
1975 ACM Student Award
Paper: Second Place

Multidimensional
Binary Search Trees
Used for Associative
Searching
Jon Louis Bentley
Stanford University

This paper develops the multidimensional binary
search tree (or k-d tree, where k is the dimensionality
of the search space) as a data structure for storage of
information to be retrieved by associative searches. The
k-d tree is defined and examples are given. It is shown to
be quite efficient in its storage requirements. A signifi-
cant advantage of this structure is that a single data
structure can handle many types of queries very effici-
ently. Various utility algorithms are developed; their
proven average running times in an n record file are : in-
sertion, O(log n); deletion of the root, 0 (n (k--1)/k) ; dele-
tion of a random node, O(log n); and optimization (guar-
antees logarithmic performance of searches), 0 (n log n).
Search algorithms are given for partial match queries
with t keys specified [proven maximum running time
of O (n (k-t)/k)] and for nearest neighbor queries [em-
pirically observed average running time of O(log n).]
These performances far surpass the best currently known
algorithms for these tasks. An algorithm is presented to
handle any general intersection query. The main focus
of this paper is theoretical. It is felt, however, that k-d
trees could be quite useful in many applications, and ex-
amples of potential uses are given.

Key Words and Phrases: associative retrieval, binary
search trees, key, attribute, information retrieval
system, nearest neighbor queries, partial match queries,
intersection queries, binary tree insertion

CR Categories: 3.63, 3.70, 3.74, 4.49

Copyright (~) 1975, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This paper was awarded Second Place in ACM's 1975 George
E. Forsythe Student Paper Competition.

Author's present address: Department of Computer Science,
University of North Carolina at Chapel Hill, Chapel Hill, NC 27514.

509

1. Introduction

The problem of associative retrieval (often referred
to as retrieval by secondary key) centers around a file F
which is a collection of records. Each record R of F is
an ordered k-tuple (Vo, v l , . . . , Vk_l) of values which
are the keys, or attributes, of the record. A retrieval of
records f rom F is initiated at the request of the user,
which could be either mechanical or human. A retrieval
request is called a query of the file, and specifies certain
conditions to be satisfied by the keys of the records it re-
quests to be retrieved f rom F. An information retrieval
system must be capable of initiating an appropriate
search upon the arrival of a query to that system. I f a
query is allowed to specify conditions dealing with a
multiplicity of the keys, the searches performed by the
system are considered associative. I f the user of the sys-
tem is restricted to specifying conditions for only one
of the keys, the resulting search is not considered to be
associative (in that case only one of the keys is consid-
ered to be "the key" and the remaining attributes are
referred to as "data") .

Numerous methods exist for building an informa-
tion retrieval system capable of handling such associa-
tive queries. Among these are inverted files, methods of
compounding attributes, superimposed coding systems,
and combinatorial hashing. Knuth [5] discusses these
ideas in detail. McCreight [6] has proposed that the
keys be "shuffled" together bitwise; then unidimensional
retrieval algorithms could be used to answer certain
queries. Rivest investigated in his thesis [7] the use of
binary search tries (see [5] for a detailed discussion of
tries) to store records when they are composed of binary
keys. Finkel and Bentley [3] discuss a data structure,
quad trees, that stores the records of the file in a tree
whose nodes have out-degree of 2k; theirs was the first
general approach to use a tree structure. None of the
above approaches seem to provide a "perfect" environ-
ment for associative retrieval. Each of them falls short
in some very important way, either in having only a
small class of queries easily performed, large running
time, large space requirements, horrible worst cases, or
some other adverse properties.

This paper presents a new type of data structure for
associative searching, called the multidimensional bi-
nary search tree or k-d tree, which is defined in Section
2. In Section 3 an efficient insertion algorithm is given
and analyzed. Many types of associative searches are
discussed in Section 4, and the k-d tree is shown to
perform quite well in all of them. Its worst case per-
formance in partial match searches is analyzed and is
shown to equal the best previously attained average
performance. A search algorithm is presented that can
answer any intersection query. An algorithm given
seems to solve the nearest neighbor problem in logarith-
mic time; its running time is much less than any other
known method. In Section 5 deletion is shown to be
possible in k-d trees, and it is analyzed. Section 6 dis-

Communications September 1975
of Volume 18
the ACM Number 9

cusses an optimization algorithm that efficiently trans-
forms any collection of records into a k-d tree with
optimal properties. With this background, a discussion
of potential applications of k-d trees is presented in
Section 7. Areas for further work are discussed in
Section 8, and conclusions are drawn in Section 9.

2. Definitions and Notat ions

I f a file is represented as a k-d tree, then each record
in the file is stored as a node in the tree. In addition to
the k keys which comprise the record, each node con-
tains two pointers, which are either null or point to
another node in the k-d tree. (Note that each pointer
can be considered as specifying a subtree.) Associated
with each node, though not necessarily stored as a field,
is a discriminator, which is an integer between 0 and
k -- 1, inclusive. Let us define a notation for these
items: the k keys of node P will be called K o (P) , . . . ,
Kk-I(P), the pointers will be LOSON(P) and
HISON(P), and the discriminator will be DISC(P). The
defining order imposed by a k-d tree is this: For any
node P in a k-d tree, le t j be DISC(P), then for any node
Q in LOSON(P), it is true that Kj(Q) < K / P) ; like-
wise, for any node R in HISON(P), it is true that
Kt(R) > Kt(P). (This statement does not take into
account the possibility of equality of keys, which will be
discussed shortly.)

