
Tutorial

ictures of line drawings and text charac- P ters can be displayed using raster devices
such as laser printers, cathode ray tubes, and incre-
mental plotters. A laser printer fuses a small, discrete
dot on a page. Acathode ray tube’s electron gun excites
a discrete spot of phosphor to glowing visibility. An
incremental plotter steps an inked pen between con-
ceptual reference points to leave, say, a 0.001-inch line

segment drawn at an integer multi-
ple of 45 degrees. Raster devices,
therefore, typically employ a dis-
Crete rectilinear representational
grid in which an integer-valued
coordinate mesh point is a conve-
niently addressable entity.

In computer graphics, the con-
ceptualmeshpointisthepixel. Pixel
and its predecessor pel are each a
shortened common expression for
picture element. Some find it useful
to conceptualize raster devices as
chessboards in which a pixel is rep-
resented by the round base of aking
piece as it moves from square to
square. In this analogy, a pixel
address is the coordinate location of
the center of each chessboard
square. Drawing a curve typically

progresses step by step along a pixel pathway con-
strained by the unit steps of the king piece. Even though
the physical length of a diagonal step differs by a factor
of fi from the length of an axial step, each of the eight
possible directions constitutes a single step. Hence, the
term unzt step describes movement to one of the eight
neighboring mesh points.

Old practices applied in a new context
Forming pictures from pixels is an old practice. The

rastered displays presented in Figures 1 and 2 illustrate
noncomputer-drawn rastered pictures. Needlepoint or
counted cross-stitch, such as that popularized by the
image on a box of Whitman Sampler chocolates, uses

Key to developing line-

drawing algorithms is an

explicit reference model for

quantifying a “good” raster

approximation. This tutorial

looks at old practices, then

demonstrates development

of line- and edge-drawing

algorithms.

Jack Bresenham
Winthrop Univers iq

essentially the same technique as does an incremental
plotter; small pieces of colored thread are exposed to
compose a scene from tiny line segments. In the 1950s
and 1960s, card stunt displays in the spectator stands
during football game halftimes used colored cardboard
squares as pixels to present clever pictures and captions.

Other examples include the scoreboard at a sports
stadium, which uses discrete light bulbs to form num-
bers, letters, and pictures as does the big moving news
display at Times Square in New York City. The French
pointillist painter Georges Pierre Seurat (1859-91) per-
fected a painting style in which he composed pictures
strictly from discrete dots. A close look at your favorite
newspaper will reveal its black-and-white photos to be
collections of dots. Variable spacing in black dot clus-
ters produces the visual effect of various shades of gray
called dithering.

Thus, quantized picture composition from discrete dot
patterns certainly is nothing conceptually new.
Computer technology has, however, provided a means
for faster generation of more complex and comprehen-
sive visual displays. Computer programs can synthesize
and manipulate picture drawing abstractly and use ras-
terization algorithms to pick appropriate pixels at ren-
dering time. Computer peripherals can then display the
generated image as a dot composition of discrete pixels.

Pixel generation or rendering is often separated from
picture presentation by rastering pixel selections into
an intermediate memory buffer from which a periph-
eral can independently control the timing of its extrac-
tion of one or more horizontal scan lines of pixels for
actual display and viewing. Dual-ported memory capa-
ble of accepting pixels written by the rendering process
at the same time the CRT refresh circuitry is reading pix-
els for display is known as video random access memo-
ry, or VRAM.

The pixel representation in such an intermediate
memory or frame buffer typically implies its raster pre-
sentation coordinate location by its memory address.
The address itself is calculated from the discrete pixel
integer (X, Y) location. For example, a 256-color display
640 pixels wide by 480 pixels high might use one byte

74 January 1996 0272-1 7-1 6196185.00 0 1996 IEEE

per pixel to hold each 8-bit color value. The frame-buffer
memory address for a pixel at (X, Y) would be calculat-
ed as

address =base + X + 640Y

where X E (0, . . . , 639) and Y E (0, . . . ,479). Alter-
natively, pixel coordinates (X, Y) can be recovered from
the memory address as

X= ((address -base) MOD 640)
Y = ((address - base) DIV 640)

Not unlike a paint-by-numbers strip in the Sunday
newspaper comics, number values held in the frame
buffer specify pixel color. The pixel’s value explicitly
stored in memory can be as simple as a dichotomous 0
for “off‘ and 1 for “on” convention that requires only one
bit per pixel for a bilevel or monochrome display.
Alternatively, a pixel’s stored value could be a 24-bit,
three-byte-partitioned value representing a specific
color shade specified by its triplet red, green, and blue
(RGB) component mix from a palette of 16,777,216 color
choices. Typically, the number held in the frame buffer
is simply a positional index into a
color table or palette from which the
actual RGB color value is read.
Separating the actual displayed
color from the frame buffer’s pixel
value provides a late color-binding
mechanism that lets you dynami-
cally or interactively redefine palette
colors to, say, highlight or more
widely separate selected colors after
a first viewing of the data.

