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1. Introduction 

The problem of associative retrieval (often referred 
to as retrieval by secondary key) centers around a file F 
which is a collection of records. Each record R of F is 
an ordered k-tuple (Vo, v l ,  . . . ,  Vk_l) of  values which 
are the keys, or attributes, of the record. A retrieval of 
records f rom F is initiated at the request of  the user, 
which could be either mechanical or human. A retrieval 
request is called a query of the file, and specifies certain 
conditions to be satisfied by the keys of  the records it re- 
quests to be retrieved f rom F. An information retrieval 
system must be capable of initiating an appropriate 
search upon the arrival of a query to that system. I f  a 
query is allowed to specify conditions dealing with a 
multiplicity of  the keys, the searches performed by the 
system are considered associative. I f  the user of  the sys- 
tem is restricted to specifying conditions for only one 
of the keys, the resulting search is not considered to be 
associative (in that case only one of the keys is consid- 
ered to be "the key" and the remaining attributes are 
referred to as "data") .  

Numerous methods exist for building an informa- 
tion retrieval system capable of handling such associa- 
tive queries. Among these are inverted files, methods of 
compounding attributes, superimposed coding systems, 
and combinatorial  hashing. Knuth [5] discusses these 
ideas in detail. McCreight [6] has proposed that the 
keys be "shuffled" together bitwise; then unidimensional 
retrieval algorithms could be used to answer certain 
queries. Rivest investigated in his thesis [7] the use of  
binary search tries (see [5] for a detailed discussion of 
tries) to store records when they are composed of binary 
keys. Finkel and Bentley [3] discuss a data structure, 
quad trees, that stores the records of the file in a tree 
whose nodes have out-degree of 2k; theirs was the first 
general approach to use a tree structure. None of the 
above approaches seem to provide a "perfect"  environ- 
ment for associative retrieval. Each of them falls short 
in some very important  way, either in having only a 
small class of queries easily performed, large running 
time, large space requirements, horrible worst cases, or 
some other adverse properties. 

This paper presents a new type of data structure for 
associative searching, called the multidimensional bi- 
nary search tree or k-d tree, which is defined in Section 
2. In Section 3 an efficient insertion algorithm is given 
and analyzed. Many types of associative searches are 
discussed in Section 4, and the k-d tree is shown to 
perform quite well in all of them. Its worst case per- 
formance in partial match searches is analyzed and is 
shown to equal the best previously attained average 
performance. A search algorithm is presented that can 
answer any intersection query. An algorithm given 
seems to solve the nearest neighbor problem in logarith- 
mic time; its running time is much less than any other 
known method. In Section 5 deletion is shown to be 
possible in k-d trees, and it is analyzed. Section 6 dis- 
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cusses an optimization algorithm that efficiently trans- 
forms any collection of records into a k-d tree with 
optimal properties. With this background, a discussion 
of potential applications of  k-d trees is presented in 
Section 7. Areas for further work are discussed in 
Section 8, and conclusions are drawn in Section 9. 

2. Definitions and Notat ions  

I f  a file is represented as a k-d tree, then each record 
in the file is stored as a node in the tree. In addition to 
the k keys which comprise the record, each node con- 
tains two pointers, which are either null or point to 
another node in the k-d tree. (Note that each pointer 
can be considered as specifying a subtree.) Associated 
with each node, though not necessarily stored as a field, 
is a discriminator, which is an integer between 0 and 
k -- 1, inclusive. Let us define a notation for these 
items: the k keys of  node P will be called K o ( P ) , . . . ,  
Kk-I(P), the pointers will be LOSON(P) and 
HISON(P),  and the discriminator will be DISC(P). The 
defining order imposed by a k-d tree is this: For  any 
node P in a k-d tree, le t j  be DISC(P), then for any node 
Q in LOSON(P),  it is true that Kj(Q) < K / P ) ;  like- 
wise, for any node R in HISON(P),  it is true that 
Kt(R) > Kt(P). (This statement does not take into 
account the possibility of equality of keys, which will be 
discussed shortly.) 

All nodes on any given level of the tree have the 
same discriminator. The root node has discriminator 0, 
its two sons have discriminator 1, and so on to the kth 
level on which the discriminator is k - 1 ; the (k + 1)-th 
level has discriminator 0, and the cycle repeatsl In 
general, NEXTDISC is a function defined as 

NEXTDISC(i) = (i + 1) mod k, 

and NEXTDISC(DISC(P)) = DISC(LOSON(P)),  and 
likewise for HISON(P) (if they are non-null). Figure 1 
gives an example of records in 2-space stored as nodes 
in a 2-d tree. 

The problem of equality of keys mentioned above 
arises in the definition of a function telling which son of 
P ' s  to visit next while searching for node Q. This func- 
tion is written SUCCESSOR(P, Q) and returns either 
LOSON or HISON. Let j be DISC(P); if K / P )  # 
Kj(Q),  then it is clear by the defining property of k-d 
trees which son SUCCESSOR should return. If  the two 
Kfls are equal, the decision must be based on the remain- 
ing keys. The choice of decision function is arbitrary, 
but for most  applications the following method works 
nicely: Define a superkey of P by 

S / P )  = Kt(P)Kt+x(P) . . .  Kk-x(P)Ko(P) . . .  Kt- x(P), 

the cyclical concatenation of all keys starting with K t .  
I f  S / Q )  < St(P), SUCCESSOR returns LOSON; if 
St(Q) > S / P ) ,  it returns HISON. I f  S / Q )  = S / P )  
then all k keys are equal, and SUCCESSOR returns a 
special value to indicate that. 

