
Numer. Math. t8, 224-242 (197t) 
�9 by Springer-Verlag 197t 

A Floating-Point Technique 
for Extending the Available Precision 

T. J. DEKKER* 

Received July 26, 1971 

Abstract. A technique is described for expressing multilength floating-point arith- 
metic in terms of singlelength floating point arithmetic, i.e.the arithmetic for an 
available(say: single or double precision) floating-point number system. The basic 
algorithms are exact addition and multiplication of two singlelength floating-point 
numbers, delivering the result as a doublelength floating-point number. A straight- 
forward application of the technique yields a set of algorithms for doublelength 
arithmetic which are given as ALGOL 60 procedures. 

1. Introduction 
Multilength floating-point arithmetic is often described in terms of integer 

arithmetic. The mantissa of a multilength floating-point number  is then rep- 
resented by  means of some integers and another integer is used for the exponent. 

In contrast  with this approach, we present some basic algorithms which 
enable us to describe multilength floating-point arithmetic in terms of singlelength 
floating-point arithmetic. A multilength floating-point number is then represented 
by  means of some singlelength floating-point numbers. In particular, we represent 
a doublelength floating-point number  as the sum of two singlelength floating- 
point numbers, one of them being (almost) negligeable in singlelength precision. 
The basic algorithms are exact addition and multiplication of two singlelength 
floating-point numbers, delivering the result as a doublelength floating-point 
number. 

After two introductory sections on floating-point systems and arithmetic, we 
deal with exact addition in Section 4. 

Let x and y be singlelength floating-point numbers and let 

z = f l ( x  + y ) ;  

i.e. z is the result of a singlelength floating-point addition of x and y. Let zz  be 
the correction te rm exactly satisfying 

z + z z = x  + y .  

I t  will be shown that ,  under various conditions, zz  can be obtained by the formula 

zz  =fl ((x - - z )  + y ) .  

* Report MR I 18/70, Computation Department, Mathematical Centre, Amsterdam. 
Part  of this research was done while the author was visiting Bell Telephone Labora- 
tories, Murray Hill, New Jersey. 



A Floating-Point Technique for Extending the Available Precision 225 

For example, this is true if the singielength floating-point system is binary, 
addition and subtraction are optimal and Ix[ > [y[. Similar formulas have been 
used by Moiler 0965), Kahan (t965), Babugka (t968) and Knuth (1969) for 
reducing the error in calculating the sum of several terms. 

Moiler (t965) gives a more elaborate formula which turns out to be a double 
application of ours. Knuth (t969) shows that  this formula yields the correction 
term z z  if floating-point addition and substraction are optimal. 

In Sections 5 and 6, we deal with exact multiplication of two singlelength 
floating-point numbers. 

First, each factor is splitted into two "half length" numbers, and then the 
exact product is formed in a rather obvious way. Splitting the factors as well 
as forming the exact product are expressed in terms of singlelength floating-point 
operations which, under certain reasonable conditions, are shown to yield the 
correct results. 

Veltkamp 0968) developed a similar technique with a slightly modified al- 
gorithm for exact multiplication. 

In Section 7, we give a straightforward application of the foregoing results to 
obtain algorithms for doublelength arithmetic. In the appendix, the algorithms 
are given as ALGOL 60 procedures. 

An important application (in fact, the main incentive for this research), is the 
calculation of the doublelength scalar product of two vectors of singlelength 
floating-point numbers. 

Application of our results to multilength arithmetic we hope to present in a 
future publication. 

A drawback of our technique is that  it works only if the singlelength floating- 
point system and arithmetic satisfy certain conditions (which are fulfilled, for 
example, on the General Electric 635 and Philips Electrologica X 8 computers). 

Our technique is then, of course, most effective if we take as singlelength 
system the highest precision floating-point system available. Therefore, an essential 
feature of our algorithms is that,  with respect to this singielength system, no 
doublelength accumulator is used. 

Our technique is especially attractive if the mantissa length of the highest 
precision floating-point system available is larger than the capacity of an available 
fixed-point (i.e. integer) system, because then less work is needed to obtain a 
certain required precision. 

Moreover, since the floating-point operations used take care of the shifting 
and normalizing needed at various stages, a reasonable efficiency can be reached 
by writing our algorithms entirely in a high-level language such a ALGOL or 
FORTRAN. 

2. Floating-Point Number Systems 

The starting-point for our technique is a certain system, R, of floating-point 
numbers, and the floating-point arithmetical operations defined on R. 

Let the base,/5, of R be an integer larger than 1. 
We assume that  the mantissa as well as the exponent of the elements of R are 

integers within a certain range. 

t6 Numer. Math., Bd. t8 



226 T . J .  Dekker: 

More precisely, we assume: 

t) a floating-point number x has the form 

(2.t) x = m x / r ' ,  

where rex, or re(x), denotes the mantissa, and ex, or e(x), the exponent of x; 

2) the system R of floating-point numbers is 

(2.2) R = { x l x = m x ~  x, [taxi<M, --D <ex  <E}, 

where M is a positive integer (usually M -----~, where t is the number of mantissa 
digits) and D, E are positive integers or infinite (the latter if we want to disregard 
underflow and/or overflow). 

Floating-point number systems of the form (2.2) were proposed by Grau (t 962) 
and are actually used in some computers, e.g. Burrough B 5500 (octal) and 
Philips Electrologica X8 (binary). Apart from overflow and underflow, the 
floating-point systems have this form in most, if not all, computers, since the 
mantissa can always be interpreted as an integer by subtracting a suitable constant 
from the exponent. 

Remarks. t) Representation (2.t) is not always unique. In most machines, a 
certain standardization is defined in order to make the respresentation unique. The 
most common standardization is the normalization in which the magnitude of a 
non-zero mantissa has a lower bound M[fl. Some elements of R having an exponent 
(nearly) equal to - -D do not have a normalized representation due to underflow 
in the exponent range. A system of the form (2.2) without requiring normalization 
has the advantage, that  addition and subtraction never lead to underflow. 