Rasterization: sampling
approximation

Many drawing applications, such
as engineering design or business
chart preparation, use a geometric
line as a fundamental graphical
shape. More complex shapes, such
as splines or boxes or character
fonts, are then formed using many
short lines or filled polygonal areas, often simply trian-
gles, bounded by small line segments. Computer graph-
ics processing must therefore provide fast, accurate,
consistent line-drawing capability at the elementary sys-
tems level. Rasterization will simply be the process of
sampling the “true” line to approximate its continuous
representation, using discrete dots or lattice points for
integer coordinate pixels chosen to be close to the locus
of the true line.

How will we know when we have a good approxima-
tion? What specifically constitutes “close”? To answer
such questions, we need explicit assumptions and a con-
ceptual reference model. Let’s start with some coordi-
nate assumptions. Our underlying grid for discretization
is a rectilinear Cartesian coordinate system with uni-
formly spacedXand Y grid lines, that is, square spacing
between pixels. Pixel-coordinate addresses represent

the center of a pixel and correspond to integer mesh
points on the uniform grid. Figure 3 on the next page
illustrates pixels in such a raster space.

Different assumptions, not considered here, could use
alternatives such as a hexagonal grid’ or pixel address-
es corresponding to the lower left corner of an open, rec-
tangular pixel.’An unfortunate choice would be a truly
rectangular grid in which the horizontal distance
between pixels differs from the vertical distance. Early
IBM PC graphics used such an anisotropicgrid; later IBM
PC graphics have begun to use the preferred square
spacing for the addressable pixel grid.

Recall that in ordinary geometry, points have no size
and hence occupy no area. Adisplayed pixel does cover
some small, but finite, area. Likewise, a geometric line
has only length with no width or thickness. Our dis-
played rastered lines will be composed of pixels and will

IEEE Computer Graphics and Applications

1 Nancy‘s
needlepoint
(courtesy of
Nancy Bull
Bresen ham;
photo by Joel
Nichols).

2 Stanford
football half-
time (photo
courtesy of
Larry Tessler).

Tutorial

3 Lattice points address the center
of a pixel in a Cartesian coordinate
system raster grid.

76

therefore have at least single-pixel thickness. Later we’ll
want to purposely specify lines of multiple-pixel widths.
These acknowledged discrepancies in area between con-
ceptual points and lines and physical pixels present
opportunities for visual anomalies, which we’ll need to
handle in as consistent a fashion as possible.

Our rastering strategy for lines of the form

with 0 < s < 1 and nonnegativex, will be to step abscis-
sa integerxvalues by unity from 0 and find the “closest”
ordinate integer Yvalue for each successive value ofX.
That our representational grid in raster space requires
pixel addresses to be integer coordinate lattice points
does not mean that we can specify only lines with inte-
ger endpoints. However, lines with integer endpoints
are typically rendered much faster and more compact-
ly, so it is worthwhile understanding what is traded in
accuracy to achieve integer speed in pixel generation.

We’ll get to the simplified integer-endpoint line, first-
octant form, Y = sX, by considering various simplifica-
tions for approximating the general form

for a directed line segment from a noninteger point
(x0,yO) to a noninteger point (q y ~) . First, though, let’s
explicitly, but somewhat arbitrarily, specify and quan-
tify what we want to accept as a “good” fit for each
“close” pixel in a discrete raster approximation of a con-
tinuous true line.

Measuring closeness of a delicatessen to an apartment
in Manhattan would likelyrequire laying out a staggered
route with rectangular corners to account for sidewalk
pathway constraints imposed by city street layouts. In a
different context, measuring closeness to a neighboring
ranch house in the llano estacado plains of eastern New
Mexico more likely would simply use linear distance as
the crow flies or the horse gallops. Let’s look at some
alternative measures of closeness in rastering or scan
converting geometric primitives such as lines and circles.

Closeness: objective measurement for a
subjective assumption

With hand-crafted, low-volume cross-stitched pic-
tures, each artisan could subjectively decide what close
meant in approximating continuous scenes by sampled,
discrete smidgens of thread placed close to original pic-

January 1996

ture geometric features. With computer-generated
drawing, precise predictability, guaranteed repeatabil-
ity, and systematic selection of pixels are desirable char-
acteristics. We’ll want to use an algorithm or set of rules
to specify how to pick pixels consistently.

Before developing an algorithmic rasterization
methodology for pixel generation, we’ll need to subjec-
tively pick a quantifiable, measurable means to define
what is meant by close or best choice between two can-
didate pixels at each step. Having subjectively picked a
closeness measure for its perceived aesthetical implica-
tions or its computational tractability, we’ll then objec-
tivelypickpixels by precise measurement. We’ll also want
to devise a methodology that efficiently and rapidly cal-
culates our objective measure for selecting each pixel. In
this tutorial, I discuss onlypicking a best pixel location at
each step, saving color shade and other considerations
such as antialiasing and line width for another time.

One possible measure of closeness could be the mag-
nitude of realized line length minus true line length.
Figure 4 shows an example approximation of the line
segmentF(x,y) =Y- KX= 0 for 0 5x5 8 that uses this
measure. It consists of four axial steps followed by four
diagonal steps. No other discrete approximation for
XE {0 1 2 3 4 5 6 7 S } can provide a closer approxima-
tion than that shown in Figure 4. True length is 4 G
Realized length shown is 4(1+ n).

