
Acta Informatica 4, 1--9 (t974)
�9 by Springer-Verlag t 974

Quad Trees
A Data Structure for Retrieval on Composite Keys

R. A. Finkel and J. L. Bentley

Received April 8, t974

Summary. The quad tree is a data structure appropriate for storing information
to b e retrieved on composite keys. We discuss the specific case of two-dimensional
retrieval, although the structure is easily generalis~ to arbitrary dimensions. Algorithms
are given both for staightforward insertion and for a type of balanced insertion into
quad trees. Empirical analyses show that the average time for insertion is logarithmic
with the tree size. An algorithm for retrieval within regions is presented along wi th
data from empirical studies which imply that searching is reasonably efficient. We
define an optimized tree and present an algorithm to accomplish optimization in n
log n time. Searching is guaranteed to be fast in optimized trees. Remaining problems
include those of deletion from quad trees and merging of quad trees, which seem to
be inherently difficult operations.

�9 Introduction
One way to a t tack the problem of retrieval on composite keys is to consider

records arranged in a several-dimensional space, with one dimension for every
attribute. Then a query r the presence or absence of records satisfying
given criteria becomes a specification of some (possibly disconnected) subset of
tha t space. All records which lie in tha t subset are to be returned as the response
to the query.

The retrieval of information on only one key has been well studied. Experience
has shown binary trees serve as a good data structure for representing linearly
ordered data, and tha t balanced binary trees provide a guaranteed fast structure
(Knuth, 6.2.3).

This paper will discuss a generalization of the binary tree for the t rea tment of
da ta with inherently two-dimensional structure. One clear example of such
records is that of cities on a map. A s a m p l e query might be: " F i n d all the cities
which are within 300 miles of Chicago or north of Seattle." The data structure
we propose to handle such queries is called a quad tree. I t will be obvious tha t
the basic concepts involved are easily generalized to records of any dimensionality.

Definitions and Notation
The location of recolds with two-dimeusional keys will be stored in a tree

with out-degree four at each node. Each node will store one record andwi l l have
up to four sons, each a node. The root of the tree divides the universe into four
quadrants, namely NE, NW, SW, and SE (using the map analogy). Let us call
these quadrants one, two, three and four, respectively. Fig. f shows the cor-
respondence between a s imple tree and the records it represents.

The convention we use for points which lie directly on one of the quadrant
lines emanating from a node is as follows: Quadrants one and three are closed,

I Acta Informatica, Vol . 4

2 R.A. Finkel and J. L. Bentley

and quadrants two and four are open. Thus a point on the line due east of a node
is in quadrant one of that node. Actually, the convention assumed is of little
import to the basic idea behind the tree; the one we have chosen is nice for the
purpose of deciding quickly in which quadrant of the root a given node lies.

Notice that we do not take into account the possibility of nonunique records
(collisions). If collisions are indeed valid in a particular application, an extra
pointer could be placed in each node for a linear list of similar records, or some
more sophisticated structure could be used to store the collisions.

Given two records, say A and B, we d~fine COMPARE (A, B) to be an integer
representing which quadrant of A holds B. We will define COMPARE (A, A)
to be0.

It is occasionally convenient to be able to discuss the direction directly
opposite to a given direction. We will use the notation CONJUGATE (DIREC-
TION) to represent the direction'in question. For example, conjugate (3)----~.
A simple formula for conjugate is conjugate (N)----((N d-l)rood 4)d-t .

It is not necessary to specify any exact implementation for nodes; many
alternatives are possible, and the choice made will almost certainly be language-
dependent. However, we need some notation for the purpose of discussing the
algorithms. Therefore, let us agree to these conventions: There is a datatype
NODE; the entire tree is a node. To denote a subtree of a node, say the third
subtree of the node called ELM, we will write ELM [3]. NULL is the empty node.
By convention, the zeroth subtree (sayxELM [0]) is always NULL.

The algorithms in this paper will be presented~ in an ad-hoc version of ALGOL.

In-qertlon

Insertion of new records into quad trees is based on the same philosophy
that governs insertions into binary trees; at each node, a comparison is made
and the correct subtree is chosen for the next test; upon falling out of the tree,
the algorithm knows where to insert the new record.