2) We shall assume that  M is not congruent to t (mod fl), because this slightly 
simplifies some theorems and proofs. This assumption is no true restriction if we 
disregard overflow. Indeed, if M = 1 +ilK for some integer K, then M may be 
replaced by  flK without changing the system R, except that  (for finite E) the 
elements 4-Mr ~ are removed from the system. This remark also justifies the 
restriction to a symmetric mantissa range, since, for M =ilK, the not uncommon 
asymmetric mantissa range -- (1 + M) < m x < M defines the same system, apart 
from overflow, as the symmetric mantissa range given in (2.2L 

3. Floating-Point Operations 

We use the following notation from Wilkinson (1963, p. 4). If A is an expression 
involving floating-point numbers and the arithmetical operations + ,  --,  • /, 
then [l (A) is the corresponding expression obtained by replacing the arithmetical 
operations by  the corresponding floating-point operations. 

Let �9 represent + ,  --,  • o r / ,  and let x and y be elements of R. 

(3.t) Definition. The floating-point operation corresponding to �9 is ]aith[ul if, 
for all x and y, the r e s u l t / l ( x . y )  equals either the largest element of R smaller 
than or equal to x . y ,  or the smallest element of R larger than or equal to x . y .  

Thus, when x , y  lies between two successive elements of R, either one will do, 
but  when x .yER,  the result must be exact (and when x . y  is outside the range 
of R, the result must be the nearest, i.e. the largest or the smallest, element of R). 



A Floating-Point Technique for Extending the Available Precision 227 

(3.2) Definition. The floating-point operation corresponding to �9 is optimal (or 
properly rounding) if, for all x and y, the result fl ( x , y )  is an element of R nearest 
to x , y .  

Note that  this definition uniquely determines the result, except when x . y  lies 
halfway between two successive elements of R, in which case an optimal operation 
may  round up or down. 

Related to this definition is the following notation which will be used below. 

(3.3) Notation. For any real ~, round (~) denotes an integer closest to ~. 
The result z = fl (x.y)  of a properly rounding operation can be represented in 

the form (2.1), where mantissa mz and exponent ez satisfy 

(3.4) mz =round (x,  y fl-"), 

provided that  no overflow or underflow occurs. 

For addition and subtraction, we also need the following definitions. 

(3.5) Definition. Floating-point addition is properly truncating if it is commutat ive 
(i.e. f l ( x + y ) = f l ( y + x ) )  and, for all x and y satisfying Ixl lyl, the result 
fl(x +y) equals the largest element of R smaller than or equal to x + y  if y >=0 
or the smallest element of R larger than or equal to x + y  if y < 0. 

Thus, when x + y  does not belong to R, it is t runcated in the direction of - - y .  
Note that  this definition uniquely determines the result. 

(3.6) Definition. Floating-point subtraction is properly truncating if, for all x 
and y, we have f l ( x - - y ) = f l ( x  +y'), where y ' = - - y  and the floating-point 
addition is properly truncating. 

(3.7) Definition. Floating-point addition and subtraction are superlaith[ul if, for 
each x and y, the resul t / l  (x i Y) is obtained by properly rounding or by  properly 
truncating. 

Remark. Arithmetical operations having these properties are not difficult to 
realize. 

In  fact, there are machines in which the floating-point addition and sub- 
traction are optimal (e.g. General Electric 635, Philips Electrologica X8). In  
order to obtain faithful addition and subtraction, the result must  only be normal- 
ized before it is t runcated or rounded, cf. Kahan (1965). To obtain a super-faithful, 
or even optimal, addition and subtraction, it is by  no means necessary to have a 
(nearly) doublelength accumulator. Optimal addition and subtraction can be 
perfectly well formulated using an accumulator having no more than two guarding 
digits; see Knuth  (t969, p. t83 Algorithms A and N and p. 194 exercise 5). 

4. Exact Addition 

Let x and y be given elements of R and let 

(4.t) z= f l ( x  +y). 

We want  to find the correction term zz satisfying the (exact) relation 

(4.2) z +zz  = x +y.  

t6"  



228 T . J .  Dekker: 

We shall derive some formulas for calculating zz which use only singlelength 
floating-point addition and subtraction. 

First we consider the formula 

(4.3) w = f l ( z - - x ) ,  z z = f l ( y - - w )  

and prove some theorems stating sufficient conditions for the validity of this 
formula. For practical computation, formulas (4.t) and (4.3) can be written as the 
following sequence of ALGOL 60 statements: 

(4.4) " z : = x  + y ;  z z : = y - - ( z - - x ) " ,  

in which w remains anonymous. 

Let x,y  E R be representable such that  their exponents satisfy 

(4.5) ex>=ey. 

In particular, this holds if x,y  E R satisfy 

(4.6) Ixl_-__lyl. 

(4.7) Theorem. If R has the form (2.2), where/5 = 2 or 3 and M is a multiple 
of/5, and if, moreover, floating-point addition is optimal and subtraction faithful, 
then, for all x and y satisfying (4.5) and for z obtained according to (4.1), formula 
(4.3) yields the correction term zz defined by (4.2). 

Proo]. According to (4.5), we may assume 

x=mxf l ' * ,  y = m y f f  'y, ex>=ey. 

Since floating-point subtraction is faithful, we need to show only 

t) z - -  x~R,  

2) y - - w E R .  

Proo] o I (t). Obviously z can be represented such that  ez ~ e x + t. If ez ~ e x, 
then overflow may or may not occur in forming z; in both cases the result easily 
follows. 

If e z = e x + l ,  then obviously no overflow has occurred in forming z. Let 
d = e x - - e y  and 1~=/smz--mx.  Then 

rnz= round (mx//5 +my /~+l ) ,  z - - x  =t,/5 "~, 

where/~ satisfies 

I~l [/smz - r e x  - m y/l~ [ + [rn y /~[  </5/2 + M. 

Hence, since fl --< 3 and/u is integral, we have [/~[ ~ M. 

From this and the fact tha t  M is a multiple of/5, the result easily follows. 

Proo/ol (2). From e x > ey, it follows that  y -- w is equal to an integer times/~Y. 
Moreover, lY--W[-----lYl, because otherwise x would be closer to x + y  than z 
contradicting the assumption that  floating-point addition is optimal. Hence, 
y - - w e R .  

This completes the proof of (2) and the theorem. 