The approximations shown in Figure 5 seem aesthet-
ically closer to the original continuous line, yet each
length is still 4(1 + a). So, by our “goodness” choice
of difference between approximated line length and true
line length, the representation in Figure 4 is OK! If it is
not OK, then we can always change our error metric or
measure of goodness so that calculation of a revised
closeness is something more to our liking. We’ll certainly
want a computationally tractable measure for easy
implementation.

The important matter, I suggest, is not so much which
numerical measure of goodness or closeness you employ.
Instead, the important matter is to pick a quantifiable
measure overtly. Then we can work to understand all its
implications and limitations. If we find undesirable side
effects accompanying our choice, we can either patch
matters u p f o r example, by later incorporating provi-
sion for line retraceability-or discard the measure and
explicitly choose an alternative quantification.

Length is an appealing closeness measure when tymg
bed sheets together to make a quick exit from the third
floor of a burning hotel. However, it is probably not a
good measure for judging line rastering choices. Three
measures more commonly used for this purpose are
magnitude or absolute values of axial distance, normal
distance, andfunction residue. For a terse nomenclature,
let’s use single-word descriptors-axial, normal, and
residual, respectively -for these three measures of
c10seness.~~~

Axial displacement error in our first-octant case is a
candidate pixel to true-line distance measured parallel
to they-axis. Normal error is candidate pixel to curve-
locus distance measured along the line perpendicular
to the curve F(x, y) = 0. Residual error is the absolute
value or magnitude of the scalar obtained by evaluat-

ing the curve’s defining function F(x, y) at a pixel inte-
ger mesh point coordinate (x=X,y = Y)-that is, upper
case X and Yare the integer values of the candidate pixel
coordinate location. The residue will be zero if and only
if the pixel lies exactly on the curve.

Since the objective function to be minimized at each
successive step in rastering often seems to be misun-
derstood, a line example and a circle example can illus-
trate these three alternative measures. For lines, the
three measures are always equivalent; for circles, the
three measures can differ in the pixel selected.

Quantified error measures illustrated
The floor of a number n is shown as LnJ and is the

largest integer less than or equal to n. The ceiling of a
number n is shown as rnl and is the smallest integer
greater than or equal to n. For each integer X and its
associated or dependenty value, the two integer coor-
dinate candidate pixels are the “lower” pixel (X, Ly]) and
the “upper”pixe1 (X, ryl) . For each integer Y and its asso-
ciated x dependent value, the two integer coordinate
candidate pixels are the “left” pixel (Lxl, Y) and the
“right” pixel (XI, Y). We’ll assume lines are oriented in
a relative first octant with 0 < Ay < AX.

Our rastering strategy is to fix one independent vari-
able, sayX, to be an integer, then solveF(x,y) = 0 for the
dependent variable y. Typically, y will be a noninteger,
so the two nearest integers ry1 and LyJ boundingy are
of interest. When Tyl = lyJ = Y, an integer, for an integer
value ofX, the pixel at (X, Y) lies precisely on the curve
E(x,y) = 0. Clearly, the pixel choice in the special case is
(X, Y) . In general, a choice will have to be made between
point Pupper = (X, ry1) and point Plower = (X, Lyh when
stepping the abscissa by unity.

Implicit in this rastering strategy is an assumption that
the curve F(x, y) = 0 can be treated in regions such that
it is a single-valued function of one variable within the
region of interest. Lines are inherently single valued for
either x ory. Integer-centered circles must be done by
quadrant or by octant to satisfy our single-valued curve
assumption, but they can use symmetry to place eight
pixels per selection. Noninteger-centered circles cannot
rely upon multiquadrant or multioctant symmetry to
“broadcast” one pixel selection to other quadrants or
octants. While this tutorial examines noninteger
instances, a common practice is to round real numbers
so that only integer endpoint lines and integer-center,
integer-radius circles are actually rendered.

For each candidate pair of pixels, we’ll want to sys-
tematically pick the one pixel closest to the true curve.
The question, of course, is what specifically constitutes
close. Let’s examine choosingX= 1 to see what’s close for
the line segment from (0.1,0.4) to (9.8,2.6) andX= 2
for the origin-centered circle of radius 4.925. The func-
tional forms for the line are

F (x , ~) = O=aX(?-yo) -Ay(X-xo)

F (x ,y)=O=9 .7~-2 .2 -3 .66
= (9.8-0.1)01-0.4) - (2.6-0.4)(~-0.1)

or
y = (2.2/9.7)~ + (3.66/9.7)

evaluated at X = 1 to yieldy = 0.60412 so that the two
candidate pixels are

(X, Lyh = (LO) and (X, ry1) = (1,U

The functional form for the circle is

or

y= ((4.925)2-2)1/2

evaluated atX= 2 to yieldy = 4.500625 so that the two
candidate pixels are

(x, LYJN = and (x, ryl) = (2,5)

The axial distance from the pixel at (1,O) is just the ver-
tical distance to the true-line intercept at X = 1 or a dis-
tance of 0.60412 - 0 = 0.60412. Axial distance from the
pixel at (1,l) to the true line is 1.0 - 0.60412 = 0.39588;
hence, (1,l) would be the selected pixel. The axial dis-
tance thus amounts simply to ordinary rounding.

