
AN ALGORITHM FOR SHADING OF REGIONS
ON VECTOR D I S P L A Y DEVICES

Kur t E.. B r a s s e l , SUNY at B u f f a l o
and

Robin Fegeas, U.S. Geological Survey

ABSTRACT

The display of shaded polygons by line,
cross-hatch, and dot patterns on vector devices is
a task frequently used in computer graphics and
computer cartography. In applications such as the
production of shaded maps polygon shading turns out
to be critical with respect to time requirements,
and the development of efficient algorithms is of
importance.

Given an arbitrary polygon in the plane
without self-crossing edges (simply-connected
polygon), the task at hand is to shade this
polygon with one or two sets of parallel lines
where for each set a shading angle and a line
distance are given. The basic concept of this new
algorithm is to decompose the polygon into a set of
mutually exclusive trapezoids (in special cases
triangles) where the parallel edges of the
trapezoids are parallel to the desired shading
lines. These trapezoids and triangles are then
shaded in a fast procedure. In its present form
the algorithm handles regions with up to 300
islands. Possible extensions include the
construction of dash and cross patterns.

Key words and phrases: Software, computer
graphics, polygons, shading, cartography,
llne-drawing processing, spatial information.

CR categories: 3.14, 3.24, 3.30, 3.79, 8.2

Department of Geography, State University of
New York at Buffalo, 415 Fronczak Hall, Amherst,
NY 14260.

Geography Program, U.S. Geological Survey,
M.S. 710, Reston, VA 22092

I. INTRODUCTION

The shading of regions by a regular line
pattern is a common task in various applications of
computer graphics. Regions (polygons) as defined
by a sequence of outline coordinates (xl,yl) ...
(xn,yn) are to be shaded by sets of parallel lines,
where the line width, the line distance, and the
angle of shading orientation are commonly used as
shading parameters. Such a routine allows for the
construction of shaded line patterns of any shading
density. Tobler [21] has proposed a continuous
shading scheme for mapping which shades geographic
areas by grey tones which are visually proportional
to a geographic variable to be displayed. In
practice, however, such a scheme encounters some
technical and perceptual restrictions for the
construction of very light or very dark tones: The
human eye is not able to accurately perceive grey
tones when shading-lines are closely spaced, and
in the reproduction process such sets of lines may
be modified in an undesirable way; also, parallel
line shading is not very effective for light grey
tones, where the line distance is large as
compared to the line width or to the size of the
region to be displayed. In these instances
extended shading schemes such as cross-hatching
(for dark grey tones) and dash, cross, or point
patterns (for light tones) are preferably used.
Brassel and Utano [3] have developed a scheme to
create grey tones by continuously varying patterns
from a coarse dot pattern to cross-hatch and
solid-fill shading. Where this procedure fulfils
the basic graphic needs, more efficient algorithms
for general area shading would be desirable.

The basic module required is a routine which
generates parallel sets of full and dashed lines.
By appropriate combination of dash length, dash
spacing, and rotation such a routine can be used
for the generation of cross and point patterns as
well. The use of various colors further extends
the potential of such a scheme.

The literature on area shading in a raster
environment is extensive [5,7,9,10,13,16], but is
only of secondary importance to our problem.
Various vector type area shading routines are in
use in a broad range of applications
[1,4,6,8,12,14,15,20,22,24,25]. In several cases,
however, an explicit description of the underlying
algorithm is missing. It is assumed that several
of the above authors use the general polygon
shading scheme which is discussed by [4] and [12].

© 1979 ACM O-89791-004--4/79/0800--126 $00.75
See Copyright Pg. 126

YO \

~ S o.. °o. ,

....."
p" ." .° ..°

Figure i

SHADING

/

XO

Given a polygon, a rotation angle and a llne
spacing, this algorithm first determines the
bounding rectangle of the polygon parallel to the
direction of the shading lines (Fig. i). Within
this rectangle shading lines are sequentially
processed by computing their intersections with all
segments of the polygon outline. Valid
intersections of the outline segments and one
shading line are sorted and palrwise connected.
Coleman, et al.[4] call thls algorithm the
"segment-polygon-algorithm'. Note that adjacencies
between outline segments are of no consideration in
thls algorithm. For a polygon of N vertices which
is to be shaded with M shading lines this algorithm
considers N*M line intersections and uses M minor
sorts.