Fig. 1. Records in 2-space stored as nodes in a 2-d tree. 
Records in 2-space stored as nodes in a 2-d tree (boxes represent 
range of subtree) : 
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Planar graph representation of the same 2-d tree (LOSON's are 
expressed by left branches, HISON's by right branches, and null 
sons by boxes): 

Dlscriminator 
0 

Let us define node Q to be j-greater than node P if 
and only if SUCCESSOR(P, Q) is HISON, and to be 
j-less than node R if and only if SUCCESSOR(R, Q) is 
LOSON. I t  is obvious how these definitions can be used 
to define the j -max imum and j -min imum elements of  a 
collection of nodes. The j-distance between nodes 
P and Q is [ K / P )  -- Kj(Q) l, and the j-nearest  node of 
a set S to node P is the node Q in S with minimum 
j-distance between P and Q. I f  a multiplicity of the 
nodes have minimum j-distance f rom P, then the j-  
nearest node is defined as the j -min imum element in the 
subset of closest nodes which are j-greater than P (or 
similarly, the j -max imum element of the nodes which 
are j-less than P). 

We will typically use n to be the number  of  records 
in the file which is stored as a k-d tree, and therefore the 
number  of nodes in the tree. We have already used k as 
the dimensionality of  the records. 

The keys of all nodes in the subtree of  any node, say 
P, in a k-d tree are known by P 's  position in the tree to 
be bounded by certain values. For  instance, if P is in the 
HISON subtree of  Q, and DISC(Q) is j ,  then all nodes 
in P are j-greater than Q; so for any R in HISON(P),  
K / R )  >__ K / P ) .  To employ this knowledge in our 
algorithms, we will define a bounds array to hold the 
information. I f  B is a bounds array associated v~ith node 
P, then B has 2k entries, B ( 0 ) , . . . ,  B(2k -- 1). I f  Q is a 
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descendant of P, then it is true for all integers j E 
[0, k -  1] that B(2j) < Ks(Q) <_ B ( 2 j +  1).Bounds array 
B is considered to be initialized if for all integers 
j E [0, k - l ] ,  B(2j) = -- ~ a n d B ( 2 j + l )  = ~ . F o r  
example, the bounds array representing node C in 
Figure 1 is (50, 100, 0, 100). This indicates that all k0 
values in the subtree are bounded by 50 and 100, and 
all kl values are bounded by 0 and 100. 

It was noted that it is not necessary to store the 
discriminator as a field in each node, and one can see 
that it is easy to keep track of what kind of discriminator 
one is visiting as one descends in a k-d tree. With the 
idea in mind that it is superfluous to do so, we will store 
the discriminator in each node to make the algorithms 
we write more easily understandable. 

3. Insertion 

In this section we will first describe an algorithm 
that inserts a node into a k-d tree, We will then analyze 
k-d trees and show that if the algorithm is used to insert 
random nodes into an initially empty tree the resulting 
tree will have the nice properties of a randomly built 
one-dimensional binary search tree. 

3.1 An Insertion Algorithm 

The algorithm used to insert a node into a k-d tree 
is also used to search for a specific record in a tree. It is 
passed by a node, say P. If P is in the tree, the algorithm 
returns a pointer to P, and if P is not in the tree it 
returns A and inserts P into the tree. Algorithm I N S E R T  
describes one way of performing such an operation. 

Algorithm INSERT (k-d tree search and insertion) 

This algorithm is passed a node P, which is not in the tree 
(its HISON, LOSON, and DISC fields are not set). If there is a 
node in the tree with equal keys, the address of that node is returned; 
otherwise the node is inserted into the tree and A is returned. 
I1. [Check for null tree.] If ROOT = A then set ROOT *-- P, 

HISON(P) .-- A, LOSON(P) ~-- A, DISC(P) ~-- O, and return 
A; otherwise, set Q ~ ROOT (Q will move down the tree). 

I2. [Compare.] IfKi(P) = Ki(Q) for 0 < i < k - 1 (i.e. the nodes 
are equal) then return Q. Otherwise, set SON ~-- SUCCESSOR 
(Q,P) (SON will be HISON or LOSON). If SON(Q) = 5, then 
go to I4. 

I3. [Move down.] Set Q *-- SON(Q) and go to I2. 
I4. [Insert new node in tree.] Set SON(Q) ~-- P, H1SON(P) ~ A, 

LOSON(P) ~- A, DISC(P) ~-- NEXTDISC(DISC(Q)), return 
A. 

3.2 Analysis of Randomly Built k-d Trees 
Consider a given binary tree of n nodes; our goal in 

this analysis of k-d trees is to show that the probability 
of constructing that tree by inserting n random nodes 
into an initially empty k-d tree is the same as the prob- 
ability of attaining that tree by random insertion into a 
one-dimensional binary search tree. Once we have 
shown this to be true, the theorems which have been 
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proved about one-dimensional binary search trees will 
be applicable to k-d trees. 

We must first define what we mean by random nodes. 
Since only the relative magnitudes of the keys and the 
order in which the records arrive are relevant for pur- 
poses of insertion, we can assume that the records to be 
inserted will be defined by a k-tuple of permutations of 
integers 1 , . . . ,  n. Then the first record to be inserted, 
say P, would be defined by Ko(P), the first element in 
the first permutation, and so on, to kk - l (P) ,  the first 
element in the kth permutation. The nodes will be con- 
sidered random if all of the (n!) k k-tuples of permuta- 
tions are equally likely to occur. 

