
A Trip Down the Graphics Pipeline:
Grandpa, What Does “Viewport” Mean?
James if Blinn, Caltech

Computer graphics has never been much for uniformity in
terminology, what with left- or right-handed coordinate sys-
tems, row- or column-vectors notation for points, and clock-
wise or counterclockwise rotation rules and polygon ordering.
This is, I guess, the result of different research groups from all
over the world approaching similar problems with their own
notational conventions.

One casualty in the war of words is the term “window” and
its relation to the term “viewport.” Back in the Old Days (a
phrase I find myself using increasingly frequently) there was
something called a window-to-viewport transformation that
programmers used to specify which parts of a geometrical
database should be mapped to what part of the screen. In that
scenario, the term “viewport” meant the rectangle on the
screen where the picture went, and “window” meant the re-
gion of the database coordinate system that should be
mapped there. But now there’s considerable commercial and
political pressure to use the term “window” to mean all those
rectangular pieces of screen with their enclosing frames, title
bars, and assorted bric-a-brac. Confusion reigns if you are not
sure which type of window somebody might be talking about.

This is not all bad. There has always been something creepy
about the window-to-viewport transformation that I have just
recently resolved in my own mind. So this month I’m going to
describe how I extracted the desirable aspects of W-to-V
transformation while discarding the disquieting ones.

January 1992

/jvr Wb
The classic window-to-viewport transform

The original idea here is pretty straightforward. In their de-
sired coordinate space, users specify a rectangular region that
they want to display, the window, as kV/, W,, wb, W,. Then they
pick a rectangular region on the screen, the viewport, where
they want to put it, If/, V,, vb, V,. This looks like Figure 1. The
computer then miraculously calculates and performs the nec-
essary scale and offset to get from one region to the other:

where the scale and displacement come from the requirements

83

+a

Coord.
system:

-P
Post-

perspective

Figure 2. The canonical window-to-pixel map.

W/b VI
Wrb v,
wh t-t V/I

w, b v,

This, using the exemplary transformation technique men-
tioned in my earlier article (“A Trip Down the Graphics Pipe
line: Pixel Coordinates,” CC&A, July 1991), gives us

vr- v/
Sr =jjTgq

d, = V, - s., W/

v, - vh

sv =w,-wh

d, = Vh-s,Wh (2)

NDC Pixel

Nx-E

We expect to precalculate these scales and offsets during
some initialization routine and save them in some static vari-
ables. Then we use them in drawing routines that transform
points via Equation 1.

How does this fit in?
How does this relate to the graphics pipeline I have been dis-

cussing in the last few columns? Let’s review the coordinate
systems in the pipeline (leaving out clipping for now).

Definition: You define objects in this system.
Universe: Objects are placed via possibly nested modeling

transformations in a consistent universe model.
Eye: An eye location and viewing direction are selected and

the universe is transformed so that the eye is at the origin and
the viewing direction is down the z axis.

Postperspective: A perspective distortion transforms the
viewing pyramid to a parallel-sided rectangular
parallelopiped (a “brick” in the vernacular).

Normalized device coordinates (NDC): The viewable brick
is squashed into a region of a device-independent screen coor-
dinate system.

Pixel: Device-dependent code reinterprets the NDC into
the correct hardware pixel coordinates.

According to the original usage of the term “window-to-
viewport transformation,” the window would be in definition
space and the viewport in pixel space. But this doesn’t work
very well. First, it’s better to specify the viewport in NDC
space for device independence. No problem; that doesn’t
change things conceptually. But the window specification in
definition space is usually inconvenient if we are doing com-
plex nested 3D transforms. In fact, we already have a mecha-
nism (full 4 x 4 homogeneous matrices) to do much more
general transformations than the simple scale-and-offset of W-
to-V Furthermore, there is something clumsy about the W-to-
V we have so far defined-nonuniform scale factors. If we
pick a window and a viewport that don’t happen to have the
same aspect ratio, that is, if

w,-w,j v,-vb
W,-# v,- v/

the scale factor will be different in x and y. I have rarely found
this to be useful, and in fact it’s usually something to avoid.
Though we can force the above two ratios to be equal by fid-
dling with one or the other of the rectangles, it’s a nuisance.