A Floating-Point Technique for Extending the Available Precision 229 

Theorem (4.7) does not hold for fl < 3  if M is not a multiple of fl (which, 
according to Section 2 Remark 2 can only occur for fl ~ 3), nor for any fl > 3- 

For  example, if fl = 3, M = �89 (3*q - t) (this being the most  natural  range in 
the "ba lanced"  ternary system using the digits +1 ,  0, - - t ,  see Knuth (t969, 
p. 473)) and x = y - - : M - - 4 ,  then z .~3 t and z - - x ~ ( 3 t + 4 ) ,  which is not an 
element of R; if fl ~ t0, M----t00 and x = y  = 98, then z = 200 and z -  x----402, 
which is not an element of R. 

The theorem can be extended to any fl and M, provided tha t  an enlarged 
mantissa range (an extra  digit, say) is available for w. Such an extended theorem 
has practical applications, because w may  remain anonymous (see 4.4) and some 
systems have an enlarged mantissa range for the anonymous floating-point values. 

Therefore, we define an enlarged system R* for w, analogous to (2.2), as follows. 

(4.8) R*~-{x I x = m x f l %  Imxl<M*, - - D < e x  <E} ,  

where M* ~M-kf l ]2 .  (This is certainly true if R* has at least one more digit for 
the mantissas of its elements than R.) 

Then the following theorem holds without any restriction on fl and M. 

(4.9) Theorem. Let R have the form (2.2) and R* the form (4.8). Let x, y e R  
satisfy (4.5) and let zER be obtained according to (4.4), where the floating-point 
addition is optimal. Furthermore,  let formula (4.3) be calculated such tha t  the 
subtraction producing w e R* is faithful with respect to R* and the other operation is 
faithful with respect to R. Then formula (4.3) yields the correction term z z e R  
defined by  (4.2). 

Proo]. The theorem is proved by  showing tha t  z -  x is an element of R* and 
y -  w is an element of R. The proof is identical to that  of Theorem (4.7) apart  
from an obvious modification in the first part  of the proof. 

For properly truncating addition, the following theorem holds without any 
restriction on fl and M and without requiring an enlarged mantissa range for w. 

(4.40) Theorem. If  R has the form (2.2), floating-point addition is properly 
truncating and subtraction is faithful, then, for all x and y satisfying (4.5) and for 
z obtained according to (4A), formula (4.3) yields the correction te rm zz defined 
by  (4.2). 

Proof. The theorem is proved, in a similar way as Theorem (4.7), by showing 
tha t  both z - -  x and y --  w are elements of R. 

Remarks. 1) As pointed out in Section 2 Remark  4, addition and subtraction 
never lead to underflow in a system of the form (2.2). If we restrict ourselves to 
normalized representations, then theorems (4.7), (4.9) and (4.t0) do not remain 
valid, since underflow may  occur in forming zz. Of course, the theorems remain 
valid in cases where no under tow occurs. 

2) The theorems do not hold if addition is only faithful, because the correction 
te rm zz is then not always an element of R. For example, if fl = 2, M -~ 46, x = t 5, 
y-----t5/32 and z-~46, then zz-~--47/32,  which is not an element of R. 

For super-faithful addition (see definition 3.7), we immediately obtain by 
combining theorems (4.7) and (4.40): 



230 T .J .  Dekker: 

(4.tt) Corollary. Theorem (4.7) remains valid, if "opt imal"  is replaced by 
"super-faithful". 

Similarly, combining Theorems (4.9) and (4.10), we obtain 

(4A2) Corollary. Theorem (4.9) remains valid, if "opt imal"  is replaced by 
"super-faithful". 

Instead of formula (4.3), we now consider the formula 

(4.t3) w =/Z(x-z), z z  =/l(w +y). 

For practical computation, formulas (4. t) and (4.t 3) can be written as the following 
sequence of ALGOL 60 statements: 

(4.14) " z : = x  + y; z z : = x - - z  + y " ,  

in which w again remains anonymous. Here, we make use of the fact that, in 
ALGOL 60, subsequent additions and subtractions are performed from left to 
right, so that  the expression " x  --z + y "  is equivalent to "(x  --z) + y " ,  see Naur 
(1962, 3.3.5.). For applications, we prefer this formula above (4.4), because many 
compilers produce a slightly faster code for (4A4) than for (4.4). 

Since the floating-point number system R is symmetric (i.e. xER implies 
- - x E R ,  see (2.2) and Section 2 Remark 2), and R* also (see 4.8), and since 
optimal, properly truncating or super-faithful addition is certainly faithful, we 
immediately obtain 

(4.t 5) Corollary. Theorems (4.7), (4.9) and (4.10), and corollaries (4.11) and (4.12) 
remain valid if formula (4.3) is replaced by formula (4.13). 

The formulas (4.3) and (4.t3) are numerically equivalent but for the sign of w. 
(Since the second subtraction in (4.3) corresponds to the addition in (4.t3), we 
talk about "other  operation" in Theorem (4.9).) 

The pair of formulas (4.t) and (4.t3), or the equivalent formulation (4.14), is 
our basic algorithm for exact addition of two floating-point numbers. In the appli- 
cations, it will often be necessary to interchange the roles of the terms x and y 
when Ix]< [y[, in order to ensure that (4.5) holds. In the subsequent sections, 
we shall use this basic algorithm to obtain algorithms for doublelength arithmetical 
operations. 

We conclude this section with a formula for the correction term zz satisfying 
(4.2), in the case that  floating-point addition and subtraction are optimal, R has 
the form (2.2) with arbitrary fl and M, but no enlarged mantissa range is available 
for anonymous real values (in particular, w). Since we cannot guarantee that  
w = z  -- x in (4.3), we apply formula (4A3) to obtain the correction term, z2, for w. 
This leads to the formula 

w ----fl(z - -x) ,  z l  = f l ( y  --w), 

(4.16) v=/t(z-w),  z2=/z(v-x) ,  
zz = / l ( z l  --z2).  



A Floating-Point Technique for Extending the Available Precision 23~ 

Since we assume that  R is symmetric, this formula is equivalent to that  given by 
Moiler (t965, p. 42 process A) and Knuth (1969, p. 203 formula 48), the only 
difference being that  there - -z2  instead of z2 is calculated and added to zl. 