Here is an algorithmic description of the process:

PROCEDURE INSERT (NODE VALUE K, R);
BEGIN
COMMENT: Inserts record K in the tree whose root is R;
INTEGER DIRECTION; COMMENT: Direction from father to

son, i.e. ~, 2, 3, or 4;
DIRECTION +-COMPARE (R, K);
WHILE R [DIRt~CTION] 4:NULL DO

BEGIN
COMMENT: Each iteration dives one level deeper;
R +-R [DIRECTION] ;
DIRECTION +-COMPARE (R, K) ;
END;

IF DIRECTION = 0 THEN RETURN; COMMENT: Node
already exists;

R [DIRECTION] +-K;
END

Quad Trees 3

I
I
I

J I
. G ! I

I I I

I I I

I
I
I

I
I

1
I
I
I
I

A

Fig. t . Correspondence of a quad tree to the records i t represents. RECORDS A, B,
C, D, E, F , G. Null subtrees are indicated by boxes, but they do not appear explici t ly

in computer memory

This a lgor i thm has been used to cons t ruc t m a n y t rees of var ious sizes in
o rder to collect s ta t i s t ics on i ts performance. The nodes were un i fo rmly d i s t r i bu t ed
in bo th coordinates , wi th k e y values ranging f rom 0 to 2 3 1 - t . Tab le t is a
s u m m a r y of the results .

Here X is the q u a n t i t y (A V E R A G E TPL) / (n log n), where n is the n u m b e r ,of
nodes, and the n a t u r a l logar i thm is used. The Low and High X are one s t a n d a r d

Ts, ble I. Data on straightforward insertion

Number Total path length X Low X High X Number
of nodes of trees

AVG STD DEV

25 67.2t 8.699 0.8352 0.7271 0.9433 300
50 t68.4 t7.34 0.8608 0.7722 0.9495 300

100 403.5 30.68 0.8763 0.8096 0.9429 t50
1000 6288 325.6 0.9103 0.8632 0.9575 30

t0000 84705 2882 ~ o.9t97 0.8884 o.95t0 t0

t *

4 R.A. Finkel and J. L. Bentley

deviation on either side of X. These are of mild interest; they show that for
random nodes the algorithm seldom gets much worse than the average.

The most interesting aspect of Table t is the column marked X; its slowly
growing nature implies that the TPL of a quad tree under random insertion is
roughly proportional to N log N, where N is the number of nodes. Therefore,
point searching in a quad tree can be expected to take about log N probes.

It should be noted, however, that the extreme case is much worse. If each
successive node gets placed as a son of the currently lowest node in the tree,
then the resulting tree will have TPL of n(n--1)/2. Thus worst-case insertion
and searching are order m s operations.

More Sophisticated Immfdon
In an effort to lessen the TPL and to find some analog to balancing of binary

trees, a simple balancing algorithm was developed. It does not aim to keep the
height of sons of a given node within some fixed distance of each other, but rather
takes note of the fact that some simple situations can be represented in two ways,
one of which has lower TPL. Two examples are shown in Fig. 2 and ~ ; the former
demonstrates what is termed a single balance; the latter a double balance (per-
formed if COMPARE (B, C) is the conjugate of COMPARE (A, B)).

f
I

...... B
I I
I C
I I

. - # 4
I

I
I.~af-unbalanced

I
I

. B

i i
I C---
i I

..... -A I
I
t
Lvaf-balanced

Fig. 2. Single balance

I I
I

I - - - C - - - I
, I I

. - . 4
|

I

Leaf-unbalanced

I I
I i
f - - B
! l

. C

- - - A - - - I
, I
I I

L e a f - b a l a n c e d

Fig. 3~ Doub le b a l a n c e

Number
o f nodes

Table 2 . D a t a on leaf-balanced insertion

Total pa th length X Low X

AVG STD DEV

High X Number
o f trees

25 60.57 5.703 0.7526 0.6818 0.8235 300
50 152.9 J2.37 0.7818 0.7185 0.8450 300

100 367.6 24.t3 0.7982 0.7458 0.8506 t50
t000 58t2 247.0 0.84t4 0.8057 0.8772 30

t0000 78020 1960 0.8471 0.8258 0.8684 t0

Quad Trees 5

Table 2 gives statistics for the algorithm which performs these leaf balances
during insertion. The nodes used were identical to those used in the tests of
straightforward insertion. Of interest are the about t0% lower values of X and
the slightly lower standard deviations. It should be remarked, however, that at
times a tree built by the leaf-balancing algorithm has higher TPL than a tree
built by the stralghtforwa~ insertion algorithm out of the same nodes, arriving
in the same order.