Considering applications in cartography with
thousands of polygons and typical values for M and
N in the hundreds, it is evident that this
traditional algorithm (its complexity is of order
O(N*M)) is not efficient enough. Alternatives are
presented by [4], [20], and [26]. Coleman et al.
[4] achieve major improvements by first stripping
the polygon into bands (a window parallel to the
shading lines), while applying the
segment-polygon-algorithm to the intersection
boundary of the window and the polygon outline.
Efficiency is improved due to a reduction of the
quantity of points per intersection boundary.
Implicitly thls algorithm is equivalent to a 2-step
recursive use of the segment-polygon-algorithm.
Wood [26] sorts th e polygon outline points into a
linked list. He then sequentially computes the
shading lines by keeping an updated list of active
boundary segments. His algorithm minimizes core
memory. Tobler [20] keeps track of all ups and
downs of the polygon outlines, i.e. he makes use
of information pertinent to outline segment
adjacencles. Efficiency is thus improved, but the
fact that he stores all segment-shading llne
intersections makes this program excessive for
polygons of large sets of points and/or shading
lines. All the algorithms discussed so far have in
con~non that they use two rotation steps: rotation
of the polygon vertices into a coordinate system
parallel to the shading lines, and a rotation of
the shading llne endpoints back to the original
system.

Thls paper presents a new and fast algorithm:
it uses adjacency information of the outline
segments and breaks the polygon down into
trapezoids and triangles prior to shading; it uses
only one rotation process.

2__~.. BASIC CONCEPTS O__FF THE NE___WW ALGORITHM

a) Notations and Data Arrays

Given is a polygon in the plane defined by a
string of outline vertices P(xo,yo) as measured in
a coordinate system SO (compare Fig. 2); given is
also a desired llne spacing DIST and an orientation
angle ALPHA. Elements of the outline string
defined by two adjacent vertices are called outline
segments. Define a coordinate system S in the
plane where the origin of S coincides wlth the
origin of SO, where DIST is used as unit length,
and where the coordinate axes are rotated by ALPHA.
Compute the coordinates P(x,y) of all polygon
outline points wlth respect to S (rotation by
ALPHA, scaling by DIST). Sort the array of P's in
x and y directions (independently) and assign a
rank to each vertex with respect to both the x- and
y- axes (linked lists of x-ranks, y-ranks). Also
assign pointers to the next vertices in x and y
directions relative to each outline vertex. Table
I illustrates the various arrays stored for the
polygon In Figs. 2 and 3. Based on thls data
structure the polygon is now subdivided into
trapezoids (in special cases triangles), and the
trapezoids are independently shaded.

Table l

OUTLINE SEQUENCE A B C D E F G

X-RANK (XR) 1 3 4 7 6 5 2

Y-RANK (YR) 5 7 6 3 1 4 2

XO/YO COORDINATES

X/Y COORDINATES

NEXT X G C F D E B

NEXT Y C B F G A D

Figure 2

yo l SO
B

C

\ A F
\

\

× 0

127

B

C ' ~

E

Figure 3
X

b) Trapezoid Extraction

The process of subdividing the polygon into
trapezoids and triangles is initiated at the point
of lowest rank in a particular direction: Assume
we want to shade the polygon in Fig. 3 with lines
parallel to the x-axis. As our starting point we
then select the vertex with the minimum
y-coordlnate, i.e. point E (compare also with
Table i). We further define the two outline edges
EF and ED as left (segment clockwise of E) and
right (segment counterclockwise of E) shading
limits. Shading limits will he constantly
updated. In the starting phase these shading
limits are

left right
EF ED

From the semi-bounded region DEF a triangle ED'D is
extracted for shading. Since y-rank(D) <
y-rank(F), D" is defined such that y(D')=y(D) and
E,D',F collinear. DD" is called the upper limit of
the triangle to be shaded. At this point,
however, it is not known whether the triangle ED'D
can be shaded entirely or whether there is some
insinuation point P within the triangle, as this
is indicated in Fig. 4. To find a potential
insinuation point P a point-in-trapezoid (triangle)
search is performed. This search makes use of the
rank pointers defined above (x-rank: XR(i),
y-rank: YR(i)).

For all points P:
YR(E) ---> YR(D) check for XR(F) < XR(P) < XR(D).

