tx else : fx fi:=x ; endfor;
x enddef ;

�� For example, the solve routine makes it possible to solve the following inter-
esting problem posed by Richard Southall: Given points z1, z2, z3, z4 such

that x1 < x2 < x3 < x4 and y1 < y2 = y3 > y4, find the point z between z2 and z3

such that hijklmnj will choose to travel right at z in the path

z1 {z2 − z1} . . z . . {z4 − z3} z4.
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If we try z = z2, hijklmnj will choose a direction at z that has a positive (upward)
y-component; but at z = z3, hijklmnj’s chosen direction will have a negative (down-
ward) y-component. Somewhere in between is a “nice” value of z for which the curve
will not rise above the line y = y2. What is this z?

(Figure 20a will be inserted here; too bad you can’t see it now.)

Chapter 14 gives equations from which z could be computed, in principle, but those
equations involve trigonometry in a complicated fashion. It’s nice to know that we can
find z rather easily in spite of those complexities:

vardef upward (expr x) =
ypart direction 1 of (z1{z2 − z1} . . (x, y2) . . {z4 − z3}z4) > 0 enddef ;

z = (solve upward (x2, x3), y2).

��xEXERCISE 20.2
It might happen in unusual cases that upward (x) is false for all x2 ≤ x ≤ x3,

hence solve is being invoked under invalid assumptions. What result does it give then?

��xEXERCISE 20.3
Use solve to find 3

√
10, and compare the answer to the cube root obtained in

the normal way.

�� The syntax for 〈declared variable〉 in Chapter 7 allows for collective subscripts
as well as tags in the name of the variable being declared. Thus, you can say

vardef a[ ]b[ ] = . . . enddef ;

what does this mean? Well, it means that all variables like a1b2 are macros with
a common replacement text. Every vardef has two implicit suffix parameters, ‘#@’
and ‘@’, which can be used in the replacement text to discover what subscripts have
actually been used. Parameter ‘@’ is the final token of the variable name (‘2’ in this
example); parameter ‘#@’ is everything preceding the final token (in this case ‘a1b’).
These notations are supposed to be memorable because ‘@’ is where you’re “at,” while
‘#@’ is everything before and ‘@#’ is everything after.

��xEXERCISE 20.4
After ‘vardef p[]dir=(#@dx,#@dy) enddef’, what’s the expansion of ‘p5dir’ ?

��xEXERCISE 20.5
Explain how it’s possible to retrieve the first subscript in the replacement text

of vardef a[]b[] (thereby obtaining, for example, ‘1’ instead of ‘a1b’).

��xEXERCISE 20.6
Say ‘showvariable incr,z’ to hijklmnj and explain the machine’s reply.

�� A vardef wipes out all type declarations and macro definitions for variables
whose name begins with the newly defined macro variable name. For example,

‘vardef a’ causes variables like a.p and a1b2 to disappear silently; ‘vardef a.s’ wipes
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out a.s.p, etc. Moreover, after ‘vardef a’ is in effect, you are not allowed to say
‘pair a.p’ or ‘vardef a[]’, since such variables would be inaccessible.

�� The syntax for 〈definition〉 in Chapter 18 was incomplete, because 〈vardef
heading〉 and 〈leveldef heading〉 were omitted. Here are the missing rules:

〈vardef heading〉 −→ vardef 〈declared variable〉〈parameter heading〉
| vardef 〈declared variable〉 @# 〈parameter heading〉

〈leveldef heading〉 −→ 〈leveldef〉〈parameter〉〈symbolic token〉〈parameter〉
〈leveldef〉 −→ primarydef | secondarydef | tertiarydef
〈parameter〉 −→ 〈symbolic token〉

The new things here are primarydef , secondarydef , and tertiarydef , which permit
you to extend hijklmnj’s repertoire of binary operators. For example, the ‘dotprod’
operator is defined as follows in Appendix B:

primarydef w dotprod z =
(xpart w ∗ xpart z + ypart w ∗ ypart z) enddef .

hijklmnj’s syntax for expressions has effectively gained a new rule

〈numeric secondary〉 −→ 〈pair secondary〉 dotprod 〈pair primary〉

in addition to the other forms of 〈numeric secondary〉, because of this primarydef.

�� The names ‘primarydef ’, ‘secondarydef ’, and ‘tertiarydef ’ may seem off
by one, because they define operators at one level higher up: A primarydef

defines a binary operator that forms a secondary expression from a secondary and a pri-
mary; such operators are at the same level as ‘∗’ and ‘rotated’. A secondarydef defines
a binary operator that forms a tertiary expression from a tertiary and a secondary;
such operators are at the same level as ‘+’ and ‘or’. A tertiarydef defines a binary
operator that forms an expression from an expression and a tertiary; such operators
are at the same level as ‘<’ and ‘&’.

�� Plain hijklmnj’s ‘intersectionpoint’ macro is defined by a secondarydef
because it is analogous to ‘intersectiontimes’, which occurs at the same level

(namely the secondary → tertiary level).

secondarydef p intersectionpoint q =
begingroup save x , y ; (x , y ) = p intersectiontimes q;
if x < 0: errmessage("The paths don’t intersect"); (0, 0)
else: .5[point x of p, point y of q] fi endgroup enddef ;

Notice that begingroup and endgroup are necessary here; they aren’t inserted au-
tomatically as they would have been in a vardef .

��xEXERCISE 20.7
Define a ‘transum’ macro operation that yields the sum of two transforms.

(If t3 = t1 transum t2, then z transformed t3 = z transformed t1 + z transformed t2,
for all pairs z.)
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�� Now we’ve covered all the types of 〈definition〉, and it’s time to take stock and
think about the total picture. hijklmnj’s mastication process converts an

input file into a long sequence of tokens, as explained in Chapter 6, and its digestive
processes work strictly on those tokens. When a symbolic token is about to be digested,
hijklmnj looks up the token’s current meaning, and in certain cases hijklmnj will
expand that token into a sequence of other tokens before continuing; this “expansion
process” applies to macros and to if and for, as well as to certain other special prim-
itives that we shall consider momentarily. Expansion continues until an unexpandable
token is found; then the digestion process can continue. Sometimes, however, the ex-
pansion is not carried out; for example, after hijklmnj has digested a def token, it
stops all expansion until just after it reaches the corresponding enddef . A complete
list of all occasions when tokens are not expanded appears later in this chapter.

�� Let’s consider all the tokens that cause expansion to occur, whenever expan-
sion hasn’t been inhibited:

Macros. When a macro is expanded, hijklmnj first reads and evaluates the
arguments (if any), as already explained. (Expansion continues while expr and suffix
arguments are being evaluated, but it is suppressed within text arguments.) Then
hijklmnj replaces the macro and its arguments by the replacement text.

Conditions. When ‘if ’ is expanded, hijklmnj reads and evaluates the
boolean expression, then skips ahead, if necessary, until coming to either ‘fi’ or a
condition that’s true; then it will continue to read the next token. When ‘elseif ’ or
‘else’ or ‘fi’ is expanded, a conditional text has just ended, so hijklmnj skips to the
closing ‘fi’ and the expansion is empty.

Loops. When ‘for’ or ‘forsuffixes’ or ‘forever’ is expanded, hijklmnj
reads the specifications up to the colon, then reads the loop text (without expansion)
up to the endfor. Finally it rereads the loop text repeatedly, with expansion. When
‘exitif ’ is expanded, hijklmnj evaluates the following boolean expression and throws
away the semicolon; if the expression proves to be true, the current loop is terminated.

scantokens 〈string primary〉. When ‘scantokens’ is expanded, hijklmnj
evaluates the following primary expression, which should be of type string. This string
is converted to tokens by the rules of Chapter 6, as if it had been input from a file
containing just one line of text.

input 〈filename〉. When ‘input’ is expanded, the expansion is null, but
hijklmnj prepares to read from the specified file before looking at any more to-
kens from its current source. A 〈filename〉 is subject to special restrictions explained
on the next page.

endinput. When ‘endinput’ is expanded, the expansion is null. But the
next time hijklmnj gets to the end of an input line, it will stop reading from the
file containing that line.

expandafter. When ‘expandafter’ is expanded, hijklmnj first reads one
more token, without expanding it; let’s call this token t. Then hijklmnj reads the
token that comes after t (and possibly more tokens, if that token takes an argument),
replacing it by its expansion. Finally, hijklmnj puts t back in front of that expansion.

\. When ‘\’ is expanded, the expansion is null, i.e., empty.
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�� The syntax for 〈filename〉 is not standard in hijklmnj, because different
operating systems have different conventions. You should ask your local sys-

tem wizards for details on just how they have decided to implement file names. The
situation is complicated by the fact that hijklmnj’s process of converting to tokens
is irreversible; for example, ‘x01’ and ‘x1.0’ both yield identical sequences of tokens.
Therefore hijklmnj doesn’t even try to convert a file name to tokens; an input op-
eration must appear only in a text file, not in a list of tokens like the replacement text
of a macro! (You can get around this restriction by saying

scantokens "input foo"

or, more generally,

scantokens ("input " & fname )

if fname is a string variable containing the 〈filename〉 you want to input.) Although
file names have nonstandard syntax, a sequence of six or fewer ordinary letters and/or
digits followed by a space should be a file name that works in essentially the same way
on all installations of hijklmnj. Uppercase letters are considered to be distinct from
their lowercase counterparts, on many systems.

�� Here now is the promised list of all cases when expandable tokens are not ex-
panded. Some of the situations involve primitives that haven’t been discussed

yet, but we’ll get to them eventually. Expansion is suppressed at the following times:

When tokens are being deleted during error recovery (see Chapter 5).

When tokens are being skipped because conditional text is being ignored.

When hijklmnj is reading the definition of a macro.

When hijklmnj is reading a loop text, or the symbolic token that immedi-
ately follows for or forsuffixes.

When hijklmnj is reading the text argument of a macro.

When hijklmnj is reading the initial symbolic token of a 〈declared variable〉
in a type declaration.

When hijklmnj is reading the symbolic tokens to be defined by delimiters,
inner, let, newinternal, or outer.

When hijklmnj is reading the symbolic tokens to be shown by showtoken
or showvariable.

When hijklmnj is reading the token after expandafter, everyjob, or the
‘=’ following let.

The expansion process is not suppressed while reading the suffix that follows the initial
token of a 〈declared variable〉, not even in a 〈vardef heading〉.
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SUETONIUS
DOPPING

The two lieutenants,
Fonteius Capito in Germany,

and Claudius Macro in Africa,
who opposed his advancement,

were put down.

— SUETONIUS, Sergius Sulpicius Galba (c. 125 A.D.)

By introducing macro instructions in the source language,
the designer can bring about the same ease of programming

as could be achieved by giving the computer
a more powerful operation list than it really has.

But naturally, one does not get the same advantages
in terms of economy of memory space and computer time

as would be obtained if the more powerful instructions
were really built into the machine.

— O. DOPPING, Computers & Data Processing (1970)
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It’s fun to play games with ^_`abcde by writing programs that incorporate
an element of chance. You can generate unpredictable shapes, and you can
add patternless perturbations to break up the rigid symmetry that is usually
associated with mathematical constructions. Musicians who use computers to
synthesize their compositions have found that music has more “life” if its rhythms
are slightly irregular and offbeat; perfect 1–2–3–4 pulses sound pretty dull by
contrast. The same phenomenon might prove to be true in typography.

METAFONT allows you to introduce controlled indeterminacy in two
ways: (1) ‘uniformdeviate t’ gives a number u that’s randomly distributed be-
tween 0 and t; (2) ‘normaldeviate’ gives a random number x that has the
so-called normal distribution with mean zero and variance one.

� More precisely, if t > 0 and u = uniformdeviate t, we will have 0 ≤ u < t,
and for each fraction 0 ≤ p ≤ 1 we will have 0 ≤ u < pt with approximate

probability p. If t < 0, the results are similar but negated, with 0 ≥ u > t. Finally if
t = 0, we always have u = 0; this is the only case where u = t is possible.

� A normaldeviate, x, will be positive about half the time and negative about
half the time. Its distribution is “bell-shaped” in the sense that a particular

value x occurs with probability roughly proportional to e−x2/2; the graph of this func-
tion looks something like a bell. The probability is about 68% that |x| < 1, about 95%
that |x| < 2, and about 99.7% that |x| < 3. It’s a pretty safe bet that |x| < 4.

Instead of relying on mathematical formulas to explain this random be-
havior, we can actually see the results graphically by letting METAFONT draw
some “scatter plots.” Consider the following program, which draws a 10 pt×10 pt
square and puts 100 little dots inside it:

beginchar (incr code , 10pt#, 10pt#, 0);
pickup pencircle scaled .3pt ; draw unitsquare scaled w;
pickup pencircle scaled 1pt ;
for k = 1 upto 100:

drawdot(uniformdeviate w, uniformdeviate w); endfor endchar.

The resulting “characters,” if we repeat the experiment ten times, look like this:

� � � � � � � � � 	 .

And if we replace ‘uniformdeviate w’ by ‘.5w + w/6 ∗ normaldeviate’, we get


 � � 
 � � � � � � .

Finally, if we say ‘drawdot(uniformdeviate w, .5w + w/6 ∗ normaldeviate)’ the
results are a mixture of the other two cases:

� � � � � � � � � � .

xEXERCISE 21.1
Consider the program fragment ‘if uniformdeviate 1 < 1/3: case a else: case b fi’.
True or false: case b will occur about three times as often as case a .
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xEXERCISE 21.2
METAFONT’s uniformdeviate operator usually doesn’t give you an integer. Ex-
plain how to generate random integers between 1 and n, in such a way that each
value will be about equally likely.

xEXERCISE 21.3
What does the formula ‘(uniformdeviate 1)[z1, z2]’ represent?

xEXERCISE 21.4
Guess what the following program will produce:

beginchar(incr code,100pt#,10pt#,0);
for n:=0 upto 99:
fill unitsquare xscaled 1pt yscaled uniformdeviate h
shifted (n*pt,0); endfor endchar.

� xEXERCISE 21.5
And what does this puzzle program draw?

beginchar(incr code,24pt#,10pt#,0);
numeric count[];
pickup pencircle scaled 1pt;
for n:=1 upto 100:
x:=.5w+w/6*normaldeviate;
y:=floor(x/pt);
if unknown count[y]: count[y]:=-1; fi
drawdot(x,pt*incr count[y]); endfor endchar.

� Let’s try now to put more “life” in the hijklmnj logo, by asking Lady Luck
to add small perturbations to each of the key points. First we define noise ,

vardef noise = normaldeviate ∗ craziness enddef ;

the craziness parameter will control the degree of haphazard variation. Then we can

(Figure 21a will be inserted here; too
bad you can’t see it now.)

write the following program for the logo’s ‘n’:

beginlogochar ("N", 15);
x1 = leftstemloc + noise ;
x2 = leftstemloc + noise ;
w − x4 = leftstemloc + noise ;
w − x5 = leftstemloc + noise ;
bot y1 = noise − o ;
top y2 = h + o + noise ;
y3 = y4 + ygap + noise ;
bot y4 = noise − o ;
top y5 = h + o + noise ;
z3 = whatever [z4, z5];
draw z1 - - z2 - - z3; draw z4 - - z5; labels(1, 2, 3, 4, 5); endchar.

The illustration here was drawn with craziness = 0, so there was no noise.
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� Three trials of the 9 pt ‘n’ with craziness = .1pt gave the following results:

(Figure 21b&c&d will be inserted here; too bad you can’t see it now.)

And here’s what happens if you do similar things to all the letters of hijklmnj, with
craziness decreasing from .45pt to zero in steps of .05pt :

&'()*+,-
./012345
6789:;<=
>?@ABCDE
FGHIJKLM
NOPQRSTU
VWXYZ[\]
^_`abcde
fghijklm
METAFONT

� Every time you run a program that refers to random numbers, you’ll get
different results, because hijklmnj uses the date and time of day to change

its generator. This unpredictable behavior is normally what you want, but it can be
troublesome if your program draws a lovely shape that you’d like to see again. Or
perhaps one of your runs will uncover a program bug; you won’t be able to diagnose
the problem, because it probably won’t recur! The solution is to say

randomseed := 〈numeric expression〉

and to remember the value of that numeric expression. (The value will automatically
be recorded in the transcript file of your run.) You will get the same sequence of
uniform and normal deviates on any two runs that begin with the same randomseed,
because hijklmnj’s numbers are only “pseudo-random.”

A musician whom I knew amused himself
by tuning his piano arbitrarily, without any rhyme or reason.

Afterwards he played Beethoven’s Sonate Pathétique by heart.
It was an unbelievable delight to hear an old piece come back to life.

I had heard this sonata for twenty years,
never dreaming that it was capable of being developed further.

— AUGUST STRINDBERG, Chance in Artistic Creation (1894)

[Education] must lead us from chance and arbitrariness
to rational clarity and intellectual order.

— L. MIES VAN DER ROHE, Inaugural Address (1938)
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ditto
title
tracingtitles
proofing
GFtoDVI
labels
concatenation
ampersand
string primary
(
)
begingroup
endgroup
jobname
readstring
str
char
decimal
substring
of
string secondary
string tertiary
string expression
&
**
command line
mfput

METAFONT is not a word processor, but a METAFONT programmer can process
words and other short strings of symbols in rudimentary ways. Strings can
help explain what a program is doing; for example, the io.mf file of Chapter 5
mentions "The letter O" as a title that should appear on proofsheets, and it
also says "O" in order to identify the position of a character in the output font.

Chapter 6 points out that a 〈string token〉 is any sequence of characters
enclosed in double-quote (") marks, except that you’re not allowed to use the
double-quote character itself in this way. If you need that character, plain META-
FONT provides it in a string of length 1 called ditto . Thus

"A string expression can contain a ‘" & ditto & "’ mark"

even though a 〈string token〉 cannot.
A string expression can be used all by itself as a statement, just as if it

were an equation or declaration or command. Such a statement is called a 〈title〉,
provided that it is immediately followed by a ‘;’. If tracingtitles > 0 when a
title is encountered, METAFONT will type the title on the user’s terminal. If
proofing > 0 when a title is encountered, METAFONT will copy the title into the
output file, so that it can be put onto proofsheets by postprocessors such as the
GFtoDVI program described in Appendix H.

� Appendix H explains how to specify the strings that are used as labels for the
key points on proofsheets.

�� Here’s the full syntax for string expressions. All of the activity except for
concatenation (‘&’) takes place at the primary level:

〈string primary〉 −→ 〈string token〉
| 〈string variable〉
| ( 〈string expression〉 )
| begingroup 〈statement list〉〈string expression〉 endgroup
| jobname
| readstring
| str 〈suffix〉
| char 〈numeric primary〉
| decimal 〈numeric primary〉
| substring 〈pair primary〉 of 〈string primary〉

〈string secondary〉 −→ 〈string primary〉
〈string tertiary〉 −→ 〈string secondary〉
〈string expression〉 −→ 〈string tertiary〉

| 〈string expression〉 & 〈string tertiary〉

The new features here are jobname, readstring, str, char, decimal, and substring;
we shall consider each of them in turn.

�� The name of your job (jobname) is the name of the first file you input,
provided that the first line of instructions to hijklmnj (the ‘**’ line or

command line) causes input of some file. Otherwise the job name is mfput, as in
Experiment 1 of Chapter 5.
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readstring
stop
suffix
str
char
ASCII
decimal representation
substring
subpath
graph paper
reverse
ASCII
oct
octal notation
hex
hexadecimal notation

�� When you say ‘readstring’, hijklmnj stops and waits for the user to type
a line at the terminal. The value of readstring is the contents of this line,

with trailing spaces eliminated. (You probably should use the message command
first, to give the user a clue about what to type; for example, see the expr.mf file
of Chapter 8, which gets its input expressions via readstring. The stop macro of
Appendix B makes use of the fact that readstring halts the computer; it doesn’t
actually look at the string.)

�� An arbitrary 〈suffix〉 is converted to a string by str, using the method by
which hijklmnj displays suffix arguments in diagnostic typeouts. Negative

subscripts are enclosed in square brackets; spaces or dots are inserted between tokens
whose characters belong to the same class (according to the table in Chapter 6). For
example, if n = 1 then ‘str x[n]a’ is "x1a"; ‘str x n a’ is "x.n.a".

�� The result of ‘char n’ is a string of length 1, representing the character whose
ASCII code is n. (Appendix C explains this code.) The value of n is

first rounded to the nearest integer, then multiples of 256 are added or subtracted if
necessary until 0 ≤ n < 256; this defines char n in all cases.

�� The decimal representation of a known numeric value x is available in string
form as ‘decimal x’. If x is negative, the first character of this string will

be ‘-’. If x is not an integer, a decimal point will be included, followed by as many
digits as are necessary to characterize the value. (These conventions are the same as
those illustrated in the example outputs of Chapter 8.)

�� The rules for substring are like the rules for subpath in Chapter 14. hijk-
lmnj thinks of a string as if its characters were written in the squares of a

piece of graph paper, between coordinates x = 0 and x = n, where n is the length
of the string. In simple cases, substring (a, b) then refers to the characters between
x = a and x = b. The rules for the general case are slightly more involved: If b < a, the
result will be the reverse of substring (b, a). Otherwise a and b are replaced respectively
by max(0, min(n, round a)) and max(0, min(n, round b)); this leads to the simple case
0 ≤ a ≤ b ≤ n described above, when the resulting string has length b− a.

�� Strings can be converted into numbers, although Chapter 8 didn’t mention
this fact in its syntax for 〈numeric primary〉. The primitive operations are

ASCII 〈string primary〉 | oct 〈string primary〉 | hex 〈string primary〉

where ‘ASCII’ returns the ASCII code of the first character of the string, ‘oct’ computes
an integer from a string representing octal notation (radix 8), and ‘hex’ computes an
integer from a string representing hexadecimal notation (radix 16). For example,

ASCII "100" = 49; oct "100" = 64; hex "100" = 256.

Several exceptional conditions need to be mentioned: (1) ASCII "" = −1; otherwise
ASCII yields an integer between 0 and 255. (2) The characters in the string argument
to ‘oct’ must all be digits in the range 0–7. (3) The characters in the string argument
to ‘hex’ must all be digits in the range 0–9, A–F, or a–f. (4) The number that results
from ‘oct’ or ‘hex’ must be less than 4096. Thus, ‘oct "7777"’ and ‘hex "FFF"’ are the
maximum legal values.
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message command
message command
message op
message
errmessage
errhelp
help
scantokens
mode def
ALINGHAM
THOMSON

��xEXERCISE 22.1
Under what circumstances is (a) ASCII char n = n? (b) char ASCII s = s?

��xEXERCISE 22.2
Why are there primitive operations to convert from strings to numbers assum-

ing octal notation and hexadecimal notation, but not assuming decimal notation?

��xEXERCISE 22.3
Write an octal macro that converts a nonnegative integer to an octal string.

�� A 〈message command〉 allows you to communicate directly or indirectly with
the user. It has the general syntax

〈message command〉 −→ 〈message op〉〈string expression〉
〈message op〉 −→ message | errmessage | errhelp

If you say ‘message s’, the characters of s will be typed on the terminal, at the
beginning of a new line; ‘errmessage s’ is similar, but the string will be preceded by
"! " and followed by ".", followed by lines of context as in hijklmnj’s normal error
messages. If the user asks for help after an errmessage error, the most recent errhelp
string will be typed (unless it was empty).

�� hijklmnj doesn’t allow you to have an array of different macros m[i];
but you can have an array of strings that have macro-like behavior, via

scantokens. The mode def construction of Appendix B exploits this idea.

Many other useful Practises
mecanicks perform by this Theo.

as the finding the length of strings.

— WILLIAM ALINGHAM, Geometry Epitomized (1695)

Forgive me, if my trembling Pen displays
What never yet was sung in mortal Lays.

But how shall I attempt such arduous String?

— JAMES THOMSON, The Castle of Indolence (1748)
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showit
currentpicture
screenchars
endchar
screenstrokes
display command
display
inwindow
window
openwindow command
openwindow
window spec
at
screen place
from
to
screen coordinates
Cartesian

How do you get pictures to appear on your screen? Plain METAFONT provides
the ‘showit’ command, which displays the currentpicture . Furthermore you can
ask for ‘screenchars’; this automatically does a showit at the time of each
endchar. And you can see all the action by asking for ‘screenstrokes’; this
automatically does a showit after every draw or fill.

�� The above-described features of plain hijklmnj are implemented from low-
level primitive commands, by macros that appear in Appendix B. At the low-

est level, hijklmnj obeys commands such as ‘display currentpicture inwindow 1’;
there’s also an ‘openwindow’ command that defines a correspondence between hijk-
lmnj coordinates and screen coordinates. The syntax is

〈display command〉 −→ display 〈picture variable〉 inwindow 〈window〉
〈window〉 −→ 〈numeric expression〉
〈openwindow command〉 −→ openwindow 〈window〉〈window spec〉
〈window spec〉 −→ 〈screen place〉 at 〈pair expression〉
〈screen place〉 −→ from 〈screen coordinates〉 to 〈screen coordinates〉
〈screen coordinates〉 −→ 〈pair expression〉

A 〈window〉 is an integer between 0 and 15, inclusive; it represents one of sixteen “win-
dows” or “portholes” that hijklmnj provides between its pictures and the outside
world. The 〈window〉 mentioned in a display command must previously have been
“opened” by an openwindow command.

�� hijklmnj’s windows should not be confused with the so-called windows
provided by many modern operating systems. If you have such a system,

you’ll probably find that all of hijklmnj’s pictorial output appears in one operating-
system window, and all of its terminal I/O appears in another, and you might be
running other jobs (like the system editor) in another. hijklmnj’s windows are not
so fancy as this; they are just internal subwindows of one big picture window.

�� The command ‘openwindow k from (r0, c0) to (r1, c1) at (x, y)’ associates a
rectangular area of the user’s screen (or of the user’s big picture window) with

pixels in hijklmnj’s coordinate system. All of the numbers in this command (namely
k, r0, c0, r1, c1, x, and y) are rounded to the nearest integer if they aren’t integers
already. Furthermore r0 is replaced by max(0, min(maxr , r0)) and r1 is replaced by
max(r0, min(maxr , r1)), where maxr is the maximum number of rows on the screen;
similar adjustments are made to c0 and c1. The two (r, c) values are row and column
numbers on the screen; the topmost row is conventionally taken to be row zero, and the
leftmost column is taken to be column zero. (These conventions for screen coordinates
are quite different from the normal Cartesian coordinate system used everywhere else in
hijklmnj, but somehow they seem appropriate when applied to screens.) Point (x, y)
of hijklmnj’s raster will be equated to the upper left corner of the rectangle, i.e., to
the upper left corner of the pixel in screen column c0 of screen row r0. The window
itself occupies r1 − r0 rows and c1 − c0 columns. It follows that the pixel in column c1

of row r1 is not in the window itself, but it is the screen pixel diagonally just below
and to the right of the lower right corner of the window.

��xEXERCISE 23.1
What are the hijklmnj coordinates of the boundary of such a window?
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nullpicture
blankpicture
currentwindow
meta-characters
Knuth
a

� If you run hijklmnj on a system that doesn’t support general bitmap dis-
plays, the display and openwindow commands will do nothing. You’ll have

to look at hardcopy output, offline. (But your hijklmnj might run a bit faster.)

�� The syntax for display insists that you display a 〈picture variable〉, not a
〈picture expression〉; thus, you can’t ‘display nullpicture’. Plain hijk-

lmnj defines a special variable blankpicture that’s entirely blank, just so that you can
easily display nothing whenever you like.

�� A window may be opened any number of times, hence moved to different
locations on the screen. Opening a window blanks the corresponding screen

rectangle as if you had displayed blankpicture .

�� The effect of overlapping windows is undefined, because hijklmnj does not
always repaint pixels that have remained unchanged between displays.

�� Changes to a picture do not change the displays that were generated from it,
until you give another display command explicitly. Thus, the images embla-

zoned on your screen might not exist any longer in hijklmnj’s picture memory.

�� Plain hijklmnj has an ‘openit’ macro that opens currentwindow ; this vari-
able currentwindow is always zero unless you change it yourself. The showit

macro displays currentpicture in currentwindow ; and it’s also designed to call openit—
but only the very first time showit is invoked. This means that the screen normally
won’t be touched until the moment you first try to display something.

�� Appendix E explains how to manage a more elaborate scheme in which six
windows can be used to show how meta-characters vary under six different

font-parameter settings. The author used such a six-window system when developing
the Computer Modern typefaces; here is a typical example of what appeared on his
terminal when the letter ‘a’ was being refined:

(Figure 23 will be inserted here; too bad you can’t see it now.)
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new window
screen cols
VENEZKY
STRAVINSKY

��xEXERCISE 23.2
The openit macro in Appendix B specifies (−50, 300) as the upper left corner

point of the window used for showing all the pictures. This might clip off the bottom
of a large character, if your screen is limited to, say, 360 rows. How could you change
openit so that the character images will be raised 20 rows higher than they would be
in the standard setting?

��xEXERCISE 23.3
Design a ‘new window’ routine that allocates windows 1, 2, . . . , 15. If the

user says ‘new_window $(u,v)’, where $ is any suffix and u,v are pairs of coordinates
for two opposite corners of a rectangle, your macro should map that rectangle to the
next available screen rectangle and open it as window number window$. The allocation
should be left to right, top to bottom; assume that the screen is an infinite rectangle,
screen cols wide.

Editing will be done on-line with a display scope and keyboard.

— RICHARD L. VENEZKY, in American Documentation (1968)

In future I might be obliged to turn for material to the tube.

— IGOR STRAVINSKY, in Harper’s (1970)
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luxo
rounding
hand-tuning
raster
autorounding
smoothing
digitizing

Pixel patterns are indistinguishable from continuous curves, when the pixels are
small enough. After all, the human eye is composed of discrete receptors, and
visible light has a finite wavelength. Our hypothetical luxo printer of Chapter 11,
with its resolution of 2000 pixels per inch, would surely be able to produce printed
pages of high quality, if it existed; the physical properties of ink would smooth
out all the tiny bumps, obliterating all the evidence that the letterforms had
been digitized. However, it will always be less expensive to work with devices
of lower resolution, and we want the output of METAFONT to look as good as
possible on the machines that we can afford to buy. The purpose of this chapter
is to discuss the principles of “discreet rounding,” i.e., to consider the tasteful
application of mathematical techniques by which METAFONT can be made to
produce satisfactory shapes even when the resolution is rather coarse.

The technical material in this chapter is entirely marked with danger
signs, since careful rounding tends to make METAFONT programs more complex;
a novice user will not wish to worry about such details. On the other hand,
an expert METAFONTer will take pains to round things properly even when
preparing high-resolution fonts, since the subtle refinements we are about to
discuss will often lead to significantly better letterforms.

We should realize before we begin that it would be a mistake to set our
hopes too high. Mechanically generated letters that are untouched by human
hands and unseen by human eyes can never be expected to compete with al-
phabets that are carefully crafted to look best on a particular device. There’s
no substitute for actually looking at the letters and changing their pixels until
the result looks right. Therefore our goal should not be to make hand-tuning
obsolete; it should rather be to make hand-tuning tolerable. Let us try to create
meta-designs so that we would never want to change more than a few pixels
per character, say half a dozen, regardless of the resolution. At low resolutions,
six pixels will of course be a significant percentage of the whole, and at higher
resolutions six well-considered pixel changes can still lead to worthwhile improve-
ments. The point is that if our design comes close enough, a person with a good
bitmap-editing program will be able to optimize an entire font in less than an
hour. This is an attainable goal, if rounding is done judiciously.

� hijklmnj tries to adjust curves automatically, so that they are well adapted
to the raster, if the internal quantities autorounding and/or smoothing have

positive values. (Plain hijklmnj sets autorounding := 2 and smoothing := 1, so you
generally get these features unless you turn them off yourself.) But all the examples in
this chapter will be generated with autorounding := smoothing := 0 unless otherwise
mentioned, because this will keep hijklmnj’s automatic mechanisms from interfering
with our experiments. We shall discuss the pros and cons of automatic rounding after
we have explored the general problem in more detail.

� The first thing we need to understand about rounding is hijklmnj’s pro-
cedure for digitizing a path. A path of length n can be regarded as a trajec-

tory z(t) that is traced out as t varies from 0 to n. In these terms, the corresponding
digitized path is most easily described by the formula ‘round z(t)’ for 0 ≤ t ≤ n; each
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lowres
round

z(t) is rounded to the nearest point with integer coordinates. For example, if a path
goes through point (3.1, 5.7), its digitization will go through point (3, 6). The digitized
trajectory makes discrete jumps at certain values of t, when round z(t) hops from one
point to another; the two points will be one pixel apart, and we can imagine that the
digitized path traverses the horizontal or vertical edge between them when it jumps.

� When an ordinary region is being filled, this rule for digitizing paths boils
down to a simple criterion that’s easy to visualize: A pixel belongs to the

digitized region if and only if its center point lies inside the original undigitized path.
For example, two versions of Chapter 5’s Ionian ‘�’ are shown here at a resolution of
200 pixels per inch, using the characteristics of lowres mode in Appendix B:

(Figure 24a&b will be inserted here; too bad you can’t see it now.)

The heavy broken lines are digitized paths, and the pixels inside these ragged bound-
aries are those whose centers lie in the shaded regions.

� The ‘�’ on the left has digitized well; but the one on the right has problems,
because it was based on curves that were generated without taking the raster

into account. The difference between these two letters is entirely due to line 8 of the
program in Chapter 5, which says

curve sidebar = round 1/18em ;

this equation determines the position of the leftmost and rightmost edges of the ‘�’
before digitization, and it leads to the nice digitized form in the left-hand example.
Without the word ‘round’, we get the inferior right-hand example, which was obtained
by exactly the same hijklmnj program except that curve sidebar was set to 1/18em
exactly. One little token—which changed an exact calculation to an approximate,
rounded calculation—made all the difference!

� Curves that are placed in arbitrary positions on a raster can lead to digital
disasters, even though the curves themselves aren’t bad. For example, suppose

we take the right-hand example above and shift it just 0.05 and 0.10 pixels to the right:

(Figure 24c&d will be inserted here; too bad you can’t see it now.)
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pimple
flat
define corrected pixels
overshoot
beginchar

The first shift of 0.05 pixels causes a tiny pimple to appear at the right edge; after an-
other small shift the pimple has grown into a mole, and the left edge has become too flat.

� A designer who is asked to make a digital ‘O’ that is 22 pixels wide will
certainly have pixels in mind when making the design. Therefore it’s not

surprising that our program to generate a digital ‘O’ should pay attention to actual
pixel positions by rounding curve sidebar as in this example. We have distorted the
infinite-resolution curve slightly so that it will digitize well, before digitizing it.

� A path z(t) will digitize well if the digitization process doesn’t change it too
much; thus, we want z(t) to be essentially the same as round z(t), at all the

important places. But what places are “important”? Experience shows that the most
critical points are those where the path travels horizontally or vertically, i.e., where it
runs parallel to the raster lines. It’s best to arrange things so that a curve becomes
parallel to the raster lines just when it touches or nearly touches those lines; then it
will appear to have the right curvature after digitization. The worst case occurs when
a curve becomes parallel to the raster just when it’s halfway between raster lines; then
it gets a pimple or a flat spot.

�� Diagonal slopes, where a curve has a ±45◦ tangent angle, are also potential
sources of unwanted pimples and flats. Similarly, at higher resolutions it is

sometimes possible to detect small glitches when a curve travels with slopes of ±1/2 or
±2/1. Rational slopes m/n where m and n are small integers turn out to be somewhat
dangerous. But diagonals are of secondary importance; horizontal and vertical slopes
lead to more severe problems.

� These considerations suggest a simple general principle for adapting the out-
lines of shapes to be digitized: If you know that the outline will have a vertical

tangent at some point, round the x coordinate to an integer and leave the y coordinate
unchanged. If you know that the outline will have a horizontal tangent at some point,
round the y coordinate to an integer and leave the x coordinate unchanged.

�� Incidentally, the horizontal tangent points in our ‘�’ examples were taken
care of by the fact that ‘define corrected pixels’ makes the overshoot pa-

rameter o nearly an integer, together with the fact that beginchar makes h an integer.
If the y coordinates had not been rounded at the horizontal tangent points, our bad
examples would have looked even worse.

� Before we go further into the study of rounding, we had better face up to a
technicality that’s sometimes important: We said that the pixels of a digi-

tized region are those whose centers lie inside the undigitized region; but this rule is
vague about what happens when the centers happen to fall precisely on the undigitized
boundary. Similarly, when we said that round z(t) jumps from one point to an adjacent
point, we ignored the fact that a curve such as z(t) = (t, t) actually jumps from (0, 0)
to (1, 1) when it is rounded as t passes 1/2; those points are not adjacent. hijklmnj
skirts both of these problems in an interesting way: It shifts all of its paths to the right
by an infinitesimal amount δ, and it also shifts them upward by an even smaller in-
finitesimal amount δε, so that no path actually touches a pixel center. Here δ and ε are
positive numbers that are chosen to be so small that their actual values don’t matter.
For example, the path z(t) = (t, t) becomes (t + δ, t + δε), which jumps from (0, 0) to
(1, 0) to (1, 1) because it momentarily rounds to (1, 0) when t = 1/2− 2δε.
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ambiguous point
draw
pencircle
good.x
good.y
gumdrop

� Points of the form (m + 1/2, n + 1/2), where m and n are integers, lie in the
centers of their pixels. They are called “ambiguous” points because we can’t

round them to the nearest integer neighbor without deciding which of four adjacent
points is to be considered the nearest. If we imagine taking a curved outline and shifting
it slowly to the right, the digitized image makes abrupt transitions when the outline
passes over an ambiguous point. When a path comes near an ambiguous point, the
path is farthest away from its digitization. Thus the ambiguous points are points of
instability, and digitizing works best when paths don’t get too close to them.

� Let’s consider now what happens when we draw with a pen, instead of filling
an outline. It may seem that the simplest possible draw command would be

something like this:

pickup pencircle; draw (0, 0) . . (10, 0);

what could be easier? But a closer look shows that this is actually about the worst case
that could be imagined! A circular pen of diameter 1 that goes from (0, 0) to (10, 0) has
upper and lower boundaries that go from (0,±1/2) to (10,±1/2), and both of these
boundaries run smack through lots of ambiguous points. hijklmnj has to decide
whether to fill the row of pixels with 0 ≤ y ≤ 1 or the lower row with −1 ≤ y ≤ 0,
neither of which is centered on the given line. According to the rule stated earlier,
hijklmnj shifts the path very slightly to the right and very, very slightly up; thus
the pixels actually filled are bounded by (0, 0) - - (10, 0) - - (10, 1) - - (0, 1) - - cycle.

� xEXERCISE 24.1
Continuing this example, what pixels would have been filled if the path had

been ‘(0, 0) . . (10,−epsilon )’ ?

� In general when we draw with a fixed pen, good digitizations depend on
where the edges of the pen happen to fall, not on the path followed by the

pen’s center. Thus, for example, if the path we’re drawing has a vertical tangent at
point z1, we don’t necessarily want x1 to be an integer; we want lft x1 and rt x1 to
be integers. If there’s a horizontal tangent at z2, we want top y2 and bot y2 to be
integers. The pens created by pencircle always have the property that (lft x)− (rt x)
and (top y) − (bot y) are integers; hence both edges will be in good or bad positions
simultaneously.

� Suppose that we want x1 to be approximately equal to α, and we also want
it to be at a good place for vertical tangents with respect to the pen that has

currently been picked up. One way to define x1 is to say

lft x1 = round(lft α);

this does the right thing, because it makes lft x1 an integer and it also makes x1 ≈ α.
Similarly, to make y2 ≈ β good for horizontal tangents, we can say

top y2 = round(top β).

Such operations occur frequently in practice, so plain hijklmnj provides convenient
abbreviations: We can say simply

x1 = good.x α; y2 = good.y β

instead of using indirect equations for lft x1 and top y2.
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logo.mf
xgap
ygap
leftstemloc
barheight
define pixels
define whole pixels
define good x pixels
define good y pixels
O
T
beginchar
change width

� Let’s look one last time at the letters of the hijklmnj logo, in order to make
them round properly. Chapter 11 describes a file logo.mf that draws the seven

characters, but we can improve the results by making pixel-oriented refinements. In
the first place, we can replace the command

define pixels(s, u, xgap , ygap , leftstemloc , barheight )

by something better: Looking at the uses of these ad hoc dimensions, we see that xgap
and ygap ought to be integers; leftstemloc should be a good.x value for logo pen ; and
barheight should be a good.y value. Therefore we say

define pixels(s, u);
define whole pixels(xgap , ygap);
define good x pixels(leftstemloc);
define good y pixels(barheight );

these commands, provided by plain hijklmnj, will do the right thing. (The logo pen
should be picked up before the last two commands are given.) These few changes, and
a change to the ‘m’, suffice to fix all the letters except ‘j ’.

� xEXERCISE 24.2
The program for hijklmnj’s ‘m’ appears in Chapter 18. What changes

would you suggest to make it digitize well?

� The ‘j ’ presents a new problem, because we want it to be symmetric between
left and right. If the pen breadth is odd, we want the character width w to

be odd, so that there will be as many pixels to the left of the stem as there are to the
right. If the pen breadth is even, we want w to be even. Therefore we have a 50-50
chance of being unhappy with the value of w that is computed by beginchar.

� xEXERCISE 24.3
Prove that the value of w is satisfactory for ‘j ’ with respect to the logo pen

if and only if .5w is a good x value for vertical strokes.

� If w is not a good value, we want to replace it by either w+1 or w−1, whichever
is closer to the device-independent width from which w was rounded. For

example, if w was rounded to 22 from the ideal width 21.7, we want to change it to 21
rather than 23. Plain hijklmnj’s change width routine does this. Hence we have
the following program for ‘j ’, in place of the simpler version found in exercise 11.4:

(Figure 4b will be inserted here;
too bad you can’t see it now.)

beginlogochar("T", 13);
if .5w <> good.x .5w: change width; fi
lft x1 = −eps ;
x2 = w − x1;
x3 = x4 = .5w;
y1 = y2 = y3; top y1 = h; bot y4 = −o;
draw z1 - - z2; draw z3 - - z4;
labels(1, 2, 3, 4); endchar.

Chapter 4 said that ‘j ’ was the simplest of the seven
logo letters, but it has turned out to be the trickiest.



200 Chapter 24: Discreteness and Discretion

eps
overshoot
M
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sharp sign
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thru

�� This program has one unexplained feature. Why was lft x1 set to −eps instead
of zero? The answer requires an understanding of the pen polygons discussed

in Chapter 16. The edges of those polygons are highly likely to pass through ambiguous
points when the center of the pen has integer or half-integer coordinates. hijklmnj
shifts paths slightly to the right and up, in order to resolve ambiguities; therefore if
ambiguous points occur at the left and right edges of the ‘j ’, some pixels will be lost
at the left but gained at the right. The constant eps is 0.00049, which is small but
positive enough that hijklmnj will surely notice it. Subtracting eps from x1 and
adding eps to x2 avoids ambiguous edge points and keeps the result symmetric.

�� Since the overshoot ‘o’ is always eps more than an integer, it is unnecessary
to do anything similar at point z4; the equation ‘bot y4 = −o’ is sufficient.

�� Point z3 in the middle of the ‘h’ is in a satisfactory position because bot y3 =
ygap − o . If bot y3 were exactly an integer, the h would often turn out to be

unsymmetric, because of ambiguous points on the boundary at z3.

��xEXERCISE 24.4
True or false: If currentpen is pencircle xscaled px yscaled py , the command

‘draw (−epsilon , 0) . . (+epsilon , 0)’ will produce an image that has both left-right
and top-bottom symmetry. (Assume that autorounding=smoothing=0.)

��xEXERCISE 24.5
The polygon for ‘pencircle scaled 3’ is an octagon whose vertices are at the

points (±0.5,±1.5) and (±1.5,±0.5). Prove that if you ‘draw (x, y)’ with this pen,
the result never has both top-bottom and left-right symmetry.

�� Rounding can also help to position points at which we don’t have horizontal
or vertical tangents. For example, consider the “sharp sign” or “hash mark”

character that’s drawn by the following program:

(Figure 24e will be inserted here; too bad you
can’t see it now.)

u# := 10
18pt#; define pixels(u);

beginchar (0, 15u#, 250
36 pt#, 70

36pt#);
pickup pencircle

scaled (.4pt + blacker );
lft x1 = round u− eps ;
x3 = x1;
x2 = x4 = w − x1;
y1 = y2 = good.y (.5[−d, h] + pt );
y3 = y4 = h− d− y1;
draw z1 - - z2; draw z3 - - z4;
lft x6 = round 3u;
x7 = w − x6;
x8 = good.x .5w;
x5 − x6 = x7 − x8;
top y5 = top y7 = h + eps ;
bot y6 = bot y8 = −d− eps ;
draw z5 - - z6; draw z7 - - z8;
labels(range 1 thru 8);
endchar.
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lowres
jaggies
n
stems

If we digitize this character according to lowres mode at 200 pixels per inch, we get
the following results:







The left-hand example was obtained by omitting the ‘round’ and ‘good.x ’ instructions
in the equations for x6 and x8. This meant that points z6 and z8 fell into different,
possibly unlucky, raster positions, so the two diagonal strokes digitized differently even
though they came from essentially identical undigitized lines. The middle example
was produced by the given program without changes. And the right-hand example
was produced by drawing the diagonals in a more complicated way: The commands
‘draw z5 - - z6; draw z7 - - z8;’ were replaced by

y15 = y1; z15 = whatever [z5, z6]; y36 = y3; z36 = whatever [z5, z6];
y27 = y2; z27 = whatever [z7, z8]; y48 = y4; z48 = whatever [z7, z8];

draw z5 - - (good.x (x15 + .5), y1) - - (good.x (x15 − .5), y1)
- - (good.x (x36 + .5), y3) - - (good.x (x36 − .5), y3) - - z6;

draw z7 - - (good.x (x27 + .5), y2) - - (good.x (x27 − .5), y2)
- - (good.x (x48 + .5), y4) - - (good.x (x48 − .5), y4) - - z8;

The idea here was to control the goodness of the points where the diagonals intersect
the horizontal bar lines, and to hide one of the “jaggies” inside each bar line. If we
do the same three experiments but triple the resolution, we get similar results but the
differences are not quite so obvious:







� When letters are drawn by filling outlines, the left and right outlines are
digitized independently; therefore corresponding outlines should usually be

offset from each other by an integer amount whenever possible. For example, suppose
that the letter ‘n’ is being drawn with commands like

penpos2(stem , 0); penpos4(stem , 0)

to specify the stroke widths at the base of the two stems. We will therefore have
x2r − x2l = x4r − x4l = stem . If stem is not an integer, say stem = 2.7, we might have
x2l = 2.1, x2r = 4.8, x4l = 9.6, x4r = 12.3; then x2r − x2l will digitize to 5 − 2 = 3,
so the left stem will be three pixels wide, but the right stem will be only 12− 10 = 2
pixels wide. We could get around this problem by insisting that either x2l or x2r be an
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define whole blacker pixels
round
w

integer, and that either x4l or x4r be an integer; then both stems would be three pixels
wide. But other quantities calculated from stem (e.g., the breadth of diagonal strokes)
would then be based on a value of 2.7 instead of the stem width 3 that an observer of
the font actually perceives. Therefore it is best to make stem an integer. The proper
way to do this is generally to say

define whole blacker pixels(stem );

this command computes stem from stem# by the formula

stem := max(1, round(stem# ∗ hppp + blacker )).

(Notice that this rounding operation is not allowed to reduce stem to zero at low
resolutions.)

� Even when the stem width is an integer in the ‘n’ example, we probably want
to arrange things so that x2l, x2r, x4l, and x4r are integers, because this will

give the least distortion under digitization. Suppose, however, that it’s most convenient
to define the pen position at the center of the stroke instead of at the edge; i.e., the
program would say just ‘x2 = α’ if rounding were not taken into account. How should
x2 be defined, when we want x2l to be an integer? We could say

x2 = α; x2l := round x2l; x2r := round x2r; x2 := .5[x2l, x2r]

but that’s too complicated; moreover, it will fail if any other variables depend on x2,
x2l, or x2r, because such dependencies are forgotten when new values are assigned. In
the case of fixed pens we solved this problem by saying ‘x2 = good.x α’; but the good.x
function doesn’t know about stem . One solution is to say

x2l = round(α− .5stem ),

or equivalently, ‘x2r = round(α+ .5stem )’. This does the job all right, but it isn’t com-
pletely satisfying. It requires knowledge of the breadth that was specified in the penpos2
command, and it works only when the penpos angle is 0. If the penpos command is
changed, the corresponding equation for rounding must be changed too. There’s an-
other solution that’s more general and more attractive once you get used to it:

x2l = round(x2l − (x2 − α)).

Why does this work? The argument to ‘round’ must be a known value, but both
x2l and x2 are unknown. Fortunately, their difference x2l − x2 is known, because of
the penpos2 command. The rounding operation makes x2 ≈ α because it makes x2l

approximately equal to the value of x2l minus the difference between x2 and α.

��xEXERCISE 24.6
The generality of this technique can be appreciated by considering the follow-

ing more difficult problem that the author faced while designing a ‘w’: Suppose you
want x1 − x2 to be an integer and x3 ≈ x4, and suppose that x2, x3 − x1, and x4 + x1

are known; but x1 is unknown, hence x3 and x4 are also unknown. According to our
general idea, we want to specify an equation of the form ‘x1−x2 = round(x1−x2 +f)’,
where x1 − x2 + f is known and f is a formula that should be approximately zero. In
this case x3−x4 is approximately zero, and (x3−x1)− (x4 +x1) is known; what value
of f should we choose?
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�� In many fonts, such as the one you are now reading, curved lines swell out
so that the thick parts of ‘o’ are actually a bit broader than the stems of ‘n’.

Therefore the Computer Modern font routines discussed in Appendix E have two pa-
rameters, stem# and curve#, to govern the stroke thickness. For example, the font
cmr9 used in the present paragraph has stem# = 2/3pt# and curve# = 7/9pt#. Both
of these should be integers, hence the font setup macro in Appendix E dutifully says

define whole blacker pixels(stem , curve ).

Although this looks good on paper, it can cause problems at certain low resolutions,
because the rounding operation might make stem and curve rather different from each
other even though stem# and curve# are fairly close. For example, the resolution might
be just at the value where cmr9’s stem turns out to be only 2 but curve is 3. Curves
shouldn’t be that much darker than stems; they would look too splotchy. Therefore
plain hijklmnj has a ‘lowres fix’ subroutine, and Appendix E says

lowres fix(stem ,curve ) 1.2

after stem and curve have been defined as above. In this particular case lowres fix will
reset curve := stem if it turns out that the ratio curve/stem is greater than 1.2 times
the ratio curve#/stem#. Since curve#/stem# = 7/6 in the case of cmr9, this means
that the ratio curve/stem after rounding is allowed to be at most 1.4; if curve = 3 and
stem = 2, the curve parameter will be lowered to 2. In general the command

lowres fix(d1, d2, . . . , dn) r

will set dn := · · · d2 := d1 if max(d1, d2, . . . , dn)/min(d1, d2, . . . , dn) is greater than
r ·max(d1

#, d2
#, . . . , dn

#)/min(d1
#, d2

#, . . . , dn
#).

��xEXERCISE 24.7
Good digitization can also require attention to the

(Figure 4e will be inserted
here; too bad you can’t see
it now.)

shapes of the digitized angles where straight lines meet.
The purpose of the present exercise is to illustrate the rel-
evant ideas by studying the ‘x’ symbol, for which a pro-
gram appears in Chapter 4. If that program is used with-
out change to produce low-resolution triangles, the results
might turn out to be unsatisfactory because, for example,
the point of the triangle at the right might digitize into a
snubnosed or asymmetric shape. If y3 is an integer, the
triangle will be top-bottom symmetric, but the right-hand
tip will be two pixels tall and this will look too blunt. Therefore we should choose y3 to
be an integer plus 1/2. Given this value of y3, what will be the shape of the rightmost
four columns of the digitized tip, as x3 varies?

��xEXERCISE 24.8
Continuing the previous exercise, assume that x1 is an integer. What value

of y1 will make the upper tip of the triangle look like ‘ RRRRRRR’ after digitization?

��xEXERCISE 24.9
Concluding the previous exercise, modify the program of Chapter 4 so that

the upper tip and the upper part of the right tip both digitize to the shape ‘ RRRRRRR’.
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�� So far in this chapter we’ve assumed that pixels are square. But sometimes we
need to prepare output for devices with general rectangular pixels, and this

adds an extra dimension of complexity to rounding. Plain hijklmnj sets things up
so that currenttransform multiplies all y coordinates by aspect ratio , when paths are
filled or drawn, or when pens are picked up. Furthermore the top and bot functions
divide the amount of offset by aspect ratio . This means that hijklmnj programs can
still be written as if pixels were square; the normal ‘angle’ and ‘direction’ functions,
etc., can be used. But the good places for rounding horizontal tangents are not at
integer values of y in general, they are actually at values that will become integers
after multiplication by the aspect ratio.

�� The vround function rounds its argument to the nearest y coordinate that
corresponds to a pixel boundary in the general case. Thus if aspect ratio = 1,

vround simply rounds to the nearest integer, just like ‘round’; but if, say, aspect ratio =
4/3, then vround will round to the nearest multiple of 3/4. Plain hijklmnj uses
vround instead of ‘round’ when it computes an overshoot correction, and also when
beginchar computes the values of h and d . The good.y function produces a good
y value that takes aspect ratio properly into account.