For this formula, the following theorem holds even without requiring (4.5). 

(4.t7) Theorem of MoUer-Knuth. 

If R has the form (2.2) and floating-point addition and subtraction are optimal, 
then for all x , yER  and for z obtained according to (4.t), formula (4A6) yields the 
correction term zz defined by (4.2). 

Moller (1965) has a weaker assumption for floating-point addition and subtrac- 
tion and obtains a weaker result. Knuth (t969, p. 203 Theorem B) assumes that  
floating-point addition and subtraction are optimal (p. 197, formula t t ) ,  but 
excludes overflow and underflow. In fact, overflow does not invalidate the theorem, 
whereas underflow does not occur in a number system R of the form (2.2) (see 
Section 2 Remark 1). 

For a proof of this theorem we refer to Knuth (1969, p. 201-203). An alternative 
proof can be given along the lines of the proof of Theorem (4.7). 

5. Exact Multiplication 

Let x and y be given elements of R. We want to calculate their exact product 
and to deliver it as a pair (z, zz) of elements of R satisfying the (exact) relation 

(5.t) z + z z = x •  

with some extra condition that  zz be (almost) negligeable within machine precision 
with respect to x • y. 

For simplicity, we assume that  the system R of floating-point numbers has 
the form (2.2), with the restrictions 

(5.2) fl = 2 ,  M -----2 t, 

where t is the number of binary digits in the mantissa, and D and E are infinite. 
Thus R obtains the form 

(5.3) R = R ( 0  = { x l x  = r e x  2 'x, I m x l <  2'}. 

In other words, we restrict ourselves to binary floating-point t-digit arithmetic 
disregarding overflow and underflow. The following results on exact multiplication 
can be generalized, however, to nonbinary systems. We use the notation R (t), 
because we shall also refer to binary floating-point k-digit number systems R (k) 
for some values k :4: t. 

Moreover, we assume that  floating-point addition and subtraction are optimal 
and multiplication is faithful (see Definitions 3.1 and 3.2). 

In order to form the exact product of x and y, we first split x and y each 
into two "halflength" numbers. Let t l  and t2 be (roughly equal) integers such 
that 

(5.4) t-----t1 + r e .  



:232 T . J .  Dekker: 

Let  hx  (the " h e a d "  of x) be an element of R(t2) as near to x as possible; i.e. if 
x=mx2"* ,  where m x  is normalized when x=~O (thus, ex is minimal and 
]mx[ ~ 2t-a), then 

(5.5) h x = round (mx 2 - t  1) 2,,+a. 

(For the definition of round see 3.3.) Let t x (the " ta i l "  of x) be the remaining part  
of x: 

(5.6) t x  = x - - h x .  

Since h x is obtained by rounding, t x is an element of R (tl --1). Let y similarly 
split into hy  and ty.  

Then we obviously have 

hx  • h y e  R(2t2),  

hx  x t y ,  t x  •  e R ( t - - t ) ,  

t x  x t y ~  R ( 2 t l  --2). 

So, in order to make sure, that  these numbers fit in R = R (t), we choose (of. 5.4) 

(5.7) t 2 = entier (t/2), t l  = t --  t 2. 

Then 2t2 ~ t and 2 t l -  2 =< t -  t. Since h x • ty  and t x • hy  are representable as 
elements of R ( t -  t) with the same exponent, their sum is an element of R (t). 
So, the calculations 

p = f l ( h x  • by), 

(5.8) q = f l ( h x •  ty  + t x  X by), 

r =] l ( t x  X ty) 

are exact, because the floating-point operations involved are faithful. We find z 
and the correction term zl  (say) by  performing an exact addition of p and q: 

(5.9) z = f l (p  +q), z l  =f l ( (p  --z) +q). 

Since certainly I Pl--- Iql, we have ep > eq, in other words, the relation correspond- 
ing to (4.5) holds. Hence, z + z l  = p  +q  according to Theorem (4.7) and Corollary 
(4.t 5), since we assume that  R has the form (5.3) and floating-point addition and 
subtraction are optimal. 

From these assumptions, it also follows that  zl  is representable as an element 
of R ( t - - t )  with the same exponent as r. Hence, zl  + r E R ,  so that  zz defined by 
(5.t) is obtained from 

(5.10) zz = f l ( z l  +r). 

So we have proved the following 

(5.tt) Theorem. If R has the form (5.3), floating-point addition and subtraction 
are optimal and multiplication is faithful, then for all x, y E R splitted into head 
and tail according to (5.5) and (5.6), where t l  and t2 are given by (5.7), the formulas 
(5.8), (5.9) and (5.t0) yield z and zz satisfying (5.1). 



A Floating-Point Technique for Extending the Available Precision 233 

Formulas (5.8), (5.9) and (5.t0) can be written as the following sequence of 
ALGOL 60 statements (cf. 4.t4) : 

" p : = h x •  q : = h x • 2 1 5  
(5.12) 

z : = p + q ;  z z : = p - - z + q + t x  •  

Note that,  in the last assignment statement, the additions and subtractions are 
performed from left to right (see (4.t4) and Naur (1962, 3.3-5.)). We use (5.t2) 
in our algorithm for exact multiplication (see ALGOL 60 procedure " m u l l 2 "  in 
Appendix). 

As to the extra condition that  " z z  be (almost) negligeable within machine 
precision with respect to x • y " ,  we shall show for t => 2 that  

lr2-t 
(5.13) I~zl<l x •  t + T 2 - , ,  

where v = 2 if t even and ~ = 3 otherwise. 

Proo]. If x = 0  or y = 0 ,  then obviously z z = z = O  and (5A3) holds. So we 
may assume that  x and y are nonzero, and thus also h x, hy  and p + q. Let  

e = t x / x ,  ~ = t y / y ,  ~ = z l / ( p  +q). 

Then a simple calculation yields 

zz = (x • y) ((t -- e~7) ~ + eV). 