Searching
There are two general classes of searches facilitated by quad trees. The first

is a point saarch for a single record, invoked by a query like "Is the point (37, t8)
in the data structure, and what is the address of the node representing it ?" The
second is a region search, invoked by something like "What are all the points
within a circle of center (t 5, 3 t) and radius 7 ?" or (if the quad tree's two dimensions
represent age and annual income) "Who are all the people between the ages of
24 and 28 who earn between $ 42000 and $ 44000 per year?" Our definition of
point search corresponds to Knnth's "simple query" (Knuth, 6.5) and our region
search encompasses both a "range query" and a "boolean query" in Knuth's
terminology.

'Point searching is accomplished by an algorithm much like that used for
insertion. The average time required to do a point search for a node in the tree
is proportional to

TPL](number of nodes in tree).

This is the algorithm used to perform a region search:

PROCEDURE RE GIONSEARCH (NODE VALUE P; REALVALUE L, R, B, 7") ;
BEGIN
COMMENT: Recursively searches all subtrees of P to find all nodes within

window bounded by L (left), R (right), B (bottom), and T (top) which
are in region in question;

REAL XC, YC; COMMENT: The X and Y coordinates of P;
XC+-X(P);
YC<--Y(P);
IF IN_REGION (XC, YC) THEN FOUND (i~
IF P [t] 4~ NULL AND RECTANGLE_OVERLAPS_REGION

(XC, R, Y C, T)
THEN REGIONSEARCH (P[t] , XC, R, YC, r) ;

IF P [2] 4: NULL AND RECTANGLE-OVERLAPS_REGION
(L, XC, rC, 2")
THEN REGIONSEARCH (P [2], L, XC, YC, r) ;

IF P [3] 4: NULL AND RECTANGLE-OVERLAPS_REGION
(L, XC, B, YC). '
THEN REGIONSEARCH (P [3], L, XC, B, YC);

IF P [4] 4: NULL AND RECTANGLE--OVERLAPS_REGION
(xc , R, B, rC)
THEN REGIONSEARCH (P [4], XC, R, B, YC);

END

6 R.A. Finlrel and J. L. Bentley

This algorithm must be supplied with two procedures to be used during
searching and one procedure that is informed of each node found in the region.
Procedure IN_REGION is a boolean procedure which is passed the x and y
coordinates of a node and returns TRUE if an only if the node is in the region.
Procedure RECTANGLE_OVERLAPS_REGION is passed the left, right,
bottom, and top extreme values of a rectilinearly oriented rectangle. (For example,
the parameters (4, 6, t, 3) represent the rectangle b ~ d e d by the lines x =4,
x = 6 , y = t , Y=3). RECTANGLE_OVERLAPS_REGION returns TRUE if
the region being searched overlaps the described rectangle and FALSE otherwise."
Procedure FOUND is given each node found in the region to allow processing.

The algorithm itself is recursive and is initially invoked by the statement

REGIONSEARCH (ROOT, MIN_X, MAX_X, MIN_Y, MAX_Y)

where ROOT is the root node of the tree, and the rest of the parameters are
defined such that for all x and y values represented in the quad tree,

(MIN-X<x<MAX-X) and (M I N _ Y < y < M A X - Y) ,

Here are the auxiliary procedures IN_REGION and RECTANGLE_OVER-
LAPS_REGION necessary to search for all points in the rectilinearly oriented
rectangle defined by (B P ~ y ~ T P) and (L P ~ x ~ R P) :