��xEXERCISE 24.10
Without looking at Appendix B, try to guess how the vround and good.y

macros are defined.

��xEXERCISE 24.11
What are the “ambiguous points” when pixels are not square?

�� The hijklmnj logo as we have described it so far will round properly with
respect to arbitrary aspect ratios if we make only a few more refinements. The

value of ygap should be vrounded instead of rounded, so we initialize it by saying

define whole vertical pixels(ygap).

Furthermore we should say

ho# := o#; define horizontal corrected pixels(ho);

and ho should replace o in the equations for x4 in the programs for ‘i’ and ‘l’.
Everything else should work satisfactorily as it stands.

�� Appendix B includes macros good.top , good.bot , good.lft , and good.rt that take
pairs as arguments. If you say, for example, ‘z3 = good.top(α, β)’ it means

that z3 will be near (α, β) and that when z3 is modified by currenttransform the top
point of currentpen placed at the transformed point will be in a good raster position.

� hijklmnj’s ‘autorounding ’ feature tries to adjust curves to the raster for
you, but it is a mixed blessing. Here’s how it works: If the internal quantity

autorounding is positive, the x coordinates of all paths that are filled or drawn are
rounded to good raster positions wherever there’s a vertical tangent; and the y coordi-
nates are rounded to good raster positions wherever there’s a horizontal tangent. The
rest of the curve is distorted appropriately, as if the raster were stretching or shrinking
slightly. If autorounding > 1, you get even more changes: paths are perturbed slightly
at ±45◦ tangent directions, so that second-order pimples and flat spots don’t appear
there.
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smoothing

� For example, if we return to the Ionian ‘�’ with which we began this chapter,
let’s suppose that curve sidebar was left unrounded. We saw that the result

was bad when autorounding was 0; when autorounding = 1 and 2 we get this:

(Figure 24f&g will be inserted here; too bad you can’t see it now.)

The stroke has gotten a lot thinner at the sides, by comparison with the original design
(which, incidentally, can be seen in the illustrations below). Although autorounding
has produced a fairly recognizable O shape, the character of the original has been lost,
especially in the case autorounding = 2; indeed, the inner outline has been brought
towards the center, in the upper left and lower right sectors, and this has made the
digitized inner boundary perfectly symmetric!

�� There’s an internal quantity called granularity , normally equal to 1, which
affects autorounding by effectively scaling up the raster size. If, for example,

granularity = 4, the autorounded x coordinates and y coordinates will become multi-
ples of 4 instead of simply integers. The illustrations above were produced by setting
granularity = 10 and mag = 10; this made the effects of autorounding visible. The
granularity should always be an integer.

�� Besides autorounding , there’s a ‘smoothing’ feature that becomes active when
smoothing > 0. The basic idea is to try to make the edges of a curve fol-

low a regular progression instead of wobbling. A complete discussion of the smooth-
ing algorithm is beyond the scope of this manual, but an example should make the
general idea clear: Let’s use the letters R and D to stand for single-pixel steps to
the right and down, respectively. If a digitized path goes ‘RDDRDRDDD ’, say, the
number of downward steps per rightward step is first decreasing, then increasing; the
smoothing process changes this to ‘RDDRDDRDD ’. If smoothing is applied to the
Ionian ‘�’ shapes above, nothing happens; but if we go back to the original obtained
with autorounding = 0, we get a few changes:

(Figure 24b&h will be inserted here; too bad you can’t see it now.)

Three pixels have been added by smoothing in the right-hand illustration; e.g., a pattern
RDRDDDDRDD has become RDDRDDDRDD .
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� If you do your own rounding, it turns out that autorounding and smoothing
usually change very few pixels, if any; thus your safest strategy is probably to

turn them off in such cases. If you define your strokes by outlines, autorounding and
smoothing apply independently to the left and right edges, so they may hurt as often as
they help; again, they should probably be turned off. But if you are drawing with fixed
pens, autorounding generally works well and saves a lot of fuss. If the pens are circles
or nearly circles, smoothing is also helpful; but if the pens are more “calligraphic,”
they are supposed to produce nonsmooth edges occasionally, so you had better set
smoothing := 0.

�� If you “slant” a font by modifying currenttransform as described in Chap-
ter 15, positions of horizontal tangency will remain the same. But positions

of vertical tangency will change drastically, and they will probably not fall in known
parts of your design. This means, for example, that autorounding will be helpful in
a slanted pen-generated font like the ‘89:;<=>: ’ logo. However, the author found
that the outline-generated letters of Computer Modern italic came out better with
autorounding = 0, because autorounding tended to make some characters too dark
and others too light.

�� The effect of autorounding can be studied numerically if you set tracingspecs
to a positive value; this displays hijklmnj’s internal calculations as it finds

horizontal, vertical, and diagonal tangent points. (hijklmnj prepares to digitize
paths by first subdividing each Bézier segment into pieces that travel in only one
“octant” direction.) For example, if autorounding = 0 and tracingspecs = 1, and if
curve sidebar is left unrounded, the file io.log will contain the following information
about the outer curve of the ‘�’:

Path at line 15, before subdivision into octants:
(1.53745,9.05345)..controls (1.53745,4.00511) and (5.75409,-0.00049)
..(10.85147,-0.00049)..controls (16.2217,-0.00049) and (20.46255,4.51297)
..(20.46255,9.94655)..controls (20.46255,14.99713) and (16.23842,19.00049)
..(11.13652,19.00049)..controls (5.77066,19.00049) and (1.53745,14.48491)
..cycle

Cycle spec at line 15, after subdivision:
(1.53745,9.05345) % beginning in octant ‘SSE’

..controls (1.53745,6.58786) and (2.54324,4.371)
..(4.16621,2.74803) % segment 0
% entering octant ‘ESE’

..controls (5.8663,1.04794) and (8.24362,-0.00049)
..(10.85147,-0.00049) % segment 0

% entering octant ‘ENE’

. . . and so on; there are lots more numbers! What does this all mean? Well, the
first segment of the curve, from (1.53745, 9.05345) to (10.85147,−0.00049), has been
subdivided into two parts at the place where the slope is −1. The first of these parts
travels basically ‘South by South East’ and the second travels ‘East by South East’. The
other three segments are subdivided in a similar way (not shown here). If you try the
same experiment but with autorounding = 1, some rather different numbers emerge:
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LE BÉ
CARTERCycle spec at line 15, after subdivision and autorounding:

(2,9.05348) % beginning in octant ‘SSE’
..controls (2,6.50526) and (3.02194,4.22272)

..(4.6577,2.58696) % segment 0
% entering octant ‘ESE’

..controls (6.2624,0.98225) and (8.45786,0)
..(10.85873,0) % segment 0
% entering octant ‘ENE’

Point (1.53745, 9.05345), where there was a vertical tangent, has been rounded to
(2, 9.05348); point (10.85147,−.00049), where there was a horizontal tangent, has been
rounded to (10.85873, 0); the intermediate control points have been adjusted accord-
ingly. (Rounding of x coordinates has been done separately from y coordinates.)
Finally, with autorounding = 2, additional adjustments are made so that the 45◦ tran-
sition point will occur at what hijklmnj thinks is a good spot:

Cycle spec at line 15, after subdivision and double autorounding:
(2,9.05348) % beginning in octant ‘SSE’

..controls (2,6.6761) and (3.07103,4.42897)
..(4.78537,2.71463) % segment 0

% entering octant ‘ESE’
..controls (6.46927,1.03073) and (8.62749,0)

..(10.85873,0) % segment 0
% entering octant ‘ENE’

(Notice that 4.78537 + 2.71463 = 7.50000; when the slope is −1 at a transition point
(x, y), the curve stays as far away as possible from ambiguous points near the transition
if x + y + .5 is an integer.)


— PIERRE LE BÉ, Béle Prérie (1601)







— MATTHEW CARTER, Bell Centennial (1978)
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We’ve seen that METAFONT can handle a wide variety of algebraic expressions;
now it’s time to consolidate what we have learned. The purpose of this chapter
and the one that follows is to present a precise and concise summary of everything
that METAFONT knows how to do.

We shall be concerned here solely with METAFONT’s primitive opera-
tions, rather than with the higher-level features of the plain METAFONT base
that comprise the bulk of typical programs. Therefore novice users should put
off reading Chapters 25 and 26 until they feel a need to know what goes on at
the more mundane levels inside the computer. Appendix B contains a summary
of the features of plain METAFONT, together with a ready-reference guide to the
things that most people want to know about METAFONT usage.

The remainder of this chapter is set in small type, like that of the present
paragraph, since it is analogous to material that is marked “doubly dangerous” in
other chapters. Instead of using dangerous bend signs repeatedly, let us simply agree
that Chapters 25 and 26 are dangerous by definition.

Chapter 8 introduced the general idea of expressions and the four-fold “pri-
mary, secondary, tertiary, expression” hierarchy on which their syntax is based. hijk-
lmnj’s variables can have any of eight types: boolean, numeric, pair, path, pen,
picture, string, and transform. Its expressions can actually have nine different
types, although the ninth one—“vacuous”—is not particularly interesting since it has
only one possible value. Here is the overall syntax:

〈primary〉 −→ 〈boolean primary〉 | 〈numeric primary〉
| 〈pair primary〉 | 〈path primary〉
| 〈pen primary〉 | 〈future pen primary〉
| 〈picture primary〉 | 〈string primary〉
| 〈transform primary〉 | 〈vacuous primary〉

〈secondary〉 −→ 〈boolean secondary〉 | 〈numeric secondary〉
| 〈pair secondary〉 | 〈path secondary〉
| 〈pen secondary〉 | 〈future pen secondary〉
| 〈picture secondary〉 | 〈string secondary〉
| 〈transform secondary〉 | 〈vacuous secondary〉

〈tertiary〉 −→ 〈boolean tertiary〉 | 〈numeric tertiary〉
| 〈pair tertiary〉 | 〈path tertiary〉
| 〈pen tertiary〉 | 〈picture tertiary〉
| 〈string tertiary〉 | 〈transform tertiary〉
| 〈vacuous tertiary〉

〈expression〉 −→ 〈boolean expression〉 | 〈numeric expression〉
| 〈pair expression〉 | 〈path expression〉
| 〈pen expression〉 | 〈picture expression〉
| 〈string expression〉 | 〈transform expression〉
| 〈vacuous expression〉

We shall discuss the different types of expressions in alphabetic order; thus, if you are
dying to know what a “vacuous” expression is, you should skip to the end of the chapter.
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Boolean expressions were discussed in Chapter 19. The full syntax has one
more operation, ‘charexists’, that was not mentioned there:

〈boolean primary〉 −→ 〈boolean variable〉 | 〈boolean argument〉
| true | false
| ( 〈boolean expression〉 )
| begingroup 〈statement list〉〈boolean expression〉 endgroup
| known 〈primary〉 | unknown 〈primary〉
| 〈type〉〈primary〉 | cycle 〈primary〉
| odd 〈numeric primary〉
| charexists 〈numeric primary〉
| not 〈boolean primary〉

〈boolean secondary〉 −→ 〈boolean primary〉
| 〈boolean secondary〉 and 〈boolean primary〉

〈boolean tertiary〉 −→ 〈boolean secondary〉
| 〈boolean tertiary〉 or 〈boolean secondary〉

〈boolean expression〉 −→ 〈boolean tertiary〉
| 〈numeric expression〉〈relation〉〈numeric tertiary〉
| 〈pair expression〉〈relation〉〈pair tertiary〉
| 〈transform expression〉〈relation〉〈transform tertiary〉
| 〈boolean expression〉〈relation〉〈boolean tertiary〉
| 〈string expression〉〈relation〉〈string tertiary〉

〈relation〉 −→ < | <= | > | >= | = | <>

The expression ‘charexists x’ is true if and only if a shipout command has previously
been done with charcode = x. (The value of x is first rounded to an integer, and
reduced to the range 0 ≤ x < 256 by adding or subtracting multiples of 256.)

In these rules, tokens like ‘true’ that appear in typewriter type stand for any
tokens whose current meaning is the same as the meaning of ‘true’ when hijklmnj
starts from scratch; the particular token ‘true’—whose meaning may indeed change as
a program runs—is not really involved.

The special tokens ‘(’ and ‘)’ in these rules do not refer to parentheses; they
refer to any matching pair of delimiters defined by a delimiters command.

A 〈boolean variable〉 denotes a 〈variable〉 whose type is boolean; a 〈numeric
variable〉 is a 〈variable〉 whose type is numeric; and so on. The syntax for 〈variable〉
was discussed in Chapter 7. A 〈boolean argument〉 is an expr argument to a macro,
where the value of the expression is of type boolean; expr arguments are put into
special “capsule” tokens as explained in Chapter 18.

Numeric expressions have the richest syntax of all, because they form the
nucleus of the entire hijklmnj language:

〈numeric atom〉 −→ 〈numeric variable〉 | 〈numeric argument〉
| 〈numeric token atom〉
| 〈internal quantity〉
| normaldeviate
| ( 〈numeric expression〉 )
| begingroup 〈statement list〉〈numeric expression〉 endgroup

〈numeric token atom〉 −→ 〈numeric token〉 / 〈numeric token〉
| 〈numeric token not followed by ‘/〈numeric token〉’〉
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numeric primary
[
,
]
length
length
length
length
ASCII
oct
hex
angle
turningnumber
totalweight
directiontime
of
pair part
xpart
ypart
transform part
xxpart
xypart
yxpart
yypart
numeric operator
sqrt
sind
cosd
mlog
mexp
floor
uniformdeviate
scalar multiplication operator
numeric secondary
times or over
*
/
numeric tertiary
plus or minus
+
-
Pythagorean plus or minus
++
+-+
numeric expression
tracingtitles
tracingequations
tracingcapsules
tracingchoices
tracingspecs
tracingpens
tracingcommands
tracingrestores
tracingmacros
tracingedges
tracingoutput
tracingonline
tracingstats
pausing
showstopping
fontmaking
proofing

〈numeric primary〉 −→ 〈numeric atom〉
| 〈numeric atom〉 [ 〈numeric expression〉 , 〈numeric expression〉 ]
| length 〈numeric primary〉 | length 〈pair primary〉
| length 〈path primary〉 | length 〈string primary〉
| ASCII 〈string primary〉 | oct 〈string primary〉 | hex 〈string primary〉
| 〈pair part〉〈pair primary〉 | 〈transform part〉〈transform primary〉
| angle 〈pair primary〉
| turningnumber 〈path primary〉 | totalweight 〈picture primary〉
| 〈numeric operator〉〈numeric primary〉
| directiontime 〈pair expression〉 of 〈path primary〉

〈pair part〉 −→ xpart | ypart
〈transform part〉 −→ 〈pair part〉 | xxpart | xypart | yxpart | yypart
〈numeric operator〉 −→ sqrt | sind | cosd | mlog | mexp

| floor | uniformdeviate | 〈scalar multiplication operator〉
〈scalar multiplication operator〉 −→ 〈plus or minus〉

| 〈numeric token atom not followed by + or - or a numeric token〉
〈numeric secondary〉 −→ 〈numeric primary〉

| 〈numeric secondary〉〈times or over〉〈numeric primary〉
〈times or over〉 −→ * | /
〈numeric tertiary〉 −→ 〈numeric secondary〉

| 〈numeric tertiary〉〈plus or minus〉〈numeric secondary〉
| 〈numeric tertiary〉〈Pythagorean plus or minus〉〈numeric secondary〉

〈plus or minus〉 −→ + | -
〈Pythagorean plus or minus〉 −→ ++ | +-+
〈numeric expression〉 −→ 〈numeric tertiary〉

Each of the operations mentioned in this syntax has already been explained somewhere
in this book; Appendix I tells where.

This is a good time to list all of the internal quantities that are initially present
in hijklmnj:

tracingtitles show titles online when they appear
tracingequations show each variable when it becomes known
tracingcapsules show capsules as well as variables
tracingchoices show the control points chosen for paths
tracingspecs show subdivision of paths into octants before digitizing
tracingpens show vertices of pens as they are made from future pens
tracingcommands show commands and operations before they’re performed
tracingrestores show when a symbol or internal quantity is restored
tracingmacros show macros before they are expanded
tracingedges show digitized edges as they are computed
tracingoutput show digitized edges as they are output
tracingonline show long diagnostics on the terminal and in the log
tracingstats log the memory usage at end of job
pausing show lines on the terminal before they are read
showstopping stop after each show command
fontmaking produce font metric output
proofing produce proof mode output
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turningcheck
warningcheck
smoothing
autorounding
granularity
fillin
year
month
day
time
charcode
charext
charwd
charht
chardp
charic
chardx
chardy
designsize
hppp
vppp
xoffset
yoffset
boundarychar
pair primary
(
,
)
(
)
begingroup
endgroup
[
,
]
point
of
precontrol
of
postcontrol
of
penoffset
of
penoffset
of
pair secondary
*

turningcheck reorient clockwise paths, flag strange ones
warningcheck advise when a variable value gets large
smoothing remove certain glitches from digitized curves
autorounding move paths to “good” tangent points
granularity the pixel size for autorounding
fillin the extra darkness of diagonals (to be counteracted)
year the current year (e.g., 1986)
month the current month (e.g, 3 ≡ March)
day the current day of the month
time the number of minutes past midnight when job started
charcode the number of the next character to be output
charext the extension code of the next character to be output
charwd the width of the next character to be output, in points
charht the height of the next character to be output, in points
chardp the depth of the next character to be output, in points
charic the italic correction of the next character, in points
chardx the device’s x movement for the next character, in pixels
chardy the device’s y movement for the next character, in pixels
designsize the approximate size of the current typeface, in points
hppp the number of horizontal pixels per point
vppp the number of vertical pixels per point
xoffset the horizontal displacement of shipped-out characters
yoffset the vertical displacement of shipped-out characters
boundarychar the right boundary character for ligatures and kerns

All of these quantities are numeric. They are initially zero at the start of a job,
except for year , month , day , and time , which are initialized to the time the run
began; furthermore, boundarychar is initially −1. A granularity of zero is equivalent
to granularity = 1. A preloaded base file like plain hijklmnj will usually give nonzero
values to several other internal quantities on this list.

Now we come to expressions of type pair, which are the second most important
elements of hijklmnj programs:

〈pair primary〉 −→ 〈pair variable〉 | 〈pair argument〉
| ( 〈numeric expression〉 , 〈numeric expression〉 )
| ( 〈pair expression〉 )
| begingroup 〈statement list〉〈pair expression〉 endgroup
| 〈numeric atom〉 [ 〈pair expression〉 , 〈pair expression〉 ]
| 〈scalar multiplication operator〉〈pair primary〉
| point 〈numeric expression〉 of 〈path primary〉
| precontrol 〈numeric expression〉 of 〈path primary〉
| postcontrol 〈numeric expression〉 of 〈path primary〉
| penoffset 〈pair expression〉 of 〈pen primary〉
| penoffset 〈pair expression〉 of 〈future pen primary〉

〈pair secondary〉 −→ 〈pair primary〉
| 〈pair secondary〉〈times or over〉〈numeric primary〉
| 〈numeric secondary〉 * 〈pair primary〉
| 〈pair secondary〉〈transformer〉
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transformer
rotated
scaled
shifted
slanted
transformed
xscaled
yscaled
zscaled
pair tertiary
intersectiontimes
pair expression
path primary
(
)
begingroup
endgroup
makepath
makepath
reverse
subpath
of
path secondary
path tertiary
path subexpression
path join
direction specifier
–
curl
˝
–
˝
–
,
˝
basic path join
&
..
..
..
..
..
tension
tension
tension
and
tension amount
atleast
controls
controls
controls
and
path expression
cycle

〈transformer〉 −→ rotated 〈numeric primary〉
| scaled 〈numeric primary〉
| shifted 〈pair primary〉
| slanted 〈numeric primary〉
| transformed 〈transform primary〉
| xscaled 〈numeric primary〉
| yscaled 〈numeric primary〉
| zscaled 〈pair primary〉

〈pair tertiary〉 −→ 〈pair secondary〉
| 〈pair tertiary〉〈plus or minus〉〈pair secondary〉
| 〈path tertiary〉 intersectiontimes 〈path secondary〉

〈pair expression〉 −→ 〈pair tertiary〉

A pair is a special case of a path (namely, it’s a path of length zero); Chapter 19
explains that hijklmnj doesn’t change the type from pair to path unless there is no
other way to meet the syntax rules.

Speaking of paths, they come next in our survey:

〈path primary〉 −→ 〈path variable〉 | 〈path argument〉
| ( 〈path expression〉 )
| begingroup 〈statement list〉〈path expression〉 endgroup
| makepath 〈pen primary〉
| makepath 〈future pen primary〉
| reverse 〈path primary〉
| subpath 〈pair expression〉 of 〈path primary〉

〈path secondary〉 −→ 〈path primary〉 | 〈path secondary〉〈transformer〉
〈path tertiary〉 −→ 〈path secondary〉 | 〈pair tertiary〉
〈path subexpression〉 −→ 〈path tertiary〉

| 〈path expression〉〈path join〉〈path tertiary〉
〈path join〉 −→ 〈direction specifier〉〈basic path join〉〈direction specifier〉
〈direction specifier〉 −→ 〈empty〉

| { curl 〈numeric expression〉 }
| { 〈pair expression〉 }
| { 〈numeric expression〉 , 〈numeric expression〉 }

〈basic path join〉 −→ &
| ..
| .. 〈tension〉 ..
| .. 〈controls〉 ..

〈tension〉 −→ tension 〈tension amount〉
| tension 〈tension amount〉 and 〈tension amount〉

〈tension amount〉 −→ 〈numeric primary〉
| atleast 〈numeric primary〉

〈controls〉 −→ controls 〈pair primary〉
| controls 〈pair primary〉 and 〈pair primary〉

〈path expression〉 −→ 〈path subexpression〉
| 〈path subexpression〉〈direction specifier〉
| 〈path subexpression〉〈path join〉 cycle

Chapter 14 tells all about path creation.
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pen primary
nullpen
(
)
begingroup
endgroup
future pen primary
pencircle
makepen
pen secondary
future pen secondary
pen tertiary
pen expression
picture primary
nullpicture
(
)
begingroup
endgroup
picture secondary
picture tertiary
picture expression
string primary
jobname
readstring
(
)
begingroup
endgroup
str
char
decimal
substring
of
string secondary
string tertiary
string expression
&

Pens and future pens coexist as follows:

〈pen primary〉 −→ 〈pen variable〉 | 〈pen argument〉
| nullpen
| ( 〈pen expression〉 )
| begingroup 〈statement list〉〈pen expression〉 endgroup

〈future pen primary〉 −→ pencircle
| makepen 〈path primary〉

〈pen secondary〉 −→ 〈pen primary〉
〈future pen secondary〉 −→ 〈future pen primary〉

| 〈future pen secondary〉〈transformer〉
| 〈pen secondary〉〈transformer〉

〈pen tertiary〉 −→ 〈pen secondary〉
| 〈future pen secondary〉

〈pen expression〉 −→ 〈pen tertiary〉

See Chapter 16 for a thorough discussion of pen usage.

Pictures can be null, added, or subtracted:

〈picture primary〉 −→ 〈picture variable〉 | 〈picture argument〉
| nullpicture
| ( 〈picture expression〉 )
| begingroup 〈statement list〉〈picture expression〉 endgroup
| 〈plus or minus〉〈picture primary〉

〈picture secondary〉 −→ 〈picture primary〉
| 〈picture secondary〉〈transformer〉

〈picture tertiary〉 −→ 〈picture secondary〉
| 〈picture tertiary〉〈plus or minus〉〈picture secondary〉

〈picture expression〉 −→ 〈picture tertiary〉

Chapter 13 is the definitive reference for picture operations.

Strings are still fresh in our minds from Chapter 22, but we should repeat the
syntax again for completeness here.

〈string primary〉 −→ 〈string variable〉 | 〈string argument〉
| 〈string token〉
| jobname
| readstring
| ( 〈string expression〉 )
| begingroup 〈statement list〉〈string expression〉 endgroup
| str 〈suffix〉
| char 〈numeric primary〉
| decimal 〈numeric primary〉
| substring 〈pair primary〉 of 〈string primary〉

〈string secondary〉 −→ 〈string primary〉
〈string tertiary〉 −→ 〈string secondary〉
〈string expression〉 −→ 〈string tertiary〉

| 〈string expression〉 & 〈string tertiary〉

There’s nothing more to say about strings.
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transform primary
(
)
begingroup
endgroup
transform secondary
transform tertiary
transform expression
identity
vacuous primary
(
)
begingroup
endgroup
vacuous secondary
vacuous tertiary
vacuous expression
sparks
MORE
GALSWORTHY

Chapter 15 explains transforms, but gives no formal syntax. The rules are:

〈transform primary〉 −→ 〈transform variable〉 | 〈transform argument〉
| ( 〈transform expression〉 )
| begingroup 〈statement list〉〈transform expression〉 endgroup

〈transform secondary〉 −→ 〈transform primary〉
| 〈transform secondary〉〈transformer〉

〈transform tertiary〉 −→ 〈transform secondary〉
〈transform expression〉 −→ 〈transform tertiary〉

Note that identity doesn’t appear here; it is a variable defined in Appendix B, not a
primitive of the language.

Finally, we come to the new kind of expression, which wasn’t mentioned in
previous chapters because it is so trivial.

〈vacuous primary〉 −→ 〈vacuous argument〉
| 〈compound〉
| ( 〈vacuous expression〉 )
| begingroup 〈statement list〉〈vacuous expression〉 endgroup

〈vacuous secondary〉 −→ 〈vacuous primary〉
〈vacuous tertiary〉 −→ 〈vacuous secondary〉
〈vacuous expression〉 −→ 〈vacuous tertiary〉

A 〈compound〉 is defined in Chapter 26.

��xEXERCISE 25.1
Construct minimal examples of each of the nine types of expression (boolean,

numeric, . . . , vacuous). You should use only “sparks” in your constructions, not 〈tag〉
tokens or capsules; in particular, variables are not permitted (otherwise this exercise
would be too easy). Your expressions should be as short as possible in the sense of
fewest tokens; the number of keystrokes needed to type them is irrelevant.

This is of you very well remembred,
and well and sommaryly rehersed.

— THOMAS MORE, A Dialogue Concernynge Heresyes (1529)

Below the tomato blobs was a band of white with vertical black stripes,
to which he could assign no meaning whatever,

till some one else came by, murmuring:
“What expression he gets with his foreground!”

. . . Ah, they were all Expressionists now, he had heard, on the Continent.
So it was coming here too, was it?

— JOHN GALSWORTHY, To Let (1921)
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truth
anatomy of METAFONT
program
end
dump
statement list
;
statement
title
compound
begingroup
endgroup
command

The grand tour of METAFONT’s syntax that was begun in the previous chapter
is concluded in this one, so that a complete reference guide is available for people
who need to know the details. (Another summary appears in Appendix B.)

hijklmnj actually has a few features that didn’t seem to be worth men-
tioning in earlier chapters, so they will be introduced here as part of our exhaustive
survey. If there is any disagreement between something that was said previously and
something that will be said below, the facts in the present chapter should be regarded
as better approximations to the truth.

We shall study hijklmnj’s digestive processes, i.e., what hijklmnj does
in response to the tokens that arrive in its “stomach.” Chapter 6 describes the process
by which input files are converted to lists of tokens in hijklmnj’s “mouth,” and
Chapters 18–20 explain how expandable tokens are converted to unexpandable ones in
hijklmnj’s “gullet” by a process similar to regurgitation. In particular, conditions
and loops are handled by the expansion mechanism, and we need not discuss them
further. When unexpandable tokens finally reach hijklmnj’s gastro-intestinal tract,
the real activities begin; expressions are evaluated, equations are solved, variables are
declared, and commands are executed. In this chapter we shall discuss the primitive
operations that actually draw pictures and produce output.

Let’s start by looking at the full syntax for 〈program〉 and for 〈statement〉:

〈program〉 −→ 〈statement list〉 end | 〈statement list〉 dump
〈statement list〉 −→ 〈empty〉 | 〈statement〉 ; 〈statement list〉
〈statement〉 −→ 〈empty〉 | 〈title〉

| 〈equation〉 | 〈assignment〉
| 〈declaration〉 | 〈definition〉
| 〈compound〉 | 〈command〉

〈title〉 −→ 〈string expression〉
〈compound〉 −→ begingroup 〈statement list〉〈non-title statement〉 endgroup
〈command〉 −→ 〈save command〉

| 〈interim command〉
| 〈newinternal command〉
| 〈randomseed command〉
| 〈let command〉
| 〈delimiters command〉
| 〈protection command〉
| 〈everyjob command〉
| 〈show command〉
| 〈message command〉
| 〈mode command〉
| 〈picture command〉
| 〈display command〉
| 〈openwindow command〉
| 〈shipout command〉
| 〈special command〉
| 〈font metric command〉

The 〈empty〉 statement does nothing, but it is very handy because you can always feel
safe when you put extra semicolons between statements. A 〈title〉 does almost noth-
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commands
save command
save
symbolic token list
,
interim command
interim
:=
newinternal command
newinternal
tags
external tags
randomseed command
randomseed
:=
day
time
let command
let
is
=
:=
delimiters command
delimiters
protection command
outer
inner
forbidden

ing, but it provides useful documentation as explained in Chapter 22. The syntax of
〈equation〉 and 〈assignment〉 can be found in Chapter 10; 〈declaration〉 is in Chapter 7;
〈definition〉 is in Chapters 18 and 20. We shall concentrate in this chapter on the
various types of commands, especially on those that haven’t been mentioned before.

〈save command〉 −→ save 〈symbolic token list〉
〈symbolic token list〉 −→ 〈symbolic token〉

| 〈symbolic token list〉 , 〈symbolic token〉
〈interim command〉 −→ interim 〈internal quantity〉 := 〈right-hand side〉

The save and interim commands cause values to be restored at the end of the current
group, as discussed in Chapter 17.

〈newinternal command〉 −→ newinternal 〈symbolic token list〉

Each of the symbolic tokens specified in a newinternal command will henceforth
behave exactly as an 〈internal quantity〉, initially zero. Thus, they can be used in
interim commands; they are tags but not external tags (see Chapter 7). Since hijk-
lmnj can access internal quantities quickly, you can use them to gain efficiency.

〈randomseed command〉 −→ randomseed := 〈numeric expression〉

The randomseed command specifies a “seed” value that defines the pseudo-random
numbers to be delivered by ‘uniformdeviate’ and ‘normaldeviate’ (cf. Chapter 21). The
default value, if you don’t specify your own seed, is day + time ∗ epsilon .

〈let command〉 −→ let 〈symbolic token〉〈is〉〈symbolic token〉
〈is〉 −→ = | :=

The let command changes the current meaning of the left-hand token to the current
meaning of the right-hand token. For example, after ‘let diamonds = forever’, the
token diamonds will introduce loops. If the left-hand token was the first token of
any variable names, those variables all disappear. If the right-hand token was the first
token in any variable names, those variables remain unchanged, and the left-hand token
becomes an unknown, independent variable. (The purpose of let is to redefine primitive
meanings or macro meanings, not to equate variables in any way.) If the right-hand
symbol is one of a pair of matching delimiters, the subsequent behavior of the left-hand
symbol is undefined. For example, it’s a bad idea to say ‘let [ [= (; let ] ] =)’.

〈delimiters command〉 −→ delimiters 〈symbolic token〉〈symbolic token〉

The delimiters command gives new meanings to the two symbolic tokens; henceforth
they will match each other (and only each other). For example, Appendix B says
‘delimiters ()’; without this command, parentheses would be ordinary symbolic tokens.
Any distinct symbolic tokens can be defined to act as delimiters, and many different
pairs of delimiters can be in use simultaneously.

〈protection command〉 −→ outer 〈symbolic token list〉
| inner 〈symbolic token list〉

A “forbidden” stamp is added to or removed from symbolic tokens by an outer or inner
command, without changing the essential meanings of those tokens. A token that has
been called outer should not appear when hijklmnj is skipping over tokens at high
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condition
replacement text
loop text
text argument
flushing
everyjob command
everyjob
show command
show
showvariable
showtoken
showdependencies
showstats
tracingonline
tracingcapsules
OK.
interactive
message command
message op
message
errmessage
errhelp
mode command
batchmode
nonstopmode
scrollmode
errorstopmode
interrupting

speed; the program will stop and insert an appropriate delimiter, if an outer token
is sensed in the wrong place, since such tokens are supposed to occur only at “quiet”
times. (Unquiet times occur when hijklmnj is skipping tokens because of a false
condition, or because it is reading the replacement text of a macro or the loop text of
a loop, or because it is scanning the text argument to a macro, or because it is flushing
erroneous tokens that were found at the end of a statement.) Without such protection,
a missing right delimiter could cause hijklmnj to eat up your whole program before
any error was detected; outer tokens keep such errors localized. An inner command
undoes the effect of outer; so does ‘let’, and so does any other command or definition
that changes the meaning of a symbolic token. All tokens are initially inner.

〈everyjob command〉 −→ everyjob 〈symbolic token〉

The command ‘everyjobS’ tells hijklmnj that token S should be inserted first,
just before the input file is read, when a job starts. (This is meaningful only in a base
file that will be loaded or preloaded at the beginning of a run; it is analogous to TEX’s
\everyjob command.)

〈show command〉 −→ show 〈expression list〉
| showvariable 〈symbolic token list〉
| showtoken 〈symbolic token list〉
| showdependencies
| showstats

A simple show command displays the value of each expression, in turn. Paths, pens,
and pictures are shown only in the transcript file, unless tracingonline is positive.
The showvariable command gives the structure of all variables that begin with a
given external tag, together with their values in an abbreviated form; this allows you
to see which of its subscripts and attributes have occurred. For example, if you’re
using plain hijklmnj conventions, ‘showvariable x, y’ will show all coordinates
that have been defined since the last beginchar. The showtoken command gives
the current meaning of a token, so that you can tell whether it is primitive or not,
outer or not. (If showvariable is applied to a spark instead of a tag, it gives the
same information as showtoken.) Every unknown numeric variable that’s currently
dependent is shown by showdependencies (except that unknown capsules are shown
only when tracingcapsules is positive). And finally, showstats gives information about
hijklmnj’s current memory usage. Each of these commands will stop and say ‘! OK.’,
if the internal quantity showstopping has a positive value; this gives you a chance to
enter more show commands interactively, while you’re trying to debug a program.

〈message command〉 −→ 〈message op〉〈string expression〉
〈message op〉 −→ message | errmessage | errhelp

Communication with the user is possible via message, errmessage, and errhelp, as
discussed in Chapter 22.

〈mode command〉 −→ batchmode | nonstopmode
| scrollmode | errorstopmode

The four “mode commands” control the amount of interaction during error recovery,
just as in TEX. A job starts in errorstopmode, and you can also resurrect this mode
by interrupting hijklmnj; scrollmode, nonstopmode, and batchmode are the



220 Chapter 26: Summary of the Language

picture command
addto command
addto
also
addto
contour
addto
doublepath
with list
with clause
withpen
withweight
cull command
cull
withweight
keep or drop
keeping
dropping
display command
display
inwindow
window
openwindow command
openwindow
window spec
at
screen place
from
to
screen coordinates
shipout command
shipout
generic font
proofing
xoffset
yoffset
charcode
charext
charwd
charht
chardp
charic
chardx
font metric information
special command
special
numspecial

modes you get into by hitting ‘S’, ‘R’, or ‘Q’, respectively, in response to error messages
(cf. Chapter 5).

〈picture command〉 −→ 〈addto command〉 | 〈cull command〉
〈addto command〉 −→ addto 〈picture variable〉 also 〈picture expression〉

| addto 〈picture variable〉 contour 〈path expression〉〈with list〉
| addto 〈picture variable〉 doublepath 〈path expression〉〈with list〉

〈with list〉 −→ 〈empty〉 | 〈with list〉〈with clause〉
〈with clause〉 −→ withpen 〈pen expression〉 | withweight 〈numeric expression〉
〈cull command〉 −→ cull 〈picture variable〉〈keep or drop〉〈pair expression〉

| 〈cull command〉 withweight 〈numeric expression〉
〈keep or drop〉 −→ keeping | dropping

The addto and cull commands are the principal means of making changes to pictures;
they are discussed fully in Chapter 13.

〈display command〉 −→ display 〈picture variable〉 inwindow 〈window〉
〈window〉 −→ 〈numeric expression〉
〈openwindow command〉 −→ openwindow 〈window〉〈window spec〉
〈window spec〉 −→ 〈screen place〉 at 〈pair expression〉
〈screen place〉 −→ from 〈screen coordinates〉 to 〈screen coordinates〉
〈screen coordinates〉 −→ 〈pair expression〉

Chapter 23 explains how to display stuff on your screen via display and openwindow.

〈shipout command〉 −→ shipout 〈picture expression〉

You may have wondered how hijklmnj actually gets pictorial information into a
font. Here at last is the answer: ‘shipout v’ puts the pixels of positive weight, as
defined by the picture expression v, into a generic font output file, where they will be
the bitmap image associated with character number charcode mod 256+ charext ∗ 256.
The pixels of v are shifted by (xoffset , yoffset ) as they are shipped out. (However, no
output is done if proofing < 0. The values of xoffset , yoffset , charcode , and charext are
first rounded to integers, if necessary.) This command also saves the values of charwd ,
charht , chardp , charic , chardx , and chardy ; they will be associated with the current
charcode when font metric information is produced. (See Appendices F and G for the
basic principles of font metric information and generic font files.)

〈special command〉 −→ special 〈string expression〉
| numspecial 〈numeric expression〉

The special and numspecial commands send alphabetic and numeric information
to the generic font output file, if proofing is nonnegative. For example, the labels on
proofsheets are specified in this way by macros of plain hijklmnj. Appendices G
and H provide further details.

We have now discussed every kind of command but one; and the remaining one
is even more special than the 〈special command〉, so we had better defer its discussion to
an appendix. Appendix F will complete the syntax by defining 〈font metric command〉.
For now, we merely need to know that font metric commands specify fussy font facts;
examples are the kerning and ‘font normal space’ statements in the hijklmnj logo
program of Chapter 11.
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dump
end
INIMF
outer
delimiters
showtoken
THOREAU
truth
ZAPF

And there’s one more loose end to tie up, going back to the very first syntax
rule in this chapter: The token ‘dump’ can be substituted for ‘end’, if a special version
of hijklmnj called ‘INIMF’ is being used. This writes a file containing the macros
defined so far, together with the current values of variables and the current meanings
of symbolic tokens, so that they can be loaded as a base file. (It is analogous to TEX’s
\dump command.) Base files are discussed at the end of Appendix B.

��xEXERCISE 26.1
Run hijklmnj with the input

\newinternal a;
let b=a; outer a,b,c;
let c=b; delimiters a::;
showtoken a,b,c; end

and explain the computer’s responses.

Our life is frittered away by detail.
An honest man has hardly need

to count more than his ten fingers,
or in extreme cases he may add his ten toes,

and lump the rest. Simplicity, simplicity, simplicity!
I say, let your affairs be as two or three,

and not a hundred or a thousand . . .
Simplify, simplify.

— HENRY DAVID THOREAU, Walden (1854)

The awesome memory of thy ever attentive computer
accepts all words as truth.

Think, therefore, in analytical, modular steps,
for the truth or untruth spoken through thy fingertips

will be acted upon unerringly.

— HERMANN ZAPF, The Ten Commandments of Photo-Typesetting (1982)
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error messages
badio.mf
!
to be read again
isolated expression
semicolon
statement

OK, everything you need to know about METAFONT has been explained—unless
you happen to be fallible. If you don’t plan to make any errors, don’t bother to
read this chapter. Otherwise you might find it helpful to make use of some of
the ways that METAFONT tries to pinpoint bugs in your programs.

In the trial runs you did when reading Chapter 5, you learned the general
form of error messages, and you also learned the various ways in which you can
respond to METAFONT’s complaints. With practice, you will be able to correct
most errors “online,” as soon as METAFONT has detected them, by inserting
and deleting a few things. On the other hand, some errors are more devastating
than others; one error might cause some other perfectly valid construction to be
loused up. Furthermore, METAFONT doesn’t always diagnose your errors cor-
rectly, since the number of ways to misunderstand the rules is vast; METAFONT
is a rather simple-minded computer program that doesn’t readily comprehend
the human point of view. In fact, there will be times when you and METAFONT
disagree about something that you feel makes perfectly good sense. This chapter
tries to help avoid a breakdown in communication by explaining how to learn
METAFONT’s reasons for its actions.

Ideally you’ll be in a mellow mood when you approach METAFONT, and
you will regard any error messages as amusing puzzles—“Why did the machine
do that?”—rather than as personal insults. METAFONT knows how to issue more
than a hundred different sorts of error messages, and you probably never will
encounter all of them, because some types of mistakes are very hard to make.

Let’s go back to the ‘badio.mf’ example file of Chapter 5, since it has
more to teach us. If you have a better memory than the author, you’ll recall
that the first error message was

>> mode.setup
! Isolated expression.
<to be read again>

;
l.1 mode setup;

% an intentional error!
?

In Chapter 5 we just charged ahead at this point, but it would be more normal
for a mature METAFONTer to think “Shucks, I meant to type ‘mode_setup’, but
I forgot the underscore. Luckily this didn’t cause any harm; METAFONT just
found an isolated expression, ‘mode.setup ’, which it will ignore. So let me now
insert the correct command, ‘mode setup’.”

Good thinking; so you type ‘I mode_setup’, right? Wrong . . . sorry. Lots
of error messages occur before METAFONT has read a semicolon in preparation
for another statement; the important clue in this case comes from the two lines

<to be read again>
;
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Extra tokens will be flushed
flushing
semicolon
Undefined coordinate
misspelling
typographic errors
???
OK
dependent variable
independent variable

which tell us that the semicolon is still pending. So the correct response would
have been to type ‘I; mode_setup’ instead. Without the semicolon, you get
what appears at first to be a horrible mess:

! Extra tokens will be flushed.
<to be read again>

warningcheck
mode_setup->warningcheck

:=0;if.unknown.mode:mode=proof;fi...
<insert> mode_setup

<to be read again>
;

l.1 mode setup;
% an intentional error!

?

But relax, there’s a simple way out. The help message says ‘Please insert a
semicolon now in front of anything that you don’t want me to delete’; all you
have to do is type ‘I;’ and the net effect will be the same as if you had correctly
inserted a semicolon before mode_setup in the first place.

The moral of this story is: When you insert a new statement during
error recovery, you frequently need to put a semicolon just ahead of it. But if
you forget, METAFONT gives you another chance.

After proceeding through badio with the interactions suggested in Chap-
ter 5, we will come again to the error

>> 0.08682thinn+144
! Undefined x coordinate has been replaced by 0.

(This is where the erroneous ‘thinn’ was detected.) The help message for this
error has some curious advice:

(Chapter 27 of The METAFONTbook explains that
you might want to type ‘I ???’ now.)

Chapter 27? That’s us! What happens if we do type ‘I ???’ now? We get

x4l=0.08682thinn+144
y4=-0.4924thinn+259.0005
x4r=-0.08682thinn+144
y4r=-0.9848thinn+259.0005
! OK.

It is now abundantly clear that ‘thin’ was misspelled. Plain METAFONT defines
‘???’ to be a macro that shows all of the current dependencies between numeric
variables and stops with ‘OK’; this is useful because a badly typed variable name
might have become a dependent variable instead of an independent variable, in
which case it would be revealed by ‘???’ but not by the error message.
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One more example of online error correction should suffice to make the
general strategy clear. Suppose you accidentally type square brackets instead of
parentheses; the computer will scream:

! A primary expression can’t begin with ‘[’.
<inserted text>

0
<to be read again>

[
<*> show round[

1 + sqrt43];
?

(By coincidence, the help message for this particular error also refers to Chap-
ter 27.) When METAFONT needs to see an expression, because of the tokens it
has already digested, it will try to insert ‘0’ in order to keep going. In this case
we can see that zero isn’t what we intended; so we type ‘7’ to delete the next
seven tokens, and the computer comes back with

<*> show round[1 + sqrt43]
;

?

Now ‘I (1 + sqrt43)’ will insert the correct formula, and the program will be
able to continue happily as if there were no mistake.

xEXERCISE 27.1
Why was ‘7’ the right number of tokens to delete?

� xEXERCISE 27.2
If the user hadn’t deleted or inserted anything, but had just plunged ahead,

hijklmnj would have come up with another error:

>> 0
! Extra tokens will be flushed.
<to be read again>

[
<to be read again>

(7.55743)
<to be read again>

]
<*> show round[1 + sqrt43]

;
?

Explain what happened. What should be done next?

It’s wise to remember that the first error in your program may well
spawn spurious “errors” later on, because anomalous commands can inflict se-
rious injury on METAFONT’s ability to cope with the subsequent material. But
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batchmode
nonstopmode
emergency stop
end
Fatal base file error
loop
infinite loop
I can’t go on
This can’t happen
METAFONT capacity exceeded

most of the time you will find that a single run through the machine will locate
all of the places in which your input conflicts with METAFONT’s rules.

� Sometimes an error is so bad that hijklmnj is forced to quit prematurely.
For example, if you are running in batchmode or nonstopmode, hijk-

lmnj makes an “emergency stop” if it needs input from the terminal; this happens
when a necessary file can’t be opened, or when no end was found in the input. Here
are some of the messages you might get just before hijklmnj gives up the ghost:

Fatal base file error; I’m stymied.

This means that the preloaded base you have specified cannot be used, because it was
prepared for a different version of hijklmnj.

That makes 100 errors; please try again.

hijklmnj has scrolled past 100 errors since the last statement ended, so it’s probably
in an endless loop.

I can’t go on meeting you like this.

A previous error has gotten hijklmnj out of whack. Fix it and try again.

This can’t happen.

Something is wrong with the hijklmnj you are using. Complain fiercely.

� There’s also a dreadful message that hijklmnj issues only with great reluc-
tance. But it can happen:

METAFONT capacity exceeded, sorry.

This, alas, means that you have tried to stretch hijklmnj too far. The message
will tell you what part of hijklmnj’s memory has become overloaded; one of the
following eighteen things will be mentioned:

number of strings (strings and names of symbolic tokens and files)
pool size (the characters in such strings)
main memory size (pairs, paths, pens, pictures, token lists, transforms, etc.)
hash size (symbolic token names)
input stack size (simultaneous input sources)
number of internals (internal quantities)
rounding table size (transitions between octants in cycles)
parameter stack size (macro parameters)
buffer size (characters in lines being read from files)
text input levels (input files and error insertions)
path size (key points per path)
move table size (rows of picture being simultaneously accessed)
pen polygon size (pen offsets per octant)
ligtable size (accumulated ligtable instructions)
kern (distinct kern amounts)
extensible (built-up characters)
headerbyte (largest headerbyte address)
fontdimen (largest fontdimen address)

The current amount of memory available will also be shown.
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tracingstats
stack positions
memory usage
recursion
interrupt
infinite loops
errorstopmode
show
hide

� If you have a job that doesn’t overflow hijklmnj’s capacity, yet you want
to see just how closely you have approached the limits, just set tracingstats

to a positive value before the end of your job. The log file will then conclude with a
report on your actual usage of the first nine things named above (i.e., the number of
strings, . . . , the buffer size), in that order. Furthermore, the showstats command can
be used to discover the current string memory and main memory usage at any time
during a run. The main memory statistics are broken into two parts; ‘490&5950’ means,
for example, that 490 words are being used for “large” things like pens, capsules, and
transforms, while 5950 words are being used for “small” things like tokens and edges.

� What can be done if hijklmnj’s capacity is exceeded? All of the above-listed
components of the capacity can be increased, except the memory for kerns and

extensible characters, provided that your computer is large enough; in fact, the space
necessary to increase one component can usually be obtained by decreasing some other
component, without increasing the total size of hijklmnj. If you have an especially
important application, you may be able to convince your local system people to provide
you with a special hijklmnj whose capacities have been hand-tailored to your needs.
But before taking such a drastic step, be sure that you are using hijklmnj properly.
If you have specified a gigantic picture that has lots of transitions between black and
white pixels, you should change your approach, because hijklmnj has to remember
every change between adjacent pixel values in every currently accessible picture. If you
keep saving different pens, you might be wasting memory as discussed in Chapter 16. If
you have built up an enormous macro library, you should realize that hijklmnj has
to remember all of the replacement texts that you define; therefore if memory space is
in short supply, you should load only the macros that you need.

� Some erroneous hijklmnj programs will overflow any finite memory capac-
ity. For example, after ‘def recurse=(recurse)enddef’, the use of recurse

will immediately bomb out:

! METAFONT capacity exceeded, sorry [input stack size=30].
recurse->(recurse

)
recurse->(recurse

)
recurse->(recurse

)
...

The same sort of error will obviously occur no matter how much you increase hijk-
lmnj’s input stack size.

� Most implementations of hijklmnj allow you to interrupt the program in
some way. This makes it possible to diagnose the causes of infinite loops,

if the machine doesn’t stop because of memory limitations. hijklmnj switches to
errorstopmode when interrupted; hence you have a chance to insert commands into
the input: You can abort the run, or you can show or change the current contents
of variables, etc. In such cases you will probably want to “hide” your diagnostic com-
mands, for example by typing

I hide(showstopping:=1; alpha:=2; show x)
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strange
El Palo Alto
flex
for
octant
SSW
compass directions
SSE
ESE
WSW
WNW
NNE
NNW
ENE

so that you don’t mess up the expression hijklmnj is currently evaluating. Inter-
ruption can also give you a feeling for where hijklmnj is spending most of its time,
if you happen to be using an inefficient macro, since random interrupts will tend to
occur in whatever place hijklmnj visits most often.

� hijklmnj’s second most frustrating error messages are its occasional claims
that you have “strange” paths. Sometimes a glance at your output will make

it clear that you did indeed specify a path that crossed over itself, something like a
figure-8; but sometimes a path that looks fine to you will be rejected by the computer.
In such cases you need to decipher hijklmnj’s octant codes, which look scary at first
although they turn out to be helpful when you get used to them. For example, let’s
reconsider branch4 of El Palo Alto, from the program in Chapter 14:

branch4=
flex((0,509),(-14,492),(-32,481))
&flex((-32,481),(-42,455),(-62,430))
&flex((-62,430),(-20,450),(42,448))
&flex((42,448),(38,465),(4,493),(0,509))
&cycle;

If the number 450 in the third flex had been 452 instead, hijklmnj would have
stopped and told you this:

> 0 SSW WSW 1 2 SSW 3 WSW 4 (WNW NNW) NNE ENE 5 ESE 6 (ENE)
NNE NNW 7 WNW NNW 8 NNE 0 (NNW WNW WSW)

! Strange path (turning number is zero).
<to be read again>

;
<for(4)> ...]shifted(150,50)scaled(w/300);

ENDFOR
p.4,l.94 endfor

endchar;
?

The ‘for(4)’ in the fifth-last line implies that branch4 is at fault, because it says that
the for loop index is 4; but the octant codes like ‘SSW’ are your only clues about why
branch4 is considered strange. (A simpler example appeared in Chapter 13, which
you might want to review now.) You probably also have a proofmode diagram:

(Figure 27a will be inserted here; too bad you can’t see it now.)

Starting at time 0, and at the point (0, 509), the path goes South by Southwest, then
West by Southwest until time 2 (the end of the first flex). Then it goes SSW again,
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counterclockwise
eps
turningcheck
tracingspecs
tracingtitles
tracingmacros
tracingrestores
tracingequations
tracingchoices
control points
tracingpens
tracingoutput

and WSW again (that’s the second flex). But at time 4, the path makes a sharp turn
through the directions WNW and NNW, without moving (because these octant codes are
in parentheses). Aha! That’s where the path was supposed to turn counterclockwise,
through SSW and SSE and ESE; hijklmnj turned clockwise because it was the shortest
way to go. The path actually makes a little loop at time 4, between the end of the
second flex and the beginning of the third. Therefore its turning number is indeed zero,
and the path is strange by definition.

� xEXERCISE 27.3
At what point do the second and third flexes cross, in this example?

� There are three main ways to avoid problems with strange paths. One is to
stay away from paths that turn so abruptly. Or you can displace the paths by

epsilon , as in the serif example at the end of Chapter 16. (Displacing by eps would be
even safer.) Or you can discipline yourself to fill all cycles counterclockwise, so that
you can set turningcheck := 0; this means that hijklmnj won’t check for strange
paths, but that’s OK because tiny little loops won’t hurt anything if you are filling
cycles in the correct direction.

�� Sometimes the octant codes of a strange path are shown backwards, because
the system may have tried to reverse the path to get rid of its strangeness.

Sooner or later—hopefully sooner—you’ll get METAFONT to process
your whole file without stopping once to complain. But maybe the output still
won’t be right; the mere fact that METAFONT didn’t stop doesn’t mean that
you can avoid looking at proofsheets. At this stage it’s usually easy to see how
to fix typographic errors by correcting the input; hardcopy proofs such as those
discussed in Appendix H usually clear up obvious mistakes, especially if you have
remembered to label the key points in your constructions.

But your output may contain seemingly inexplicable errors. If you can’t
find out what went wrong, try the old trick of simplifying your program: Remove
all the things that do work, until you obtain the shortest possible input file that
fails in the same way as the original. The shorter the file, the easier it will be
for you or somebody else to pinpoint the problem.