The normal distance to line Ax(~-yo) -Ay(x-xo) = 0
from any point (UO, YO) can be found using the equation
of the perpendicular line:

~ (X - U O) +Ayyol-~o)=O

For (l , O) , solvingsimultaneouslyO=9.7y-2.2x-3.66
and 9.7(x - 1) + 2.20/ - 0) = 0 yields an intersection
point (0.86969,0.57457) from which the perpendicu-
lar or normal distance is seen to be

((1 - 0.86969)’ + (0.57457- 0)2)1/’ = 0.58916

IEEE Computer Graphics and Applications

4 Oneraster
approximation
based on
realized minus
true line length
for the segment

=OforOIX<8 .
F(x, y) = Y - XX

5 Asecond
raster approxi-
mation based
on realized
minus true line
length for
the segment

= 0 for 0 I X I 8.
F(x, y) = Y- XX

77

Tutorial

78

For (1, l), solving simultaneously0 = 9 . 7 ~ - 2.22- 3.66
and 9.7(x - 1) + 2.201 - 1) = 0 yields an intersection
point (1.08539,0.62349) from which the perpendicu-
lar or normal distance is seen to be

((1.08539 - 1.0)’ + (1.0 - 0.6234Y)2)1/i= 0.38607

As was the case for an axial distance measure, the pixel
(1, 1) is again selected, now using normal distance as
our error metric. In fact, if 8 = arctan(Ay/Ax), thennor-
mal distance is always just axial distance multiplied by
cosine(@) for any first-octant line.

For function residue, you simply evaluate

at the two points (1,O) and (1,l) so that the two signed
residues are

F(1,O) =9.7(0) -2.2(1) -3.66=-5.86and
F(1, l)=9.7(1) -2.2(1)-3.66=3.84

We then compare the absolutevalues of each residue to
select, again, the pixel located at (1,l).

For the circle example, F(x, y) = 0 = (x - xcenter)’
+ (y -ycenter)‘ - ?, the axial distance is

4.500625 - 4.0 0.500625

from candidate pixel (2,4) = (X, Lyh and

5.0 - 4.500625 = 0.499375

from candidate pixel (2,5) = (X, ryi). Using axial dis-
tance as our measure, we’ll pick pixel (2, 5). The nor-
mal distance is measured along a radial ray so that the
perpendicular distance from (2,4) is the magnitude of

d(2 - Ol2 + (4- 0)2 - 4.925

or 14.472136 - 4.925 I = 0.452864. The normal dis-
tance from (2,5) is

d(2-0)’ +(5-0)2 -4.925

or 15.385165 - 4.925 I = 0.460165. Using normal dis-
tance as our measure, we’ll pickpixel (2,4).

The function residue would use

IF(2 ,4) I = 12’ + 4’- 4.925’1 = 4.255625 and
I F(2,5) I = I 2’ + 5’ - 4.925’ I = 4.744375.

Using magnitude of function residue, we’ll pick pixel
(2,4). For circles, then, the choice of error measure can
make a difference.

For lines, all three measures-axial, normal, and
residual-are equivalent in that identical pixels always
will be selected. For circles, as demonstrated above, the
three measures are not necessarily equivalent. When
the circle center and radius are restricted to integers,
the three measures will always coincide for circles as
well as lines.

January 1996

A line-drawing algorithm derived
For a general approach, consider the following

pseudocode. In practice, you look at the specific class of
curves in context to simplify calculations and avoid actu-
ally running both loops shown in the pseudocode. For
curves of any complexity, it is common to approximate
the curve polygonally by short chords and use only line
rasterization. Conceptually, a rasterization in a single-
valued region of a “true” curve could be of the form

FORX := 0 TO (M- 1) DO
BEGIN

y : = “true” solution of F(X, y) = 0
Y: = integer ordinate of closer

1 of pixel (x, Iyl)

{“close” can be by axial, normal,
or pixel (x, ryl)

or residue measure}
pixel-X[x] :=X
pixel-Y[x] :=Y

END;

BEGIN
FORY:=OTO (N-1)DO

x : = “true” solution of F(x, Y) = 0
X:= integer abscissa of closer

of pixel (Lxl, Y)

pixel-X[M + Yl :=X
pixel-Y[M + Yl := Y

or pixel t x l , Y)

END;
Cull (pixel-X, pixel-Y) pairs so that any one

coordinate value 2-tuple location appears
once only.

Display minimum spanning set of pixels.

For directed line segments from (XO,YO) to (xl,y1) such
thatF(x,y)=Ax(y-yo) -Ay(x-xo) = O andinarelative
first octant with (xl - X O) > 0.1 -yo) > 0, it suffices to
use increasing integer values of X to obtain the mini-
mum spanning set of pixels that will approximate the
h e . For a circle of radius r centered at (a, b) such that
F(x,y) = (x- a)2 + (y - b)2 - (r)2 = 0 and moving clock-
wise through the octant in which (y - b) > (x - a) > 0,
it also suffices to use successively increasing integer
values of X.

Since the three measures are equivalent for rastering
lines, let’s use axial displacement,as our quantitative
measure of closeness to derive an incremental algo-
rithm. As seen earlier, axial displacement error from an
integer coordinate pixel at (X, Y) to a point (xn, y d) on
the continuous true line (or other curve given by the
functionF(x,y) = 0) is distance measured parallel to a
coordinate axis. A nongraphics analogy is simple round-
ing of a scalar number. The displacement from a num-
ber to the integer just above and just below it is
essentially how the decision is made to pick a closest
integer in this one-dimensional analogy.

