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ABSTRACT 

The display of shaded polygons by line, 
cross-hatch, and dot patterns on vector devices is 
a task frequently used in computer graphics and 
computer cartography. In applications such as the 
production of shaded maps polygon shading turns out 
to be critical with respect to time requirements, 
and the development of efficient algorithms is of 
importance. 

Given an arbitrary polygon in the plane 
without self-crossing edges (simply-connected 
polygon), the task at hand is to shade this 
polygon with one or two sets of parallel lines 
where for each set a shading angle and a line 
distance are given. The basic concept of this new 
algorithm is to decompose the polygon into a set of 
mutually exclusive trapezoids (in special cases 
triangles) where the parallel edges of the 
trapezoids are parallel to the desired shading 
lines. These trapezoids and triangles are then 
shaded in a fast procedure. In its present form 
the algorithm handles regions with up to 300 
islands. Possible extensions include the 
construction of dash and cross patterns. 
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I. INTRODUCTION 

The shading of regions by a regular line 
pattern is a common task in various applications of 
computer graphics. Regions (polygons) as defined 
by a sequence of outline coordinates (xl,yl) ... 
(xn,yn) are to be shaded by sets of parallel lines, 
where the line width, the line distance, and the 
angle of shading orientation are commonly used as 
shading parameters. Such a routine allows for the 
construction of shaded line patterns of any shading 
density. Tobler [21] has proposed a continuous 
shading scheme for mapping which shades geographic 
areas by grey tones which are visually proportional 
to a geographic variable to be displayed. In 
practice, however, such a scheme encounters some 
technical and perceptual restrictions for the 
construction of very light or very dark tones: The 
human eye is not able to accurately perceive grey 
tones when shading-lines are closely spaced, and 
in the reproduction process such sets of lines may 
be modified in an undesirable way; also, parallel 
line shading is not very effective for light grey 
tones, where the line distance is large as 
compared to the line width or to the size of the 
region to be displayed. In these instances 
extended shading schemes such as cross-hatching 
(for dark grey tones) and dash, cross, or point 
patterns (for light tones) are preferably used. 
Brassel and Utano [3] have developed a scheme to 
create grey tones by continuously varying patterns 
from a coarse dot pattern to cross-hatch and 
solid-fill shading. Where this procedure fulfils 
the basic graphic needs, more efficient algorithms 
for general area shading would be desirable. 

The basic module required is a routine which 
generates parallel sets of full and dashed lines. 
By appropriate combination of dash length, dash 
spacing, and rotation such a routine can be used 
for the generation of cross and point patterns as 
well. The use of various colors further extends 
the potential of such a scheme. 

The literature on area shading in a raster 
environment is extensive [5,7,9,10,13,16], but is 
only of secondary importance to our problem. 
Various vector type area shading routines are in 
use in a broad range of applications 
[1,4,6,8,12,14,15,20,22,24,25]. In several cases, 
however, an explicit description of the underlying 
algorithm is missing. It is assumed that several 
of the above authors use the general polygon 
shading scheme which is discussed by [4] and [12]. 
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Given a polygon, a rotation angle and a llne 
spacing, this algorithm first determines the 
bounding rectangle of the polygon parallel to the 
direction of the shading lines (Fig. i). Within 
this rectangle shading lines are sequentially 
processed by computing their intersections with all 
segments of the polygon outline. Valid 
intersections of the outline segments and one 
shading line are sorted and palrwise connected. 
Coleman, et al.[4] call thls algorithm the 
"segment-polygon-algorithm'. Note that adjacencies 
between outline segments are of no consideration in 
thls algorithm. For a polygon of N vertices which 
is to be shaded with M shading lines this algorithm 
considers N*M line intersections and uses M minor 
sorts. 