� One of the important tricks for shortening a buggy program is to assign a
positive value to tracingspecs , because this will put all the key points and

control points of a problematic path into your log file. (See the example at the end
of Chapter 24, “before subdivision.”) If something is wrong with the treatment of
some path, you can copy the path’s description from the log file and use it directly in
hijklmnj input, thereby avoiding all the complexity of equations that might have
been involved in that path’s original creation.

� We’ve just talked about tracingstats and tracingspecs ; hijklmnj is able
to produce lots of other kinds of tracing. For example, Chapter 22 discusses

tracingtitles , Chapter 18 discusses tracingmacros , Chapter 17 discusses tracingrestores ,
and Chapter 9 discusses tracingequations . You can also invoke tracingchoices , which
shows all paths before and after their control points are chosen according to the rules in
Chapter 14; or tracingpens , which shows the pen polygons that arise when a future pen
becomes a full-fledged pen; or tracingoutput , which shows every picture that’s shipped
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interim
tracingcommands
command
expandable token
algebraic
operation
Digitized output
tracingedges
lowres
mag
draw
filldraw
octant
transition
penoffset
tracingonline
tracingall
showstopping
show
loggingall
interact
tracingnone
tracingstats

out, using edge-transitions to represent the pixel values as illustrated in Chapter 13.
Each of these types of tracing is enabled by assigning a positive value to the correspond-
ing internal quantity; for example, you can simply set tracingpens := 1 (or interim
tracingpens := 1) if you want the data about pens.

� If tracingcommands = 1, hijklmnj shows every command just before it is
carried out. If tracingcommands = 2, hijklmnj also shows every expand-

able token just before it is expanded (except that macros are separate, they’re traced
only when tracingmacros > 0). And if tracingcommands = 3, hijklmnj also shows
every algebraic operation just before it is evaluated. Thus you can get “stream of
consciousness” information about everything hijklmnj is doing.

� Digitized output can be monitored by setting tracingedges = 1. For example,
if we ask hijklmnj to draw the Ionian ‘�’ of Chapter 5 at a resolution of

100 pixels per inch (lowres mode with mag = .5), tracingedges will report as follows:

Tracing edges at line 15: (weight 1)
(1,5)(1,2)(2,2)(2,1)(3,1)(3,0)(8,0)(8,1)(9,1)(9,2)(10,2)(10,8)(9,8)
(9,9)(8,9)(8,10)(3,10)(3,9)(2,9)(2,8)(1,8)(1,5).

Tracing edges at line 15: (weight -1)
(3,5)(3,2)(4,2)(4,1)(7,1)(7,2)(8,2)(8,8)(7,8)(7,9)(4,9)(4,8)(3,8)(3,5).

By following these edges (and negating their weights on the inner boundary) we find
that the character at this low resolution is symmetric:

SSSRRRRRSSSSSRRSSSRRSSSRRSSSSSRRSSRRSSSSSRRSSRRSSSSSRRSSRRSSSSSRRSSRRSSSSSRRSSRRSSSSSRRSSSRRSSSRRSSSSSRRRRRSSS

�� Further information about digitization comes out when tracingedges > 1, if
fixed pens are used to draw or filldraw a shape. In this case detailed informa-

tion is presented about the activity in each octant direction; straight line “transition”
edges are also reported whenever hijklmnj changes from one penoffset to another.

�� The tracing . . . commands put all of their output into your log file, unless the
tracingonline parameter is positive; in the latter case, all diagnostic informa-

tion goes to the terminal as well as to the log file. Plain hijklmnj has a tracingall
macro that turns on the maximum amount of tracing of all kinds. It not only sets up
tracingcommands , tracingedges , tracingspecs , and so on, it also sets tracingonline := 1,
and it sets showstopping := 1 so that you can do interactive debugging via show com-
mands. This is the works. There’s also loggingall, which is like tracingall except
that it doesn’t touch tracingonline or showstopping . You can say interact if you want
just tracingonline := showstopping := 1. Finally, there’s tracingnone, which shuts off
every form of tracing after you’ve had enough.

�� Some production versions of hijklmnj have been streamlined for speed.
These implementations don’t look at the value of tracingstats , nor do you

get extra information when tracingedges > 1, because hijklmnj runs faster when it
doesn’t have to maintain statistics or keep tabs on whether tracing is required. If you
want all of hijklmnj’s diagnostic tools, you should be sure to use the right version.
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pausing
lies
jokes
FONT
HEIN

�� If you set pausing := 1, hijklmnj will give you a chance to edit each line of
input as it is read from the file. In this way you can make temporary patches

(e.g., you can insert show. . . commands) while troubleshooting, without changing the
actual contents of the file, and you can keep hijklmnj running at human speed.

Final hint: When working on a large font, it’s best to prepare only a
few characters at a time. Set up a “test” file and a “master” file, and do your
work in the test file. (Appendix E suggests a convenient way to prepare control
files that supply parameters to individual test characters as well as to the whole
font.) After the characters come out looking right, you can append them to the
master file; and you can run the master file through METAFONT occasionally, in
order to see how the font is shaping up. Characters can always be moved back
to the test file if you have to fix some unexpected problems.

��xEXERCISE 27.4
Final exercise: Find all of the lies in this manual, and all of the jokes.

Final exhortation: GO FORTH now and create masterpieces of digital typography!

With respect to the directions of the route
I may have made some errors.

— FRAY PEDRO FONT, Diary (1776)

The road to wisdom? Well, it’s plain
and simple to express:

Err
and err
and err again
but less
and less
and less.

— PIET HEIN, Grooks (1966)
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whatever
dir

The preface to this manual points out the wisdom of trying to figure out each
exercise before you look up the answer here. But these answers are intended to
be read, since they occasionally provide additional information that you are best
equipped to understand when you have just worked on a problem.

2.1. Point 5 = (100, 0) is closer than any of the others. (See the diagram below.)

2.2. False. But they all do have the

(Figure A2a will be inserted here; too bad you
can’t see it now.)

same y coordinate.

2.3. 5 units to the left of the reference
point, and 15 units up.

2.4. (200,−60).

2.5. top lft z1 = (0, b); top z2 = (a, b); top rt z3 = (2a − 1, b); bot lft z4 = (0, 0);
bot z5 = (a, 0); bot rt z6 = (2a−1, 0). Adjacent characters will be separated by exactly
one column of white pixels, if the character is 2a pixels wide, because the right edge of
black pixels is specified here to have the x coordinate 2a− 1.

2.6. right = (1, 0); left = (−1, 0); down = (0,−1); up = (0, 1).

2.7. True; this is (2, 3)− (5,−2).

2.8. 0[z1, z2] = z1, because we move none of the way towards z2; similarly 1[z1, z2]
simplifies to z2, because we move all of the way. If we keep going in the same direction
until we’ve gone twice as far as the distance from z1 to z2, we get to 2[z1, z2]. But if
we start at point z1 and face z2, then back up exactly half the distance between them,
we wind up at (−.5)[z1, z2].

2.9. (a) True; both are equal to z1 + 1
2 (z2−z1). (b) False, but close; the right-hand

side should be 2
3z1 + 1

3z2. (c) True; both are equal to (1− t)z1 + tz2.

2.10. There are several reasons. (1) The equations in a hijklmnj program should
represent the programmer’s intentions as directly as possible; it’s hard to understand
those intentions if you are shown only their ultimate consequences, since it’s not easy
to reconstruct algebraic manipulations that have gone on behind the scenes. (2) It’s
easier and safer to let the computer do algebraic calculations, rather than to do them
by hand. (3) If the specifications for z1 and z5 change, the formula ( 1

2 [x1, x5], b) still
gives a reasonable value for z3. It’s almost always good to anticipate the need for
subsequent modifications.

However, the stated formula for z3 isn’t the only reasonable way to proceed.
We could, for example, give two equations

x3 − x1 = x5 − x3; y3 = b;

the first of these states that the horizontal distance from 1 to 3 is the same as the
horizontal distance from 3 to 5. We’ll see later that hijklmnj is able to solve a wide
variety of equations.

2.11. The following four equations suffice to define the four unknown quantities x2,
y2, x4, and y4: z4 − z2 = whatever ∗ dir 20; 1

2 [y2, y4] = 2
3 [y3, y1]; z2 = whatever [z1, z3];

z4 = whatever [z3, z5].
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drawdot
one point
–
curl

3.1. The direction at z2 is parallel to the line z4 . . z3, but the vector z4 − z3

specifies a direction towards z4, which is 180◦ different from the direction z3 − z4 that
was discussed in the text. Thus, we have a difficult specification to meet, and hijk-
lmnj draws a pretzel-shaped curve that loops around in a way that’s too ugly to
show here. The first part of the path, from z4 to z2, is mirror symmetric about the
line z1 . . z5 that bisects z4 . . z2, so it starts out in a south-by-southwesterly direction;
the second part is mirror symmetric about the vertical line that bisects z2 . . z3, so
when the curve ends at z3 it’s traveling roughly northwest. The moral is: Don’t specify
a direction that runs opposite to (i.e., is the negative of) the one you really want.

3.2. draw z5 . . z4{z4 − z2} . . z1 . . z3 . . z6{z2 − z6} . . cycle.

4.1. (a) An ellipse 0.8 pt tall and 0.2 pt wide (‘ � ’); (b) a circle of diameter 0.8 pt
(rotation doesn’t change a circle!); (c) same as (a).

4.2. Six individual points will be drawn, instead of lines or curves. These points will
be drawn with the current pen. However, for technical reasons explained in Chapter 24,
the draw command does its best work when it is moving the pen; the pixels you get
at the endpoints of curves are not always what you would expect, especially at low
resolutions. It is usually best to say ‘drawdot’ instead of ‘draw’ when you are drawing
only one point.

4.3. True, for all of the pens discussed so far. But false in general, since we will see
later that pens might extend further upward than downward; i.e., t might be unequal
to b in the equations for top and bot .

4.4. x2 = x1; x3 = 1
2 [x2, x4]; x4 = x5; bot y1 = −o; top y2 = h + o; y4 = y2;

y5 = y1; draw z1 . . z2; draw z2 . . z3; draw z3 . . z4; draw z4 . . z5. We will learn
later that the four draw commands can be replaced by

draw z1 - - z2 - - z3 - - z4 - - z5;

in fact, this will make hijklmnj run slightly faster.

4.5. Either say ‘fill z5 . . z4 . . z1 . . z3 . . z6 . . z5 . . cycle’, which doubles point z5

and abandons smoothness there, or ‘fill z5{curl 1} . . z4 . . z1 . . z3 . . z6 . . {curl 1}cycle’.
In the latter case you can omit either one of the curl specifications, but not both.

4.6. After the six original points have been defined, say

fill z5 . . z4 . . z1 . . z3 . . z6 . . cycle;
z0 = (.8[x1, x2], .5[y1, y4]);
for k = 1 upto 6: z′k = .2[zk, z0]; endfor
unfill z′5 . . z′4 . . z′1 . . z′3 . . z′6 . . cycle.

4.7. 1
2 [North , 1

2 [North ,West ]] = 1
2 [90, 1

2 [90, 180]] = 1
2 [90, 135] = 112.5.

4.8. 30◦, 60◦, 210◦, and 240◦. Since it’s possible to add or subtract 360◦ without
changing the meaning, the answers −330◦, −300◦, −150◦, and −120◦ are also correct.

4.9. z1l = (25, 30), z1r = (25, 20).

4.10. He said ‘penstroke z1e{up} . . z2e{left} . . z3e{down} . . z4e{right} . . cycle’.
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perpendicular
S
direction
trial path
perpendicular

4.11. We use angles perpendicular to (w, h) and (w,−h) at the diagonal endpoints:

x1l = x4l = 0;
x2 = x5 = .5w;
x3r = x6r = w;
y1r = y2 = y3l = h;
y4r = y5 = y6l = 0;
z1′ = .25[z1, z6]; z6′ = .75[z1, z6];
theta1 := angle(w,−h) + 90;
penpos1(b, theta1); penpos6(b, theta1);
z7 = .5[z1, z6]; penpos7(.6b, theta1);
penpos1′(b, theta1); penpos6′(b, theta1);
penstroke z1e . . z1′e{z6′ − z1′} . . z7e . . {z6′ − z1′}z6′e . . z6e;
z3′ = .25[z3, z4]; z4′ = .75[z3, z4];
theta3 := angle(−w,−h) + 90;
penpos3(b, theta3); penpos4(b, theta3);
z8 = .5[z1, z6]; penpos8(.6b, theta3);
penpos3′(b, theta3); penpos4′(b, theta3);
penstroke z3e . . z3′e{z4′ − z3′} . . z8e . . {z4′ − z3′}z4′e . . z4e;
penpos2(b, 0); penpos5(b, 0); penstroke z2e . . z5e.

5.1. The width is 0.8em#, and an em# is 10 true points, so the box will be exactly
8 pt wide in device-independent units. The height will be 7 pt. (And the depth below
the baseline will be 0 pt.)

5.2. 8× 3.6 = 28.8 rounds to the value w = 29; similarly, h = 25. (And d = 0.)

5.3. Here’s one way, using a variable slab to control the pen breadth at the ends

(Figure A5a will be inserted
here; too bad you can’t see it
now.)

of the stroke:

slab#:=.8pt#; define_blacker_pixels(slab);
beginchar("S",5/9em#,cap#,0); "The letter S";
penpos1(slab,70); penpos2(.5slab,80);
penpos3(.5[slab,thick],200); penpos5(.5[slab,thick],210);
penpos6(.7slab,80);
penpos7(.25[slab,thick],72);
x1=x5; y1r=.94h+o;
x2=x4=x6=.5w; y2r=h+o; y4=.54h; y6l=-o;
x3r=.04em; y3=.5[y4,y2];
x5l=w-.03em; y5=.5[y4,y6];
.5[x7l,x7]=.04em; y7l=.12h-o;
path trial; trial=z3{down}..z4..{down}z5;
pair dz; dz=direction 1 of trial;
penpos4(thick,angle dz-90);
penstroke z1e..z2e{left}..z3e{down}

..z4e{dz}..z5e{down}..z6e{left}..z7e;
penlabels(1,2,3,4,5,6,7); endchar;

Notice that the pen angle at point 4 has been found by letting hijklmnj construct
a trial path through the center points, then using the perpendicular direction. The
letters work reasonably well at their true size: ‘�� �� �� ����.’
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zero
enormous number
backslash
begingroup
save
endgroup

5.4. After an “isolated expression,” hijklmnj thinks it is at the end of a state-
ment or command, so it expects to see a semicolon next. You should type, e.g.,
‘I; mode_setup’ to keep hijklmnj happy.

5.5. Yes.

6.1. (a) No, the second token represents 1
65536 . (A token has the same meaning

as ‘0’ if and only if its decimal value is strictly less than 2−17 = .00000 76293 94531 25.)
(b) Yes; both tokens represent 1

65536 , because 1 is the nearest integer to both .00001×
65536 = .65536 and 0.00002 × 65536 = 1.31072. (c) No, 0.00003 represents 2

65536 .
(d) Yes, they both mean “enormous number that needs to be reduced”; hijklmnj
complains in both cases and substitutes the largest legal numeric token. (Rounding
4095.999999 to the nearest multiple of 1

65536 yields 4096, which is too big.)

6.2. xx , 3.1 (a numeric token), .6 (another numeric token), .. , [[ , a ,
+- , bc d , e , ] , ] , "a %" (a string token), <|> , ( (see rule 5), ( , $ , 1 (a
numeric token), 5 (likewise numeric), "+-" (a string token), and "" (a string token
that denotes an empty sequence of characters). All of these tokens are symbolic unless
otherwise mentioned. (Notice that four of the spaces and two of the periods were
deleted by rule 1. One way to verify that hijklmnj finds precisely these tokens is to
prepare a test file that says ‘isolated expression;’ on its first line and that contains
the stated text on its second line. Then respond to hijklmnj’s error message by
repeatedly typing ‘1’, so that one token is deleted at a time.)

6.3. The statement is basically true but potentially misleading. You can insert any
number of spaces between tokens without changing the meaning of a program, but you
cannot insert a space in the middle of any token without changing something. You can
delete spaces between tokens unless that would “glue” two adjacent tokens together.

6.4. False. It may seem that this new sort of numeric token would be recognized
only in cases where the period is not followed by a digit, hence the period would be
dropped anyway by rule 1. However, the new rule would have disastrous consequences
in a line like ‘draw z1..z2’ !

7.1. You can put a space between the subscripts, as in ‘a1 5’. (We’ll see later that
a backslash acts as a null symbol, hence ‘a1\5’ is another solution.)

7.2. No; a[-1] can’t be accessed without using [ and ]. The only other form of
〈subscript〉 is 〈numeric token〉, which can’t be negative. (Well, strictly speaking, you
could say ‘let ?=[; let ??=]’ and then refer to ‘a?-1??’; but that’s cheating.)

7.3. Assuming that ‘+’ was still a spark when he said ‘let plus=+’, he can’t refer
to the variable ‘a.plus1’ unless he changes the meaning of plus again to make it a tag.
(We will eventually learn a way to do this without permanently clobbering plus, as
follows: ‘begingroup save plus; a.plus1 endgroup’.)

7.4. True. (But a 〈suffix〉 is not always a 〈variable〉.)

7.5. Yes, because it removes any existing value that x may have had, of whatever
type; otherwise you couldn’t safely use x in a numeric equation. It’s wise to declare
numeric variables when you’re not sure about their former status, and when you’re
sure that you don’t care what their previous value was. A numeric declaration together
with a comment also provides useful documentation. (Incidentally, ‘numeric x’ doesn’t
affect other variables like ‘x2’ or ‘x.x’ that might be present.)
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7.6. (a) The ‘42’ is illegal because subscripts must be collective. (b) The ‘24’ is
illegal because a 〈declared variable〉 must start with a 〈symbolic token〉, not a numeric
token. (c) There’s nothing wrong with the consecutive commas; the second comma
begins a 〈declared variable〉, so it loses its former meaning and becomes a tag. Thus
hijklmnj tries to declare the variable ‘,t,path’. However, ‘path’ cannot appear in
a suffix, since it’s a spark. (Yes, this is admittedly tricky. Computers follow rules.)

8.1. ((z1+z2)..((z3/4)*5))..(z6-(7*(8z9))).

8.2. The fraction 100/3 is evaluated first (because such divisions take precedence);
the rounding error in this fraction is then magnified by 100.

8.3. A sqrt takes precedence over any operation with two operands, hence the
machine computes ‘(sqrt 2)**2’; hijklmnj was somewhat lucky that the answer
turned out to be exactly 2. (The sqrt operation computes the nearest multiple of

1
65536 , and the rounding error in this quantity is magnified when it is squared. If you try
sqrt 3**2, you’ll get 3.00002; also sqrt 2**4 turns out to be 4.00002.) Incidentally,
the ** operation of plain hijklmnj has the same precedence as * and /; hence
‘x*y**2’ means the same as ‘(x*y)**2’, and ‘-x**2’ means ‘(-x)**2’, contrary to the
conventions of FORTRAN.

8.4. Since ‘or’ has stronger precedence than ‘<’ or ‘>’, hijklmnj tries to eval-
uate this expression by putting things in parentheses as follows: ‘(0 > (1 or a)) < a’.
Now ‘1 or a’ makes no sense, because ‘or’ operates only on booleans; in such cases
hijklmnj uses the right operand ‘a’ as the result. Then ‘0 > a’ is indeterminate
because a is unknown; hijklmnj treats this as false. Finally ‘false < a’ is another
illegal combination of types.

8.5. The token ‘++-’ is undefined, so it is a tag; therefore ++-7 is a subscripted
variable, which was multiplied by zero.

8.6. The associative law is valid for exact computations, but not for rounded com-
putations. For example, it fails even in the case of multiplication, since (.1 ∗ .1) ∗ 10 =
0.09995 while .1 ∗ (.1 ∗ 10) = .1 when products are rounded to the nearest multiples
of 1

65536 . However, this observation doesn’t quite explain the stated example, which
would have yielded 7 in all cases if hijklmnj had computed 2 ++ 4 with full accu-
racy! The closest approximation to

√
20 is 4 30942

65536 , but 2 ++ 4 turns out to be 4 30941
65536

instead. hijklmnj computes the absolutely best possible approximations to the true
answers when it does multiplications, divisions, and square roots, but not when it does
Pythagorean operations.

8.7. It’s impossible to make an expression from ‘〈numeric token〉 〈numeric token〉’,
because the rule for 〈scalar multiplication operator〉 specifically prohibits this. hijk-
lmnj will recognize the first ‘2’ as a 〈numeric primary〉, which is ultimately regarded
as a 〈numeric expression〉; the other ‘2’ will probably be an extra token that is flushed
away after an error message has been given.

8.8. If a numeric token is followed by ‘/〈numeric token〉’ but not preceded by
‘〈numeric token〉/’, the syntax allows it to become part of an expression only by us-
ing the first case of 〈numeric token primary〉. Therefore ‘1/2/3/4’ must be treated as
‘(1/2)/(3/4)’, and ‘a/2/3/4’ must be treated as ‘a/(2/3)/4’.
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rotated
dotprod
abs
ypart
pythagorean subtraction
unitvector
length

8.9. 〈string primary〉 −→ 〈string variable〉
| 〈string token〉
| ( 〈string expression〉 )
| substring 〈pair expression〉 of 〈string primary〉

〈string secondary〉 −→ 〈string primary〉
〈string tertiary〉 −→ 〈string secondary〉
〈string expression〉 −→ 〈string tertiary〉

| 〈string expression〉 & 〈string tertiary〉

(The full syntax in Chapter 25 includes several more varieties of 〈string primary〉 that
haven’t been hinted at yet.)

9.1. (a) Point 1 should lie nine pixels to the left of point 7, considering horizontal
positions only; no information is given about the vertical positions y1 or y7. (b) Point 7
should sit directly above or below point 4, and its distance up from the baseline should
be halfway between that of points 4 and 5. (c) The left edge of the currently-picked-up
pen, when that pen is centered at point 21, should be one pixel to the right of its right
edge when at point 20. (Thus there should be one clear pixel of white space between
the images of the pen at points 20 and 21.)

9.2. (a) y13 = −y11 (or −y13 = y11, or y13 + y11 = 0). (b) z10 = z12 + (mm ,−1).
(c) z43 = 1

3 [(0, h), (w,−d)].

9.3. (a) z1 = z2 = z3 = (w, h); z4 = z5 = z6 = (0, 0). (b) z1 = z6 = (.5w, .5h);
z2 = (.75w, .75h); z3 = (w, h); z4 = (0, 0); z5 = (.25w, .25h).

9.4. z = whatever [z1, z2]; z = whatever [z3, z4]. (Incidentally, it’s interesting
to watch this computation in action. Run hijklmnj with \tracingequations:=
tracingonline:=1 and say, for example,

z=whatever[(1,5),(8,19)]; z=whatever[(0,17),(6,1)];

the solution appears as if by magic. If you use alpha and beta in place of the whatevers,
the machine will also calculate values for alpha and beta .)

9.5. z = whatever [z1, z2]; z − z3 = whatever ∗ (z5 − z4).

9.6. z11−z12 = whatever ∗(z13−z14) rotated 90, assuming that z13−z14 is known.
(It’s also possible to say ‘(z11−z12)dotprod(z13−z14) = 0’, although this risks overflow
if the coordinates are large.)

9.7. One solution constructs the point z4 on z2 . . z3 such that z4 . . z1 is per-
pendicular to z2 . . z3, using ideas like those in the previous two exercises: ‘z4 =
whatever [z2, z3]; z4 − z1 = whatever ∗ (z3 − z2) rotated 90’. Then the requested dis-
tance is length(z4 − z1). But there’s a slicker solution: Just calculate

abs ypart((z1 − z2) rotated−angle(z3 − z2)).

9.8. It would be nice to say simply ‘z = whatever [z2, z3]’ and then to be able to
say either ‘length(z − z1) = l’ or ‘z − z1 = (l, 0) rotated whatever ’; but neither of the
second equations is legal. (Indeed, there couldn’t possibly be a legal solution that has
this general flavor, because any such solution would determine a unique z, while there
are two points to be determined.) The best way seems to be to compute z4 as in the
previous exercise, and then to let v = (l +−+length(z4− z1)) ∗unitvector(z3− z2); the
desired points are then z4 + v and z4 − v.
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9.9. Such an equation tells us nothing new about a or b. Indeed, each use of
whatever introduces a new independent variable, and each new independent variable
“uses up” one equation, since we need n equations to determine the values of n un-
knowns. On the other hand an equation between pairs counts as two equations; so
there’s a net gain of one, when whatever appears in an equation between pairs.

10.1. Yes, but it must be done in two steps: ‘numeric newcode ; newcode = code+1;
numeric code ; code = newcode ’.

10.2. The assignment ‘x3 := whatever ’ does exactly what you want.

10.3. The result shows that s1 = s3 = s4 and s2 = s5 = s6 now:

s[]=unknown string
s1=unknown string s3
s2=unknown string s6
s3=unknown string s4
s4=unknown string s1
s5=unknown string s2
s6=unknown string s5

(The assignment s2 := s5 broke s2’s former relationship with s1, s3, and s4.)

10.4. The results are

## a=1
## a=b+1 (after the first assignment)
## b=0.5a-0.5 (after the second assignment)
### -1.5a=-%CAPSULEnnnn-0.5 (after the third assignment)
## a=%CAPSULEnnnn (after the third, see below)
>> a (after ‘show’; variable a is independent)
>> 0.33333a-0.33333 (this is the final value of b)

Let ak denote the value of a after k assignments were made. Thus, a0 = 1, and a1

was dependent on the independent variable b. Then a1 was discarded and b became
dependent on the independent variable a2. The right-hand side of the third assignment
was therefore a2 + b. At the time a2 was about to be discarded, hijklmnj had two
dependencies b = 0.5a2 − 0.5 and κ = 1.5a2 − 0.5, where κ was a nameless “capsule”
inside of the computer, representing the new value to be assigned. Since κ had a
higher coefficient of dependency than b, hijklmnj chose to make κ an independent
variable, after which −1.5a2 was replaced by −κ− 0.5 in all dependencies; hence b was
equal to 0.33333κ − 0.33333. After the third assignment was finished, κ disappeared
and a3 became independent in its place. (The line ‘## a=%CAPSULEnnnn’ means that
a was temporarily dependent on κ, before κ was discarded. If the equation a = κ had
happened to make κ dependent on a, rather than vice versa, no ‘##’ line would have
been printed; such lines are omitted when a capsule or part of a capsule has been made
dependent, unless you have made tracingcapsules > 0.)

11.1. Almost, but not quite. The values of standard dimension variables like pt
and mm will be identical in both setups, as will the values of ad hoc dimension
variables like em and x height . But pen-oriented dimensions that are defined via
define blacker pixels will be slightly different, because cheapo mode has blacker =
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Tobin0.65 while luxo mode has blacker = 0.1 (since the luxo printer has different physi-
cal characteristics). Similarly, define corrected pixels (which we are just about to
discuss) will produce slightly different results in the two given modes.

11.2. Increasing ht# would make the letter shape and the bounding box taller;
increasing xgap# would move point 5 to the left, thereby making the middle bar shorter;
increasing u# would make the shape and its bounding box wider; increasing s# would
widen the bounding box at both sides without changing the letter shape; increasing o#

would move points 4, 5, and 6 to the right; increasing px # would make the pen thicker
(preserving the top edge of the upper bar, the bottom edge of the lower bar, and the
center of the middle bar and the stem).

11.3. The only possible surprise is the position of y1, which should match similar
details in the ‘h’ and the ‘j ’ of Chapter 4:

beginchar("F",14*u#+2s#,ht#,0); pickup logo_pen;
x1=x2=x3=leftstemloc; x4=w-x1+o; x5=x4-xgap;
y2=y5; y3=y4; bot y1=-o; top y3=h; y2=barheight;
draw z1--z3--z4; draw z2--z5;
labels(1,2,3,4,5); endchar;

11.4. The quantity called ss in Chapter 4 is now leftstemloc .

beginchar("M",18*u#+2s#,ht#,0); pickup logo_pen;
x1=x2=leftstemloc; x4=x5=w-x1; x3=w-x3;
y1=y5; y2=y4; bot y1=-o; top y2=h+o; y3=y1+ygap;
draw z1--z2--z3--z4--z5;
labels(1,2,3,4,5); endchar;

beginchar("T",13*u#+2s#,ht#,0); pickup logo_pen;
lft x1=0; x2=w-x1; x3=x4=.5w;
y1=y2=y3; top y1=h; bot y4=-o;
draw z1--z2; draw z3--z4;
labels(1,2,3,4); endchar;

11.5. ‘nmnkjmnihinj’; possibly also ‘hijklmmjnmji’; and Georgia Tobin sug-
gests that ‘knjiinlimllhinj’ might be a legal term.

11.6. Delete the line of logo.mf that defines barheight#, and insert that line into
each of the parameter files logo10.mf, logo9.mf, logo8.mf. Then other bar-line heights
are possible by providing new parameter files; another degree of “meta-ness” has there-
fore been added to the meta-font.

11.7. (This is tricky.) Insert the lines

if known pixmag: begingroup interim hppp:=pixmag*hppp;
special "title cheapo simulation" endgroup;
extra_endchar:="currentpicture:=currentpicture scaled pixmag;"
& "w:=w*pixmag;" & extra_endchar; fi

right after ‘mode_setup’ in logo.mf, and also include the line

if known pixmag: hppp:=pixmag*hppp; vppp:=pixmag*vppp; fi
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special
gf

at the very end of that file. Then run hijklmnj with

\mode="cheapo"; input cheaplogo10

where the file ‘cheaplogo10.mf’ says simply ‘pixmag=10; input logo10’. (The interim
hppp setting and the special command are used to fool hijklmnj into giving the
appropriate extension to the gf file name. Incidentally, you could print with this font on
cheapo at ten-fold magnification if you told TEX to use the font ‘cheaplogo10 scaled
10000’; but on luxo you would simply call this font ‘cheaplogo10’.)

12.1. The changes are straightforward, except for the italic correction (for which a
rough estimate like the one shown here is good enough):

"Right parenthesis";
numeric ht#, dp#; ht# = body height#; .5[ht#,−dp#] = axis#;
beginchar(")", 7u#, ht#, dp#); italcorr axis# ∗ slant − .5u#;
pickup fine.nib ; penpos1(hair − fine , 0);
penpos2(.75[thin , thick ]− fine , 0); penpos3(hair − fine , 0);
lft x1l = lft x3l = u; rt x2r = x1 + 4u; top y1 = h; y2 = .5[y1, y3] = axis ;
filldraw z1l{(z2l − z1l) xscaled 3} . . . z2l . . . {(z3l − z2l) xscaled 3}z3l

- - z3r{(z2r − z3r) xscaled 3} . . . z2r . . . {(z1r − z2r) xscaled 3}z1r - - cycle;
penlabels(1, 2, 3); endchar;

We will see in Chapter 15 that it’s possible to guarantee perfect symmetry between left
and right parentheses by using picture transformations.

12.2. When horizontal lines are being typeset, TEX keeps track of the maximum
height and maximum depth of all boxes on the line; this determines whether or not
extra space is needed between baselines. The height and depth are also used to position
an accent above or below a character, and to place symbols in mathematical formulas.
Sometimes boxes are also stacked up vertically, in which case their heights and depths
are just as important as their widths are for horizontal setting.

13.1. (4, 4), (4, 5), (5, 5), (5, 4). (Therefore the command

unfill (4, 4) - - (4, 5) - - (5, 5) - - (5, 4) - - cycle

will decrease the value of this pixel by 1.)

13.2. The result would be exactly the same; fill and unfill commands can be given
in any order. (After an initial unfill command, some pixel values will be −1, the
others will be zero.)

13.3. unfill (4, 1) - - (4, 8) - - (5, 8) - - (5, 1) - - cycle.

13.4. Here are two of the many solutions:

fill (0, 3) - - (9, 3) - - (9, 6) - - (6, 6) - - (6, 9) - -
(3, 9) - - (3, 0) - - (6, 0) - - (6, 6) - - (0, 6) - - cycle;

fill (0, 3) - - (9, 3) - - (9, 6) - - (0, 6) - - (0, 3) - -
(3, 3) - - (3, 0) - - (6, 0) - - (6, 9) - - (3, 9) - - (3, 3) - - cycle.

(It turns out that any pixel pattern can be obtained by a single, sufficiently hairy fill
command. But unnatural commands are usually also inefficient and unreadable.)
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cullit
undraw
withpen
clearit
withpen
addto
withweight
undraw
cullit
undraw
Leban

13.5. The value of the enclosed pixel is increased by 2. (We’ll see later that there’s
a simpler way to do this.)

13.6. True; j − k = l −m, since k + l = j + m. (What comes up must go down.)

13.7. The tricky part is to remember that ‘erase draw zi - - zj ’ will erase pixels
near zi and zj . Therefore if z3 - - z4 is drawn before z4 - - z2, we can’t erase z4 - - z2

without losing some of z3 - - z4; it’s necessary to erase only part of one line. One way
to solve the problem is to do the following, after defining the points and picking up the
pen as before:

draw z3 - - z4; draw z5 - - z6;
cullit; pickup pencircle scaled 1.6pt ;
undraw z7 - - 1

2 [z7, z5]; undraw z2 - - 1
2 [z2, z4];

cullit; pickup pencircle scaled .4pt ;
draw z3 - - z1 - - z2 - - z4; draw z5 - - z7 - - z8 - - z6;
for k = 1 upto 4: draw zk - - zk+4; endfor.

(Note that it would not be quite enough to erase only from z7 to 1
3 [z7, z5]!)

It’s also possible to solve this problem without partial erasing, if we use addi-
tional features of hijklmnj that haven’t been explained yet. Let’s consider only the
job of drawing z7 - - z5 - - z6 and z3 - - z4 - - z2, since the other eight lines can easily be
added later. Alternative Solution 1 uses picture operations:

pen eraser ; eraser = pencircle scaled 1.6pt ;
draw z3 - - z4; erase draw z7 - - z5 withpen eraser ; draw z7 - - z5;
picture savedpicture ; savedpicture = currentpicture ; clearit;
draw z6 - - z5; erase draw z2 - - z4 withpen eraser ; draw z2 - - z4;
addto currentpicture also savedpicture .

Alternative Solution 2 is trickier, but still instructive; it uses ‘withweight’ options and
the fact that draw does not increase any pixel values by more than the stated weight
when the path is a straight line:

draw z3 - - z4; undraw z7 - - z5 withpen eraser ;
draw z7 - - z5 withweight 2; cullit withweight 2;
draw z6 - - z5; undraw z2 - - z4 withpen eraser ;
draw z2 - - z4 withweight 2;

(These alternative solutions were suggested by Bruce Leban.)

13.8. Here’s an analog of the first solution to the previous exercise:

beginchar("*", 10pt#, 7pt#, 2pt#);
pair center ; . . . 〈as in the hint〉
pickup pencircle scaled .4pt ; draw star ;
cullit; pickup pencircle scaled 1.6pt ;
for k = 0 upto 4: undraw subpath(k + .55, k + .7) of star ; endfor
cullit; pickup pencircle scaled .4pt ;
for k = 0 upto 4: draw subpath(k + .47, k + .8) of star ; endfor
labels(0,1,2,3,4); endchar.
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Leban
overdraw
begingroup
interim
addto
cull
cullit
also
endgroup
origin

However, as in the previous case, there’s an Alternate Solution 1 by Bruce Leban that
is preferable because it doesn’t depend on magic constants like .55 and .47:

beginchar . . . 〈as above〉 . . . scaled .4pt ;
picture savedpicture ; savedpicture = nullpicture;
pen eraser ; eraser := pencircle scaled 1.6pt ;
for k = 0 upto 4:

draw subpath(k, k + 1) of star ; cullit;
undraw subpath(k + 3, k + 4) of star withpen eraser ; cullit;
addto savedpicture also currentpicture ; clearit; endfor

currentpicture := savedpicture ; labels(0,1,2,3,4); endchar.

13.9. It increases pixel values by 1 in the five lobes of the star, and by 2 in the
central pentagon-like region.

13.10. def overdraw expr c = erase fill c; draw c enddef .

13.11. First we need to generalize the overdraw macro of the previous exercise so
that it applies to arbitrary cycles c, even those that are self-intersecting:

def overdraw expr c = begingroup
picture region ; region := nullpicture;
interim turningcheck := 0; addto region contour c;
cull region dropping (0, 0);
cullit; addto currentpicture also −region ; cullit;
draw c endgroup enddef ;

(This code uses operations defined later in this chapter; it erases the region of pixels
that would be made nonzero by the command ‘fill c’.) The watchband is now formed
by overdrawing its links, one at a time, doing first the ones that are underneath:

beginchar(M , 1.25in#, .5in#, 0); pickup pencircle scaled .4pt ;
z1 = (20,−13); z2 = (30,−6); z3 = (20, 1); z4 = (4,−7);

z5 = (−12,−13); z6 = (−24,−4); z7 = (−15, 6);
path M ; M = (origin . . z1 . . z2 . . z3 . . z4 . . z5 . . z6 . . z7 . .

origin . . −z7 . . −z6 . . −z5 . . −z4 . . −z3 . . −z2 . . −z1 . . cycle)
scaled (h/26) shifted (.5w, .5h);

def link(expr n) =
overdraw subpath 1

3 (n, n + 1) of M - -
subpath 1

3 (n + 25, n + 24) of M - - cycle enddef ;
for k = 1 upto 12: link(k + 11); link(12− k); endfor endchar;

13.12. The pixel pattern 1 1
2 1 is culled to 1 1

1 1 , and hijklmnj needs to sort the edges
as it does this; so the result is simply

row 1: | 0+ 2-
row 0: | 0+ 2-

13.13. The pixel pattern is 1 1
2 1 + 1 1

2 1 + 1 1
1 2 − 2 1

1 1 = 1 2
4 3 before the final rotation, with

the reference point at the lower left corner of the 4; after rotation it is 2 3
1 4 , with the

reference point at the lower right corner of the 4. Rotation causes hijklmnj to sort
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xscaled-1
yscaled-1
save
interim
turningcheck

the edges, but the transition values per edge are never more than ±3. You weren’t
expected to know about this limit of ±3, but it accounts for what is actually reported:

row 1: | -2++ -1+ 0---
row 0: | -2+ -1+++ 0--- 0-

13.14. ‘V scaled-1’ should be the same as ‘V rotated 180’, because transformations
apply to coordinates rather than to pixel values. (Note, incidentally, that the reflections
‘V xscaled-1’ and ‘V yscaled-1’ both work, and that ‘V scaled-1’ is the same as
‘V xscaled-1 yscaled-1’.)

13.15. The result is the same as ‘V shifted (2,3)’; the coordinates of a shift are
rounded to the nearest integers when a picture is being shifted.

13.16. row 3: 0+ 4- |
row 2: 0+ 4- |
row 1: 0+ 4- 0+ 2- |
row 0: 0+ 4- 0+ 2- |

(Scaling of pictures must be by an integer.)

13.17. hijklmnj is currently executing instructions after having read as far as line 5
of the file expr.mf.

13.18. The pixel values of currentpicture become 1 if they were ±1, otherwise they
become 0.

13.19. (a) addto V1 also V2; cull V1 keeping (2, 2). (b) Same, but cull keeping
(1, 2). (c) Same, but cull keeping (1, 1).

13.20. Subtract one from the other, and cull the result dropping (0, 0); then test to
see if the total weight is zero.

13.21. (a) Same as ‘draw p’, but using q instead of the currently-picked-up pen.
(b) Same effect as ‘draw p; draw p; draw p’ (but faster). (c) Same as ‘draw p
withweight w’, because undraw’s ‘withweight −1’ is overridden. (d) Same as
‘unfilldraw c; unfilldraw c’, but using q instead of currentpen . (e) Same as ‘erase
filldraw c’, because the ‘withweight 2’ is overridden. [Since erase has culled all
weights to 0 or 1, there’s no need to “doubly erase.”] (f) Same effect as ‘cullit; addto
currentpicture also currentpicture ’ (but faster).

13.22. vardef safefill expr c = save region ;
picture region ; region=nullpicture;
interim turningcheck := 0;
addto region contour c; cull region dropping (0, 0);
addto currentpicture also region enddef .

13.23. cull currentpicture keeping (1, infinity );
picture v; v := currentpicture ;
cull currentpicture keeping (1, 1) withweight 3;
addto currentpicture also v − v shifted right

− v shifted left − v shifted up − v shifted down ;
cull currentpicture keeping (1, 4).
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directiontime13.24. (We assume that currentpicture initially has some configuration in which all
pixel values are zero or one; one means “alive.”)

picture v; def c = currentpicture enddef ;
forever: v := c; showit;

addto c also c shifted left + c shifted right ;
addto c also c shifted up + c shifted down ;
addto c also c− v; cull c keeping (5, 7); endfor.

(It is wise not to waste too much computer time watching this program.)

14.1. beginchar("b", 5pt#, 5pt#, 0);
fill ((0, 0) - - quartercircle - - cycle) scaled 10pt ; endchar.

14.2. A quartercircle corresponds to a circle whose diameter is 1; the radius is 1
2 .

14.3. beginchar("c", 5pt#, 5pt#, 0);
pickup pencircle scaled (.4pt + blacker );
draw quartercircle rotated 90 scaled 10pt shifted (5pt , 0); endchar.

14.4. beginchar("d", 5pt# ∗ sqrt 2, 5pt#, 0);
pickup pencircle scaled (.4pt + blacker );
draw ((0, 0) - - quartercircle - - cycle) rotated 45 scaled 10pt shifted (.5w, 0);
endchar.

14.5. beginchar("e", 10pt#, 7.5pt#, 2.5pt#);
pickup pencircle scaled (.4pt + blacker );
for D = .2w, .6w, w: draw fullcircle scaled D shifted (.5w, .5[−d, h]);
endfor endchar.

The program for ‘%’ is similar, but ‘fullcircle scaled D’ is replaced by

unitsquare shifted −(.5, .5) rotated 45 scaled (D/ sqrt 2).

14.6. There are inflection points, because there are no bounding triangles for the
‘. . .’ operations in the superellipse macro of Appendix B, unless .5 ≤ s ≤ 1.

14.7. (0, 0) . . (1, 0) & (1, 0) . . (1, 1) & (1, 1) . . (0, 1) & (0, 1) . . (0, 0) & cycle.
Incidentally, if each ‘&’ in this path is changed to ‘. .’, we get a path that goes through
the same points; but it is a path of length 8 that comes to a complete stop at each
corner. In other words, the path remains motionless between times 1 ≤ t ≤ 2, 3 ≤ t ≤ 4,
etc. This length-8 path therefore behaves somewhat strangely with respect to the
‘directiontime’ operation. It’s better to use ‘&’ than to repeat points of a path.

14.8. Let δ1 = z1 − z0, δ2 = z2 − z1, δ3 = z0 − z2; l1 = |δ1|, l2 = |δ2|, l3 = |δ3|;
ψ1 = arg(δ2/δ1), ψ2 = arg(δ3/δ2), ψ3 = arg(δ1/δ3). The equations to be solved are (∗)
and (∗∗) for 1 ≤ k ≤ 3, where α3 = α0 and β4 = β1. These six equations determine
θ1, θ2, θ3 and φ1, φ2, φ3.

14.9. The path is of length 9, and it is equivalent to ‘(0, 1) - - (1, 1) - - (1, 2) - -
(0, 2) - - (0, 1){down} . . {right}(1, 0) - - (2, 0) - - (2, 1) - - (1, 1) - - (1, 0)’. Although
unitsquare is a cycle, the cycle is broken when it is used inside a larger path; the
resulting non-cyclic square path goes down when it ends and right when it begins.
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Bernshtĕın14.10. Yes; for example, ‘z0 . . z1 . . z2 - - z3’ would be equivalent to ‘z0 . . z1 . .
{curl 2}z2{curl 2} . . {curl 2}z3’. But a path like z0 - - z1 - - z2 - - z3 would not be
affected, because all directions would turn out to be the same as before. (The path
‘z0{curl a} . . {curl b}z1’ is a straight line regardless of the values of a and b, because
equations (∗∗∗) and (∗∗∗′) always have the solution θ0 = φ1 = 0 when n = 1.)

14.11. It treats this as ‘((0, 0) . . (3, 3) . . cycle){curl 1}’; i.e., the part up to and
including ‘cycle’ is treated as a subpath (cf. ‘p2’ in Chapter 8). The cycle is broken, after
which we have ‘(0, 0) . . controls (2,−2) and (5, 1) . . (3, 3) . . controls (1, 5) and (−2, 2) . .
(0, 0){curl 1}’. Finally the ‘{curl 1}’ is dropped, because all control points are known.
(The syntax by itself isn’t really enough to answer this question, as you probably
realize. You also need to be told that the computation of directions and control points
is performed whenever hijklmnj uses the second or third alternative in the definition
of 〈path expression〉.)

14.12. True. The length of a path is the number of ‘zk . . controls uk and vk+1 . . zk+1’
segments that it contains, after all control points have been chosen.

14.13. True if 0 ≤ t ≤ 1, except perhaps for rounding errors; otherwise false. The
path z0 - - z1 expands into ‘z0 . . controls 1/3[z0, z1] and 2/3[z0, z1] . . z1’, and the
Bernshtĕın polynomial simplifies because t[w, w + δ, w + 2δ, w + 3δ] = w + 3tδ. In-
cidentally, ‘point t of (z0 - - - z1)’ is usually quite different from t[z0, z1].

14.14. If p is a cycle, or if p is a path of length ≥ 4, the stated subpath has length 2.
Otherwise the length is max(0, length p− 2).

14.15. vardef posttension expr t of p =
save q; path q;
q = point t of p {direction t of p} . . {direction t + 1of p}point t + 1of p;
length(postcontrol 0 of q − point 0 of q)

/length(postcontrol t of p − point t of p) enddef ;
vardef pretension expr t of p =

save q; path q;
q = point t− 1 of p {direction t− 1 of p} . . {direction t of p}point t of p;
length(precontrol 1 of q − point 1 of q)

/length(precontrol t of p − point t of p) enddef ;

The stated posttension turns out to be 4.54019.

14.16. The ‘&’ had to be changed to ‘. .’, because point t of p might not be exactly
equal to point u of q.

14.17. Since p intersects itself infinitely often at times (t, t), the task may seem im-
possible; but hijklmnj’s shuffled-binary search procedure provides a way. Namely,
p intersectiontimes reverse p = (0.17227, 0.28339), from which we can deduce that
t = 0.17227 and 1− u = 0.28339.

15.1. (x,-y).

15.2. (x, y) rotated 180, or (x, y) scaled −1.

15.3. True if and only if xpart t = ypart t = 0. If the stated equation holds for
at least one pair (x, y), it holds for all (x, y). According to the syntax of Chapter 8,
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affine transformations
homogeneous
parentheses
makepath
fillin
commutativity
capsule

hijklmnj interprets ‘−(x, y) transformed t’ as (−(x, y)) transformed t. (Inciden-
tally, mathematicians call hijklmnj’s transformers “affine transformations,” and the
special case in which the xpart and ypart are zero is called “homogeneous.”)

15.4. z1 + z2.

15.5. beginchar(126, 25u#, hheight# + border#, 0); "Dangerous left bend";
currentpicture := dbend reflectedabout ((.5w, 0), (.5w, h)); endchar;

The same idea can be used to create right parentheses as perfect mirror images of left
parentheses, etc., if the parentheses aren’t slanted.

15.6. Change line 9 to

draw (z1 . . . p) rotatedaround((.5w, .5h),−45)
withpen pencircle scaled 3/4pt yscaled 1/3 rotated −15;

15.7. Replace line 10 by

pickup pencircle scaled 3/4pt yscaled 1/3 rotated −60;
draw (z1 . . . p) transformed t;

16.1. If there are two points zk and zk+1 with maximum y coordinate, the value of
‘penoffset (−infinity , epsilon ) of p’ will be zk and ‘penoffset (−infinity ,−epsilon ) of p’
will be zk+1; ‘penoffset left of p’ will be one or the other. If there’s only one top point,
all three of these formulas will produce it. (Actually hijklmnj also allows pens to
be made with three or more vertices in a straight line. If there are more than two top
vertices, you can use penoffset to discover the first and the last, as above; furthermore,
if you really want to find them all, makepath will produce a path from which they
can be deduced in a straightforward manner.)

16.2. ‘pencircle scaled 1.06060’ is the diamond but ‘pencircle scaled 1.06061’
is the square. (This assumes that fillin = 0. If, for example, fillin = .1, the change
doesn’t occur until the diameter is 1.20204.) The next change is at diameter 1.5, which
gives a diamond twice the size of the first.

17.1. (a + 1) + (2a + 2) = 3a + 3 and (2a) + (2a + 1) = 4a + 1, respectively. The
final value of x in the first case is 2a+2, hence a = .5x−1; expr will report the answer
as 1.5x (in terms of x’s new value), since it has not been told about ‘a’. In the second
case expr will, similarly, say 2x-1.

This example shows that α+β is not necessarily equal to β +α, when α and β
involve group expressions. hijklmnj evaluates expressions strictly from left to right,
performing the statements within groups as they appear.

17.2. The save instruction gives ‘?’ a fresh meaning, hence ‘?’ is a numeric variable
unconnected to any other variables. When the group ends and ‘?’ is restored to its
old meaning, the value of the group expression no longer has a name. (It’s called a
“capsule” if you try to show it.) Therefore the value of the group expression is a new,
nameless variable, as desired.

17.3. It’s a nameless pair whose xpart and ypart are equal; thus it is essentially
equivalent to ‘whatever ∗ (1, 1)’.
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special-purpose
...

17.4. ‘v3 := begingroup save ?; picture ?; ? endgroup’ refreshes the picture
variable v3 without changing other variables like v2. This construction works also for
pairs, pens, strings, etc.

18.1. Yes; the direction at z.j will be either left or right .

18.2. beginlogochar("A",15);

(Figure A18a will be inserted here;
too bad you can’t see it now.)

x1=.5w;
x2=x4=leftstemloc;
x3=x5=w-x2;
top y1=h+o;
y2=y3=barheight;
bot y4=bot y5=-o;
draw z4--z2--z3--z5;
super_half(2,1,3);
labels(1,2,3,4,5);
endchar;

Notice that all three calls of super_half in logo.mf are of the form ‘super half (2, j, 3)’.
But it would not be good style to eliminate parameters i and k, even though super_half
is a special-purpose subroutine; that would make it too too special.

18.3. If bracket = 0 or serif darkness = 0. (It’s probably not a good idea to make
serif darkness = 0, because this would lead to an extreme case of the ‘. . .’ triangle,
which might not be numerically stable in the presence of rounding errors.) Another
case, not really desirable, is left jut = right jut = 0.

18.4. That’s a strange question. The serif routine includes a penpos that defines
z$l, z$, and z$r relative to each other, and it defines the other six points relative to
them. Outside the routine the user ought to specify just one x coordinate and one
y coordinate, in order to position all of the points. This can be done either before or
after serif is called, but hijklmnj has an easier job if it’s done beforehand.

18.5. Yes; see the previous exercise. (But in the program for "A" it’s necessary to
define y4l and y5r, so that theta 4 and theta 5 can be calculated.)

18.6. beginchar("H", 13u#, ht#, 0);

(Figure A18b will be inserted here; too bad
you can’t see it now.)

x1 = x2 = x5 = 3u;
x3 = x4 = x6 = w − x1;
y1c = y3c = h; y2c = y4c = 0;
serif (1, thick ,−90, jut , jut );
serif (2, thick , 90, jut , jut );
serif (3, thick ,−90, jut , jut );
serif (4, thick , 90, jut , jut );
fill serif edge 2

- - reverse serif edge 1 - - cycle;
fill serif edge 4

- - reverse serif edge 3 - - cycle;
penpos5(thin , 90); penpos6(thin , 90);
y5 = y6 = .52h; penstroke z5e - - z6e;
penlabels(1, 2, 3, 4, 5, 6); endchar.
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future pen18.7. def top serif (suffix $)(expr xx , theta , left jut , right jut ) =
penpos$(xx , 0); z$a − z$l = z$f − z$r = (bracket/abs sind theta ) ∗ dir theta ;
y$c = y$d = y$; x$c = x$l − left jut ; x$d = x$r + right jut ;
z$b = z$l + whatever ∗ dir theta = z$c + whatever ∗ dir−phi ;
z$e = z$r + whatever ∗ dir theta = z$d + whatever ∗ dir phi ;
labels($a, $b, $c, $d, $e, $f) enddef ;

def top serif edge suffix $ =
(z$a . . controls z$b . . z$c

- - (flex (z$c, .5[z$c, z$d]− dishing , z$d)) shifted (0, +epsilon )
- - z$d . . controls z$e . . z$f ) enddef ;

18.8. Assuming that py = 0, the effective right stroke weight would be px ·sin(θ5−φ)
if it were drawn with one stroke of broad pen , and xxx · sin θ5 is the additional weight
corresponding to separate strokes xxx apart. The right-hand side of the equation is
the same calculation in the case of vertical strokes (θ = 90◦), when the stroke weight
of "I" is considered. (Since a similar calculation needs to be done for the letters K,
V, W, X, Y, and Z, it would be a good idea to embed these details in another macro.)

18.9. beginchar("H", 13u#, ht#, 0);

(Figure A18c will be inserted here; too bad
you can’t see it now.)

x1 = x2 = x5 = 3u;
x3 = x4 = x6 = w − x1;
y1 = y3 = h; y2 = y4 = 0;
top serif (1, xx ,−90, jut , jut );
bot serif (2, xx , 90, jut , jut );
top serif (3, xx ,−90, jut , jut );
bot serif (4, xx , 90, jut , jut );
filldraw bot serif edge 2

- - reverse top serif edge 1 - - cycle;
fill bot serif edge 4

- - reverse top serif edge 3 - - cycle;
y5 = y6 = .52h; draw z5 - - z6;
penlabels(1, 2, 3, 4, 5, 6); endchar.