All nodes on any given level of the tree have the
same discriminator. The root node has discriminator 0,
its two sons have discriminator 1, and so on to the kth
level on which the discriminator is k - 1 ; the (k + 1)-th
level has discriminator 0, and the cycle repeatsl In
general, NEXTDISC is a function defined as

NEXTDISC(i) = (i + 1) mod k,

and NEXTDISC(DISC(P)) = DISC(LOSON(P)), and
likewise for HISON(P) (if they are non-null). Figure 1
gives an example of records in 2-space stored as nodes
in a 2-d tree.

The problem of equality of keys mentioned above
arises in the definition of a function telling which son of
P ' s to visit next while searching for node Q. This func-
tion is written SUCCESSOR(P, Q) and returns either
LOSON or HISON. Let j be DISC(P); if K / P) #
Kj(Q), then it is clear by the defining property of k-d
trees which son SUCCESSOR should return. If the two
Kfls are equal, the decision must be based on the remain-
ing keys. The choice of decision function is arbitrary,
but for most applications the following method works
nicely: Define a superkey of P by

S / P) = Kt(P)Kt+x(P) . . . Kk-x(P)Ko(P) . . . Kt- x(P),

the cyclical concatenation of all keys starting with K t .
I f S / Q) < St(P), SUCCESSOR returns LOSON; if
St(Q) > S / P) , it returns HISON. I f S / Q) = S / P)
then all k keys are equal, and SUCCESSOR returns a
special value to indicate that.

Fig. 1. Records in 2-space stored as nodes in a 2-d tree.
Records in 2-space stored as nodes in a 2-d tree (boxes represent
range of subtree) :

(0,100)

E(40,85)

B(IO,70)

C(lO=,60)

D(25,20)
K 1

(0,0)
%-,.

(i00,i00)
r

p F(70,85)

A(50,50)

C(80,85)

(100,0)

Planar graph representation of the same 2-d tree (LOSON's are
expressed by left branches, HISON's by right branches, and null
sons by boxes):

Dlscriminator
0

Let us define node Q to be j-greater than node P if
and only if SUCCESSOR(P, Q) is HISON, and to be
j-less than node R if and only if SUCCESSOR(R, Q) is
LOSON. I t is obvious how these definitions can be used
to define the j -max imum and j -min imum elements of a
collection of nodes. The j-distance between nodes
P and Q is [K / P) -- Kj(Q) l, and the j-nearest node of
a set S to node P is the node Q in S with minimum
j-distance between P and Q. I f a multiplicity of the
nodes have minimum j-distance f rom P, then the j-
nearest node is defined as the j -min imum element in the
subset of closest nodes which are j-greater than P (or
similarly, the j -max imum element of the nodes which
are j-less than P).

We will typically use n to be the number of records
in the file which is stored as a k-d tree, and therefore the
number of nodes in the tree. We have already used k as
the dimensionality of the records.

The keys of all nodes in the subtree of any node, say
P, in a k-d tree are known by P 's position in the tree to
be bounded by certain values. For instance, if P is in the
HISON subtree of Q, and DISC(Q) is j , then all nodes
in P are j-greater than Q; so for any R in HISON(P),
K / R) >__ K / P) . To employ this knowledge in our
algorithms, we will define a bounds array to hold the
information. I f B is a bounds array associated v~ith node
P, then B has 2k entries, B (0) , . . . , B(2k -- 1). I f Q is a

510 Communications September 1975
of Volume 18
the ACM Number 9

descendant of P, then it is true for all integers j E
[0, k - 1] that B(2j) < Ks(Q) <_ B (2 j + 1).Bounds array
B is considered to be initialized if for all integers
j E [0, k - l] , B(2j) = -- ~ a n d B (2 j + l) = ~ . F o r
example, the bounds array representing node C in
Figure 1 is (50, 100, 0, 100). This indicates that all k0
values in the subtree are bounded by 50 and 100, and
all kl values are bounded by 0 and 100.

It was noted that it is not necessary to store the
discriminator as a field in each node, and one can see
that it is easy to keep track of what kind of discriminator
one is visiting as one descends in a k-d tree. With the
idea in mind that it is superfluous to do so, we will store
the discriminator in each node to make the algorithms
we write more easily understandable.

3. Insertion

In this section we will first describe an algorithm
that inserts a node into a k-d tree, We will then analyze
k-d trees and show that if the algorithm is used to insert
random nodes into an initially empty tree the resulting
tree will have the nice properties of a randomly built
one-dimensional binary search tree.

3.1 An Insertion Algorithm

The algorithm used to insert a node into a k-d tree
is also used to search for a specific record in a tree. It is
passed by a node, say P. If P is in the tree, the algorithm
returns a pointer to P, and if P is not in the tree it
returns A and inserts P into the tree. Algorithm I N S E R T
describes one way of performing such an operation.

Algorithm INSERT (k-d tree search and insertion)

This algorithm is passed a node P, which is not in the tree
(its HISON, LOSON, and DISC fields are not set). If there is a
node in the tree with equal keys, the address of that node is returned;
otherwise the node is inserted into the tree and A is returned.
I1. [Check for null tree.] If ROOT = A then set ROOT *-- P,

HISON(P) .-- A, LOSON(P) ~-- A, DISC(P) ~-- O, and return
A; otherwise, set Q ~ ROOT (Q will move down the tree).

I2. [Compare.] IfKi(P) = Ki(Q) for 0 < i < k - 1 (i.e. the nodes
are equal) then return Q. Otherwise, set SON ~-- SUCCESSOR
(Q,P) (SON will be HISON or LOSON). If SON(Q) = 5, then
go to I4.

I3. [Move down.] Set Q *-- SON(Q) and go to I2.
I4. [Insert new node in tree.] Set SON(Q) ~-- P, H1SON(P) ~ A,

LOSON(P) ~- A, DISC(P) ~-- NEXTDISC(DISC(Q)), return
A.

