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ictures of line drawings and text charac- P ters can be displayed using raster devices 
such as laser printers, cathode ray tubes, and incre- 
mental plotters. A laser printer fuses a small, discrete 
dot on a page. Acathode ray tube’s electron gun excites 
a discrete spot of phosphor to glowing visibility. An 
incremental plotter steps an inked pen between con- 
ceptual reference points to leave, say, a 0.001-inch line 

segment drawn at an integer multi- 
ple of 45 degrees. Raster devices, 
therefore, typically employ a dis- 
Crete rectilinear representational 
grid in which an integer-valued 
coordinate mesh point is a conve- 
niently addressable entity. 

In computer graphics, the con- 
ceptualmeshpointisthepixel. Pixel 
and its predecessor pel are each a 
shortened common expression for 
picture element. Some find it useful 
to conceptualize raster devices as 
chessboards in which a pixel is rep- 
resented by the round base of aking 
piece as it moves from square to 
square. In this analogy, a pixel 
address is the coordinate location of 
the center of each chessboard 
square. Drawing a curve typically 

progresses step by step along a pixel pathway con- 
strained by the unit steps of the king piece. Even though 
the physical length of a diagonal step differs by a factor 
of fi from the length of an axial step, each of the eight 
possible directions constitutes a single step. Hence, the 
term unzt step describes movement to one of the eight 
neighboring mesh points. 

Old practices applied in a new context 
Forming pictures from pixels is an old practice. The 

rastered displays presented in Figures 1 and 2 illustrate 
noncomputer-drawn rastered pictures. Needlepoint or 
counted cross-stitch, such as that popularized by the 
image on a box of Whitman Sampler chocolates, uses 
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essentially the same technique as does an incremental 
plotter; small pieces of colored thread are exposed to 
compose a scene from tiny line segments. In the 1950s 
and 1960s, card stunt displays in the spectator stands 
during football game halftimes used colored cardboard 
squares as pixels to present clever pictures and captions. 

Other examples include the scoreboard at a sports 
stadium, which uses discrete light bulbs to form num- 
bers, letters, and pictures as does the big moving news 
display at Times Square in New York City. The French 
pointillist painter Georges Pierre Seurat (1859-91) per- 
fected a painting style in which he composed pictures 
strictly from discrete dots. A close look at your favorite 
newspaper will reveal its black-and-white photos to be 
collections of dots. Variable spacing in black dot clus- 
ters produces the visual effect of various shades of gray 
called dithering. 

Thus, quantized picture composition from discrete dot 
patterns certainly is nothing conceptually new. 
Computer technology has, however, provided a means 
for faster generation of more complex and comprehen- 
sive visual displays. Computer programs can synthesize 
and manipulate picture drawing abstractly and use ras- 
terization algorithms to pick appropriate pixels at ren- 
dering time. Computer peripherals can then display the 
generated image as a dot composition of discrete pixels. 

Pixel generation or rendering is often separated from 
picture presentation by rastering pixel selections into 
an intermediate memory buffer from which a periph- 
eral can independently control the timing of its extrac- 
tion of one or more horizontal scan lines of pixels for 
actual display and viewing. Dual-ported memory capa- 
ble of accepting pixels written by the rendering process 
at the same time the CRT refresh circuitry is reading pix- 
els for display is known as video random access memo- 
ry, or VRAM. 

The pixel representation in such an intermediate 
memory or frame buffer typically implies its raster pre- 
sentation coordinate location by its memory address. 
The address itself is calculated from the discrete pixel 
integer (X, Y) location. For example, a 256-color display 
640 pixels wide by 480 pixels high might use one byte 
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per pixel to hold each 8-bit color value. The frame-buffer 
memory address for a pixel at (X, Y) would be calculat- 
ed as 

address =base + X + 640Y 

where X E (0, . . . , 639) and Y E (0, . . . ,479). Alter- 
natively, pixel coordinates (X, Y) can be recovered from 
the memory address as 

X= ((address -base) MOD 640) 
Y = ((address - base) DIV 640) 

Not unlike a paint-by-numbers strip in the Sunday 
newspaper comics, number values held in the frame 
buffer specify pixel color. The pixel’s value explicitly 
stored in memory can be as simple as a dichotomous 0 
for “off‘ and 1 for “on” convention that requires only one 
bit per pixel for a bilevel or monochrome display. 
Alternatively, a pixel’s stored value could be a 24-bit, 
three-byte-partitioned value representing a specific 
color shade specified by its triplet red, green, and blue 
(RGB) component mix from a palette of 16,777,216 color 
choices. Typically, the number held in the frame buffer 
is simply a positional index into a 
color table or palette from which the 
actual RGB color value is read. 
Separating the actual displayed 
color from the frame buffer’s pixel 
value provides a late color-binding 
mechanism that lets you dynami- 
cally or interactively redefine palette 
colors to, say, highlight or more 
widely separate selected colors after 
a first viewing of the data. 