18.10. The replacement text contains ten tokens,

def 〈t〉 = 〈e〉 enddef ; def t = 〈p〉

where 〈t〉, 〈e〉, and 〈p〉 are placeholders for argument insertion. When this macro is
expanded with tracingmacros > 0, hijklmnj will type

foo(TEXT0)<expr>of<primary>->def(TEXT0)=(EXPR1)enddef;def.t=(EXPR2)

followed by the arguments (TEXT0), (EXPR1), and (EXPR2).

18.11. According to the rule just stated, the first comma is an abbreviation for ‘}} {{’.
Hence the first argument is a capsule containing the value of x; the second is the text
‘(,’ ; the third is the text ‘(}})’.

18.12. This snares future pens before they’re converted to pens, because pickup
wants to yscale by aspect ratio before ellipses change to polygons.
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vacuous
endfor
show
str

18.13. The construction ‘hide (〈statement list〉)’ expands into ‘gobble begingroup
〈statement list〉; endgroup’, so the argument to gobble must be evaluated. The
begingroup causes hijklmnj to start executing statements. When that has been
done, the final statement turns out to be 〈empty〉, so the argument to gobble turns
out to be a vacuous expression (cf. Chapter 25). Finally, gobble ’s replacement text is
empty, so the hidden text has indeed disappeared. (The hide macro in Appendix B is
actually a bit more efficient, but a bit trickier.)

19.1. Then hijklmnj’s “stomach” would see ‘;’ if mag is known, but there would
be no change if mag is unknown. An extra semicolon is harmless, since hijklmnj
statements can be 〈empty〉. But it’s wise to get in the habit of putting ‘;’ before fi,
because it saves a wee bit of time and because ‘;’ definitely belongs before endfor.

19.2. No; that would be shocking.

19.3. Yes, if and only if n − 1
2 is an even integer. (Because ambiguous values are

rounded up.)

19.4. No.

19.5. def even = not odd enddef .

19.6. The first is 5, because the pair is not considered to be a path. The second and
third are 0, because the pair is forced to become a path.

19.7. (a) The loop text is never executed. (b) It’s executed only once, for x = 1.
(c) It’s executed infinitely often, for x = 1, 1, 1, . . . . (d) Since ten times hijk-
lmnj’s internal representation of .1 is slightly larger than 1, the answer is not what
you probably expect! The loop text is executed for x = 0, 0.1, 0.20001, 0.30002,
0.40002, 0.50003, 0.60004, 0.70004, 0.80005, and 0.90005 only. (If you want the values
(0, .1, .2, . . . , 1), say ‘ for xx = 0 upto 10: x := xx /10; 〈text〉 endfor’ instead.)

19.8. m = 1, n = 0.

19.9. def exitunless expr b = exitif not b enddef . (The simpler alternative
‘def exitunless = exitif not enddef ’ wouldn’t work, since ‘not’ applies only to the
following 〈primary〉.)

19.10. numeric p[]; boolean n_is_prime; p[1]=2; k:=1;
for n=3 step 2 until infinity:
n_is_prime:=true;
for j=2 upto k: if n mod p[j]=0: n_is_prime:=false; fi
exitif n/p[j]<p[j]; endfor

if n_is_prime: p[incr k]:=n; exitif k=30; fi
endfor fi

show for k=1 upto 30: str p[k]&"="&decimal p[k], endfor "done" end.

19.11. ‘0; exitif true;’.

20.1. False; consider ‘a1(2)’.

20.2. A value very close to z2.
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**
tolerance
str
(EXPR
(SUFFIX
(TEXT
at sharp
at
sharp at
origin
skyline
histogram

20.3. vardef lo_cube(expr x)=x*x*x<10 enddef;
show solve lo_cube(0,10), 10**1/3; end.

With the default tolerance of 0.1, this will show the respective values 2.14844 and
2.1544. A more general routine could also be written, with ‘10’ as a parameter:

vardef lo_cube[](expr x)=x*x*x<@ enddef;
show solve lo_cube10(0,10);

if we ask for minimum tolerance (tolerance := epsilon ), the result is 2.15445; the true
value is ≈ 2.15443469.

20.4. begingroup(p5dx,p5dy)endgroup.

20.5. Say ‘first#@’ after defining ‘vardef first.a[]@#=@ enddef’. (There are
other solutions, e.g., using substrings of str #@, but this one is perhaps the most
instructive.)

20.6. The machine answers thus:

incr=macro:<suffix>->
begingroup(SUFFIX2):=(SUFFIX2)+1;(SUFFIX2)endgroup

z@#=macro:->begingroup(x(SUFFIX2),y(SUFFIX2))endgroup

Parameters to a macro are numbered sequentially, starting with zero, and classified as
either (EXPRn), (SUFFIXn), or (TEXTn). In a vardef, (SUFFIX0) and (SUFFIX1) are
always reserved for the implicit parameters #@ and @; (SUFFIX2) will be @#, if it is used
in the parameter heading, otherwise it will be the first explicit parameter, if it happens
to be a suffix parameter.

20.7. secondarydef t transum tt =
begingroup save T; transform T;
for z=origin,up,right:
z transformed t + z transformed tt = z transformed T; endfor
T endgroup enddef.

21.1. False; about twice as often (2/3 versus 1/3).

21.2. 1+floor uniformdeviate n.

21.3. A random point on the straight line segment from z1 to z2. (The point z1

itself will occur with probability about 1/65536; but point z2 will never occur.)

21.4. A random “skyline” texture, 100 pt wide× 10 pt tall: �
The density decreases uniformly as you go up in altitude.

21.5. A more-or-less bell-shaped histogram: ~

22.1. (a) Iff n is an integer between 0 and 255. (b) Iff s is a string of length 1.

22.2. Whoever says that there’s no such primitive operation has forgotten about
scantokens.



252 Appendix A: Answers to All the Exercises

Hobby22.3. vardef octal primary n =
save m,s; m:=abs round n; string s; s=decimal(m mod 8);
forever: m:=m div 8; exitif m=0;
s:=decimal(m mod 8) & s; endfor

s enddef;

‘str[m mod 8]’ could also be used instead of ‘decimal(m mod 8)’.

23.1. Point (x, y) is the upper left corner, (x + c1 − c0, y) is the upper right corner,
(x, y − r1 + r0) is the lower left corner, and (x + c1 − c0, y − r1 + r0) is the lower right
corner. (Pixels outside this rectangle will not be displayed.)

23.2. Redefine openit so that it puts the top left at (−50, 280).

23.3. (This routine is due to John Hobby.)

newinternal n_windows; % the number of windows allocated so far
newinternal screen_bot; % the first untouched screen row
pair screen_corner; % the upper left corner of next window
def wipescreen = % do this to initialize or reinitialize
for i:=1 upto n_windows: display blankpicture inwindow i; endfor
n_windows := screen_bot := 0; screen_corner := origin enddef;
wipescreen;
vardef new_window@#(expr u,v) = save r,c,up_lft; pair up_lft;
if n_windows=15: errmessage "No more windows left"
else: window@# := incr n_windows;
up_lft = (min(xpart u,xpart v), max(ypart u, ypart v));
(r,c) = (u+v-2up_lft) rotated 90;
if ypart screen_corner + c > screen_cols:
screen_corner:=(screen_bot,0); fi
openwindow window@# from screen_corner
to screen_corner+(r,c) at up_lft;

screen_bot := max(screen_bot,xpart screen_corner + r);
screen_corner := screen_corner + (0,c) fi; enddef;

24.1. The entire path now has negative y coordinates except at point (0, 0), so
the outline of the filled region is (0,−1) - - (10,−1) - - (10, 0) - - (0, 0) - - (0, 1) - - cycle.
(Notice that the digitized outline actually goes up to (0, 1) before coming straight down
again. This fills no pixels, but hijklmnj correctly puts “cancelling” edges from (0, 0)
to (0, 1) and back to (0, 0) into its edge structure, because the point (0, .5) is on the
boundary and rounds to (0, 1).)

24.2. The horizontal tangents are already taken care of by the equations top y1 =
h + o and bot y4 = −o, so nothing needs to be done there. We should, however, say

x2 = w − x3 = good.x (1.5u + s)

so that vertical tangents will occur in good places. Since w is an integer, and since the
logo pen has left-right symmetry, w − x3 will be good if and only if x3 is.

24.3. Let b be the pen breadth. Then .5w is a good x value if and only if lft .5w is
an integer; but lft .5w = .5w − .5b, and this is an integer if and only if w − b is even.
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draw
floor

24.4. There are no ambiguous points on the outlines of this stroke, except perhaps
on the top and bottom edges; the latter can occur only if round py is odd. Hence
there is always left-right symmetry, but top-bottom symmetry might fail because of a
missing row at the bottom (e.g., when px = py = 3). In a case like the ‘j ’ we do have
both symmetries, because y1 and x4 are in good positions.

24.5. No matter where you place the octagon so that it isn’t touching any ambiguous
points, exactly seven ambiguous points are inside it; hence every one-point draw fills
exactly seven pixels. (In fact, you always get one of the patterns RRRRRRR,

RRRRRRR,
RRRRRRR , or RRRRRRR .)

24.6. f = .5(x4−x3); the desired equation is ‘x1−x2 = round(x1−x2+.5(x4−x3))’.

24.7. Let x3 = n + 1
2 + θ, where n is an integer and 0 ≤ θ < 1. By drawing lines of

slope 30◦ from the pixel centers, we find that there are three cases for the rightmost
four columns:

Case A, RRRRRRRR ; Case B,
RRRRRRRRRR ; Case C,

RRRRRRRRRRRR .

Case A occurs for 0 ≤ θ < 2
√

3− 3; Case B occurs for 2
√

3− 3 ≤ θ <
√

3− 1; Case C
occurs for

√
3− 1 ≤ θ < 1. The tip in Case A looks a bit too sharp, and Case C looks

too blunt, so Case B seems best. This case occurs when x3 is near an integer, so it’s
OK to let x3 be an integer.

24.8. Let y1 = n + θ. If θ lies between 1
2

√
3 − 1

2 and 1
6

√
3 + 1

2 , the top row after
digitization will contain two black pixels. If θ lies between 1

6

√
3 + 1

2 and 5
6

√
3− 1

2 , we
get the desired shape. Otherwise we get ‘ RRRRRRRR’.

24.9. (We choose θ = 1
2

√
3 in the previous exercise, since this is the midpoint of the

desirable interval.) The equations are changed to

x1 = x2 = w − x3 = round s;
y3 = .5 + floor .5h;
z1 − z2 = (z3 − z2) rotated 60;
y1 := .5 sqrt 3 + round(y1 − .5 sqrt 3);
y2 := h− y1;

and then we fill z1 - - z2 - - z3 - - cycle as before.

24.10. vardef vround primary v =
floor(v ∗ aspect ratio + .5)/aspect ratio enddef ;

vardef good.y primary y =
vround (y + pen top)− pen top enddef .

24.11. (m+1/2, (n+1/2)/aspect ratio). These are the points that currenttransform
maps into pixel centers.

25.1. By looking at the syntax rules, we find, for example,

〈boolean expression〉 true
〈numeric expression〉 0
〈pair expression〉 (0,0)
〈path expression〉 makepath pencircle
〈pen expression〉 nullpen



254 Appendix A: Answers to All the Exercises

delimiter
Missing token has been inserted
capsule

〈picture expression〉 nullpicture
〈string expression〉 ""
〈transform expression〉 Impossible!
〈vacuous expression〉 begingroup endgroup

Every 〈transform expression〉 includes either a variable or a capsule. Incidentally, there
are some amusing alternative 5-token solutions for 〈pair expression〉:

postcontrol 0 of makepath nullpen
makepath pencircle intersectiontimes makepath nullpen

26.1. The responses are

> a=left delimiter that matches ::
> b=(outer) a
> c=a

because: a has been redefined from internal quantity to delimiter; b is still an internal
quantity (named a), and it has been stamped outer; c denotes the same internal
quantity, but it hasn’t got outerness.

27.1. We want to delete

0 [ 1 + sqrt 43 ]

from the sequence of tokens that hijklmnj is about to read next, in order to get
rid of the right bracket, which we can see is going to be just as erroneous as the left
bracket was. However, there is another way to proceed (and indeed, this alternative
would be preferable to counting tokens, if the bracketed expression were longer): We
could simply delete 2 tokens, then ‘I(’. This would produce another error stop,

! Missing ‘)’ has been inserted.
<to be read again>

]
<*> show round[1 + sqrt43]

;
? h
I found no right delimiter to match a left one. So I’ve
put one in, behind the scenes; this may fix the problem.
?

after which it’s easy to delete the ‘]’ and continue successfully.

27.2. hijklmnj looked ahead, to see if the expression being evaluated was going
to be something like ‘round 0[1+sqrt43,x]’. But when it found no comma, it put
back several tokens so that they could be read again. (The subexpression 1+sqrt43
had already been evaluated, so a “capsule” for its value, 7.55743, was inserted among
the tokens to be reread.) The expression ended with ‘0’, and ‘round 0’ was shown.
Then hijklmnj found extra tokens following the show command; a semicolon should
have come next. To continue, the user should just plunge ahead recklessly once again,
letting hijklmnj delete those unwanted tokens.
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counterclockwise
SHAKESPEARE
KNUTH

27.3. The little program

path p,q; p=flex((-32,481),(-42,455),(-62,430));
q=flex((-62,430),(-20,452),(42,448));
show p intersectiontimes q, p intersectionpoint q,
angle -direction 2 of p, angle direction 0 of q; end

gives the following results:

>> (1.88403,0.07692)
>> (-59.32149,432.59523)
>> 43.14589
>> 45.47263

(Actually, the paths would also cross if 452 were 451, but it’s such a close call that
hijklmnj doesn’t call the path strange; hijklmnj prefers to turn counterclockwise
when the amount of turn is close enough to 180◦, even if it’s slightly more.)

27.4. If this exercise isn’t just a joke, the title of this appendix is a lie. (When
you’ve solved this exercise you might also try to find all the lies and/or jokes that are
the same in both this book and The TEXbook.)

Looke into this Businesse thorowly,
And call these foule Offendors to their Answeres.

— WILLIAM SHAKESPEARE, Second Part of Henry the Sixth (1594)

If you can’t solve a problem,
you can always look up the answer.

But please, try first to solve it by yourself;
then you’ll learn more and you’ll learn faster.

— DONALD E. KNUTH, The \]^_efg^book (1986)



(page 256)

B
Basic

Operations



Appendix B: Basic Operations 257

table, useful
inventory
Boolean
Numeric

This appendix defines the macros of the plain METAFONT base. Let’s begin with
an informal inventory of all the features that are available.

Boolean things: true, false;

{ known
unknown
cycle

}

〈expression〉;

odd 〈numeric〉; charexists 〈numeric〉;










































boolean
numeric
pair
path
pen

picture
string

transform











































〈expression〉;



















〈boolean〉
〈numeric〉
〈pair〉
〈string〉

〈transform〉













































<
<=
=
<>
>=
>













































〈boolean〉
〈numeric〉
〈pair〉
〈string〉

〈transform〉



















;

not 〈boolean〉; 〈boolean〉 and 〈boolean〉; 〈boolean〉 or 〈boolean〉.

Numeric things: tracingtitles, . . . , yoffset (see Chapter 25);
eps, epsilon, infinity; tolerance, join_radius, displaying; 〈constant〉;


















sqrt
sind
cosd
mlog
mexp



















〈numeric〉;



















floor
round
hround
vround
ceiling



















〈numeric〉;



























lft
rt
top
bot

good.x
good.y



























〈numeric〉;

{xpart
ypart

}

{

〈pair〉
〈transform〉

}

;











xxpart
xypart
yxpart
yypart











〈transform〉;

{

ASCII
oct
hex

}

〈string〉;

normaldeviate; uniformdeviate 〈numeric〉; whatever;
angle 〈pair〉; turningnumber 〈cycle〉; totalweight 〈picture〉;
{

+
-

〈constant〉

}

〈numeric〉;
{

incr
decr

}

〈variable〉; byte

{

〈numeric〉
〈string〉

}

;

〈numeric〉
{+
-

}

〈numeric〉; 〈numeric〉
{ ++
+-+

}

〈numeric〉;

〈numeric〉

{ *
/
**

}

〈numeric〉; 〈numeric〉
{

mod
div

}

〈numeric〉;

〈pair〉 dotprod 〈pair〉;
{max
min

}

(〈numerics〉);
{

abs
length

}











〈numeric〉
〈pair〉
〈path〉
〈string〉











;

〈numeric〉[〈numeric〉,〈numeric〉]; solve〈function〉(〈numeric〉,〈numeric〉);
directiontime 〈pair〉 of 〈path〉.
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Pair
Path
Pen
Picture
String
Transform

Pair things: left, right, up, down, origin; (〈numeric〉,〈numeric〉);
z〈suffix〉; dir 〈numeric〉; unitvector 〈pair〉; round 〈pair〉;










lft
rt
top
bot











〈pair〉;











good.lft
good.rt
good.top
good.bot











〈pair〉;











point
precontrol
postcontrol
direction











〈numeric〉 of 〈path〉;

{

+
-

〈constant〉

}

〈pair〉; 〈pair〉
{+
-

}

〈pair〉; 〈numeric〉[〈pair〉,〈pair〉];

〈numeric〉*〈pair〉; 〈pair〉
{*
/

}

〈numeric〉; 〈pair〉〈transformer〉;

〈path〉
{

intersectionpoint
intersectiontimes

}

〈path〉;
{max
min

}

(〈pairs〉);

penoffset 〈pair〉 of 〈pen〉; directionpoint 〈pair〉 of 〈path〉.

Path things: quartercircle, halfcircle, fullcircle;
unitsquare; flex(〈pairs〉); makepath 〈pen〉;
superellipse(〈pair〉,〈pair〉,〈pair〉,〈pair〉,〈numeric〉);
reverse 〈path〉; counterclockwise 〈path〉; tensepath 〈path〉;
〈path〉〈transformer〉; interpath(〈numeric〉,〈path〉,〈path〉);

{

〈pair〉
〈path〉

}







{〈pair〉}
{〈curl〉}
〈empty〉

















































..
...

..〈tension〉..
..〈controls〉..

--
---
&

softjoin

















































{〈pair〉}
{〈curl〉}
〈empty〉













〈pair〉
〈path〉
cycle







;

subpath 〈pair〉 of 〈path〉.

Pen things: pencircle, pensquare, penrazor, penspeck;
nullpen; currentpen; makepen 〈path〉; 〈pen〉〈transformer〉.

Picture things: nullpicture, blankpicture; unitpixel;

currentpicture;
{+
-

}

〈picture〉; 〈picture〉
{+
-

}

〈picture〉;

〈picture〉〈transformer〉.

String things: "constant"; ditto; jobname; readstring;
str〈suffix〉; decimal 〈numeric〉; char 〈numeric〉;

〈string〉 & 〈string〉;
{max
min

}

(〈strings〉); substring 〈pair〉 of 〈string〉.

Transform things: identity; currenttransform;
inverse 〈transform〉; 〈transform〉〈transformer〉.
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Transformers
Conditions
Loops
Diagnostic things
Starting a job
Conversion to pixel units

Transformers: transformed 〈transform〉;
{

rotated
slanted

}

〈numeric〉;

{ scaled
xscaled
yscaled

}

〈numeric〉;
{

shifted
zscaled

}

〈pair〉;

reflectedabout(〈pair〉,〈pair〉); rotatedaround(〈pair〉,〈numeric〉).

Conditions:

if 〈boolean〉: 〈text〉 {elseif〈boolean〉: 〈text〉}≥0
{

else: 〈text〉
〈empty〉

}

fi.

Loops: forever:〈text〉 endfor;

for ν
{ =
:=

}







〈numeric〉 upto 〈numeric〉
〈numeric〉 downto 〈numeric〉

〈numeric〉 step 〈numeric〉 until 〈numeric〉







: 〈text(ν)〉 endfor;

for ε
{ =
:=

}

〈expressions〉: 〈text(ε)〉 endfor;

forsuffixes σ
{ =
:=

}

〈suffixes〉: 〈text(σ)〉 endfor;

exitif 〈boolean〉; ; exitunless 〈boolean〉; .

Diagnostic things: ???; interact; hide(〈statements〉);
loggingall, tracingall, tracingnone.

Starting a job: \mode=〈modename〉; mag=

{

〈numeric〉
magstep〈numeric〉

}

;

screenchars; screenstrokes; imagerules; gfcorners; nodisplays;
notransforms; input 〈filename〉.

Conversion to pixel units: mode_setup; fix_units;
pixels_per_inch, blacker, fillin, o_correction;
mm#, cm#, pt#, pc#, dd#, cc#, bp#, in#;
mm, cm, pt, pc, dd, cc, bp, in;
mode_def; extra_setup;


























































define_pixels
define_whole_pixels

define_whole_vertical_pixels
define_good_x_pixels
define_good_y_pixels
define_blacker_pixels

define_whole_blacker_pixels
define_whole_vertical_blacker_pixels

define_corrected_pixels
define_horizontal_corrected_pixels



























































(〈names〉).
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Drawing
Screen display
Statements

Character and font administration:
beginchar(〈code〉,〈width#〉,〈height#〉,〈depth#〉); extra_beginchar;
italcorr 〈numeric#〉; change_width; endchar; extra_endchar;










































font_size
font_slant

font_normal_space
font_normal_stretch
font_normal_shrink

font_x_height
font_quad

font_extra_space











































{ =
:=

〈empty〉

}

〈numeric#〉;



















ligtable〈ligs/kerns〉
charlist〈codes〉
extensible〈codes〉
fontdimen〈info〉
headerbytes〈info〉



















;

{

font_identifier
font_coding_scheme

}

{ =
:=

〈empty〉

}

〈string〉.

Drawing: penpos〈suffix〉(〈length〉,〈angle〉); penstroke 〈path(e)〉;

pickup

{

〈pen〉
〈saved pen number〉

}

; 〈pen number〉:=savepen; clear_pen_memory;

pen_lft, pen_rt, pen_top, pen_bot;










fill
unfill

filldraw
unfilldraw











〈cycle〉;

{

draw
undraw
cutdraw

}

〈path〉;
{

drawdot
undrawdot

}

〈pair〉;

erase 〈picture command〉; cutoff(〈pair〉,〈angle〉);
addto 〈picture variable〉 also 〈picture〉;

addto 〈picture variable〉
{

contour 〈cycle〉
doublepath 〈path〉

} {

withpen〈pen〉
withweight〈numeric〉

}

≥0
;

cull 〈picture variable〉
{

keeping
dropping

}

〈pair〉
{

withweight〈numeric〉
〈empty〉

}

.

Screen display: currentwindow; screen_rows, screen_cols;
openwindow 〈numeric〉 from 〈screen pair〉 to 〈screen pair〉 at 〈pair〉;
display 〈picture variable〉 inwindow 〈numeric〉.

Statements: 〈empty〉; 〈string〉; begingroup 〈statements〉 endgroup;
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〈names〉;

save 〈names〉; interim 〈internal〉 := 〈numeric〉; let 〈name〉
{ =
:=

}

〈name〉;



Appendix B: Basic Operations 261

Proofsheet
base file
plain.mf

{

def
vardef

}

〈name〉〈parameters〉
{ =
:=

}

〈text〉 enddef;

{ primarydef
secondarydef
tertiarydef

}

α 〈name〉 β
{ =
:=

}

〈text(α, β)〉 enddef;

showit; shipit; cullit; openit; clearit; clearxy; clearpen;

stop 〈string〉; show 〈expressions〉;

{ message
errmessage
errhelp

}

〈string〉;

{

showvariable
showtoken

}

〈names〉;
{

showdependencies
showstats

}

;

see also Chapter 26 for some more exotic commands.

Proofsheet information:

{

labels
penlabels

}



















top
lft
rt
bot

〈empty〉



















{

nodot
〈empty〉

}

(〈suffixes〉);

makelabel
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(〈string〉,〈pair〉);
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titlefont
labelfont
grayfont
slantfont
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〈name〉;

{

proofrule
screenrule

}

(〈pair〉,〈pair〉); makegrid(〈pairs〉)(〈pairs〉);

proofrulethickness 〈numeric〉; proofoffset 〈pair〉.

Hacks: gobble, gobbled; capsule_def; numtok.

� The remainder of this appendix contains an edited transcript of the “plain
base file,” which is a set of macros that come with normal implementations

of hijklmnj. These macros serve three basic purposes: (1) They make hijk-
lmnj usable, because hijklmnj’s primitive capabilities operate at a very low level.
A “virgin” hijklmnj system that has no macros is like a newborn baby that has
an immense amount to learn about the real world; but it is capable of learning fast.
(2) The plain hijklmnj macros provide a basis for more elaborate and powerful bases
tailored to individual tastes and applications. You can do a lot with plain hijklmnj,
but pretty soon you’ll want to do even more. (3) The macros also serve to illustrate
how additional bases can be designed.

Somewhere in your computer system you should be able to find a file called
plain.mf that contains what has been preloaded into the running hijklmnj system
that you use. That file should match the code discussed below, except that it might
do some things in an equivalent but slightly more efficient manner.
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INIMF
dump
delimiters
message
blash blash
upto
downto
exitunless
relax
]]
–
—
...
gobble
killtext
gobbled
hide
???
stop
MFT
pretty-printed
vacuous
exitif
internal quantities
smoothing
autorounding
turningcheck
granularity
interact

When we come to macros whose use has not yet been explained—for example,
somehow softjoin and stop never made it into Chapters 1 through 27—we shall
consider them from a user’s viewpoint. But most of the comments that follow are
addressed to a potential base-file designer.

A special program called INIMF is used to install hijklmnj; INIMF is just
like hijklmnj except that it is able to ‘dump’ a base file suitable for preloading.
This operation requires additional program space, so INIMF generally has less memory
available than you would expect to find in a production version of hijklmnj.

1. Getting started. A base file has to have a delimiters command near the beginning,
since INIMF doesn’t have any delimiters built in. The first few lines usually also give
the base file a name and version number as shown here.

% This is the plain METAFONT base that’s described in The METAFONTbook.
% N.B.: Please change "base_version" whenever this file is modified!
% And don’t modify the file under any circumstances.
string base_name, base_version; base_name="plain"; base_version="2.71";

message "Preloading the plain base, version " & base_version;

delimiters (); % this makes parentheses behave like parentheses

Next we define some of the simplest macros, which provide “syntactic sugar”
for commonly occurring idioms. For example, ‘stop "hello"’ displays ‘hello’ on the
terminal and waits until 〈return〉 is typed.

def upto = step 1 until enddef; def downto = step -1 until enddef;
def exitunless expr c = exitif not c enddef;
let relax = \; % ignore the word ‘relax’, as in TeX
let \\ = \; % double relaxation is like single
def ]] = ] ] enddef; % right brackets should be loners
def -- = {curl 1}..{curl 1} enddef;
def --- = .. tension infinity .. enddef;
def ... = .. tension atleast 1 .. enddef;

def gobble primary g = enddef; def killtext text t = enddef;
primarydef g gobbled gg = enddef;
def hide(text t) = exitif numeric begingroup t; endgroup; enddef;
def ??? = hide(interim showstopping:=1; showdependencies) enddef;
def stop expr s = message s; gobble readstring enddef;

(Chapter 20 points out that ‘\’ is an expandable token that expands into nothing.
Plain hijklmnj allows also ‘\\’, because there’s a formatting program called MFT
that uses \\ to insert extra spacing in a pretty-printed listing.) The “clever” code for
hide is based on the fact that a vacuous expression is not numeric; hence no loop is
exited, and the computer doesn’t mind the fact that we may not be in a loop at all.

The values of internal quantities are next on the agenda:

smoothing:=1; autorounding:=2; % this adjusts curves to the raster
turningcheck:=2; % this will warn about a "strange path"
granularity:=1; % this says that pixels are pixels

def interact = % prepares to make "show" commands stop
hide(showstopping:=1; tracingonline:=1) enddef;
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loggingall
tracingall
tracingnone
semicolon
eps
epsilon
infinity
origin
up
down
right
left
quartercircle
halfcircle
fullcircle
unitsquare
identity
blankpicture
unitpixel
ditto

def loggingall = % puts tracing info into the log
tracingcommands:=3; tracingedges:=2; tracingtitles:=1;
tracingequations:=1; tracingcapsules:=1; tracingspecs:=1;
tracingpens:=1; tracingchoices:=1; tracingstats:=1;
tracingoutput:=1; tracingmacros:=1; tracingrestores:=1;
enddef;

def tracingall = % turns on every form of tracing
tracingonline:=1; showstopping:=1; loggingall enddef;

def tracingnone = % turns off every form of tracing
tracingcommands:=0; tracingonline:=0; showstopping:=0;
tracingedges:=0; tracingtitles:=0; tracingequations:=0;
tracingcapsules:=0; tracingspecs:=0; tracingpens:=0;
tracingchoices:=0; tracingstats:=0; tracingoutput:=0;
tracingmacros:=0; tracingrestores:=0; enddef;

The user can say interact in the midst of a statement; but loggingall, tracingall,
and tracingnone should come between statements. (You don’t need a semicolon after
them, because they come equipped with their own closing ‘;’.)

2. Math routines. The second major part of plain.mf contains the definitions of basic
constants and mathematical macros that extend the primitive capabilities of hijk-
lmnj’s expressions.

% numeric constants
newinternal eps,epsilon,infinity;
eps := .00049; % this is a pretty small positive number
epsilon := 1/256/256; % but this is the smallest
infinity := 4095.99998; % and this is the largest

% pair constants
pair right,left,up,down,origin;
origin=(0,0); up=-down=(0,1); right=-left=(1,0);

% path constants
path quartercircle,halfcircle,fullcircle,unitsquare;
quartercircle=(right{up}..(right+up)/sqrt2..up{left}) scaled .5;
halfcircle=quartercircle & quartercircle rotated 90;
fullcircle=halfcircle & halfcircle rotated 180 & cycle;
unitsquare=(0,0)--(1,0)--(1,1)--(0,1)--cycle;

% transform constants
transform identity;
for z=origin,right,up: z transformed identity = z; endfor

% picture constants
picture blankpicture,unitpixel;
blankpicture=nullpicture; % ‘display blankpicture...’
unitpixel=nullpicture; addto unitpixel contour unitsquare;

% string constants
string ditto; ditto = char 34; % ASCII double-quote mark
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pensquare
penrazor
future pens
capsule
capsule def
penspeck
whatever
abs
round
hround
vround
ceiling
byte
dir
unitvector
inverse
counterclockwise
autorounding
turningnumber
tensepath

% pen constants
def capsule_def(suffix s) primary u = def s = u enddef enddef;
capsule_def(pensquare) makepen(unitsquare shifted -(.5,.5));
capsule_def(penrazor) makepen((-.5,0)--(.5,0)--cycle);
pen penspeck; penspeck=pensquare scaled eps;

The pensquare and penrazor constants are defined here in a surprisingly roundabout
way, just so that they can be future pens instead of pens. hijklmnj can transform a
future pen much faster than a pen, since pens have a complex internal data structure,
so this trick saves time. But how does it work? Well, a variable cannot be a future pen,
but a capsule can; hence pensquare and penrazor are defined, via capsule def , to
be macros that expand into single capsules. Incidentally, penspeck is an extremely
tiny little pen that is used by the drawdot macro. Since it is not intended to be
transformed, we are better off making it a pen; then it’s immediately ready for use.

Now that the basic constants have been defined, we turn to mathematical
operations. There’s one operation that has no arguments:

% nullary operators
vardef whatever = save ?; ? enddef;

The reasoning behind this is discussed in exercise 17.2.
Operations that take one argument are introduced next.

% unary operators
let abs = length;

vardef round primary u =
if numeric u: floor(u+.5)
elseif pair u: (hround xpart u, vround ypart u)
else: u fi enddef;

vardef hround primary x = floor(x+.5) enddef;
vardef vround primary y = floor(y.o_+.5)_o_ enddef;

vardef ceiling primary x = -floor(-x) enddef;

vardef byte primary s = if string s: ASCII fi s enddef;

vardef dir primary d = right rotated d enddef;

vardef unitvector primary z = z/abs z enddef;

vardef inverse primary T =
transform T_; T_ transformed T = identity; T_ enddef;

vardef counterclockwise primary c =
if turningcheck>0:
interim autorounding:=0;
if turningnumber c <= 0: reverse fi fi c enddef;

vardef tensepath expr r =
for k=0 upto length r - 1: point k of r --- endfor
if cycle r: cycle else: point infinity of r fi enddef;



Appendix B: Basic Operations 265

efficiency
private
underscore
mod
div
dotprod
takepower
**
direction
directionpoint
directiontime
intersectionpoint
intersectiontimes
internal quantity
efficient

Notice that the variable ‘T_’ was not saved by the inverse function. The plain base
routines gain efficiency by using “private” tokens that are assumed to be distinct from
any of the user’s tokens; these private tokens always end with the underscore charac-
ter, ‘_’. If ordinary user programs never contain such token names, no surprises will
occur, provided that different macro designers who combine their routines are careful
that their private names are not in conflict.

The private tokens ‘o_’ and ‘_o_’ used in vround stand for ‘*aspect_ratio’
and ‘/aspect_ratio’, respectively, as we shall see shortly.

Now we define ‘mod’ and ‘div’, being careful to do this in such a way that the
identities a(x mod y) = (ax) mod (ay) and (ax) div (ay) = x div y are valid.

% binary operators
primarydef x mod y = (x-y*floor(x/y)) enddef;
primarydef x div y = floor(x/y) enddef;
primarydef w dotprod z = (xpart w * xpart z + ypart w * ypart z) enddef;

The ‘**’ operator is designed to be most efficient when it’s used for squaring.
A separate ‘takepower’ routine is used for exponents other than 2, so that hijklmnj
doesn’t have to skip over lots of tokens in the common case. The takepower routine is
careful to give the correct answer in expressions like ‘(-2)**(-3)’ and ‘0**0’.

primarydef x ** y = if y=2: x*x else: takepower y of x fi enddef;
def takepower expr y of x =
if x>0: mexp(y*mlog x)
elseif (x=0) and (y>0): 0
else: 1
if y=floor y:
if y>=0: for n=1 upto y: *x endfor
else: for n=-1 downto y: /x endfor fi

else: hide(errmessage "Undefined power: " & decimal x&"**"&decimal y)
fi fi enddef;

hijklmnj’s primitive path operations have been defined in such a way that
the following higher-level operations are easy:

vardef direction expr t of p =
postcontrol t of p - precontrol t of p enddef;

vardef directionpoint expr z of p =
a_:=directiontime z of p;
if a_<0: errmessage("The direction doesn’t occur"); fi
point a_ of p enddef;

secondarydef p intersectionpoint q =
begingroup save x_,y_; (x_,y_)=p intersectiontimes q;
if x_<0: errmessage("The paths don’t intersect"); (0,0)
else: .5[point x_ of p, point y_ of q] fi endgroup
enddef;

The private token ‘a_’ will be declared as an internal quantity. Internal quantities are
more efficient than ordinary numeric variables.
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softjoin
join radius
Billawala
fullcircle
incr
decr
transform
reflectedabout
rotatedaround
rotatedabout
max
min
setu

Plain hijklmnj’s ‘softjoin’ operation provides a way to hook paths together
without the abrupt change of direction implied by ‘&’. Assuming that the final point
of p is the first point of q, the path ‘p softjoin q’ begins on p until coming within
join radius of this common point; then it curves over and finishes q in essentially the
same way. The internal quantity join radius should be set to the desired value before
softjoin is applied. (This routine is due to N. N. Billawala.)

tertiarydef p softjoin q =
begingroup c_:=fullcircle scaled 2join_radius shifted point 0 of q;
a_:=ypart(c_ intersectiontimes p); b_:=ypart(c_ intersectiontimes q);
if a_<0:point 0 of p{direction 0 of p} else: subpath(0,a_) of p fi
... if b_<0:{direction infinity of q}point infinity of q
else: subpath(b_,infinity) of q fi endgroup enddef;

newinternal join_radius,a_,b_; path c_;

The remaining math operators don’t fall into the ordinary patterns; something
is unusual about each of them. First we have ‘incr’ and ‘decr’, which apply only to
variables; they have the side effect of changing the variable’s value.

vardef incr suffix $ = $:=$+1; $ enddef;
vardef decr suffix $ = $:=$-1; $ enddef;

You can say either ‘incr x’ or ‘incr (x)’, within an expression; but ‘incr x’ by itself
is not a valid statement.

To reflect about a line, we compute a transform on the fly:

def reflectedabout(expr w,z) = % reflects about the line w..z
transformed
begingroup transform T_;
w transformed T_ = w; z transformed T_ = z;
xxpart T_ = -yypart T_; xypart T_ = yxpart T_; % T_ is a reflection
T_ endgroup enddef;

def rotatedaround(expr z, d) = % rotates d degrees around z
shifted -z rotated d shifted z enddef;

let rotatedabout = rotatedaround; % for roundabout people

Now we come to an interesting trick: The user writes something like ‘min(a, b)’
or ‘max(a, b, c, d)’, and hijklmnj’s notation for macro calls makes it easy to separate
the first argument from the rest—assuming that at least two arguments are present.

vardef max(expr u)(text t) = % t is a list of numerics, pairs, or strings
save u_; setu_ u; for uu = t: if uu>u_: u_:=uu; fi endfor
u_ enddef;

vardef min(expr u)(text t) = % t is a list of numerics, pairs, or strings
save u_; setu_ u; for uu = t: if uu<u_: u_:=uu; fi endfor
u_ enddef;

def setu_ primary u =
if pair u: pair u_ elseif string u: string u_ fi;
u_=u enddef;

Appendix D discusses some variations on this theme.
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flex
superellipse
interpath
solve
tolerance
mm
cm
pt
pc
dd
cc
bp
in
fix units
pixels per inch

The flex routine defines part of a path whose directions at the endpoints will
depend on the environment, because this path is not enclosed in parentheses.

def flex(text t) = % t is a list of pairs
hide(n_:=0; for z=t: z_[incr n_]:=z; endfor
dz_:=z_[n_]-z_1)
z_1 for k=2 upto n_-1: ...z_[k]{dz_} endfor ...z_[n_] enddef;

newinternal n_; pair z_[],dz_;

The five parameters to ‘superellipse’ are the right, the top, the left, the bottom,
and the superness.

def superellipse(expr r,t,l,b,s)=
r{up}...(s[xpart t,xpart r],s[ypart r,ypart t]){t-r}...
t{left}...(s[xpart t,xpart l],s[ypart l,ypart t]){l-t}...
l{down}...(s[xpart b,xpart l],s[ypart l,ypart b]){b-l}...
b{right}...(s[xpart b,xpart r],s[ypart r,ypart b]){r-b}...cycle enddef;

Chapter 14 illustrates the ‘interpath’ routine, which interpolates between
paths to find a path that would be written ‘a[p, q]’ if hijklmnj’s macro notation
were more general.

vardef interpath(expr a,p,q) =
for t=0 upto length p-1: a[point t of p, point t of q]
..controls a[postcontrol t of p, postcontrol t of q]
and a[precontrol t+1 of p, precontrol t+1 of q] .. endfor

if cycle p: cycle
else: a[point infinity of p, point infinity of q] fi enddef;

Finally we come to the solve macro, which has already been presented in
Chapter 20. Appendix D gives further illustrations of its use.

vardef solve@#(expr true_x,false_x)= % @#(true_x)=true, @#(false_x)=false
tx_:=true_x; fx_:=false_x;
forever: x_:=.5[tx_,fx_]; exitif abs(tx_-fx_)<=tolerance;
if @#(x_): tx_ else: fx_ fi :=x_; endfor
x_ enddef; % now x_ is near where @# changes from true to false

newinternal tolerance, tx_,fx_,x_; tolerance:=.1;

3. Conversion to pixels. The next main subdivision of plain.mf contains macros and
constants that help convert dimensions from device-independent “sharped” or “true”
units into the pixel units corresponding to a particular device. First comes a subroutine
that computes eight basic units, assuming that the number of pixels per inch is known:

def fix_units = % define the conversion factors, given pixels_per_inch
mm:=pixels_per_inch/25.4; cm:=pixels_per_inch/2.54;
pt:=pixels_per_inch/72.27; pc:=pixels_per_inch/6.0225;
dd:=1238/1157pt; cc:=12dd;
bp:=pixels_per_inch/72; in:=pixels_per_inch;
hppp:=pt; % horizontal pixels per point
vppp:=aspect_ratio*hppp; % vertical pixels per point
enddef;
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Sharped units
pixels per inch
blacker
o correction
fillin
define pixels (and nine others)
lowres fix

Sharped units are actually expressed in terms of points, but a virtuous user
will not write programs that exploit this fact.

mm#=2.84528; pt#=1; dd#=1.07001; bp#:=1.00375;
cm#=28.45276; pc#=12; cc#=12.84010; in#:=72.27;

A particular device is supposed to be modeled by four parameters, called
pixels per inch , blacker , o correction , and fillin , as discussed in Chapter 11. Appro-
priate values will be assigned to these internal quantities by mode setup.

newinternal pixels_per_inch; % the given resolution
newinternal blacker, o_correction; % device-oriented corrections

(The fourth parameter, fillin , is already an internal quantity of hijklmnj.)
Here are the ten principal ways to convert from sharped units to pixels:

def define_pixels(text t) =
forsuffixes $=t: $:=$.#*hppp; endfor enddef;

def define_whole_pixels(text t) =
forsuffixes $=t: $:=hround($.#*hppp); endfor enddef;
def define_whole_vertical_pixels(text t) =
forsuffixes $=t: $:=vround($.#*hppp); endfor enddef;

def define_good_x_pixels(text t) =
forsuffixes $=t: $:=good.x($.#*hppp); endfor enddef;
def define_good_y_pixels(text t) =
forsuffixes $=t: $:=good.y($.#*hppp); endfor enddef;

def define_blacker_pixels(text t) =
forsuffixes $=t: $:=$.#*hppp+blacker; endfor enddef;
def define_whole_blacker_pixels(text t) =
forsuffixes $=t: $:=hround($.#*hppp+blacker);
if $<=0: $:=1; fi endfor enddef;

def define_whole_vertical_blacker_pixels(text t) =
forsuffixes $=t: $:=vround($.#*hppp+blacker);
if $<=0: $:=1_o_; fi endfor enddef;

def define_corrected_pixels(text t) =
forsuffixes $=t: $:=vround($.#*hppp*o_correction)+eps; endfor enddef;

def define_horizontal_corrected_pixels(text t) =
forsuffixes $=t: $:=hround($.#*hppp*o_correction)+eps; endfor enddef;

Chapter 24 discusses the lowres fix routine, which helps to correct anomalies
that may have occurred when sharped dimensions were rounded to whole pixels.

def lowres_fix(text t) expr ratio =
begingroup save min,max,first;
forsuffixes $=t:
if unknown min: min=max=first=$; min#=max#=$.#;
elseif $.#<min#: min:=$; min#:=$.#;
elseif $.#>max#: max:=$; max#:=$.#; fi endfor

if max/min>ratio*max#/min#: forsuffixes $=t: $:=first; endfor fi
endgroup enddef;
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**
mag
mode
input
smode
mode setup
smode
displaying
extra setup
mode name
scantokens

4. Modes of operation. The standard way to create a font with plain hijklmnj is to
start up the program by saying

\mode=〈mode name〉; mag=〈magnification〉; input 〈font file name〉

in response to hijklmnj’s initial ‘**’. The mag is omitted if the magnification is 1,
and the mode is omitted if mode=proof. Additional commands like ‘screenchars’ might
be given before the ‘input’; we shall discuss them later. If you are using another
base file, called say the ‘super’ base, this whole command line should be preceded
by ‘&super’. The mode name should have been predeclared in your base file, by the
mode_def routine below. If, however, you need a special mode that isn’t in the base,
you can put its commands into a file (e.g., ‘specmode.mf’) and invoke it by saying

\smode="specmode"; mag= · · ·

instead of giving a predeclared mode name.
Here is the mode setup routine, which is usually one of the first macros to

be called in a hijklmnj program:

def mode_setup =
warningcheck:=0;
if unknown mode: mode=proof; fi
numeric aspect_ratio; transform currenttransform;
scantokens if string mode:("input "&mode) else: mode_name[mode] fi;
if unknown mag: mag=1; fi
if unknown aspect_ratio: aspect_ratio=1; fi
displaying:=proofing;
pixels_per_inch:=pixels_per_inch*mag;
if aspect_ratio=1: let o_=\; let _o_=\
else: def o_=*aspect_ratio enddef; def _o_=/aspect_ratio enddef fi;
fix_units;
scantokens extra_setup; % the user’s special last-minute adjustments
currenttransform:=
if unknown currenttransform: identity else: currenttransform fi
yscaled aspect_ratio;

clearit;
pickup pencircle scaled (.4pt+blacker);
warningcheck:=1; enddef;

def smode = string mode; mode enddef;
string extra_setup, mode_name[];
extra_setup=""; % usually there’s nothing special to do
newinternal displaying; % if positive, endchar will ‘showit’

The first ‘scantokens’ in mode setup either reads a special file or calls a macro that
expands into commands defining the mode. Notice that aspect ratio is always cleared to
an undefined value when these commands are performed; you can’t simply give a value
to aspect ratio when you set mode and mag . If the aspect ratio isn’t assigned a definite
value by the mode routine, it will become unity, and the ‘o_’ and ‘_o_’ operations will
be omitted from subsequent calculations. Notice also that the mode commands might
do something special to mag , since mag isn’t examined until after the mode routine
has acted. The currenttransform might also be given a special value. hijklmnj’s
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warningcheck
mexp
magstep
underscore
expandafter
quote
mode def
Leban
proof
smoke
fontmaking
lowres

warningcheck is temporarily disabled during these computations, since there might be
more than 4096 pixels per inch. After mode setup is finished, the currentpicture will
be null, the currenttransform will take the aspect ratio into account, and the currentpen
will be a circular nib with the standard default thickness of 0.4 pt. (You should save
this pen if you want to use it in a character, because beginchar will clear it away.)

Plain TEX has a convention for magnifying fonts in terms of “magsteps,” where
magstep m = 1.2m. A geometric progression of font sizes is convenient, because scaling
by magstep m followed by magstep n is equivalent to scaling by magstep m + n.

vardef magstep primary m = mexp(46.67432m) enddef;

When a mode is defined (e.g., ‘proof’), a numeric variable of that name is
created and assigned a unique number (e.g., 1). Then an underscore character is ap-
pended, and a macro is defined for the resulting name (e.g., ‘proof_’). The mode name
array is used to convert between number and name (e.g., mode name 1 = "proof_").

def mode_def suffix $ =
$:=incr number_of_modes;
mode_name[$]:=str$ & "_";
expandafter quote def scantokens mode_name[$] enddef;

newinternal number_of_modes;

(This mode def strategy was suggested by Bruce Leban.)
Three basic modes are now defined, starting with two for proofing:

% proof mode: for initial design of characters
mode_def proof =
proofing:=2; % yes, we’re making full proofs
fontmaking:=0; % no, we’re not making a font
tracingtitles:=1; % yes, show titles online
pixels_per_inch:=2601.72; % that’s 36 pixels per pt
blacker:=0; % no additional blackness
fillin:=0; % no compensation for fillin
o_correction:=1; % no reduction in overshoot
enddef;

% smoke mode: for label-free proofs to mount on the wall
mode_def smoke =
proof_; % same as proof mode, except:
proofing:=1; % yes, we’re making unlabeled proofs
extra_setup:=extra_setup&"grayfont black"; % with solid black pixels
let makebox=maketicks; % make the boxes less obtrusive
enddef;

Notice that smoke mode saves a lot of fuss by calling on ‘proof_’; this is the macro
that was defined by the first mode def .

A typical mode for font generation appears next.

% lowres mode: for certain devices that print 200 pixels per inch
mode_def lowres =
proofing:=0; % no, we’re not making proofs
fontmaking:=1; % yes, we are making a font
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currentpen
currentpicture
currenttransform
fill
draw
filldraw
drawdot
unfill
undraw
unfilldraw
undrawdot
erase
cutdraw

tracingtitles:=0; % no, don’t show titles at all
pixels_per_inch:=200; % that’s pretty low resolution
blacker:=.65; % make pens a bit blacker
fillin:=.2; % compensate for diagonal fillin
o_correction:=.4; % but don’t overshoot as much
enddef;

localfont:=lowres; % the mode most commonly used to make fonts

Installations of hijklmnj typically have several more predefined modes, and they
generally set localfont to something else. Such alterations should not be made in the
master file plain.mf; they should appear in a separate file, as discussed below.

5. Drawing and filling. Now we come to the macros that provide an interface between
the user and hijklmnj’s primitive picture commands. First, some important program
variables are introduced:

pen currentpen;
path currentpen_path;
picture currentpicture;
transform currenttransform;
def t_ = transformed currenttransform enddef;

The key macros are fill, draw, filldraw, and drawdot.

def fill expr c = addto_currentpicture contour c.t_ enddef;
def addto_currentpicture = addto currentpicture enddef;
def draw expr p =
addto_currentpicture doublepath p.t_ withpen currentpen enddef;

def filldraw expr c = fill counterclockwise c withpen currentpen enddef;
def drawdot expr z = if unknown currentpen_path: def_pen_path_ fi
addto_currentpicture contour
currentpen_path shifted (z.t_) withpen penspeck enddef;

def def_pen_path_ =
hide(currentpen_path=tensepath makepath currentpen) enddef;

And they have negative counterparts:

def unfill expr c = fill c withweight -1 enddef;
def undraw expr p = draw p withweight -1 enddef;
def unfilldraw expr c = filldraw c withweight -1 enddef;
def undrawdot expr z = drawdot z withweight -1 enddef;
def erase text t = begingroup interim default_wt_:=-1;
cullit; t withweight -1; cullit; endgroup enddef;

newinternal default_wt_; default_wt_:=1;

It’s more difficult to cut off the ends of a stroke, but the following macros
(discussed near the end of Chapter 16) do the job:

def cutdraw expr p = % caution: you may need autorounding=0
cutoff(point 0 of p, 180+angle direction 0 of p);
cutoff(point infinity of p, angle direction infinity of p);
culldraw p enddef;
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culldraw
cutoff
default wt
erase
pen lft
pen rt
pen top
pen bot
pickup
savepen
clearpen

def culldraw expr p = addto pic_ doublepath p.t_ withpen currentpen;
cull pic_ dropping(-infinity,0) withweight default_wt_;
addto_currentpicture also pic_; pic_:=nullpicture; killtext enddef;
vardef cutoff(expr z,theta) =
interim autorounding := 0; interim smoothing := 0;
addto pic_ doublepath z.t_ withpen currentpen;
addto pic_ contour
(cut_ scaled (1+max(-pen_lft,pen_rt,pen_top,-pen_bot))
rotated theta shifted z)t_;

cull pic_ keeping (2,2) withweight -default_wt_;
addto currentpicture also pic_; pic_:=nullpicture enddef;

picture pic_; pic_:=nullpicture;
path cut_; cut_ = ((0,-1)--(1,-1)--(1,1)--(0,1)--cycle) scaled 1.42;

The use of default wt here makes ‘erase cutdraw’ work. The private variable pic is
usually kept equal to nullpicture in order to conserve memory space.