3.2 Analysis of Randomly Built k-d Trees
Consider a given binary tree of n nodes; our goal in

this analysis of k-d trees is to show that the probability
of constructing that tree by inserting n random nodes
into an initially empty k-d tree is the same as the prob-
ability of attaining that tree by random insertion into a
one-dimensional binary search tree. Once we have
shown this to be true, the theorems which have been

511

proved about one-dimensional binary search trees will
be applicable to k-d trees.

We must first define what we mean by random nodes.
Since only the relative magnitudes of the keys and the
order in which the records arrive are relevant for pur-
poses of insertion, we can assume that the records to be
inserted will be defined by a k-tuple of permutations of
integers 1 , . . . , n. Then the first record to be inserted,
say P, would be defined by Ko(P), the first element in
the first permutation, and so on, to kk - l (P) , the first
element in the kth permutation. The nodes will be con-
sidered random if all of the (n!) k k-tuples of permuta-
tions are equally likely to occur.

Let us give each of the n nodes in the binary tree t a
unique identification number which is an integer be-
tween 1 and n. Define Si as the number of nodes in the
subtree of t whose root is node i. To simplify our dis-
cussion of null sons let us define the identification
number of a null node to be n d- 1 ; thus Sn+l = 0. We
will use Li as the number of nodes in the left subtree
(or L O S O N) of node i, and Hi as the number of nodes
intheright subtree (or H I SO N) ; note Si = Li + Ri + 1.

It is important to observe the following fact about
the ordering in a collection of random nodes that are to
be made into a k-d tree. The first node in the collection,
say P (which is the first to be inserted in the tree), will
become the root. This induces a partition of the remain-
ing nodes into two subcollections: those nodes that will
be in P's left (L O S O N) subtree, and those that will be
in the right (H I S O N) subtree. If Q falls in the right
subtree of P, and R falls in P's left subtree, then their
relevant ordering (that is, whether or not Q precedes R)
in the original collection is unimportant. The same tree
would be built if P was the first element in the collection,
and then came all the nodes that fell in P's right sub-
tree, followed by all the nodes that fell in P's left sub-
tree, as long as the orderings in the left and right sub-
collections were maintained. A second important fact
we will use is that when a collection of random nodes is
split into two subcollections by this process, the result-
ing subcollections are themselves random collections of
nodes. This is due to the original independence of keys
in a given record; the partitioning in no way disturbs
the independence.

After having made these two observations, it is easy
to compute the probability that tree t as described above
results when n random nodes are inserted into an ini-
tially empty k-d tree. Assume that the root is a j-decider
and that its identification number is i; then Si = n. The
probability that the first record will partition the collec-
tion into two subcollections having respective sizes Li
and Ri is the probability that the j th key of the first
element is the (Lid-1)-th in the set of all j th keys. Be-
cause of the random nature of the nodes (all of the
nodes are equally likely to be the first in the collection),
this probability is 1 / S i . Now we have reduced the
problem; we know that the probability of t occurring
is 1 /S i times the probability of both the subcollections

Communications September 1975
of Volume 18
the ACM Number 9

forming their respective subtrees. By the second observa-
tion above, these probabilities are independent of the
choice of the root of the tree and of one another. There-
fore we can split the nodes into the left and right sub-
collections (by the first observation) and apply this
analysis recursively to the left son and right son, doing
so as we visit each node in the tree once and only once.
It is clear that the probability of t resulting is

ek(t) = I I l /S , .
l < i < n

We know that the standard binary search tree is a
1-d tree. Since Pk(t) is independent of k, the probability
of attaining t by inserting random nodes in a k-d tree
must be the same as that of attaining t by inserting
random nodes in a standard binary search tree. Indeed,
the above formula for Pk(t) was given by Knuth [5] as
the probability of attaining t by random insertion in a
standard binary search tree. We can now apply two of
the results in [5] to k-d trees. Let C, be the number of
nodes visited to find a node in a k-d tree of size n. Then
we know that the mean of the distribution of C, is

Mean(C,) = 2(1 q- 1/n)H~ -- 3 ~ 1.386 log2 n

and the variance is

Var(C,) = 7n z - 4(n + 1)2H. (2~ -- 2(n + 1)H. + 13n.

Here we have used the functions

1/k
l < k < n

and

H , = H , C~.

Thus we know that typical insertions and record look-
ups in a k-d tree will examine approximately 1.386 log2n
nodes.

4. Searching

Searches are typically initiated in response to a query
expressed in relation to the set of all valid records. The
purpose of a search is to find in the data structure the
records specified by the query. It is therefore reasonable
to classify searches by the types of queries which invoke
them. We will follow in the spirit of Rivest [7] as we
make the pr imary distinction between intersection
queries and best-match queries in our investigation of
searching in k-d trees.

4.1 Intersection Queries
Intersection queries are so named because they

specify that the records to be retrieved are those that
intersect some subset of the set of valid records. This is
by far the most common type of query. The specifica-
tions of the sets in which are all records to be
retrieved can range f rom simply defined sets such as
{PIKe(P) = 7} to complexly defined sets like

{p I[(1 ~ KI(P) < 5) A (2 _< Kz(P) < 4) 1 V
(KT(P) = 8)}. We will examine search strategies for
three increasingly complex query types, each embodying
its predecessors as special eases. The region search, the
third type we will examine, is capable of searching for
all records specifiable by any intersection query.

4.1.1 Exact Match Queries
The simplest type of query is the exact match query

(called a "simple query" by Knuth [5], and a "point
search" by Finkel and Bentley [3]), which asks if a
specific record is in the data structure. The search
algorithm to determine this (Algorithm INSERT) and
its analysis are presented in Section 3. The only thing
that remains to be said regarding the topic of exact
match searching is this: I f the exact match query is the
only type of query to be posed, k-d trees should not be
used as the data structure to store the records. Though
to the user the keys appear to be independent, they
should be merged together into one superkey and a
more well known data structure for unidimensional
storage and retrieval should be employed.