A point P which fulfils this condition is located
within a window defined by E,D (y-direction) and

. i
E

Figure 4

D,F (x-direction). Such a point P has to further
he tested against the left and right limits of the
active trapezoid (triangle). In the illustration
example in Fig. 3 obviously no point P fulfils
this condition. Therefore, the triangle ED'D can
be subjected to the shading procedure as explained
in section 2c.

In the next step the shading limits are
updated as follows:

left right update left right
EF ED > D'F exhausted

Since the right shading limit is exhausted, we
retrieve a new segment from the polygon outline.
In our example (Fig. 3) this is DC, i.e. the
segment next to ED in the counterclockwise outline
sequence. The shading limits are now defined as:

left right
D'F DC

Since YR(F) < YR(C) define the trapezoid D'FF'D
with F" such that y(F')=y(F) and D,F',C collinear.
Since no further point is within D'FF'D this
trapezoid is being shaded. Updating of the shading
limits results in:

left right
exhausted F'C

To replace the exhausted left shading limit
retrieve the next clockwise outline segment FG.
Since YR(G) < YR(F), however, the segment FG
cannot be a left shading limit, but rather a right
shading limit of some other trapezoid. Therefore,
search along the clockwise outline sequence for a
local minimum; use its two adjacent segments as
the two shading limits; and push the old shading
limit(s) down into a stack. Since G is a local
minimum the updated shading limits are as follows:

left right
GA GF
-- F'C (stack).

In the subsequent step F" will he defined and the
triangle GF"F will be shaded. Since GF is
exhausted segment F'C is brought back from the

stack:

left right
F"A F'C

It can now easily be seen that the shading sequence
for the remainder of the polygon is:

F"AA'F" AC'CA" and C'BC.

So far we have not discussed the case where an
insinuation point P is located within a
preliminary trapezoid (figure 5). The shading
limits in this situation are:

left right
~" ED
D'F

and a point P is found to he within ED'D.
Eliminate point D', shade the triangle EP'P" and
update the shading limits as follows:

128

0 R

DI ~.- °........

~ / Figure

E

5

left right
PR P"D

P'F(stack) PQ (stack).

The polygon is thus broken down into a left and
right branch, where the right branch is pursued
first (PR,P"D), while the left branch (P'F,PQ) is
kept in the stack until the right branch is
exhausted (Fig. 6a). The stack may contain two
types of records: (I) single left or right shading
limits for which opposite shading limits have not
yet been detected, and (2) pairs of opposite
shading limits which initiate a new polygon branch.
It is reasonable to keep these two types separate
in a primary (I) and a secondary (2) stack.

If point P is the bottom point of an island,
the right branch shading is performed until the top
of the island (T) is reached (Fig. 6b). At this
point the search for a valid left shading limit
follows the left island boundary to find a local
minimum. Along this search path P is recognized as
the bottom of an island; this is the signal to
recall the left branch from the secondary stack for
further processing.

F D

g

(A) F i g u r e 6

T !

< 0
p,

E

(B)

c) Trapezold Shading

Given a trapezoid ABB'A'(FIg. 7) which is to
be shaded by lines parallel to AA" and BB" (AA" and
BB" are parallel). The coordinates of these points
are known in both coordinate systems SO (P(xo,yo))
and S (P(x,y)), where the shading lines are to be
drawn parallel to the x-axis of the S system. We
assume the measurement units in the S system to be
equal to the llne spacing DIST; then the
y-coordlnates rounded to integer values equal to

YO

\
\

",,_
/ ~ P^.
/ A' P~21 P2d

\ XO
\

X~ Figure 7

the ID-number of the shading lines where llne #0
cuts through the system origin. The task at hand
is to compute the endpoints Pi~ of the set of
shading lines within the trapezoid ABB'A'. Given
the y-coordinates of points A and B the endpolnts
Pi" are located on AB at integer coordinate
lo~ations of the y-axls. The y-coordinate of
PII' for example, equals to

y(PII) = IFIX (y(A) + .99999)

and the ratio R1 = APII/AB can be expressed as

R1 = (y(Pll) - y(A)) * YAB,

where YAB = l./(y(B) - y(A)). Define the ratio R2
as "one shading llne increment as a ratio of the
distance AB ":

R2 = (y(Pl2) - y(pu)) * YAB = YAB

R1 is used to compute the coordinates of the first
shading llne endpolnt P I' where its
computation is directly performed in the original
coordinate system SO:

xO(Pll) = xo(A) + R1 * DX

yO(Pll) = yo(A) + R1 * DY,

where DX= xo(B) - xo(A) and DY = yo(B) - yo(A).
Notice that the above coordinates are measured in
the SO system, so that no rotation is required
here. The increment between subsequent llne
endpolnts in the SO system is

DXO = DX * R2
DYO = DY * R2.