Picking up a pen not only sets currentpen , it also establishes the values of
pen lft , pen rt , pen top , and pen bot , which are used by lft , rt , top , and bot .

def pickup secondary q =
if numeric q: numeric_pickup_ else: pen_pickup_ fi q enddef;

def numeric_pickup_ primary q =
if unknown pen_[q]: errmessage "Unknown pen"; clearpen
else: currentpen:=pen_[q];
pen_lft:=pen_lft_[q]; pen_rt:=pen_rt_[q];
pen_top:=pen_top_[q]; pen_bot:=pen_bot_[q];
currentpen_path:=pen_path_[q] fi; enddef;

def pen_pickup_ primary q =
currentpen:=q yscaled aspect_ratio;
pen_lft:=xpart penoffset down of currentpen;
pen_rt:=xpart penoffset up of currentpen;
pen_top:=(ypart penoffset left of currentpen)_o_;
pen_bot:=(ypart penoffset right of currentpen)_o_;
path currentpen_path; enddef;

newinternal pen_lft,pen_rt,pen_top,pen_bot,pen_count_;

And saving a pen saves all the relevant values for later retrieval.

vardef savepen = pen_[incr pen_count_]=currentpen;
pen_lft_[pen_count_]=pen_lft;
pen_rt_[pen_count_]=pen_rt;
pen_top_[pen_count_]=pen_top;
pen_bot_[pen_count_]=pen_bot;
pen_path_[pen_count_]=currentpen_path;
pen_count_ enddef;

def clearpen = currentpen:=nullpen;
pen_lft:=pen_rt:=pen_top:=pen_bot:=0;
path currentpen_path; enddef;
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clear pen memory
lft
rt
top
bot
round
good.x
good.y
good.lft
good.rt
good.top
good.bot
penpos
penstroke

def clear_pen_memory =
pen_count_:=0;
numeric pen_lft_[],pen_rt_[],pen_top_[],pen_bot_[];
pen currentpen,pen_[];
path currentpen_path, pen_path_[];
enddef;

The four basic pen-edge functions offer no surprises:

vardef lft primary x = x + if pair x: (pen_lft,0) else: pen_lft fi enddef;
vardef rt primary x = x + if pair x: (pen_rt,0) else: pen_rt fi enddef;
vardef top primary y = y + if pair y: (0,pen_top) else: pen_top fi enddef;
vardef bot primary y = y + if pair y: (0,pen_bot) else: pen_bot fi enddef;

There are six functions that round to good positions for pen placement.

vardef good.x primary x = hround(x+pen_lft)-pen_lft enddef;
vardef good.y primary y = vround(y+pen_top)-pen_top enddef;
vardef good.lft primary z = save z_; pair z_;
(z_+(pen_lft,0))t_=round((z+(pen_lft,0))t_); z_ enddef;

vardef good.rt primary z = save z_; pair z_;
(z_+(pen_rt,0))t_=round((z+(pen_rt,0))t_); z_ enddef;

vardef good.top primary z = save z_; pair z_;
(z_+(0,pen_top))t_=round((z+(0,pen_top))t_); z_ enddef;

vardef good.bot primary z = save z_; pair z_;
(z_+(0,pen_bot))t_=round((z+(0,pen_bot))t_); z_ enddef;

So much for fixed pens. When pen-like strokes are defined by outlines, the
penpos macro is of primary importance. Since penpos may be used quite frequently,
we might as well write out the x and y coordinates explicitly instead of using the
(somewhat slower) z convention:

vardef penpos@#(expr b,d) =
(x@#r-x@#l,y@#r-y@#l)=(b,0) rotated d;
x@#=.5(x@#l+x@#r); y@#=.5(y@#l+y@#r) enddef;

Simulated pen strokes are provided by the convenient penstroke command.

def penstroke text t =
forsuffixes e = l,r: path_.e:=t; endfor
if cycle path_.l: cyclestroke_
else: fill path_.l -- reverse path_.r -- cycle fi enddef;

def cyclestroke_ =
begingroup interim turningcheck:=0;
addto pic_ contour path_.l.t_ withweight 1;
addto pic_ contour path_.r.t_ withweight -1;
cull pic_ dropping origin withweight default_wt_;
addto_currentpicture also pic_;
pic_:=nullpicture endgroup enddef;
path path_.l,path_.r;
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special
numspecial
lcode
makelabel
proofing
labels
penlabels
range
numtok
thru
forsuffixes
proofrule
screenrule

6. Proof labels and rules. The next main section of plain.mf is devoted to macros for
the annotations on proofsheets. These macros are discussed in Appendix H, and they
use the special and numspecial commands discussed in Appendix G.

Labels are generated at the lowest level by makelabel :

vardef makelabel@#(expr s,z) = % puts string s at point z
if known z: special lcode_@# & s;
numspecial xpart(z.t_); numspecial ypart(z.t_) fi enddef;

string lcode_,lcode_.top,lcode_.lft,lcode_.rt,lcode_.bot,
lcode_.top.nodot,lcode_.lft.nodot,lcode_.rt.nodot,lcode_.bot.nodot;

lcode_.top=" 1"; lcode_.lft=" 2"; lcode_.rt=" 3"; lcode_.bot=" 4";
lcode_=" 0"; % change to " /" to avoid listing in overflow column
lcode_.top.nodot=" 5"; lcode_.lft.nodot=" 6";
lcode_.rt.nodot=" 7"; lcode_.bot.nodot=" 8";

Users generally don’t invoke makelabel directly, because there’s a conve-
nient shorthand. For example, ‘labels(1, 2, 3)’ expands into ‘makelabel("1", z1);
makelabel("2", z2); makelabel("3", z3)’. (But nothing happens if proofing ≤ 1.)

vardef labels@#(text t) =
if proofing>1: forsuffixes $=t: makelabel@#(str$,z$); endfor fi enddef;

vardef penlabels@#(text t) =
if proofing>1: forsuffixes $$=l,,r: forsuffixes $=t:
makelabel@#(str$.$$,z$.$$); endfor endfor fi enddef;

When there are lots of purely numeric labels, you can say, e.g.,

labels(1, range 5 thru 9, range 100 thru 124, 223)

which is equivalent to ‘labels(1, 5, 6, 7, 8, 9, 100, 101, . . . , 124, 223)’. Labels are omitted
from the proofsheets if the corresponding z value isn’t known, so it doesn’t hurt (much)
to include unused subscript numbers in a range.

def range expr x = numtok[x] enddef;
def numtok suffix x=x enddef;
tertiarydef m thru n =
m for x=m+1 step 1 until n: , numtok[x] endfor enddef;

(This range abbreviation will work in any forsuffixes list; and in a ‘for’ list you can
even omit the word ‘range’. But you might fill up hijklmnj’s main memory if too
many values are involved.)

A straight line will be drawn on the proofsheet by proofrule. Although
makelabel takes the current transform into account, proofrule does not. There’s also
a corresponding routine ‘screenrule’ that puts a straight line in the current picture,
so that design guidelines will be visible on your screen:

def proofrule(expr w,z) =
special "rule"; numspecial xpart w; numspecial ypart w;
numspecial xpart z; numspecial ypart z enddef;
def screenrule(expr w,z) =
addto currentpicture doublepath w--z withpen rulepen enddef;

pen rulepen; rulepen = pensquare scaled 2;
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rulepen
pensquare
makegrid
titlefont
labelfont
grayfont
slantfont
proofoffset
proofrulethickness
beginchar
endchar
charcode
charwd
charht
chardp
w
h
d
italic correction
italcorr

(The rulepen is two pixels wide, because screen rules are usually drawn exactly over
raster lines. A two-pixel-wide pen straddles the pixel edges so that you can “see” the
correct line position. If a two-pixel-wide line proves to be too dark, you can redefine
rulepen to be simply pensquare; then hijklmnj will draw the thinnest possible
screen rule, but it will be a half-pixel too high and a half-pixel too far to the right.)

You can produce lots of proof rules with makegrid, which connects an arbi-
trary list of x coordinates with an arbitrary list of y coordinates:

def makegrid(text xlist,ylist) =
xmin_ := min(xlist); xmax_ := max(xlist);
ymin_ := min(ylist); ymax_ := max(ylist);
for x=xlist: proofrule((x,ymin_), (x,ymax_)); endfor
for y=ylist: proofrule((xmin_,y), (xmax_,y)); endfor
enddef;

Finally we have a few macros that allow further communication with the
hardcopy proof-drawing routine of Appendix H. You can change the fonts, the thickness
of proof rules, and the position of the image on its page.

vardef titlefont suffix $ = special "titlefont "&str$ enddef;
vardef labelfont suffix $ = special "labelfont "&str$ enddef;
vardef grayfont suffix $ = special "grayfont "&str$ enddef;
vardef slantfont suffix $ = special "slantfont "&str$ enddef;
def proofoffset primary z = % shift proof output by z
special "offset"; numspecial xpart z; numspecial ypart z enddef;

vardef proofrulethickness expr x =
special "rulethickness"; numspecial x enddef;

7. Character and font administration. After this elaborate preparation, we’re finally
ready to consider the beginchar . . . endchar framework for the individual characters of
a font. Each beginchar begins a group, which should end at the next endchar. Then
beginchar stores the given character code and device-independent box dimensions
in hijklmnj’s internal variables charcode , charwd , charht , and chardp . Then it
computes the device-dependent box dimensions w , h , and d . Finally it clears the z
variables, the current picture, and the current pen.

def beginchar(expr c,w_sharp,h_sharp,d_sharp) =
begingroup
charcode:=if known c: byte c else: 0 fi;
charwd:=w_sharp; charht:=h_sharp; chardp:=d_sharp;
w:=hround(charwd*hppp); h:=vround(charht*hppp); d:=vround(chardp*hppp);
charic:=0; clearxy; clearit; clearpen; scantokens extra_beginchar;
enddef;

The italic correction is normally zero, unless the user gives an ‘italcorr’ command;
even then, the correction stays zero unless the given value is positive:

def italcorr expr x_sharp = if x_sharp>0: charic:=x_sharp fi enddef;
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change width
chardx
extra beginchar
extra endchar
bounding box
makebox
italic correction
maketicks
font size etc

When we want to change the pixel width w from even to odd or vice versa, the
change width macro does the right thing.

def change_width =
w:=w if w>charwd*hppp:- else:+ fi 1 enddef;

(The user might also decide to change w in some other way.) The current value of w
at the time of endchar will be the “official” pixel width of the character, chardx , that
is shipped to the gf output file.

def endchar =
scantokens extra_endchar;
if proofing>0: makebox(proofrule); fi
chardx:=w; % desired width of the character in pixels
shipit;
if displaying>0: makebox(screenrule); showit; fi
endgroup enddef;

Extensions to these routines can be provided by putting commands in the string vari-
ables extra beginchar and extra endchar .

string extra_beginchar, extra_endchar;
extra_beginchar=extra_endchar="";

A “bounding box” that surrounds the character according to the specifications
given in beginchar is produced by makebox, which takes into account the possibility
that pixels might not be square. An extra line is drawn to mark the width of the
character with its italic correction included, if this correction is nonzero.

def makebox(text r) =
for y=0,h.o_,-d.o_: r((0,y),(w,y)); endfor % horizontals
for x=0,w: r((x,-d.o_),(x,h.o_)); endfor % verticals
if charic<>0: r((w+charic*hppp,h.o_),(w+charic*hppp,.5h.o_)); fi
enddef;

The maketicks routine is an alternative to makebox that draws less con-
spicuous lines. This makes it easier to visualize a character’s appearance near the edges
of its bounding box.

def maketicks(text r) =
for y=0,h.o_,-d.o_: r((0,y),(10,y)); r((w-10,y),(w,y)); endfor
for x=0,w: r((x,10-d.o_),(x,-d.o_)); r((x,h.o_-10),(x,h.o_)); endfor
if charic<>0: r((w+charic*hppp,h.o_-10),(w+charic*hppp,h.o_)); fi
enddef;

Overall information about the font as a whole is generally supplied by the
following commands, which are explained in Appendix F.

def font_size expr x = designsize:=x enddef;
def font_slant expr x = fontdimen 1: x enddef;
def font_normal_space expr x = fontdimen 2: x enddef;
def font_normal_stretch expr x = fontdimen 3: x enddef;
def font_normal_shrink expr x = fontdimen 4: x enddef;
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z
screen rows
screen cols
openit
showit
clearxy
clearit
shipit
cullit
command line
screenchars
screenstrokes

def font_x_height expr x = fontdimen 5: x enddef;
def font_quad expr x = fontdimen 6: x enddef;
def font_extra_space expr x = fontdimen 7: x enddef;

def font_identifier expr x = font_identifier_:=x enddef;
def font_coding_scheme expr x = font_coding_scheme_:=x enddef;
string font_identifier_, font_coding_scheme_;
font_identifier_=font_coding_scheme_="UNSPECIFIED";

8. The endgame. What have we left out? A few miscellaneous things still need to be
handled. First, we almost forgot to define the z convention for points:

vardef z@#=(x@#,y@#) enddef;

Then we need to do something rudimentary about hijklmnj’s “windows.”

newinternal screen_rows, screen_cols, currentwindow;
screen_rows:=400; % these values should be corrected,
screen_cols:=500; % by reading in a separate file after plain.mf

def openit = openwindow currentwindow
from origin to (screen_rows,screen_cols) at (-50,300) enddef;

def showit = openit; let showit=showit_; showit enddef; % first time only
def showit_ = display currentpicture inwindow currentwindow enddef;

Plain hijklmnj has several other terse commands like ‘openit’ and ‘showit’:

def clearxy = save x,y enddef;
def clearit = currentpicture:=nullpicture enddef;
def shipit = shipout currentpicture enddef;
def cullit = cull currentpicture dropping (-infinity,0) enddef;

The next several macros are handy things to put on your command line when
you are starting a hijklmnj job (i.e., just before ‘input 〈font file name〉’):

screenchars. Say this when you’re making a font but want the characters to
be displayed just before they are shipped out.
screenstrokes. Say this when you’re in proof mode and want to see each
stroke as it’s added to the current picture.
imagerules. Say this when you want to include the bounding box in the
current character, before you begin to draw it.
gfcorners. Say this when you expect to make proofsheets with large pixels,
from a low-resolution font.
nodisplays. Say this to save computer time when you don’t want proof mode
to display each character automatically.
notransforms. Say this to save computer time when you know that the current
transform is the identity.

def screenchars = % endchar should ‘showit’
extra_endchar:=extra_endchar&"showit;" enddef;

def screenstrokes = % every stroke should ‘showit’
def addto_currentpicture text t=
addto currentpicture t; showit enddef; enddef;
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imagerules
gfcorners
nodisplays
notransforms
bye
end
clear pen memory
mode setup
mode
mag
localfont
screen rows
screen cols
fillin

def imagerules = % a box should be part of the character image
extra_beginchar:=extra_beginchar & "makebox(screenrule);" enddef;

def gfcorners = % ‘maketicks’ should send rules to the gf file
extra_setup:=extra_setup & "let makebox=maketicks;proofing:=1;" enddef;

def nodisplays = % endchar shouldn’t ‘showit’
extra_setup:=extra_setup & "displaying:=0;" enddef;

def notransforms = % currenttransform should not be used
let t_ = \ enddef;

We make ‘bye’ synonymous with ‘end’, just in case TEX users expect hijk-
lmnj programs to end like TEX documents do.

let bye = end; outer end,bye;

And finally, we provide the default environment that a user gets when simple
experiments like those at the beginning of Chapter 5 are desired.

clear_pen_memory; % initialize the ‘savepen’ mechanism
mode_setup; % establish proof mode as the default
numeric mode,mag; % but leave mode and mag undefined

Whew! That’s the end of the plain.mf file.

9. Adapting to local conditions. In order to make plain hijklmnj programs inter-
changeable between different computers, everybody should use the same plain.mf base.
But there are some things that clearly should be customized at each installation:

Additional modes should be defined, so that fonts can be made for whatever
output devices are of interest.
The proper localfont mode should be established.
The correct numbers should be assigned to screen rows and screen cols .

Here’s an example of a supplementary file ‘local.mf’ that would be appropriate for
a computer center with the hypothetical cheapo and luxo printers described in Chap-
ter 11. We assume that cheapo mode is to be identical to lowres mode, except that
the cheapo fonts should be generated with a negative value of fillin (because cheapo
tends to make diagonal lines lighter than normal, not heavier). The terminal screens
are assumed to be 768 pixels wide and 512 pixels high.

% A file to be loaded after "plain.mf".
base_version:=base_version&"/drofnats";

screen_rows:=512; screen_cols:=768;

mode_def cheapo = % cheapo mode: to generate fonts for cheapo
lowres_; % do as in lowres mode, except:
fillin:=-.1; % compensate for lighter diagonals
enddef;

mode_def luxo = % luxo mode: to generate fonts for luxo
proofing:=0; % no, we’re not making proofs
fontmaking:=1; % yes, we are making a font
tracingtitles:=1; % yes, show titles online
pixels_per_inch:=2000; % almost 30 pixels per pt
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bye
INIMF
dump
Computer Modern
asterisk
ampersand
DRAYTON
PAGET

blacker:=.2; % make pens a teeny bit blacker
fillin:=.1; % but compensate for heavy diagonals
o_correction:=1; % and keep the full overshoot
enddef;

localfont:=cheapo;

The macro ‘bye’ might also be redefined, as suggested at the close of Appendix F.
To prepare a preloaded base file at this installation, a suitably privileged

person should run INIMF in the following way:

This is METAFONT, Version 2.0 (INIMF) 8 NOV 1989 10:09
**plain
(plain.mf
Preloading the plain base, version 2.0)
*input local
(local.mf)
*dump
Beginning to dump on file plain.base

(The stuff after ‘**’ or ‘*’ is typed by the user; everything else is typed by the system.
A few more messages actually come out.)

Notice that local.mf does not include any new macros or features that a
programmer could use in a special way. Therefore it doesn’t make plain hijklmnj
incompatible with implementations at other computing centers.

Changes and/or extensions to the plain.mf macros should never be made,
unless the resulting base file is clearly distinguished from the standard plain base. But
new, differently named bases are welcome. For example, the author prepared a special
base for the Computer Modern fonts, so that they could be generated without first
reading the same 700 lines of macro definitions each time. To load this base at high
speed, he can type ‘&cm’ after hijklmnj’s initial ‘**’. (Or, on some machines, he has
a special version called ‘cmmf’ in which the new base is already present.)

None but the Base, in baseness doth delight.

— MICHAEL DRAYTON, Robert, Duke of Normandy (1605)

So far all was plain sailing, as the saying is;
but Mr. Till knew that his main difficulties were yet to come.

— FRANCIS E. PAGET, Milford Malvoisin (1842)
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codes
ASCII
oct
hex
ASCII

Different computers tend to have different ways of representing the characters in
files of text, but METAFONT gives the same results on all machines, because it
converts everything to a standard internal code when it reads a file. METAFONT
also converts back from its internal representation to the appropriate external
code, when it writes a file of text; therefore most users need not be aware of the
fact that the codes have actually switched back and forth inside the machine.

The purpose of this appendix is to define METAFONT’s internal code,
which has the same characteristics on all implementations of METAFONT. The
existence of such a code is important, because it makes METAFONT programs
portable. METAFONT’s scheme is based on the American Standard Code for
Information Interchange, known popularly as “ASCII.” There are 128 codes,
numbered 0 to 127; we conventionally express the numbers in octal notation, from
oct"000" to oct"177", or in hexadecimal notation, from hex"00" to hex"7F".
Thus, the value of ASCII"b" is normally called oct"142" or hex"62", not 98.
In the ASCII scheme, codes oct"000" through oct"037" and code oct"177"
are assigned to special functions; for example, code oct"007" is called BEL, and
it means “Ring the bell.” The other 95 codes are assigned to visible symbols and
to the blank space character. Here is a chart that shows ASCII codes in such a
way that octal and hexadecimal equivalents can easily be read off:

0́ 1́ 2́ 3́ 4́ 5́ 6́ 7́

0́0x NUL SOH STX ETX EOT ENQ ACK BEL
˝0x

0́1x BS HT LF VT FF CR SO SI

0́2x DLE DC1 DC2 DC3 DC4 NAK SYN ETB
˝1x

0́3x CAN EM SUB ESC FS GS RS US

0́4x ! " # $ % & ’
˝2x

0́5x ( ) * + , - . /

0́6x 0 1 2 3 4 5 6 7
˝3x

0́7x 8 9 : ; < = > ?

1́0x @ A B C D E F G
˝4x

1́1x H I J K L M N O

1́2x P Q R S T U V W
˝5x

1́3x X Y Z [ \ ] ^ _

1́4x ‘ a b c d e f g
˝6x

1́5x h i j k l m n o

1́6x p q r s t u v w
˝7x

1́7x x y z { | } ~ DEL

˝8 ˝9 ˝A ˝B ˝C ˝D ˝E ˝F

Ever since ASCII was established in the early 1960s, people have had
different ideas about what to do with positions oct"000" thru oct"037" and
oct"177", because most of the functions assigned to those codes are appropriate
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only for special purposes like file transmission, not for applications to printing
or to interactive computing. Manufacturers soon started producing line printers
that were capable of generating 128 characters, 33 of which were tailored to
the special needs of particular customers; part of the advantage of a standard
code was therefore lost. An extended ASCII code intended for text editing and
interactive computing was developed at several universities about 1965, and for
many years there have been terminals in use at Stanford, MIT, Carnegie-Mellon,
and elsewhere that have 120 or 121 symbols, not just 95. For example, the author
developed METAFONT on a keyboard that includes the symbols ‘≠’, ‘≤’, ‘≥’, and
‘←’, which are easier to use than the character pairs ‘<>’, ‘<=’, ‘>=’, and ‘:=’. The
full character set looks like this:

0́ 1́ 2́ 3́ 4́ 5́ 6́ 7́

0́0x ⋅ ↓ α β ∧ ¬ ∈ π
˝0x

0́1x λ γ δ ↑ ± ⊕ ∞ ∂

0́2x ⊂ ⊃ ∩ ∪ ∀ ∃ ⊗ ↔
˝1x

0́3x ← → ≠ ◊ ≤ ≥ ≡ ∨

0́4x  ! " # $ % & ’
˝2x

0́5x ( ) * + , − . /

0́6x 0 1 2 3 4 5 6 7
˝3x

0́7x 8 9 : ; < = > ?

1́0x @ A B C D E F G
˝4x

1́1x H I J K L M N O

1́2x P Q R S T U V W
˝5x

1́3x X Y Z [ \ ] ^ _

1́4x ‘ a b c d e f g
˝6x

1́5x h i j k l m n o

1́6x p q r s t u v w
˝7x

1́7x x y z { | } ~ ∫

˝8 ˝9 ˝A ˝B ˝C ˝D ˝E ˝F

METAFONT can also be configured to accept any or all of the character codes
128–255. However, METAFONT programs that make use of anything in addition
to the 95 standard ASCII characters cannot be expected to run on other systems,
so the use of extended character sets is discouraged.

A possible middle ground has been suggested, based on the fact that it’s
easy to write a program that converts extended-character files into standard files
by substituting ‘<>’ for ‘≠’, etc. In the author’s implementation at Stanford, the
symbols ‘≠’, ‘≤’, ‘≥’, and ‘←’ are considered to be in the same class as ‘<’, ‘=’, ‘:’,
and ‘>’ when tokens are formed (see Chapter 6). Tokens like ‘≠=’ and ‘<≥’ are
therefore distinct, although they both become ‘<>=’ after conversion. As long as
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such tokens are avoided, the author’s programs can easily be expurgated into a
portable form for general distribution. (Another feasible approach would have
been to convert nonstandard codes to character pairs during METAFONT’s input
process; that would have been slightly less efficient.)

Computers with non-ASCII character sets should specify a correspon-
dence between 95 distinct characters and the standard ASCII codes oct"040"
thru oct"176". METAFONT programs written on any such machines will be
completely interchangeable with each other.

If any shall suggest, that some of the Enquiries here insisted upon
(as particularly those about the Letters of the Alphabet)

do seem too minute and trivial, for any prudent Man
to bestow his serious thoughts and time about.

Such Persons may know, that the discovery
of the true nature and Cause of any the most minute thing,

doth promote real Knowledge,
and therefore cannot be unfit for any Mans endeauours,

who is willing to contribute to the advancement of Learning.

— JOHN WILKINS, Towards a Real Character (1668)

Clearly even the simple A.B.C. is a thing of mystery.
Like all codes, it should not be trifled with,
but it is to be feared that in modern times

it has not always been respected.

— STANLEY MORISON, On Type Faces (1923)
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Any powerful computer language can be used in ways that go considerably be-
yond what the language designer originally had in mind, especially when macro
expansion is possible. Sometimes the unexpected constructions are just amus-
ing; sometimes they are disgustingly arcane. But sometimes they turn out to be
quite useful, and they graduate from “tricks” to the status of “techniques.” (For
example, several of the macros now in Appendix B started out as suggestions
for Appendix D.) In any case, gurus of a language always like to explore its
limits. The depths of METAFONT have hardly been plumbed, but this appendix
probably reached a new low at the time it was written.

Acknowledgment: More than half of the ideas in this appendix are due
to John Hobby, who has been a tireless and inspiring co-worker during the entire
development of the new METAFONT system.

���������� Please don’t read this material until you’ve had
plenty of experience with plain hijklmnj.

After you have read and understood the secrets below, you’ll know all sorts of devi-
ous combinations of hijklmnj commands, and you will often be tempted to write
inscrutable macros. Always remember, however, that there’s usually a simpler and
better way to do something than the first way that pops into your head. You may not
have to resort to any subterfuge at all, since hijklmnj is able to do lots of things in
a straightforward way. Try for simple solutions first.

1. Macro madness. If you need to write complicated macros, you’ll need to be familiar
with the fine points in Chapter 20. hijklmnj’s symbolic tokens are divided into two
main categories, “expandable” and “unexpandable”; the former category includes all
macros and if . . .fi tests and for . . . endfor loops, as well as special operations like
input, while the latter category includes the primitive operators and commands listed
in Chapters 25 and 26. The expansion of expandable tokens takes place in hijklmnj’s
“mouth,” but primitive statements (including equations, declarations, and the various
types of commands) are done in hijklmnj’s “stomach.” There’s a communication
between the two, since the stomach evaluates expressions that are needed as arguments
to the mouth’s macros; any statement can be embedded in a group expression, so
arbitrarily complicated things can be done as part of the expansion process.

Let’s begin by considering a toy problem that is treated at the beginning of
Appendix D in The TEXbook, in case some readers are interested in comparing TEX to
hijklmnj. Given a numeric variable n ≥ 0, we wish to define a macro asts whose
replacement text consists of precisely n asterisks. This task is somewhat tricky because
expansion is suppressed when a replacement text is being read; we want to use a for
loop, but loops are special cases of expansion. In other words,

def asts = for x=1 upto n: * endfor enddef

defines asts to be a macro with a for loop in its replacement text; in practice, asts
would behave as if it contained n asterisks (using possibly different values of n), but
we have not solved the stated problem. The alternative

def makedef primary n =
def asts = for x=1 upto n: * endfor enddef enddef;

makedef n

“freezes” the present value of n; but this doesn’t solve the problem either.
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One solution is to build up the definition by adding one asterisk at a time,
using expandafter as follows:

def asts = enddef;
for x=1 upto n:
expandafter def expandafter asts expandafter = asts * enddef;

endfor.

The three expandafters provide a “finger” into the replacement text, before def sup-
presses expansion; without them the replacement text would turn out to be ‘asts *’,
causing infinite recursion.

This solution involves a running time proportional to n2, so the reader might
wonder why a simpler approach like

expandafter def expandafter asts expandafter =
for x = 1 upto n: * endfor enddef

wasn’t suggested? The reason is that this doesn’t work, unless n = 0! A for loop
isn’t entirely expanded by expandafter, only hijklmnj’s first step in loop expansion
is carried out. Namely, the loop text is read, and a special inaccessible token ‘ENDFOR’
is placed at its end. Later on when hijklmnj’s mouth encounters ‘ENDFOR’ (which
incidentally is an expandable token, but it wasn’t listed in Chapter 20), the loop text
is re-inserted into the input stream, unless of course the loop has finished. The special
ENDFOR is an ‘outer’ token, hence it should not appear in replacement texts; hijk-
lmnj will therefore stop with a “forbidden token” error if you try the above with n ≥ 1.
You might try to defeat the outerness by saying

for x=1: inner endfor;

but hijklmnj won’t let you. And even if this had worked, it wouldn’t have solved the
problem; it would simply have put ENDFOR into the replacement text of ast, because
expansion is inhibited when the replacement text is being read.

There’s another way to solve the problem that seems to have running time
proportional to n rather than n2:

scantokens("def asts=" for x=1 upto n: & "* " endfor) enddef;

but actually hijklmnj’s string concatenation operation takes time proportional to
the length of the strings it deals with, so the running time is still order n2. Furthermore,
the string operations in hijklmnj are rather primitive, because this isn’t a major
aspect of the language; so it turns out that this approach uses order n2 storage cells
in the string pool, although they are recycled later. Even if the pool size were infinite,
hijklmnj’s “buffer size” would be exceeded for large n, because scantokens puts
the string into the input buffer before scanning it.

Is there a solution of order n? Yes, of course. For example,

def a=a* enddef;
for x=0 upto n:
if x=n: def a=quote quote def asts = enddef; fi
expandafter endfor a enddef;
showtoken asts.

(The first ‘quote’ is removed by the for, hence one will survive until a is redefined.
If you don’t understand this program, try running it with n = 3; insert an isolated
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expression ‘0;’ just before the ‘if’, and look at the lines of context that are shown
when hijklmnj gives you four error messages.) The only flaw in this method is
that it uses up n cells of stack space; hijklmnj’s input stack size may have to be
increased, if n is bigger than 25 or so.

The asterisk problem is just a puzzle; let’s turn now to a genuine application.
Suppose we want to define a macro called ‘ten ’ whose replacement text is the contents
of the parameter file logo10.mf in Chapter 11, up to but not including the last two
lines of that file. Those last two lines say

input logo % now generate the font
end % and stop.

The ten macro will make it possible to set up the 10-point parameters repeatedly
(perhaps alternating with 9-point parameters in a nine macro); Appendix E explains
how to create a meta-design tool via such macros.

One idea would be to try to input the entire file logo10.mf as the replacement
text for ten . We could nullify the effect of the last three unwanted tokens by saying

save input,logo,end;
forsuffixes s=input,logo,end: let s=\; endfor

just before ten is used. To get the entire file as a replacement text, we can try one of
the approaches that worked in the asterisk problem, say

expandafter def expandafter ten expandafter = input logo10 enddef.

But this first attempt runs awry if we haven’t already redefined ‘end’; Appendix B
makes ‘end’ an ‘outer’ token, preventing its appearance in replacement texts. So we
say ‘inner end’ and try again, only to discover an unwritten law that somehow never
came up in Chapters 20 or 26:

Runaway definition?
font_size10pt#;ht#:=6pt#;xgap#:=0.6pt#;u#:=4/9pt#;s#:=0;o#:=1/ ETC.
! File ended while scanning the definition of ten.
<inserted text>

enddef
l.2 ...fter ten expandafter = input logo10

enddef;

The end of a file is invisible; but it’s treated like an ‘outer’ token, in the sense that a
file should never end when hijklmnj is passing rapidly over text.

Therefore this whole approach is doomed to failure. We’ll have to find a way
to stop the replacement text before the file ends. OK, we’ll redefine ‘input’ so that it
means ‘enddef ’, and redefine logo so that it means ‘endinput’.

let INPUT = input; let input = enddef; let logo = endinput;
expandafter def expandafter ten expandafter = INPUT logo10;
showtoken ten.

It works! By the way, the line with three expandafters can be replaced by a more
elegant construction that uses scantokens as follows:

scantokens "def ten=" INPUT logo10;
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This does the job because hijklmnj always looks ahead and expands the token im-
mediately following an expression that is being evaluated. (The expression in this
case is the string "def ten=", which is an argument to scantokens. The token that
immediately follows an expression almost always needs to be examined in order to
be sure that the expression has ended, so hijklmnj always examines it.) Curi-
ously, the expandafter alternative causes ten ’s replacement text to begin with the
tokens ‘font_size10pt#;ht#:=...’, while the scantokens way makes it start with
‘designsize:=(10);ht#:=...’. Do you see why? In the second case, expansion con-
tinued until an unexpandable token (‘designsize’) was found, so the font_size macro
was changed into its replacement text; but expandafter just expanded ‘INPUT’.

Now let’s make the problem a bit harder. Suppose we know that ‘input’ comes
at the end of where we want to read, but we don’t know that ‘logo’ will follow. We
know that some program file name will be there, but it might not be for the logo font.
Furthermore, let’s assume that ‘end’ might not be present; therefore we can’t simply
redefine it to be enddef . In this case we can make ‘input’ into a right delimiter,
and read the file as a delimited text argument; that will give us enough time to insert
other tokens, which will terminate the input and flush the unwanted file name. But
the construction is more complex:

let INPUT = input; delimiters begintext input;
def makedef(expr name)(text t) =
expandafter def scantokens name = t enddef;
endinput flushfilename enddef;

def flushfilename suffix s = enddef;
makedef("ten") expandafter begintext INPUT logo10;
showtoken ten.

This example merits careful study, perhaps with ‘tracingall’ to show exactly how
hijklmnj proceeds. We have assumed that the unknown file name can be parsed
as a suffix; this solves the problem that a file cannot end inside of a text parameter
or a false condition. (If we knew that ‘end’ were present, we could have replaced
‘endinput flushfilename’ by ‘if false:’ and redefined ‘end’ to be ‘fi’.)

Let’s turn now to a simpler problem. hijklmnj allows you to consider the
‘and’ of two Boolean expressions, but it always evaluates both expressions. This is
problematical in situations like

if pair x and (x>(0,0)): A else: B fi

because the expression ‘x>(0,0)’ will stop with an error message unless x is of type
pair. The obvious way to avoid this error,

if pair x: if x>(0,0): A else: B fi else: B fi

is cumbersome and requires B to appear twice. What we want is a “conditional and”
operation in which the second Boolean expression is evaluated only if the first one turns
out to be true; then we can safely write

if pair x cand (x>(0,0)): A else: B fi.

Similarly we might want “conditional or” in which the second operand is evaluated
only if the first is false, for situations like

if unknown x cor (x<0): A else: B fi.
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Such cand and cor macros can be defined as follows:

def cand(text q) = startif true q else: false fi enddef;
def cor(text q) = startif true true else: q fi enddef;
tertiarydef p startif true = if p: enddef;

the text arguments are now evaluated only when necessary. We have essentially replaced
the original line by

if if pair x: x<(0,0) else: false fi: A else: B fi.

This construction has one catch; namely, the right-hand operands of cand and cor
must be explicitly enclosed in delimiters. But delimiters are only a minor nuisance,
because the operands to ‘and’ and ‘or’ usually need them anyway. It would be impos-
sible to make cand and cor obey the normal expression hierarchy; when macros make
primary/secondary/tertiary distinctions, they evaluate their arguments, and such eval-
uation is precisely what cand and cor want to avoid.

If these cand and cor macros were changed so that they took undelimited text
arguments, the text argument wouldn’t stop at a colon. We could, however, use such
modified macros with group delimiters instead. For example, after

let {{ = begingroup; let }} = endgroup;
def cand text q = startif true q else: false fi enddef

we could write things like

if {{pair x cand x>(0,0)}}: A else: B fi.

(Not that this buys us anything; it just illustrates a property of undelimited text
arguments.) Group delimiters are not valid delimiters of delimited text arguments.

Speaking of group delimiters, the gratuitous begingroup and endgroup to-
kens added by vardef are usually helpful, but they can be a nuisance. For example,
suppose we want to write a zz macro such that ‘zz1..zz2..zz3’ expands into

z1{dz1}..z2{dz2}..z3{dz3}

It would be trivial to do this with def :

def zz suffix $ = z${dz$} enddef;

but this makes zz a “spark.” Let’s suppose that we want to use vardef , so that zz
will be usable in suffixes of variable names. Additional begingroup and endgroup
delimiters will mess up the syntax for paths, so we need to get rid of them. Here’s one
way to finesse the problem:

vardef zz@# =
endgroup gobbled true z@#{dz@#} gobble begingroup enddef.

The gobbled and gobble functions of Appendix B will remove the vacuous expressions
‘begingroup endgroup’ at the beginning and end of the replacement text.

(The initial begingroup endgroup won’t be gobbled if the vardef is being
read as a primary instead of as a secondary, tertiary, or expression. But in such cases
you probably don’t mind having begingroup present.)
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2. Fortuitous loops. The ‘max’ and ‘min’ macros in Appendix B make use of the fact
that commas are like ‘)(’ in argument lists. Although the definition heading is

def max(expr x)(text t)

we can write ‘max(a, b, c)’ and this makes x = a and t = ‘b, c’. Of course, a person isn’t
supposed to say ‘max(a)(b)(c)’.

Here are two more applications of the idea: We want ‘inorder(a, b, c)’ to be
true if and only if a ≤ b ≤ c; and we want ‘equally spaced(x1, x2, x3) dx ’ to produce
the equations ‘x2 − x1 = x3 − x2 = dx’.

def inorder(expr x)(text t) =
((x for u=t: <= u)
and (u endfor gobbled true true)) enddef;

def equally_spaced(expr x)(text t) expr dx =
x for u=t: - u = u endfor gobbled true
- dx enddef.

Isn’t this fun? (Look closely.)
There is a problem, however, if we try to use these macros with loops in the

arguments. Consider the expressions

inorder(for n=1 upto 10: a[n], endfor infinity),
inorder(a[1] for n=2 upto 10: ,a[n] endfor),
inorder(a[1],a[2] for n=3 upto 10: ,a[n] endfor);

the first two give error messages, but the third one works! The reason is that, in the
first two cases, the for loop begins to be expanded before hijklmnj begins to read
the text argument, hence ENDFOR rears its ugly head again. We can avoid this problem
by rewriting the macros in a more complicated way that doesn’t try to single out the
first argument x:

def inorder(text t) =
expandafter startinorder for u=t:
<= u endgroup and begingroup u endfor
gobbled true true endgroup) enddef;

def startinorder text t =
(begingroup true enddef;
def equally_spaced(text t) expr dx =
if pair dx: (whatever,whatever) else: whatever fi
for u=t: - u = u endfor gobbled true
- dx enddef;

Two separate tricks have been used here: (1) The ‘endgroup’ within ‘inorder’ will stop
an undelimited text argument; this gets rid of the unwanted ‘<= u’ at the beginning.
(2) A throwaway variable, ‘whatever ’, nullifies an unwanted equation at the beginning
of ‘equally spaced’. With the new definitions, all three of the expressions above will
be understood, and so will things like

equally_spaced(for n=1 upto 10: x[n], endfor whatever) dx.

Furthermore the single-argument cases now work: ‘inorder(a)’ will always be true, and
‘equally spaced(x) dx ’ will produce no new equations.
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If we want to improve max and min in the same way, so that a person can
specify loop arguments like

max(a[1] for n=2 upto 10: ,a[n] endfor)

and so that ‘max(a) = a’ in the case of a single argument, we have to work harder,
because max and min treat their first argument in quite a special way; they need to
apply the special macro setu , which defines the type of the auxiliary variable u . The
fastest way to solve this problem is probably to use a token whose meaning changes
during the first time through the loop:

vardef max(text t) =
let switch_ = firstset_;
for u=t: switch_ u>u_: u_ := u ;fi endfor
u_ enddef;

vardef min(text t) =
let switch_ = firstset_;
for u=t: switch_ u<u_: u_ := u ;fi endfor
u_ enddef;

def firstset_ primary u =
setu_ u; let switch_ = if; if false: enddef.

Incidentally, the author’s first programs for max and min contained an interesting bug.
They started with ‘save u ’, and they tried to recognize the first time through the loop
by testing if u was unknown. This failed because u could be constantly unknown in
well-defined cases like max(x, x + 1, x + 2).

3. Types. Our programs for inorder, equally_spaced, and max are careful not to make
unnecessary assumptions about the type of an expression. The ‘round’ and ‘byte’ func-
tions in Appendix B are further examples of macros that change behavior based on the
types of their expr arguments. Let’s look more closely at applications of type testing.

When the author was developing macros for plain hijklmnj, his first “cor-
rect” solution for max had the following form:

vardef max(text t) =
save u_; boolean u_;
for u=t: if boolean u_: setu_ u
elseif u_<u: u_ := u fi; endfor

u_ enddef.

This was interesting because it showed that there was no need to set u to true or false;
the simple fact that it was boolean was enough to indicate the first time through the
loop. (A slightly different setu macro was used at that time.)

We might want to generalize the ‘scaled’ operation of hijklmnj so that
‘scaled (x, y)’ is shorthand for ‘xscaled x yscaled y’. That’s pretty easy:

let SCALED = scaled;
def scaled primary z =
if pair z: xscaled xpart z yscaled ypart z
else: SCALED z fi enddef;

It’s better to keep the primitive operation ‘SCALED z’ here than to replace it by the
slower variant ‘xscaled z yscaled z’.
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hijklmnj allows you to compare booleans, numerics, pairs, strings, and
transforms for equality; but it doesn’t allow the expression ‘p = q’ where p and q are
paths or pens or pictures. Let’s write a general equality test macro such that ‘p == q’
will be true if and only if p and q are known and equal, whatever their type.

tertiarydef p == q =
if unknown p or unknown q: false
elseif boolean p and boolean q: p=q
elseif numeric p and numeric q: p=q
elseif pair p and pair q: p=q
elseif string p and string q: p=q
elseif transform p and transform q: p=q
elseif path p and path q:
if (cycle p = cycle q) and (length p = length q)
and (point 0 of p = point 0 of q): patheq p of q
else: false fi

elseif pen p and pen q: (makepath p == makepath q)
elseif picture p and picture q: piceq p of q
elseif vacuous p and vacuous q: true
else: false fi enddef;

vardef vacuous primary p =
not(boolean p or numeric p or pair p or path p
or pen p or picture p or string p or transform p) enddef;

vardef patheq expr p of q =
save t; boolean t; t=true;
for k=1 upto length p:
t := (postcontrol k-1 of p = postcontrol k-1 of q)
and (precontrol k of p = precontrol k of q)
and (point k of p = point k of q);

exitunless t; endfor
t enddef;
vardef piceq expr p of q =
save t; picture t;
t=p; addto t also -q;
cull t dropping origin;
(totalweight t=0) enddef;

If p and q are numeric or pair expressions, we could relax the condition that they both
be known by saying ‘if known p− q: p = q else false fi’; transforms could be handled
similarly by testing each of their six parts. But there’s no way to tell if booleans, paths,
etc., have been equated when they’re both unknown, without the risk of irrevocably
changing the values of other variables.

4. Nonlinear equations. hijklmnj has a built-in solution mechanism for linear equa-
tions, but it balks at nonlinear ones. You might be able to solve a set of nonlinear
equations yourself by means of algebra or calculus, but in difficult cases it is probably
simplest to use the ‘solve ’ macro of plain hijklmnj. This makes it possible to solve
n equations in n unknowns, provided that at most one of the equations is nonlinear
when one of the unknowns is fixed.
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The general technique will be illustrated here in the case n = 3. Let us try to
find numbers a, b, and c such that

−2a + 3b/c = c− 3;

ac + 2b = c3 − 20;

a3 + b3 = c2.

When c is fixed, the first two equations are linear in a and b. We make an inequality
out of the remaining equation by changing ‘=’ to ‘<’, then we embed the system in a
boolean-valued function:

vardef f(expr c) = save a,b;
-2a + 3b/c = c - 3;
a*c + 2b = c*c*c - 20;
a*a*a + b*b*b < c*c enddef;

c = solve f(1,7);
-2a + 3b/c = c - 3;
a*c + 2b = c*c*c - 20;
show a, b, c.

If we set tolerance = epsilon (which is the minimum value that avoids infinite looping
in the solve routine), the values a = 1, b = 2, and c = 3 are shown (so it is obvious that
the example was rigged). If tolerance has its default value 0.1, we get a = 1.05061,
b = 2.1279, c = 3.01563; this would probably be close enough for practical purposes,
assuming that the numbers represent pixels. (Increasing the tolerance saves time
because it decreases the number of iterations within solve ; you have to balance time
versus necessary accuracy.)

The only tricky thing about this use of solve was the choice of the numbers
1 and 7 in ‘f(1, 7)’. In typical applications we’ll usually have obvious values of the
unknown where f will be true and false, but a bit of experimentation was necessary
for the problem considered here. In fact, it turns out that f(−3) is true and f(−1) is
false, in this particular system; setting c = solve f(−3,−1) leads to another solution:
a = 7.51442, b = −7.48274, c = −2.3097. Furthermore, it’s interesting to observe that
this system has no solution with c between −1 and +1, even though f(+1) is true and
f(−1) is false! When c → 0, the quantity a3 + b3 approaches −∞ when c is negative,
+∞ when c is positive. An attempt to ‘solve f(1,−1)’ will divide by zero and come
up with several arithmetic overflows.

Let’s consider now a real application instead of
a contrived example. We wish to find the vertices of a

(Figure Da will be inserted
here; too bad you can’t see it
now.)

parallelogram z1l, z1r, z0l, z0r, such that

x1l = a; y1r = b; z0r = (c, d);
length(z1r − z1l) = length(z0r − z0l) = stem ,

and such that the lines z1r - - z1l and z1r - - z0r meet at a
given angle phi. We can consider the common angle θ of z1r − z1l and z0r − z0l to be
the “nonlinear” unknown, so the equations to be solved can be written

penpos1(stem , θ); penpos0(stem , θ);
x1l = a; y1r = b; z0r = (c, d);
angle(z1r − z0r) = θ + φ.
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When θ has a given value, all but the last of these equations are linear; hence we can
solve them by turning the crank in our general method:

vardef f(expr theta) = save x,y;
penpos1(stem,theta); penpos0(stem,theta);
x1l=a; y1r=b; z0r=(c,d);
angle(z1r-z0r)<theta+phi enddef;
theta=solve f(90,0);
penpos1(stem,theta); penpos0(stem,theta);
x1l=a; y1r=b; z0r=(c,d);
show z1l,z1r,z0l,z0r,theta,angle(z1r-z0r).

For example, if a = 1, b = 28, c = 14, d = 19, stem = 5, and φ = 80, we get

(1, 23.703) (3.557, 28) (11.443, 14.703) (14, 19) 59.25 139.25

as answers when tolerance = epsilon , and

(1, 23.702) (3.554, 28) (11.446, 14.702) (14, 19) 59.28 139.25

when tolerance = 0.1. The function f prescribed by the general method can often be
simplified; for example, in this case we can remove redundancies and get just

vardef f(expr theta) = save x,y;
penpos1(stem,theta); x1l=a; y1r=b;
angle(z1r-(c,d))<theta+phi enddef.

The problem just solved can be called the “d problem,” because it arose in connection
with N. N. Billawala’s meta-design of a black-letter ‘?’, and because it appears in
Appendix D.

5. Nonlinear interpolation. Suppose a designer has empirically determined good values
of some quantity f(x) for several values of x; for example, f(x) might be a stroke
weight or a serif length or an amount of overshoot, etc. These empirical values can be
generalized and incorporated into a meta-design if we are able to interpolate between
the original x’s, obtaining f(x) at intermediate points.

Suppose the data points are known for x = x1 < x2 < · · · < xn. We can
represent f(x) by its graph, which we can assume is well approximated by the hijk-
lmnj path defined by

F = (x1, f(x1)) . . (x2, f(x2)) . . 〈etc.〉 . . (xn, f(xn))

if f(x) is a reasonable function. Therefore interpolation can be done by using path
intersection (!):

vardef interpolate expr F of x = save t; t =
if x < xpart point 0 of F: extrap_error 0
elseif x > xpart point infinity of F: extrap_error infinity
else: xpart(F intersectiontimes verticalline x) fi;
ypart point t of F enddef;
def extrap_error = hide(errhelp "The extreme value will be used.";
errmessage "‘interpolate’ has been asked to extrapolate";
errhelp "") enddef;

vardef verticalline primary x =
(x,-infinity)--(x,infinity) enddef;
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For example, if f(1) = 1, f(3) = 2, and f(15) = 4, this interpolation scheme gives
‘interpolate (1, 1) . . (3, 2) . . (15, 4) of 7’ the value 3.37.

6. Drawing with overlays. Let’s leave numerical computations now and go back into
the realm of pictures. Bruce Leban has suggested an extension of plain hijklmnj’s
‘clearit/showit/shipit’ commands by which ‘fill’ and ‘draw’ essentially operate on
imaginary sheets of clear plastic. A new command ‘keepit’ places a fresh sheet of
plastic on top of whatever has already been drawn, thereby preserving the covered
image against subsequent erasures.

We can implement keepit by introducing a new picture variable totalpicture ,
and new boolean variables totalnull , currentnull , then defining macros as follows:

def clearit = currentpicture:=totalpicture:=nullpicture;
currentnull:=totalnull:=true; enddef;

def keepit = cull currentpicture keeping (1,infinity);
addto totalpicture also currentpicture;
currentpicture:=nullpicture;
totalnull:=currentnull; currentnull:=true; enddef;
def addto_currentpicture =
currentnull:=false; addto currentpicture enddef;

def mergeit (text do) =
if totalnull: do currentpicture
elseif currentnull: do totalpicture
else: begingroup save v; picture v; v:=currentpicture;
cull v keeping (1,infinity); addto v also totalpicture;
do v endgroup fi enddef;

def shipit = mergeit(shipout) enddef;
def showit_ = mergeit(show_) enddef;
def show_ suffix v = display v inwindow currentwindow enddef;

The totalnull and currentnull bookkeeping isn’t strictly necessary, but it contributes
greatly to the efficiency of this scheme if the extra generality of keepit is not actually
being used. The ‘v’ computations in mergeit involve copying the accumulated picture
before displaying it or shipping it out; this takes time, and it almost doubles the amount
of memory needed, so we try to avoid it when possible.

7. Filing pictures. If you want to store a picture in a file and read it in to some other
hijklmnj job, you face two problems: (1) hijklmnj’s shipout command implicitly
culls the picture, so that only binary data is left. Pixel values > 0 are distinguished
from pixel values <= 0, but no other information about those values will survive.
(2) The result of shipout can be used in another hijklmnj job only if you have
an auxiliary program that converts from binary gf format to a hijklmnj source
program; hijklmnj can write gf files, but it can’t read them.

These problems can be resolved by using hijklmnj’s transcript or log file
as the output medium, instead of using the gf file. For example, let’s consider first the
use of tracingedges . Suppose we say

tracingedges := 1;
〈any sequence of fill, draw, or filldraw commands〉
message "Tracing edges completed."; tracingedges := 0;
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then the log file will contain lines such as the following:

Tracing edges at line 15: (weight 1)
(1,5)(1,2)(2,2)(2,1)(3,1)(3,0)(8,0)(8,1)(9,1)(9,2)(10,2)(10,8)(9,8)
(9,9)(8,9)(8,10)(3,10)(3,9)(2,9)(2,8)(1,8)(1,5).

Tracing edges at line 15: (weight -1)
(3,5)(3,2)(4,2)(4,1)(7,1)(7,2)(8,2)(8,8)(7,8)(7,9)(4,9)(4,8)(3,8)(3,5).

Tracing edges at line 18: (weight -1)
(No new edges added.)

Tracing edges completed.

Let us write macros so that these lines are acceptable input to hijklmnj.

def Tracing=begingroup save :,[,],Tracing,edges,at,weight,w;
delimiters []; let Tracing = endfill; interim turningcheck := 0;
vardef at@#(expr wt) = save (,); w := wt;
let ( = lp; let ) = rp; fill[gobble begingroup enddef;

let edges = \; let weight = \; let : = \; enddef;
def lp = [ enddef;
def rp = ] -- enddef;
vardef No@# = origin enddef;
def endfill = cycle] withweight w endgroup; enddef;
def completed = endgroup; enddef;

The precise form of edge-traced output, with its limited vocabulary and its restricted
use of parentheses and commas, has been exploited here.

With slight changes to this code, you can get weird effects. For example, if the
definition of rp is changed to ‘]..tension 4..’, and if ‘scaled 5pt’ is inserted before
‘withweight’, the image will be an “almost digitized” character:

(Figure Daa will be inserted here; too bad you can’t see it now.)

(The bumps at the left here are due to the repeated points ‘(1,5)’ and ‘(3,5)’ in the
original data. You can remove them by adding an extra pass, first tracing the edges
that are output by the unmodified Tracing macros.)

Although the effects of fill and draw can be captured by tracingedges , other
operations like culling are not traced. Let us therefore consider the more general picture
representation that hijklmnj produces when tracingoutput is positive, or when you
ask it to show a picture (see Chapter 13). The macros on the next page will recreate
a picture from input of the form

beginpicture
row 1: 1+ -2- | 0+ 2-
row 0: | 0+ 2++ 5---
row -2: 0- -2+ |
endpicture
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where the middle three lines have been copied verbatim from a transcript file. (The
task would be easier if the token ‘-’ didn’t have to perform two different functions!)

let neg_ = -; let colon_ = :;
def beginpicture =
begingroup save row, |, :, ---, --, +, ++, +++, v, xx, yy, done;
picture v; v := nullpicture; interim turningcheck := 0;
let --- = mmm_; let -- = mm_;
let + = p_; let ++ = pp_; let +++ = ppp_;
let row = pic_row; let | = relax; let : = pic_colon; : enddef;
def pic_row primary y = done; yy := y; enddef;
def pic_colon primary x =
if known x colon_ ; xx := x; pic_edge fi enddef;
def pic_edge =
let - = m_;
addto v contour unitsquare xscaled xx shifted(0,yy) enddef;

def mmm_ = withweight 3; let - = neg_; : enddef;
def mm_ = withweight 2; let - = neg_; : enddef;
def m_ = withweight 1; let - = neg_; : enddef;
def p_ = withweight neg_1; let - = neg_; : enddef;
def pp_ = withweight neg_2; let - = neg_; : enddef;
def ppp_ = withweight neg_3; let - = neg_; : enddef;
transform xy_swap; xy_swap = identity rotated 90 xscaled -1;
def endpicture = done;
v transformed xy_swap transformed xy_swap endgroup enddef;

The reader will find it instructive to study these macros closely. When ‘done’ appears,
it is an unknown primary, so pic_colon will not attempt to generate another edge.
Each new edge also inserts a cancelling edge at x = 0. The two applications of xy_swap
at the end will clear away all redundant edges. (Double swapping is a bit faster than
the operation ‘rotated-90 rotated 90’ that was used for this purpose in Chapter 13.)

8. Fattening a pen. Let’s move on to another aspect of hijklmnj by considering
an operation on pen polygons: Given a pen value p, the task is to construct a pen
‘taller p’ that is one pixel taller. For example, if p is the diamond nib ‘(0.5, 0) - -
(0, 0.5) - - (−0.5, 0) - - (0,−0.5) - - cycle’, the taller nib will be

(0.5, 0.5) - - (0, 1) - - (−0.5, 0.5) - - (−0.5,−0.5) - - (0,−1) - - (0.5,−0.5) - - cycle;

if p is a tilted penrazor ‘(−x,−y) - - (x, y) - - cycle’, the taller nib will be

(−x,−y − 0.5) - - (x, y − 0.5) - - (x, y + 0.5) - - (−x,−y + 0.5) - - cycle,

assuming that x > 0. The macro itself turns out to be fairly simple, but it makes
instructive use of path and pen operations.