Rasterization: sampling 
approximation 

Many drawing applications, such 
as engineering design or business 
chart preparation, use a geometric 
line as a fundamental graphical 
shape. More complex shapes, such 
as splines or boxes or character 
fonts, are then formed using many 
short lines or filled polygonal areas, often simply trian- 
gles, bounded by small line segments. Computer graph- 
ics processing must therefore provide fast, accurate, 
consistent line-drawing capability at the elementary sys- 
tems level. Rasterization will simply be the process of 
sampling the “true” line to approximate its continuous 
representation, using discrete dots or lattice points for 
integer coordinate pixels chosen to be close to the locus 
of the true line. 

How will we know when we have a good approxima- 
tion? What specifically constitutes “close”? To answer 
such questions, we need explicit assumptions and a con- 
ceptual reference model. Let’s start with some coordi- 
nate assumptions. Our underlying grid for discretization 
is a rectilinear Cartesian coordinate system with uni- 
formly spacedXand Y grid lines, that is, square spacing 
between pixels. Pixel-coordinate addresses represent 

the center of a pixel and correspond to integer mesh 
points on the uniform grid. Figure 3 on the next page 
illustrates pixels in such a raster space. 

Different assumptions, not considered here, could use 
alternatives such as a hexagonal grid’ or pixel address- 
es corresponding to the lower left corner of an open, rec- 
tangular pixel.’An unfortunate choice would be a truly 
rectangular grid in which the horizontal distance 
between pixels differs from the vertical distance. Early 
IBM PC graphics used such an anisotropicgrid; later IBM 
PC graphics have begun to use the preferred square 
spacing for the addressable pixel grid. 

Recall that in ordinary geometry, points have no size 
and hence occupy no area. Adisplayed pixel does cover 
some small, but finite, area. Likewise, a geometric line 
has only length with no width or thickness. Our dis- 
played rastered lines will be composed of pixels and will 
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therefore have at least single-pixel thickness. Later we’ll 
want to purposely specify lines of multiple-pixel widths. 
These acknowledged discrepancies in area between con- 
ceptual points and lines and physical pixels present 
opportunities for visual anomalies, which we’ll need to 
handle in as consistent a fashion as possible. 

Our rastering strategy for lines of the form 

with 0 < s < 1 and nonnegativex, will be to step abscis- 
sa integerxvalues by unity from 0 and find the “closest” 
ordinate integer Yvalue for each successive value ofX. 
That our representational grid in raster space requires 
pixel addresses to be integer coordinate lattice points 
does not mean that we can specify only lines with inte- 
ger endpoints. However, lines with integer endpoints 
are typically rendered much faster and more compact- 
ly, so it is worthwhile understanding what is traded in 
accuracy to achieve integer speed in pixel generation. 

We’ll get to the simplified integer-endpoint line, first- 
octant form, Y = sX, by considering various simplifica- 
tions for approximating the general form 

for a directed line segment from a noninteger point 
(x0,yO) to a noninteger point ( q y ~ ) .  First, though, let’s 
explicitly, but somewhat arbitrarily, specify and quan- 
tify what we want to accept as a “good” fit for each 
“close” pixel in a discrete raster approximation of a con- 
tinuous true line. 

Measuring closeness of a delicatessen to an apartment 
in Manhattan would likelyrequire laying out a staggered 
route with rectangular corners to account for sidewalk 
pathway constraints imposed by city street layouts. In a 
different context, measuring closeness to a neighboring 
ranch house in the llano estacado plains of eastern New 
Mexico more likely would simply use linear distance as 
the crow flies or the horse gallops. Let’s look at some 
alternative measures of closeness in rastering or scan 
converting geometric primitives such as lines and circles. 

Closeness: objective measurement for a 
subjective assumption 

With hand-crafted, low-volume cross-stitched pic- 
tures, each artisan could subjectively decide what close 
meant in approximating continuous scenes by sampled, 
discrete smidgens of thread placed close to original pic- 
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ture geometric features. With computer-generated 
drawing, precise predictability, guaranteed repeatabil- 
ity, and systematic selection of pixels are desirable char- 
acteristics. We’ll want to use an algorithm or set of rules 
to specify how to pick pixels consistently. 

Before developing an algorithmic rasterization 
methodology for pixel generation, we’ll need to subjec- 
tively pick a quantifiable, measurable means to define 
what is meant by close or best choice between two can- 
didate pixels at each step. Having subjectively picked a 
closeness measure for its perceived aesthetical implica- 
tions or its computational tractability, we’ll then objec- 
tivelypickpixels by precise measurement. We’ll also want 
to devise a methodology that efficiently and rapidly cal- 
culates our objective measure for selecting each pixel. In 
this tutorial, I discuss onlypicking a best pixel location at 
each step, saving color shade and other considerations 
such as antialiasing and line width for another time. 