4.1.2 Partial Match Queries
The next more complex type of intersection query is

one in which values are specified for a proper subset of
the keys. I f values are specified for t keys, t < k, then
the query is called a "part ial match query with t keys
specified." Assume that {s,} and {v,} are sets such that
the keys specified are K,x, K , 2 , . . . , K , t , and the
values they must have to be a valid response to the
query are v, 1 , v~ 2 , . . . , vst • The set of points for which
we are searching is then {PIKs~(P) = v,~ for 1 <
i < t } .

Rivest has studied this problem quite thoroughly for
the case of binarily valued keys. He proposed that binary
search tries be used to store the data. His "s tandard
compact" tries are roughly identical to "b i t -key" k-d
trees. The reader interested in the binary case is referred
to Rivest 's thesis [7]; it contains a description of the
behavior of tries (and, equivalently, k-d trees) for this
application. The results presented here parallel those in
that work.

A recursive search algorithm to find all nodes satis-
fying a partial match query for continuously valued
keys is easy to define (it is shown in Section 4.1.3 that
the REGIONSEARCH algorithm presented here is
capable of efficiently performing a partial match search,
so we will merely sketch an algorithm here.) On each
level of recursion the algorithm is passed a node, say P.
I f P satisfies the query it is reported. Let us suppose that
P is a J-discriminator; there are now two cases we must
handle. I f J = s, for some i, then we need only continue
our search down one subtree of P: if v~ < Ks(P) we go
down LOSON(P), if v,~ > Ks(P) we go down
HISON(P), and if the values are equal we go down one
of the subtrees depending on the definition of successor.
I f J ~ {s,} then we must continue the search down both

512 Communications September 1975
of Volume 18
the ACM Number 9

of P's subtrees. (Implicit in the algorithm is the fact that
the search continues down a subtree only if that subtree
is non-null, i.e. P 's SONfield is not A.)

Let us now analyze the number of nodes visited by
the algorithm in doing a partial match search with t
keys specified in an "ideal" k-d tree of n nodes; a tree
in which n = 2 kh -- 1 and all leaves appear on level kh.
(It is shown in Section 6 that such a tree is attainable
for any collection of 2 kh - 1 nodes by using algorithm
OPTIMIZE.) The search algorithm starts by visiting
one node, the root, and the number of nodes visited on
the next level grows by a factor of 1 (if J = s i , we go
down only one subtree of each node, hence visiting the
same number on the next level) or two (if J ~ {si}, we
have to visit both subtrees of the node, thereby visiting
twice as many nodes on the next level). Since the growth
rate at any level is a function of the discriminator of that
level, and the discriminators are cyclic with cycle k, the
growth rate will be cyclic as well. The pessimal arrange-
ment of keys is to have these unspecified as the first
k - t keys in the cycle, postponing any pruning until
after a small geometric explosion. The maximum num-
ber of nodes visited during the whole search will there-
fore be the sum of the following series:

k - t elements t elements
] + 2 +'" + 2 k-t~ +~2 e-t-1 + . . . + 2 k-t-]

k elements
+ 2~-t + . . . + 22(~') -1 + 22(k-o -a + . . - + 2~(k-0-x + . . .

+ 2(h--:t)('Lo-t) -~- . . . + 2h(k--t) -:t

+ 2~'(k--t) -1 + . . . + 2h('~-t) -1.

lehels

We can now sum this series to calculate V(n, t), the
maximum number of nodes visited during a partial
match search with t keys specified in an 5deal tree of n
nodes. (For brevity, we will here define m = k - t.)

V(n, t) = ~] 2 "i [(~] 2 j) -}- 2m-it]
O < i < h - - I O~j<m--I

= Y~ 2m'[2 m -- 1 + 2m-~t]
o_<i<n-x

= [(t + 2) 2 m - l - 11 ~ 2 m'
o<_i<h-1

2 " h - 1
= [(t + 2)2 m-1 -- 11 - -

2 , - - 1

= [(t + 2)2 m-1 -- 11 (2,,~ _ 1).
2 " - - 1

Since weknow 2 " h = 2(m/k)kh = (2~h)mtk = (n + l) "tk,
we see

V(n, t) = [(t + 2) 2 " -1 - - 11 [(n + 1) '~/~ - - 11.
2" -- 1

The amount of work done in any partial match search
with t keys specified in an ideal tree of n nodes is there-
fore cn "Jk + d for some small constants c and d. This
has been conjectured by Rivest [7] to be a lower bound

for the average amount of work done in a partial match
search; by construction we have shown this to be an
upper bound not only for the average but for all partial
match queries.

All of our analysis has been for the case of the per-
fectly balanced tree; the one in which we might expect to
have the fastest searches. However, Rivest [7] has
shown that the perfectly balanced trees have the highest
average retrieval time. Therefore the results that we
have shown are an expected upper bound on the re-
trieval time required by the algorithm.

4 . 1 . 3 R e g i o n Q u e r i e s

The most general type of intersection query is one
in which any region at all may be specified as the set
with which the records to be retrieved must intersect,
hence its name "region query." This query is the same
as the "region search" query described by Finkel and
Bentley [3] and facilitates the range, best match with
restricted distance, and boolean queries described by
Knuth [5] and Rivest [7]. Any subset of the set of valid
records region can be specified in a region query, so it is
therefore the most general intersection query possible.
(An exact match query corresponds to the region being
a point, a partial match query with t keys specified
corresponds to the region being a k - t dimensional
hyperplane.)