BOOLEAN PROCEDURE IN-REGION (REAL VALUE X, Y);
COMMENT: Returns TRUE if (X, Y) is in region;
RETURN ((L P ~ X) A (X < R P) ^ (B P < Y) A (Y < TP));

BOOLEAN PROCEDURE RECTANGLE_OVERLAPS_REGION
(REAL VALUE L, R, B, T) ;

COMMENT: Returns TRUE if region overlaps rectangle
bounded by L, R, B, and T;

RETURN ((L < R P) ^ (R ~ L P) A (B ~_ T P) A (T > B P));

Similar procedures can be defined to search for points in any connected
geometric figure. After these basic procedures have been defined, the logical
operators AND, OR and NOT can be used to search within unions, intersections,
and complements of regions. Thus, the specification of the region of interest is
highly flexible.

The versatility of this algorithm makes a formal analysis very difficult, so
we have conducted some empirical tests to investigate ire efficiency. We let the
x and y coordinates of all points in the quad tree be real-valued numbers in [0, 1].
The regions of search were randomly located, rectilinearly oriented squares
having a given edge size. For each of the treesizes for which we gathered data,
we randomly generated four quad trees. For all of the edge sizes presented we
searched each of the four trees 25 times; a total of t00 searches per edge size.
In Table 3 we show for every combination of tree and edge size the number of
nodes visited in the t 00 searches (Visited), of those visited the number that were
actually in the region (Found), and significant ratios of these data. For example,
there were four 250-node quad trees tested. On each of these trees, 25 searches
were made for all the points within squares of edge 0.t25 located at random

Quad Trees 7

posit ions wi th in the u n i t square. I n these t00 searches a to ta l of 1820 nodes were

visited. Of the t820 visited, 387 were in the par t icular squares be ing searched.
The rat io of those vis i ted to the n u m b e r of searches was t 8.20, the rat io of the

n u m b e r of nodes found to the n u m b e r of searches was 3.87, a nd t h e rat io of

those visi ted to those found was 4.70.
The two most s ignif icant figures in the table are the values Vis i t ed /Found

and Visited/Search. Vis i ted /Found is indicat ive of the a m o u n t of to ta l work the
a lgor i thm has to do to f ind a par t icular node in the region i t is searching. Visi ted/
Search shows the a m o u n t of work the algori thm does to f ind all nodes in a cer ta in
region. I t is p leasant to note in Table 3 t ha t as Visi ted/Search increases, Visited/
F o u n d decreases, imply ing one is going to be low as the other is high. I t is l ikely
t ha t the lower measure will be of more concern to the user; when one is ga ther ing
a large a m o u n t of da ta from a certain, region one is more concerned abou t the
cost per collected node, and when one is mak ing a large n u m b e r of small searches
one is more concerned about the cost of each search.

Table 3. Region-search data

Number Edge Visited Found .Number Visited/ Found/ Vmited/
of nodes Size of Searches Search Search Found

125 0.03125 598 13 100 5.98 0.13 46.00
0.0625 789 41 t00 7.89 0.4t t9.24
0.125 12t8 206 !00 12.18 2.06 5.91
0.25 2195 799 1)0 21.95 7.99 2.75
O.5 5188 3130 100 51.88 3t.30 1.66

250 0.03125 777 22 100 7.77 0.22 35.32
0.0625 1074 103 100 t0.74 1.03 10.43
0.125 1820 387 100 t8.20 3.87 4.70
0.25 3562 1536 100 35.62 15.36 2.32
0.5 9550 6390 t00 95.50 63.90 t.50

500 0.03125 975 55 100 9.75 0.55 17.73
0.0625 t493 205 100 t4.93 2.05 7.28
0.125 2641 754 t00 26.41 7.54 3.50
0.25 6248 3163 100 62.48 3t.63 1.97
0.5 17453 12860 t00 174.53 128.60 t.36

1000 0.03125 1316 99 100 13.t6 0.99 13.29
0.0625 2144 376 100 21.44 3.76 5.70
0.t25 4246 1611 100 42.46 16.11 2.64
0.25 10100 6172 100 101.00 61.72 1.64
0.5 31845 24880 100 318.45 248.80 t.28