We want to split the pen into two parts, a “bottom” half and a “top” half; the
bottom half should be shifted down by .5 pixels, and the top half should be shifted up.
The dividing points between halves occur at the leftmost and rightmost vertices of the
pen. Hmmm; a potential problem arises if there are two or more leftmost or rightmost
points; for example, what if we try to make ‘taller taller p’? Fortunately hijklmnj
doesn’t mind if a pen polygon has three or more consecutive vertices that lie on a line,
hence we can safely choose any leftmost point and any rightmost point.
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The next question is, “How should we find leftmost and rightmost points?”
We will, of course, use makepath to find the set of all vertices; so we could simply
traverse the path and find the minimum and maximum x coordinates. However, it will
be faster (and more fun) to use either directiontime or penoffset for this purpose. Let’s
try directiontime first:

vardef taller primary p =
save r, n, t, T; path r;
r = tensepath makepath p; n = length r;
t = round directiontime up of r;
T = round directiontime down of r;
if t>T: t := t-n; fi
makepen(subpath(T-n,t) of r shifted .5down
--subpath(t,T) of r shifted .5up -- cycle) enddef;

The result of makepath has control points equal to their adjacent vertices, so it could
not be used with directiontime. (If any key point is equal to its precontrol or
postcontrol, the “velocity” of the path is zero at that point; directiontime assumes
that all directions occur whenever the velocity drops to zero.) Therefore we have used
‘tensepath’. This almost works, once we realize that the values of t and T sometimes
need to be rounded to integers. But it fails for pens like penspeck that have points very
close together, since tensepath is no better than an unadulterated makepath in such
cases. Furthermore, even if we could define a nice path from p (for example by scaling
it up), we would run into problems of numerical instability, in cases like penrazor
where the pen polygon takes a 180◦ turn. Razor-thin pens cannot be recognized easily,
because they might have more than two vertices; for example, rotations of future pens
such as ‘makepen(left . . origin . . right . . cycle)’ are problematical.

We can obtain a more robust result by using penoffset, because this operation
makes use of the convexity of the polygon. The “fastest” solution looks like this:

vardef taller primary p =
save q, r, n, t, T; pen q; q = p;
path r; r = makepath q; n = length r;
t = round xpart(r intersectiontimes penoffset up of q);
T = round xpart(r intersectiontimes penoffset down of q);
if t>T: t := t-n; fi
makepen(subpath(T-n,t) of r shifted .5down
--subpath(t,T) of r shifted .5up -- cycle) enddef;

(The argument p is copied into q, in case it’s a future pen; this means that the conversion
of future pen to pen need be done only once instead of three times.)

9. Bernshtĕın polynomials. And now, for our last trick, let’s try to extendhijklmnj’s
syntax so that it will accept generalized mediation formulas of the form ‘t[u1, . . . , un]’
for all n ≥ 2. (This notation was introduced for n = 3 and 4 in Chapter 14, when we
were considering fractional subpaths.) If n > 2, the identity

t[ u1, . . . , un] = t[t[u1, . . . , un−1], t[u2, . . . , un] ]

defines t[u1, . . . , un] recursively, and it can be shown that the alternative definition

t[ u1, . . . , un] = t[t[u1, u2], . . . , t[un−1, un] ]
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gives the same result. (Indeed, we have

t[u1, . . . , un] =
n

∑

k=1

(

n− 1
k − 1

)

(1− t)n−ktk−1uk,

a Bernshtĕın polynomial of order n− 1.)
Our problem is to change the meaning of hijklmnj’s brackets so that ex-

pressions like ‘1/2[a, b, c, d]’ will evaluate to ‘.125a+ .375b+ .375c+ .125d’ in accordance
with the formulas just given, but we don’t want to mess up the other primitive uses
of brackets in contexts like ‘x[n]’ and ‘path p[][]a’. We also want to be able to use
brackets inside of brackets.

The reader is challenged to try solving this problem before looking at the
weird solution that follows. Perhaps there is a simpler way?

let [[[ = [; let ]]] = ]; let [ = lbrack;
def lbrack = hide(delimiters []) lookahead [ enddef;
def lookahead(text t) =
hide(let [ = lbrack;
for u=t, hide(n_ := 0; let switch_ = first_): switch_ u; endfor)
if n_<3: [[[t]]] else: Bernshtein n_ fi enddef;

def first_ primary u =
if numeric u: numeric u_[[[]]]; store_ u
elseif pair u: pair u_[[[]]]; store_ u fi;
let switch_ = store_ enddef;

def store_ primary u = u_[[[incr n_]]] := u enddef;
primarydef t Bernshtein nn =
begingroup for n=nn downto 2:
for k=1 upto n-1: u_[[[k]]]:=t[[[u_[[[k]]],u_[[[k+1]]] ]]];
endfor endfor u_[[[1]]] endgroup enddef;

The most subtle thing about this code is the way it uses the ‘empty’ option of a 〈for list〉
to dispense with empty text arguments. Since hijklmnj evaluates all the expressions
of a for loop before reading the loop text, and since ‘n_’ and ‘u_’ are used here only
when no recursion is taking place, it is unnecessary to save their values even when
brackets are nested inside of brackets.

Of course this trick slows hijklmnj down tremendously, whenever brackets
appear, so it is just of academic interest. But it seems to work in all cases except with
respect to formulas that involve ‘]]’ (two consecutive brackets); the latter token, which
plain hijklmnj expands to ‘] ]’, is not expanded when lookahead reads its text ar-
gument, hence the user must remember to insert a space between consecutive brackets.

Their tricks an’ craft hae put me daft,
They’ve taen me in, an’ a’ that.

— ROBERT BURNS, The Jolly Beggar (1799)

Ebery house hab him dutty carner.

— ANDERSON and CUNDALL, Jamaica Proverbs and Sayings (1927)
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We’ve seen lots of examples of individual letters or parts of letters; let’s con-
centrate now on the problem of getting things all together. The next two pages
contain the entire contents of an example file ‘logo.mf’, which generates the
letters of the METAFONT logo. The file is short, because only seven letters are
involved, and because those letters were intentionally done in a style that would
be easy for the system they name. But the file is complete, and it illustrates
in simplified form all the essential aspects of larger fonts: Ad hoc dimensions
are converted to pixels; subroutines are defined; programs for individual letters
appear; intercharacter and interword spacing conventions are nailed down. Fur-
thermore, the character programs are careful to draw letters that will be well
adapted to the raster, even if pixels on the output device are not square.

We’ve been studying the ‘METAFONT’ letters off and on since Chapter 4,
making our examples slightly more complex as more of the language has been
encountered. Finally we’re ready to pull out all the stops and look at the real,
professional-quality logo.mf, which incorporates all the best suggestions that
have appeared in the text and in answers to the exercises.

It’s easy to generate a font with logo.mf, by proceeding as explained
in Chapter 11. For example, the logo10 font that produces ‘METAFONT’ in
10-point size can be created for a low-resolution printer by running METAFONT
with the command line

\mode=lowres; input logo10

where the parameter file logo10.mf appears in that chapter. Furthermore the
slanted version ‘89:;<=>: ’ can be created by inputting the parameter file
logosl10.mf, which says simply

% 10-point slanted METAFONT logo
slant := 1/4;
input logo10

The slant parameter affects currenttransform as explained in Chapter 15.
There isn’t a great deal of “meta-ness” in the logo.mf design, because

only a few forms of the METAFONT logo are needed. However, some interesting
variations are possible; for example, if we use the parameter files

font_size 30pt#; font_size 10pt#;
ht#:=25pt#; ht#:=6pt#;
xgap#:=1.5pt#; xgap#:=2pt#;
u#:=3/9pt#; u#:=4/3pt#;
s#:=1/3pt#; s#:=-2/3pt#;
o#:=2/9pt#; o#:=1/9pt#;
px#:=1pt#; px#:=1/3pt#;
slant:=-1/9;

we get BCDGHIJD and KLUVWvwU, respectively.
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% Routines for the METAFONT logo, as found in The METAFONTbook
% (logo10.mf is a typical parameter file)

mode_setup;
if unknown slant: slant:=0 else: currenttransform:=
identity slanted slant yscaled aspect_ratio fi;

ygap#:=(ht#/13.5u#)*xgap#; % vertical adjustment
ho#:=o#; % horizontal overshoot
leftstemloc#:=2.5u#+s#; % position of left stem
barheight#:=.45ht#; % height of bar lines
py#:=.9px#; % vertical pen thickness

define_pixels(s,u);
define_whole_pixels(xgap);
define_whole_vertical_pixels(ygap);
define_blacker_pixels(px,py);
pickup pencircle xscaled px yscaled py;
logo_pen:=savepen;
define_good_x_pixels(leftstemloc);
define_good_y_pixels(barheight);
define_corrected_pixels(o);
define_horizontal_corrected_pixels(ho);

def beginlogochar(expr code, unit_width) =
beginchar(code,unit_width*u#+2s#,ht#,0);
pickup logo_pen enddef;

def super_half(suffix i,j,k) =
draw z.i{0,y.j-y.i}
... (.8[x.j,x.i],.8[y.i,y.j]){z.j-z.i}
... z.j{x.k-x.i,0}
... (.8[x.j,x.k],.8[y.k,y.j]){z.k-z.j}
... z.k{0,y.k-y.j} enddef;

beginlogochar("M",18);
x1=x2=leftstemloc; x4=x5=w-x1; x3=w-x3;
y1=y5; y2=y4; bot y1=-o;
top y2=h+o; y3=y1+ygap;
draw z1--z2--z3--z4--z5;
labels(1,2,3,4,5); endchar;

beginlogochar("E",14);
x1=x2=x3=leftstemloc;
x4=x6=w-x1+ho; x5=x4-xgap;
y1=y6; y2=y5; y3=y4;
bot y1=0; top y3=h; y2=barheight;

(Figure Eb will be inserted here;

too bad you can’t see it now.)

(Figure A18a will be inserted here;

too bad you can’t see it now.)

(Figure Ea will be inserted here;

too bad you can’t see it now.)
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(Figure 18a will be inserted here; too

bad you can’t see it now.)

(Figure 4c will be inserted here; too bad you

can’t see it now.)

(Figure 11a will be inserted here;

too bad you can’t see it now.)

(Figure 21a will be inserted here; too

bad you can’t see it now.)

draw z6--z1--z3--z4; draw z2--z5;
labels(1,2,3,4,5,6); endchar;

beginlogochar("T",13);
italcorr ht#*slant + .5u#;
if .5w<>good.x .5w: change_width; fi
lft x1=-eps; x2=w-x1; x3=x4=.5w;
y1=y2=y3; top y1=h; bot y4=-o;
draw z1--z2; draw z3--z4;
labels(1,2,3,4); endchar;

beginlogochar("A",15);
x1=.5w; x2=x4=leftstemloc; x3=x5=w-x2;
top y1=h+o; y2=y3=barheight;
bot y4=bot y5=-o;
draw z4--z2--z3--z5; super_half(2,1,3);
labels(1,2,3,4,5); endchar;

beginlogochar("F",14);
x1=x2=x3=leftstemloc;
x4=w-x1+ho; x5=x4-xgap;
y2=y5; y3=y4; bot y1=-o;
top y3=h; y2=barheight;
draw z1--z3--z4; draw z2--z5;
labels(1,2,3,4,5); endchar;

beginlogochar("O",15);
x1=x4=.5w; top y1=h+o; bot y4=-o;
x2=w-x3=good.x(1.5u+s); y2=y3=barheight;
super_half(2,1,3); super_half(2,4,3);
labels(1,2,3,4); endchar;

beginlogochar("N",15);
x1=x2=leftstemloc; x3=x4=x5=w-x1;
bot y1=bot y4=-o;
top y2=top y5=h+o; y3=y4+ygap;
draw z1--z2--z3; draw z4--z5;
labels(1,2,3,4,5); endchar;

ligtable "T": "A" kern -.5u#;
ligtable "F": "O" kern -u#;

font_quad:=18u#+2s#;
font_normal_space:=6u#+2s#;
font_normal_stretch:=3u#;
font_normal_shrink:=2u#;
font_identifier:="MFLOGO" if slant<>0: & "SL" fi;
font_coding_scheme:="AEFMNOT only";
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Everything in logo.mf has already been explained previously in this
book except for the very last two lines, which define a ‘font identifier’ and
a ‘font coding scheme’. These are optional bits of information that are dis-
cussed in Appendix F. Furthermore an italic correction has been specified for
the letter ‘T’, since it’s the final letter of ‘89:;<=>: ’.

The program for a complete typeface will differ from the program for this
simple logo font primarily in degree; there will be lots more parameters, lots more
subroutines, lots more characters, lots more ligatures and kerns and whatnot. But
there will probably also be more administrative machinery, designed to facilitate the
creation, testing, and modification of characters, since a large enterprise requires good
organization. The remainder of this appendix is devoted to an example of how this
might be done: We shall discuss the additional kinds of routines that the author found
helpful while he was developing the Computer Modern family of typefaces.

The complete, unexpurgated programs for Computer Modern appear in Com-
puters & Typesetting, Volume E; but since they have evolved over a long period of
time, they are rather complex. We shall simplify the details so that it will be easier to
grasp the important issues without being distracted by irrelevant technicalities.

The simple logo fonts discussed above are generated by two types of files:
There are parameter files like logo10.mf, and there is a program file logo.mf. The
Computer Modern fonts, being more extensive, are generated by four types of files:
There are parameter files like ‘cmr10.mf’, which specify the ad hoc dimensions for par-
ticular sizes and styles of type; there are driver files like ‘roman.mf’, which serve as chief
executives of the font-generation process; there are program files like ‘punct.mf’, which
contain programs for individual characters; and there’s a base file called ‘cmbase.mf’,
which contains the subroutines and other macros used throughout the system.

Our logo example could have been cast in this more general mold by moving
the character programs into a program file ‘METAFON.mf’, and by moving most of the
opening material into a base file ‘logobase.mf’ that looks like this:

% Base file for the METAFONT logo
logobase:=1; % when logobase is known, this file has been input

def font_setup =
if unknown slant: slant:=0 else: currenttransform:=

... (the previous code is unchanged)
define_corrected_pixels(o);
define_horizontal_corrected_pixels(ho); enddef;

followed by the definitions of beginlogochar and super_half. Then we’re left with a
driver file logo.mf that looks like this:

% Driver file for the METAFONT logo
if unknown logobase: input logobase fi

mode_setup; font_setup; % establish pixel-oriented units
input METAFON % generate the characters

ligtable "T": "A" kern -.5u#;

and so on, concluding as before.
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In general, a parameter file calls on a driver file, which calls on one or more
program files; the base file contains predefined macros shared by all. There may be
several driver files, each using a different combination of program files; for example,
Computer Modern has ‘roman.mf’ and ‘italic.mf’, both of which call on punct.mf to
generate punctuation marks, although they use different program files to generate the
lowercase alphabets. Characters are partitioned into program files so that they can be
shared by different drivers.

Parameter files in Computer Modern don’t quite follow the conventions of
logo10.mf. Here, for example, are the opening and closing lines of cmr10.mf:

% Computer Modern Roman 10 point
if unknown cmbase: input cmbase fi

font_identifier "CMR"; font_size 10pt#;

u#:=20/36pt#; % unit width
serif_fit:=0pt#; % extra sidebar near serifs
letter_fit:=0pt#; % extra space added to all sidebars

...
serifs:=true; % should serifs and bulbs be attached?
monospace:=false; % should all characters have the same width?

generate roman % switch to the driver file

The main differences are: (1) There’s special code at the beginning, to make sure that
cmbase.mf has been loaded. The base file includes several things that are needed right
away; for example, cmbase declares the variables ‘serifs ’ and ‘monospace ’ to be of type
boolean, so that boolean-valued parameter assignments like ‘serifs := true’ will be
legal. (2) The font identifier is defined in the parameter file, not in the driver file.
(3) The last line says ‘generate’ instead of ‘input’; the base file defines generate to
be the same as input, but other meanings are assigned by utility routines that we’ll
study later. (4) The final ‘end’ is no longer present in the parameter file.

The roman.mf driver looks like this (vastly simplified):

% The Computer Modern Roman family of fonts

mode_setup; font_setup;

input romanu; % upper case (majuscules)
input romanl; % lower case (minuscules)
input romand; % numerals
input punct; % punctuation marks

font_slant slant;
if monospace: font_quad 18u#;
font_normal_space 9u#; % no stretching or shrinking

else: font_quad 18u#+4letter_fit#;
font_normal_space 6u#+2letter_fit#; % interword spacing
font_normal_stretch 3u#; % with ‘‘glue’’
font_normal_shrink 2u#;
input romlig; % f ligatures
ligtable "f": "i" =: oct"014", "f" =: oct"013", "l" =: oct"015",

"’" kern u#, "?" kern u#, "!" kern u#;
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ligtable oct"013": "i" =: oct"016", "l" =: oct"016", % ffi and ffl
"’" kern u#, "?" kern u#, "!" kern u#;

ligtable "-": "-" =: oct"173"; % en dash
ligtable oct"173": "-" =: oct"174"; % em dash
ligtable "‘": "‘" =: oct"134"; % open quotes
ligtable "’": "’" =: oct"042", % close quotes

"?" kern 2u#, "!" kern 2u#;
fi; bye.

In a monospaced font like cmtt10, all characters will be exactly 9u# wide. Both cmr10
and cmtt10 use the roman driver, but roman omits the ligatures and changes the inter-
word spacing when it is producing monospaced fonts.

The program files of Computer Modern have slightly different conventions
from those of plain hijklmnj. Here, for example, are the programs for two of the
simplest punctuation marks:

cmchar "Period";
numeric dot_diam#; dot_diam# = if monospace: 5/4 fi dot_size#;
define_whole_blacker_pixels(dot_diam);
beginchar(".",5u#,dot_diam#,0);
adjust_fit(0,0); pickup fine.nib;
pos1(dot_diam,0); pos2(dot_diam,90);
x1l=good.x(x1l+.5w-x1); bot y2l=0; z1=z2; dot(1,2); % dot
penlabels(1,2); endchar;

(Figure Ec&Ed will be inserted here; too bad you can’t see it now.)

iff not monospace: cmchar "Em dash";
beginchar(oct"174",18u#,x_height#,0);
italcorr .61803x_height#*slant + .5u#;
adjust_fit(letter_fit#,letter_fit#);
pickup crisp.nib; pos1(vair,90); pos2(vair,90);
y1r=y2r=good.y(y1r+.61803h-y1); lft x1=-eps; rt x2=w+eps;
filldraw stroke z1e--z2e; % crossbar
penlabels(1,2); endchar;
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The new structural features in these programs are: (1) ‘cmchar’, which appears at
the very beginning of each character program; (2) ‘iff 〈boolean expression〉:’, which
precedes cmchar if the character is to be generated only when the boolean expression
is true; (3) ‘adjust fit’, which can change the amount of white space at the character’s
left and/or right; (4) pens called ‘fine.nib ’ and ‘crisp.nib ’; (5) new macros ‘pos ’, ‘dot ’,
and ‘stroke ’, discussed further below.

The base file cmbase.mf begins as follows:

% The base file for Computer Modern (a supplement to plain.mf)

cmbase:=1; % when cmbase is known, this file has been input

let cmchar = relax; % ‘cmchar’ should precede each character
let generate = input; % ‘generate’ should follow the parameters

newinternal slant, superness, · · · % purely numeric parameters
boolean serifs, monospace, · · · % boolean parameters

These few lines are straightforward enough. Although cmchar is defined to be the
same as relax, which does nothing, the definition of cmchar will be changed by certain
utility programs below; this will prove to be a convenience when characters are designed,
tested, and maintained.

The next few lines of cmbase are trickier. They implement the ‘iff ’ feature,
which bypasses unwanted characters at high speed.

let semi_ = ;; let colon_ = :; let endchar_ = endchar;
def iff expr b =
if b: let next_ = use_it else: let next_ = lose_it fi;
next_ enddef;
def use_it = let : = restore_colon; enddef;
def restore_colon = let : = colon_; enddef;
def lose_it = let endchar = fi; inner cmchar; let ; = fix_ semi_
if false enddef;
def fix_ = let ; = semi_; let endchar = endchar_; outer cmchar; enddef;
def always_iff = let : = endgroup; killboolean enddef;
def killboolean text t = use_it enddef;
outer cmchar;

(The lose_it routine assumes that every character program will end with ‘endchar;’.)
The most interesting part of cmbase is probably the way it allows the “side-

bearings” of each character to be fine-tuned. The amount of space at the left and right
edges of the character’s “bounding box” can be adjusted without actually shifting the
picture, and without changing the width that was specified in beginchar. Here’s
how it works: After a beginchar command and an optional italcorr, each Computer
Modern character program is supposed to say

adjust fit(〈left sidebearing adjustment〉, 〈right sidebearing adjustment〉);

sidebearing adjustments are given in true, “sharped” units. The adjust fit routine
essentially adds extra space at the left and right, corresponding to the sidebearing
adjustments. An ad-hoc dimension called “letter fit#” is also added to all sidebearings,
behind the scenes.
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Our example program for the "." says simply ‘adjust fit(0, 0)’; this means
that only letter fit is added. The program for em-dash says ‘adjust fit(letter fit#,
letter fit#)’, hence the sidebearings are increased by 2letter fit at each side. The total
character width of the em-dash comes to 18u# + 4letter fit# (which is indeed one em,
the value of font quad specified in the roman driver file).

The program for lowercase ‘b’ in file romanl.mf says ‘adjust fit(serif fit#, 0)’;
this adds the serif fit parameter at the left, to compensate for the possible appearance
of a serif at the left of this character. The serif fit is zero in cmr10, but it has a negative
value in a sans-serif font, and a positive value when serifs are extralong.

The nice thing about adjust fit is that it’s an “add-on” specification that
doesn’t affect the rest of the character design. The program can still be written as
if 0 were the left edge and w were the right edge; afterwards the fit can be adjusted
without changing the program or the shapes.

There are two versions of adjust fit, one for normal fonts and one for mono-
space fonts. Both of them are slightly complicated by something called shrink fit , which
will be explained later; for the moment, let’s just imagine that shrink fit = 0. Here is
the routine for the normal case:

def normal_adjust_fit(expr left_adjustment,right_adjustment) =
l := -hround(left_adjustment*hppp)-letter_fit;
interim xoffset := -l;
charwd := charwd+2letter_fit#+left_adjustment+right_adjustment;
r := l+hround(charwd*hppp)-shrink_fit;
w := r-hround(right_adjustment*hppp)-letter_fit;
enddef;

Variables l and r are set to the actual pixel boundaries of the character; thus, plain
hijklmnj’s bounding box has 0 ≤ x ≤ w, but Computer Modern’s has l ≤ x ≤ r.
Rounding has been done very carefully so that the sidebearings will have consistent
relationships across an entire font. Notice that w has been recalculated; this means
that adjust fit can affect the digitization, but—we hope—in a beneficial way.

In a monospaced font, the adjust fit routine changes the unit-width param-
eter, u , so that the total width after adjustment comes out to be constant. Similar
adjustments are made to parameters like jut , the nominal serif length. The width of
all characters in a monospaced font will be mono charwd# in true units, mono charwd
in pixels. The italic correction of all characters will be mono charic#.

def mono_adjust_fit(expr left_adjustment,right_adjustment) =
numeric expansion_factor; mono_charwd# = 2letter_fit#
+ expansion_factor*(charwd+left_adjustment+right_adjustment);

forsuffixes $=u,jut, · · · :
$ := $.#*expansion_factor*hppp; endfor

l := -hround(left_adjustment*expansion_factor*hppp)-letter_fit;
interim xoffset := -l;
r := l+mono_charwd-shrink_fit;
w := r-hround(right_adjustment*expansion_factor*hppp)-letter_fit;
charwd := mono_charwd#; charic := mono_charic#;
enddef;

It took the author umpteen trials to get this routine right.
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The xoffset calculations in adjust fit are enough to shift the character by the
proper amount when it’s being shipped out. We just have to take care of getting the
correct character width in pixels, and cmbase does this by setting

extra_endchar := extra_endchar&"r:=r+shrink_fit;w:=r-l;";

No other changes to plain hijklmnj’s endchar routine are needed; but we
do need to redefine makebox and maketicks, in order to show the adjusted bounding
box. It’s convenient to change makebox so that it also slants the box, in a slanted font,
and so that it draws vertical lines one unit apart as aids to the designer; several more
horizontal lines are also drawn:

def makebox(text rule) =
for y=0,asc_height,body_height,x_height,bar_height,

-desc_depth,-body_depth: rule((l,y)t_,(r,y)t_); endfor % horizontals
for x=l,r: rule((x,-body_depth)t_,(x,body_height)t_); endfor % verticals
for x=u*(1+floor(l/u)) step u until r-1:
rule((x,-body_depth)t_,(x,body_height)t_); endfor % more verticals

if charic<>0:
rule((r+charic*pt,h.o_),(r+charic*pt,.5h.o_)); fi % italic correction

enddef;

def maketicks(text rule) =
for y=0,h.o_,-d.o_:
rule((l,y),(l+10,y)); rule((r-10,y),(r,y)); endfor % horizontals
for x=l,r: rule((x,10-d.o_),(x,-d.o_));

rule((x,h.o_-10),(x,h.o_)); endfor % verticals
if charic<>0:
rule((r+charic*pt,h.o_-10),(r+charic*pt,h.o_)); fi % italic correction

enddef;

(Examples of the new makebox routine appear in the illustrations for period and em-
dash earlier in this appendix, and also in Chapter 23.)

Plain hijklmnj’s change width routine must also be generalized:

def change_width = if not monospace: % change width by +1 or -1
if r+shrink_fit-l = floor(charwd*hppp): w := w+1; r := r+1;
else: w := w-1; r := r-1; fi fi enddef;

The Computer Modern font setup routine is invoked at the beginning of each
driver file. This is what converts sharped units to pixels; font setup also computes
additional quantities that are important to the font as a whole. It’s a long macro, but
here are its important features:

def font_setup =
define_pixels(u,jut, · · · );
define_whole_pixels(letter_fit,fine,crisp, · · · );
define_whole_vertical_pixels(body_height,cap_height, · · · );
define_whole_blacker_pixels(hair,stem,curve, · · · );
define_whole_vertical_blacker_pixels(vair,slab, · · · );
define_corrected_pixels(o, · · · );
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if monospace: mono_charwd# := 9u#; define_whole_pixels(mono_charwd);
mono_charic# := max(0,body_height#*slant);
let adjust_fit = mono_adjust_fit;

else: let adjust_fit = normal_adjust_fit; fi
lowres_fix(stem,curve) 1.2;

〈Initialize pen nibs, see below〉
currenttransform:=identity slanted slant
yscaled aspect_ratio scaled granularity;

shrink_fit := 1+hround(2letter_fit#*hppp)-2letter_fit;
if not string mode: if mode <= smoke: shrink_fit := 0; fi fi
enddef;

If letter fit# = 0, the ‘shrink fit ’ is set to 1; otherwise shrink fit is 0, 1, or 2, depending
on how letter fit has rounded to an integer. This amount is essentially subtracted
from w before each character in the font has been drawn. Experience shows that this
trick greatly improves the readability of fonts at medium and low resolutions.

Many of the Computer Modern characters are drawn with filldraw, which
is a mixture of outline-filling and fixed-pen drawing. Several macros are included in
cmbase to facilitate filldrawing, especially ‘pos ’ and ‘stroke ’:

vardef pos@#(expr b,d) =
(x@#r-x@#l,y@#r-y@#l)=(b-currentbreadth,0) rotated d;
x@#=.5(x@#l+x@#r); y@#=.5(y@#l+y@#r) enddef;

vardef stroke text t =
forsuffixes e=l,r: path_.e:=t; endfor
path_.l -- reverse path_.r -- cycle enddef;

Thus pos is like penpos , except that it subtracts currentbreadth from the overall
breadth. (Cf. the program for left parentheses in Chapter 12.) The stroke rou-
tine is a simplified alternative to penstroke, such that penstroke is equivalent to
‘fill stroke ’ if the specified path isn’t a cycle.

The value of currentbreadth is maintained by redefining plain hijklmnj’s
‘numeric pickup ’ macro so that it includes the new line

if known breadth_[q]: currentbreadth:=breadth_[q]; fi

The clear pen memory macro is redefined so that its second line now says

numeric pen_lft_[],pen_rt_[],pen_top_[],pen_bot_[],breadth_[];

relevant entries of the breadth array will be defined by font setup, as we’ll see soon.
The example programs for period and em-dash say ‘pickup fine.nib ’ and

‘pickup crisp.nib ’. These nibs are initialized by font setup in the following way:

clear_pen_memory;
forsuffixes $ = fine,crisp, · · · :
$.breadth := $;
pickup if $=0: nullpen else: pencircle scaled $; $ := $-eps fi;
$.nib := savepen; breadth_[$.nib] := $;
forsuffixes $$ = lft,rt,top,bot: shiftdef($.$$,$$ 0); endfor endfor
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If, for example, we have fine = 4, this code sets fine.breadth := 4, fine.nib := 1,
fine := 4− eps , and breadth [4] := 4− eps . (A small amount eps has been subtracted
so that pos will usually find b − currentbreadth > 0.) Furthermore, four subroutines
fine.lft , fine.rt , fine.top , and fine.bot are defined, so that it’s easy to refer to the edges
of fine.nib when it has not been picked up. These four subroutines are created by a
slightly tricky shiftdef macro:

def shiftdef(suffix $)(expr delta) =
vardef $ primary x = x+delta enddef enddef;

OK, we’ve just about covered everything in cmbase that handles the extra
administrative complexity inherent in a large-scale design. The rest of the base file
simply contains subroutines like serif and dot , for recurring features of the characters
themselves. Such subroutines needn’t be shown here.

To make a binary file called cm.base, there’s a trivial file ‘cm.mf’:

% This file creates ‘cm.base’, assuming that plain.base is preloaded
input cmbase; dump.

Besides parameter files, driver files, program files, and the base file, the Com-
puter Modern routines also include a number of utility files that provide a convenient
environment for designing new characters and improving old ones. We’ll conclude this
appendix by studying the contents of those utility files.

Let’s suppose, for example, that test proofs have revealed problems with the
characters ‘k’ and ‘S’, so we want to fix them. Instead of working with the font as a
whole, we can copy the programs for those two characters (and only those two) into a
temporary file called ‘test.mf’. Then we can run hijklmnj on the file ‘rtest.mf’,
which says the following:

% try all characters on ‘test.mf’ using the parameters of cmr10
if unknown cmbase: input cmbase fi
mode_setup;

def generate suffix t = enddef;
input cmr10; font_setup;

let echar = endchar;
def endchar = echar; stop "done with char "&decimal charcode&". " enddef;
let iff = always_iff;

input test; bye

This will produce proofs of ‘k’ and ‘S’, using the cmr10 parameters. Notice the simple
trick by which rtest is able to stay in charge after inputting cmr10, without letting
the roman driver come into action: ‘generate’ is redefined so that it becomes innocu-
ous. Furthermore rtest changes endchar so that hijklmnj will stop and display
each character before moving on to the next. The ‘iff’ convention is changed to
‘always_iff’, so that every test character will be tested even if the boolean expression
is undefined; this makes it easier to copy from program files into the test file and back
again, since the iff indications do not have to be touched.

If you invoke hijklmnj with ‘\mode=lowres; input rtest’, you’ll generate
a low-resolution font called rtest with the parameters of cmr10, but containing only
the characters in the test file. If you leave out the mode, you get proof mode as usual.
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pseudo-driver fileThere are similar pseudo-drivers ttest.mf (for cmtt10 instead of cmr10),
btest.mf (for cmbx10), etc.; these make it possible to try the test characters with many
different parameter settings. There’s also ztest.mf, which inputs parameters from a
temporary file ‘z.mf’ that contains special parameters of interest at the moment. (If
file z.mf does not exist, you’ll get a chance to specify another parameter file, online.)

A more elaborate pseudo-driver file called ‘6test.mf’ allows you to test up to
six parameter settings simultaneously, and to see the results all at once on your screen,
as illustrated in Chapter 23. Here is the program that does the necessary magic:

% try all characters on ‘test.mf’ using six different sets of parameters
if unknown cmbase: input cmbase fi
mag=.5; % the user can override this equation
mode_setup; let mode_setup=\;

boolean running;
def abort = hide(scrollmode; running := false) enddef;
def pause = stop "done with char "&decimal charcode&". " enddef;
let iff = always_iff;
def ligtable text t=enddef;
def charlist text t=enddef;
def extensible text t=enddef;

string currenttitle;
let semi = ;; let echar = endchar; let endchar = enddef;
def cmchar expr s = currenttitle := s;
let ; = testchar semi quote def chartext = enddef;

def testchar = semi let ; = semi;
running := true; errorstopmode;
for k=1 upto 6:
if running: if known params[k]: scantokens params[k]; font_setup;

currentwindow:=k;
currenttitle & ", " & fontname[k];
chartext echar; fi fi endfor

pause; enddef;

string params[],fontname[];
params[1] = "roman_params"; fontname[1] = "cmr10";
params[2] = "sans_params"; fontname[2] = "cmssbx10";
params[3] = "ital_params"; fontname[3] = "cmti10";
params[4] = "tt_params"; fontname[4] = "cmtt10";
params[5] = "bold_params"; fontname[5] = "cmb10";
params[6] = "quote_params"; fontname[6] = "cmssqi8";

w_rows = floor 1/2 screen_rows; w_cols = floor 1/3 screen_cols;
def open(expr k,i,j)=
openwindow k from ((i-1)*w_rows,(j-1)*w_cols) to (i*w_rows,j*w_cols)
at (-10,140) enddef;

def openit =
open(1,1,1); open(2,1,2); open(3,1,3);
open(4,2,1); open(5,2,2); open(6,2,3); enddef;
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begingroup delimiters begintext generate;
def makedef(expr s)(text t) =
expandafter def scantokens s = t enddef; flushtext enddef;

def flushtext suffix t = enddef;
for k=1 upto 6: if known params[k]:
makedef(params[k])
expandafter expandafter expandafter begintext
scantokens ("input "&fontname[k]); fi endfor

endgroup;

input test; bye

Parameters are moved from parameter files into macros, using a trick discussed near
the beginning of Appendix D. Then cmchar is redefined so that the entire text of
each character-to-be-tested will be embedded in another macro called chartext . Each
instance of chartext is repeatedly applied to each of the six font setups.

An error that occurs with the first or second set of parameters may be so bad
that you won’t want to see what happens with the third, fourth, fifth, and sixth sets.
For example, when test.mf contains characters that are being newly designed, some
equations might have been omitted or mistyped, so the results will be ludicrous. In
this case you can interrupt the program and type ‘I abort’. The 6test routine has an
abort macro that will stop at the end of the current font setup and move directly to
the next character, without trying any of the remaining parameter combinations.

It’s possible to include material in test.mf that isn’t part of a character
program. For example, you might want to redefine a subroutine in the base file. Only
the character programs themselves (i.e., the sequences of tokens between ‘cmchar’ and
‘endchar;’) are subject to six-fold repetition.

Some large characters may not appear in full, because there might not be
room for them on the screen at the stated magnification. You can make everything
smaller by running hijklmnj with, say, ‘\mag=1/3; input 6test’. The computer
will stop with an error message, saying that the equation ‘mag=.5’ is inconsistent; but
you can safely proceed, because you will have the magnification you want.

An ensampull yn doyng ys more commendabull
en ys techyng o
er prechyng.

— JOHN MIRK, The Festyuall (c. 1400)

Old people love to give good advice,
to console themselves for no longer being able to give bad examples.

— LA ROCHEFOUCALD, Maximes (1665)
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The TEX typesetting system assumes that some “intelligence” has been built
into the fonts it uses. In other words, information stored with TEX’s fonts will
have important effects on TEX’s behavior. This has two consequences: (a) Type-
setting is quite flexible, since few conventions are frozen into TEX itself. (b) Font
designers must work a little harder, since they have to tell TEX what to do. The
purpose of this appendix is to explain how you, as a font designer, can cope
with (b) in order to achieve spectacular successes with (a).

The information used by TEX is embedded in compact binary files called
TEX Font Metric (tfm) files. Although the ‘t’ in ‘tfm’ stands for TEX, this is
an artifact of history, because other formatting systems can work with tfm files
too. The files should have been called just ‘fm’, but it’s too late now.

METAFONT is able to produce two different kinds of binary output files.
One, a ‘gf’ file, contains digitized character shapes and some additional infor-
mation needed by programs that drive printing devices; such files are discussed
in Appendix G. The other type of output is a tfm file, which contains font infor-
mation used by formatting routines like TEX; such files are our present concern.
You get a tfm file if and only if METAFONT’s internal quantity ‘fontmaking ’
is positive at the end of your job. (Plain METAFONT’s mode setup routine
usually sets fontmaking to an appropriate value automatically.)

The tfm file contains some information about each character, some information
about combinations of characters, and some information about the font as a whole. We
shall consider these three kinds of information in turn. All of the font metric data that
refers to physical dimensions should be expressed in device-independent, “sharp” units;
when a particular font is produced with different modes or magnifications, all its tfm
files should be identical.

A formatting program like TEX needs to know the size of each character’s
“bounding box.” For example, when TEX typesets a word like ‘box’, it places the first
letter ‘b’ into a little box in such a way that the hijklmnj pixel whose lower left
corner is at (0, 0) will appear on the baseline of the current line being typeset, at the
left edge of the box. (We assume for simplicity that xoffset and yoffset were zero when
‘b’ was shipped out). The second letter, ‘o’, is placed in a second little box adjacent
to the first one, so we obviously must tell TEX how wide to make the ‘b’.

In fact, TEX also wants to know the height and depth of each letter. This
affects the placing of accents, if you wish to typeset ‘b̃. õ.x̃. ỹ. ’, and it also avoids overlap
when adjacent lines contain boxes that go unusually far above or below the baselines.

A total of four dimensions is given for each character, in sharp units (i.e., in
units of printer’s points):

charwd , the width of the bounding box.
charht , the height (above the baseline) of the bounding box.
chardp , the depth (below the baseline) of the bounding box. This is a pos-
itive number if the character descends below the baseline, even though the
corresponding y values are negative.
charic , the character’s “italic correction.” TEX adds this amount to the width
of the box (at the right-hand side) in two cases: (a) When the user specifies
an italic correction explicitly, by typing \/ immediately after the character.
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(b) When an isolated character is used in math mode, unless it has a subscript
but no superscript. For example, the italic correction is applied to ‘P ’ in the
formulas ‘P (x)’ and ‘P 2’, but not in the formula ‘Pn’; it is applied to position
the superscript but not the subscript in ‘P 2

n ’.

In plain hijklmnj programs, you specify charwd , charht , and chardp in a beginchar
command, and you specify charic (if it’s positive) in an italcorr command. But
beginchar and italcorr are macros, not primitives of hijklmnj. What really hap-
pens is that hijklmnj records the value of its internal quantities charwd , charht ,
chardp , and charic at the time of a shipout command. These values (and all other
dimensions to be mentioned below) must be less than 2048pt# in absolute value.

A font contains at most 256 character codes; the charexists operator can be
used to tell which codes have already appeared. If two or more characters are shipped
out with the same code number (possibly with different charext values), the charwd ,
charht , chardp , and charic of the final one are assumed to apply to them all.

At most 15 different nonzero heights, 15 different nonzero depths, and 63
different nonzero italic corrections may appear in a single font. If these limits are
exceeded, hijklmnj will change one or more values, by as little as possible, until
the restriction holds. A warning message is issued if such changes are necessary; for
example, ‘(some charht values had to be adjusted by as much as 0.12pt)’ means
that you had too many different nonzero heights, but hijklmnj found a way to
reduce the number to at most 15 by changing some of them; none of them had to be
changed by more than 0.12 points. No warning is actually given unless the maximum
amount of perturbation exceeds 1

16 pt.

The next kind of information that TEX wants is concerned with pairs of adja-
cent characters that are typeset from the same font. For example, TEX moves the ‘x’
slightly closer to the ‘o’ in the word ‘box’, and it moves the ‘o’ slightly away from
the ‘b’, because of information stored in the tfm file for the font you’re now reading.
This space adjustment is called kerning. Otherwise (if the three characters had simply
been placed next to each other according to their charwd values) the word would have
been ‘box’, which looks slightly worse. Similarly, there’s a difference between ‘differ-
ence’ and ‘difference’, because the tfm file tells TEX to substitute the ligature ‘ff’ when
there are two f’s in a row.

Ligature information and kerning information is specified in short “ligtable
programs” of a particularly simple form. Here’s an example that illustrates most of
the features (although it is not a serious example of typographic practice):

ligtable "f": "f" =: oct"013", "i" |=: oct"020", skipto 1;
ligtable "o": "b": "p": "e" kern .5u#, "o" kern .5u#, "x" kern-.5u#,

1:: "!" kern u#;

This sequence of instructions can be paraphrased as follows:

Dear TEX, when you’re typesetting an ‘f’ with this font, and when the following
character also belongs to this font, look at it closely because you might need
to do something special: If that following character is another ‘f’, replace the
two f’s by character code oct"013" [namely ‘ff’]; if it’s an ‘i’, retain the ‘f’
but replace the ‘i’ by character code oct"020" [a dotless ‘ı’]; otherwise skip
down to label ‘1::’ for further instructions. When you’re typesetting an ‘o’
or ‘b’ or ‘p’, if the next input to TEX is ‘e’ or ‘o’, add a half unit of space
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between the letters; if it’s an ‘x’, subtract a half unit; if it’s an exclamation
point, add a full unit. The last instruction applies also to exclamation points
following ‘f’ (because of the label ‘1::’).

When a character code appears in front of a colon, the colon “labels” the starting
place for that character’s ligature and kerning program, which continues to the end of
the ligtable statement. A double colon denotes a “local label”; a skipto instruction
advances to the next matching local label, which must appear before 128 ligtable steps
intervene. The special label ||: can be used to initiate ligtable instructions for an
invisible “left boundary character” that is implicitly present just before every word; an
invisible “right boundary character” equal to boundarychar is also implicitly present
just after every word, if boundarychar lies between 0 and 255.

The general syntax for ligtable programs is pretty easy to guess from these
examples, but we ought to exhibit it for completeness:

〈ligtable command〉 −→ ligtable 〈ligtable program〉〈optional skip〉
〈ligtable program〉 −→ 〈ligtable step〉 | 〈ligtable program〉 , 〈ligtable step〉
〈optional skip〉 −→ , skipto 〈code〉 | 〈empty〉
〈ligtable step〉 −→ 〈code〉〈ligature op〉〈code〉

| 〈code〉 kern 〈numeric expression〉
| 〈label〉〈ligtable step〉

〈ligature op〉 −→ =: | |=: | |=:> | =:| | =:|> | |=:| | |=:|> | |=:|>>
〈label〉 −→ 〈code〉 : | 〈code〉 :: | ||:
〈code〉 −→ 〈numeric expression〉 | 〈string expression〉

A 〈code〉 should have a numeric value between 0 and 255, inclusive, after having been
rounded to the nearest integer; or it should be a string of length 1, in which case it
denotes the corresponding ASCII code (Appendix C). For example, "A" and 64.61
both specify the code value 65. Vertical bars to the left or right of ‘=:’ tell TEX to
retain the original left and/or right character that invoked a ligature. Additional ‘>’
signs tell TEX to advance its focus of attention instead of doing any further ligtable
operations at the current character position.

Caution: Novices often go overboard on kerning. Things usually work out
best if you kern by at most half of what looks right to you at first, since kerning should
not be noticeable by its presence (only by its absence). Kerning that looks right in a
logo or in a headline display often interrupts the rhythm of reading when it appears in
ordinary textual material.

You can improve TEX’s efficiency by ordering the steps of a ligtable program
so that the most frequent alternatives come first. TEX will stop reading the program
when it finds the first “hit.”

Several characters of a font can be linked together in a series by means of a
charlist command. For example,

charlist oct"000": oct"020": oct"022": oct"040": oct"060"

is used in the font cmex10 to specify the left parentheses that TEX uses in displayed
math formulas, in increasing order of size. TEX follows charlists to make variable-size
delimiters and variable-width accents, as well as to link text-size operators like ‘

∑

’ to

the display-size ‘
∑

’.



318 Appendix F: Font Metric Information

extensible
extensible
parentheses
charlist command
charlist
labeled code
extensible command
extensible
four codes
,
,
,
headerbyte command
headerbyte
:
fontdimen command
fontdimen
:
byte list
,
numeric list
,

TEX builds up large delimiters by using “extensible” characters, which are
specified by giving top, middle, bottom, and repeatable characters in an extensible
command. For example, the extensible left parentheses in cmex10 are defined by

extensible oct"060": oct"060", 0, oct"100", oct"102";

this says that character code oct"060" specifies an extensible delimiter constructed
from itself as the top piece, from character number oct"100" as the bottom piece, and
from character number oct"102" as the piece that should be repeated as often as nec-
essary to reach a desired size. In this particular example there is no middle piece, but
characters like curly braces have a middle piece as well. A zero value in the top, middle,
or bottom position means that no character should be used in that part of the con-
struction; but a zero value in the final position means that character number zero is the
repeater. The width of an extensible character is taken to be the width of the repeater.

The first eight different sizes of parentheses available to TEX in cmex10, when
the user asks for ‘\left(’, look like this:

(
(

(

(





























According to what we know from the examples of charlist and extensible above, the
first four of these are the characters in positions oct"000", oct"020", oct"022", and
oct"040". The other four have character oct"060" on top; character oct"100" is at the
bottom; and there are respectively zero, one, two, and three occurrences of character
oct"102" in the middle.

Here is the formal syntax:

〈charlist command〉 −→ charlist 〈labeled code〉
〈labeled code〉 −→ 〈code〉

| 〈label〉〈labeled code〉
〈extensible command〉 −→ extensible 〈label〉〈four codes〉
〈four codes〉 −→ 〈code〉 , 〈code〉 , 〈code〉 , 〈code〉

Notice that a 〈label〉 can appear in a ligtable, charlist, or extensible command. These
appearances are mutually exclusive: No code may be used more than once as a la-
bel. Thus, for example, a character with a ligature/kerning program cannot also be
extensible, nor can it be in a charlist (except as the final item).

The last type of information that appears in a tfm file applies to the font as a
whole. Two kinds of data are involved, bytes and numerics; and they are specified in
“headerbyte” and “fontdimen” commands, according to the following general syntax:

〈headerbyte command〉 −→ headerbyte 〈numeric expression〉 : 〈byte list〉
〈fontdimen command〉 −→ fontdimen 〈numeric expression〉 : 〈numeric list〉
〈byte list〉 −→ 〈code〉

| 〈byte list〉 , 〈code〉
〈numeric list〉 −→ 〈numeric expression〉

| 〈numeric list〉 , 〈numeric expression〉
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We shall defer discussion of header bytes until later, because they are usually unneces-
sary. But fontdimen commands are important. Numeric parameters of a font can be
specified by saying, e.g.,

fontdimen 3: 2.5, 6.5, 0, 4x

which means that parameters 3–6 are to be 2.5, 6.5, 0, and 4x, respectively. These are
the parameters that TEX calls \fontdimen3 thru \fontdimen6. (Parameter numbering
is old-fashioned: There is no \fontdimen0.)

The first seven fontdimen parameters have special significance, so plain hijk-
lmnj has seven macros to specify them symbolically, one at a time:

font slant (\fontdimen1) is the amount of slant per point; TEX uses this
information when raising or lowering an accent character.
font normal space (\fontdimen2) is the interword spacing. If the value is
zero, all characters of this font will be considered to be “isolated” in math
mode, so the italic correction will be added more often than otherwise.
font normal stretch (\fontdimen3) is the stretchability of interword spac-
ing, as explained in The TEXbook.
font normal shrink (\fontdimen4) is the shrinkability of interword spacing,
as explained in The TEXbook.
font x height (\fontdimen5) is the height of characters for which accents
are correctly positioned. An accent over a character will be raised by the
difference between the character’s charht and this value. The x-height is also
the unit of height that TEX calls one ‘ex’.
font quad (\fontdimen6) is the unit of width that TEX calls one ‘em’.
font extra space (\fontdimen7) is the additional amount added to the nor-
mal interword space between sentences, depending on the “spacefactor” as
defined in The TEXbook.

Parameters are zero unless otherwise specified.
Math symbol fonts for TEX are required to have at least 22 fontdimen param-

eters, instead of the usual seven; math extension fonts need at least 13. Appendix G of
The TEXbook explains the precise significance of these additional parameters, which
control such things as the placement of superscripts and subscripts.

The design size of a font is not one of the fontdimen parameters; it’s an internal
quantity of hijklmnj that is actually output among the header bytes as explained
below. When a TEX user asks for a font ‘at’ a certain size, the font is scaled by the ratio
between the “at size” and the design size. For example, cmr10 has a design size of 10 pt;
if a TEX user requests ‘cmr10 at 15pt’, the result is the same as ‘cmr10 scaled 1500’
(or, in plain hijklmnj terms, cmr10 with mag=1.5).

What does the design size really mean? It’s an imprecise notion, because there
need be no connection between the design size and any specific measurement in a font.
Typographers have always been vague when they speak about “10 point” fonts, because
some fonts look larger than others even though the horizontal and vertical dimensions
are the same. It’s something like dress sizes or shoe sizes.

In general, the design size is a statement about the approximate size of the
type. Type with a larger design size generally looks bigger than type with a smaller
design size. Two fonts with the same design size are supposed to work well together;
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for example, cmr9 and cmtt9 both have 9 pt design size, although the uppercase letters
of cmtt9 are quite a bit smaller (‘A’ versus ‘A’).

The designsize must be at least 1pt#. And, as with all tfm dimensions, it
must be less than 2048pt#. Any other value is changed to 128pt#.

hijklmnj looks at the value of designsize only when the job ends, so you
needn’t set it before characters are shipped out. At the end of a job, when the tfm file
is being written, hijklmnj checks to make sure that every dimension of the font is
less than 16 times the design size in absolute value, because this limitation is imposed
by the tfm file format. Thus, for example, if the design size is 10 pt, you cannot have
a character whose width or height is 160 pt or more. If one or more dimensions prove
to be too big, hijklmnj will tell you how many of them had to be changed.

The headerbyte command is similar to fontdimen, but it gives 8-bit 〈code〉
data instead of numeric information. For example,

headerbyte 33: 0, 214, 0, "c"

says that bytes 33–36 of the tfm file header will be 0, 214, 0, and 99. The first four
header bytes (numbers 1–4) are automatically set to a check sum, unless you have
specified other values for at least one of those bytes. (This check sum will match a
similar value in the gf file, so that other typesetting software can check the consistency
of the different files they use.) Similarly, the next four header bytes (numbers 5–8) are
set automatically to the design size times 220, unless you have specified something else.

TEX looks only at the first eight header bytes, so you needn’t use the header-
byte command if you are simply producing a font for standard TEX. But other soft-
ware that reads tfm files may have a need for more header information. For example,
the original tfm format (developed by Lyle Ramshaw at Xerox Palo Alto Research
Center) included font coding scheme information in bytes 9–48 of the header, and
font identifier information in bytes 49–68. The design size of certain fonts was also
packed into byte 72. Each font in the “Xerox world” is uniquely identified by its font
identifier and its design size, rather than by its font file name.

The “font coding scheme” is merely a comment that can be used to help
understand large collections of fonts; it’s usually a nice thing to know. Some of the
coding scheme names in common use are

TeX text TeX math italic
TeX typewriter text TeX math symbols
XEROX text TeX math extension
ASCII TeX extended ASCII
PI GRAPHIC

The coding-scheme string should not include parentheses.
Here are macros that can be used, if desired, to convert plain hijklmnj’s

font identifier and font coding scheme into the format required by Ramshaw’s
original tfm files:

def BCPL_string(expr s,n) = % string s becomes an n-byte BCPL string
for l:=if length(s)>=n: n-1 else: length(s) fi: l
for k:=1 upto l: , substring (k-1,k) of s endfor
for k:=l+2 upto n: , 0 endfor endfor enddef;
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outer
local.mf
bye
end
font metric command
FOURNIER
WILDE

inner end;
def bye = if fontmaking>0:
headerbyte 9: BCPL_string(font_coding_scheme_,40);
special "codingscheme " & font_coding_scheme_;
headerbyte 49: BCPL_string(font_identifier_,20);
special "identifier " & font_identifier_;
headerbyte 72: max(0, 254 - round 2designsize); fi

end enddef;
outer bye,end;

These macros could be included among the local.mf extensions to plain.mf at partic-
ular installations. When a user says ‘bye’ instead of ‘end’, the additional headerbyte
documentation will then be automatically inserted into the tfm file.

Let us now conclude this appendix by summarizing what we’ve learned. A
hijklmnj programmer can provide various types of information about how to typeset
with a font, by using font metric commands. Simple versions of these commands,
sufficient for simple fonts, are standard operations in plain hijklmnj; examples have
appeared in Chapter 11 and the beginning of Appendix E. The general cases are
handled by five types of font metric commands:

〈font metric command〉 −→ 〈ligtable command〉
| 〈charlist command〉
| 〈extensible command〉
| 〈fontdimen command〉
| 〈headerbyte command〉

This completes the syntax of hijklmnj that was left slightly unfinished in Chapter 26.

Such things induced me to untangle the chaos
by introducing order where it had never been before:

I think I may say I have had the good fortune to succeed
with an exactness & a precision leaving nothing more to be desired,

by the invention of Typographic points.

— PIERRE FOURNIER, Manuel Typographique (1764)

One should absorb the color of life,
but one should never remember its details.

Details are always vulgar.