Considering applications in cartography with 
thousands of polygons and typical values for M and 
N in the hundreds, it is evident that this 
traditional algorithm (its complexity is of order 
O(N*M)) is not efficient enough. Alternatives are 
presented by [4], [20], and [26]. Coleman et al. 
[4] achieve major improvements by first stripping 
the polygon into bands (a window parallel to the 
shading lines), while applying the 
segment-polygon-algorithm to the intersection 
boundary of the window and the polygon outline. 
Efficiency is improved due to a reduction of the 
quantity of points per intersection boundary. 
Implicitly thls algorithm is equivalent to a 2-step 
recursive use of the segment-polygon-algorithm. 
Wood [26] sorts th e polygon outline points into a 
linked list. He then sequentially computes the 
shading lines by keeping an updated list of active 
boundary segments. His algorithm minimizes core 
memory. Tobler [20] keeps track of all ups and 
downs of the polygon outlines, i.e. he makes use 
of information pertinent to outline segment 
adjacencles. Efficiency is thus improved, but the 
fact that he stores all segment-shading llne 
intersections makes this program excessive for 
polygons of large sets of points and/or shading 
lines. All the algorithms discussed so far have in 
con~non that they use two rotation steps: rotation 
of the polygon vertices into a coordinate system 
parallel to the shading lines, and a rotation of 
the shading llne endpoints back to the original 
system. 

Thls paper presents a new and fast algorithm: 
it uses adjacency information of the outline 
segments and breaks the polygon down into 
trapezoids and triangles prior to shading; it uses 
only one rotation process. 

2__~.. BASIC CONCEPTS O__FF THE NE___WW ALGORITHM 

a) Notations and Data Arrays 

Given is a polygon in the plane defined by a 
string of outline vertices P(xo,yo) as measured in 
a coordinate system SO (compare Fig. 2); given is 
also a desired llne spacing DIST and an orientation 
angle ALPHA. Elements of the outline string 
defined by two adjacent vertices are called outline 
segments. Define a coordinate system S in the 
plane where the origin of S coincides wlth the 
origin of SO, where DIST is used as unit length, 
and where the coordinate axes are rotated by ALPHA. 
Compute the coordinates P(x,y) of all polygon 
outline points wlth respect to S (rotation by 
ALPHA, scaling by DIST). Sort the array of P's in 
x and y directions (independently) and assign a 
rank to each vertex with respect to both the x- and 
y- axes (linked lists of x-ranks, y-ranks). Also 
assign pointers to the next vertices in x and y 
directions relative to each outline vertex. Table 
I illustrates the various arrays stored for the 
polygon In Figs. 2 and 3. Based on thls data 
structure the polygon is now subdivided into 
trapezoids (in special cases triangles), and the 
trapezoids are independently shaded. 

Table l 

OUTLINE SEQUENCE A B C D E F G 

X-RANK (XR) 1 3 4 7 6 5 2 

Y-RANK (YR) 5 7 6 3 1 4 2 

XO/YO COORDINATES . . . . . . .  

X/Y COORDINATES . . . . . . .  

NEXT X G C F D E B 

NEXT Y C B F G A D 

Figure 2 
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b) Trapezoid Extraction 

The process of subdividing the polygon into 
trapezoids and triangles is initiated at the point 
of lowest rank in a particular direction: Assume 
we want to shade the polygon in Fig. 3 with lines 
parallel to the x-axis. As our starting point we 
then select the vertex with the minimum 
y-coordlnate, i.e. point E (compare also with 
Table i). We further define the two outline edges 
EF and ED as left (segment clockwise of E) and 
right (segment counterclockwise of E) shading 
limits. Shading limits will he constantly 
updated. In the starting phase these shading 
limits are 

left right 
EF ED 

From the semi-bounded region DEF a triangle ED'D is 
extracted for shading. Since y-rank(D) < 
y-rank(F), D" is defined such that y(D')=y(D) and 
E,D',F collinear. DD" is called the upper limit of 
the triangle to be shaded. At this point, 
however, it is not known whether the triangle ED'D 
can be shaded entirely or whether there is some 
insinuation point P within the triangle, as this 
is indicated in Fig. 4. To find a potential 
insinuation point P a point-in-trapezoid (triangle) 
search is performed. This search makes use of the 
rank pointers defined above (x-rank: XR(i), 
y-rank: YR(i)). 

For all points P: 
YR(E) ---> YR(D) check for XR(F) < XR(P) < XR(D). 