The algorithm to accomplish a region search need
not specifically know the definition of the region in
which it is searching; rather it finds out all it needs to
know by calling two functions which describe the re-
gion. The first, IN_REGION, is passed a node in the
tree and returns true if and only if that node is contained
in the region. The function BOUNDS_INTER-
SECT_REGION is passed a bounds array and returns
true if and only if the region intersects the hyper-rec-
tangle described by the bounds array. Nor does the
algorithm know what to do once it finds a node in the
region; it calls procedure FOUND to report all nodes it
finds in the region. A recursive definition of the general
intersection query search algorithm is given below. It
would be invoked initially by the command REGION-
SEARCH(ROOT, B), where B is a bounds array ini-
tialized as described in Section 2. [See next page.]

Algorithm REGIONSEARCH uses the bounds
stored at each node of the tree to determine whether it is
possible that any descendants of the node might lie in
the region being searched. A subtree is visited by the
algorithm if and only if this possibility exists. Con-
sequently, the algorithm visits as few nodes as possible,
given the limited information stored at each node. In
this sense, REGIONSEARCH is an optimal algorithm
for region searches in k-d trees as we have described
them.

The versatility of algorithm REGIONSEARCH
makes its formal analysis extremely difficult. Its per-

(cont'd in col. 2, next page)

513 Communications September 1975
of Volume 18
the ACM Number 9

Algorithm REGIONSEARCH (Search a k-d tree for all points con-
tained in a specified region.)

This recursive algorithm is passed a node P and a bounds array B
that specifies the bounds for P's descendants. It assumes the exist-
ence of the three procedures IN_REGION, FOUND, and
BOUNDS_INTERSECT_REGION. It reports all nodes in the
subtree whose root is P which are in the regionby invoking the
FOUND procedure.

R1. [Is P in the region?] If IN_REGION(P) then call FOUND(P)
(if the node is in the region, then report that fact by calling
FOUND with parameter P).

R2. [Improve the bounds for the subtrees.] Allocate BL, Bu as
bounds arrays, and copy the array B into both. Set J,---DISC
(P) (J is the dimension of the bounds to be changed.) Set
BL(2J + 1) ~-- Kj(P), B,v(2J) ~-- Ks(P). (This step notes that
Kj(P) is a J-upper bound of the nodes in the LOSON subtree
and a J-lower bound of the nodes in the HISON subtree.)

R3. [Search LOSON subtree.] If LOSON(P) ~ A and
BOUNDS_INTERSECT_REGION(BL) then REGION-
SEARCH(LOSON(P), BL).

R4. [Search HISON subtree.] If HISON(P) ~ A and
BO UNDS_INTERSECT_REGION(B,v) then REGION-
SEARCH(HISON(P), Bh,).

As an example of I N _ R E G I O N and BOUNDS_IN-
T E R S E C T _ R E G I O N functions, the following pseudo-
Algol procedures are defined for a hyper-rectangular
region.

Pseudo-Algol IN_REGION and BO UNDS_INTERSECT~EGION
procedures for a rectilinearly oriented hyper-rectangular region de-
fined by a bounds array RECDEF.

boolean procedure IN_REGION (node P) :
begin
comment returns true iff P is in the hyper-rectangle defined by

RECDEF;
for 1 ~-- 0 step 1 until k -- 1 do

begin
if KI(P) < RECDEF(2.1) then

return false;
if Kx(P) > RECDEF(2.I+I) then

return false
end;

return true
end;

boolean procedure BOUNDS_INTERSECT_REGION (array B);
begin
comment returns true iff the hyper-rectangle defined by bounds

array B intersects the hyper-rectangle defined by RECDEF;
for I ~ 0 step 2 until 2- (k - 1) do

begin
ifB(l) > RECDEF(I+ 1) then

return false;
if B(I+I) < RECDEF(I) then

return false
end;

return true
end;

Similar procedures can be written for many other k-
dimensional geometric regions. The logical functions
AND, OR, and NOT can then be used to implement
searches in intersections, unions, and complements of
basic regions.

(cont'd f rom page 513)

formance in any given situation will certainly depend on
type and size of the region which it is searching. Limited
empirical tests show that the algori thm performs rea-
sonably well in searching hyper-rectangular regions.
Relevant empirical data appear in the discussion of
region searching in quad trees by Finkel and Bentley
[3]. The similarity between k-d trees and quad trees and
between the corresponding R E G I O N S E A R C H algo-
rithms make Table 3 in that paper quite useful in esti-
mat ing the amoun t of work the R E G I O N S E A R C H
algori thm does in searching hyper-rectangular regions.

4 .2 N e a r e s t N e i g h b o r Q u e r i e s

Given a distance function D, a collection of points
B (in k-dimensional space), and a point P (in tha t
space), it is often desired to find P ' s nearest neighbor in
B. The nearest neighbor is Q such that

(V R < B) { (R ~ Q) ~ [D(R, P) ~ D(Q, P)]}.

A similar query might ask for the m nearest neighbors
to P.

[Ed. Note . In the original versions of this paper, an
algori thm to answer such a query was presented. Em-
pirical tests showed that its running time is logari thmic
in n. The algori thm was quite difficult to unders tand
and efficient only for the Minkowski ~ metric (the
max imum coordinate metric). A recent paper by Fried-
man, Bentley, and Finkel [1] gives a more easily under-
s tood version of the algori thm which uses a slightly
modified form of k-d trees. The modified a lgor i thm is
defined recursively and is efficient for any Minkowski p
metric. Analysis shows that the number of nodes visited
by the algori thm is propor t iona l to log2 n and the
number of distance calculations to be approximate ly
m2 k. For economies of space, we have deleted the sec-
tion of this paper on nearest neighbor searching. In-
terested readers are referred to [1].]