The coordinates of the shading endpoints are thus

xO(Plj) = xO(Pl,j_ I) + DXO

yO(Plj) = yO(Pl,j_ I) + DYO~

where

j=2 ...k
k = IFIX (y(B)) - y(Pll) + I.

The shading llne endpoints P~ on A'B" are
computed in analog fashion, points PIJ and

129

P^. are pairwise connected and the lines
pi~tted. The computation of the end points of the
first shading llne requires thus 14 additions and
16 multiplications, where for each subsequent
shading llne 4 additions are needed. A necessary
condition is that the resolution of the binary
coordinate representation be higher than the
distance between consecutive shading lines,

3__=. IMPLEMENTATION AND EVALUATION

The algorithm as described has been encoded in
FORTRAN IV and implemented on an IBM 370/155. An
overview of the procedure is given in Fig. 8.
First, duplicate adjacent polygon outline points
are eliminated. Further, polygons consisting of
various islands (up to 299 islands are allowed) are
preprocessed (outline strings are identified as
islands). The outline points are then rotated and
scaled (xo,yo ---> x,y). The transformed values
are sorted in both x- and y-dlrections, and
duplicate points which are non-adj acent in the
string sequence are separated by a small distance.
These preprocessing steps construct the data arrays
as shown in table I. The actual shading procedure,
i.e. the decomposition into trapezoids and
triangles is then performed in a single or double
call (cross-hatching) to a procedure called TRAPEZ.
Note that for orthogonal cross-hatching the
preprocessing steps have to be performed only once
(re-use of the values in Table I, with x and y
reversed). After completion of the shading,
control is returned to the calling procedure for
handling of a next polygon.

FIGURE 8

r- I ELIMINATE DUPLICATE
ADJACENT POINTS

1
I BUILD ISLANDS ,I

-ROTATE AND SCALE I

' TRAPEZ:
DECOMPOSE AND SHADE

IN 1ST DIRECTION

TRAPEZ:
DECOMPOSE AND SHADE

(ORTHOGONAL CROSS-HATCH)

Ii= =o==ol
ADJUST IF COUNTERCLOCKWISEJ

IOEF,NE PREL'M'NAR" TRAP"O' J

SPLI

N D ~ INTC YEs B)

PU]

SHAD E TRAPEZOID

1
LIMIT (LEFT OR RIGHT)

NO

YES

PRESENT BRANCH YES
EXHAUSTED

SEARCH FOR VALID I
LOCAL MINIMUM

J~PO I NT OF NO

GET BRANCH I~
FROM STACK

T PRELIMINARY TRAPEZOIDS
NTO THREE PARTS: A) BOTTOM

LEFT C) RIGHT BRANCH

SHADE BOTTOM
PUT LEFT BRANCH iNTO STACK

CONTINUE PROCESSING
WITH RIGHT BRANCH

FIGURE 9

ROUTINE TRAPEZ

The procedure for decomposition and shading
(TRAPEZ) is illustrated in Fig. 9. First, the
order of the polygon (clockwise, counterclockwise)
is determined and some related parameters are
initialized. The low point and the first two
shading limits are established, and a first
preliminary triangle (trapezoid) is defined. This
preliminary triangle is tested for inclusion of any
other outline point. If no point is within the
trapezoid, it is being shaded, and a new valid
shading limit (left or right) is searched for. The
new pair of active shading limits is used again to
define a new preliminary trapezoid. If no valid
new adjacent shading limit can be found -- be it
that the shading branch is exhausted or that the
low point of the newly found shading limit is a
member of the secondary stack -- the present branch
is abandoned and a new branch is retrieved from the
secondary stack. If the search for an outline
point within a preliminary trapezoid is successful,
the preliminary trapezoid is split into three

130

parts: (a) the bottom part (below the newly found
point) is shaded and eliminated from the list, (b)
the left shading branch is entered into the
secondary stack, and (c) the right branch is used
for immediate processing, i.e. its shading limits
define the next preliminary trapezoid. The
procedure terminates when all shading branches are
exhausted.