Since floating-point addition is optimal, we have 

2-t 
181--- 1 + 2 - t  

(cf. Wilkinson (t963, p. 17-t9) who gives the bound 2-t). Similarly, it follows 
from (5.5) and (5.6) that  

2-t~ 
I*1, I~1 <-- a + 2 - , ~  �9 

Hence 
2-t [ 2t- ' t '  (t + 21-t) ] 

l zl_Ixxyl  t + (~+2-,,)" " 

Since, according to (5.7), 
2 t-st2 =T-- ' I  

and, for t > 2, 
i+2-t2>i+T2-t>l+2 l - t ,  

we obtain 
2--t [I T --~ 

from which (5.t3) immediately follows. 

A slightly smaller bound for zz is obtained if the algorithm is modified as 
follows. After calculating z and zz as above (see 5.t2), an exact addition of z and 
zz is performed: 

(5.14) " u : = z ;  z : = u + z z ;  z z : = u - - z + z z " .  



234 T . J .  Dekker: 

Then z and zz still satisfy (5.t) and, since addition is optimal, we now have 

2--t 
r zzl_-<lx • 1 +2-*" 

This bound is only about 2 or 3 times smaller than the bound given by (5.13). 
Therefore we did not include (5.14), requiring three extra additions or subtractions, 
in our algorithm " m u l l 2 " .  

The following algorithm for exact multiplication, due to Veltkamp (t968), 
also works under the conditions stated in Theorem (5.t t). 

z = f l ( x  • y), 

zz =f l ( ( ( (hx  • b y - - z )  + h x  • ty) + t x  • hy) + t x  • ty). 

If multiplication is optimal, then zz satisfies (5.t 5), otherwise the bound for zz is 
about  twice as large, because multiplication is assumed to be faithful. Veltkamp's  
algorithm requires one more multiplication and one less addition than ours. 

6. Splitting into Halflength Numbers 

Let x be a given element of R. We want to calculate h x and t x as defined by 
(5.5) and (5.6) by means of some simple arithmetical operations. We consider the 
formula 

(6.1) p = f l ( x  x c), q = / l ( x  --p), hx  =/ l (q  +p) ,  

where c is some constant, and we t ry  to find a value for c such tha t  the formula 
yields hx defined by (5.5). The most obvious choices c = ~ = 2  tl do not always 
work. 

For example, if t is even, c = 2  .1 and [mx[ = 2  *-1 + 2  .1-1, t h e n / l ( q+p)  isnot  
an element of R (t 2) ; if c ---- - -  2* x and [m x [ = 2t-- t, t h e n / l  (q + p) is not properly 
rounded to t 2 bits. 

On the other hand, defining 

(6.2) c = 2  *1 + 1 ,  

the following theorem holds. 

(6.3) Theorem. If  R has the form (5.3), floating-point addition and subtraction 
are optimal, multiplication is faithful, and tl, t2 and c are defined by  (5.7) and 
(6.2), then, for all xER, formula (6.1) yields hx defined by  (5.5). 

Proo/. If  x-----0, then the theorem is obvious. 

If x =~ 0, then we may  and shall assume (for definiteness) that  the floating- 
point numbers involved are normalized, i.e. the absolute value of the mantissas 
are > 2  *-1. Since addition is optimal and, according to (5.5), hx is an element 
of R(t2) and, thus, certainly of R = R ( t ) ,  we need to show only that  q + p  
obtained from (6.t) equals hx. Obviously ep equals either ex + t l  or ex + t l  + t  
which cases we now consider separately. 

a) e p = e x + t l .  Then obviously eq equals either ep or e p - - t .  However, 
eq = ep - - t  is impossible, because this would imply I mql >= 2* which is not within 
the mantissa range. 



A Floating-Point Technique for Extending the Available Precision 235 

Hence eq = ep and the result easily follows. 

b) e p = e x + t l + l .  Then obviously eq equals e p - - I  or ep. If e q = e p - - l ,  
then the result easily follows. If eq = ep, then we have 

[mq[ < lm xl/2 + 3/2. 

This is within the normalized mantissa range 2 t-x ~ l r n q l <  2 t only if Im x I = 2~ -- e, 
where e equals t or 2, but then we obtain 

q + p = round (mx 2 -~ 1-1) 2ep = round (m x 2 - t  1) 2ep- x 

and the result follows. 

This completes the proof. 

After calculating hx according to (6.t), we obtain tx defined by  (5.6) from 

(6.4) t x  = f l ( x  - -hx)  

which is equivalent to (5.6), because t xE R and subtraction is optimal. Formulas 
(6.1) and (6.4) can be written as the following sequence of ALGOL 60 statements, 
where c is assumed to have the value given by (6.2) : 

(6.5) " p : = x x c ;  h x : = x - - p + p ;  t x : = x - - h x " .  

Note that, in ALGOL 60, " x  - -p  + p "  is equivalent to " ( x - - p )  + p "  (see (4.t4) 
and Naur (t 962, 3.3.5.)). We use formula (6.5) in our algorithm for exact multiplica- 
tion (see ALGOL procedure " m u l l 2 "  in Appendix). 

7. Doublelength Arithmetic 

We now give a straightforward application of the results of the previous 
sections to obtain algorithms for doublelength addition, subtraction, multiplica- 
tion, division and square root. In the appendix, the algorithms are given as 
ALGOL 60 procedures. For simplicity, we assume that  the conditions of Section 5 
are satisfied, viz. R has the form (5.3), floating-point addition and subtraction are 
optimal, and multiplication is faithful. The algorithms for addition and subtraction, 
however, would also work correctly under the weaker assumptions stated in 
Theorems (4.7), (4.9) and (4.10) and Corollaries (4.tl),  (4.t2) and (4A5), provided 
that  no overflow occurs. 

In several computers, more than one floating-point system is available, 
e.g. a "single" and a "doub le"  precision system. Our technique is, of course, 
most effective if we start  from the highest precision system available (provided 
that  it satisfies the requirements). Thus, starting from a "double"  precision 
system and arithmetic, our technique yields a "quadruple"  precision system and 
arithmetic. 

We shall, however, call the system R used as starting-point for our technique 
"singlelength floating-point number system",  and the arithmetical operations 
defined on R "singlelength floating-point arithmetical operations". 