5. D e l e t i o n

It is possible to delete the roo t f rom a k-d tree, al-
though it is rather expensive to do so. In discussing
deletion it is sufficient to consider the problem of delet-
ing the roo t node of a subtree.

I f the root, say P, to be deleted has no subtrees then
the resulting tree is the empty tree. I f P does have
descendants, then the roo t should be replaced with one
of those descendants, say Q, that will retain the order
imposed by P. That is, all nodes in the H I S O N subtree
of P will be in the H I S O N subtree of Q, and likewise
for the L O S O N subtrees. Assume P was a J-discrimina-
tor, then Q must be the J - m a x i m u m element in the
L O S O N subtree of P (or similarly, the J -min imum
element in P ' s H I S O N subtree). Once Q is found it can
serve as the new root, and the only reorganizat ion neces-
sary is to delete Q f rom its previous posit ion in the tree.

514 Communications September 1975
of Volume 18
the ACM Number 9

The fo l lowing recursive a lgo r i thm gives a descr ip t ion of
one way to accompl i sh this :

Algorithm DELETE (k-d tree deletion)

This recursive algorithm is passed a pointer P to a node in a k-d tree.
It deletes the node pointed to by P, and returns a value which is a
pointer to the root of the resulting subtree.

DI. [Is P a leaf?] If H1SON(P) = A and LOSON(P) = A then re-
turn A ; otherwise, set J , - D I S C (P) .

D2. [Decide where to get P's successor root.] If H1SON(P) = A
then go to D4.

D3. [Get next root from HISON(P).] Set Q ~-- J-minimum node in
HISON(P), QFATHER *-- the father of Q,QSON ~-- which
son Q is of QFATHER (QSON is either HISON or LOSON,
s.t. QSON(QFATHER) = Q). Go to D5.

D4. [Get next root from LOSON(P).] Set Q ~-- J-maximum node
in LOSON(P), QFATHER ~-- the father of Q, QSON ~-- which
son Q is of QFATHER (see D3).

DS. [Delete Q.] Set QSON(QFATHER) ,--- DELETE(Q). (This re-
cursive step will free Q so it can become the new root.)

D6. [Make Q the new root.] Set DISC(Q) +-- DISC(P),
HISON(Q) ~-- HISON(P), LOSON(Q) ~-- LOSON(P). Re-
turn Q.

The m a x i m i z e r / m i n i m i z e r used in steps D3 and D4 of
this a lgor i thm is no t descr ibed here. I t is quite s imilar to
(and uses the same s t ra tegy) as the pa r t i a l ma tch search
descr ibed in Sect ion 4.1.2 in the case where only one key
is specified.

Step D2 as it is presented is a po ten t ia l source of
much t rouble . W h e n successive roo t s of a tree are
deleted, each t ime the successor will be t aken f rom the
H I S O N subtree of R O O T unti l the H I S O N subtree is
empty , p roduc ing a pess imal imbalance . When bo th the
subtrees are n o n e m p t y it would p r o b a b l y be bet ter to
somehow choose between f inding Q in the L O S O N and
H I S O N subtrees, ei ther by " f l ip- f lopping" between
them, or by using a p s e u d o r a n d o m number genera to r to
decide. Ei ther of these heurist ics should cons iderab ly
reduce the degenera t ion inherent in the a lgor i thm as
presented.

The a lgor i thm has var iable runn ing t ime in two
places: the max imize r /min imize r and the recursive call
to i tself in step D5. The analysis in Sect ion 4.1.2 tells us
tha t to find the J -ex t reme node in steps D3 and D4 will
use O(n ~k-1)lk) t ime. The recurs ion can become quite
expensive (on the order of n levels) as the tree degene-
rates, but in the average tree the J -neares t node to the
roo t usual ly does no t have very large subtrees. (As in all
b ina ry trees, the vast ma jo r i ty of nodes in the tree are
leaves, or very close to leaves.) Hence the runn ing t ime
for dele t ion o f the roo t of a subtree of n nodes will
p r o b a b l y be d o m i n a t e d by the max imize r /m in imize r ,
using O(n ~k-~)tk) t ime.

W e have thus far examined only the wors t c a s e - -
dele t ion of the root . We can now easily ob ta in an upper
b o u n d for the average cost o f delet ing a r a n d o m node
f rom a tree r a n d o m l y bui l t as descr ibed in Sect ion 3.
The cost of dele t ing a node which is the roo t of a sub-

tree of j nodes is cer ta in ly b o u n d e d f rom above by j .
Hence to calculate the average cost o f dele t ing a node
f rom tree t, we can merely sum the subtree sizes of t and
divide by n. I t is easy to show induct ive ly tha t the sum
of subtree sizes of t is T P L (t) q- n. We showed in Sec-
t ion 3 tha t the T P L of a r a n d o m l y bui l t t ree is
O(n log n) ; thus we know tha t an uppe r b o u n d for the
average cost of dele t ing a node f rom a r a n d o m l y bui l t
tree is O(log n).

6. Optimal Trees

In some c i rcumstances the average behav io r de-
scr ibed in Sect ion 3 for a k-d tree bui l t by r a n d o m
inser t ion might no t be acceptable . This could be the
case if a very large n u m b e r of searches were going to be
made and no nodes were to be inser ted or de le ted (a
s tat ic tree), or if the nodes were known to arr ive in a
des t ruct ively n o n r a n d o m order . F o r t u n a t e l y it is possi-
ble, t hough cost ly in runn ing t ime, to op t imize a k -d
tree so tha t all ex terna l nodes appea r on two ad jacen t
levels.