A point P which fulfils this condition is located 
within a window defined by E,D (y-direction) and 

. . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  i 
E 

Figure 4 

D,F (x-direction). Such a point P has to further 
he tested against the left and right limits of the 
active trapezoid (triangle). In the illustration 
example in Fig. 3 obviously no point P fulfils 
this condition. Therefore, the triangle ED'D can 
be subjected to the shading procedure as explained 
in section 2c. 

In the next step the shading limits are 
updated as follows: 

left right update left right 
EF ED ...... > D'F exhausted 

Since the right shading limit is exhausted, we 
retrieve a new segment from the polygon outline. 
In our example (Fig. 3) this is DC, i.e. the 
segment next to ED in the counterclockwise outline 
sequence. The shading limits are now defined as: 

left right 
D'F DC 

Since YR(F) < YR(C) define the trapezoid D'FF'D 
with F" such that y(F')=y(F) and D,F',C collinear. 
Since no further point is within D'FF'D this 
trapezoid is being shaded. Updating of the shading 
limits results in: 

left right 
exhausted F'C 

To replace the exhausted left shading limit 
retrieve the next clockwise outline segment FG. 
Since YR(G) < YR(F), however, the segment FG 
cannot be a left shading limit, but rather a right 
shading limit of some other trapezoid. Therefore, 
search along the clockwise outline sequence for a 
local minimum; use its two adjacent segments as 
the two shading limits; and push the old shading 
limit(s) down into a stack. Since G is a local 
minimum the updated shading limits are as follows: 

left right 
GA GF 
-- F'C (stack). 

In the subsequent step F" will he defined and the 
triangle GF"F will be shaded. Since GF is 
exhausted segment F'C is brought back from the 

stack: 

left right 
F"A F'C 

It can now easily be seen that the shading sequence 
for the remainder of the polygon is: 

F"AA'F" AC'CA" and C'BC. 

So far we have not discussed the case where an 
insinuation point P is located within a 
preliminary trapezoid (figure 5). The shading 
limits in this situation are: 

left right 
~" ED 
D'F 

and a point P is found to he within ED'D. 
Eliminate point D', shade the triangle EP'P" and 
update the shading limits as follows: 
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left right 
PR P"D 

P'F(stack) PQ (stack). 

The polygon is thus broken down into a left and 
right branch, where the right branch is pursued 
first (PR,P"D), while the left branch (P'F,PQ) is 
kept in the stack until the right branch is 
exhausted (Fig. 6a). The stack may contain two 
types of records: (I) single left or right shading 
limits for which opposite shading limits have not 
yet been detected, and (2) pairs of opposite 
shading limits which initiate a new polygon branch. 
It is reasonable to keep these two types separate 
in a primary (I) and a secondary (2) stack. 

If point P is the bottom point of an island, 
the right branch shading is performed until the top 
of the island (T) is reached (Fig. 6b). At this 
point the search for a valid left shading limit 
follows the left island boundary to find a local 
minimum. Along this search path P is recognized as 
the bottom of an island; this is the signal to 
recall the left branch from the secondary stack for 
further processing. 

F D 

g 
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c) Trapezold Shading 

Given a trapezoid ABB'A'(FIg. 7) which is to 
be shaded by lines parallel to AA" and BB" (AA" and 
BB" are parallel). The coordinates of these points 
are known in both coordinate systems SO (P(xo,yo)) 
and S (P(x,y)), where the shading lines are to be 
drawn parallel to the x-axis of the S system. We 
assume the measurement units in the S system to be 
equal to the llne spacing DIST; then the 
y-coordlnates rounded to integer values equal to 
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the ID-number of the shading lines where llne #0 
cuts through the system origin. The task at hand 
is to compute the endpoints Pi~ of the set of 
shading lines within the trapezoid ABB'A'. Given 
the y-coordinates of points A and B the endpolnts 
Pi" are located on AB at integer coordinate 
lo~ations of the y-axls. The y-coordinate of 
PII' for example, equals to 

y(PII ) = IFIX (y(A) + .99999 ) 

and the ratio R1 = APII/AB can be expressed as 

R1 = ( y(Pll ) - y(A) ) * YAB, 

where YAB = l./(y(B) - y(A)). Define the ratio R2 
as "one shading llne increment as a ratio of the 
distance AB ": 