(7.1) Definition. A doubldength floating-point number is a pair (r, s) of single- 
length floating-point numbers (i.e. r, s ER) satisfying 

2--~ 



236 T .J .  Dekker: 

The value of the doublelength number (r, s) is, by definition, equal to r + s. We 
call r the head and s the tail of (r, s). 

In particular, any pair (r, 0) is a doublelength floating-point number, and, 
since addition is optimal, also any pair (z, zz) obtained by performing an exact 
addition (see Section 4). 

Sometimes we replace (7.2) by the weaker condition 

(7.3) Isl <= [r + s i C 2 - ' ,  

where C is some constant not much larger than t ; we call a pair (r, s) satisfying 
(7.3) a nearly doublelength floating-point number. 

In particular, a pair (z, zz) obtained by exact multiplication (5.t 2) is a nearly 
doublelength floating-point number, because, according to (5.t3) and Theorem 
(5.tt), we can take C = r / ( l  +T2- t ) .  

On the other hand, the magnitude of the tab of a doublelength number may 
be much smaller than the bound given by (7.2). Thus, the mantissa of a double- 
length floating-point number cannot always be represented by means of a multi- 
length integer of fixed maximum length. This is in contrast with the usual approach 
in which the mantissa is represented by means of some integers. 

The doublelength sum of two (nearly) doublelength floating-point numbers 
(x, xx) and (y, yy)  is calculated as follows (see ALGOL 60 procedure "add2"  in 
Appendix). 

First, the heads x and y are added exactly (4.t4). Here the roles of x and y are 
interchanged when Ix [<  [y[, in order to ensure that  (4.5) holds. Thus, we obtain 
a doublelength number (r, rr) such that  r + r r = x  +y .  Subsequently, the tails 
are added to rr: 

(7.4) s = fl ((rr + y y )  + x x), 

so that  r & s  approximately equals the sum of (x, xx) and (y, yy) .  Here again 
the roles of xx  and y y  are interchanged when Ix]<[y[,  in order to reduce the 
maximum error in (7.4) and to ensure commutativity. Finally, an exact addition 
of r and s is performed. Although not always Ir[ ~ Is] (cancellation in forming r 
may cause Irl to be shghtly smaller than ]sl), the relation corresponding to (4.S) 
certainly holds, so that, for this final exact addition, we never need interchange 
the roles of r and s. 

Since singlelength addition is optimal, the final exact addition transforms the 
approximate sum into a doublelength floating-point number having the same 
value. 

Doublelength subtraction is performed in a completely analogous fashion 
(see ALGOL 60 procedure "sub2"  in Appendix). 

The calculation of doublelength product, quotient and square root is rather 
obvious and can be sketched as follows (for details see error analysis below and 
ALGOL 60 procedures "mul  2",  "div 2" and "sqrt 2" in Appendix). First a nearly 
doublelength approximation, (c, ce), of the required result is calculated. Here, 
besides some singlelength operations, exact multiplication is used. The pair (c, c c) 
satisfies the relation corresponding to (7.3), but not always (7.2). Therefore, an 
exact addition is performed, which transforms the result obtained into a double- 
length floating-point number having the same value. 



A Floating-Point Technique for Extending the Available Precision 237 

Error Analysis. The only error in the doublelength addition is committed in 
forming s (7.4). Assuming that  (x, ix)  and (y, yy) are nearly doublelength 
numbers satisfying 

( 7 . 5 )  [xxl~[x+xx{C12-t ,  [yyl~_ly+yy[C22-',  

where C 1 and C 2 are constants not much larger than 1, we shall show that,  for 
sufficiently large t, the error, E +, of the doublelength addition satisfies 

(7.6) [E+[ _--<{Ix + i x [  (1 +C1) + [ y  +yy[ (1 + C~)}21-2t. 

Proo]. From (7.4), it follows that  

s = (rr +yy)  (t +~)(1 + d )  + x x ( t  + d ) ,  

where I*l, 1.'1--< 2-'/( 1 + 2 - ' ) < 2  -~, because addition is optimal, cf. Wilkinson 
(1963, p. 9). Similarly, 

lrrl_<--ix +ylZ-'. 
From these relations and (7.5), we obtain 

Ie+l __< Irr + y y[(2'-'  + 2 -~') +[xxl 2-t 
< Ix + x xl{(2x-~'+ z -~') (t Aft C12-t ) +C12 -'t} 

+ly + yy[ (2 ' - "  + 2-3~ (t +C~2-' +C~). 

Since [y[ ~ [x[ (otherwise the roles ot x and y would be interchanged), the sum of 
the terms of order of magnitude 2 -a~ and lower is smaller than ]x +ix]Ca2 -~t 
for sufficiently large t. This establishes (7.6). 

If (x, ix)  and (y, yy) are doublelength numbers, then C 1, C2 < t so that  (7.6) 
reduces to 

(7.7) [E+[ = ([x + ix[ + [y + y yD 2'-st" 

If, however, doublelength addition is used, in combination with our exact 
multiplication algorithm, for calculating the doublelength scalar product of two 
vectors of singlelength floating-point numbers, then one of the constants C x, C~ is 
smaller than r (i.e. 2 if t even and 3 otherwise (5.t 3)) and the other is smaller than i. 
Repeated application of (7.6) then yields an upper bound for the error of the 
doublelength scalar product, cf. Wilkinson (1963, p. 18). 

Formula (7.6) means that  the error is small in doublelength precision with 
respect to the sum of the magnitudes of the terms, the loss being at most a few 
bits. The relative error of the doublelength sum, however, is not always small, 
because severe cancellation may take place in forming r. Since this can happen 
only if rr = 0, the algorithm for doublelength addition can easily be modified such 
that  a small relative error is ensured (Veltkamp, t 968). We did not include this 
modification in our algorithm, because it is of only limited value if the terms are 
not exact. 

The doublelength product, quotient and square root produced by our 
algorithms all have a small relative error. In other words, if the operands are 
(nearly) doublelength numbers, then the corresponding absolute error, E • E / 



238 T . J .  Dekker: 

and EV, satisfy 
IE• I-<_(Ix +xx l  • 2 1 5  -2', 

(7.8) [Et 1< (1 x + xxl/lY +yy[)c/2 -2t, 

I E V - i < = V ~ f v  2-:, ' 

where C • C ! and CV- are constants not much larger than 1. (Here we assume, of 
course, that  the denominator of the quotient is nonzero and the argument of 
the square root is nonnegative.) 