Let us give each of the n nodes in the binary tree t a 
unique identification number which is an integer be- 
tween 1 and n. Define Si as the number of nodes in the 
subtree of t whose root is node i. To simplify our dis- 
cussion of null sons let us define the identification 
number of a null node to be n d- 1 ; thus Sn+l = 0. We 
will use Li as the number of nodes in the left subtree 
(or L O S O N )  of node i, and Hi as the number of nodes 
intheright subtree (or H I SO N ) ;  note Si = Li + Ri + 1. 

It is important to observe the following fact about 
the ordering in a collection of random nodes that are to 
be made into a k-d tree. The first node in the collection, 
say P (which is the first to be inserted in the tree), will 
become the root. This induces a partition of the remain- 
ing nodes into two subcollections: those nodes that will 
be in P's  left ( L O S O N )  subtree, and those that will be 
in the right ( H I S O N )  subtree. If  Q falls in the right 
subtree of P, and R falls in P's  left subtree, then their 
relevant ordering (that is, whether or not Q precedes R) 
in the original collection is unimportant. The same tree 
would be built if P was the first element in the collection, 
and then came all the nodes that fell in P's  right sub- 
tree, followed by all the nodes that fell in P's  left sub- 
tree, as long as the orderings in the left and right sub- 
collections were maintained. A second important fact 
we will use is that when a collection of random nodes is 
split into two subcollections by this process, the result- 
ing subcollections are themselves random collections of 
nodes. This is due to the original independence of keys 
in a given record; the partitioning in no way disturbs 
the independence. 

After having made these two observations, it is easy 
to compute the probability that tree t as described above 
results when n random nodes are inserted into an ini- 
tially empty k-d tree. Assume that the root is a j-decider 
and that its identification number is i; then Si = n. The 
probability that the first record will partition the collec- 
tion into two subcollections having respective sizes Li 
and Ri is the probability that the j th key of the first 
element is the (Lid-1)-th in the set of all j th keys. Be- 
cause of the random nature of the nodes (all of the 
nodes are equally likely to be the first in the collection), 
this probability is 1 / S i .  Now we have reduced the 
problem; we know that the probability of t occurring 
is 1 /S i  times the probability of both the subcollections 
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forming their respective subtrees. By the second observa- 
tion above, these probabilities are independent of the 
choice of the root of the tree and of one another. There- 
fore we can split the nodes into the left and right sub- 
collections (by the first observation) and apply this 
analysis recursively to the left son and right son, doing 
so as we visit each node in the tree once and only once. 
It  is clear that the probability of t resulting is 

ek(t) = I I  l /S , .  
l < i < n  

We know that  the standard binary search tree is a 
1-d tree. Since Pk(t) is independent of k, the probability 
of attaining t by inserting random nodes in a k-d tree 
must be the same as that  of attaining t by inserting 
random nodes in a standard binary search tree. Indeed, 
the above formula for Pk(t) was given by Knuth  [5] as 
the probability of attaining t by random insertion in a 
standard binary search tree. We can now apply two of 
the results in [5] to k-d trees. Let C, be the number  of 
nodes visited to find a node in a k-d tree of size n. Then 
we know that the mean of the distribution of C, is 

Mean(C,) = 2(1 q- 1/n)H~ -- 3 ~ 1.386 log2 n 

and the variance is 

Var(C,) = 7n z - 4(n + 1)2H. (2~ -- 2(n + 1)H. + 13n. 

Here we have used the functions 

1/k 
l < k < n  

and 

H ,  = H ,  C~. 

Thus we know that  typical insertions and record look- 
ups in a k-d tree will examine approximately 1.386 log2n 
nodes. 

4. Searching 

Searches are typically initiated in response to a query 
expressed in relation to the set of all valid records. The 
purpose of a search is to find in the data structure the 
records specified by the query. It  is therefore reasonable 
to classify searches by the types of queries which invoke 
them. We will follow in the spirit of  Rivest [7] as we 
make the pr imary distinction between intersection 
queries and best-match queries in our investigation of 
searching in k-d trees. 

4.1 Intersection Queries 
Intersection queries are so named because they 

specify that  the records to be retrieved are those that  
intersect some subset of the set of valid records. This is 
by far the most  common type of query. The specifica- 
tions of the sets in which are all records to be 
retrieved can range f rom simply defined sets such as 
{PIKe(P) = 7} to complexly defined sets like 

{p I[(1 ~ KI(P) < 5) A (2 _< Kz(P) < 4) 1 V 
(KT(P) = 8)}. We will examine search strategies for 
three increasingly complex query types, each embodying 
its predecessors as special eases. The region search, the 
third type we will examine, is capable of searching for 
all records specifiable by any intersection query. 

4.1.1 Exact Match Queries 
The simplest type of query is the exact match query 

(called a "simple query" by Knuth  [5], and a "point  
search" by Finkel and Bentley [3]), which asks if a 
specific record is in the data structure. The search 
algorithm to determine this (Algorithm INSERT) and 
its analysis are presented in Section 3. The only thing 
that remains to be said regarding the topic of  exact 
match searching is this: I f  the exact match query is the 
only type of query to be posed, k-d trees should not be 
used as the data structure to store the records. Though 
to the user the keys appear to be independent, they 
should be merged together into one superkey and a 
more well known data structure for unidimensional 
storage and retrieval should be employed. 