For nomenclature, let’s assign uppercase variables to
be integer and lowercase variables to be real or integer:

A is always an integer (A never has a fractional value
component other than zero) and

a can be either an integer or a real number (a can have
a zero or non-zero fractional value component).

LetA=La] so thatA is the floor of a andA is the largest
integer less than or equal to a. Note that for 0 4 6 < 1
and a =A + 6, A = La]. For example,

L41=L4+’0.01 is 4
L-d= L-4 + 0.01 is -4

L4.11=L4 + 0.11 is 4
L-4.11 =L-5 + 0.91 is -5

L4.91=L4 + 0.91 is 4
L-4.91= L-5 + 0.11 is -5

Let A = ra l so that A is the ceiling of a and A is the
smallest integer greater than or equal to a. Note that for
0 I 6 < 1 and a =A - 6, A =Tal. For example,

r41=r4-0.01 is 4
r-41= r-4 - 0.01 is -4

r4.9145-0.11 is 5
r-4.91= r-4 - 0.91 is -4

We can round to the “closest” integer by

Round(a) = La + 1/21 or Round(a) = [a - ‘/z 1

The results will agree for all instances except when a is
an exact half point, that is, its fractional component 6 is
one-half. Let’s choose the form Round(a) = La + X 1.

For a line segment from (XO, yo) to (XI, yl), consider
the case at an integer abscissa valueX, with Ax=xl -XO
and Ay =yl -yo. Incrementation isX,+1 =XI + 1 when
0 < Ay < Ax (the first-octant case) andx,,y,, Ax, Ay, and
rl are real while XI, Y, are integer. To select the pixel at
XI, Y,, we first calculate the “true,” typically noninteger
valuey from the line equation

y = (Ay/Ax)x + b

where b =yo - (Ay/Ax)xo. We then roundy to find Y,, the
“closest” ordinate, by axial displacement error measure.’

where Y, is an integer and 0 2 r, < 2Ax.

nate integer value selected, observe that
To relate current ordinate selection to the next ordi-

Y,+l = h+l + ’/z 1
Y,+1=L(Ay/Ax)X+1+ b + K I
Yt+i=L(2Ay/2Ax)XI+i + (2Ax/2Ax)b + (Ax/2&)1

Recall thatX,+1 = X, + 1 is the first-octant stepping
strategy:

Y,+i = L(2Ay/2Ax)(Xl + 1)+(2Ax/2hx)b + (hx/2Ax)I
Y,+i =L((2AyXl + 2Axb + Ax)/2Ax) + (2Ay/2Ax)J
Y,+l = LY, + (rJ2Ax) + (2Ay/2Ax)1
Yl+l = LY, + ((r, + 2Ay)/2Ax)1
Y,+I = Y, + L((rl + 2Ay)/2AxL

Recall that 0 I r, < 2Ax and 0 < Ay < Ax, so

0 < (r, + 2Ay) < 4Axand
0 < (ri + 2Ay)/2Ax < 2

Hence LO, + 2Ay)/(2Ax)J must be either 0 or 1, and for
X,+l =XI + 1 we must have either Y,+1 = Y, + 0 or
Y,+l= Y, + 1 so that from any pixel coordinate, we step
to the next pixel coordinate along either a unit axial step
or a unit diagonal step. We can make the choice easily by
looking at a running error measure rL.

For our first-octant case,

Xi+i =Xi + 1 and Yi+i = Yi + L(ri + 2Ay)/(2Ax)1

Thus,

if (ri + 2Ay) < 2Ax, thenL(ri + 2Ay)/(2Ax)1= 0
if (ri + 2Ay) 2 2Ax, thenL(ri + 2Ay)/(2Ax)1= 1

Note that a simpler, equivalent test is to look just at the
sign of e, = (r , + 2Ay - 2Ax) and then update our loca-
tion and axial error measure accordingly.

If e, < 0, then

Y j + l = Y , + O and rj+i=rj+2Ay

so that e ,+l= rl+l + 2Ay - 2Ax and e,+l =e, + 2Ay with
X,+l =XI + 1 and Yl+l = Y,.

If e, 2 0, then

Yi+l= Yi + 1 and rl+l = ri + 2Ay- 2Ax

so that e ,+l= rL+l + 2Ay - 2Ax and e,+l =e, + 2Ay - 2Ax
withX,+l =XI + 1 and Y,+1 =Y, + 1.