— OSCAR WILDE, The Picture of Dorian Gray (1890)
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METAFONT’s main output goes into a gf or “Generic Font” file, so-called because
it can easily be translated into any other digital font format, although it does
not match the specifications of any “name brand” manufacturer. The purpose
of this appendix is to explain exactly what kinds of information go into the gf
file, and under what circumstances METAFONT puts things there.

A gf file is a compact binary representation of a digitized font, containing all
the information needed by “device driver” software that produces printed documents
from TEX’s dvi files. The exact internal representation scheme of gf files doesn’t
concern us here, but we ought to know what type of data is encoded.

The first thing in a gf file is a string that explains its origin. hijklmnj
writes strings of the form

METAFONT output 1986.06.24:1635

based on the values of the internal quantities day , month , year , and time when the
gf file was started. (In this case day = 24, month = 6, year = 1986, and time =
16× 60 + 35 = 995.)

After the opening string, the gf file contains a sequence of “special” commands
interspersed with shipped-out character images. Special commands are intended to
provide a loophole for future extensions to hijklmnj’s set of primitives, so that
hijklmnj itself will not have to change. Some specials are predefined, but others
will undoubtedly be created in years to come. (TEX has an analogous \special
command, which puts an arbitrary string into a dvi file.)

A special command gets into the gf file when you say ‘special 〈string〉’ or
‘numspecial 〈numeric〉’ at a time when proofing ≥ 0. A special string should come
before numspecial, and it should either be a keyword all by itself or it should consist
of a keyword followed by a space followed by additional information. Keywords that
specify operations requiring numeric arguments should be followed by numbers pro-
duced by numspecial. For example, the ‘proofrule’ macro in Appendix B expands
into a sequence of five special commands,

special "rule";
numspecial x1; numspecial y1;
numspecial x2; numspecial y2;

this represents a rule on the proofsheet that runs from point (x1, y1) to point (x2, y2).
If you say ‘grayfont gray5’, the grayfont macro in Appendix B expands to ‘special
"grayfont gray5"’. Software that reads gf files will examine all of the special strings,
until coming to a space or to the end of the string. If the resulting keyword isn’t
known to the program, the special string will be ignored, together with all numspecials
that immediately follow. But when the keyword is known, the program will be able to
determine the corresponding arguments. For example, the GFtoDVI program described
in Appendix H knows about the plain hijklmnj keywords ‘rule’ and ‘grayfont’.

hijklmnj might also create special commands on its own initiative, but
only when proofing is strictly greater than zero. There are two cases: (1) When a 〈title〉
statement occurs, the special string ‘"title "& 〈string〉’ is output. (This is how the
phrase ‘The letter O’ got onto your proofsheets in the experiments of Chapter 5.)
(2) Just before a character image is shipped out, hijklmnj implicitly executes the
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following sequence of instructions:

if round xoffset 6= 0: special "xoffset"; numspecial round xoffset ; fi
if round yoffset 6= 0: special "yoffset"; numspecial round yoffset ; fi

A shipout command sends a digitized picture to the gf file, if proofing ≥ 0,
but nothing is output if proofing < 0. Furthermore the current values of charwd ,
charht , chardp , charic , chardx , and chardy are stored away for the current charcode ;
these values are stored in all cases, regardless of the value of proofing . The current
character code is henceforth said to “exist.”

When a picture is shipped out, its pixels of positive value are considered to be
“black,” and all other pixels are considered to be “white.” The pattern of blacks and
whites is encoded in such a way that doubling the resolution approximately doubles
the length of the gf output, in most cases.

hijklmnj reports its progress by typing ‘[c]’ on the terminal when character
code c is being shipped out. (The ‘[’ is typed before output conversion begins, and
the ‘]’ is typed after; hence you can see how much time output takes.) If charext is
nonzero, after being rounded to an integer, the typed message is ‘[c.x]’ instead; for
example, ‘[65.3]’ refers to character 65 with extension code 3.

TEX allows only 256 characters per font, but extensions of TEX intended for
oriental languages will presumably use the charext feature. All characters with the
same code share the same width, height, and depth, but they can correspond to distinct
graphics if they have different extension codes.

A special command generally refers to the picture that follows it, rather than
the picture that precedes it. Special commands before the first digitized picture might,
however, give instructions about the font as a whole. Special commands that follow
the final picture invariably refer to the font as a whole. (For example, the ‘bye’ macro
at the end of Appendix F creates two special strings that will appear after the final
character of a font.)

No gf file will be written unless a character is shipped out or a special com-
mand is performed at a time when proofing ≥ 0, or unless a title statement is encoun-
tered at a time when proofing > 0. When one of these things first happens, the gf
file receives its name. If no input commands have yet occurred, hijklmnj will set
the job name to ‘mfput’; otherwise the job name will already have been determined.
The full name of the gf file will be ‘〈jobname〉.〈resolution〉 gf’, where the 〈resolution〉
is based on the current value of hppp . (If hppp ≤ 0, the resolution will be omitted;
otherwise it will be converted to an equivalent number of pixels per inch, in the hori-
zontal dimension.) Subsequent input operations or changes to hppp will not change
the name of the gf file.

The end of a gf file contains a bunch of numeric data needed for typesetting.
First come the design size and the check sum; these match precisely the data in the
tfm file, unless the header bytes of the tfm have explicitly been set to something else.
Then come the values of hppp and vppp . (These are the values at the end of the job,
so hppp might not agree with the 〈resolution〉 value in the gf file name.)

Finally, the gf file gets the charwd , chardx , and chardy of each existing char-
acter code. The values of chardx and chardy represent desired “escapements” when
characters are typeset on a particular device (cf. Chapter 12). The charwd values are
identical to the widths in the tfm file.
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The check sum is based entirely on the charwd data; two fonts with the same
character widths will have the same check sum, but two fonts with different character
widths will almost never have the same check sum.

The purpose of check sums can be understood by considering the following
scenario: A font named cmr10 might be generated by hijklmnj at any time, pro-
ducing a tfm file called cmr10.tfm and a gf file called, say, cmr10.300gf. A document
named doc, which uses cmr10, might be generated by TEX at any time, producing a
dvi file called doc.dvi; TEX had to read cmr10.tfm in order to produce this dvi file.
Now on some future date, a “device driver” program will be used to print doc.dvi,
using the font cmr10.300gf. Meanwhile, the font may have changed. If the current
gf file doesn’t match the tfm file that was assumed by TEX, mysterious glitches will
probably occur in the printed document, because dvi information is kept concise by
the assumption that the device driver knows the tfm widths of all characters. Potential
problems are kept to a minimum if TEX puts the assumed design size and check sum
of each font into the dvi files it produces; a device driver can then issue a warning
message when it finds a gf file that is inconsistent with TEX’s assumptions.

But if our Letter-Cutter will have no Forge,
yet he must of necessity accommodate

himself with a Vice, Hand-Vice, Hammers,
Files, Small and Fine Files (commonly called Watch-makers Files)

of these he saves all, as they wear out.

— JOSEPH MOXON, Mechanick Exercises (1683)

The natural definition lists all possible generic characters.

— LINNÆUS, Philosophia Botanica (1751)
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A font cannot be proved correct like a mathematical theorem; a font must be
seen to be believed. Moreover, if some characters of a font are faulty, the best
way to fix them is to look at diagrams that indicate what went wrong. Therefore
METAFONT is incomplete by itself; additional programs are needed to convert
the output of METAFONT into graphic form.

The purpose of this appendix is to discuss two such auxiliary programs,
which serve as examples of many others that could be devised. The first of
these, called GFtoDVI, takes gf files and converts them into dvi files, which can
be printed just like the output of TEX. Each character image in the gf file will
have a printed page to itself, with labelled points and with bounding boxes just as
in the illustrations we have seen throughout this book. (Indeed, the illustrations
in this book were produced by GFtoDVI.) The second auxiliary program to be
discussed below is TEX itself; we shall look at a set of TEX macros designed to
facilitate font testing.

1. Large scale proofs. The gf files produced by plain hijklmnj when it is in proof
mode or smoke mode can be converted to annotated diagrams by running them through
GFtoDVI, as we know from the experiments in Chapter 5. It’s also possible to study
low-resolution characters with GFtoDVI, especially if plain hijklmnj’s ‘gfcorners’
feature has been used. We shall now take a thorough look at what GFtoDVI can do.

All communication from hijklmnj to GFtoDVI comes through the gf file
and from options that you might type when you run GFtoDVI. If there are no “special”
commands in the gf file (cf. Appendix G), each page of GFtoDVI’s output will show just
the “black” pixels of a character; furthermore there will be a title line at the top of the
page, showing the date and time of the hijklmnj run, together with the character
code number and extension code (if they are nonzero). The black pixels are typeset via
characters of a so-called “gray font,” described in detail below; by changing the gray
font you can produce a variety of different outputs from a single gf file.

To get other things on your proof sheets, “special” commands must appear in
the gf file. For example, hijklmnj will automatically output a title command, if
proofing > 0, as explained in Appendix G; GFtoDVI will typeset this title on the title
line of the next character image that follows the command. If there are several title
statements, they all will appear; they are supposed to fit on a single line.

The most important special commands tell GFtoDVI to create labeled points
on the character diagram. When you say, for example, ‘labels(1, 2)’ in a plain hijk-
lmnj program, at a time when proofing > 1, the macros of Appendix B will convert
this to the special commands

special " 01"; numspecial x1; numspecial y1;
special " 02"; numspecial x2; numspecial y2;

GFtoDVI will then put a dot labeled ‘1’ at point (x1, y1) and a dot labeled ‘2’ at (x2, y2).
Labels are placed in one of four positions relative to their dots—either at the

top, the left, the right, or the bottom. GFtoDVI will ordinarily try to place all labels
so that they don’t interfere with each other, and so that they stay clear of other dots.
But if you want to exercise fine control over the placement yourself, you can say, for
example, ‘labels.top(1a, 2a)’; in this case the specified labels will appear above their
dots, regardless of whether or not other labels and/or dots are thereby overprinted.
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The gf file in this case will contain

special " 11a"; numspecial x1a; numspecial y1a;
special " 12a"; numspecial x2a; numspecial y2a.

GFtoDVI looks at the character following a leading blank space to determine what sort
of labeling convention is desired; the subsequent characters are the text of the label.

The command ‘labels.top(1a, 2a)’ in plain hijklmnj is just an abbreviation
for ‘makelabel.top("1a", z1a); makelabel.top("2a", z2a)’, when proofing > 1; the
makelabel macro is really the fundamental one, and you should use it directly if you
want more unusual effects. Suppose, for example, you just want to put a dot but no
label at point z5; then you can say ‘makelabel("", z5)’. And suppose you want to put a
label to the left of point z5 but with no dot; you can say ‘makelabel.lft .nodot ("5", z5)’.
Furthermore you could say ‘makelabel.lft .nodot ("5", z5 − (2, 3))’ to move that label
left by 2 pixels and down by 3 pixels, thereby getting the effect of a label that is
diagonally adjacent to its dot. Labels without dots can also be used to put words on a
diagram.

GFtoDVI recognizes nine varieties of labels in all, based on the first two char-
acters of the special string command:

makelabel (special " 0"): choose the label position automatically.
makelabel.top (special " 1"): center the label just above the dot.
makelabel.lft (special " 2"): place the label just left of the dot.
makelabel.rt (special " 3"): place the label just right of the dot.
makelabel.bot (special " 4"): center the label just below the dot.
makelabel.top .nodot (special " 5"): like top , but omit the dot.
makelabel.lft .nodot (special " 6"): like lft , but omit the dot.
makelabel.rt .nodot (special " 7"): like rt , but omit the dot.
makelabel.bot .nodot (special " 8"): like bot , but omit the dot.

The first case is called autolabeling; this is the normal command. Autolabeling always
places a dot, whether or not that dot overlaps other dots, but you don’t always get a
label. Autolabels are typeset only after all explicit labels have been established; then
GFtoDVI tries to place as many of the remaining labels as possible.

If there’s no place to put an autolabel, an “overflow equation” is put in the
upper right corner of the proofsheet. For example, the overflow equation ‘5 = 5r +
(-4.9,0)’ means that there was no room for label 5, whose dot is 4.9 pixels to the left
of the dot for 5r (which is labeled).

You can avoid overflow equations by sending GFtoDVI the special command
" /" instead of " 0"; this is a variant of autolabeling that does everything as usual
except that the label will simply be forgotten if it can’t be placed. To do this with
plain hijklmnj, set ‘lcode := " /"’ near the beginning of your program; lcode is
the string that makelabel uses to specify autolabeling.

The next most important kind of annotation for proofs is a straight line or
“rule.” Plain hijklmnj’s command for this is ‘proofrule(z1, z2)’, which expands to

special "rule"; numspecial x1; numspecial y1;
numspecial x2; numspecial y2.

GFtoDVI has trouble drawing diagonal rules, because standard dvi format includes no
provision for drawing straight lines unless they are vertical or horizontal. Therefore
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you might get an error message unless x1 = x2 (vertical rule) or y1 = y2 (horizontal
rule). However, a limited escape from this restriction is available via a “slant font,” by
which GFtoDVI is able to typeset diagonal lines as sequences of characters. Only one
slope is permitted per job, but this is better than nothing (see below).

To control the weight of proof rules, you say, e.g., ‘proofrulethickness
1.5mm#’ in a plain hijklmnj program; this expands to

special "rulethickness"; numspecial 1.5mm#.

Each horizontal or vertical rule is drawn as if by a pen of the current rulethickness, hence
you can get different weights of lines in a single diagram. If the current rulethickness is
negative, no rule will appear; if it is zero, a default rulethickness based on a parameter
of the gray font will be used; if it is positive, the stated thickness will be increased if
necessary until it equals an integer number of pixels, and that value will be used to
draw the rule. At the beginning of each character the current rulethickness is zero.

You can reposition an entire diagram on its page by saying ‘proofoffset (x, y)’;
this expands to

special "offset"; numspecial x; numspecial y

and it tells GFtoDVI to shift everything except the title line on the next character image,
x pixels to the right and y pixels upward.

GFtoDVI uses four fonts to typeset its output: (1) The title font is used for
the top line on each page. (2) The label font is used for all labels. (3) The gray
font is used for dots and for black pixels. (4) The slant font is used for diagonal rules.
Appropriate default fonts will be used at each installation unless you substitute specific
fonts yourself, by using the special commands titlefont, labelfont, grayfont, or
slantfont. GFtoDVI also understands special strings like ‘"grayfontarea /usr/dek"’,
which can be used to specify a nonstandard file area or directory name for the gray
font. Furthermore the gf file might say, e.g.,

special "labelfontat"; numspecial 20

if you want the label font to be loaded at 20 pt instead of its design size. The area name
and the at size must be given after the font name itself; in other words, ‘"grayfont"’
cancels a previous ‘"grayfontarea"’.

The four fonts used by GFtoDVI must be established before the first character
bitmap appears in the gf file. This means that the special font commands must be given
before the first shipout or endchar in your program; but they shouldn’t appear until
after mode setup, so that your gf file will have the correct name. If it’s inconvenient
to specify the fonts that way, you can change them at run time when you use GFtoDVI:
Just type ‘/’ following the name of the gf file that’s being input, and you will be asked
to type special strings online. For example, the run-time dialog might look like this:

This is GFtoDVI, Version 2.0
GF file name: io.2602gf/
Special font substitution: labelfont cmbx10
OK; any more? grayfont black
OK; any more?

After the final carriage return, GFtoDVI does its normal thing, ignoring font specifica-
tions in the file that conflict with those just given.
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Gray fonts2. Gray fonts. A proof diagram constructed by GFtoDVI can be regarded as an array
of rectangles, where each rectangle is either blank or filled with a special symbol that
we shall call ‘R’. A blank rectangle represents a white pixel, while R represents a black
pixel. Additional labels and reference lines are often superimposed on this array of
rectangles; hence it is usually best to choose a symbol R that has a somewhat gray
appearance, although any symbol can actually be used.

In order to construct such proofs, GFtoDVI needs to work with a special type
of font known as a “gray font”; it’s possible to obtain a wide variety of different sorts of
proofs by using different sorts of gray fonts. The next few paragraphs explain exactly
what gray fonts are supposed to contain, in case you want to design your own.

The simplest gray font contains only two characters, namely R and another
symbol that is used for dots that identify key points. If proofs with relatively large
pixels are desired, a two-character gray font is all that’s needed. However, if the pixel
size is to be relatively small, practical considerations make a two-character font too
inefficient, since it requires the typesetting of tens of thousands of tiny little characters;
printing-device drivers rarely work very well when they are presented with data that is
so different from ordinary text. Therefore a gray font with small pixels usually has a
number of characters that replicate R in such a way that comparatively few characters
actually need to be typeset.

Since many printing devices are not able to cope with arbitrarily large or
complex characters, it is not possible for a single gray font to work well on all machines.
In fact, R must have a width that is an integer multiple of the printing device’s units
of horizontal and vertical positioning, since rounding the positions of grey characters
would otherwise produce unsightly streaks on proof output. Thus, there is no way to
make the gray font as device-independent as normal fonts of type can be.

This understood, we can now take a look at what GFtoDVI expects to see in a
gray font. The character R always appears in position 1. It must have positive height h
and positive width w; its depth and italic correction are ignored.

Positions 2–120 of a gray font are reserved for special combinations of R’s and
blanks, stacked on top of each other. None of these character codes need be present in
the font; but if they are, the slots must be occupied by characters of width w that have
certain configurations of R’s and blanks, prescribed for each character position. For
example, position 3 of the font should either contain no character at all, or it should
contain a character consisting of two R’s, one above the other; one of these R’s should
rest on the baseline, and the other should appear immediately below.

It will be convenient to use a horizontal notation like ‘RSRRS’ to stand for a
vertical stack of R’s and blanks. The convention will be that the stack is built from
bottom to top, and the topmost rectangle should sit on the baseline. Thus, ‘RSRRS’ stands
actually for a character of height h and depth 4h that looks like this:

R←− baselineR
R

We use a horizontal notation in this discussion instead of a vertical one because column
vectors take too much space, and because the horizontal notation corresponds to binary
numbers in a convenient way.

Positions 1–63 of a gray font are reserved for the patterns R, RS, RR, RSS, RSR, and
so on up to RRRRRR, just as in the normal binary notation of the numbers 1–63, with
R’s substituted for 1’s and blanks for 0’s. Positions 64–70 are reserved for the special
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patterns RSSSSSS, RRSSSSS, RRRSSSS, RRRRSSS, RRRRRSS, RRRRRRS, RRRRRRR of length seven; positions 71–78
are, similarly, reserved for the length-eight patterns RSSSSSSS through RRRRRRRR. The length-
nine patterns RSSSSSSSS through RRRRRRRRR are assigned to positions 79–87, the length-ten
patterns to positions 88–97, the length-eleven patterns to positions 98–108, and the
length-twelve patterns to positions 109–120.

Position 0 of a gray font is reserved for the “dot” character, which should
have positive height h′ and positive width w′. When GFtoDVI wants to put a dot
at some place (x, y) on the figure, it positions the dot character so that its reference
point is at (x, y). The dot will be considered to occupy a rectangle whose corners are
at (x ± w′, y ± h′); the rectangular box for a label will butt up against the rectangle
enclosing the dot.

All other character positions of a gray font (namely, positions 121–255) are
unreserved, in the sense that they have no predefined meaning. But GFtoDVI may
access them via the charlist feature of tfm files, starting with any of the characters in
positions 1–120. In such a case each succeeding character in a list should be equivalent
to two of its predecessors, horizontally adjacent to each other. For example, in

charlist 53: 121: 122: 123

character 121 will stand for two 53’s, character 122 for two 121’s (i.e., four 53’s), and
character 123 for two 122’s (i.e., eight 53’s). Since position 53 contains the pattern
RRSRSR, character 123 in this example would have height h, depth 5h, and width 8w, and
it would stand for the pattern

RRRRRRRR←− baselineRRRRRRRR
RRRRRRRRRRRRRRRR

Such a pattern is, of course, rather unlikely to occur in a gf file, but GFtoDVI would be
able to use if it were present. Designers of gray fonts should provide characters only
for patterns that they think will occur often enough to make the doubling worthwhile.
For example, the character in position 120 (RRRRRRRRRRRR), or whatever is the tallest stack
of R’s present in the font, is a natural candidate for repeated doubling.

Here’s how GFtoDVI decides what characters of the gray font will be used,
given a configuration of black and white pixels: If there are no black pixels, stop.
Otherwise look at the top row that contains at least one black pixel, and the eleven
rows that follow. For each such column, find the largest k such that 1 ≤ k ≤ 120
and the gray font contains character k and the pattern assigned to position k appears
in the given column. Typeset character k (unless no such character exists) and erase
the corresponding black pixels; use doubled characters, if they are present in the gray
font, if two or more consecutive equal characters need to be typeset. Repeat the same
process on the remaining configuration, until all the black pixels have been erased.

If all characters in positions 1–63 are present, this process is guaranteed to
take care of at least six rows each time; and with characters 64–120 as well, it usually
takes care of twelve, since all patterns that contain at most one “run” of R’s are present.

Some of the fontdimen parameters discussed in Appendix F are important in
gray fonts. The font slant value s, if nonzero, will cause GFtoDVI to skew its output;
in this case the character R will presumably be a parallelogram with a corresponding
slant, rather than the usual rectangle. hijklmnj’s coordinate (x, y) will appear in
physical position (xw + yhs, yh) on the proofsheets. (This is appropriate for proofing
unslanted fonts whose pixels will become slanted by mechanical obliquing.)
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Parameter fontdimen 8 of a gray font specifies the thickness of rules that go
on the proofs. If this parameter is zero, TEX’s default rule thickness (0.4 pt) will be
used. The other parameters of a gray font are ignored by GFtoDVI, but it is conventional
to set font normal space and font quad to w, font x height to h.

For best results the designer of a gray font should choose w and h so that the
user’s dvi-to-hardcopy software will not make any rounding errors. Furthermore, the
dot should be an even number 2m of pixels in diameter, and the rule thickness should
work out to an even number 2n of pixels; then the dots and rules will be centered on
the correct positions, in the common case of integer coordinates. Gray fonts are almost
always intended for particular output devices, even though ‘dvi’ stands for “device
independent”; we use dvi files for hijklmnj proofs chiefly because software to print
dvi files is already in place.

The hijklmnj program for a fairly versatile gray font generator, called
‘grayf.mf’, appears on the next few pages. It should be invoked by a parameter
file that establishes values of several quantities:

If large pixels is of type boolean, only 15 characters will be generated; oth-
erwise there will be 123.
If pix picture is of type picture, it should be the desired pixel image ‘R’,
and in this case pix wd and pix ht should be the width and height in pixels.
Otherwise a default gray pixel pattern will be used.
If rep is known, it should be a positive integer; the default pixel pattern will
be magnified rep times so that the final proofs will be this much bigger than
usual, and the pattern will be clipped slightly at the edges so that discrete
pixels can be seen plainly.
If lightweight is of type boolean, the default pixel pattern will be only half
as dark as usual.
If dotsize is known, it should be the diameter of the special dot character, in
pixel units.
The font identifier should be specified.

(The rep and lightweight options are ignored if pix picture is explicitly given.) Since
gray fonts are inherently device-dependent, we do not start with “sharp” dimensions
as in normal fonts; we go backwards and compute the sharp units from pixel units.

The name of each gray font should include the name of the device for which it
is intended. (A “favorite” proof device can also be chosen at each installation, for which
the alternate font names ‘gray’ and ‘black’ are valid; these installation-dependent fonts
are the defaults for proof mode and smoke mode.)

Here, for example, is a suitable parameter file ‘graycheap.mf’, which generates
a vanilla-flavored gray font for the hypothetical cheapo printer:

% Gray font for Cheapo with proofsheet resolution 50 pixels per inch

if mode<>cheapo: errmessage "This file is for cheapo only"; fi

font_identifier "GRAYCHEAP";
input grayf

(The proofsheet resolution will be 50 per inch, because cheapo has 200 pixels per
inch, and the default pix picture in grayf will be four pixels square in this case.)
If the default pixel pattern turns out to be such a dark gray that the labels and
rules are obscured, the statement ‘boolean lightweight’ should be added. A solid
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tfmblack font with slightly higher-resolution images can be generated by the following file
‘blackcheap.mf’:

% Black font for Cheapo with proofsheet resolution 66.7 pixels per inch

if mode<>cheapo: errmessage "This file is for cheapo only"; fi

picture pix_picture; pix_wd := pix_ht := 3;
pix_picture := unitpixel scaled 3;

font_identifier "BLACKCHEAP";
input grayf

And here is a file ‘graycheap5.mf’ that generates a gray font suitable for studying large
proofs of low-resolution characters:

% Gray font for Cheapo with proofsheet resolution 10 pixels per inch

if mode<>cheapo: errmessage "This file is for cheapo only"; fi

rep=5; boolean large_pixels;

font_identifier "GRAYCHEAP";
input grayf

Now let’s look at the program file ‘grayf.mf’ itself. It begins with a simple
test to ensure that mag and rep are positive integers, if they’re known; then comes
some less obvious code that handles magnification in a nonstandard way:

% More-or-less general gray font generator
% See Appendix H of The METAFONTbook for how to use it

forsuffixes m = mag,rep:
if unknown m: m := 1;
elseif (m<1) or (m<>floor m):
errmessage "Sorry, " & str m & " must be a positive integer";
m := 1; fi endfor

mg := mag; mag := 1; mode_setup;
if mg>1: hppp := hppp*mg; vppp := vppp*mg;
extra_endchar:=
"if charcode>0:currentpicture:=currentpicture scaled mg;fi"
& extra_endchar; fi;

This circumlocution is the easiest way to guarantee that the tfm file will be completely
unaffected by magnification.

The next part of grayf computes the pixel representation, pix picture .

if picture pix_picture: rep := 1;
cull pix_picture keeping (1,infinity);

else: for z=(0,2),(1,0),(2,3),(3,1):
fill unitsquare shifted z; endfor

if not boolean lightweight:
addto currentpicture also
currentpicture rotated 90 xscaled -1; fi

if unknown scale: scale := max(1,round(pixels_per_inch/300)); fi
pix_wd := pix_ht := 4scale;
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if rep>1: picture pix;
currentpicture := currentpicture shifted-(1,1); pix := currentpicture;
for r=1 upto rep-1: addto currentpicture also pix shifted(4r,0); endfor
cullit; pix := currentpicture;
for r=1 upto rep-1: addto currentpicture also pix shifted(0,4r); endfor
unfill unitsquare xscaled 4rep yscaled 2 shifted-(1,1);
unfill unitsquare yscaled 4rep xscaled 2 shifted-(1,1); cullit; fi

picture pix_picture; pix_picture := currentpicture scaled scale;
pix_wd := pix_ht := 4scale*rep; fi

The lightweight pattern has 4 of every 16 pixels turned on; the normal pattern has
twice as many.

Character 0 is the dot, which is quite simple:

def # = *72.27/pixels_per_inch enddef;
if unknown dotsize: dotsize := 2.5pix_wd/rep; fi

beginchar(0,1.2dotsize#,1.2dotsize#,0);
fill fullcircle scaled dotsize scaled mg; endchar;

The special coding scheme of gray fonts is implemented next:

numeric a[]; newinternal b,k;
def next_binary =
k := 0; forever: if k>b: a[incr b] := 0; fi
exitif a[k]=0; a[k] := 0; k := k+1; endfor
a[k] := 1 enddef;

def next_special_binary =
if a[0]=1: for k=0 upto b: a[k] := 0; endfor a[incr b]
else: k := 0; forever: exitif a[incr k]=1; endfor
a[k-1] fi := 1 enddef;

def make_char =
clearit; next_binary;
for k=0 upto b: if a[k]=1:
addto currentpicture also pix_picture shifted(0,-k*pix_ht); fi endfor

charcode := charcode+1; chardp := b*charht;
scantokens extra_endchar; shipout currentpicture enddef;

Now we are ready to generate all the pixel characters.

charwd := pix_wd#; charht := pix_ht#; chardx := pix_wd*mg;
b := -1;

if boolean large_pixels:
for k=1 upto 7: make_char; charlist k:k+120; endfor
charcode := 120; b := -1;
addto pix_picture also pix_picture shifted (chardx,0);
charwd := 2charwd; chardx := 2chardx;
for k=1 upto 7: make_char; endfor

else: for k=1 upto 63: make_char; endfor
let next_binary = next_special_binary;
for k=64 upto 120: make_char; endfor
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for k=121,122: charcode := k;
addto currentpicture also currentpicture shifted (chardx,0);
charwd := 2charwd; chardx := 2chardx;
scantokens extra_endchar; shipout currentpicture; endfor

charlist 120:121:122; fi

The program closes by establishing fontwide parameters:

font_coding_scheme "GFGRAY";
font_size 8(pix_wd#);
font_normal_space pix_wd#;
font_x_height pix_ht#;
font_quad pix_wd#;
fontdimen 8: if known rulethickness: rulethickness
else: pix_wd#/(2rep) fi;

bye.

(The extra complications of an aspect ratio or a slant have not been addressed.)

3. Slant fonts. GFtoDVI also makes use of another special type of font, if it is necessary
to typeset slanted rules. The format of such so-called “slant fonts” is quite a bit simpler
than the format of gray fonts.

A slant font contains exactly n characters, in positions 1 to n, for some positive
integer n. The character in position k represents a slanted line k units tall, starting at
the baseline. These lines all have a fixed slant ratio s. The vertical “unit” is usually
chosen to be an integral number of pixels, small enough so that it suffices to draw rules
that are an integer number of units high; in fact, it should probably be no larger than
the thickness of the rules being drawn.

The following simple algorithm is used to typeset a rule that is m units high:
Compute q = dm/ne; then typeset q characters of approximately equal size, namely
(m mod q) copies of character number dm/qe and q − (m mod q) copies of character
number bm/qc. For example, if n = 15 and m = 100, we have q = 7; a 100-unit-high
rule will be composed of 7 pieces, using characters 14, 14, 14, 14, 14, 15, 15.

GFtoDVI looks at the charht of character n only, so the tfm file need not be
accurate about the heights of the other characters. (This is fortunate, since tfm format
allows at most 15 different nonzero heights per font.)

The charwd of character k should be k/n times s times the charht of n.
The font slant parameter should be s. It is customary to set the parameter

fontdimen 8 to the thickness of the slanted rules, but GFtoDVI doesn’t look at it.
Here’s an example of a slant-font parameter file, ‘slantcheap6’, for the cheapo

printer and a slant of 1/6:

% Slant font for Cheapo with slope 1/6

if mode<>cheapo: errmessage "This file is for cheapo only"; fi

s=1/6; % the slant ratio
n=30; % the number of characters
r#=.4pt#; % thickness of the rules
u=1; % vertical unit

font_identifier "SLANTCHEAP6";
input slant
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testfont.texThe corresponding program file ‘slant.mf’ looks like this:

% More-or-less general slant font generator for GFtoDVI
% The calling file should set the font_identifier and
% n = number of characters
% s = slant ratio
% r# = rule thickness (in sharp units)
% u = vertical unit (in pixels)

if unknown mag: mag := 1;
elseif (mag<1) or (mag<>floor mag):
errmessage "Sorry, mag must be a positive integer"; mag := 1; fi

mg := mag; mag := 1; mode_setup; u# := u*72.27/pixels_per_inch;
pixels_per_inch := pixels_per_inch*mg; fix_units;

define_whole_pixels(u); define_blacker_pixels(r);
pickup pencircle scaled r; ruler := savepen;

for k=1 upto n:
beginchar(k,k*u#*s,n*u#,0);
pickup ruler; draw origin--(k*u*s,k*u); % draw the line
unfill (lft-1,bot -1)--(rt 1,bot -1)
--(rt 1,0)--(lft-1,0)--cycle; % clip the ends
unfill ((lft -1,0)--(rt 1,0)
--(rt 1,top 1)--(lft -1,top 1)--cycle) shifted (k*u*s,k*u);
endchar; endfor

font_size 16pt#;
font_slant s;
fontdimen 8: r#;
font_coding_scheme "GFSLANT";
bye.

4. Font samples. The real test of a font is its appearance at the final size, after it has
actually been typeset. The TEX typesetting system can be used with the following
example macro file ‘testfont.tex’ (in addition to plain TEX format) to put a new font
through its paces.

We shall comment on typical uses of testfont as we examine its parts. At
the beginning, testfont.tex turns off several of TEX’s normal features.

% A testbed for font evaluation

\tracinglostchars=0 % missing characters are OK
\tolerance=1000 % and so are loose lines
\raggedbottom % pages can be short
\nopagenumbers % and they won’t be numbered
\parindent=0pt % nor will paragraphs be indented
\hyphenpenalty=200 % hyphens are discouraged
\doublehyphendemerits=30000 % and two in a row are terrible

\newlinechar=‘@ % we want to type multiline messages
\chardef\other=12 % and redefine "catcodes"

\newcount\m \newcount\n \newcount\p \newdimen\dim % temporary variables
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Then there are macros to print the time and date—an extremely valuable
thing to have on any proofsheet.

\def\today{\ifcase\month\or
January\or February\or March\or April\or May\or June\or
July\or August\or September\or October\or November\or December\fi
\space\number\day, \number\year}

\def\hours{\n=\time \divide\n 60
\m=-\n \multiply\m 60 \advance\m \time
\twodigits\n\twodigits\m}

\def\twodigits#1{\ifnum #1<10 0\fi \number#1}

An online “menu” of the available test routines will be typed at your terminal
if you request \help.

{\catcode‘\|=0 \catcode‘\\=\other % use | as the escape, temporarily
|gdef|help{|message{%
\init switches to another font;@%
\end or \bye finishes the run;@%
\table prints the font layout in tabular format;@%
\text prints a sample text, assuming TeX text font conventions;@%
\sample combines \table and \text;@%
\mixture mixes a background character with a series of others;@%
\alternation interleaves a background character with a series;@%
\alphabet prints all lowercase letters within a given background;@%
\ALPHABET prints all uppercase letters within a given background;@%
\series prints a series of letters within a given background;@%
\lowers prints a comprehensive test of lowercase;@%
\uppers prints a comprehensive test of uppercase;@%
\digits prints a comprehensive test of numerals;@%
\math prints a comprehensive test of TeX math italic;@%
\names prints a text that mixes upper and lower case;@%
\punct prints a punctuation test;@%
\bigtest combines many of the above routines;@%
\help repeats this message;@%
and you can use ordinary TeX commands (e.g., to \input a file).}}}

The program prompts you for a font name. If the font is in your local directory
instead of a system directory, you might have to specify the directory name as part of
the font name. You should also specify scaling if the font has been magnified, as in
the example of Chapter 5. Several fonts can be tested during a single run, if you say
‘\init’ before ‘\end’.

\def\init{\message{@Name of the font to test = }
\read-1 to\fontname \startfont
\message{Now type a test command (\string\help\space for help):}}

\def\startfont{\font\testfont=\fontname \spaceskip=0pt
\leftline{\sevenrm Test of \fontname\unskip\ on \today\ at \hours}
\medskip
\testfont \setbaselineskip
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ragged right
raggedright
background character
starting character
ending character
mixture
alternation

\ifdim\fontdimen6\testfont<10pt \rightskip=0pt plus 20pt
\else\rightskip=0pt plus 2em \fi
\spaceskip=\fontdimen2\testfont % space between words (\raggedright)
\xspaceskip=\fontdimen2\testfont
\advance\xspaceskip by\fontdimen7\testfont}

The specified font will be called \testfont. As soon as you have specified it, \init
calls on \startfont, which puts a title line on the page; then it chooses what it hopes
will be a good distance between baselines, and gets ready to typeset text with “ragged
right” margins. (The code above improves on plain TEX’s \raggedright.)

The baselineskip distance is taken to be 6 pt plus the height of the tallest
character plus the depth of the deepest character. This is the distance between base-
lines for “series” tests, but it is decreased by 4 pt when the sample text is set. If
you want to change the baseline distance chosen by testfont, you can just say, e.g.,
‘\baselineskip=11pt’.

\def\setbaselineskip{\setbox0=\hbox{\n=0
\loop\char\n \ifnum \n<255 \advance\n 1 \repeat} % 256 chars in \box0
\baselineskip=6pt \advance\baselineskip\ht0 \advance\baselineskip\dp0 }

When testfont prompts you for a “background character” or a “starting
character” or an “ending character,” you can type the character you want (assuming
ASCII code); or you can say, e.g., ‘#35’ to get character code number 35. Codes 0–32
and 127–255 have to be specified with the ‘#’ option, on non-fancy installations of TEX,
and so does code 35 (which is the ASCII code of ‘#’ itself).

\def\setchar#1{{\escapechar-1\message{\string#1 character = }%
\def\do##1{\catcode‘##1=\other}\dospecials
\read-1 to\next
\expandafter\finsetchar\next\next#1}}

\def\finsetchar#1#2\next#3{\global\chardef#3=‘#1
\ifnum #3=‘\# \global\chardef#3=#2 \fi}

\def\promptthree{\setchar\background
\setchar\starting \setchar\ending}

(The TEX hackery here is a bit subtle, because special characters like ‘\’ and ‘$’ must
temporarily lose their special significance.)

Suppose the background character is ‘o’ and the starting and ending characters
are respectively ‘p’ and ‘q’. Then the \mixture operation will typeset ‘opooppooopppop’
and ‘oqooqqoooqqqoq’; the \alternation operation will typeset ‘opopopopopopopopo’
and ‘oqoqoqoqoqoqoqoqo’. Other patterns could be added in a similar way.

\def\mixture{\promptthree \domix\mixpattern}
\def\alternation{\promptthree \domix\altpattern}
\def\mixpattern{\0\1\0\0\1\1\0\0\0\1\1\1\0\1}
\def\altpattern{\0\1\0\1\0\1\0\1\0\1\0\1\0\1\0\1\0}
\def\domix#1{\par\chardef\0=\background \n=\starting
\loop \chardef\1=\n #1\endgraf
\ifnum \n<\ending \advance\n 1 \repeat}
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lowers
uppers
digits
names
punct

The \series operation puts the background character between all the others
(e.g., ‘opoqo’). Special series containing the lowercase letters of TEX text fonts (includ-
ing ‘ß’, ‘æ’, ‘œ’, and ø’) and the uppercase letters (including ‘Æ’, ‘Œ’, and ‘Ø’) are
provided. Although \mixture and \alternation show you the effects of ligatures and
kerning, \series does not.

\def\!{\discretionary{\background}{\background}{\background}}
\def\series{\promptthree \!\doseries\starting\ending\par}
\def\doseries#1#2{\n=#1\loop\char\n\!\ifnum\n<#2\advance\n 1 \repeat}
\def\complower{\!\doseries{‘a}{‘z}\doseries{’31}{’34}\par}
\def\compupper{\!\doseries{‘A}{‘Z}\doseries{’35}{’37}\par}
\def\compdigs{\!\doseries{‘0}{‘9}\par}
\def\alphabet{\setchar\background\complower}
\def\ALPHABET{\setchar\background\compupper}

(A long series might fill more than one line; TEX’s \discretionary break operation is
used here so that the background character will end the line and be repeated at the
beginning of the next.)

A “comprehensive” test uses a series of background characters against a series
of others. The series will consist of lowercase letters (‘\lowers’), uppercase letters
(‘\uppers’), or numerals (‘\digits’).

\def\lowers{\docomprehensive\complower{‘a}{‘z}{’31}{’34}}
\def\uppers{\docomprehensive\compupper{‘A}{‘Z}{’35}{’37}}
\def\digits{\docomprehensive\compdigs{‘0}{‘4}{‘5}{‘9}}
\def\docomprehensive#1#2#3#4#5{\par\chardef\background=#2
\loop{#1} \ifnum\background<#3\m=\background\advance\m 1
\chardef\background=\m \repeat \chardef\background=#4
\loop{#1} \ifnum\background<#5\m=\background\advance\m 1
\chardef\background=\m \repeat}

The \names test puts uppercase letters and accents together with lowercase
letters. The accents will look funny if the test font doesn’t have them in plain TEX’s
favorite positions.

\def\names{ {\AA}ngel\aa\ Beatrice Claire
Diana \’Erica Fran\c{c}oise Ginette H\’el\‘ene Iris
Jackie K\=aren {\L}au\.ra Mar{\’\i}a N\H{a}ta{\l}{\u\i}e {\O}ctave
Pauline Qu\^eneau Roxanne Sabine T\~a{\’\j}a Ur\v{s}ula
Vivian Wendy Xanthippe Yv{\o}nne Z\"azilie\par}

Punctuation marks are tested in juxtaposition with different sorts of letters,
by the ‘\punct’ macro:

\def\punct{\par\dopunct{min}\dopunct{pig}\dopunct{hid}
\dopunct{HIE}\dopunct{TIP}\dopunct{fluff}
\$1,234.56 + 7/8 = 9\% @ \#0\par}

\def\dopunct#1{#1,\ #1:\ #1;\ ‘#1’\
?‘#1?\ !‘#1!\ (#1)\ [#1]\ #1*\ #1.\par}
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text
omitaccents
Stanfords
Kafka
AEsop
centerlargechars

Mixtures and alternations and series are excellent ways to discover that letters
are too dark, too light, or too tightly spaced. But a font also has to be readable; in
fact, this is the number one objective. So testfont provides a sample ‘\text’. One of
the sentences is optional, because it contains lots of accents and unusual letters; you
can omit it from the text by saying ‘\omitaccents’. Furthermore, you can type your
own text, online, or you can input one from a file, instead of using this canned example.

\def\text{{\advance\baselineskip-4pt
\setbox0=\hbox{abcdefghijklmnopqrstuvwxyz}
\ifdim\hsize>2\wd0 \ifdim 15pc>2\wd0 \hsize=15pc \else\hsize=2\wd0 \fi\fi
On November 14, 1885, Senator \& Mrs.~Leland Stanford called together at
their San Francisco mansion the 24~prominent men who had been chosen as
the first trustees of The Leland Stanford Junior University. They
handed to the board the Founding Grant of the University, which they had
executed three days before. This document---with various amendments,
legislative acts, and court decrees---remains as the University’s
charter. In bold, sweeping language it stipulates that the objectives of
the University are ‘‘to qualify students for personal success and direct
usefulness in life; and to promote the publick welfare by exercising an
influence in behalf of humanity and civilization, teaching the blessings
of liberty regulated by law, and inculcating love and reverence for the
great principles of government as derived from the inalienable rights of
man to life, liberty, and the pursuit of happiness.’’ \moretext
(!‘THE DAZED BROWN FOX QUICKLY GAVE 12345--67890 JUMPS!)\par}}
\def\moretext{?‘But aren’t Kafka’s Schlo{\ss} and {\AE}sop’s {\OE}uvres
often na{\"\i}ve vis-\‘a-vis the d{\ae}monic ph{\oe}nix’s official
r\^ole in fluffy souffl\’es? }
\def\omitaccents{\let\moretext=\relax}

Now comes one of the hardest parts of the file, from the TEX standpoint: The
\table macro prints a font diagram, omitting groups of sixteen characters that are
entirely absent from the font. The format of this table is the same as that used in
Appendix F of The TEXbook. When the font contains unusually large characters that
ought to be vertically centered, you should say ‘\centerlargechars’ before ‘\table’.
(A TEX math symbol font or math extension font would use this feature.)

\def\oct#1{\hbox{\rm\’{}\kern-.2em\it#1\/\kern.05em}} % octal constant
\def\hex#1{\hbox{\rm\H{}\tt#1}} % hexadecimal constant
\def\setdigs#1"#2{\gdef\h{#2}% \h=hex prefix; \0\1=corresponding octal
\m=\n \divide\m by 64 \xdef\0{\the\m}%
\multiply\m by-64 \advance\m by\n \divide\m by 8 \xdef\1{\the\m}}
\def\testrow{\setbox0=\hbox{\penalty 1\def\\{\char"\h}%
\\0\\1\\2\\3\\4\\5\\6\\7\\8\\9\\A\\B\\C\\D\\E\\F%
\global\p=\lastpenalty}} % \p=1 if none of the characters exist
\def\oddline{\cr
\noalign{\nointerlineskip}
\multispan{19}\hrulefill&
\setbox0=\hbox{\lower 2.3pt\hbox{\hex{\h x}}}\smash{\box0}\cr
\noalign{\nointerlineskip}}
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sample
bigtest
hamburgefonstiv
math
italic

\newif\ifskipping
\def\evenline{\loop\skippingfalse
\ifnum\n<256 \m=\n \divide\m 16 \chardef\next=\m
\expandafter\setdigs\meaning\next \testrow
\ifnum\p=1 \skippingtrue \fi\fi
\ifskipping \global\advance\n 16 \repeat
\ifnum\n=256 \let\next=\endchart\else\let\next=\morechart\fi
\next}

\def\morechart{\cr\noalign{\hrule\penalty5000}
\chartline \oddline \m=\1 \advance\m 1 \xdef\1{\the\m}
\chartline \evenline}
\def\chartline{&\oct{\0\1x}&&\:&&\:&&\:&&\:&&\:&&\:&&\:&&\:&&}
\def\chartstrut{\lower4.5pt\vbox to14pt{}}
\def\table{$$\global\n=0
\halign to\hsize\bgroup

\chartstrut##\tabskip0pt plus10pt&
&\hfil##\hfil&\vrule##\cr
\lower6.5pt\null
&&&\oct0&&\oct1&&\oct2&&\oct3&&\oct4&&\oct5&&\oct6&&\oct7&\evenline}

\def\endchart{\cr\noalign{\hrule}
\raise11.5pt\null&&&\hex 8&&\hex 9&&\hex A&&\hex B&
&\hex C&&\hex D&&\hex E&&\hex F&\cr\egroup$$\par}

\def\:{\setbox0=\hbox{\char\n}%
\ifdim\ht0>7.5pt\reposition
\else\ifdim\dp0>2.5pt\reposition\fi\fi
\box0\global\advance\n 1 }

\def\reposition{\setbox0=\vbox{\kern2pt\box0}\dim=\dp0
\advance\dim 2pt \dp0=\dim}

\def\centerlargechars{
\def\reposition{\setbox0=\hbox{$\vcenter{\kern2pt\box0\kern2pt}$}}}

Two of the most important combinations of tests are treated now: \sample
prints the \table and the text; \bigtest gives you the works, plus a mysterious word
that is traditional in type specimens:

\def\sample{\table\text}

\def\bigtest{\sample
hamburgefonstiv HAMBURGEFONSTIV\par
\names \punct \lowers \uppers \digits}

Finally, there’s a \math routine useful for checking out the spacing in the math
italic fonts used by plain TEX; \mathsy does a similar thing for the uppercase letters
in a math symbols font.

\def\math{\textfont1=\testfont \skewchar\testfont=\skewtrial
\mathchardef\Gamma="100 \mathchardef\Delta="101
\mathchardef\Theta="102 \mathchardef\Lambda="103 \mathchardef\Xi="104
\mathchardef\Pi="105 \mathchardef\Sigma="106 \mathchardef\Upsilon="107
\mathchardef\Phi="108 \mathchardef\Psi="109 \mathchardef\Omega="10A
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init
fontname
startfont

\def\ii{i} \def\jj{j}
\def\\##1{|##1|+}\mathtrial
\def\\##1{##1_2+}\mathtrial
\def\\##1{##1^2+}\mathtrial
\def\\##1{##1/2+}\mathtrial
\def\\##1{2/##1+}\mathtrial
\def\\##1{##1,{}+}\mathtrial
\def\\##1{d##1+}\mathtrial
\let\ii=\imath \let\jj=\jmath \def\\##1{\hat##1+}\mathtrial}
\newcount\skewtrial \skewtrial=’177
\def\mathtrial{$\\A \\B \\C \\D \\E \\F \\G \\H \\I \\J \\K \\L \\M \\N

\\O \\P \\Q \\R \\S \\T \\U \\V \\W \\X \\Y \\Z \\a \\b \\c \\d \\e \\f
\\g \\h \\\ii \\\jj \\k \\l \\m \\n \\o \\p \\q \\r \\s \\t \\u \\v \\w
\\x \\y \\z \\\alpha \\\beta \\\gamma \\\delta \\\epsilon \\\zeta
\\\eta \\\theta \\\iota \\\kappa \\\lambda \\\mu \\\nu \\\xi \\\pi
\\\rho \\\sigma \\\tau \\\upsilon \\\phi \\\chi \\\psi \\\omega
\\\vartheta \\\varpi \\\varphi \\\Gamma \\\Delta \\\Theta \\\Lambda
\\\Xi \\\Pi \\\Sigma \\\Upsilon \\\Phi \\\Psi \\\Omega
\\\partial \\\ell \\\wp$\par}

\def\mathsy{\begingroup\skewtrial=’060 % for math symbol font tests
\def\mathtrial{$\\A \\B \\C \\D \\E \\F \\G \\H \\I \\J \\K \\L
\\M \\N \\O \\P \\Q \\R \\S \\T \\U \\V \\W \\X \\Y \\Z$\par}

\math\endgroup}

The last line of testfont is

\ifx\noinit!\else\init\fi

and it means “automatically call ‘\init’ unless ‘\noinit’ is an exclamation point.”
Why this? Well, you might have your own test file from which you’d like to use the
facilities of testfont, without typing commands online. If your file says ‘\let\noinit!
\input testfont’ TEX will read in testfont but the routine will not prompt you for
a file name. The file can then continue to test one or more fonts by saying, e.g.,

\def\fontname{cmbx10 }\startfont\sample\vfill\eject
\def\fontname{cmti10 scaled \magstep3}\startfont\sample\vfill\eject

thereby defining \fontname directly, and using \startfont to do the initialization
instead of \init.

To conclude this appendix, let’s look at the listing of a file that can be used
to test special constructions in math fonts with the conventions of plain TEX:

\raggedright \rightskip=2em plus 5em minus 2em

$\hbar \not\equiv B$, but $\sqrt C \mapsto \sqrt x$,
$Z \hookrightarrow W$, $Z \hookleftarrow W$,
$Z \longmapsto W$, $Z \bowtie W$, $Z \models W$,
$Z \Longrightarrow W$, $Z \longrightarrow W$,
$Z \longleftarrow W$, $Z \Longleftarrow W$,
$Z \longleftrightarrow W$, $Z \Longleftrightarrow W$,
$\overbrace{\hbox{very long things for testing}}$,
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SHAKESPEARE
DAVIS
HERSH

$\underbrace{\hbox{very long things for testing}}$,
$Z \choose W$, $Z \brack W$, $Z \brace W$, $Z \sqrt W$,
$Z \cong W$, $Z \notin W$, $Z \rightleftharpoons W$,
$\widehat Z$, $\widehat{ZW}$, $\widehat{Z+W}$,
$\widetilde Z$, $\widetilde{ZW}$, $\widetilde{Z+W}$.

\def\sizetest#1#2{$$
\Bigggl{#1}\bigggl{#1}\Biggl{#1}\biggl{#1}\Bigl{#1}\bigl{#1}\left#1
\bullet
\right#2\bigr{#2}\Bigr{#2}\biggr{#2}\Biggr{#2}\bigggr{#2}\Bigggr{#2}$$}

\def\biggg#1{{\hbox{$\left#1\vbox to20.5pt{}\right.$}}}
\def\bigggl{\mathopen\biggg} \def\bigggr{\mathclose\biggg}
\def\Biggg#1{{\hbox{$\left#1\vbox to23.5pt{}\right.$}}}
\def\Bigggl{\mathopen\Biggg} \def\Bigggr{\mathclose\Biggg}

\sizetest () \sizetest [] \sizetest \lgroup\rgroup
\sizetest \lmoustache\rmoustache \sizetest \vert\Vert
\sizetest \arrowvert\Arrowvert \sizetest \uparrow\downarrow
\sizetest \updownarrow\Updownarrow \sizetest \Uparrow\Downarrow
\sizetest \bracevert{\delimiter"342} \sizetest \backslash/
\sizetest \langle\rangle \sizetest \lbrace\rbrace
\sizetest \lceil\rceil \sizetest \lfloor\rfloor

$$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{-1}}}}}}}}}$$

\def\dobig{\do\bigvee \do\bigwedge \do\bigotimes \do\bigoplus \do\bigodot
\do\bigcap \do\bigcup \do\biguplus \do\bigsqcup
\do\int \do\ointop \do\smallint \do\prod \do\coprod \do\sum}

\def\do#1{#1_a^b A} $\dobig$ $$\dobig$$

\bye

Be sure of it: Giue me the Occular proofe.

— WILLIAM SHAKESPEARE, Othello (1604)

The figure itself appears here
as a very necessary adjunct to the verbalization.

In Euclid’s presentation we cannot wholly follow the argumentation
without the figure, and unless we are strong enough

to imagine the figure in our mind’s eye, we would also be reduced
to supplying our own figure if the author had not done it for us.

Notice also that the language of the proof has a
formal and severely restricted quality about it.

This is not the language of history, nor of drama,
nor of day to day life;

this is language that has been sharpened and refined so as to serve
the precise needs of a precise but limited intellectual goal.

— P. J. DAVIS and R. HERSH, Proof (1981)
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The author has tried to provide as complete an index as possible, so that people
will be able to find things that are tucked away in obscure corners of this long
book. Therefore the index itself is rather long. A short summary of the simpler
aspects of METAFONT appears at the beginning of Appendix B; a summary of
the standard character classes for tokens can be found at the end of Chapter 6;
a summary of other special things appears under ‘tables’ below.