One possible measure of closeness could be the mag- 
nitude of realized line length minus true line length. 
Figure 4 shows an example approximation of the line 
segmentF(x,y) =Y- KX= 0 for 0 5x5 8 that uses this 
measure. It consists of four axial steps followed by four 
diagonal steps. No other discrete approximation for 
XE {0 1 2 3 4 5 6 7 S }  can provide a closer approxima- 
tion than that shown in Figure 4. True length is 4 G  
Realized length shown is 4(1+ n). 

The approximations shown in Figure 5 seem aesthet- 
ically closer to the original continuous line, yet each 
length is still 4(1 + a). So, by our “goodness” choice 
of difference between approximated line length and true 
line length, the representation in Figure 4 is OK! If it is 
not OK, then we can always change our error metric or 
measure of goodness so that calculation of a revised 
closeness is something more to our liking. We’ll certainly 
want a computationally tractable measure for easy 
implementation. 

The important matter, I suggest, is not so much which 
numerical measure of goodness or closeness you employ. 
Instead, the important matter is to pick a quantifiable 
measure overtly. Then we can work to understand all its 
implications and limitations. If we find undesirable side 
effects accompanying our choice, we can either patch 
matters u p f o r  example, by later incorporating provi- 
sion for line retraceability-or discard the measure and 
explicitly choose an alternative quantification. 

Length is an appealing closeness measure when tymg 
bed sheets together to make a quick exit from the third 
floor of a burning hotel. However, it is probably not a 
good measure for judging line rastering choices. Three 
measures more commonly used for this purpose are 
magnitude or absolute values of axial distance, normal 
distance, andfunction residue. For a terse nomenclature, 
let’s use single-word descriptors-axial, normal, and 
residual, respectively -for these three measures of 
c10seness.~~~ 

Axial displacement error in our first-octant case is a 
candidate pixel to true-line distance measured parallel 
to they-axis. Normal error is candidate pixel to curve- 
locus distance measured along the line perpendicular 
to the curve F(x, y) = 0. Residual error is the absolute 
value or magnitude of the scalar obtained by evaluat- 



ing the curve’s defining function F(x, y) at a pixel inte- 
ger mesh point coordinate (x=X,y = Y)-that is, upper 
case X and Yare the integer values of the candidate pixel 
coordinate location. The residue will be zero if and only 
if the pixel lies exactly on the curve. 

Since the objective function to be minimized at each 
successive step in rastering often seems to be misun- 
derstood, a line example and a circle example can illus- 
trate these three alternative measures. For lines, the 
three measures are always equivalent; for circles, the 
three measures can differ in the pixel selected. 

Quantified error measures illustrated 
The floor of a number n is shown as LnJ and is the 

largest integer less than or equal to n. The ceiling of a 
number n is shown as rnl and is the smallest integer 
greater than or equal to n. For each integer X and its 
associated or dependenty value, the two integer coor- 
dinate candidate pixels are the “lower” pixel (X, Ly]) and 
the “upper”pixe1 (X, ryl) . For each integer Y and its asso- 
ciated x dependent value, the two integer coordinate 
candidate pixels are the “left” pixel (Lxl, Y) and the 
“right” pixel (XI, Y). We’ll assume lines are oriented in 
a relative first octant with 0 < Ay < AX. 

Our rastering strategy is to fix one independent vari- 
able, sayX, to be an integer, then solveF(x,y) = 0 for the 
dependent variable y. Typically, y will be a noninteger, 
so the two nearest integers ry1 and LyJ boundingy are 
of interest. When Tyl = lyJ = Y, an integer, for an integer 
value ofX, the pixel at (X, Y) lies precisely on the curve 
E(x,y) = 0. Clearly, the pixel choice in the special case is 
(X, Y) . In general, a choice will have to be made between 
point Pupper = (X, ry1) and point Plower = (X,  Lyh when 
stepping the abscissa by unity. 

Implicit in this rastering strategy is an assumption that 
the curve F(x, y) = 0 can be treated in regions such that 
it is a single-valued function of one variable within the 
region of interest. Lines are inherently single valued for 
either x ory. Integer-centered circles must be done by 
quadrant or by octant to satisfy our single-valued curve 
assumption, but they can use symmetry to place eight 
pixels per selection. Noninteger-centered circles cannot 
rely upon multiquadrant or multioctant symmetry to 
“broadcast” one pixel selection to other quadrants or 
octants. While this tutorial examines noninteger 
instances, a common practice is to round real numbers 
so that only integer endpoint lines and integer-center, 
integer-radius circles are actually rendered. 