The fo l lowing a lgo r i thm produces an op t imized
k-d tree by bu i ld ing a tree such tha t the n u m b e r of nodes
in the H I S O N subtree of each node differs by at mos t
one f rom the n u m b e r of nodes in the L O S O N subtree.
To bui ld an op t imized k-d tree, O P T I M I Z E is cal led
with A as the col lect ion o f nodes to compr i se the tree
and J set to R O O T D I S C .

Algorithm OPTIMIZE (Produce an optimized k-d tree.)

This algorithm is passed a collection of nodes, A, in an appropriate
form such as a linked list and a discriminator, J. It returns a pointer
to an optimized k-d tree whose root is a J-discriminator.

O1. [Check for null set.] IfA is null, return A.
02. [Find median.] Set P ~ J-median element of A.
03. [Split collection.] Set A L ~-- {a C A I a is J-less thanP}, A H

{aCA I a is J-greater thanP} (AL is the collection of all points
to go into the LOSON subtree, AH is the collection of all
points to go in the HISON subtree; their cardinalities differ by
at most one.)

04. [Recur.] Set DISC(P) ~-- J, M *-- NEXTDISC(J) ,
LOSON(P) +-- OPT1M1ZE(AL,M), HISON(P) ~ OPTI-
MIZE(A H,M). Return P.

Because of the ba lanc ing of number o f nodes , an
op t imized tree has m i n i m u m to ta l pa th length over all
k -d trees of n nodes . The m a x i m u m pa th length in an
op t imized tree o f n nodes is tlog2 n]. K n u t h [4] has
shown in his d iscuss ion o f op t ima l 1-d trees a resul t t ha t
holds for op t imized k -d trees in genera l : the to ta l pa th
length of an op t imized tree of n nodes is

TPLo(n) = ~ [log2i] = (n - t - 1) q - - 2 ~ + 1 + 2 ,
l < i < n

where q = tlog2 (n-t-1)l.
The m a x i m u m pa th length is also a dep th b o u n d for

the n u m b e r of levels o f recurs ion entered t h rough step
0 4 . Let us now examine the a m o u n t of t ime spent on the

515 Communications September 1975
of Volume 18
the ACM Number 9

ith level of recursion. There are 2 s optimizations going
on, each optimizing a subtree of (approximately) n/2 j
nodes. Step 02, finding the median of the n/2 ~ elements,
can be accomplished in O(n/2 i) time using the selection
algorithm of Blum, Floyd, Pratt, Riverst, and Tarjan
[2]. Step 04, the splitting into subcollections, can also
be accomplished in O(n/2 j) time, so the total running
time on each level of recursion is 2 i. O(n/2 j) = O(n).
Since the recursion depth is bounded at log2 n, the total
running time of the algorithm is O(n log n). This is
dearly asymptotically optimal, as the algorithm per-
forms the equivalent of a sorting operation.

7. Applications

Let us now consider some situations in which k-d
trees might be used. We will study two rather dissimilar
specific examples, but we first make two observations
about applications in general. First, k-d trees are in-
tended primarily for use in a l-level store, but using
secondary storage (such as disk or drum memory) for
overflow might be acceptable if there were few additions
and deletions from the file. This factor is becoming less
of a restriction as memories rapidly decrease in cost and
increase in size. Second, it is necessary for k-d trees to
have some minimum number of nodes before they be-
come useful. For example, if the deepest node in a 10-d
tree is on the 9th level, one of the keys will never have
been used as a discriminator as the tree was being built.
A good rule of thumb might be to use k-d trees only if
n > 22k. Any application in which there are a multiplic-
ity of keys with no key inherently primary, and which
fits the two basic requirements mentioned above, is a
potential application for k-d trees. We will investigate
some specifics of two such examples.

7.1 Applications in Information Retrieval Systems
Consider a terminal-oriented information retrieval

system involving a file whose records are cities on a
map, say of the continental United States. The cities
could be stored as nodes in a k-d tree with latitude and
longitude serving as the keys. Queries could take on
many forms. An exact match query might be "What is
the city at latitude 43 ° 3' N and longitude 88 ° W?" One
could ask the partial match query "What are all cities
with latitude 39 ° 43' N?" to find all cities on the Mason-
Dixon line. To find all cities in the Oklahoma Panhandle
one could pose a region query defining a rectangle
bounded by latitudes in the range 36 ° 30' to 37 ° and
longitudes in the range of I00 ° to 103 °. The nearest
neighbor algorithm would be able to answer the query
"Which is the closest city to Durham, North Carolina?"

It might be the case that not all cities were to be
stored in the file, but only those in which there was some
scarce commodity (for instance, an automobile rental
agency might wish to ask "What is the closest city to
Los Angeles in which there is an available auto-

516

mobile?"). In such a dynamic file, cities could be in-
serted in the tree as the commodity became available
and deleted as it became unavailable; the file could then
be optimized if, after much activity, it became too un-
balanced. The optimization algorithm could also be
used, for example, if the nodes were sorted by state at
the time of file creation. Using random insertion in this
case would probably produce a terribly unbalanced
tree.

7.2 Applications in Speech Recognition
Most speech recognition systems being built now

have fairly small vocabularies, on the order of 100
words. As the size of vocabularies increases, k-d trees
could play an important role in identifying spoken
"unknown utterances" as words in the vocabulary.
When an utterance of the speaker enters the system it is
decomposed into a fixed number of "features." As an
example, the speech might be passed through a bank of
bandpass filters, and the amplitude variations as func-
tions of time of each filter's output would together
comprise the features. Each word (or "utterance class")
in the vocabulary is represented by a "template" which
consists of a description of its features. A recognizer
must find which template most closely matches the
unknown utterance, and report that as the most prob-
able word spoken by the speaker.