Page numbers are underlined in the index when they represent the definition
or the main source of information about whatever is being indexed. (Underlined entries
are the most definitive, but not necessarily the easiest for a beginner to understand.)
A page number is given in italics (e.g., ‘123 ’) when that page contains an instructive
example of how the concept in question might be used. Sometimes both underlining
and italics are appropriate. When an index entry refers to a page containing a relevant
exercise, the answer to that exercise (in Appendix A) might divulge further information;
an answer page is not indexed here unless it refers to a topic that isn’t included in the
statement of the relevant exercise.

Index entries for quoted symbols like ‘T’ refer to example programs that draw
the symbols in question.

Symbolic tokens that are preceded by an asterisk (*) in this index are primi-
tives of hijklmnj; i.e., they are built in. It may be dangerous to redefine them.

# (hash mark), see sharped dimensions.
‘#’, 200–201.
## (traced equation), 80–83, 239.
### (removed independent variable), 83.
#### (deduced equation), 81.

*#@ (prefix of at point), 177, 251.
% (percent sign), 43, 50.

*& (ampersand), 213–214, see concatenation.
for preloaded bases, 35, 279.

’ (apostrophe or prime), 25, 55, 81.
" (double-quote mark), 50–51.
"" (empty string), 188, 236, 254, 276,

294, 328.
‘(’, 103–105, 128, 318.
( (left parenthesis), 59, 60, 61, 62–63,

71–73, 165, 210–215.
((, 51.
) (right parenthesis), 59, 60, 61, 62–63,

71–73, 165, 210–215.
)), 51.

*[ (left bracket), 9–10, 54, 55, 60, 72, 80,
211–212, 298–299, 324.

[[, 61.
[] (collective subscript), 56, 177, 273.
[1] (progress report), 37, 324.

*] (right bracket), 9–10, 54, 55, 60, 72, 80,
211–212, 298–299, 324.

]], 61, 162, 262, 299.
*{ (left brace), 16–18, 60, 129, 213.

{{, 61, 289.
*} (right brace), 16–18, 60, 129, 213.
}}, 61, 289.

*+ (plus sign), 62, 63, 72, 80, 211.
*++ (Pythagorean addition), 66, 67, 72, 211.

(double edge), 117, 296–297.
+++ (triple edge), 296–297.

*+-+ (Pythagorean subtraction), 66,
72, 211, 238.

*- (minus sign), 62, 63, 72, 80, 211, 297.
-- (straight join), 24–26, 127–129, 234, 262.

(double edge), 117, 296–297.
--- (tense join), 107, 127–129, 262.

(triple edge), 296–297.
-> (macro expansion), 44, 160, 249, 251.
‘—’ (em dash), 306.
_ (underline), 49, 51, 173, 265, 270.
* (asterisk), 285–286.

as prompt character, 31, 37, 279.
*as times sign, 59, 62–64, 72, 73,

80, 211–212.
**, as command-line prompt, 31–32,

35–40, 187, 269, 279.
as exponentiation sign, 59, 64, 72,

237, 251, 265.
/ (slash), 328, 329.
*as divided-by sign, 59, 62, 63, 72,

80, 82, 210–211.
| (vertical line), 117, 297.
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*\ (backslash), 179, 236, 262.
at beginning of command line, 31, 38, 40.

\\, 262.
*< (less than sign), 64, 65, 170, 210, 237.
*<= (less than or equal to), 64, 65, 170,

210, 282.
<- (argument value), 160.

*<> (unequal to), 64, 65, 170, 210, 282.
〈〉 (angle brackets), 49–50.

*= (equals sign), 5, 6, 23, 64, 75–85, 88, 97,
165, 167, 170, 171, 210, 218.

==, 292.
*=: (ligature replacement), 305, 306,

316, 317.
*|=:, 316, 317.
*|=:>, 317.
*=:|, 317.
*=:|>, 317.
*|=:|, 317.
*|=:|>, 317.
*|=:|>>, 317.
/= (unequals sign), 282.

*> (greater than sign), 64, 170, 210, 237.
>> (shown value), 41, 62.

*>= (greater than or equal to), 64, 65,
170, 210, 282.

*, (comma), 57, 72, 73, 129, 155, 165–167,
171, 317, 318.

,, , 51.
. (period), 43, 50, 51.
‘.’, 306.

*.. (free join), 7, 15–19, 24, 127–133, 213.
... (bounded join), 18–19, 44, 127,

248, 262.
*; (semicolon), 155, 169, 171, 172, 187,

217, 223–224, 263, 312.
;; , 51.

*: (colon), 169, 317–319.
*:: (local label), 317.
*||: (left boundary label), 317.
*:= (gets), 28, 33, 87, 88, 97, 98, 155–156,

159, 165, 167, 171, 176, 218, 282.
?, 41, 42–43.
???, 224, 262.
! (exclamation point), 41, 189.

*@ (at point), 177, 251.
*@# (suffix of at point), 176, 177, 178,

251, 273–274.

‘a’, 192.
‘A’, 163, 164, 248, 302–303.
abort, 312–313.
abs (absolute value), 66, 82, 238, 264.

accents, 315, 317.
accuracy, 50, 62–69, 143, 237.
ad hoc dimensions, 92, 95.
Adams, John, 359.
addition of pictures, 115, 117, 245.
addition of vectors, 9, 68.

*addto, 118–119, 144, 151, 242–245.
〈addto command〉, 220.
adjust_fit, 306–308.
Æschylus, 47.
Æsopus, 340.
affine transformations, 247.
algebraic operations, 59–73, 209–215, 230.
Algol, 57, 89.
Alingham, William, 189.
Allen, Fred (= Sullivan, John Florence), 85.
almost digitized character, 296.

*also, 118, 220, 242–245.
\alternation, 338.
alternatives, 169.
always_iff, 307, 311–312.
ambiguous points, 150, 198–200, 204.
American Mathematical Society, ii, ix.
anatomy of opqrstuq, 169, 179,

217, 285, 344.
*and, 65, 129, 170, 210, 213, 288–289.
Anderson, Izett William, 299.

*angle, 29, 67, 72, 107, 135, 211.
angle brackets, 49–50.
angle of pen, 21–22, 26–28, 152, 164.
arguments, 159–160, 166–167, 210, 288.
arithmetic, 59–63.
arrays, 54–57.
ASCII, 49, 188, 281–283, 317.

*ASCII, 72, 188, 211.
aspect_ratio, 94, 145, 204, 269, 335.
〈assignment〉, 88.
assignments, 28, 33, 87–89, 98, 159.

*at, 191, 220, 252, 277, 312.
at size, 96, 319.

*atleast, 129, 132, 213, 262.
*autorounding, 127, 195, 204–205, 206,

212, 262, 264, 271–272.
axis, 103.

‘b’, 308.
background character, 40, 338–339.
Backus, John Warner, 49.
backwards path, 119.
badio.mf, 41, 223.
barheight, 96, 161, 199, 302–303.
base file, 34–35, 261, 278–279, 304, 307.
baseline, 75–77, 101.
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〈basic path join〉, 129, 213.
*batchmode, 219, 226.
BCPL strings, 320.
bean-like shape, 15–16, 21–22, 24–25.
beauty, v, 185.
Beethoven, Ludwig van, 185.
beginchar, 35, 76, 96, 102–103, 107, 115,

148, 156, 197, 199, 204, 275, 316.
*begingroup, 155–157, 175, 178, 210–215,

217, 236, 243, 275, 289.
beginlogochar, 160, 302.
Bell, Eric Temple, 11.
bell-shaped distribution, 251.
Bernshtĕın, Sergĕı Natanovich, 14.

polynomials, 14, 133, 152, 246, 298–299.
Bézier, Pierre Etienne, 14.
Bibby, Duane Robert, i.
Bierce, Ambrose Gwinnett, ix.
\bigtest, 341.
Billawala, Nazneen Noorudin, 266, 294.
binary search, 176–177, 293–294.
black, 270, 332–333.
black-letter, 294.
black/white reversal, 115.
blacker, 93–94, 268, 270–271.
blankpicture, 192, 263.
Boole, George, 170.

*boolean, 55, 56.
〈boolean expression〉, 170, 210.
Boolean expressions, 170, 257.
〈boolean primary〉, 170, 210.
〈boolean secondary〉, 170, 210.
〈boolean tertiary〉, 170, 210.
bot, 23, 80, 147, 151, 204, 273.
boundaries, 24–29, 123–125.

*boundarychar, 212, 317.
bounded curves, 19, 132.
bounding box, 22, 35, 76, 101–107,

276, 307, 315.
bounding triangle, 19, 132.
box, see bounding box.
bp (big point), 92, 267, 268.
braces, 16–18, 60, 129, 213.
bracket notation, see mediation.
brackets, 9–10, 54, 55, 60, 72, 80, 211–212,

298–299, 324.
broad-edge pens, 26–29, 151–152, 162–165.
Brontë, Emily Jane, 73.
Bruck, Richard Hubert, 29.
buffer size, 226, 286.
built-up symbols, 318.
Burkitt, William, 99.
Burns, Robert, 299.

bye, 278, 279, 306, 321, 324.
byte, 264, 275.
〈byte list〉, 318.

c code, 106, 324.
Camden, William, 51.
Campbell, John Campbell, 359.
cand, 288–289.
CAPSULE, 239.
capsule_def, 264.
capsules, 159, 166, 172, 210, 239, 247,

254, 264.
Carter, Matthew, 207.
Cartesian coordinates, 5–6, 191.
cc (cicero), 92, 267, 268.
ceiling, 65, 66, 72, 264.
\centerlargechars, 340, 341.
chance, 183–185.
change_width, 199, 276, 309.

*char, 187, 188, 214, 263.
*charcode, 106, 210, 212, 220, 275, 324.
*chardp, 106, 212, 220, 275, 315–316, 324.
*chardx, 106, 212, 220, 276, 324, 334.
*chardy, 212, 324.
*charexists, 106, 210, 316, 324.
*charext, 106, 212, 220, 316, 324.
*charht, 106, 212, 220, 275, 315–316,

324, 334, 335.
*charic, 106, 212, 220, 275, 315–316, 324.
*charlist, 317, 318, 331, 334, 335.
〈charlist command〉, 318.

*charwd, 106, 212, 220, 275, 315–316,
324, 334, 335.

cheapo, 91–93, 99, 278–279, 332–333.
check sums, 320, 324, 325.
Chinese characters, 3, 106, 324.
circles, 123–124, 148.
clear_pen_memory, 147, 273, 278, 310.
clearit, 115, 242, 275, 277, 295.
clearpen, 272, 275.
clearxy, 275, 277.
cm (centimeter), 18, 92, 267, 268.
cm.base, 35, 279, 311.
cmchar, 306, 307, 312–313.
cmex10, 317–318.
cmmf, 35, 279.
cmr9, 203, 320.
cmr10, 101, 305–306, 319.
cmr10.mf, 305.
cmsl10, 101.
cmtt10, 306.
〈code〉, 317.
codes, 281–283.



348 Appendix I: Index

Colburn, Dorothy, 107.
collective subscripts, 56, 177.
〈command〉, 217.
command line, 38, 187, 269, 277, 301.
commands, 155, 217–220, 230, 321.
comments, 43, 50–51.
commutativity, 247.
comparison, 65–66, 80, 170.
compass directions, 26, 119, 206–207,

228–229.
complex numbers, 69.
〈compound〉, 217.
compound statement, 155, 217.
Computer Modern, 35, 103–105, 203,

206, 279, 304–313.
concatenation, of paths, 70–71, 123,

127, 129, 130, 245.
of strings, 69, 84–85, 187, 278, 286, 312.

〈condition〉, 169.
conditional and/or, 288–289.
conditions, 169–171, 179, 219, 259.
constants, 59, 62, 263–264.
contents of this manual, table, x–xi.

*contour, 118–119, 220.
control points, 13–19, 70–71, 133, 229.

*controls, 19, 70–71, 129–130, 133, 152, 213.
〈controls〉, 129, 213.
conversion to pixel units, 259, 268.
convex polygons, 119, 147, 297–298.
Conway, John Horton, 121.
coordinates, 5–11, 23, 109, 191, 193.
cor, 288–289.
corner pixels, 93–94.

*cosd, 67, 72, 211.
cosines, 67, 69.
counterclockwise, 111, 119, 229, 255.
counterclockwise, 264.
Cowper, William, 51.
craziness, 184–185.
crispness, 103–104.
cube roots, 177.
cubes, 113.

*cull, 118, 120, 151, 243–245.
〈cull command〉, 118, 220.
culldraw, 271, 272.
culling, 113, 120, 151, 242–245, 296.
cullit, 113, 120, 242, 243, 277.
Cundall, Frank, 299.

*curl, 17, 128–131, 213, 234.
currentbreadth, 310–311.
currentnull, 295.
currentpen, 118, 147, 150, 204, 271–272.

currentpicture, 114, 115, 116, 118, 120,
191, 271–272, 295.

currenttransform, 94, 145, 204, 269,
271, 301, 310.

currentwindow, 192, 312.
curves, 13–19, see paths.
cusps, 136.
cutdraw, 151, 271–272.
cutoff, 150, 272.

*cycle, 15, 16, 24–28, 69, 129–131, 170,
171, 210, 213.

d, 35, 76, 102, 204, 275.
‘d’, 294.
da Vinci, Leonardo, 19.
dangerous bend, vii, 11, 106–107, 115, 143.
Darwin, Charles Robert, 57.
data structures, 53–57.
Davis, Philip Jacob, 343.

*day, 212, 218, 323.
dd (didot point), 92, 267, 268.
de Casteljau, Paul de Faget, 14.
debugging tricks, 229–231, 286.

*decimal, 187–188, 214.
〈decimal digit〉, 50.
decimal point, 50–51.
decimal representation, 188.
〈declaration〉, 56, 171.
〈declaration list〉, 57.
declarations, 56–57.
declarative versus imperative, 87.
〈declared suffix〉, 57.
〈declared variable〉, 57, 175.
decr, 266.

*def, 36, 159–162, 165–167.
default_wt_, 271–272.
define_blacker_pixels, 33, 92–93,

106, 268, 302.
define_corrected_pixels, 93, 197, 268, 302.
define_good_x_pixels, 199, 268, 302.
define_good_y_pixels, 199, 268, 302.
define_horizontal_corrected_pixels,

204, 268, 302.
define_pixels, 33, 92, 106, 199, 268, 302.
define_whole_blacker_pixels, 202, 268.
define_whole_pixels, 199, 268, 302.
define_whole_vertical_blacker_pixels,

268.
define_whole_vertical_pixels, 204,

268, 302.
〈definition〉, 165.
〈definition heading〉, 165.
definitions, 159–167, 175–180.
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deleting tokens, 42–43, 225.
〈delimited parameters〉, 165.
delimiters, 61, 167, 210, 254, 288–289.

*delimiters, 61, 180, 210, 218, 221,
262, 296, 299, 313.

〈delimiters command〉, 218.
dependent variables, 81–83, 88, 224.
depth, 101.
Derek, Bo, 287.
Descartes, René, 6, 11, 19.
design size, 96, 319–320, 324, 329.

*designsize, 212, 320.
device drivers, 323, 325.
diagnostic aids, 229–231, 259, 286.
diamond-shaped nib, 148–149, 297.
Dickens, Charles John Huffam, 145.
difference of pictures, 115, 244.
digestion process, 179, 217–221.
〈digit string〉, 50.
digitization, 111, 149, 195–207, 230.
\digits, 339.
dimensions, 92, 267.
dir, 18, 67, 68, 83–84, 135, 163–164,

175, 233, 264.
direction, 69, 70, 135, 235, 265.
〈direction specifier〉, 129, 213.
directionpoint, 135, 265.

*directiontime, 135, 136, 211, 245, 265, 295.
dishing, 152, 164.

*display, 191–192, 220.
〈display command〉, 220.
displaying, 269, 276, 278.
distance, 76, 84.
ditto, 187, 263.
div, 265.
division, 59, 62, 63, 80, 82.

of numeric tokens, 61, 73.
Dopping, Olle, 181.
dot, 306, 311.
dot product, 69.
dotprod, 69, 178, 238, 265.
dotsize, 332, 334.
double-quote mark, 50–51, 187.

*doublepath, 118, 119, 151, 220.
doubly filled pixels, 110–112.
down, 32, 263.
downto, 172, 262.
draw, 7, 15–19, 21, 112, 118–120, 145, 147,

150, 198, 230, 271, 295.
one point, 22, 150, 200, 253.

drawdot, 31, 113, 147, 150, 234, 271.
Drayton, Michael, 279.
drift, 102, 106.

driver files, 304–306.
*dropping, 118, 120, 220.
Dürer, Albrecht, 13, 19.

*dump, 217, 221, 262, 279, 311.
.dvi, 32, 40, 103, 106, 323, 327, 328.

e, 27–29, 273.
‘E’, 96–97, 204, 302–303.
edge structure, 116–117, 296–297.
edges, 116.
editing, 46.
efficiency, 39, 99, 141, 144, 147, 228, 230,

234, 244, 264, 265, 277, 291, 297, 298.
El Palo Alto, 124–126, 139, 228–229.
ellipses, 123, 126.
Ellis, Henry Havelock, 11.

*else, 169–170, 179.
*elseif, 169–170, 179.
em dash, 306.
emergency stops, 226.
empty option in for list, 171, 299.
empty statement, 155, 217.
empty text argument, 299.

*end, 31, 37, 155, 167, 217, 221, 226,
278, 287, 305, 321.

end of a file, 287.
endchar, 36, 102, 156, 191, 276, 309,

311, 329.
*enddef, 94, 159–164, 165, 175–178.
*endfor, 18, 39, 171–172, 173, 250, 290.
ENDFOR, 45, 286, 290.

*endgroup, 155–157, 167, 175, 178, 210–215,
217, 236, 243, 276, 289, 290.

ending character, 40, 338–339.
*endinput, 179, 287–288.
endpoints, 128, 150–151.
ENE, 119, 206–207, 228.
enormous number, 63, 236.
envelopes, 118–119, 150, 230.
eps, 93, 199–200, 229, 263, 310–311.
epsilon, 62–69, 115, 135, 152, 229, 263.
equality test, general, 292.
equality versus equation, 171.
equally_spaced, 290.
〈equation〉, 88.
equations, 5, 6, 23, 75–85, 88, 141, 171.

nonlinear, 84–85, 176–177, 292–294.
equilateral triangle, 25, 203.
erase, 113, 120, 167, 271, 272.

*errhelp, 189, 219, 294.
*errmessage, 178, 189, 219, 294.
error messages, 41–46, 223–228.

*errorstopmode, 219, 227, 313.



350 Appendix I: Index

ESE, 206–207, 228–229.
*everyjob, 180, 219.
〈everyjob command〉, 219.
Evetts, L. C., 153.
exercises, viii, 5–231.
〈exit clause〉, 171.

*exitif, 171, 173, 176, 179, 262.
exitunless, 173, 262.
expandable tokens, 179, 230.

*expandafter, 179, 180, 270, 286–290, 313.
expansion process, 179–180, 285–291.
exponential, see mexp.

*expr, 160, 162, 165, 166, 167, 176, 210.
(EXPRn), 44, 160, 249, 251.
expr.mf, 61, 62–71, 116–117, 132, 135–137,

142–143, 150, 173.
〈expression〉, 167, 209.
expressions, 59–73, 209–215.

*extensible, 318.
〈extensible command〉, 318.
external tags, 55, 218.
extra_beginchar, 275–276, 278.
extra_endchar, 276, 277, 309.
extra_setup, 269, 270, 278.
! Extra tokens will be flushed,

43–44, 224–225.

‘F’, 97, 204, 302–303.
*false, 55, 64–65, 170, 210.
faster operation, 39, 99, 141, 144, 147,

228, 230, 234, 244, 264, 265, 277,
291, 297, 298.

Fatal base file error, 226.
fatter pens, 297–298.

*fi, 169–170, 179.
! File ended..., 287.
file names, 36, 39, 180, 324, 329.
〈filename〉, 179–180.
fill, 24–27, 109–112, 116, 118–121,

145, 167, 271, 295.
filldraw, 103–105, 112–113, 118–119, 147,

148, 152, 164, 230, 271, 306, 310.
*fillin, 93–94, 150, 212, 247, 268, 278–279.
fine, 103–104, 306–307, 310–311.
fine.lft, 311.
fix_units, 267.
flat spots, 196–197.
flex, 124–125, 127, 152, 173, 228–229, 267.

*floor, 65, 66, 72, 83, 253, 211.
flushing, 43–44, 219, 224–225.
Font, Fray Pedro, 139, 231.
〈font metric command〉, 321.
font metric information, 39, 220, 315–321.

font_coding_scheme, 277, 303, 304,
320–321.

font_extra_space, 277, 319.
font_identifier, 277, 303, 304, 305,

320, 332–333.
font_normal_shrink, 97, 276, 305, 319.
font_normal_space, 97, 276, 305, 319, 332.
font_normal_stretch, 97, 276, 305, 319.
font_quad, 97, 277, 308, 319, 332.
font_setup, 203, 305, 309–312.
font_size, 96, 276.
font_slant, 276, 305, 319, 331, 335–336.
font_x_height, 277, 319, 332.

*fontdimen, 276–277, 318–319, 331–332, 335.
〈fontdimen command〉, 318.

*fontmaking, 54, 94, 211, 270, 315.
\fontname, 342.

*for, 18, 39, 113, 171–173, 179, 228,
285–291, 299.

〈for list〉, 171, 299.
forbidden tokens, 173, 218–219, 286.

*forever, 61, 171–173, 176, 179.
*forsuffixes, 171–172.
FORTRAN language, 237.
〈four codes〉, 318.
four-point method for curves, 13–14, 133.
Fournier, Simon Pierre, 321.
fractions, 61, 62–63, 72, 73.

*from 191, 220, 252, 277, 312.
fullcircle, 114, 123–124, 126, 135–137,

263, 266.
Fulton, A. G., 157.
function values by interpolation, 294–295.
〈future pen primary〉, 148, 214.
〈future pen secondary〉, 148, 214.
future pens, 148–149, 170, 249, 264, 298.

Galsworthy, John, 215.
Gardner, Martin, 126.
generate, 305, 307, 311, 313.
gf, 32, 241, 295, 323–325.
gfcorners, 277, 278, 327.
GFtoDVI, 32, 37, 187, 327–336.
gimme, 61–62.
Giotto de Bondone, 139.
gobble, 167, 262, 289.
gobbled, 262, 289–290.
golden ratio, 11.
good.bot, 204, 273.
good.lft, 204, 273.
good.rt, 204, 273.
good.top, 204, 273.
good.x, 198, 268, 273.
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good.y, 198, 204, 268, 273.
Goudy, Frederic William, 19.
grammatical rules, 49–50.

*granularity, 205, 212, 262, 310.
graph paper, 5, 102, 109, 188.
gray, 332.
gray fonts, 327, 330–335.
grayf.mf, 332–335.
grayfont, 270, 275, 323, 329.
grayfontarea, 329.
grayfontat, 329.
greater than or equal to, 65.
greatest integer function, see floor.
grid, 5, 109, 275.
Grimm, Jakob Ludwig Karl, 73.
Grimm, Wilhelm Karl, 73.
group delimiters, 289.
group expressions, 157, 160.
groups, 155–157, 167.
Gu Guoan, 3.

h, 22–25, 35–36, 76–78, 102, 204, 275.
‘H’, 163, 165.
Haggard, Sir Henry Rider, 107.
hairlines, 104–105.
halfcircle, 123, 136, 263.
hamburgefonstiv, 341.
hand tuning, 195.

*headerbyte, 318, 320–321.
〈headerbyte command〉, 318.
hearts, 134.
height, 101.
Hein, Piet, 126, 231.
help messages, 43–45, 189, 224–225.
Herbin, Auguste, 3.
Hersh, Reuben, 343.

*hex, 188, 211, 281.
hex symbol, 7–8, 28–29.
hexadecimal notation, 188.
hide, 116, 143, 167, 173, 227, 262.
hierarchy of operators, 60–61, 71–73,

137, 209, 289.
histogram, 251.
Hobby, John Douglas, viii, 3, 130, 131,

149, 252, 285.
holes, 110.
Holland, Philemon, 51.
Homerus, 51.
homogeneous transforms, 247.

*hppp, 92–93, 212, 267, 268, 324.
hround, 264, 268.
Hultén, Karl Gunnar Pontus, 3.

‘I’, 28, 32, 39, 163, 164.
! I can’t go on, 226.
IBM Corporation, ix.
identity, 141–145, 215, 263.

*if, 169–170, 179, 289.
iff, 306, 307, 311.
imagerules, 277, 278.
imperative versus declarative, 87.
impossible cube, 113.
in (inch), 92, 267, 268.
inaccessible token, 286.
incomplete string, 50–51.
inconsistent equations, 82, 313.
incr, 39, 176–177, 266.
independent variables, 81–83, 88, 224.
infinite loops, 172, 226–227.
infinity, 62–69, 263, 266.
inflection points, 18–19.
INIMF, 221, 262, 279.
\init, 342.
〈initial value〉, 171.

*inner, 180, 218–219, 286–287, 307, 321.
inorder, 290.

*input, 179, 180, 269, 287–288, 324.
input stack size, 226, 287.
inserting text online, 42, 45, 61, 188,

223–225.
integers, 65–66.
interact, 230, 262.
interacting with opqrstuq, 42–45, 61,

188–189, 191–193, 219, 223–225.
*interim, 155–156, 230, 243, 244, 271, 272.
〈interim command〉, 155, 218.
internal quantities, 54–55, 88, 218, 262.

table, 211–212.
〈internal quantity〉, 156, 218, 265.
interpath, 134, 267.
interpolation, 2, 134, 294–295.
interrupting opqrstuq, 219, 227–228, 313.
intersection, of lines, 84.

of paths, 136–137.
of pictures, 120.

intersectionpoint, 107, 137, 138, 178, 265.
*intersectiontimes, 178, 213, 265, 294, 298.
inverse, 143, 264.
inverse video, 115, 118.

*inwindow, 191, 277.
Io, 33, 40, 47.
〈is〉, 165, 171, 218.
Isis, 40.
! Isolated expression, 223.
isolated math characters, 316, 319.
italcorr, 103–105, 275, 303, 306, 316.
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italic corrections, 102, 105, 275, 276,
304, 315–316, 319.

italic type, 55, 206, 341.

jaggies, 201.
*jobname, 187, 214, 324.
Johnson, Samuel, 167.
Johnston, Edward, 29.
join_radius, 266.
jokes, viii, 231.
Journal of Algorithms, 137–139.
jut, 162, 308.

Kafka, Franz, 340.
Kandinskĭı, Vasilĭı Vasil’evich, 3.
〈keep or drop〉, 118, 120.

*keeping, 118, 120, 220.
keepit, 295.

*kern, 97, 316, 317.
kerning, 97, 316–317.
killtext, 262, 272.
knife, 24.

*known, 65, 79–82, 143, 170, 210.
Knuth, Donald Ervin, i, ii, ix, 3, 134, 192,

206, 255, 282, 291, 304, 308, 345, 361.
Knuth, Nancy Jill Carter, ix, 134, 137.

l, 308–309.
La Rochefoucald, François VI, 313.
〈label〉, 317.
〈labeled code〉, 318.
labelfont, 275, 329.
labelfontarea, 329.
labelfontat, 329.
labels, 107, 274–275, 327–328.
labels in font metric information, 317–318.
labels on proofmode output, 37, 187,

274–275.
labels.top, 328.
Lamé, Gabriel, 126.
large_pixels, 332.
lcode_, 274, 328.
le Bé, Pierre, 207.
least integer function; see ceiling.
Leban, Bruce Philip, 242, 243, 270, 295.
left, 16, 263.
left-handed dangerous bend, 143.
leftstemloc, 96, 199, 302.

*length, 66, 69, 72, 211, 238.
less than or equal to, 65.

*let, 53, 180, 218, 287–289, 299, 311.
〈let command〉, 218.
letter_fit, 307–308.
〈leveldef〉, 178.

〈leveldef heading〉, 165, 178.
lft, 23, 77, 80, 147, 151, 273.
lies, viii, 231.
Life, 121.
〈ligature op〉, 317.
ligatures, 305–306, 315–317.
lightweight, 332.

*ligtable, 97, 305, 316–317.
〈ligtable command〉, 317.
〈ligtable program〉, 317.
〈ligtable step〉, 317.
〈limit value〉, 171.
line, point to be on, 83–84.
linear dependencies, 82–83.
linear forms, 64, 82.
Linné, Karel von (= Linnæus), 325.
local.mf, 278–279, 321.
localfont, 39, 271, 278, 279.
locations of characters within a font,

106–107, 281–283, 320.
Lockyer, Sir Joseph Norman, 57.
log file, 42, 46, 62, 230, 295–297.
logarithm, see mlog.
loggingall, 230, 263.
logo of opqrstuq, ii, 22–23, 95–99,

160–161, 184–185, 199–200, 204,
301–304.

logo.mf, 95–98, 199, 302–303.
logos, i, 97, 114, 137–139.
logo10.mf, 95, 287, 301, 304.
〈loop〉, 171.
〈loop header〉, 171.
loop text, 171–172, 219, 286.
loops, 169, 179, 226–227, 259, 290–291, 299.
low-resolution proofs, 99, 327.
\lowers, 339.
lowres, 196, 201, 230, 270.
lowres_fix, 203, 268, 310.
luxo, 91–94, 99, 195, 278–279.

‘M’, 23, 97, 200, 302–303.
macros, 36–37, 53, 114, 159–167,

175–179, 285–299.
mag, 39, 91–93, 98, 169, 230, 269, 278,

333–334.
magnets, 60–61.
magnification, 38–40, 91–99.
magstep, 98, 270.
makebox, 270, 276, 309.
makegrid, 275.
makelabel, 274, 328.

*makepath, 150, 213, 247, 298.
*makepen, 147–148, 214, 264.
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maketicks, 270, 276, 309.
mastication, 169, 179, 285.
\math, 341.
Matthew, Saint, 173.
max, 65, 266, 290–291.
maximum, 65.
mediation, 9–11, 14, 63, 68, 72, 80,

133, 298–299.
memory usage, 226–227.

*message, 61, 189, 262.
〈message command〉, 189, 219.
〈message op〉, 189, 219.
meta-design, 1–3, 103–105, 294.
meta-font, 1–3, 98, 192, 301–304.
meta-ness, 3, 301.
opqrstuq, the logo, ii, 22–23, 95–99,

160–161, 184–185, 199–200, 204,
301–304.

the name, 1–3.
METAFONT capacity exceeded, 226–227.
opqrstuq79, viii.

*mexp, 67, 72, 211, 265, 270.
mf, 31, 35.
.mf, 36.
mfput, 31–32, 187, 324.
MFT, 262.
midpoints, 9, 13.
Mies van der Rohe, Ludwig, 185.
min, 65, 266, 290–291.
minimum, 65.
Mirk, John, 313.
! Missing ‘)’ has been inserted, 254.
misspelling, 45, 224.
\mixture, 40, 338.

*mlog, 67, 72, 211, 265.
mm (millimeter), 76, 91–92, 267, 268.
Möbius, August Ferdinand, 114.
mock curvature, 131.
mod, 66, 265.
mode, 38–39, 75, 91–94, 269, 278.
〈mode command〉, 219.
mode_def, 94, 189, 270, 278–279.
mode_name, 269.
mode_setup, 32–34, 75, 76, 91–94, 96, 115,

169, 269, 278, 304, 305, 329.
mono_charwd, 308.
monospace, 305–308.

*month, 212, 323.
More, Sir Thomas, 215.
Morison, Stanley, ix, 283.
mouth, 169, 179, 285.
Moxon, Joseph, 325.
Mulford, Clarence Edward, 89.

multiplication, 59, 62–64, 69, 79–80, 82.
of vector by scalar, 9.

music, 183, 185.

‘n’, 201–203.
‘N’, 184–185, 303.
\names, 339.
National Science Foundation, ix.
Naur, Peter, 49, 89.
negation, of pictures, 115.

of vectors, 9.
new_window, 193.

*newinternal, 180, 218.
〈newinternal command〉, 218.
nice tangent points, 177.
NNE, 119, 228.
NNW, 26, 119, 228–229.
nodisplays, 277, 278.
nodot, 274, 328.
nonlinear equations, 84–85, 176–177,

292–294.
nonsquare pixels, 94, 145, 204.

*nonstopmode, 219, 226.
*normaldeviate, 68, 72, 183–185, 210.
*not, 65, 170, 210.
notransforms, 277, 278.

*nullpen, 148, 214, 272.
*nullpicture, 115, 192, 214, 272, 277.
*numeric, 55, 56, 65, 88.
〈numeric atom〉, 72, 210.
〈numeric expression〉, 72, 211.
numeric expressions, 72–73, 257.
〈numeric list〉, 318.
〈numeric operator〉, 72, 211.
〈numeric primary〉, 72, 211.
〈numeric secondary〉, 72, 178, 211.
〈numeric tertiary〉, 72, 211.
〈numeric token〉, 50, 236.
〈numeric token atom〉, 210.
〈numeric token primary〉, 72.
numeric tokens, 49–50, 166.

maximum value, 50.
rounded fractional values, 50.

numeric_pickup_, 272, 310.
*numspecial, 220, 274, 323–324, 327–329.
numtok, 274.

o, 23, 34, 93, 197, 200, 204, 302.
‘o’, 203.
‘O’, 32–37, 199, 303.
o_correction, 93–94, 268.

*oct, 188, 211, 281.
octal notation, 188.
octants, 119, 206–207, 228–230.
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*odd, 170, 210, 250.
*of, 73, 129, 165–167, 187, 211–214.
of-the-way function, see mediation.
off by x, 82.
Office of Naval Research, ix.
! OK, 219, 224.
\omitaccents, 340.
one-point draw, 22, 150, 200, 253.
online interaction, 42–45, 61, 188–189,

191–193, 219, 223–225.
openit, 277, 312.

*openwindow, 191–193, 220, 277, 312–313.
〈openwindow command〉, 191, 220.
operands, 59.
operators, 59, 230.
〈optional skip〉, 317.

*or, 65, 170, 210, 237, 288–289.
order of operations, 60–61, 137, 247, 289.
oriental characters, 3, 106, 324.
origin, 77–78, 243, 251, 263.
ornament, 144–145.
Orwell, George (= Blair, Eric Hugh), 85.

*outer, 180, 218–219, 221, 286–287, 307, 321.
outlines, 121.
output of opqrstuq, 39, 42, 315–325.
overdraw, 114, 243.
overflow labels, 37, 328.
overlays, 295.
overshoot, 23, 34, 93, 197, 200, 204.

‘P’, 207.
Paget, Francis Edward, 279.

*pair, 55, 56, 65.
〈pair expression〉, 73, 213.
pair expressions, 73, 171, 258.
〈pair part〉, 211.
〈pair primary〉, 73, 212.
〈pair secondary〉, 73, 212.
〈pair tertiary〉, 73, 213.
Palais, Richard Sheldon, ii.
parallel lines, 84.
parallelogram, 293–294.
〈parameter〉, 178.
parameter files, 301, 304.
〈parameter heading〉, 165.
〈parameter tokens〉, 165.
〈parameter type〉, 165.
parameters, v, 1–3.

to fonts, 95, 103–104, 305.
to macros, 159–167, 175–178.

parentheses, 51, 59, 60, 61, 71, 128,
210–215, 247.

Pascal language, 54.

*path, 55, 56, 171.
〈path expression〉, 129, 213.
path expressions, 129–134, 258.
〈path join〉, 129–130, 171, 213.
〈path primary〉, 129, 213.
〈path secondary〉, 129, 213.
〈path tertiary〉, 129, 213.
paths, 13–19, 123–139.

*pausing, 211, 231.
pc (pica), 92, 267, 268.
pels, see pixels.

*pen, 55, 56, 65, 170.
〈pen expression〉, 147, 148, 214.
pen expressions, 147–148, 258, 298.
〈pen primary〉, 148, 214.
〈pen secondary〉, 148, 214.
〈pen tertiary〉, 148, 214.
pen_bot, 151, 272.
pen_lft, 151, 272.
pen_rt, 151, 272.
pen_top, 151, 272.

*pencircle, 21–23, 28, 29, 147–149,
150–152, 198, 200, 214.

penlabels, 36, 274.
*penoffset, 150, 230, 212, 298.
penpos, 26–29, 37, 103, 162, 273, 310.
penrazor, 107, 112, 147, 150, 264, 297.
pens, 21–39, 147–152, 297–298.
penspeck, 264, 271.
pensquare, 147, 152, 264, 275.
penstroke, 27–29, 138, 273.
perpendicular, 29, 69, 84, 235.
pickup, 21–23, 145, 147, 272.

*picture, 55, 56, 114.
〈picture command〉, 118, 220.
〈picture expression〉, 115, 214.
picture expressions, 115, 258.

transformation of, 144, 297.
〈picture primary〉, 115, 214.
〈picture secondary〉, 115, 214.
〈picture tertiary〉, 115, 214.
pictures, 109–121.
pimples, 196–197, 204.
pix_ht, 332, 333.
pix_picture, 332, 333.
pix_wd, 332, 333.
pixels, 5, 109, 259, 324.
pixels_per_inch, 267, 268.
plain opqrstuq base, 34, 257–279.
plain.mf, 261–278.
〈plus or minus〉, 72, 211.

*point, 69–70, 73, 114, 133, 212, 267.
polygonal path, 24, 297.
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pool size, 226, 286.
pos, 310.

*postcontrol, 134, 212, 267.
posttension, 136.
precedence, 60–61, 71–73, 137, 289.

*precontrol, 134, 212, 267.
pretension, 136.
pretty-printed opqrstuq programs, 262.

*primary, 165, 167.
〈primary〉, 71, 170, 209.

*primarydef, 166, 178.
prime numbers, 173.
primitives, 53, 209, 345.
private tokens, 173, 265, 270.
product, 59, 62–64, 69, 79–80, 82.

of vector by scalar, 9.
〈program〉, 155, 217.
program files, 304, 306.
〈progression〉, 171.
proof mode, 92, 93, 104, 270, 327.

*proofing, 94, 187, 211, 220, 270, 274,
323–324, 327.

proofoffset, 275, 329.
proofrule, 274, 323, 328–329.
proofrulethickness, 275, 329.
proofsheets, 37, 261, 327–343.
〈protection command〉, 218.
pseudo-driver files, 311–313.
pt (printer’s point), 21–23, 33, 91–92,

267, 268.
\punct, 339.
punctuation marks, 306.
Pythagorean addition, 66, 67, 72, 211.
〈Pythagorean plus or minus〉, 72, 211.
Pythagorean subtraction, 66, 72, 211, 238.

‘Q’, 207.
quartercircle, 123, 263.
Quick, Jonathan Horatio, 54, 137.

*quote, 166, 172, 270, 286, 312.

r, 308–309.
‘R’, 207.
\raggedright, 338.
Ramshaw, Lyle Harold, 320.
random numbers, 183–185.

*randomseed, 185, 218.
〈randomseed command〉, 218.
range, 107, 138, 200, 274.
raster, 5, 91, 109, 195.

*readstring, 61, 187–188, 214.
recipes, 2.
recursion, 227.
redundant equations, 82.

reference point, 77, 101.
reflectedabout, 138, 141, 142, 160, 266.
reinitializing a variable, 88, 157.
〈relation〉, 170, 210.
relations, 64–65, 170–171.
relax, 31, 262, 307.
remainder, 66.
rep, 332, 335.
replacement text, 159, 166, 219.
resolution, 6, 38–39, 91–99, 116.
〈return〉 key, 31.

*reverse, 129, 132, 213.
reverse video, 115, 118.
Reynolds, Lloyd Jay, 153.
right, 26, 68, 263.
〈right-hand side〉, 88, 171.

*rotated, 21–22, 25, 27, 44, 68, 73, 107,
114, 117, 141, 212, 238.

rotatedabout, 266.
rotatedaround, 138, 141, 142, 144,

159–160, 266.
round, 66, 196, 202, 264, 273.
rounding, 34–35, 50, 195–207, 308.
rt, 23, 77, 80, 103, 147, 151, 273.
rtest.mf, 311.
rulepen, 274, 275.
rules on proofsheets, 328–329.
runaway, 287.
Running, Theodore Rudolph, 47.
Ruskin, John, 139.

‘S’, 40, 114.
safefill, 121.
\sample, 341.
sans-serif, 105, 305, 308.

*save, 155–156, 160, 173, 178, 218, 236,
244, 296, 299.

〈save command〉, 155, 218.
savepen, 96, 147, 272, 310.
〈scalar multiplication operator〉, 72, 211.

*scaled, 21–23, 68, 73, 141, 212, 244, 291.
*scantokens, 61, 179, 180, 189, 251, 269,

270, 286–288, 313.
scatter plots, 183.
〈screen coordinates〉, 191, 220.
〈screen place〉, 191, 220.
screen_cols, 193, 277, 278.
screen_rows, 277, 278.
screenchars, 191, 277.
screenrule, 274, 278.
screenstrokes, 191, 277.

*scrollmode, 61, 219, 313.
*secondary, 165, 167.
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〈secondary〉, 71, 209.
*secondarydef, 166, 178.
selective complement, 120.
semantics, 50.
semicolons, 155, 169, 171, 172, 187, 217,

223–224, 263, 312.
serif_fit, 308.
serifs, 152, 162–165, 308.
Serlio, Sebastiano, 19.
setu_, 266, 291.
Shakespeare, William, 173, 255, 343.
sharped dimensions, 32–35, 91–99,

102–103, 268, 315.
shiftdef, 311.

*shifted, 68, 73, 117, 141, 213.
shipit, 31, 276, 277, 295.

*shipout, 106, 210, 220, 277, 295, 316,
324, 329.

〈shipout command〉, 220.
*show, 142, 219, 227, 230, 250, 296.
〈show command〉, 219.

*showdependencies, 81, 83, 219, 262.
showit, 31, 191, 276, 277, 295.

*showstats, 219.
*showstopping, 211, 227, 230, 262.
*showtoken, 180, 219, 221.
*showvariable, 175, 177, 180, 219.
shrink_fit, 308–310.
shrinkability, 319.
shuffled binary numbers, 137.
sidebearings, 10, 34–35, 307–308.
SIMULA67 language, 175.

*sind, 67, 72, 211.
*skipto, 316, 317.
skyline, 251.
slant, 105, 206, 301–303, 310, 319.
slant fonts, 329, 335–336.

*slanted, 68, 73, 105, 141, 213.
slantfont, 275, 329.
slantfontarea, 329.
slantfontat, 329.
smode, 269.
smoke mode, 38, 75, 93, 270, 327.

*smoothing, 55, 195, 205–206, 212, 262.
softjoin, 262, 266.
solve, 176–177, 267, 292–294.
(some charht values...), 316.
Southall, Richard Francis, 176.
spaces, 43, 50, 236.
sparks, 53–55, 156, 175, 215, 219, 289.

*special, 220, 240–241, 274, 323–324,
327–329.

〈special command〉, 220.

special-purpose macros, 160, 248.
*sqrt, 59, 64, 72, 211.
square roots, 66, see also sqrt.
SSE, 206–207, 228–229.
SSW, 119, 228–229.
stack positions, 227.
Stanford, Amasa Leland, 340.
Stanford, Jane Elizabeth Lathrop, 340.
Stanford University, 125, 340.
star, 114.
\startfont, 337, 338, 342.
starting a job, 39, 95, 259, 277.
starting character, 40, 338–339.
〈statement〉, 155, 171, 217.
〈statement list〉, 155, 217.
statements, 155, 217–221.

summary, 260–261.
stems, 201–203.

*step, 18, 171.
〈step size〉, 171.
stomach, 169, 217, 285.
stop, 262, 311–312.
stopping opqrstuq, see end.

*str, 187–188, 214, 250, 251.
strange paths, 110–111, 119, 121, 136,

152, 228–229.
Stravinskĭı, Igor’ Fëdorovich, 193.
stretchability, 319.
Strindberg, Johan August, 185.

*string, 55, 56, 69.
〈string expression〉, 73, 187, 214.
string expressions, 187–189, 258, 286.
〈string primary〉, 187, 214.
〈string secondary〉, 187, 214.
〈string tertiary〉, 187, 214.
string tokens, 49–51.
stroke, 306, 310.

*subpath, 70, 71, 114, 129, 133, 134,
188, 213, 298.

subroutines, see macros.
〈subscript〉, 54.
subscripts, 54–57.

*substring, 69, 187, 188, 214, 320.
subtraction, of pictures, 115, 244.

of vectors, 9.
Suetonius Tranquillus, Gaius, 181.

*suffix, 161, 165, 176.
〈suffix〉, 54, 161, 176, 188.
〈suffix list〉, 171.
(SUFFIXn), 44, 251.
sum, of pictures, 115, 117, 245.

of transforms, 178.
of vectors, 9.
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superellipse, 126, 138, 267.
superellipses, 126, 161.
superness, 126.
Sutherland, Ivan Edward, 121.
Swift, Jonathan, 99, 121.
〈symbolic token list〉, 155, 218.
symbolic tokens, 49–51.
symmetric difference, 120.
syntax rules, 49–50.
System Development Foundation, ix.

‘T’, 22–23, 97, 151, 199–200, 302–303.
tables of opqrstuq trivia:

character classes, 51.
character codes, 281–282.
expandable tokens, 179–180.
fontdimen parameters, 319.
internal quantities, 211–212.
language features, 257–261.
proof label options, 328.
types, 55.
units of measure, 92.

tags, 53–55, 156, 175, 218–219.
takepower, 265.
taller pens, 297–298.
tapered stroke, 28.
tensepath, 128, 264, 298.

*tension, 15–16, 114, 129–132, 136, 296.
〈tension〉, 129, 213.
〈tension amount〉, 129, 213.

*tertiary, 165, 167.
〈tertiary〉, 71, 137, 209.

*tertiarydef, 166, 178, 266.
test.mf, 311–312.
testfont.tex, 40, 336–342.
TEX, 1, 34, 40, 91, 96, 98, 101–102,

315, 336–343, 361.
*text, 161, 165–167.
\text, 340.
(TEXTn), 45, 249, 251.
text arguments, 219, 288–290, 299.
.tfm, 39, 315–317, 333, 335.
! This can’t happen, 226.
Thomson, James, 189.
Thoreau, Henry David, 221.
thru, 107, 138, 200, 274.
tilde, 152.

*time, 212, 218, 323.
time in paths, 119, 133–137.
〈times or over〉, 72, 211.
Tinguely, Jean, 3.
〈title〉, 187, 217–218, 323.
titlefont, 275, 329.

titlefontarea, 329.
titlefontat, 329.

*to, 191, 220, 252, 277, 312.
<to be read again>, 223.
Tobin, Georgia Kay Mase, ii, 240.
tokens, 42–43, 49–51, 210.
tolerance, 176, 251, 293, 267.
top, 23, 77, 80, 103, 147, 151, 204, 273.
Tory, Geoffroy, 19.
totalnull, 295.

*totalweight, 115, 211, 292.
tracingall, 230, 263, 288.

*tracingcapsules, 211, 219, 239.
*tracingchoices, 211, 229.
*tracingcommands, 211, 230.
*tracingedges, 211, 230, 295–296.
*tracingequations, 80–83, 211, 229.
*tracingmacros, 160, 211, 229.
tracingnone, 230, 263.

*tracingonline, 61, 80, 211, 219, 230.
*tracingoutput, 211, 229–230, 296.
*tracingpens, 211, 229, 230.
*tracingrestores, 156, 211, 229.
*tracingspecs, 206–207, 211, 229.
*tracingstats, 211, 227, 230.
*tracingtitles, 55, 94, 187, 211, 229.
Trajanus, 153.
trajectories, see paths.
transcript file, 42, 46, 62, 230, 295–297.

*transform, 55, 56, 57, 141–143, 160, 266.
〈transform expression〉, 215.
transform expressions, 141–143, 170,

178, 258.
〈transform part〉, 211.
〈transform primary〉, 215.
〈transform secondary〉, 215.
〈transform tertiary〉, 215.
transformations, 44, 141–145.

*transformed, 73, 213, 141–145.
〈transformer〉, 73, 213.
transition lines, 230.
transum, 178.
trial path, 235.
triangle, 24–25, 203.
trigonometric functions, 67, 69, 131, 177.

*true, 55, 64, 170, 210.
truth, viii, 217, 221.
TUGboat, ix, 361.
turning numbers, 110, 111, 112, 119,

136, 147.
*turningcheck, 112, 119, 212, 229,

244, 262, 296.
*turningnumber, 111, 211, 257, 264.
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Twain, Mark (= Clemens, Samuel
Langhorne), 145.

〈type〉, 56, 171.
type declarations, 56.
types, 55.
typewriter type, 55, 105.
typographic errors, 45, 224.

u, 103–104, 305–308.
! Undefined coordinate, 224.
undelimited arguments, 167.
〈undelimited parameters〉, 165.
undelimited suffix parameters, 167,

176, 265, 270.
underline characters, 49, 51, 173, 265, 270.
undraw, 113, 118, 120, 242, 271.
undrawdot, 113, 271.
unequal to, 65.
unfill, 25, 27, 109–110, 118, 126, 271.
unfilldraw, 113, 118, 271.

*uniformdeviate, 68, 72, 183, 184, 211.
union, 120.
Union Jack, 7.
unitpixel, 263, 333.
units of measure, 33, 91–99, 267–268.

table, 92.
unitsquare, 116, 128, 132, 136, 263.
unitvector, 238, 264.

*unknown, 79–82, 143, 170, 210.
unknown quantities, nonnumeric, 84–85.

numeric, 79–83.
*until, 18, 171.
up, 32, 129, 263.
\uppers, 339.
upto, 39, 172, 262.
utility files, 311–313.

〈vacuous expression〉, 215.
vacuous expressions, 209, 215, 250,

262, 289, 292.
〈vacuous primary〉, 215.
〈vacuous secondary〉, 215.
〈vacuous tertiary〉, 215.
valentine, 134.
values, disappearance of, 56, 88, 156–157.

*vardef, 166, 175–178, 289.
〈vardef heading〉, 178.
〈variable〉, 54, 55, 210.
variables, 53–57, 59.

reinitializing, 88, 157.
vector subtraction principle, 9.

vectors, 9–10, 77.
velocity zero, 136, 298.
Venezky, Richard Lawrence, 193.

*vppp, 212, 267, 324.
vround, 204, 264, 268.

w, 22–25, 35–36, 76–78, 102–103, 106,
275–276, 308–310.

‘w’, 202.
*warningcheck, 212, 269, 270.
Warren, Mercy Otis, 359.
Webster, Noah, 167.
whatever, 83–84, 138, 157, 233, 239,

264, 290.
width, 101.
Wilde, Oscar Fingal O’Flahertie Wills, 321.
Wilkins, John, ii, 283.
Willis, Ellen Jane, 157.
〈window〉, 191, 220.
〈window spec〉, 191, 220.
〈with clause〉, 118, 120.

*withpen, 118, 220, 242.
*withweight, 118, 220, 242, 297.
WNW, 119, 228–229.
WSW, 119, 228–229.

x coordinates, 5–7.
x-height, 319.
Xerox Corporation, 320.
xgap, 95–96, 199.

*xoffset, 212, 220, 309, 315, 324.
xor, 120.

*xpart, 68, 72, 138, 142, 211.
*xscaled, 21–23, 68, 73, 141, 213, 244, 291.
*xxpart, 72, 142, 160, 211.
xy_swap, 297.

*xypart, 142, 160, 211.

y coordinates, 5–7.
*year, 212, 323.
ygap, 96, 199.

*yoffset, 212, 220, 315, 324.
*ypart, 68, 72, 142, 211, 238.
*yscaled, 21–23, 68, 73, 141, 213, 244, 291.
*yxpart, 142, 160, 211.
*yypart, 142, 160, 211.

z convention, 7, 68, 69, 251, 277.
Zapf, Hermann, iii, 221.
zero, 236.

*zscaled, 68–69, 73, 141, 213.
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WARREN
Adams
CAMPBELL

The more we search,
the More are we Deceived.

— MERCY OTIS WARREN, To Mr. Adams (1773)

A heavy weight is now to be removed from my conscience.
So essential did I consider an Index to be to every book,

that I proposed to bring a Bill into Parliament
to deprive an author who publishes a book without an Index

of the privilege of copyright; and, moreover,
to subject him, for his offence, to a pecuniary penalty.

Yet, from difficulties started by my printers,
my own books have hitherto been without an Index.

— LORD CAMPBELL, Lives of the Chief Justices of England, vol. 3 (1857)
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TeX
KNUTH

This appendix is about grouping of another kind: TEX and METAFONT users
from around the world have banded together to form the TEX Users Group
(TUG), in order to exchange information about common problems and solutions.

A newsletter/journal called TUGboat has been published since 1980,
featuring articles about all aspects of TEX and METAFONT. TUG has a network
of “site coordinators” who serve as focal points of communication for people
with the same computer configurations. Occasional short courses are given, to
provide concentrated training in special topics; videotapes of these courses are
available for rental. Meetings of the entire TUG membership are held at least
once a year. You can buy METAFONT T-shirts at these meetings.

Information about membership in TUG and subscription to TUGboat
is available from

TEX Users Group
P.O. Box 869
Santa Barbara, CA 93102-0869 USA.

TUG is established to serve members having a common interest
in TEX, a system for typesetting technical text,

and in \]^_efg^, a system for font design.

— TEX USERS GROUP, Bylaws, Article II (1983)

Don’t delay, write today! That number again is
TEX Users Group

P.O. Box 869
Santa Barbara, CA 93102-0869 USA.

— DONALD E. KNUTH, The TEXbook (1993)