4.1.2 Partial Match Queries 
The next more complex type of intersection query is 

one in which values are specified for a proper  subset of  
the keys. I f  values are specified for t keys, t < k, then 
the query is called a "part ial  match query with t keys 
specified." Assume that {s,} and {v,} are sets such that  
the keys specified are K,x,  K , 2 , . . . ,  K , t ,  and the 
values they must have to be a valid response to the 
query are v, 1 , v~ 2 , . . . ,  vst • The set of  points for which 
we are searching is then {PIKs~(P) = v,~ for 1 < 
i < t } .  

Rivest has studied this problem quite thoroughly for 
the case of  binarily valued keys. He proposed that binary 
search tries be used to store the data. His "s tandard 
compact"  tries are roughly identical to "b i t -key"  k-d 
trees. The reader interested in the binary case is referred 
to Rivest 's  thesis [7]; it contains a description of the 
behavior  of tries (and, equivalently, k-d trees) for this 
application. The results presented here parallel those in 
that work. 

A recursive search algorithm to find all nodes satis- 
fying a partial match query for continuously valued 
keys is easy to define (it is shown in Section 4.1.3 that  
the REGIONSEARCH algorithm presented here is 
capable of efficiently performing a partial match search, 
so we will merely sketch an algorithm here.) On each 
level of recursion the algorithm is passed a node, say P. 
I f  P satisfies the query it is reported. Let us suppose that  
P is a J-discriminator;  there are now two cases we must  
handle. I f  J = s, for some i, then we need only continue 
our search down one subtree of  P: if v~ < Ks(P) we go 
down LOSON(P), if v,~ > Ks(P) we go down 
HISON(P), and if the values are equal we go down one 
of the subtrees depending on the definition of successor. 
I f  J ~ {s,} then we must continue the search down both 
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of P's subtrees. (Implicit in the algorithm is the fact that 
the search continues down a subtree only if that subtree 
is non-null, i.e. P 's  SONfield is not A.) 

Let us now analyze the number  of  nodes visited by 
the algorithm in doing a partial match search with t 
keys specified in an "ideal" k-d tree of n nodes; a tree 
in which n = 2 kh -- 1 and all leaves appear  on level kh. 
(It is shown in Section 6 that such a tree is attainable 
for any collection of 2 kh - 1 nodes by using algorithm 
OPTIMIZE.)  The search algorithm starts by visiting 
one node, the root, and the number  of  nodes visited on 
the next level grows by a factor of  1 (if J = s i ,  we go 
down only one subtree of each node, hence visiting the 
same number  on the next level) or two (if J ~ {si}, we 
have to visit both subtrees of the node, thereby visiting 
twice as many nodes on the next level). Since the growth 
rate at any level is a function of the discriminator of  that 
level, and the discriminators are cyclic with cycle k, the 
growth rate will be cyclic as well. The pessimal arrange- 
ment of  keys is to have these unspecified as the first 
k - t keys in the cycle, postponing any pruning until 
after a small geometric explosion. The maximum num- 
ber of  nodes visited during the whole search will there- 
fore be the sum of the following series: 

k - t elements t elements 
] + 2 +'" + 2 k-t~ +~2 e-t-1 + . . .  + 2 k-t-] 

k elements 
+ 2~-t + . . .  + 22(~') -1 + 22(k-o -a + . . -  + 2~(k-0-x + . . .  

+ 2(h--:t)('Lo-t) -~- . . .  + 2h(k--t) -:t 

+ 2~'(k--t) -1  + . . .  + 2h('~-t) -1.  

lehels 

We can now sum this series to calculate V(n, t), the 
maximum number  of  nodes visited during a partial 
match search with t keys specified in an 5deal tree of n 
nodes. (For brevity, we will here define m = k -  t.) 

V(n, t) = ~ ]  2 "i  [( ~ ]  2 j) -}- 2m-it] 
O < i < h - - I  O~j<m--I 

= Y~ 2m'[2 m -- 1 + 2m-~t] 
o_<i<n-x 

= [(t + 2 ) 2  m - l -  11 ~ 2 m' 
o<_i<h-1 

2 " h -  1 
= [(t + 2)2 m-1 -- 11 - -  

2 , - - 1  

= [(t + 2)2 m-1 -- 11 (2,,~ _ 1). 
2 " - - 1  

Since weknow 2 " h =  2(m/k)kh = (2~h)mtk = ( n + l )  "tk, 
we see 

V(n, t)  = [ ( t  + 2 ) 2  " -1  - -  11 [ (n  + 1) '~/~ - -  11. 
2" -- 1 

The amount  of  work done in any partial match search 
with t keys specified in an ideal tree of n nodes is there- 
fore cn "Jk + d for some small constants c and d. This 
has been conjectured by Rivest [7] to be a lower bound 

for the average amount  of  work done in a partial match 
search; by construction we have shown this to be an 
upper bound not only for the average but for all partial 
match queries. 

All of  our analysis has been for the case of  the per- 
fectly balanced tree; the one in which we might expect to 
have the fastest searches. However,  Rivest [7] has 
shown that the perfectly balanced trees have the highest 
average retrieval time. Therefore the results that we 
have shown are an expected upper bound on the re- 
trieval time required by the algorithm. 