If the operands are doublelength floating-point numbers (7.a) and singlelength 
division and square root are faithful, then, for t ~ 10 (say), the constants are 
bounded by 

(7.9) C • _--__9+r, C/_--<21.t, CV-<--_t2.7, 

where T = 2 if t even and T = 3 otherwise (5.13). If, moreover, singlelength multi- 
plication and division are optimal (which holds for the Philips Electrologica X 8 
computer), then 

(7.t0) C • <=7-}- ~, Cl <= t2.t, CC ~ 10.2. 

Proo/. Let 

P = ( x + x x )  X(y+yy) ,  P ' = x •  

Since the operands are doublelength numbers (7.1), we have 

(7.tt) IF- -  P[=[xx • yy] ~[P]2 -~t. 

In "mul2" the following approximation, P" ,  is calculated: 

P"=c +fl((x • yy  + xx • y) +cc), 

where c and cc, obtained by exactly multiplying x and y, satisfy (cf. Section 5) 

~2--t 
c + c c = x x y ,  Iccl--<Ixxyl t+~2- ,"  

Hence, we obtain (cf. Wilkinson (t963, p. 7-1t)) 

P " =  c + [{(x x yy) (t + e) + (x x x y) (t + #)}(t + ~1) + cc] (t + ~), 

where 
[ell, l~l--<2-'/(a +2 - ' ) ,  

because addition is optimal, and, for some constant/z, 

I~l, l~'l--<~2-'/( 1 +2-').  
From the assumption that  multiplication is faithful, it follows that  # ___ 2; if 
multiplication is optimal, then / ,  = t.  

From the formulas for P '  and P" ,  we easily derive 

(7.a2) IP"-P'[  < IPl(2~ +4  +x) 2 -z'. 
So, combining (7.tl) and (7.t2), we obtain 

(7.t3) IE• I =IP"--PI <IPI (2~ + S +~)2 -~'. 
This establishes the relations given above for C x. 



A Floating-Point Technique for Extending the Available Precision 239 

Let  
Q = ( x + x x ) / ( y + y y ) ,  Q ' = ( x + x x - x •  

Since the operands are doublelength numbers (7A), we have 

(7.14) [Q' - Q  I_- < [Q 121-2,. 

In "div 2" the following approximation, Q", is calculated: 

Q " = c  +fl(((((x - u )  - u u )  + xx) - c  • yy)/y),  
where 

c=f l (x /y )  =(x/y)(1 +e) (say), u+uu----c • y, 

u and uu being obtained by exactly multiplying c and y. Since cancellation occurs 
in calculating fl (x--u) ,  this is exact. Moreover, since division is faithful, we 
have x -  c • y E R, so that  

l Z ( ( x - . ) - . . )  = x - .  - u .  = - x ~ .  

Hence (cf. Wilkinson (1963, p. 7-1t)), 

Q" = (x/y) (1 + ~) + [{(x/y) ( -  e) + x x/y} (t + el) 

- (x/y) (yy]y) (1 + ~) (t + e")] (1 + e2) (1 + d), 
where 

It, I, 1.~1<2-'/(t + 2 - ' ) ,  

because addition and subtraction are optimal, and, for some constant #, 

I*1, I~'1, I~"l--<~ 2-'- 
Since we assume that  multiplication and division are faithful, we obviously have 
/, < 2; if these operations are optimal, then # < 1. Denoting the sum of the 
terms of order 2 - S t  and lower by 0 2 -2 t ,  w e  obtain 

(7.15) IQ" -Q ' I  -<-- Q ( / #+  6# + 3 + 0) 2 -~,. 

Further analysis shows that,  for t ~ t 0 ,  we can take 0 = 0.t. So, from this and (7A4), 
we obtain 

(7.a6) IEZl--1Q"-QI < 191 (~  + 6 #  + 5.t)2 -~'. 

This establishes the relations given above for C/. 
Let 

R = ~  R' =V; + xx/(2V~). 

Since the argument is a doublelength number, we have 

(7.17) JR'--R[<=~IR]2 -~t. 

In a similar way as above, one shows that  the approximation R"  calculated in 
"sqrt 2" satisfies 

(7.18) IR"--R'I <=IRI (2.5# +7.5  + 0 ) 2  -~`, 

where/z < 2 since division is faithful (/z < t if division is optimal) and 0 2 -zt again 
denotes the sum of the terms of order 2 -St and lower. 



240 T . J .  Dekker: 

For t ~ t0, we can take 0 ----0.075. So, from this and (7.17), we obtain 

IEV [-~IR"--RI<--[RI(2.5F+7.7)2-~' .  

This establishes the relations given above for CV- and completes the proof. 

The doublelength operations defined by our algorithms "add2",  "sub2" ,  
"mul2" ,  "d iv2"  and "sqrt2" are not faithful. To obtain faithful doublelength 
operations, one would have to calculate the result in triplelength (or maybe even 
quadruplelength) precision and then to round or truncate it to doublelength. This 
would, of course, require considerably more work and be preferable only in excep- 
tional situations. 

8. Appendix. ALGOL 60 Procedures 

In this appendix, we give a set of ALGOL 60 procedures for doublelength 
arithmetic and exact multiplication. 

The procedures work correctly if the singlelength floating-point system is 
binary, singlelength floating-point addition and subtraction are optimal (3.2), 
multiplication is faithful (3A) and no overflow or underflow occurs (cf. Section 5). 

The procedures for doublelength addition and subtraction also work correctly 
in a nonbinary system, provided that  a guarding digit is available for the mantissas 
of anonymous quantities (i.e. quantities which are not assigned to a variable; for 
details see Section 4). 

The procedures have been tested on the Philips Electrologica X 8 computer 
at Mathematical Centre, Amsterdam. This is a binary machine having t = 4 0  
binary digits in the mantissa and 12 bits for the exponent (i.e. D = E  = 2048 
in (2.2)). 

In particular, the algorithms described in "add2"  and " m u l l 2 "  have been 
used extensively for calculating doublelength scalar products of vectors of single- 
length floating-point numbers. 