For each candidate pair of pixels, we’ll want to sys- 
tematically pick the one pixel closest to the true curve. 
The question, of course, is what specifically constitutes 
close. Let’s examine choosingX= 1 to see what’s close for 
the line segment from (0.1,0.4) to (9.8,2.6) andX= 2 
for the origin-centered circle of radius 4.925. The func- 
tional forms for the line are 

F ( x , ~ )  = O=aX(?-yo) -Ay(X-xo) 

F (x ,y )=O=9 .7~-2 .2 -3 .66  
= (9.8-0.1)01-0.4) - (2.6-0.4)(~-0.1) 

or 
y =  (2.2/9.7)~ + (3.66/9.7) 

evaluated at X =  1 to yieldy = 0.60412 so that the two 
candidate pixels are 

(X, Lyh = (LO) and (X, ry1) = (1,U 

The functional form for the circle is 

or 

y=  ((4.925)2-2)1/2 

evaluated atX= 2 to yieldy = 4.500625 so that the two 
candidate pixels are 

(x, LYJN = and (x, ryl) = (2,5) 

The axial distance from the pixel at (1,O) is just the ver- 
tical distance to the true-line intercept at X = 1 or a dis- 
tance of 0.60412 - 0 = 0.60412. Axial distance from the 
pixel at (1,l) to the true line is 1.0 - 0.60412 = 0.39588; 
hence, (1,l) would be the selected pixel. The axial dis- 
tance thus amounts simply to ordinary rounding. 

The normal distance to line Ax(~-yo) -Ay(x-xo) = 0 
from any point (UO, YO)  can be found using the equation 
of the perpendicular line: 

~ ( X - U O )  +Ayyol-~o)=O 

For ( l , O ) ,  solvingsimultaneouslyO=9.7y-2.2x-3.66 
and 9.7(x - 1) + 2.20/ - 0) = 0 yields an intersection 
point (0.86969,0.57457) from which the perpendicu- 
lar or normal distance is seen to be 

((1 - 0.86969)’ + (0.57457- 0)2)1/’ = 0.58916 
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For (1, l), solving simultaneously0 = 9 . 7 ~ -  2.22- 3.66 
and 9.7(x - 1) + 2.201 - 1) = 0 yields an intersection 
point (1.08539,0.62349) from which the perpendicu- 
lar or normal distance is seen to be 

((1.08539 - 1.0)’ + (1.0 - 0.6234Y)2)1/i= 0.38607 

As was the case for an axial distance measure, the pixel 
(1, 1) is again selected, now using normal distance as 
our error metric. In fact, if 8 = arctan(Ay/Ax), thennor- 
mal distance is always just axial distance multiplied by 
cosine(@) for any first-octant line. 

For function residue, you simply evaluate 

at the two points (1,O) and (1,l) so that the two signed 
residues are 

F(1,O) =9.7(0) -2.2(1) -3.66=-5.86and 
F(1, l)=9.7(1) -2.2(1)-3.66=3.84 

We then compare the absolutevalues of each residue to 
select, again, the pixel located at (1,l). 

For the circle example, F(x, y) = 0 = (x - xcenter)’ 
+ (y -ycenter)‘ - ?, the axial distance is 

4.500625 - 4.0 0.500625 

from candidate pixel (2,4) = (X, Lyh and 

5.0 - 4.500625 = 0.499375 

from candidate pixel (2,5) = (X, ryi). Using axial dis- 
tance as our measure, we’ll pick pixel (2, 5). The nor- 
mal distance is measured along a radial ray so that the 
perpendicular distance from (2,4) is the magnitude of 

d(2 - Ol2 + (4- 0)2 - 4.925 

or 14.472136 - 4.925 I = 0.452864. The normal dis- 
tance from (2,5) is 

d(2-0)’ +(5-0)2 -4.925 

or 15.385165 - 4.925 I = 0.460165. Using normal dis- 
tance as our measure, we’ll pickpixel (2,4). 

The function residue would use 

IF(2 ,4 )  I = 12’ + 4’- 4.925’1 = 4.255625 and 
I F(2,5) I = I 2’ + 5’ - 4.925’ I = 4.744375. 

Using magnitude of function residue, we’ll pick pixel 
(2,4). For circles, then, the choice of error measure can 
make a difference. 

For lines, all three measures-axial, normal, and 
residual-are equivalent in that identical pixels always 
will be selected. For circles, as demonstrated above, the 
three measures are not necessarily equivalent. When 
the circle center and radius are restricted to integers, 
the three measures will always coincide for circles as 
well as lines. 
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A line-drawing algorithm derived 
For a general approach, consider the following 

pseudocode. In practice, you look at the specific class of 
curves in context to simplify calculations and avoid actu- 
ally running both loops shown in the pseudocode. For 
curves of any complexity, it is common to approximate 
the curve polygonally by short chords and use only line 
rasterization. Conceptually, a rasterization in a single- 
valued region of a “true” curve could be of the form 

FORX := 0 TO (M- 1) DO 
BEGIN 

y : = “true” solution of F(X, y) = 0 
Y: = integer ordinate of closer 

1 of pixel (x, Iyl) 

{“close” can be by axial, normal, 
or pixel (x, ryl) 

or residue measure} 
pixel-X[x] :=X 
pixel-Y[x] :=Y 

END; 

BEGIN 
FORY:=OTO (N-1)DO 

x : = “true” solution of F(x, Y) = 0 
X:= integer abscissa of closer 

of pixel (Lxl, Y) 

pixel-X[M + Yl :=X 
pixel-Y[M + Yl := Y 

or pixel t x l ,  Y) 

END; 
Cull (pixel-X, pixel-Y) pairs so that any one 

coordinate value 2-tuple location appears 
once only. 