4 . 1 . 3  R e g i o n  Q u e r i e s  

The most general type of intersection query is one 
in which any region at all may be specified as the set 
with which the records to be retrieved must intersect, 
hence its name "region query."  This query is the same 
as the "region search" query described by Finkel and 
Bentley [3] and facilitates the range, best match with 
restricted distance, and boolean queries described by 
Knuth [5] and Rivest [7]. Any subset of  the set of  valid 
records region can be specified in a region query, so it is 
therefore the most  general intersection query possible. 
(An exact match query corresponds to the region being 
a point, a partial match query with t keys specified 
corresponds to the region being a k - t dimensional 
hyperplane.) 

The algorithm to accomplish a region search need 
not specifically know the definition of the region in 
which it is searching; rather it finds out all it needs to 
know by calling two functions which describe the re- 
gion. The first, IN_REGION, is passed a node in the 
tree and returns true if and only if that node is contained 
in the region. The function BOUNDS_INTER- 
SECT_REGION is passed a bounds array and returns 
true if and only if the region intersects the hyper-rec- 
tangle described by the bounds array. Nor  does the 
algorithm know what to do once it finds a node in the 
region; it calls procedure FOUND to report all nodes it 
finds in the region. A recursive definition of the general 
intersection query search algorithm is given below. It 
would be invoked initially by the command REGION- 
SEARCH(ROOT,  B), where B is a bounds array ini- 
tialized as described in Section 2. [See next page.] 

Algorithm REGIONSEARCH uses the bounds 
stored at each node of the tree to determine whether it is 
possible that any descendants of the node might lie in 
the region being searched. A subtree is visited by the 
algorithm if and only if this possibility exists. Con- 
sequently, the algorithm visits as few nodes as possible, 
given the limited information stored at each node. In 
this sense, REGIONSEARCH is an optimal algorithm 
for region searches in k-d trees as we have described 
them. 

The versatility of algorithm REGIONSEARCH 
makes its formal analysis extremely difficult. Its per- 

(cont'd in col. 2, next page) 
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Algorithm REGIONSEARCH (Search a k-d tree for all points con- 
tained in a specified region.) 

This recursive algorithm is passed a node P and a bounds array B 
that specifies the bounds for P's descendants. It assumes the exist- 
ence of the three procedures IN_REGION, FOUND, and 
BOUNDS_INTERSECT_REGION. It reports all nodes in the 
subtree whose root is P which are in the regionby invoking the 
FOUND procedure. 

R1. [Is P in the region?] If IN_REGION(P) then call FOUND(P) 
(if the node is in the region, then report that fact by calling 
FOUND with parameter P). 

R2. [Improve the bounds for the subtrees.] Allocate BL, Bu as 
bounds arrays, and copy the array B into both. Set J,---DISC 
(P) (J is the dimension of the bounds to be changed.) Set 
BL(2J + 1) ~-- Kj(P), B,v(2J) ~-- Ks(P). (This step notes that 
Kj(P) is a J-upper bound of the nodes in the LOSON subtree 
and a J-lower bound of the nodes in the HISON subtree.) 

R3. [Search LOSON subtree.] If LOSON(P) ~ A and 
BOUNDS_INTERSECT_REGION(BL) then REGION- 
SEARCH(LOSON(P), BL). 

R4. [Search HISON subtree.] If HISON(P) ~ A and 
BO UNDS_INTERSECT_REGION(B,v) then REGION- 
SEARCH(HISON(P), Bh,). 

As an example of  I N _ R E G I O N  and BOUNDS_IN-  
T E R S E C T _ R E G I O N  functions,  the following pseudo- 
Algol procedures  are defined for a hyper-rectangular  
region. 

Pseudo-Algol IN_REGION and BO UNDS_INTERSECT~EGION 
procedures for a rectilinearly oriented hyper-rectangular region de- 
fined by a bounds array RECDEF. 

boolean procedure IN_REGION (node P) : 
begin 
comment returns true iff P is in the hyper-rectangle defined by 

RECDEF; 
for 1 ~-- 0 step 1 until k -- 1 do 

begin 
if KI(P) < RECDEF(2.1) then 

return false; 
if Kx(P) > RECDEF(2.I+I) then 

return false 
end; 

return true 
end; 

boolean procedure BOUNDS_INTERSECT_REGION (array B); 
begin 
comment returns true iff the hyper-rectangle defined by bounds 

array B intersects the hyper-rectangle defined by RECDEF; 
for I ~ 0 step 2 until 2- ( k -  1) do 

begin 
ifB(l) > RECDEF(I+ 1) then 

return false; 
if  B(I+I) < RECDEF(I) then 

return false 
end; 

return true 
end; 

Similar procedures  can be written for many  other k- 
dimensional  geometric regions. The  logical functions 
AND, OR, and NOT can then be used to implement  
searches in intersections, unions, and complements  of 
basic regions. 

(cont'd f rom page 513) 

formance in any given situation will certainly depend on 
type and size of  the region which it is searching. Limited 
empirical  tests show that  the algori thm performs rea- 
sonably well in searching hyper-rectangular  regions. 
Relevant empirical data appear  in the discussion of  
region searching in quad trees by Finkel  and Bentley 
[3]. The similarity between k-d trees and quad  trees and 
between the corresponding R E G I O N S E A R C H  algo- 
rithms make Table 3 in that  paper  quite useful in esti- 
mat ing the amoun t  of  work  the R E G I O N S E A R C H  
algori thm does in searching hyper-rectangular  regions. 