Procedure "add 2" has been tested also on the GE 635 computer at Bell Tele- 
phone Laboratories, Murray Hill. This is a binary machine having two floating- 
point systems, viz. single precision t = 27 and double precision t = 63. Procedure 
"add2" worked correctly in both systems. 

In the comments, (x, xx), (y, yy)  and (z, zz) denote (nearly) doublelength 
numbers (see Section 7). 

c o m m e n t  add2 calculates the doublelength sum of (x, xx) and (y, yy),  the result 
being (z, zz) ; 

procedure add2 (x, xx,  y,  yy ,  z, zz); 
v a l u e  x, xx,  y ,  y y ;  r e a l  x, xx,  y ,  y y ,  z, zz; 
begin real r, s; 

r : = x + y ;  
s: ---- if abs (x) > abs (y) t h e n  

x - - r + y + y y + x x  else y - - r + x + x x + y y ;  
z : = r  +s;  

ZZ::Y- -Z-~S  
end add2; 



A Floa t ing -Po in t  Technique  for E x t e n d i n g  the  Available Precision 241 

comment sub2 calculates the doublelength difference of (x, xx) and (y, yy) ,  the 
result being (z, zz) ; 

procedure sub2 (x, xx,  y, yy ,  z, zz); 
value x, xx ,  y ,  y y ;  real x, xx,  y ,  y y ,  z, zz; 
begin real r, s; 

r : = x  - -y;  
s :---- if abs (x) > abs (y) then 

x - - r - - y - - y y  + x x  else - - y - - r  + x + x x - - y y ;  
z : = r  +s;  

z z : - ~ - r  - -  z -gy s 

end sub2; 

comment mull2 calculates the exact product of x and y, the result being the 
nearly doublelength number (z, zz). The constant should be chosen 
equal to 2 ~ (t -- t + 2) + i,  where t is the number of binary digits in 
the mantissa; 

procedure mull2 (x, y, z, zz) ; 
value x, y; real x, y ,  z, zz; 
begin real hx, tx, hy, ty, p, q; 

p : = x • constant; 
h x : : x - - p + p ;  t x : = x - - h x ;  

p : = y  • constant; 
h y : = y  --p + p ;  t y : = y  - -by;  

p : = h x •  
q : = h x  •  •  
z : = p + q ;  

z z : = p - - z  +q + t x  •  
end mull2; 

comment mul2 calculates the doublelength product of (x, xx) and (y, y y ) ,  the 
result being (z, zz) ; 

procedure mul2 (x, xx,  y, yy ,  z, zz); 
value x, xx ,  y ,  y y ;  real x, xx ,  y ,  y y ,  z, zz; 
begin real c, cc; 

mul l2  (x, y,  c, co) ; 
c c : = x  • y y  + x x  • y +cc; 
z :=c  +cc; 

ZZ:~C--Z-~CC 
end mul2 ;  

comment div2 calculates the doublelength quotient of (x, xx) and (y, yy) ,  the 
result being (z, zz). If y = 0 ,  the effect of this procedure is undefined; 

t7 Numer. Math., Bd. 18 



242 T . J .Dekke r :  A Float ing-Point  Technique for Extending the Available Precision 

procedure div2 (x, xx,  y, yy ,  z, zz); 
value  x, x x ,  y ,  y y ;  real x, xx ,  y ,  y y ,  z, zz; 
begin real c, cc, u, uu; 

c :=x /y ;  
mul l9  (c, y, u, uu) ; 
c c : = ( x - - u - - u u + x x - - c  • yy) /y;  

z : = c  +cc;  
Z2. :=C - - Z  --~CC 

end divg; 

c o m m e n t  sqrt9 calcula tes  the  double length  square  root  of (x, xx),  the  resul t  
being (y, yy) .  If  (x, x x) is not  posi t ive,  then  the  resul t  equals  (0, 0); 

procedure sqrt2 (x, xx,  y, yy) ;  
value  x, x x ;  real  x, x x ,  y ,  y y ;  
begin real c, cc, u, u u ;  

if x > 0 then 
begin c:=sqrt (x); 

mull2 (c, c, u, uu); 
co:= (x- -u--uu + xx) x 0.5/c; 
y:=c+cc; 

y y : = c - - y  +cc  
end 
else y : = y y : = O  

end sqrt2. 

Acknowledgements. The author expresses his grat i tude to Professor Dr. F. E. J. 
Kruseman Aretz, formerly a t  Mathematical  Centre, Amsterdam, to Professor Dr. G.W. 
Vel tkamp at  Technological University, Eindhoven, and to Dr. W. S. Brown and 
Dr. P. L. Richman at  Bell Telephone Laboratories, Murray Hill, for many valuable 
suggestions and inspiring discussions. The author  is also grateful to Mr. H. J. w .  
ten Hagen, Mr. H. N. Glorie and Mr. D. T. Winter  a t  Mathematical  Centre, Amster-  
dam, for their  assistance in testing the  algorithms. 

References 
Babu~ka, I. : Numerical s tabil i ty in mathematical  analysis. I F I P  congr. 68, Invi ted 

papers, t - I  3 (1968). 
Grau, A. A. : On a floating-point number representation for use with algorithmic 

languages. Comm. ACM 5, 160-161 (1962). 
Kahan,  W. : Fur ther  remarks on reducing truncation errors. Comm. ACM 8, 40 (1965). 
Knuth,  D. E. : The ar t  of computer  programming, vol. 2. Addison Wesley (1969). 
Moiler, O.: Quasi double-precision in floating-point addition. BIT 5, 37--50 (1965). 
Naur, P. (ed.) : Revised report  on the  algorithmic language ALGOL 60 (t962). 
Veltkamp, G . W . :  Pr ivate  communications (see also RC Informatie Nr. 21 & 22, 

Technological University,  Eindhoven). (1968). 
Wilkinson, J. H. : Rounding errors in algebraic processes. Her Majesty 's  Sta t ionary 

Office (t963). 
Dr. T. J. Dekker 
Mathematical  Centre 
2 E Boerhaavestraat  49 
NL-Amste rdam 
Netherlands 