The basic procedure consists of iterations of
(a) the definition of preliminary trapezoids, (b)
the test for inclusion of outline points within the
preliminary trapezoid, (c) trapezoid shading, and
(d) the search for new valid shading limits, where
for each outline point within a preliminary
trapezoid a branch is put on the stack, and each
exhausted branch is replaced from the stack.

Figure i0 illustrates the shading of a complex
polygon, where triangles and trapezoids are
labelled in their processing sequence. The shading
procedure may be compared to the filling of an
arbitrarily shaped container with water, where the
influx pipe is at the lowest point of the container
(MIN). The liquid first fills the volume labelled
1 (Fig. 10) and then flows over into area 2.
Whenever the water level reaches some insinuation
point propagating from the top (TP), then the
filling process is artificially interrupted to the
left of the propagating point. The blocking of the
left branches is achieved in the program by using
the secondary stacks. These blockages are
re-opened when either the right branch is entirely
filled, or if the water overflows the top of the
island.

The procedure as implemented keeps all arrays
in core memory and is thus programmed for time
efficiency. The stoarge requirements for this
version are approximately 15K (or 22.6K if not
overlaid) + 16N + 8NI + 32NS bytes, where N is the
maximum number of outline points in any single

polygon, NI is the number of islands, and NS is
the number of shading limit stacks.

For a polygon with N outline points which is
to be shaded by M parallel lines, traditional
segment-polygon-algorithms involve as their major
operations M*N computations of line intersections,
at least N + 2M rotations, and M minor sort steps.
For cross-hatching these values are doubled. The
order of operations performed in the various parts
of the trapezoid algorithm is given in Table 2.

The present algorithm requires two sorts (O(N log
N)), the creation of NT = N - i + NI trapezoids
(NI = number of islands), and the shading of NT
trapezoids. The sort steps do not have to be
repeated for orthogonal cross-hatching. Non-linear
behaviour of the present algorithm is observed with
the elimination of duplicate points, the sorts,
and the search for points within the preliminary
trapezoids. This search for points within a
preliminary trapezoid appears to be the most
critical step. As a characteristic index for the
polygon we use the "number of lobes", i.e. the
ratio of the y-range of all trapezoids divided by
the polygon height. A convex polygon would have a
lobe number NL = I where for a polygon consisting
of two external islands of the same height NL = 2;
the polygon in Fig. 10 has a lobe number NL =
3.03. For maximally dissected polygons NL would
approach N/2. In these extreme cases the number of
p@ints consulted in the insinuation test approaches
N~/2. However, this has no practical impact
since most of the points can be immediately
eliminated by a simple check against the two
x-limits of the preliminary trapezoids; further,
all points which are not local minima are
eliminated as well, so that the overall number of
point-in-trapezoid checks for the entire polygon is
smaller than the number of local minima NLM in the
polygon (NLM < N/2). This point-in-trapezoid test
is thus linear.

MIN

131

OPERATION COMPLEXITY

Eliminate duplicate points N * NDP
Build island N
Rotate and scale N
Sort and separate N log N
Initialize trapez routine C
Define preliminary trapezoids NT
Search for points within prelim, trap.:
a) Search for all points within

y-range of all trapezoids NT*[I+(NL-I)*NL]
b) Point-in-trapezoid search < NLM

Split preliminary trapezoid NIP
Polygon shading:
a) Initialization + first line (all trap.) NT
b) Additional lines (all trap.) NL*Hp/SP-NT

Get next shading limit NT
Search for valid local minima <N
Retrieve branches from stack <NLM

N = Number of
NI = Number of
NE = Number of
NDP = Number of
C = Constant
NT = Number of

NL = Number of

NIP = Number of
NLM =

Hi

Hp
SP

outline points in polygon
internal islands in polygon
external islands in polygon
duplicate adjacent points

trapezoids = N + NI - NE
NT

lobes in polygon = ~ Hi/Hp
i=l

insinuation points (<N/2-1)
Number of local minima = number of
local maxima (<N/2)
Height of the ith trapezoid (y-range)
Height of the polygon (y-range)
Line spacing for polygon shading

Table 2. Number of Operations used in
Trapezoid Shading.