4 .2  N e a r e s t  N e i g h b o r  Q u e r i e s  

Given a distance function D, a collection of  points 
B (in k-dimensional  space), and a point  P (in tha t  
space), it is often desired to find P ' s  nearest neighbor  in 
B. The nearest neighbor  is Q such that  

( V R < B )  { ( R ~ Q )  ~ [D(R, P) ~ D(Q, P)]}. 

A similar query might  ask for the m nearest  neighbors  
to P. 

[Ed. Note .  In the original versions of  this paper,  an 
algori thm to answer such a query was presented. Em-  
pirical tests showed that  its running  time is logari thmic 
in n. The algori thm was quite difficult to unders tand 
and efficient only for the Minkowski  ~ metric (the 
max imum coordinate  metric). A recent paper  by Fried- 
man,  Bentley, and Finkel [1] gives a more  easily under-  
s tood version of  the algori thm which uses a slightly 
modified form of  k-d trees. The modified a lgor i thm is 
defined recursively and is efficient for any Minkowski  p 
metric. Analysis shows that  the number  of  nodes  visited 
by the algori thm is propor t iona l  to log2 n and the 
number  of  distance calculations to be approximate ly  
m2 k. For  economies  of  space, we have deleted the sec- 
tion of  this paper on nearest neighbor  searching. In- 
terested readers are referred to [1 ].] 

5. D e l e t i o n  

It  is possible to delete the roo t  f rom a k-d tree, al- 
though  it is rather expensive to do so. In discussing 
deletion it is sufficient to consider the problem of  delet- 
ing the roo t  node of  a subtree. 

I f  the root,  say P, to be deleted has no subtrees then 
the resulting tree is the empty  tree. I f  P does have 
descendants,  then the roo t  should be replaced with one 
of  those descendants,  say Q, that  will retain the order  
imposed by P. That  is, all nodes in the H I S O N  subtree 
of  P will be in the H I S O N  subtree of  Q, and likewise 
for the L O S O N  subtrees. Assume P was a J-discrimina- 
tor, then Q must  be the J - m a x i m u m  element in the 
L O S O N  subtree of  P (or similarly, the J -min imum 
element in P ' s  H I S O N  subtree). Once Q is found  it can 
serve as the new root,  and the only reorganizat ion neces- 
sary is to delete Q f rom its previous posit ion in the tree. 
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The fo l lowing recursive a lgo r i thm gives a descr ip t ion  of  
one way to accompl i sh  this :  

Algorithm DELETE (k-d tree deletion) 

This recursive algorithm is passed a pointer P to a node in a k-d tree. 
It deletes the node pointed to by P, and returns a value which is a 
pointer to the root of the resulting subtree. 

DI. [Is P a leaf?] If H1SON(P) = A and LOSON(P) = A then re- 
turn A ; otherwise, set J , -  D I S C ( P ) .  

D2. [Decide where to get P's successor root.] If H1SON(P) = A 
then go to D4. 

D3. [Get next root from HISON(P).] Set Q ~-- J-minimum node in 
HISON(P), QFATHER *-- the father of Q,QSON ~-- which 
son Q is of QFATHER (QSON is either HISON or LOSON, 
s.t. QSON(QFATHER) = Q). Go to D5. 

D4. [Get next root from LOSON(P).] Set Q ~-- J-maximum node 
in LOSON(P), QFATHER ~-- the father of Q, QSON ~-- which 
son Q is of QFATHER (see D3). 

DS. [Delete Q.] Set QSON(QFATHER) ,--- DELETE(Q). (This re- 
cursive step will free Q so it can become the new root.) 

D6. [Make Q the new root.] Set DISC(Q) +-- DISC(P), 
HISON(Q) ~-- HISON(P), LOSON(Q) ~-- LOSON(P). Re- 
turn Q. 

The  m a x i m i z e r / m i n i m i z e r  used in steps D3 and D4 of  
this a lgor i thm is no t  descr ibed here. I t  is quite s imilar  to  
(and uses the same s t ra tegy)  as the pa r t i a l  ma tch  search 
descr ibed  in Sect ion 4.1.2 in the case where only one key 
is specified. 

Step D2  as it  is presented  is a po ten t ia l  source of  
much  t rouble .  W h e n  successive roo t s  of  a tree are 
deleted,  each t ime the successor will be t aken  f rom the 
H I S O N  subtree of  R O O T  unti l  the H I S O N  subtree  is 
empty ,  p roduc ing  a pess imal  imbalance .  When  bo th  the 
subtrees  are n o n e m p t y  it would  p r o b a b l y  be bet ter  to 
somehow choose  between f inding Q in the L O S O N  and 
H I S O N  subtrees,  ei ther by " f l ip- f lopping"  between 
them, or  by using a p s e u d o r a n d o m  number  genera to r  to 
decide.  Ei ther  of  these heurist ics should  cons iderab ly  
reduce the degenera t ion  inherent  in the a lgor i thm as 
presented.  

The a lgor i thm has  var iable  runn ing  t ime in two 
places:  the max imize r /min imize r  and  the recursive call  
to  i tself  in step D5. The  analysis  in Sect ion 4.1.2 tells us 
tha t  to find the J -ex t reme node  in steps D3 and  D4 will 
use O(n ~k-1)lk) t ime. The recurs ion can become quite 
expensive (on the order  of  n levels) as the tree degene- 
rates,  but  in the average tree the J -neares t  node  to the 
roo t  usual ly  does  no t  have very large subtrees.  (As in all 
b ina ry  trees, the vast  ma jo r i ty  of  nodes  in the tree are  
leaves, or  very close to  leaves.) Hence  the runn ing  t ime 
for  dele t ion o f  the roo t  of  a subtree  of  n nodes  will 
p r o b a b l y  be d o m i n a t e d  by the max imize r /m in imize r ,  
using O(n ~k-~)tk) t ime.  