For initial conditions, pick an integer starting abscis-
sa&, then calculate the dependent integer starting ordi-
nate Y, and initial decision variable e,. That is, with X ,
an integer, find integer Y, and initial e,. To begin, let

Then Y, = LcD/2Ax1 and r, = cD - 2AxYs. Therefore,

es=r, + 2Ay-2Ax=@-2AxYs + 2Ay-2Ax

or

For the special case of an integer starting point,X, =XO

IEEE Computer Graphics and Applications 79

Tutorial

6 Simplified
line-drawing
algorithm.

Calculate
DX=Xr-X,, D Y = Vt- Ys,andDZ=lDXl-lDYl

if DX< 0
then Mzl = -1
else M21 = +1

then MZZ = -1
else Mzz = +I

then P=IDX,Q=IDM,MII=O,MIZ=M~
else P=IDYI,Q=IDX,M~~=MZ~,M~P=O

if D Y < 0

if DZ< 0

Set initial values
IX, v) t {X, Ysl Current point
C tQ Loop count
K7 t2 P Axial step constant
E t2P- Q Decision variable or error term
K2 t2P-2Q Diagonal step constant
MI
M2 ~{MzI , Mzn} Diagonal step “uniP‘ increment {+I, el}

Write pixel at {X, Y} and decrement C t C- 1
While C 2 0 execute the following loop

t(MI1, Mi*) Axial step “unit” increment (%l, 0) or {O, -cl}

Select pixels

if (E < 0)
then {X, Y) t {X, Y} + MI and E t E + KI
else {X, Y} t {X, Y } + M2 and E t E + K2

Write pixel at (X, Y} and decrement C t C- 1

80

and Y, =yo or any other starting point in which the inte-
ger pointXs, Y, lies on the line, we can use the simplified
form e,_o = 2Ay - Ax. For the general case of noninteger
endpoints and starting anywhere along our first-octant
line, we can raster to the closest pixel by the axial, nor-
mal, or residual measures of error by first setting (& YJ
to (Xs, Y,) and e, to eo. Then, until the pixel with the end-
ing value ofXis written, loop writing a pixel, testing the
error term e sign, and updating the coordinate location
and error term as follows:

Display the pixel at (X, , K) then
quit if X I = Xendmg-mteger-value

otherwise update as
if e, < 0,

then e,+l = e, + 2Ay,Xt+1 =X, + 1,
and Y,+1 = Y,

if e, 2 0,
then e,+l = e, + (2Ay- 2Ax),
X,+l = X, + 1, and Y,+1 = YL + 1

Notice that for any given line, the two addends used to
update the error term e are constants that can be set out-
side the loop. Should rounding as ra - % 1 be preferred,
then the e = 0 case and e < 0 instances can be combined
so that a diagonal step is taken onlywhen e > 0.

All-octants line-drawing algorithm
To see an algorithm that draws lines of all orienta-

tions, not just first-octant lines, let’s assume the com-
mon circumstance of integer endpoint lines. We’ll
assume that exact half points are an arbitrary choice and
retraceability is not a requirement. For a line segment
from an integer starting grid point {X,, Ys} to an integer

janluary 1996

terminating grid point {X,, Yt}, all
variables are integer and the all-
octants line-stepping algorithm6 sim-
plifies to what appears in Figure 6.

Note that the incremental lines
for this algorithm are not retrace-
able. To modify the algorithm for
drawing retraceable lines, set the
initial value of E as follows: If
(AY < 0) then E = 2P - Q - 1; other-
wise, E = 2P - Q. To see the effect,
draw the line from (0, 0) to (2, 1)
andbackfrom (2,1) to (0 , O) .

Differences between
edges and lines

Edges in raster space differ from
mere lines. Runs of pixels along a
horizontal, vertical, or diagonal
path mean rastered lines can inter-
sect in more than one pixel, while
geometric lines would have had only
one point in common. Edges bound
an area so that pixels on one side of
the edge are “inside” pixels while
pixels on the other side of the edge
are “outside” pixels. A single hori-
zontal run from a rastered line can

include both inside and outside pixels, so accounting for
the runs is a modification needed if we’re to consistent-
ly fill adjacent areas.

To illustrate algorithm modification or tailoring to fit
a specific new circumstance, consider an edge from an
integer-valued starting point (Xo, YO) to an integer-
valued terminating point (X,, Yt) with 0 < AY < AX,
where pixels to the left of the “true line” are considered
“inside” pixels while those to the right are considered
“outside” pixels (Figure 7).

Assuming integer endpoints, a change ofvariable can
simpllfymatters. Letu=x-Xoandv=y-Yoso thatthe
edge becomesv = (YI - YO)/(Xl -Xo)u = (AY/AX)u with
starting-point coordinates UO = 0 and VO = 0.

Here our edge-drawing objective is to find the suc-
cession of pixels closest to the intersection of a hori-
zontal line V = k and our edge line v = (AY/AX)u as k
runs from 0 to V, = (X,-Xo). This will provide the right-
most pixel along each successive one-pixel-wide hori-
zontal strip across a bounded area having our edge as
its rightmost boundary segment. Knowing that V = k ,
we need to find the closest integer u k that keeps the pixel
at { Uk, Vk} inside the area or on the edge itself. That’s
just the floor uk = LuJ. SO

u k = L(h/Ay)vki Or
uk = t (Ax/Ay) kl or
u k = Luk f GdAyi

where 0 I S < Ay and Ax = (HAY) +S.

Therefore

and either L(Gk + S)/AyA = 0 with
Gk+i = Gk 4- s orL(Gk 4- S)/Ayj = 1
with Gk+l = Gk+ S - AY.

More or less as we did before with
line rastering, we can establish a
decision variable or error-tracking
termE= ((G + S) - AY) and state an
edge-drawing algorithm for this
case of first-octant slope with its
inside to the left of the edge. The
generalization for all slopes and
inside to the right as well as to the
left is a bit messier than plain line
drawing, but still straightforward
and not covered here.