The overall performance of the algorithm
depends basically on the line spacing,• the lobe
index, the number of outline points and the number
of islands. Empirical results comparing the
trapezoid method with the segment-polygon algorithm
are shown in Table 3. Test I and 2 measure the
total execution time for polygon shading, whereas
tests 3 through 8 record only the actual shading
work -- excluding input and plotting. Fig.ll
graphically displays the major findings related to
tests 3 - 8 above. The results suggest that the
major strength of the trapezoid algorithm lies with
high density shading, i.e. the shading of
polygons for which the ratio

R = M / N (M = # of shading lines per polygon)

is high. Where both the sort and the trapezoid
extraction steps are insensitive to M the shading
of the trapezoid heavily depends on the line
density. For polygons with an average of 12
outline points the present algorithm is better if
R>.3 (i.e. if at least 3.6 shading lines are
drawn), for polygons with more points the critical
values of R is expected to be lower. Further, the
efficiency of both algorithms depends on the number
of outline points in a polygon. The trapezoid
algorithm, however, is less sensitive to large
numbers of outline points. In absolute terms ('CPU
total') the trapezoid shading algorithm performs
significantly' better than the
segment-polygon-algorithm, exept in the tests 3

Z• 80 -

o oo

4o

z
20

~- ~o

W

0.
2

F-

(I)
uJ ,6
o ~

- - T,a~zoid Algorit hm T / / Y
- - - - - Segment - Po lygon / /

Algor i thm I I
I I

.~ .6 , ~ ~ ~ 1o 20 4; g o l o
PROCESSING T IME PER SHADING L INE (IN M ILL ISECONDS)

~/~{{~ Figure !i

OF # OF # OF PTS./ LNS / CPU CPU/ CPU/ ALG
POLY. PTS. LINES POLY. PTS. tot. PT. LINE

..

1 1822 44540 6987 24.44 .16 143. 3.21 20.47 TRP
176. 3.95 25.19 SEG

2 3886 169109 22916 43.51 .14 617. 3.64 26.92 TRP
1284. 7.59 56.03 SEG

3 152 1786 109 11.75 .06 3.22 1.80 29.54 TRP
1.27 0.71 11.65 SEG

4 152 1786 290 11.75 .16 3.73 2.09 12.86 TRP
2.38 1.33 8.21 SEG

5 152 1786 2254 11.75 1.26 5.18 2.90 2.30 TRP
14.36 8.04 6.37 SEG

6 152 1786 22129 11.75 12.4 9.38 5.25 .42 TRP
128.6 72.0 5.81 SEG

7 633 18842 3005 29.77 .16 51.41 2.73 17.10 TRP
157.0 8.35 52.27 SEG

8 633 18842 28526 29.77 1.51 68.26 3.62 2.39 TRP
1655. 87.8 58.03 SEG

..

Table 3. Results of Test Runs. Tests 1 and 2 measure total
execution time, test 3 through 8 do not include
input and plotting operations. CPU tot. gives the
execution time in seconds on an IBM 370/155.
CPU/PT and CPU/LINE are given in milliseconds.

and 4 where both the number of outline points and
the number of shading lines are small (light
shading of simply-shaped polygons).

The shading test runs were performed with a
land cover map file with a multitude of islands
(Fig. 12).

Figure 12

132

4. CONCLUSIONS

We have presented an algorithm for shading of
polygons on vector display devices. This algorithm
disaggregates the polygon into a set of triangles
and trapezoids parallel to the direction of the
shading lines. The basic structures used thus are
similar to the "slab" methods used in some
point-in-polygon algorithms [17,18]. Similarities
also exist with elements of scan type hidden line
algorithms [2,11,19,23]. An implementation of the
described algorithm on an IBM 370/155 has proven
highly efficient. Where the present implementation
is optimized with respect to execution time,
future modifications will reduce storage
requirements for the implementation on
minicomputers. Planned extensions of the method
include the shading by systematic dash or cross
patterns. Further, future efforts will have to be
directed towards a systematic comparative analysis
of the present procedure and various other methods
for vector type shading, including the potential
of elements of scan type hidden line algorithms for
area shading.

REFERENCES

i. Baxter, R.S., Choropleth Mapping Program By
Computer, Manuscript, Building Research
Establishment, Garstom, Watford, U.K., 26
pgs.

2. Bouknight, W.J., 1970, "A Procedure for
Generation of Three-dimensional Half-toned
Computer Graphics Representations",
Communications ACM, ~ Vol. 13, No. 9, pp.
527 - 536.

3. Brassel, K.E. and J.J. Utano, 1979,
"Design Strategies for Continuous-tone Area
Mapping", The American Cartographer, Vol.6,
No. I (forthcoming).

