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Why is Floating-Point Computation so 
Hard to Debug  when it  Goes Wrong ?

 

Prof. W. Kahan
Math.  and  Computer Science Depts.

Univ. of Calif. @ Berkeley

 

Read this side first.

 

It presents a counter-intuitive example of floating-point computation gone utterly wrong.

“

 

 

 

Numerical Instability

 

 

 

”   is too often misattributed to one or more of these three  “

 

 

 

causes

 

 

 

”

 

 

 

:

•  Catastrophic Cancellation
•  Gargantuan Intermediate Results
•  Accumulations of Vast Hordes of Rounding Errors

More often,  however,  computations that go wrong do so for reasons similar to what causes the 
following example to go wrong.  This example avoids the foregoing  “

 

 

 

causes

 

 

 

”  because it has  ...

•  No adds nor subtracts,  so no cancellation.
•  No divisions nor transcendental functions,  so no gargantuan intermediate results.
•  Only  257  algebraic operations,  so no hordes of rounding errors.

None the less,  this example manages to compute the simple function    

 

h

 

(

 

x

 

) :=  |

 

 

 

x

 

 

 

|    wrongly on  

 

every

 

  computer whose floating-point  (

 

 

 

or other approximate

 

 

 

)  arithmetic carries less precision 
than about  39  sig. dec.   Here it is:

 

Real Function  

 

h

 

(

 

x

 

) :
Real     

 

x

 

,  

 

y

 

,  

 

w

 

 ;
Integer  

 

k

 

 ;

 

y

 

 :=  | 

 

x

 

 | ;
For  

 

k

 

 = 1 to 128  do   

 

y

 

 :=  

 

√

 

y

 

  ;

 

w

 

 :=  

 

y

 

 ;

For  

 

k

 

 = 1 to 128  do   

 

w

 

 :=  

 

w

 

2

 

 ;
Return   

 

h

 

 :=  

 

w

 

  .

 

In the absence of rounding error,  this program’s final values of  

 

y

 

  and  

 

w

 

  would be respectively

       and         .

 

But  something  goes  very  wrong.

 

Run the program above on your own  computer  or  calculator and plot  

 

h

 

(

 

x

 

)  over   0 

 

≤

 

 

 

x

 

 

 

≤

 

 2 ,   say,   
to see it go utterly wrong.  Then think about it before you read the explanation overleaf.

y x
1 2128⁄

= w y
2128

x= =
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Read the Other Side First

 

 

 

!

 

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
If your computer fails to get   

 

h

 

(0) =  0  and  

 

h

 

(

 

±

 

1) = 1

 

 

 

,  something is seriously wrong with its 
arithmetic or with your program.  Otherwise,  diverse computers with different floating-point 
hardware get diverse results for  

 

h

 

(

 

x

 

)

 

 

 

,  and none get anywhere near   

 

h

 

(

 

x

 

) = |

 

 

 

x

 

 

 

|   for all  

 

x

 

 

 

.

Computers and calculators whose square root and multiplication are correctly rounded get

 

h

 

(

 

x

 

) = 0   for all   |

 

 

 

x

 

 

 

| < 1

 

 

 

,    and     

 

h

 

(

 

x

 

) = 1   for all   | x | ≥ 1 .

Computers,  like  Intel-based  PCs,  that can round  √y  first to extra precision before rounding it 
again to the precision of  y  when it is assigned back to  y ,   can get   h(x) = 1  for all nonzero  x .

Some calculators get an  ERROR  indication because  h(x)  Overflows  for all  | x | > 1 .

What goes wrong?

Let’s try a crude  Error-Analysis  first:  The final value computed for  y  is obscured by roundoff :

in which   | ε |   is some tiny quantity usually smaller than   5·10-10   on a ten-digit calculator,  or

2-53 ≈ 1.11·10-16  on a typical workstation computing in  Double-Precision.  Consequently,  even 
if  w’s  final value could be computed from  y  exactly,  its value would be not  | x |   but instead

  .

If   ε   can run between   ±2-53  then   exp(ε·2128)   can run between   exp(±275) ,  which spans a 
range far beyond the  Over/Underflow  thresholds of floating-point hardware.  Consequently our 
first try at a crude error-analysis leaves the computed value of   h(x) = w   completely uncertain.

Let’s try a more realistic analysis:  Assume   x ≠ 0 .   Then   | x |  lies between the  Over/Underflow 
thresholds so its logarithm is bounded:   | log(| x |) | < 12000   on all commercially significant 

hardware.  Then,  because   log(y)  ≈  log(| x |)/2128 ≈  log(| x |)/3.4·1038  is so tiny,  the final 
computed value of  y  must differ from  1  by at most one unit in its last digit.  When   y = 1  
exactly then finally   h(x) = w = 1   too.   When   y = 1.000···001  then the machine’s square root is 
not rounded correctly  ( √1.000···001   should have rounded to  1 ),  and then   h(x)  Overflows.  
When  y  is the floating-point number next less than  1 ,  namely  0.999···999  in decimal 
arithmetic,  then  h(x)  Underflows to  0.0 ;   this should happen for all nonzero    | x | < 1   if square 
root is correctly rounded  ( once )  because then  √0.999···999  rounds back to   0.999···999 .

Thus,  although the computed values of  h(x)  may be completely wrong,  they are completely 
explainable.  Roundoff is amplified extravagantly because the problem’s given data lie too near a  

singularity,  namely that possessed by  exp(2N)  at  N = ∞ ,  which is approached too closely when   
N = 128 .  In general,  a computation that goes astray gets pushed there by a nearby singularity.

The questions raised here are discussed further in the posting at  <www.cs.berkeley.edu/~wkahan/Mindless.pdf>.
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