For these reasons, I adopted a modified form of the W-to-V
transform as part of the initialization of my image rendering
system. The initialization takes a viewport (though the mod-
ern term would now be “window”) specified in NDC. In fact,
for animation I find it more convenient to describe the
viewport in terms of its center (V,, Vy), size (V,), and aspect
ratio (V,). I then generate the boundaries via

84 IEEE Computer Graphics & Applications

+a

-1 VI vr tl

N,- E

w--v---cN TI T2

Figure 3. The window-to-pixel map including clipping.

v/ = v., - v.,
v, = v, + v,

vh = v,. - v,v,,
v,=v,.+v,v,

I then force the viewport to be mapped from a “canonical
window” in postperspective space with the same aspect ratio
(see Figure 2). This canonical window always has the bound-
aries

w,=-1

W,=+l

WI, = -p
w,=+p

where p is the aspect ratio of the viewport, that is,

v, - vh p=-
vr - v/

Plugging these constants into Equations 2 gives

s.Jc!!
2

v,- vh

sv = --2p-

but using the definition of p, we figure that this degenerates to

s =s,J!!d!! I I 2

Voila! Equal scale factors in x and y. Whereupon

vr + VI d,=2

d =vb+v,
Y 2

I then merge this transformation with the NDC-to-pixel
transformation built up in the pixel coordinates article
(CG&A, July, 1991) to form one big fat scale and displace-
ment to go from postperspective coordinates directly to pixel
coordinates. This is what I use to initialize the 4 x 4 “current
transformation matrix” (CTM) that multiplies all points en-
tered into the graphic system. After this initialization, the user
can multiply in other transformations as described in the arti-
cle “Nested Transformations and Blobby Man” (CG&A, Oc-
tober 1987). Multiplying in a perspective matrix makes the
CTM go from eye space to pixel space. Multiplying in a pure
rotation and a translation makes it go from universe space to
pixel space. Multiplying in some other modeling transforma-
tions makes it go from definition space to pixel space. The
whole trick is that you start not with an identity matrix, but
with the above scale and offset from the canonical window to
the user-selected viewport.

Clipping
Not quite. We still have to fit clipping into our world view. In

my January 1991 column (CG&A, “A Trip down the Graphics
Pipeline: Line Clipping”) I described how clipping can be real
fast if it’s done to its own standardized region: (0,l) in X, y,
and Z. To accommodate this, we split our newly minted W-to-
V transformation into two parts (see Figure 3).

First, let’s pause for notation control. We are shortly going
to experience a whole lot of scales and displacements between
a whole lot of intermediate coordinate systems. I will abbrevi-
ate the coordinate systems with the single letters:

P: Pixel space
N: NDC space. The viewport is defined here.

January 1992 85

C: Clip space
W: Postperspective space. We already used P, and the canon-

ical window is defined in this space, hence W.

Then the scale and displacement to take x from clip space to
NDC space would be denoted

S &CN ICN,

and what we’ve been calling sX is really &WN, and similarly for
s.,, d,, and d!.

Now back to our program. Part one of the fragmented W-to-
V maps the canonical window to the canonical clipping re-
gion. In x

-1 b 0 and +l b 1

lny

-p b 0 and +p l-+ 1

Result:

s rw(. = l/2. D,.wc = l/2
&w(. = 1/(2p), D,wc = l/Z

Part two of the
viewport. In x

transform maps the clipping region to the

0 l+ V/ and 1 b V,

Iny

0 b Vh and 1 b V,

The WC transform is what we actually use to initialize the
current transformation matrix. I called it T1 in the clipping ar-
ticle. Next we compose the CN part of the transform with the
NP transform (NDC to pixel) to take us straight from clip
space to pixel space. I called this scale and displacement T2 in
the clipping article, and we apply it after clipping and after the
homogeneous division by w.