Display minimum spanning set of pixels. 

For directed line segments from (XO,YO) to (xl,y1) such 
thatF(x,y)=Ax(y-yo) -Ay(x-xo) = O  andinarelative 
first octant with (xl - X O )  > 0.1 -yo) > 0, it suffices to 
use increasing integer values of X to obtain the mini- 
mum spanning set of pixels that will approximate the 
h e .  For a circle of radius r centered at (a, b )  such that 
F(x,y) = (x- a)2 + (y - b)2 - (r)2 = 0 and moving clock- 
wise through the octant in which (y - b) > (x - a)  > 0, 
it also suffices to use successively increasing integer 
values of X. 

Since the three measures are equivalent for rastering 
lines, let’s use axial displacement,as our quantitative 
measure of closeness to derive an incremental algo- 
rithm. As seen earlier, axial displacement error from an 
integer coordinate pixel at (X, Y) to a point (xn, y d )  on 
the continuous true line (or other curve given by the 
functionF(x,y) = 0) is distance measured parallel to a 
coordinate axis. A nongraphics analogy is simple round- 
ing of a scalar number. The displacement from a num- 
ber to the integer just above and just below it is 
essentially how the decision is made to pick a closest 
integer in this one-dimensional analogy. 

For nomenclature, let’s assign uppercase variables to 
be integer and lowercase variables to be real or integer: 

A is always an integer (A never has a fractional value 
component other than zero) and 



a can be either an integer or a real number (a can have 
a zero or non-zero fractional value component). 

LetA=La] so thatA is the floor of a andA is the largest 
integer less than or equal to a. Note that for 0 4 6 < 1 
and a =A + 6, A = La]. For example, 

L41=L4+’0.01 is 4 
L-d= L-4 + 0.01 is -4 

L4.11=L4 + 0.11 is 4 
L-4.11 =L-5 + 0.91 is -5 

L4.91=L4 + 0.91 is 4 
L-4.91= L-5 + 0.11 is -5 

Let A = ra l  so that A is the ceiling of a and A is the 
smallest integer greater than or equal to a. Note that for 
0 I 6 < 1 and a =A - 6, A =Tal. For example, 

r41=r4-0.01 is 4 
r-41= r-4 - 0.01 is -4 

r4.9145-0.11 is 5 
r-4.91= r-4 - 0.91 is -4 

We can round to the “closest” integer by 

Round(a) = La + 1/21 or Round(a) = [a - ‘/z 1 

The results will agree for all instances except when a is 
an exact half point, that is, its fractional component 6 is 
one-half. Let’s choose the form Round(a) = La + X 1. 

For a line segment from (XO,  yo) to (XI, yl), consider 
the case at an integer abscissa valueX, with Ax=xl -XO 
and Ay =yl -yo. Incrementation isX,+1 =XI + 1 when 
0 < Ay < Ax (the first-octant case) andx,,y,, Ax, Ay, and 
rl are real while XI, Y,  are integer. To select the pixel at 
XI, Y,, we first calculate the “true,” typically noninteger 
valuey from the line equation 

y = (Ay/Ax)x + b 

where b =yo - (Ay/Ax)xo. We then roundy to find Y,, the 
“closest” ordinate, by axial displacement error measure.’ 

where Y, is an integer and 0 2 r, < 2Ax. 

nate integer value selected, observe that 
To relate current ordinate selection to the next ordi- 

Y,+l = h+l + ’/z 1 
Y,+1=L(Ay/Ax)X+1+ b + K I  
Yt+i=L(2Ay/2Ax)XI+i + (2Ax/2Ax)b + (Ax/2&)1 

Recall thatX,+1 = X, + 1 is the first-octant stepping 
strategy: 

Y,+i = L(2Ay/2Ax)(Xl + 1)+(2Ax/2hx)b + (hx/2Ax)I 
Y,+i =L((2AyXl + 2Axb + Ax)/2Ax) + (2Ay/2Ax)J 
Y,+l = LY, + (rJ2Ax) + (2Ay/2Ax)1 
Yl+l = LY, + ((r, + 2Ay)/2Ax)1 
Y,+I = Y, + L((rl + 2Ay)/2AxL 

Recall that 0 I r, < 2Ax and 0 < Ay < Ax, so 

0 < (r, + 2Ay) < 4Axand 
0 < (ri + 2Ay)/2Ax < 2 

Hence LO, + 2Ay)/(2Ax)J must be either 0 or 1, and for 
X,+l =XI + 1 we must have either Y,+1 = Y, + 0 or 
Y,+l= Y, + 1 so that from any pixel coordinate, we step 
to the next pixel coordinate along either a unit axial step 
or a unit diagonal step. We can make the choice easily by 
looking at a running error measure rL. 