4. Coleman, P.R., R.C. Durfee, and R.G.
Edwards, "Application of a Hierarchical Polygon
Structure in Spatial Analysis and Cartographic
Display", Harvard Papers o__n_n Geographical
Information Systems, Vol. 3, 20 pgs.

5. Jarvis, J.F., C.N. Judice, and W.H. Ninke,
1976, "A Survey of Techniques for the Display
of Continuous Tone Pictures on Bilevel
Displays", Computer Graphics and Image
Processins, Vol. 5, pp.13-40.

6. Kern, H., 1978, "Neuere Techniken der
Flaechenschraffur und der Herstellung von
Farbauszuegen in der automatisierten
thematischen Kartographie" (Recent Techniques of
Area Shading and Color Separation in Automated
Thematic Cartography), Kartographische
Nachrichten, Vol. 28, No. i, pp. 1-11.

7. Knowlton, K. and L. Harmon, 1972,
"Computer-Produced Grey Scales", Computer
Graphics and Image Processing, Vol. I, pp.
1-20.

8. Laboratory for Computer Graphics and Spatial
Analysis, 1976, CALFORM User's Manual.
Cambridge: Harvard University.

9. Lieberman, H., 1978, "How to Color In A
Coloring Book", Computer Graphics, Vol. 12,
No. 3, pp. 111-116.

i0. Negroponte, N., 1977, "Raster Scan
Approaches to Computer Graphics"~ Computers
and Graphics, Vol. 2, pp. 179-193.

II. Newman, W.M. and R.F. Sproull, 1973,
Principles of Interactive Computer Graphics.
New York: McGraw-Hill.

12. Monmonier, M.S., and D.M. Kirchoff, 1977,
"Choroplethic Plotter Mapping for a Small
Minicomputer", Proceedings of the American
Congress o_nn Surveying and Mapping, 37th Annual
Meeting, Wash., D.C., pp. 318-338.

13. Pavlidis, Th., 1978, "Filling Algorithms for
Raster Graphics", Computer Graphics, Vol.
12, No. 3, pp. 161-164.

14. Rase, W.D., SRAFOF shading subroutine,

15.

private communication.

Rase, W.D., 1978, "Computer-assisted
Thematic Mapping for Federal Planning",
Nachrichten aus dem Karten- und
Vermessun~swesen, Series II: Translations,
No. 35, pp. 77-83.

16. Rosenfeld, A. and V.C. Kak, 1976, Digital
Image Processing. New York/London: Academic
Press.

17. Salomon, K.B., 1978, "An Efficient
Point-in-Polygon Algorithm", Computers and
Geosciences, Vol. 4, pp.173-178.

18. Shamos, M.I., 1977, Computational
Geometry. Berlln/New York: Sprlnger-Verlag.

19. Southerland, I.E., R.F. Sproull and R.A.
Schumacker, 1974, "A Characterization of Ten
Hidden-Surface Algorithms", Computing
Surveys, Vol. 6, No. I, pp. 1-55.

20. Tobler, W.R., 1971, Choropleth Mapping
Programs. Cartographic Laboratory Report No.6,
Dept. of Geography, Univ. of Michigan, Ann
Arbor.

21. Tobler, W.R., 1973, "Choropleth Maps without
Class Intervals?", Geographical Analysis,Vol.
5, pp. 262-265.

22. U.S. Geological Survey, Geography Program:
Routine SHADT, personal con~unlcation.

23. Watkins, G.S., 1970, A Real-Time Visible
Surface Algorithm, Computer Science Department,
University of Utah, UTECH-CSc-70-101.

24. Waugh, T.C., and D.R.F. Taylor, 1976,
"GIMMS / An Example of an Operational System for
Computer Cartography", The Canadian
Cartographer, Vol. 13, No. 2, pp.
158-166.

25. Wood, P.M., and D.M. Austin, 1975, "CARTE:
A Thematic Mapping Program", Computers an___dd
Graphics, Vol. I, No. 2/3, pp. 239-250.

26. Wood, P.M., 1978, "Interactive Display of
Polygonal Data", Harvard Papers o__n_n Geographic
Information Systems, Vol. , 20 pgs.

ACKNOWLEDGEMENTS

This project has been supported by the Geography
Program, U.S. Geological Survey. Mr. Mike
Wasilenko and Ms. Karen Weiss have contributed
to the various figures in this paper.

133