R2 = ( y(Pl2 ) - y(pu) ) * YAB = YAB 

R1 is used to compute the coordinates of the first 
shading llne endpolnt P I' where its 
computation is directly performed in the original 
coordinate system SO: 

xO(Pll) = xo(A) + R1 * DX 

yO(Pll) = yo(A) + R1 * DY, 

where DX= xo(B) - xo(A) and DY = yo(B) - yo(A). 
Notice that the above coordinates are measured in 
the SO system, so that no rotation is required 
here. The increment between subsequent llne 
endpolnts in the SO system is 

DXO = DX * R2 
DYO = DY * R2. 

The coordinates of the shading endpoints are thus 

xO(Plj) = xO(Pl,j_ I) + DXO 

yO(Plj) = yO(Pl,j_ I) + DYO~ 

where 

j=2 ...k 
k = IFIX (y(B) ) - y(Pll ) + I. 

The shading llne endpoints P~ on A'B" are 
computed in analog fashion, points PIJ and 
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P^. are pairwise connected and the lines 
pi~tted. The computation of the end points of the 
first shading llne requires thus 14 additions and 
16 multiplications, where for each subsequent 
shading llne 4 additions are needed. A necessary 
condition is that the resolution of the binary 
coordinate representation be higher than the 
distance between consecutive shading lines, 

3__=. IMPLEMENTATION AND EVALUATION 

The algorithm as described has been encoded in 
FORTRAN IV and implemented on an IBM 370/155. An 
overview of the procedure is given in Fig. 8. 
First, duplicate adjacent polygon outline points 
are eliminated. Further, polygons consisting of 
various islands (up to 299 islands are allowed) are 
preprocessed (outline strings are identified as 
islands). The outline points are then rotated and 
scaled (xo,yo ---> x,y). The transformed values 
are sorted in both x- and y-dlrections, and 
duplicate points which are non-adj acent in the 
string sequence are separated by a small distance. 
These preprocessing steps construct the data arrays 
as shown in table I. The actual shading procedure, 
i.e. the decomposition into trapezoids and 
triangles is then performed in a single or double 
call (cross-hatching) to a procedure called TRAPEZ. 
Note that for orthogonal cross-hatching the 
preprocessing steps have to be performed only once 
(re-use of the values in Table I, with x and y 
reversed). After completion of the shading, 
control is returned to the calling procedure for 
handling of a next polygon. 

FIGURE 8 
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FIGURE 9 

ROUTINE TRAPEZ 

The procedure for decomposition and shading 
(TRAPEZ) is illustrated in Fig. 9. First, the 
order of the polygon (clockwise, counterclockwise) 
is determined and some related parameters are 
initialized. The low point and the first two 
shading limits are established, and a first 
preliminary triangle (trapezoid) is defined. This 
preliminary triangle is tested for inclusion of any 
other outline point. If no point is within the 
trapezoid, it is being shaded, and a new valid 
shading limit (left or right) is searched for. The 
new pair of active shading limits is used again to 
define a new preliminary trapezoid. If no valid 
new adjacent shading limit can be found -- be it 
that the shading branch is exhausted or that the 
low point of the newly found shading limit is a 
member of the secondary stack -- the present branch 
is abandoned and a new branch is retrieved from the 
secondary stack. If the search for an outline 
point within a preliminary trapezoid is successful, 
the preliminary trapezoid is split into three 
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parts: (a) the bottom part (below the newly found 
point) is shaded and eliminated from the list, (b) 
the left shading branch is entered into the 
secondary stack, and (c) the right branch is used 
for immediate processing, i.e. its shading limits 
define the next preliminary trapezoid. The 
procedure terminates when all shading branches are 
exhausted. 

The basic procedure consists of iterations of 
(a) the definition of preliminary trapezoids, (b) 
the test for inclusion of outline points within the 
preliminary trapezoid, (c) trapezoid shading, and 
(d) the search for new valid shading limits, where 
for each outline point within a preliminary 
trapezoid a branch is put on the stack, and each 
exhausted branch is replaced from the stack. 