For our first-octant case, 

Xi+i =Xi + 1 and Yi+i = Yi + L(ri + 2Ay)/(2Ax)1 

Thus, 

if (ri + 2Ay) < 2Ax, thenL(ri + 2Ay)/(2Ax)1= 0 
if (ri + 2Ay) 2 2Ax, thenL(ri + 2Ay)/(2Ax)1= 1 

Note that a simpler, equivalent test is to look just at the 
sign of e, = (r ,  + 2Ay - 2Ax) and then update our loca- 
tion and axial error measure accordingly. 

If e, < 0, then 

Y j + l = Y , + O  and rj+i=rj+2Ay 

so that e ,+l= rl+l + 2Ay - 2Ax and e,+l =e, + 2Ay with 
X,+l =XI + 1 and Yl+l = Y,. 

If e, 2 0, then 

Yi+l= Yi + 1 and rl+l = ri + 2Ay- 2Ax 

so that e ,+l= rL+l + 2Ay - 2Ax and e,+l =e, + 2Ay - 2Ax 
withX,+l =XI + 1 and Y,+1 =Y, + 1. 

For initial conditions, pick an integer starting abscis- 
sa&, then calculate the dependent integer starting ordi- 
nate Y, and initial decision variable e,. That is, with X ,  
an integer, find integer Y, and initial e,. To begin, let 

Then Y, = LcD/2Ax1 and r, = cD - 2AxYs. Therefore, 

es=r, + 2Ay-2Ax=@-2AxYs + 2Ay-2Ax 

or 

For the special case of an integer starting point,X, =XO 
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6 Simplified 
line-drawing 
algorithm. 

Calculate 
DX=Xr-X,, D Y =  Vt- Ys,andDZ=lDXl-lDYl 

if DX< 0 
then Mzl = -1 
else M21 = +1 

then MZZ = -1 
else Mzz = +I 

then P=IDX,Q=IDM,MII=O,MIZ=M~ 
else P=IDYI,Q=IDX,M~~=MZ~,M~P=O 

if D Y <  0 

if DZ< 0 

Set initial values 
IX, v) t {X,  Ysl Current point 
C tQ Loop count 
K7 t2 P Axial step constant 
E t2P- Q Decision variable or error term 
K2 t2P-2Q Diagonal step constant 
MI 
M2 ~{MzI ,  Mzn} Diagonal step “uniP‘ increment {+I, el} 

Write pixel at {X, Y} and decrement C t C- 1 
While C 2  0 execute the following loop 

t(MI1, Mi*) Axial step “unit” increment (%l, 0) or {O, -cl} 

Select pixels 

if ( E <  0) 
then {X, Y) t {X, Y} + MI and E t  E + KI 
else {X, Y} t {X, Y }  + M2 and E t  E +  K2 

Write pixel at (X, Y} and decrement C t C- 1 
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and Y, =yo or any other starting point in which the inte- 
ger pointXs, Y, lies on the line, we can use the simplified 
form e,_o = 2Ay - Ax. For the general case of noninteger 
endpoints and starting anywhere along our first-octant 
line, we can raster to the closest pixel by the axial, nor- 
mal, or residual measures of error by first setting (& YJ 
to (Xs, Y,) and e, to eo. Then, until the pixel with the end- 
ing value ofXis written, loop writing a pixel, testing the 
error term e sign, and updating the coordinate location 
and error term as follows: 

Display the pixel at (X, , K) then 
quit if X I  = Xendmg-mteger-value 

otherwise update as 
if e, < 0, 

then e,+l = e, + 2Ay,Xt+1 =X, + 1, 
and Y,+1 = Y, 

if e, 2 0, 
then e,+l = e, + (2Ay- 2Ax), 
X,+l = X, + 1, and Y,+1 = YL + 1 

Notice that for any given line, the two addends used to 
update the error term e are constants that can be set out- 
side the loop. Should rounding as ra - % 1 be preferred, 
then the e = 0 case and e < 0 instances can be combined 
so that a diagonal step is taken onlywhen e > 0. 

All-octants line-drawing algorithm 
To see an algorithm that draws lines of all orienta- 

tions, not just first-octant lines, let’s assume the com- 
mon circumstance of integer endpoint lines. We’ll 
assume that exact half points are an arbitrary choice and 
retraceability is not a requirement. For a line segment 
from an integer starting grid point {X,, Ys} to an integer 
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terminating grid point {X,, Yt}, all 
variables are integer and the all- 
octants line-stepping algorithm6 sim- 
plifies to what appears in Figure 6. 

Note that the incremental lines 
for this algorithm are not retrace- 
able. To modify the algorithm for 
drawing retraceable lines, set the 
initial value of E as follows: If 
(AY < 0) then E = 2P - Q - 1; other- 
wise, E = 2P - Q. To see the effect, 
draw the line from (0, 0 )  to (2, 1) 
andbackfrom (2,1) to ( 0 , O ) .  