2000 0.03125 1619 183 t00 t6.19 t.83 8.85
0.0625 2906 786 100 29.06 7.86 3.70
0.125 68O3 3106 100 68.03 31.06 2.19
0.25 18347 12627 100 t83.47 t26.27 t.45
0.5 60581 49943 100 605.8t 499.43 1.21

4000 0.03125 2407 397 100 24.07 3.97 6.06
0.0625 4369 t504 100 43.69 15.04 2.90
0.125 11096 62t8 100 110.96 62.18 t.78
0.25 33133 .24610 100 331.33 246.t0 t.35
O.5 114767 99875 100 1t47.67 998.75 t.t5

8 R.A. Finkel and J. L Bentley

Deletion

I t turns out to be very difficult to perform deletions from quad trees. ~rhe
difficulty lies in deciding what to do with the subtrees that were attached to the
deleted node. I t is necessary to merge them into the rest of the tree, but merging
is not an easy process. In fact, i t seems that one cannot do better than to reinsert
all of the stranded nodes, one by one, into the new tree. This answer is not very
satisfactory, and it is a mat ter of some interest whether there exists any merging
algorithm that works faster than n log n, where n is the total number of nodes
in the two trees to be merged.

Some at tempt has been made to take advantage of the hope that not all
subtrees of a newly-merged node need be disjointed, that some of them (which
ones depending on in what direction the newly-merged son lies with respect to
its father) can be left intact. This has so far not been found to be of much help.

An Optimization Algorithm

At times the simple balancing mentioned earlier is not sufficient; the nodes
might be presented in a very lopsided order, or the tree might be needed frequently
for point searches and never updated. These conditions make it worthwhile to
consider expending extra effort at the outset to optimize the tree.

By an optimized tree we will mean a qusd tree such that every node K has
this property: No subtree of K accounts for more than.one half of the nodes in the
tree whose root is K. The first step in building an optimized quad tree from a
collection of records is to order the nodes lexicographically primarily by the x
coordinate and secondarily by the y coordinate. A simple recursive algorithm to
complete optimization is this: Given a collection of lexicographically ordered
records, we will first find one, R, which is to serve as the root of the collection,
and then we will regroup the nodes into iour subcoUections which will be the four
subtrees of R. The process will be called recursively on each subcollection. The
root tha t is .then found for each subcollection is linked in as an appropriate son
of R. To find the root R, select the median element of the ordered list. The r e , o n
this works is that all records falling before R in the ordered listwill lie in quadrants
3 and 4; those falling after it will lie in quadrants t and 2. Thus the condition
is met: No subtree can possibly contain more than half the total number of
nodes. The maximum path length in an optimized tree of n nodes is therefore
Llog~ (n)J and the maXimum T P L is

)-: Llog, (i)J.

The running time for this algorithm is on the order of n log n: The ordering
step on n elements will take n log n. On each level of recursion the selection of
the median requires ~, the regrouping of the records takes n and can be done in
such a way that each group is still ordered. The depth of recursion will be the
maximum path length which is bounded by log n, so the time for optimization
will also be n log n.

Empirical studies with optimized trees of random nodes have shown that the
T P L of trees after the treatment is roughly t 5 % lower than that obtained by

Quad Trees 9

straightforward insertion. The measures of searching effectiveness (nodes visited
per nodes found and nodes visited per search) remain roughly the same.

Conclusions

The quad tree seems to be an efficient means of storage for two-dlmensional
data. The most straightforward insertion algorithm yields n log n performance
when given random keys. Region searching is quite efficient.

Unfortunately, deletion from quad trees and merging of two quad trees is
not easy.

The basic concepts involved can easilybe generalized to an arbitrary number
of dimensions. (In m dimensions, each node has 2 m sons.)

References
Knuth, D. E. : The art of computer programming, vol. 3: Sorting and ~ h i n g .

Reading (Mass.): Addison-Wesley t973

R. Finkel
Computer Science Department
Stanford University
Stanford, Calif. 9430S/U.S.A.

J. Bentley
Computer Science Department
University of North Carolina
Chapel Hill, North Carolina 275t4/U.S.A.