Figure i0 illustrates the shading of a complex 
polygon, where triangles and trapezoids are 
labelled in their processing sequence. The shading 
procedure may be compared to the filling of an 
arbitrarily shaped container with water, where the 
influx pipe is at the lowest point of the container 
(MIN). The liquid first fills the volume labelled 
1 (Fig. 10) and then flows over into area 2. 
Whenever the water level reaches some insinuation 
point propagating from the top (TP), then the 
filling process is artificially interrupted to the 
left of the propagating point. The blocking of the 
left branches is achieved in the program by using 
the secondary stacks. These blockages are 
re-opened when either the right branch is entirely 
filled, or if the water overflows the top of the 
island. 

The procedure as implemented keeps all arrays 
in core memory and is thus programmed for time 
efficiency. The stoarge requirements for this 
version are approximately 15K (or 22.6K if not 
overlaid) + 16N + 8NI + 32NS bytes, where N is the 
maximum number of outline points in any single 

polygon, NI is the number of islands, and NS is 
the number of shading limit stacks. 

For a polygon with N outline points which is 
to be shaded by M parallel lines, traditional 
segment-polygon-algorithms involve as their major 
operations M*N computations of line intersections, 
at least N + 2M rotations, and M minor sort steps. 
For cross-hatching these values are doubled. The 
order of operations performed in the various parts 
of the trapezoid algorithm is given in Table 2. 

The present algorithm requires two sorts (O(N log 
N)), the creation of NT = N - i + NI trapezoids 
(NI = number of islands), and the shading of NT 
trapezoids. The sort steps do not have to be 
repeated for orthogonal cross-hatching. Non-linear 
behaviour of the present algorithm is observed with 
the elimination of duplicate points, the sorts, 
and the search for points within the preliminary 
trapezoids. This search for points within a 
preliminary trapezoid appears to be the most 
critical step. As a characteristic index for the 
polygon we use the "number of lobes", i.e. the 
ratio of the y-range of all trapezoids divided by 
the polygon height. A convex polygon would have a 
lobe number NL = I where for a polygon consisting 
of two external islands of the same height NL = 2; 
the polygon in Fig. 10 has a lobe number NL = 
3.03. For maximally dissected polygons NL would 
approach N/2. In these extreme cases the number of 
p@ints consulted in the insinuation test approaches 
N~/2. However, this has no practical impact 
since most of the points can be immediately 
eliminated by a simple check against the two 
x-limits of the preliminary trapezoids; further, 
all points which are not local minima are 
eliminated as well, so that the overall number of 
point-in-trapezoid checks for the entire polygon is 
smaller than the number of local minima NLM in the 
polygon (NLM < N/2). This point-in-trapezoid test 
is thus linear. 

MIN 
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OPERATION COMPLEXITY 

Eliminate duplicate points N * NDP 
Build island N 
Rotate and scale N 
Sort and separate N log N 
Initialize trapez routine C 
Define preliminary trapezoids NT 
Search for points within prelim, trap.: 
a) Search for all points within 

y-range of all trapezoids NT*[I+(NL-I)*NL] 
b) Point-in-trapezoid search < NLM 

Split preliminary trapezoid NIP 
Polygon shading: 
a) Initialization + first line (all trap.) NT 
b) Additional lines (all trap.) NL*Hp/SP-NT 

Get next shading limit NT 
Search for valid local minima <N 
Retrieve branches from stack <NLM 

N = Number of 
NI = Number of 
NE = Number of 
NDP = Number of 
C = Constant 
NT = Number of 

NL = Number of 

NIP = Number of 
NLM = 

Hi 

Hp 
SP 

outline points in polygon 
internal islands in polygon 
external islands in polygon 
duplicate adjacent points 

trapezoids = N + NI - NE 
NT 

lobes in polygon = ~ Hi/Hp 
i=l 

insinuation points (<N/2-1) 
Number of local minima = number of 
local maxima (<N/2) 
Height of the ith trapezoid (y-range) 
Height of the polygon (y-range) 
Line spacing for polygon shading 

Table 2. Number of Operations used in 
Trapezoid Shading. 