Differences between 
edges and lines 

Edges in raster space differ from 
mere lines. Runs of pixels along a 
horizontal, vertical, or diagonal 
path mean rastered lines can inter- 
sect in more than one pixel, while 
geometric lines would have had only 
one point in common. Edges bound 
an area so that pixels on one side of 
the edge are “inside” pixels while 
pixels on the other side of the edge 
are “outside” pixels. A single hori- 
zontal run from a rastered line can 

include both inside and outside pixels, so accounting for 
the runs is a modification needed if we’re to consistent- 
ly fill adjacent areas. 

To illustrate algorithm modification or tailoring to fit 
a specific new circumstance, consider an edge from an 
integer-valued starting point (Xo, YO) to an integer- 
valued terminating point (X,, Yt) with 0 < AY < AX, 
where pixels to the left of the “true line” are considered 
“inside” pixels while those to the right are considered 
“outside” pixels (Figure 7). 

Assuming integer endpoints, a change ofvariable can 
simpllfymatters. Letu=x-Xoandv=y-Yoso thatthe 
edge becomesv = (YI - YO)/(Xl -Xo)u = (AY/AX)u with 
starting-point coordinates UO = 0 and VO = 0. 

Here our edge-drawing objective is to find the suc- 
cession of pixels closest to the intersection of a hori- 
zontal line V = k and our edge line v = (AY/AX)u as k 
runs from 0 to V, = (X,-Xo). This will provide the right- 
most pixel along each successive one-pixel-wide hori- 
zontal strip across a bounded area having our edge as 
its rightmost boundary segment. Knowing that V = k ,  
we need to find the closest integer u k  that keeps the pixel 
at { Uk,  Vk} inside the area or on the edge itself. That’s 
just the floor uk = LuJ. SO 

u k  = L(h/Ay)vki Or 
uk = t (Ax/Ay) kl  or 
u k  = Luk f GdAyi  



where 0 I S  < Ay and Ax = (HAY) +S. 

Therefore 

and either L(Gk + S)/AyA = 0 with 
Gk+i = Gk 4- s orL(Gk 4- S)/Ayj = 1 
with Gk+l = Gk+ S - AY. 

More or less as we did before with 
line rastering, we can establish a 
decision variable or error-tracking 
termE= ((G + S) - AY) and state an 
edge-drawing algorithm for this 
case of first-octant slope with its 
inside to the left of the edge. The 
generalization for all slopes and 
inside to the right as well as to the 
left is a bit messier than plain line 
drawing, but still straightforward 
and not covered here. 

Also not addressed here is the 
conceptual reference question of 
how to treat pixels exactly on an 
edge. An exact-edge pixel is com- 
mon to two area boundaries, so you 
need to explicitlyresolve the matter 
of a shared pixel and the tri-state dis- 
tinction of inside, on-edge, and out- 
side that was avoided in traditional 
geometry with zero-area, uncol- 
ored, abstract edges. My point is to 
demonstrate that modified algo- 
rithms are appropriate for modified 

Set initial values 
H t (Xt-Xo) DIV (Yt- Yo) 

S 
(X, Y) +- {Xo, Yo) 
c t Y t - Y o  
Ki t s 
E t s - ( Y t -  Yo) 
KZ t S- (Yt- Yo) 
Mi 

t (X t -Xo)  MOD (Yt- YO) 

t (Mil, MlZ) = (H,  1) 

Basic run-length step size in 

Slope residue 
Current point 
Loop count 
H pixel step constant 
Decision variable or error term 
(H+  1) pixel step constant 
Short step (horizontal, unit 

diagonal] increment 
Long step (horizontal, unit 

pixels 

diagonal) increment 
Select pixels 

Write final pixel of horizontal run at {X,  Y) and decrement C t C  - 1 
While C> 0 execute the following loop 

If ( E <  0) 
then [X, Y) t [X, Y] + Mi and E t  E +  KI 
otherwise [X,  Y) t [X,  + M2 and E t  E + KZ 

Write final pixel of horizontal run at coordinate point {X ,  Y) 
Decrement C t C - 1 and return to test of Cat top of loop 

_ _  ~ 

objectives and to emphasize that it is always necessary 
to understand clearly any objective function. Before 
using any algorithm, always understand what it does 
and what it does not do! In practice, you would concur- 
rentlyrun an edge algorithm for a current left edge and 
current right edge so that all pixels in between would 
be filled as the figure-likely a triangle-is traversed by 
horizontal slices. 

Figure 8 presents the rightmost edge form of the edge- 
drawing algorithm. If you find the broken edges from 
this algorithm unappealing aesthetically, you can always 
draw a line boundary to separate filled areas. 