Off-screen viewports
Now what if some Bozo-I’m sorry-what if some user tries

to initialize a viewport with coordinates that extend outside
the allowable NDC range of (-1, +l) in x or (-a, +a) in y?
What do we do? Well, what would be reasonable to do? If
users move the viewport past the edge of the screen, they
would expect to see the part of the viewport that is still visible
with the dangling part clipped off. It so happens that we can
use the same clipping machinery we already have lying
around to accomplish this. We just do some more elaborate
initialization of Tl and T2. We’ll do this by a four-step process:

Find the intersection of the given viewport rectangle with
the available NDC range. This forms the visible viewport
range, a subset of the given viewport.
Inverse transform the visible viewport range to
postperspective space to determine that chunk of the ca-
nonical window that the clipper should keep.
Find the transform from that region of the canonical win-
dow to the (0,l) clip region. This is TI.
Find the transform from the clip region to the visible view-
port range. Merge this with the NP transform. This is T2.

First, let’s take care of the extreme situation: What if someone
shoves the viewport completely off the screen? It might hap-
pen, you never can tell. This occurs if

Result:

S ,CN = V, - VI. &CN = VI

S,CN = V, - Vh, D?CN = Vh

In this case, we want to set things up so that everything gets
clipped off. One way to do this is just to force

d, = D.tw(.S,c~ + &CN =
vr+ v/

2

v,-v,, I/,-v/
sy= .&CL?& = 2p =-

2

It works. This means that the insertion of clip space between
perspective and NDC spaces has no net effect on the geome-
try of viewing or where the picture gets mapped.

86

S xwc = 0, Dxwc = -1

S ,vwc = 0, @WC = -1

That is, the universe is shrunk to a point outside the clipping
boundaries. Alternatively, you can set a switch inside the clip-
per, causing it to return immediately upon each call.

But what if the viewport is at least somewhat visible? (Look
at Figure 4.) In general, the visible viewport range has the
boundaries

Uj = max(Vf, -1)
U, = min(V,, +l)
uh = max(vh, -a)
U, = min(V,, +a)

IEEE Computer Graphics & Applications

Visible viewport

Figure 4. The off-screen viewports.

Now inverse transform these boundaries back to
postperspective space to get the new window boundaries

,,=(u/-dx)~2u/-vrvI
sx vr- v/

w =(U,-d,) 2Ur-v,-v, r
sx vr - vc

w =(Ub-d,) 2ub-v,-l/b
b

& vr - v/

w
t

-(u,-2ut-v,-vb

SI vr - v/

The denominators above for y are not typos. Remember that
s.~ = s,. Note that, as a reality check, if U/ = V,, the above ex-
pression for IV/ reduces to -1, and similarly for the other
boundaries.

To get the new TI, we map in x

wI b 0 and W, I+ 1

and in y

Wh b 0 and W, p 1

with the result

Sxwc = l/(W, - WI), Dxwc = -WI /(W, - WI)
&WC = l/(wt - Wb), L&WC = --wb /(w, - wb,

If you want, you can plug in the W definitions and boil this
down to

S vr- v/ D -2u/+I/,+v,
xwc- 2(U,- Ul) ' Iwc= 2(U,- U,)

S vr - v/ -zub+v,+vb
.Ywc=2(u,- Dywc= 2(Ut- ub)

January 1992 87

and you never have to explicitly calculate the Ws. Warning!
Danger: There is a potential for zero division here. You’d bet-
ter check for U, = Ul and U, = ub and avoid having the rug
pulled out from under you if they are equal. This can only hap-
pen if the requested viewport has an x or y size of zero. In that
case, just use the transformation from the previous section.

Finally, part two of the transform maps the clipping region
to the visible viewport. In x

0 l+ UI and 1 b U,

and in y

0 b ub and 1 /-+ U,

with the result

s .CN = Ur- UI, Dxc~= UI
Syc~ = Ut - ub, @CN = ub

Merge this with the NP transform and you’re in business.

So what?
I’ve rarely seen any computer graphics books address the

problem of nonsquare screens during initialization of the
transforms of the graphics pipeline. The off-screen viewport
calculation does this nicely. You just initialize a default
viewport to go (-1, +l) in both x and y. If this sticks out be-
yond the NDC range, for example in y for a landscape-
oriented display, the proper visible subregion will be
automatically extracted with CTM set up to map that region
to the standard clip region. The clipper is none the wiser, but
you get a nondistorted picture on the screen. It’s taken me a
good long time to figure this out, but now I’m finally happy
with it. cl