The overall performance of the algorithm 
depends basically on the line spacing,• the lobe 
index, the number of outline points and the number 
of islands. Empirical results comparing the 
trapezoid method with the segment-polygon algorithm 
are shown in Table 3. Test I and 2 measure the 
total execution time for polygon shading, whereas 
tests 3 through 8 record only the actual shading 
work -- excluding input and plotting. Fig.ll 
graphically displays the major findings related to 
tests 3 - 8 above. The results suggest that the 
major strength of the trapezoid algorithm lies with 
high density shading, i.e. the shading of 
polygons for which the ratio 

R = M / N (M = # of shading lines per polygon) 

is high. Where both the sort and the trapezoid 
extraction steps are insensitive to M the shading 
of the trapezoid heavily depends on the line 
density. For polygons with an average of 12 
outline points the present algorithm is better if 
R>.3 (i.e. if at least 3.6 shading lines are 
drawn), for polygons with more points the critical 
values of R is expected to be lower. Further, the 
efficiency of both algorithms depends on the number 
of outline points in a polygon. The trapezoid 
algorithm, however, is less sensitive to large 
numbers of outline points. In absolute terms ('CPU 
total') the trapezoid shading algorithm performs 
significantly' better than the 
segment-polygon-algorithm, exept in the tests 3 
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# # OF # OF # OF PTS./ LNS / CPU CPU/ CPU/ ALG 
POLY. PTS. LINES POLY. PTS. tot. PT. LINE 

.......................................................... 

1 1822 44540 6987 24.44 .16 143. 3.21 20.47 TRP 
176. 3.95 25.19 SEG 

2 3886 169109 22916 43.51 .14 617. 3.64 26.92 TRP 
1284. 7.59 56.03 SEG 

3 152 1786 109 11.75 .06 3.22 1.80 29.54 TRP 
1.27 0.71 11.65 SEG 

4 152 1786 290 11.75 .16 3.73 2.09 12.86 TRP 
2.38 1.33 8.21 SEG 

5 152 1786 2254 11.75 1.26 5.18 2.90 2.30 TRP 
14.36 8.04 6.37 SEG 

6 152 1786 22129 11.75 12.4 9.38 5.25 .42 TRP 
128.6 72.0 5.81 SEG 

7 633 18842 3005 29.77 .16 51.41 2.73 17.10 TRP 
157.0 8.35 52.27 SEG 

8 633 18842 28526 29.77 1.51 68.26 3.62 2.39 TRP 
1655. 87.8 58.03 SEG 

............................................................ 

Table 3. Results of Test Runs. Tests 1 and 2 measure total 
execution time, test 3 through 8 do not include 
input and plotting operations. CPU tot. gives the 
execution time in seconds on an IBM 370/155. 
CPU/PT and CPU/LINE are given in milliseconds. 

and 4 where both the number of outline points and 
the number of shading lines are small (light 
shading of simply-shaped polygons). 

The shading test runs were performed with a 
land cover map file with a multitude of islands 
(Fig. 12). 

Figure 12 

132 



4. CONCLUSIONS 

We have presented an algorithm for shading of 
polygons on vector display devices. This algorithm 
disaggregates the polygon into a set of triangles 
and trapezoids parallel to the direction of the 
shading lines. The basic structures used thus are 
similar to the "slab" methods used in some 
point-in-polygon algorithms [17,18]. Similarities 
also exist with elements of scan type hidden line 
algorithms [2,11,19,23]. An implementation of the 
described algorithm on an IBM 370/155 has proven 
highly efficient. Where the present implementation 
is optimized with respect to execution time, 
future modifications will reduce storage 
requirements for the implementation on 
minicomputers. Planned extensions of the method 
include the shading by systematic dash or cross 
patterns. Further, future efforts will have to be 
directed towards a systematic comparative analysis 
of the present procedure and various other methods 
for vector type shading, including the potential 
of elements of scan type hidden line algorithms for 
area shading. 
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