Attention to detail 
It can be tempting to simplify a drawing algorithm, 

for example, by swapping endpoints of a line to always 
draw with a positive Y displacement. It works fine for 
solid lines and saves a minor bit of memory or circuitry 
in the rastering program or hardware adapter. When 
line styles such as dot dashed or user-specified patterns 
are added, then swapping the endpoints disrupts the 
correct pattern and incorrect lines are drawn with the 
pattern reversed. An interesting example I always use 
in my graphics classes is the mixed implementation seen 
in Borland's Turbo Pascal. Line drawing for horizontal 
lines is correctly done for patterned lines. For any line 
orientation other than horizontal, however, line draw- 
ing is incorrectly implemented for lines having a nega- 

tive deltay displacement, that is, (YtermInate - Ystart) < 0. 
To demonstrate the visual effect produced by endpoint 

swapping, try the Pascal procedure in Figure 9 (next 
page) after you first initialize the graphics mode in an 
IBM-compatible PC. Notice that for horizontal lines the 
pattern is correctly reversed for the yellow right-to-left 
and the green left-to-right horizontal lines. For vertical 
lines, though, the patterned lines are seen to be identical 
for both the green bottom-to-top and the yellow top-to- 
bottom lines. The two vertical lines have different direc- 
tions, so the yellow vertical pattern should be reversed 
and the vertical green and yellow patterns should differ. 
The green vertical line is incorrectly drawn. 

Conclusion 
Rastered pictures have been around a long time. 

Computer-driven raster displays simply introduce a 
higher performance, more demanding technology that 
benefits from systematic rules. To examine the devel- 
opment of a compact, integer-arithmetic algorithm for 
line rastering, this tutorial looked at some pixel space 
basics, then considered alternative measures by which 
closeness to a true line's locus could be evaluated. 

The key to effective use of all algorithms is a clear 
understanding of your objective function and the impli- 
cations that can arise from incomplete or unintention- 
ally fuzzy assumptions. For example, the edge-drawing 
algorithm developed here from the line-drawing 
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7 Edge 
contrasted to 
line. 

8 Edge- 
drawing 
algorithm. 
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9 Pascal pro- 
cedure (left) 
and procedure 
output (right) 
showing the 
effect of 
inattention to 
correctly tying 
together pixel 
selection and 
the attribute of 
line style. 
(Download 
Pascal source 
code from 
http://www. 
computer.org/.) 
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PROCEDURE DrawPatternedLineThickly; 

CONST 
{test Borland’s Turbo Pascal v.7 patterned lines} 

MyPattern = $501 F; 

msgl = ‘Lower horiz. lines: from left to right’; 
msg2 = ‘Upper horiz. lines: from right to left‘; 
msg3 = ‘horizontal OK per specification’; 
msg4 = ‘vertical incorrect as end points swapped’; 

i : INTEGER; 

SetBkColor(B1ue); 
ClearDevice; 
SetLineStyle(UserBitLn, MyPattern, Normwidth); 
SetTextStyle(DefaultFont, HorizDir, 2); 
SetColor(LightGreen); 
OutTextXY(10, GetMaxY-85, msgl); 
OutTextXY(360, 45, ‘Right Vertical:’); 
OutTextXY(345, 65, ‘from bottom to top’); 
OutTextXY(375, 85, ‘drawing’); 
OutTextXY(375, 105, ‘specification’); 
FOR i := l00TO 107 DO 

FOR i := 1 TO6 DO 

(VGApixel pattern: 0101 0000 0001 1111) 

VAR 

BEGIN 

Line(l0,GetMaxY-i, GetMaxX-1 0, GetMaxY-i); 

Line((i + GetMaxX DIV 2), GetMaxY-125, 
(i  + GetMaxX DIV 2), 10); 

SetTextStyle(DefaultFont, HorizDir, 2); 
SetColor(Yel1ow); 
OutTextXY(10, GetMaxY-150, msg2); 
OutTextXY(20,45, ‘Left Vertical:’); 
OutTextXY(10, 65, ‘from top to bottom’); 
OutTextXY(35, 85, ‘drawing’); 
OutTextXY(35, 105, ‘specification’); 
FORi:=l1OTO114DO 

FORi := ITO5DO 
Line(GetMaxX-IO, GetMaxY-i, 10,GetMaxY-i); 

Line((-i + GetMaxX DIV 2), IO, 
(-i + GetMaxX DIV 2), GetMaxY-125); 

SetTextStyle(DefaultFont, HorizDir, 2); 
SetColor(White); 
OutTextXY(375, 205, ‘Line Patterns’); 
OutTextXY(35, 205, ‘Line Patterns’); 
OutTextXY(50, GetMaxY-55, msg3); 
OutTextXY(0, GetMaxY-30, msg4); 

END; {..quit PROCEDURE DrawPatternedLineThickly..} 

algorithm showed how raster space differs from tradi- 
tional geometric space. In raster space, lines intersect in 
multiple pixels, so clipping must be carefully chosen to 
be by closest pixel or by theoretical intersection. Do you 
scissor-clip postrastering or geometric-line-clip pre 
rastering? The visual result can differ. Attributes such 
as line thickness and patterns also affect the imple- 
mentation of drawing algorithms. 

The computer graphics literature offers many en- 
hancements to simple single-pixel-per-loop iteration. For 
example, you can select iterations of more than one pixel 
per l00p.~ lo Beyond the scope of this tutorial is a class of 
algorithms that set up parallel processing pixel selec- 
tion.11-12 All approaches share a need to clearly under- 
stand an explicit reference model, as illustrated here. = 
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