Also not addressed here is the
conceptual reference question of
how to treat pixels exactly on an
edge. An exact-edge pixel is com-
mon to two area boundaries, so you
need to explicitlyresolve the matter
of a shared pixel and the tri-state dis-
tinction of inside, on-edge, and out-
side that was avoided in traditional
geometry with zero-area, uncol-
ored, abstract edges. My point is to
demonstrate that modified algo-
rithms are appropriate for modified

Set initial values
H t (Xt-Xo) DIV (Yt- Yo)

S
(X, Y) +- {Xo, Yo)
c t Y t - Y o
Ki t s
E t s - (Y t - Yo)
KZ t S- (Yt- Yo)
Mi

t (X t -Xo) MOD (Yt- YO)

t (Mil, MlZ) = (H, 1)

Basic run-length step size in

Slope residue
Current point
Loop count
H pixel step constant
Decision variable or error term
(H+ 1) pixel step constant
Short step (horizontal, unit

diagonal] increment
Long step (horizontal, unit

pixels

diagonal) increment
Select pixels

Write final pixel of horizontal run at {X, Y) and decrement C t C - 1
While C> 0 execute the following loop

If (E < 0)
then [X, Y) t [X, Y] + Mi and E t E + KI
otherwise [X, Y) t [X, + M2 and E t E + KZ

Write final pixel of horizontal run at coordinate point {X , Y)
Decrement C t C - 1 and return to test of Cat top of loop

_ _ ~

objectives and to emphasize that it is always necessary
to understand clearly any objective function. Before
using any algorithm, always understand what it does
and what it does not do! In practice, you would concur-
rentlyrun an edge algorithm for a current left edge and
current right edge so that all pixels in between would
be filled as the figure-likely a triangle-is traversed by
horizontal slices.

Figure 8 presents the rightmost edge form of the edge-
drawing algorithm. If you find the broken edges from
this algorithm unappealing aesthetically, you can always
draw a line boundary to separate filled areas.

Attention to detail
It can be tempting to simplify a drawing algorithm,

for example, by swapping endpoints of a line to always
draw with a positive Y displacement. It works fine for
solid lines and saves a minor bit of memory or circuitry
in the rastering program or hardware adapter. When
line styles such as dot dashed or user-specified patterns
are added, then swapping the endpoints disrupts the
correct pattern and incorrect lines are drawn with the
pattern reversed. An interesting example I always use
in my graphics classes is the mixed implementation seen
in Borland's Turbo Pascal. Line drawing for horizontal
lines is correctly done for patterned lines. For any line
orientation other than horizontal, however, line draw-
ing is incorrectly implemented for lines having a nega-

tive deltay displacement, that is, (YtermInate - Ystart) < 0.
To demonstrate the visual effect produced by endpoint

swapping, try the Pascal procedure in Figure 9 (next
page) after you first initialize the graphics mode in an
IBM-compatible PC. Notice that for horizontal lines the
pattern is correctly reversed for the yellow right-to-left
and the green left-to-right horizontal lines. For vertical
lines, though, the patterned lines are seen to be identical
for both the green bottom-to-top and the yellow top-to-
bottom lines. The two vertical lines have different direc-
tions, so the yellow vertical pattern should be reversed
and the vertical green and yellow patterns should differ.
The green vertical line is incorrectly drawn.

Conclusion
Rastered pictures have been around a long time.

Computer-driven raster displays simply introduce a
higher performance, more demanding technology that
benefits from systematic rules. To examine the devel-
opment of a compact, integer-arithmetic algorithm for
line rastering, this tutorial looked at some pixel space
basics, then considered alternative measures by which
closeness to a true line's locus could be evaluated.

The key to effective use of all algorithms is a clear
understanding of your objective function and the impli-
cations that can arise from incomplete or unintention-
ally fuzzy assumptions. For example, the edge-drawing
algorithm developed here from the line-drawing

IEEE Computer Graphics and Applications

7 Edge
contrasted to
line.

8 Edge-
drawing
algorithm.

81

Tutorial

9 Pascal pro-
cedure (left)
and procedure
output (right)
showing the
effect of
inattention to
correctly tying
together pixel
selection and
the attribute of
line style.
(Download
Pascal source
code from
http://www.
computer.org/.)

82

PROCEDURE DrawPatternedLineThickly;

CONST
{test Borland’s Turbo Pascal v.7 patterned lines}

MyPattern = $501 F;

msgl = ‘Lower horiz. lines: from left to right’;
msg2 = ‘Upper horiz. lines: from right to left‘;
msg3 = ‘horizontal OK per specification’;
msg4 = ‘vertical incorrect as end points swapped’;

i : INTEGER;

SetBkColor(B1ue);
ClearDevice;
SetLineStyle(UserBitLn, MyPattern, Normwidth);
SetTextStyle(DefaultFont, HorizDir, 2);
SetColor(LightGreen);
OutTextXY(10, GetMaxY-85, msgl);
OutTextXY(360, 45, ‘Right Vertical:’);
OutTextXY(345, 65, ‘from bottom to top’);
OutTextXY(375, 85, ‘drawing’);
OutTextXY(375, 105, ‘specification’);
FOR i := l00TO 107 DO