If the templates in the vocabulary were stored as
records in a k-d tree, with the features serving as the
attributes, the nearest neighbor algorithm described in
Section 4.2 could be used to efficiently identify a tem-
plate as being the most likely word spoken. The use of
procedures to define the distance measure would permit
the choosing of an appropriate similarity measure. The
properties of random insertion described in Section 3
indicate that adding to the vocabulary dynamically
would involve only a small runtime cost and little deg-
radation in search time. This is important as the system
adjusts to a particular user in real time. If much time
became available (say, between users), the system could
use algorithm O P T I M I Z E to optimize the tree and
thereby guarantee good search times. This suggests that
k-d trees could be quite useful for implementing speech
recognition systems with large vocabularies.

8. Areas for Further Research

It seems clear the the nearest neighbor algorithm has
running time of O(log n) ; it would be nice to prove this
analytically. The R E G I O N S E A R C H algorithm also
needs to be analyzed more carefully. Deletion is very
costly; perhaps there is a faster way to delete a node.
The logarithmic behavior for random insertion when
combined with the optimization algorithm will satisfy
most users' guaranteed efficiency needs. However, it
would be desirable to define some criteria for balancing,
such as the AVL criterion for 1-d trees [5].

Communications September 1975
of Volume 18
the ACM Number 9

By definition, the discriminators in k-d trees are
strictly alternating (i.e. NEXTDISC(DISC(P)) =
DISC(LOSON(P)). Having nonstrictly alternating
discriminators might enhance the flexibility of k-d trees,
and perhaps even lead to criteria for balancing.

9. Conclusions

The k-d tree has been developed as a data structure
for the storage of k-dimensional data. The storage cost
is two pointers per record in the file. A noteworthy
advantage of k-d trees is the fact that a single data
structure facilitates many different and seemingly un-
related query types. Random insertion in an n node file
is, on the average, an O(log n) task. Partial match
queries with t keys specified can be performed in k-d
trees in O(n (k-t)lk) time. They are flexible enough to
allow any intersection query. Empirical tests show
nearest neighbor searches have average running time of
O(log n). Deletion of the root node requires O(n (k-1)lk)
running time, but deletion of a random node is O(log n).
An optimization algorithm of speed O(n log n) guaran-
tees logarithmic behavior of the tree. By example, k-d
trees were shown to be appropriate data structures for
many applications. A good deal of work remains to be
done on k-d trees, particularly in the analysis of execu-
tion times of some search algorithms.

Acknowledgments. I would like to acknowledge
gratefully many hours of fruitful discussion with Peter
Deutsch, Ray Finkel, Leo Guibas, Ron Rivest, and
Don Stanat. For an exceptionally stimulating environ-
ment, much technical support, and ample computat ion
time I am indebted to the Xerox Palo Alto Research
Center and the people who work there. Finally, I would
like to acknowledge three of my professors--Vint
Cerf, Don Knuth, and Ed McCreight. In addition to
the technical skill I learned f rom them, their excitement
about computer science and their time invested in me
provided motivation to pursue this subject. To these
men I owe a great deal.

Received September 1974; revised January 1975

References
1. Friedman, J.H., Bentley, J.L., and Finkel, R.A. An algorithm
for finding best matches in logarithmic time. Stanford CS Rep.
75--482.
2. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., and Tarjan,
R.E. Time bounds for selection. Stanford CS Rep. 73-349.
3. Finkel, R.A., and Bentley, J.L. "Quad trees: a data structure
for retrieval on composite key." Acta lnformatica 4, 1 (1974), 1-9.
4. Knuth, D.E. The Art of Computer Programming, Vol. 1:
Fundamental Algorithms. Addison-Wesley, Reading, Mass., 1969.
5. Knuth, D.E. The Art of Computer Programmhtg, Vol. 1li:
Sorting and Searching. Addison-Wesley, Reading, Mass., 1973.
6. McCreight, E. Computer Science 144A midterm examination,
spring quarter, 1973. Stanford University.
7. Rivest, R.L. Analysis of associative retrieval algorithms.
Stanford CS Rep. 74--415.

1975 A C M Student Award
Paper: Second Place

The Digital
Simulation of River
Plankton Population
Dynamics
R. Mark Claudson
Hanford High School
Richland, Washington

This paper deals with the development of a mathe-
matical model for and the digital simulation in Fortran
IV of phytoplankton and zooplankton population
densities in a river using previously developed rate
expressions. In order to study the relationships
between the ecological mechanisms involved, the
simulation parameters were varied illustrating the
response of the ecosystem to different conditions,
including those corresponding to certain types of
chemical and thermal pollution. AS an investigation of
the accuracy of the simulation methods, a simulation
of the actual population dynamics of Asterionella in the
Columbia River was made based on approximations of
conditions in that river. Although not totally accurate,
the simulation was found to predict the general annual
pattern of plankton growth fairly well and, specifically,
revealed the importance of the annual velocity cycle in
determining such patterns. In addition, the study
demonstrates the usefulness of digital simulations in
the examinations ~ of certain aquatic ecosystems, as well
as in environmental planning involving such exam-
inations.

Key Words and Phrases: digital simulation,
mathematical modeling, plankton population
dynamics, phytoplankton, zooplankton, river
ecosystems, ecological mechanisms, environmental
simulation, modeling ecosystems, pollution, environ-
mental impact, environmental planning

CR Categories: 3.12, 3.19

Copyright O 1975, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This paper was awarded Second Place in ACM's 1975 George
E. Forsythe Student Paper Competition.

Author's present (home) address: 402 Sierra Street, Richland,
WA 99352.

517 Communications September 1975
of Volume 18
the ACM Number 9