W e  have thus  far  examined  only the wors t  c a s e - -  
dele t ion of  the root .  We  can now easily ob ta in  an upper  
b o u n d  for  the average cost  o f  delet ing a r a n d o m  node  
f rom a tree r a n d o m l y  bui l t  as descr ibed  in Sect ion 3. 
The  cost  of  dele t ing a node  which is the roo t  of  a sub- 

tree of  j nodes  is cer ta in ly  b o u n d e d  f rom above  by j .  
Hence  to calculate  the  average cost  o f  dele t ing a node  
f rom tree t, we can merely sum the  subtree  sizes of  t and  
divide by n. I t  is easy to  show induct ive ly  tha t  the sum 
of  subtree  sizes of  t is T P L ( t )  q- n. We showed in Sec- 
t ion 3 tha t  the T P L  of  a r a n d o m l y  bui l t  t ree is 
O(n log n) ; thus  we know tha t  an uppe r  b o u n d  for the  
average cost  of  dele t ing a node  f rom a r a n d o m l y  bui l t  
tree is O(log n). 

6. Optimal Trees 

In some c i rcumstances  the average behav io r  de-  
scr ibed in Sect ion 3 for  a k-d  tree bui l t  by r a n d o m  
inser t ion  might  no t  be acceptable .  This  could  be the 
case if  a very large n u m b e r  of  searches were going to be 
made  and  no nodes  were to be inser ted or  de le ted  (a 
s tat ic  tree),  or  if the nodes  were known  to arr ive in a 
des t ruct ively  n o n r a n d o m  order .  F o r t u n a t e l y  it is possi-  
ble, t hough  cost ly in runn ing  t ime,  to  op t imize  a k -d  
tree so tha t  all ex terna l  nodes  appea r  on two ad jacen t  
levels. 

The  fo l lowing a lgo r i thm produces  an op t imized  
k-d  tree by bu i ld ing  a tree such tha t  the n u m b e r  of  nodes  
in the H I S O N  subtree  of  each node  differs by at  mos t  
one f rom the n u m b e r  of  nodes  in the L O S O N  subtree.  
To bui ld  an op t imized  k-d  tree, O P T I M I Z E  is cal led 
with A as the col lect ion o f  nodes  to  compr i se  the tree 
and  J set to R O O T D I S C .  

Algorithm OPTIMIZE (Produce an optimized k-d tree.) 

This algorithm is passed a collection of nodes, A, in an appropriate 
form such as a linked list and a discriminator, J. It returns a pointer 
to an optimized k-d tree whose root is a J-discriminator. 

O1. [Check for null set.] IfA is null, return A. 
02. [Find median.] Set P ~ J-median element of A. 
03. [Split collection.] Set A L ~-- {a C A I a is J-less thanP}, A H 

{aCA I a is J-greater thanP} (AL is the collection of all points 
to go into the LOSON subtree, AH is the collection of all 
points to go in the HISON subtree; their cardinalities differ by 
at most one.) 

04. [Recur.] Set DISC(P) ~-- J, M *-- NEXTDISC(J) ,  
LOSON(P) +-- OPT1M1ZE(AL,M), HISON(P) ~ OPTI- 
MIZE(A H,M). Return P. 

Because of  the ba lanc ing  of  number  o f  nodes ,  an 
op t imized  tree has  m i n i m u m  to ta l  pa th  length  over  all  
k -d  trees of  n nodes .  The  m a x i m u m  pa th  length  in an 
op t imized  tree o f  n nodes  is tlog2 n]. K n u t h  [4] has  
shown in his d iscuss ion o f  op t ima l  1-d trees a resul t  t ha t  
holds  for  op t imized  k -d  trees in genera l :  the to ta l  pa th  
length of  an op t imized  tree of  n nodes  is 

TPLo(n )  = ~ [log2i] = ( n - t - 1 ) q - - 2  ~ + 1 + 2 ,  
l < i < n  

where q = tlog2 (n-t-1)l. 
The  m a x i m u m  pa th  length is also a dep th  b o u n d  for  

the n u m b e r  of  levels o f  recurs ion  entered  t h rough  step 
0 4 .  Let  us now examine  the a m o u n t  of  t ime spent  on the 
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ith level of  recursion. There are 2 s optimizations going 
on, each optimizing a subtree of (approximately) n/2 j 
nodes. Step 02,  finding the median of the n/2 ~ elements, 
can be accomplished in O(n/2 i) time using the selection 
algorithm of Blum, Floyd, Pratt, Riverst, and Tarjan 
[2]. Step 04,  the splitting into subcollections, can also 
be accomplished in O(n/2 j) time, so the total running 
time on each level of recursion is 2 i. O(n/2 j) = O(n). 
Since the recursion depth is bounded at log2 n, the total 
running time of the algorithm is O(n log n). This is 
dearly asymptotically optimal, as the algorithm per- 
forms the equivalent of a sorting operation. 