FOR i := 1 TO6 DO

(VGApixel pattern: 0101 0000 0001 1111)

VAR

BEGIN

Line(l0,GetMaxY-i, GetMaxX-1 0, GetMaxY-i);

Line((i + GetMaxX DIV 2), GetMaxY-125,
(i + GetMaxX DIV 2), 10);

SetTextStyle(DefaultFont, HorizDir, 2);
SetColor(Yel1ow);
OutTextXY(10, GetMaxY-150, msg2);
OutTextXY(20,45, ‘Left Vertical:’);
OutTextXY(10, 65, ‘from top to bottom’);
OutTextXY(35, 85, ‘drawing’);
OutTextXY(35, 105, ‘specification’);
FORi:=l1OTO114DO

FORi := ITO5DO
Line(GetMaxX-IO, GetMaxY-i, 10,GetMaxY-i);

Line((-i + GetMaxX DIV 2), IO,
(-i + GetMaxX DIV 2), GetMaxY-125);

SetTextStyle(DefaultFont, HorizDir, 2);
SetColor(White);
OutTextXY(375, 205, ‘Line Patterns’);
OutTextXY(35, 205, ‘Line Patterns’);
OutTextXY(50, GetMaxY-55, msg3);
OutTextXY(0, GetMaxY-30, msg4);

END; {..quit PROCEDURE DrawPatternedLineThickly..}

algorithm showed how raster space differs from tradi-
tional geometric space. In raster space, lines intersect in
multiple pixels, so clipping must be carefully chosen to
be by closest pixel or by theoretical intersection. Do you
scissor-clip postrastering or geometric-line-clip pre
rastering? The visual result can differ. Attributes such
as line thickness and patterns also affect the imple-
mentation of drawing algorithms.

The computer graphics literature offers many en-
hancements to simple single-pixel-per-loop iteration. For
example, you can select iterations of more than one pixel
per l00p.~ lo Beyond the scope of this tutorial is a class of
algorithms that set up parallel processing pixel selec-
tion.11-12 All approaches share a need to clearly under-
stand an explicit reference model, as illustrated here. =

References
1. C.A.Wiithruch and P. Stuck, “An Algorithmic Comparison

Between Square- and Hexagonal-Based Grids,” CVGIP, Vol.
53, NO. 4, July 1991, pp. 324-339.

January 1996

2.

3.

4.

5.

6.

7.

8.

9.

IS0 Info. Processing Systems, Interfacing Techniquesfor
Dialogue with GraphicalDevices, Parts 1-6, IS9636,1991.
J.E. Bresenham, “Incremental Circles,” in Display AZgo-
rithm-Computer Studies, R. Earnshaw, ed., Tech. Report
189, Leeds Univ., UK, 1983.
M.D. McIlroy, “Getting Raster Ellipses Right,” ACM Trans.
Graphics, Vol. 11, No. 3, July 1992, pp. 259-275.
L. Dorst and A.W.M. Smeulders, “Discrete Representation
of Straight Lines,” IEEE Trans. Pattern Analysis and Machine
Intelligence, Vol. PAMI-6, No. 4, July 1984, pp. 450-463.
J.E. Bresenham, “Ambiguities in Incremental Line Raster-
ing,”IEEECG&A,Vol. 7, No. 5, May 1987, pp. 31-43.
G.W. Gill, N-Step Incremental Straight-Line Algorithms,”
IEEE CG&A, Vol. 14, No. 3, May 1994, pp. 66-72.
P. Graham and S.S. Iyengar, “Double- and Triple-Step Linear
Interpolation,”lEEE CG&A, Vol. 14, No. 3,1994, pp. 49-53.
J.G. Rokne, B. Wyvil, and X. Wu, “Fast Line Scan Conver-
sion,”ACMTrans. Graphics,Vol. 9, Oct. 1990, pp. 356-338.

10. X. Wu and J.G. Rokne, “Double-Step Incremental Genera-
tion ofLines and Circles,” CVGIP, Vol. 37,1987, pp. 331-334.

11. 0. Lathrop, D. Kirk, and D. Voorhies, “Accurate Rendering
by Subpixel Addressing,”lEEE CG&A, Vol. 10, No. 5, Sept.

12. W.E. Wright, “Parallelization of Bresenham’s Line and Cir-
cleAlgorithms,”IEEECG&A,Vol. 10, No. 5,1990, pp. 60-67.

1990, pp. 45-53.

Jack Bresenham is a graphics con-
sultant to industry and, since 198z a
professor of computer science a t
Winthrop Universiv. Undergraduate
teaching is his primary academic
interest. His career utIBMfiom 1960-
1987 included work o n line- and
circle-drawing algorithms, S/360

RPG, unbundling, token ring, and the IBM 3270 PC-GX
graphics display a t development laboratories in the US,
England, and Italy. Bresenham earned his PhD at Stan-
ford. He is a member ofphi Kappa Phi, Sigmaxi, andACM,
and a senior member of IEEE. He has been a member of the
IEEE CG&A editorial board since 1990.

Readers m a y contact Bresenham u t Winthrop Univer-
siv, Computer Science Department, Thurmond Hall, Rock
Hill, SC29733, e-mail bresenhamj@winthrop. edu.

http://www
http://computer.org