7. Applications 

Let us now consider some situations in which k-d 
trees might be used. We will study two rather dissimilar 
specific examples, but we first make two observations 
about applications in general. First, k-d trees are in- 
tended primarily for use in a l-level store, but using 
secondary storage (such as disk or drum memory) for 
overflow might be acceptable if there were few additions 
and deletions from the file. This factor is becoming less 
of a restriction as memories rapidly decrease in cost and 
increase in size. Second, it is necessary for k-d trees to 
have some minimum number of nodes before they be- 
come useful. For  example, if the deepest node in a 10-d 
tree is on the 9th level, one of the keys will never have 
been used as a discriminator as the tree was being built. 
A good rule of thumb might be to use k-d trees only if 
n > 22k. Any application in which there are a multiplic- 
ity of keys with no key inherently primary, and which 
fits the two basic requirements mentioned above, is a 
potential application for k-d trees. We will investigate 
some specifics of two such examples. 

7.1 Applications in Information Retrieval Systems 
Consider a terminal-oriented information retrieval 

system involving a file whose records are cities on a 
map, say of the continental United States. The cities 
could be stored as nodes in a k-d tree with latitude and 
longitude serving as the keys. Queries could take on 
many forms. An exact match query might be "What  is 
the city at latitude 43 ° 3' N and longitude 88 ° W?" One 
could ask the partial match query "What  are all cities 
with latitude 39 ° 43' N?"  to find all cities on the Mason- 
Dixon line. To find all cities in the Oklahoma Panhandle 
one could pose a region query defining a rectangle 
bounded by latitudes in the range 36 ° 30' to 37 ° and 
longitudes in the range of I00 ° to 103 °. The nearest 
neighbor algorithm would be able to answer the query 
"Which is the closest city to Durham, North  Carolina?" 

It might be the case that not all cities were to be 
stored in the file, but only those in which there was some 
scarce commodity (for instance, an automobile rental 
agency might wish to ask "What  is the closest city to 
Los Angeles in which there is an available auto- 
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mobile?"). In such a dynamic file, cities could be in- 
serted in the tree as the commodity became available 
and deleted as it became unavailable; the file could then 
be optimized if, after much activity, it became too un- 
balanced. The optimization algorithm could also be 
used, for example, if the nodes were sorted by state at 
the time of file creation. Using random insertion in this 
case would probably produce a terribly unbalanced 
tree. 

7.2 Applications in Speech Recognition 
Most speech recognition systems being built now 

have fairly small vocabularies, on the order of 100 
words. As the size of vocabularies increases, k-d trees 
could play an important role in identifying spoken 
"unknown utterances" as words in the vocabulary. 
When an utterance of the speaker enters the system it is 
decomposed into a fixed number of "features." As an 
example, the speech might be passed through a bank of 
bandpass filters, and the amplitude variations as func- 
tions of time of each filter's output would together 
comprise the features. Each word (or "utterance class") 
in the vocabulary is represented by a "template" which 
consists of a description of its features. A recognizer 
must find which template most closely matches the 
unknown utterance, and report that as the most prob- 
able word spoken by the speaker. 

If the templates in the vocabulary were stored as 
records in a k-d tree, with the features serving as the 
attributes, the nearest neighbor algorithm described in 
Section 4.2 could be used to efficiently identify a tem- 
plate as being the most likely word spoken. The use of 
procedures to define the distance measure would permit 
the choosing of an appropriate similarity measure. The 
properties of random insertion described in Section 3 
indicate that adding to the vocabulary dynamically 
would involve only a small runtime cost and little deg- 
radation in search time. This is important as the system 
adjusts to a particular user in real time. If much time 
became available (say, between users), the system could 
use algorithm O P T I M I Z E  to optimize the tree and 
thereby guarantee good search times. This suggests that 
k-d trees could be quite useful for implementing speech 
recognition systems with large vocabularies. 

8. Areas for Further Research 

It seems clear the the nearest neighbor algorithm has 
running time of O(log n) ; it would be nice to prove this 
analytically. The R E G I O N S E A R C H  algorithm also 
needs to be analyzed more carefully. Deletion is very 
costly; perhaps there is a faster way to delete a node. 
The logarithmic behavior for random insertion when 
combined with the optimization algorithm will satisfy 
most users' guaranteed efficiency needs. However, it 
would be desirable to define some criteria for balancing, 
such as the AVL criterion for 1-d trees [5]. 
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By definition, the discriminators in k-d trees are 
strictly alternating (i.e. NEXTDISC(DISC(P) )  = 
DISC(LOSON(P)  ). Having nonstrictly alternating 
discriminators might enhance the flexibility of  k-d trees, 
and perhaps even lead to criteria for balancing. 

9. Conclusions 

The k-d tree has been developed as a data structure 
for the storage of k-dimensional data. The storage cost 
is two pointers per record in the file. A noteworthy 
advantage of k-d trees is the fact that a single data 
structure facilitates many different and seemingly un- 
related query types. Random insertion in an n node file 
is, on the average, an O(log n) task. Partial match 
queries with t keys specified can be performed in k-d 
trees in O(n (k-t)lk) time. They are flexible enough to 
allow any intersection query. Empirical tests show 
nearest neighbor searches have average running time of 
O(log n). Deletion of the root  node requires O(n (k-1)lk) 
running time, but deletion of a random node is O(log n). 
An optimization algorithm of speed O(n log n) guaran- 
tees logarithmic behavior of  the tree. By example, k-d 
trees were shown to be appropriate  data structures for 
many applications. A good deal of work remains to be 
done on k-d trees, particularly in the analysis of  execu- 
tion times of some search algorithms. 
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